WO2011046198A1 - トラック車輌及び荷台並びに太陽電池パネル - Google Patents

トラック車輌及び荷台並びに太陽電池パネル Download PDF

Info

Publication number
WO2011046198A1
WO2011046198A1 PCT/JP2010/068151 JP2010068151W WO2011046198A1 WO 2011046198 A1 WO2011046198 A1 WO 2011046198A1 JP 2010068151 W JP2010068151 W JP 2010068151W WO 2011046198 A1 WO2011046198 A1 WO 2011046198A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell panel
panel
loading platform
cargo bed
Prior art date
Application number
PCT/JP2010/068151
Other languages
English (en)
French (fr)
Inventor
小安 幸夫
宇生 橋爪
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN2010900012362U priority Critical patent/CN202656915U/zh
Priority to JP2011536188A priority patent/JPWO2011046198A1/ja
Publication of WO2011046198A1 publication Critical patent/WO2011046198A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/40Mobile PV generator systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a truck vehicle, a cargo bed, and a solar battery panel equipped with a solar battery panel that drives temperature adjusting means such as an air conditioner and a refrigerator by electric energy generated by the solar battery panel provided on the cargo bed.
  • the object of the present invention is to make it possible to attach a solar panel as an option to an existing truck bed.
  • the truck vehicle of the present invention is configured as follows.
  • the invention according to claim 1 is a driving vehicle including a driver's cab; A loading platform having a loading platform body connected to the driving vehicle and covering the load storage portion; A solar panel provided on the cargo bed body; Truck vehicle with The thickness of the solar cell panel is set to 25 mm or less, and the weight per unit area is set to 6 kg / m 2 or less.
  • Invention of Claim 2 is equipped with the temperature adjustment means which adjusts the temperature of the at least one part of the said driver's cab or the said load storage part, Electric energy is supplied to the temperature adjusting means from the solar cell panel to the cargo bed body.
  • the invention according to claim 3 is characterized in that a cooling storage is provided in at least a part of the load storage unit, and the temperature adjusting means is a cooling means for cooling the inside of the cooling storage.
  • the invention described in claim 4 is characterized in that the temperature adjusting means is an air conditioner for adjusting the room temperature of the cab.
  • the invention described in claim 5 is characterized by comprising a storage battery that stores surplus power generated by the solar battery panel and supplements the insufficient power of the solar battery.
  • the invention according to claim 6 is characterized in that the ratio of the capacity (Wh) of the storage battery to the maximum output (Wp: Watt peak) of the solar cell panel is in the range of 0.1 to 10 (Wh / Wp).
  • the invention described in claim 7 is characterized in that a maximum output q per unit weight of the solar cell panel is 5 W / kg or more.
  • the invention described in claim 8 is characterized in that the solar cell panel has an independent structure different from the cargo bed body and is attached to the outer surface of the cargo bed body.
  • the invention described in claim 9 is characterized in that the solar cell panel is fixed to the cargo bed body by mechanical coupling via an attachment member.
  • the invention described in claim 10 is characterized in that the solar cell panel is bonded and fixed to the cargo bed body.
  • the invention according to claim 11 is configured such that the solar cell panel is integrally bonded to the panel of the cargo bed body, except for the back surface protective layer, and configured as a cargo bed panel with a solar cell panel.
  • the solar cell panel includes a plurality of solar cell elements connected in series along the traveling direction of the cargo bed in a state where the vehicle is traveling straight, with respect to the traveling direction. A plurality of rows are arranged in the orthogonal direction, and each cell row is connected in parallel.
  • the loading platform of the present invention is configured as follows.
  • the invention according to claim 13 is a cargo bed connected to a driving vehicle of a truck vehicle, the cargo bed body having a cargo bed body that covers a load storage portion, and a solar cell panel provided on the cargo bed body, The thickness of the solar cell panel is set to 25 mm or less, and the weight per unit area is set to 6 kg / m 2 or less.
  • the invention according to claim 14 is a temperature adjusting means provided in the truck vehicle, wherein the temperature adjusting means for adjusting the temperature of at least a part of the driver's cab or the load storage part is provided with a solar cell panel. Electrical energy is supplied.
  • the invention according to claim 15 is a cooling means in which a cooling storage is provided in at least a part of the load storage unit, and the temperature adjusting means is a cooling means for cooling the inside of the cooling storage, and the cooling means includes the Electric energy is supplied from the solar cell panel.
  • the invention described in claim 16 is an air conditioner in which the temperature adjusting means adjusts the room temperature of the cab, and electrical energy is supplied to the air conditioner from the solar panel.
  • the invention described in claim 17 is characterized by comprising a storage battery that stores surplus power generated by the solar battery panel and supplements the insufficient power of the solar battery.
  • the invention according to claim 18 is characterized in that the ratio of the capacity (Wh) of the storage battery to the maximum output (Wp: Watt peak) of the solar cell panel is in the range of 0.1 to 10 (Wh / Wp).
  • the invention described in claim 19 is characterized in that a maximum output q per unit weight of the solar cell panel is 5 W / kg or more.
  • the invention described in claim 20 is characterized in that the solar cell panel has an independent structure different from that of the cargo bed body and is attached to the outer surface of the cargo bed body.
  • the invention according to claim 21 is characterized in that the solar cell panel is fixed to the cargo bed body by mechanical coupling via an attachment member.
  • the invention described in claim 22 is characterized in that the solar cell panel is bonded and fixed to the cargo bed body.
  • the solar cell panel has a configuration excluding the base material of the protective layer, and is integrally bonded to the panel of the cargo bed body to constitute a cargo bed panel with a solar cell panel. It is characterized by that.
  • the solar cell panel includes a plurality of solar cell elements connected in series along the traveling direction of the cargo bed in a state where the vehicle is traveling straight, with respect to the traveling direction.
  • a plurality of rows are arranged in the orthogonal direction, and each cell row is connected in parallel.
  • the solar cell panel of this invention is comprised as follows.
  • the invention according to claim 25 is a solar cell panel provided on a cargo bed body that covers a load storage portion of a cargo bed connected to a driving vehicle of a truck vehicle.
  • the thickness of the solar cell panel is set to 25 mm or less, and the weight per unit area is set to 6 kg / m 2 or less.
  • the invention described in claim 26 is a temperature adjusting means provided in the truck vehicle, wherein the temperature adjusting means for adjusting the temperature of at least a part of the driver's cab or the load storage part is provided with the solar cell panel. The electric energy is supplied from.
  • the invention described in claim 27 is a cooling means in which a cooling storage is provided in at least a part of the load storage unit, and the temperature adjusting means is a cooling means for cooling the inside of the cooling storage, and the cooling means includes the Electric energy is supplied from the solar cell panel.
  • the invention according to claim 28 is an air conditioner in which the temperature adjusting means adjusts the room temperature of the cab, and electrical energy is supplied to the air conditioner from the solar panel.
  • the invention described in claim 29 is characterized in that a maximum output q per unit weight of the solar cell panel is 5 W / kg or more.
  • the thickness of the solar cell panel is set to 25 mm or less, the solar panel is within a range with a sufficient height with respect to the loading platform of the existing truck vehicle. Battery panels can be installed. Moreover, the solar cell panel can be mounted without reducing the capacity of the luggage compartment in the loading platform by setting the thickness to 25 mm or less. In addition, wind resistance during travel is small and does not affect fuel consumption. Further, since the weight per unit area of the solar cell panel is set to 6 kg / m 2 or less, the center of gravity of the truck does not move so much, and the running stability is not affected. Furthermore, the maximum load capacity of the truck is not greatly impaired, and the fuel consumption of the truck is not deteriorated.
  • the solar battery panel can be installed without greatly affecting the regulation, running stability, load capacity, etc. of the truck vehicle, according to the present invention, the solar battery panel can be applied to the loading platform of the existing truck vehicle. Can be retrofitted as an option. Further, since the present invention can be applied without changing the specifications of a conventional truck vehicle, it can be easily applied to a truck vehicle to be produced in the future without changing the manufacturing process.
  • the electric device provided in the truck vehicle or the loading platform is driven by the output of the solar cell panel without causing deterioration in running stability, fuel consumption, and load reduction. As a result, fuel reduction and CO 2 reduction effects can be expected.
  • the cooling device of the cooling storage can be driven by the output of the solar cell panel without causing deterioration in running stability, fuel consumption, and load reduction.
  • a CO 2 reduction effect can be expected.
  • the cooling device is not driven while the engine is stopped, so the temperature of the cooling storage rises while the vehicle is stopped.
  • Truck vehicles that perform parcel delivery services such as luggage have been a major issue because they generally have about the same travel time and stop time, and the stop time is considerably long. According to the present invention, since the cooling device can be driven even when the vehicle is stopped, this problem can be solved.
  • the air conditioner in the cab can be driven by the output of the solar cell panel without causing deterioration in running stability, fuel consumption, and load reduction. A CO 2 reduction effect can be expected.
  • the ratio of the capacity (Wh) of the storage battery to the maximum output power (Wp: watt peak) of the solar battery panel is in the range of 0.1 to 10 (Wh / Wp). Therefore, even if power generation becomes impossible for a short time due to a shade or a tunnel, the power shortage can be compensated and the air conditioner can be driven stably. Increasing the ratio increases the amount of time that can be compensated for, allowing stable driving at night when the weather and sunshine change temporarily.
  • storage batteries in this range are relatively lightweight, from several to several tens of kilograms, so that the maximum load capacity of the truck is not greatly impaired, and the fuel consumption of the truck is hardly deteriorated.
  • the solar panel is an independent structure different from the cargo bed body, and is attached to the outer surface of the cargo bed body. It becomes possible.
  • the said solar cell panel since the said solar cell panel was integrally adhere
  • the high-rigidity carrier panel also serves as the back surface protective layer (base material layer) of the solar cell panel, the increase in thickness and weight due to the installation of the solar cell panel can be minimized, and the strength of the solar cell panel is also improved. It will be enough. In this embodiment, the thickness and weight of the solar cell panel do not include the loading platform panel.
  • the figure which shows the whole structure of the solar cell mounted truck vehicle which concerns on Embodiment 1 of this invention Diagram for explaining the inside of the cargo bed body of a truck vehicle
  • Schematic sectional view showing the general structure of a solar cell panel Plan view of 1 unit panel with solar cell elements Enlarged sectional view of the vicinity of the intermediate spacer
  • FIG. 3A The circuit diagram which shows the electrical connection example of each solar cell element of a solar cell panel Explanatory drawing of the allowable mounting angle for the carrier Explanatory drawing when connection of solar cell element is monolithic structure
  • Sectional view of the rivet stop at the panel end of FIG. 5A 5A is a cross-sectional view of the rivet stopper in the middle panel portion of FIG.
  • Sectional view of the bolt part in an installation example in which the solar panel is removably bolted to the cargo bed body 6A is a longitudinal sectional view of the bolt portion in the orthogonal direction.
  • Top view of mounting part Longitudinal section of the bolt part where there is no electrical cable 6A is a cross-sectional view of an installation example in which the bolt of FIG. 6A is further removable.
  • Partial plan view of fixed bar Schematic explanatory diagram of replacement work when unit panels of solar cell panels can be replaced one by one
  • the top view which shows the other example which permanently fixes a solar cell panel to a bed body Sectional drawing of the rivet stop part of the panel edge part in FIG.
  • FIG. 8A Top view of an example of fixing a solar panel to a cargo bed body with double-sided tape
  • Sectional view of an example of fixing a solar cell panel to a cargo bed body with double-sided tape Schematic exploded perspective view of a solar cell panel using the top panel of the cargo bed body as a substrate Explanatory drawing of the formation work of the solar cell panel using the top panel of the cargo bed body as a substrate Plan view of a solar cell panel using amorphous silicon Explanatory drawing of the configuration of a solar cell panel using amorphous silicon
  • the figure which shows the whole structure of the truck vehicle mounted with the solar cell which concerns on another form.
  • the figure which looked at the carrier of the truck vehicle of Drawing 12A from back 12A is a side view of the truck body of the truck vehicle of FIG.
  • an electric device (electrical component) provided on a truck vehicle or a cargo bed is driven using electric energy generated by a solar cell panel provided on the cargo bed.
  • a truck vehicle that includes temperature adjusting means for adjusting the temperature of at least a part of the cab or the load storage part and supplies electric energy from the solar cell panel to the temperature adjusting means.
  • a truck vehicle equipped with a solar cell panel that drives a cooling device as temperature adjusting means for cooling a cooling storage provided in the cargo bed by electric energy generated by the solar cell panel provided in the cargo bed.
  • a description will be given of a truck vehicle equipped with a solar cell panel that drives an air conditioner in a driver's cab as temperature adjusting means by means of electric energy generated by the solar cell panel provided on the loading platform.
  • FIG. 1A is a diagram showing an example of an embodiment for carrying out the present invention.
  • 1 shows the whole truck vehicle, and this truck vehicle 1 is provided with a driving vehicle 10 including a driver's cab, a loading platform 20, and a refrigerator 30 as temperature adjusting means.
  • the refrigerator 30 corresponds to a cooling means (cooling device).
  • FIG. 1B a heat exchange unit in which a heat storage unit (hereinafter referred to as a “freezer”) 22 having a heat insulating structure and a part of components constituting the refrigerator 30 are accommodated in the loading platform 20.
  • a cargo bed body 21 provided with 31 is provided.
  • the heat exchange unit 31 is provided adjacent to the freezer 22 on the side of the driving vehicle 10 with respect to the freezer 22 in the cargo bed body 21, and is provided above the driving vehicle 10. Further, a solar cell panel 40 that supplies electric energy to the refrigerator 30 is provided on the outer surface of the cargo bed body 21. In addition, the loading platform 20 is provided with a storage battery 50 that stores surplus power generated by the solar cell panel 40 and supplements the insufficient power of the solar cell panel 40.
  • the refrigerator 30 itself has a known structure, and includes a compressor (compressor) 32 that pressurizes the vaporized refrigerant, a condenser (condenser) that condenses the refrigerant, and an evaporator (evaporator) that vaporizes the refrigerant.
  • the refrigerant is circulated through the piping.
  • the compressor 32 is provided in the engine room 11 of the driving vehicle 10.
  • the capacitor and the evaporator are provided in the heat exchange unit 31.
  • a power source (drive source) of the compressor 32 an engine for traveling the truck vehicle 1 is used. Further, in the present embodiment, an electric motor 33 is used in addition to the engine of the truck vehicle 1. Yes.
  • the electric motor 33 is provided in the engine room 11 of the driving vehicle 10 and is connected to the compressor 32 via a clutch. That is, the compressor 32 is connected to the electric motor 33 via a clutch, and is connected to the engine of the truck vehicle 1 via a clutch. Further, the heat exchange unit 31 is provided with a blower, and the cold air heat-exchanged by the evaporator is blown into the freezer 22. These electric motors 33 constituting the refrigerator 30 and the motor of the blower provided in the heat exchange unit 31 are driven by the electric energy generated by the solar cell panel 40.
  • the solar cell panel 40 is connected to the control device 60 via an electric cable.
  • a refrigerator 30 and a storage battery 50 are also connected to the control device 60.
  • the control device 60 is provided in the driving vehicle 10 or the loading platform 20 and drives and controls the refrigerator 30.
  • the control device 60 performs power source switching control in order to drive and control the refrigerator 30.
  • the control device 60 controls the clutch between the engine and the compressor 32 and the clutch between the electric motor 33 and the compressor 32 to control the refrigerator 30 using the driving force of the engine of the truck vehicle 1. When driving, the engine and the compressor 32 are connected, and when driving the refrigerator 30 using the driving force of the electric motor 33, the electric motor 33 and the compressor 32 are connected.
  • the control device 60 controls the driving of the refrigerator 30 to drive the refrigerator 30 using the driving force of the engine of the truck vehicle 1 when the engine is driven, and when the engine is stopped,
  • the refrigerator 30 can be driven using only the driving force.
  • the refrigerator 30 can be driven using only the electric motor 33, or the driving force of the electric motor 33 can be used in addition to the driving force of the engine of the truck vehicle 1. it can.
  • the cargo bed body 21 on which the solar cell panel 40 is installed has a rectangular parallelepiped shape like a so-called van body, and the top panel 24 has a substantially horizontal planar shape. A solar cell panel 40 is attached to the top panel 24.
  • the solar cell panel 40 is configured as a panel in which a plurality of solar cell elements are connected in series and / or in parallel. As shown in FIG. 3A, the light receiving surface side (arrow direction) of the solar cell element 41. In addition, protective layers 44 and 45 on the front surface and the back surface side are optionally provided on both the non-light-receiving surface side through sealing material layers 42 and 43. If necessary, other layers such as a gas barrier layer and a getter material layer may be provided at an arbitrary place.
  • the solar cell element 41 is usually formed by sandwiching a power generation layer (photoelectric conversion layer) 41c between at least a pair of electrodes 41a and 41b.
  • a buffer layer may be interposed between the power generation layer 41c and the electrodes 41a and 41b.
  • the electrodes 41a and 41b are connected to the extraction electrode, and the generated electric power can be extracted to the outside.
  • dye, an organic semiconductor material, etc. can be used preferably. These are preferable because they have relatively high power generation efficiency and can reduce the weight of the thin film.
  • a thin film polycrystalline silicon solar cell element using thin film polycrystalline silicon as a power generation layer is a type of solar cell element utilizing indirect optical transition. For this reason, in a thin film polycrystalline silicon solar cell element, it is preferable to provide sufficient light confinement structures, such as forming an uneven structure on the substrate or the surface, to increase light absorption.
  • Thin film polycrystalline silicon can be formed on a substrate by a conventional method such as a CVD method.
  • Amorphous silicon solar cell elements using amorphous silicon as the power generation layer are those in which the indirect optical transition in crystalline silicon is a direct transition due to structural disorder, the optical absorption coefficient in the visible region is large, and the thickness is about 1 ⁇ m. This thin film has the advantage that it can sufficiently absorb sunlight. For this reason, if an amorphous silicon solar cell element is used as the solar cell element, a lighter solar cell panel can be realized. Further, since amorphous silicon is an amorphous material, it is resistant to deformation and can be made flexible.
  • a compound semiconductor solar cell element using an inorganic semiconductor material (compound semiconductor) as the power generation layer is preferable because of its high power generation efficiency.
  • compound semiconductor compound semiconductor
  • chalcogenide-based power generation layers containing chalcogen elements such as S, Se, and Te are preferable, and I-III-VI group 2 semiconductor-based (chalcopyrite-based) power generation layers are preferable.
  • Cu— using Cu as a group I element is preferable.
  • the III-VI group 2 semiconductor-based power generation layer is theoretically preferable because of its extremely high photoelectric conversion efficiency.
  • CIS semiconductors and CIGS semiconductors are particularly preferable.
  • the CIS-based semiconductor indicates CuIn (Se 1-y Sy) 2 (0 ⁇ y ⁇ 1), and the CIGS-based semiconductor indicates Cu (In 1-x Ga x ) (Se 1-y S y ) 2 (0 ⁇ X ⁇ 1, 0 ⁇ y ⁇ 1).
  • a dye-sensitized power generation layer composed of, for example, a titanium oxide layer and an electrolyte layer is also preferable because of its high power generation efficiency.
  • an organic semiconductor material may be used for the power generation layer to form an organic solar cell element.
  • the organic semiconductor material is composed of a p-type semiconductor and an n-type semiconductor.
  • the p-type semiconductor is not particularly limited, and examples thereof include a low molecular material and a high molecular material.
  • low molecular weight material examples include condensed aromatic hydrocarbons such as naphthacene, pentacene, pyrene and fullerene; oligothiophenes containing 4 or more thiophene rings such as ⁇ -sexithiophene; thiophene ring, benzene ring, fluorene ring, Concatenated four or more naphthalene rings, anthracene rings, thiazole rings, thiadiazole rings, and benzothiazole rings; phthalocyanine compounds such as copper phthalocyanine, zinc phthalocyanine, and perfluorocopper phthalocyanine; porphyrin compounds such as tetrabenzoporphyrin and metal complexes thereof And macrocyclic compounds such as metal salts thereof.
  • condensed aromatic hydrocarbons such as naphthacene, pentacene, pyrene and fullerene
  • polymer material examples include conjugated polymers such as polythiophene, polyfluorene, polythienylene vinylene, polyacetylene, and polyaniline; and polymer semiconductors such as alkyl-substituted oligothiophene.
  • conjugated polymers such as polythiophene, polyfluorene, polythienylene vinylene, polyacetylene, and polyaniline
  • polymer semiconductors such as alkyl-substituted oligothiophene.
  • the n-type semiconductor is not particularly limited.
  • fullerene derivatives quinolinol derivative metal complexes, condensed ring tetracarboxylic acid diimides, terpyridine metal complexes, tropolone metal complexes, flavonol metal complexes, perinone derivatives, benzimidazole derivatives, benzoxazole derivatives , Benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, aldazine derivatives, bisstyryl derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, benzoquinoline derivatives, bipyridine derivatives, condensed polycyclic aromatic total fluorides, single layers
  • Examples include carbon nanotubes.
  • the electrode can be formed using one or more arbitrary materials having conductivity.
  • metals such as platinum, gold, silver, aluminum, chromium, nickel, copper, titanium, magnesium, calcium, barium, sodium, or alloys thereof; metal oxides such as indium oxide or tin oxide, or alloys thereof (ITO)
  • a conductive polymer such as polyaniline, polypyrrole, polythiophene and polyacetylene; an acid such as hydrochloric acid, sulfuric acid and sulfonic acid; a Lewis acid such as FeCl3; a halogen atom such as iodine; a metal such as sodium and potassium;
  • Examples include those containing a dopant such as atoms; conductive composite materials in which conductive particles such as metal particles, carbon black, fullerene, and carbon nanotubes are dispersed in a matrix such as a polymer binder.
  • An electrode material suitable for collecting holes is a material having a high work function such as Au or ITO.
  • an electrode material suitable for collecting electrons is a material having a low work function such as Al.
  • Two or more electrodes may be laminated, and characteristics (electric characteristics, wetting characteristics, etc.) may be improved by surface treatment.
  • limiting in the formation method of an electrode For example, it can be formed by a dry process such as vacuum deposition or sputtering, or can be formed by a wet process using a conductive ink or the like. Any conductive ink can be used.
  • a conductive polymer, a metal particle dispersion, or the like can be used.
  • the electrode on the light receiving surface side of the solar cell element is preferably transparent in order to transmit light used for power generation.
  • the electrode is not transparent, such as the area of the electrode is smaller than the area of the power generation layer, the electrode does not necessarily have to be transparent if the power generation performance is not adversely affected.
  • transparent electrode materials include oxides such as ITO and indium zinc oxide (IZO); and metal thin films.
  • the specific range of the light transmittance is not limited, but 80% or more is preferable in consideration of the power generation efficiency of the solar cell element. The light transmittance can be measured with a normal spectrophotometer.
  • a protective layer (referred to as a surface protective layer) is provided on the light receiving surface side of the solar cell element.
  • a sealing material layer may be provided between the solar cell element and the protective layer for the purpose of sealing the solar cell element and bonding the protective layer.
  • a protective layer will serve as the sealing function of a solar cell element.
  • the surface protective layer is usually located on the outermost surface of the solar cell panel, and is formed for the purpose of mechanical strength, weather resistance, scratch resistance, chemical resistance, gas barrier properties, and the like.
  • the specific strength is not related to the strength of the encapsulant layer and the back surface protective layer, but it cannot be said unconditionally, but the entire solar cell panel has good bending workability and does not cause peeling of the bent portion. It is desirable to have.
  • the surface protective layer is preferably one that transmits visible light from the viewpoint of not hindering light absorption of the solar cell element.
  • the transmittance of visible light (wavelength 360 to 830 nm) is preferably 80% or more, and more preferably 90% or more.
  • the surface protective layer preferably has heat resistance, and the melting point of the constituent material of the surface protective layer is usually 100 ° C. or higher, preferably 120 ° C. or higher. Moreover, it is 350 degrees C or less normally, Preferably it is 320 degrees C or less.
  • the material for the surface protective layer can be selected in consideration of these characteristics, and is not particularly limited.
  • fluorine resin is preferable, and specific examples thereof include polytetrafluoroethylene (PTFE), 4-fluoroethylene-perchloroalkoxy copolymer (PFA), 4-fluoroethylene-6-fluoride.
  • PTFE polytetrafluoroethylene
  • PFA 4-fluoroethylene-perchloroalkoxy copolymer
  • FEP Propylene copolymer
  • ETFE 2-ethylene-4-fluoroethylene copolymer
  • PCTFE poly-3-fluoroethylene chloride
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • the surface protective layer may be formed of two or more materials.
  • the surface protective layer may be a single layer or a laminate composed of two or more layers.
  • the thickness of the surface protective layer is not particularly defined, but is usually 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and usually 200 ⁇ m or less, preferably 180 ⁇ m or less, more preferably 150 ⁇ m or less. Increasing the thickness tends to increase mechanical strength, and decreasing the thickness tends to increase flexibility. However, when the surface protective layer also serves as a sealing material layer, the thickness of the surface protective layer is usually 100 ⁇ m or more, preferably 150 ⁇ m or more, more preferably 200 ⁇ m or more, and usually 3 mm or less, preferably 1.5 mm or less. More preferably, it is 1 mm or less.
  • the sealing material layer is usually provided for the purpose of sealing the solar cell element and bonding the protective layer, but also contributes to improvement in mechanical strength, weather resistance, gas barrier properties, and the like. Further, at least the sealing material layer on the light-receiving surface side preferably transmits visible light and has high heat resistance like the surface protective layer.
  • the material of the encapsulant layer can be selected in consideration of these characteristics, and is not particularly limited.
  • ethylene-vinyl acetate copolymer (EVA) resin for example, ethylene-vinyl acetate copolymer (EVA) resin, polyolefin resin, AS (acrylonitrile-styrene) resin, ABS (acrylonitrile-butadiene-styrene) resin, polyvinyl chloride resin, fluorine resin, polyester resin such as polyethylene terephthalate, polyethylene naphthalate, phenol resin, polyacrylic resin, (hydrogenated) epoxy resin, various nylon, etc.
  • polyester resin such as polyethylene terephthalate, polyethylene naphthalate, phenol resin, polyacrylic resin, (hydrogenated) epoxy resin, various nylon, etc.
  • polyester resin such as polyethylene terephthalate, polyethylene naphthalate, phenol resin, polyacrylic resin, (hydrogenated) epoxy resin, various nylon, etc.
  • polyester resin such as polyethylene terephthalate, polyethylene naphthalate, phenol resin, polyacrylic
  • an ethylene copolymer resin is preferable, and an ethylene-vinyl acetate copolymer (EVA) resin or a polyolefin resin made of a copolymer of ethylene and another olefin is more preferable.
  • examples thereof include resins made of propylene / ethylene / ⁇ -olefin copolymer, ethylene / ⁇ -olefin copolymer, and the like.
  • An ethylene-vinyl acetate copolymer (EVA) resin composition is usually made into an EVA resin by blending a crosslinking agent in order to improve weather resistance to form a crosslinked structure.
  • a crosslinking agent an organic peroxide that generates radicals at 100 ° C.
  • 2,5-dimethylhexane; 2,5-dihydroperoxide; 2,5-dimethyl-2,5-di (t-butylperoxy) hexane; 3-di-t-butylperoxide It is done.
  • the compounding amount of the organic peroxide is usually 1 to 5 parts by weight with respect to 100 parts by weight of the EVA resin.
  • the EVA resin composition may contain a silane coupling agent for the purpose of improving adhesive strength, or may contain hydroquinone or the like for the purpose of improving stability.
  • a thermoplastic resin composition in which a propylene polymer and a soft propylene copolymer are blended in an appropriate composition is usually used.
  • the sealing material layer may be formed of two or more materials. Further, the sealing material layer may be a single layer or a laminate composed of two or more layers.
  • the thickness of each sealing material layer is not particularly limited, but is usually 100 ⁇ m or more, preferably 150 ⁇ m or more, more preferably 200 ⁇ m or more, and usually 3 mm or less, preferably 1.5 mm or less, more preferably 1 mm or less. It is. Increasing the thickness tends to increase the mechanical strength of the solar cell panel, and decreasing the thickness tends to increase flexibility and improve visible light transmittance.
  • These surface protective layers and / or encapsulant layers are formed by a conventionally known method such as pressure bonding of a film or sheet formed in advance, application of liquid resin / printing film formation, liquid resin casting, etc. Can be formed.
  • a protective layer (referred to as a back surface protective layer) is provided on the non-light-receiving surface side.
  • the back surface protective layer also has a function as a support member and a substrate, so it has high mechanical strength, is excellent in weather resistance, heat resistance, water resistance and the like, and is preferably lightweight, and also for deformation of the installation site of the solar cell panel. Those that can be deformed by following are preferable.
  • Examples of the material for forming the back surface protective layer include inorganic materials such as glass, sapphire, and titania; polyethylene terephthalate resin, polyethylene naphthalate resin, polyethersulfone resin, polyimide resin, (hydrogenated) epoxy resin, nylon resin, polystyrene Resin, polyvinyl alcohol resin, ethylene vinyl alcohol copolymer, fluororesin film, vinyl chloride resin, polyethylene resin, cellulose resin, polyvinylidene chloride resin, aramid resin, polyphenylene sulfide resin, polyurethane resin, polycarbonate resin, polyarylate resin, poly Organic materials such as norbornene resin; paper materials such as paper and synthetic paper; surfaces coated or laminated on metals such as stainless steel, titanium, and aluminum to provide corrosion resistance and insulation Composites and the like; and the like.
  • the base material layer is preferably a composite material containing metal, an organic material, a paper material, or the like.
  • An organic material is more preferable in that it is lightweight and flexible.
  • these organic materials include inorganic fibers (carbon fibers, glass fibers, ceramic fibers, etc.), organic fibers (aramid, polyester, polyamide, high-strength polypropylene, polyparaphenylene benzobisoxazole, etc.), metal fibers (boron, titanium, steel, etc.) ) And the like may be included to increase the mechanical strength.
  • This reinforcement provides a light and tough vehicle solar panel.
  • a back surface protective layer Usually, a plate-shaped or film-shaped thing is used. Further, when the back surface protective layer is formed into a plate shape, the back surface protective layer may be formed in a flat plate shape, but may be formed in a curved or uneven shape depending on the shape of the mounting portion of the vehicle.
  • the attachment member may be provided in the back surface protective layer as needed.
  • Thickness is 12 micrometers or more normally, Preferably it is 20 micrometers or more. This is from the viewpoint of strength, operability, and the like. Moreover, it is usually 23 mm or less, preferably 20 mm or less. This is from the viewpoint of weight reduction, flexibility, workability, and the like.
  • a frame made of metal or the like can be provided on the back surface of the panel. In this case, a frame is also included in the thickness and weight of the solar cell panel.
  • the back surface protective layer of the solar cell panel may also serve as a panel of the cargo bed body and may constitute a part of the cargo bed.
  • the solar cell panel may be integrally bonded to the panel of the cargo bed so as to constitute a part of the cargo bed body.
  • a solar cell panel 40 includes a solar cell element 41 using a plurality of polycrystalline silicon as a power generation layer, and a sealing material layer for sealing a lead wire 46 connecting the solar cell elements 41. 42, 43, a surface protection layer 44 made of ETFE resin, and a substrate 45 as a back surface protection layer made of an aluminum plate, and has a thickness of about 3.8 mm as a whole.
  • the sealing material layer 42 includes two layers: a hydrogenated epoxy resin layer in contact with the solar cell element 41 and an EVA resin layer formed in contact therewith. The same applies to the sealing material layer 43.
  • the solar cell element 41 itself is not limited to the illustrated example, and various configurations are possible.
  • the front and back surfaces of each solar cell element 41 are a positive electrode and a negative electrode, and as shown in FIG. 3C, electrical connection is connected by a lead wire 46, and the lead wire 46 is connected on a spacer 47.
  • An extraction electrode is provided at an end of the unit panel 401 and can be electrically connected to the adjacent unit panel 401.
  • the electrode terminals of the two rows of element examples are configured with the same polarity.
  • a plurality of unit panels 401 are installed on the left and right top panel 24, 24 of the cargo bed body 21 in two rows in the longitudinal direction of the cargo bed body 21.
  • the longitudinal direction of the loading platform 20 corresponds to the traveling direction of the loading platform 20 when the vehicle is traveling straight.
  • the unit panel 401 is connected so that the element rows of the two rows of solar cell elements of each unit panel 401 are connected in series.
  • the unit panel 401 itself may have a monolithic structure in which the front and back surfaces of different polarities of the solar cell element 41 are directly overlapped and connected without using the lead wire 46 as shown in FIG. 4D.
  • the number and arrangement of the solar cell elements 41 of the unit panel 401 are arbitrary.
  • column of the solar cell element 41 connected in series along the longitudinal direction of the loading platform 20 is arranged in multiple rows in the orthogonal direction with respect to the advancing direction, and each element row
  • the arrangement of the element rows of the solar cell elements 41 does not have to be completely parallel to the traveling direction of the vehicle in a straight traveling state, and an angle of about 5 to 20 degrees is normally allowed.
  • the distance between the straight line drawn from the front end vertex A of the unit panel 401 in parallel with the traveling direction of the loading platform and the panel rear end vertex B is usually 5 mm or less. , Preferably 3 mm or less, more preferably 1 mm or less.
  • a bypass diode may be provided for each unit panel 401. Even if some of the panels connected in series do not generate power in the shade or the like, the panel becomes a resistance and does not adversely affect power generation.
  • the solar cell panel 40 is 3.8 mm in the present embodiment, but its thickness is preferably in the range of 0.3 mm to 25 mm. Preferably it is 0.5 mm or more, More preferably, it is 0.7 mm or more, Preferably it is 10 mm or less, More preferably, it is 5 mm or less. If it is 25 mm or less, the wind resistance during running is small and does not affect fuel consumption.
  • the weight per unit area of the solar cell panel 41 is 4.9 [kg / m 2 ] in the present embodiment, it is preferably 6 [kg / m 2 ] or less. If the weight is set to 6 [kg / m 2 ] or less, the center of gravity of the truck does not move so much and the running stability is not affected.
  • the maximum stable inclination angle of an automobile is generally required to be 35 degrees or more, and the higher the value, the higher the running stability.
  • the total weight is about 100 kg or less. A maximum stable inclination angle of 45 degrees can be ensured, and sufficient running stability can be obtained.
  • the 10-ton car has a ceiling area of about 18 m 2 , and when a 6 kg / m 2 solar cell panel is installed, the total weight is about 100 kg.
  • the weight per unit area of the solar cell panel 41 is preferably 5 [kg / m 2 ] or less, more preferably 4 [kg / m 2 ] or less.
  • the weight is usually 0.3 [kg / m 2 ] or more, preferably 0.5 [kg / m 2 ] or more, more preferably 1.0 [kg / m 2 ] or more.
  • the maximum output q per unit weight of the solar cell panel 40 is preferably 5 [W / kg] or more. Long-time driving is possible without affecting the running performance of the truck. In this embodiment, it is 17.7 [W / kg]. Preferably it is 10 [W / kg] or more, more preferably 15 [W / kg] or more. However, the power generation efficiency of the solar cell is limited, and is usually 100 [W / kg] or less, preferably 70 [W / kg] or less, more preferably 50 [W / kg] or less. Since efficiency is equivalent to 6.7 W / kg at 4%, equivalent to 10 W / kg at 6%, and equivalent to 16.7 W / kg at 10%, it is set as described above.
  • the unit panel of the solar cell 40 is 40 sheets, the maximum output per sheet is 23.6 [Wp], and the total output is 944 [Wp].
  • the ratio of the capacity (Wh) of the storage battery to the maximum output (Wp: Watt peak) of the solar cell panel is in the range of 0.1 to 10 (Wh / Wp). Preferably it is 0.5 (Wh / Wp) or more, more preferably 1 (Wh / Wp) or more, preferably 8 (Wh / Wp) or less, more preferably 6 (Wh / Wp) or less.
  • FIG. 5A is an example in which the solar cell panel 40 is permanently fixed to the top panel 24.
  • the longitudinal side edge of the panel row 410 of each unit panel 401 is pressed by a retainer 70 extending in the longitudinal direction of the cargo bed body 21, and the retainer 70 and each unit panel 401 are coupled together by a rivet 71.
  • the retainer 70 is provided with a convex portion 74 at the center portion in the width direction, and press ribs at the left and right side edges in the width direction.
  • a gap is provided between the convex portion 74 and the holding ribs 75, 75.
  • a rivet hole 72 is provided in the convex portion of the retainer 70, and is fixed in a watertight manner between the rivet hole 72 and the rivet 71 through a sealing material 73.
  • the retainer 70 is configured to fix the middle portion of the panel row 410 of the two rows of unit panels 401 and the three left and right end portions.
  • Example 2 6A to 6D show an example in which the solar cell panel 40 is attached to the top panel 24 in a replaceable manner.
  • a mounting plate 82 fixed to each unit panel 401 is fixed by bolts 83 and nuts 84 to a fixing bar 81 fixed by rivets 87. That is, the head 83a of the bolt 83 is non-rotatably attached to the fixing bar 81, and the screw shaft 83b of the bolt 83 protrudes upward from the fixing bar 81, and is fixed to the unit panel 401 on the screw shaft 83b of the bolt 83.
  • the mounting hole 82 a of the mounting plate 82 is inserted and is fastened and fixed by a nut 84.
  • the mounting plate 82 is a thin plate bent in an S-shaped cross section extending along the fixed bar 81, and is bent toward the upper surface side of the fixed bar 81 from the vertical piece portion extending along the side surface of the fixed bar 81 and the upper end of the vertical piece portion. And a panel fixing piece portion that is bent from the lower end of the vertical piece portion to the opposite side of the fixing bar 81 and is fixed to the unit panel 401.
  • Example 3 7A to 7C show that the bolt 83 of Example 2 can be removed from the fixing bar 81, and the fixing bar 81 is provided with a notch 81a for mounting the bolt 83. If it does in this way, it can replace
  • FIG. If the solar cell panel is removable as in Examples 2 and 3, it can be replaced in units of units as shown in FIG. 7C, which is advantageous in terms of workability and cost.
  • the mounting method is not specifically described, but it is configured to be detachably fixed as in Example 2 and Example 3, and a hole through which a lead wire passes is provided at a position corresponding to each unit panel. .
  • Example 4 8A and 8B show a configuration in which the unit panels 401 of Examples 2 and 3 are integrally fixed to the top panel 24 of the cargo bed by the rivets 288 via the mounting plate 282 and the panel pressing bar 287. Yes.
  • the difference from Example 2 and Example 3 is that the solar cell panel itself is directly fixed by rivets 288.
  • the panel pressing bar 287 has substantially the same height as the fixed bar 81, and the mounting plate 282 has a flat plate configuration.
  • Other configurations are the same as those of Example 2, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • Examples 1 to 4 above are examples in which the solar cell panel 40 is fixed to the loading platform 20 by mechanical coupling via attachment members such as rivets, retainers, fixing bars, bolts, and nuts. Examples of mechanical coupling are not limited to such a configuration, and various known mechanical couplings can be used.
  • Example 5 9A and 9B are examples in which the solar cell panel 40 is bonded and fixed to the top panel 24 using a double-sided tape 90.
  • the adhesive fixing method is not limited to using an adhesive tape such as the double-sided tape 90, but may be bonded using an adhesive.
  • Example 6 10A and 10B show a configuration in which the back surface protective layer itself of the solar cell also serves as the top panel of the loading platform. That is, in this solar cell panel (FIG. 10A), sealing material layers 42 and 43 made of EVA resin, thermoplastic olefin resin, or the like are laminated on the front and back surfaces of the solar cell element 41, and a surface protective layer 44 such as ETFE on the surface.
  • the top panel 24 is used as a back surface protection layer of the solar cell (unit panel 340) by adhering the unit panel 340 provided with to the top panel 24 of the loading platform 20.
  • the unit panel 340 is positioned and placed on the top panel 24 in which the electrode outlet 24a is previously formed and bonded by heating and pressing.
  • the sealing material layer 43 can be formed by heat-sealing and integrating with the top panel 24.
  • the top plate panel 24 of the loading platform other portions such as a loading platform side panel and a loading platform rear side panel may be used. Examples of the method include a method in which the unit panel 340 is bonded with an adhesive, and a method in which the sealing material layer 43 of the unit panel 340 is bonded as a bonding layer by thermocompression bonding.
  • a method of bonding the unit panel 340 with an adhesive will be described.
  • a unit panel 340 composed of the surface protective layer 44, the surface sealing material layer 42, the solar cell element 41, and the back surface sealing material layer 43 is produced by a conventional method.
  • a release layer (not shown) made of, for example, a fluororesin (for example, PTFE, ETFE, PFA, PBDF, PVF, etc.) on the surface of the back surface sealing material layer 43 side, it can be stored at room temperature or lower. Can be used at any time for bonding to the top panel 24.
  • the opposite surface may also be covered with a release film.
  • the unit panels 340 are arranged on the top panel 24 with the back surface sealing material layer 43 side down, and after alignment, an adhesive is applied to the bonding position of the top panel 24. Then, the release layer is removed and pressure bonded. You may heat as needed. After bonding, the bonding is stabilized by leaving it for a certain time.
  • an adhesive agent A conventionally well-known thing can be used according to the kind etc. of adhesion
  • a sheet-like adhesive may be sandwiched and pressure-bonded in the same manner. In addition to relatively easy large-area construction, process cycle time can be shortened.
  • the surface protective layer 44 may be formed after bonding to the top panel 24.
  • thermocompression bonding using the back surface sealing material layer 43 of the unit panel 340 as an adhesive layer
  • a thermoplastic resin such as thermoplastic polyolefin
  • the sheet is softened and fused by pressurization and heating. To do.
  • a release layer is formed on the back surface and can be stored at room temperature or lower.
  • the unit panels 340 are arranged on the top panel 24 with the back surface sealing material layer 43 side down, and after alignment, the release layer is removed and heated under pressure to protect the back surface.
  • the layer 43 is softened and heat-sealed to the top panel 24 and cooled to complete the bonding.
  • a dedicated adhesive is not used, an adhesive application step is unnecessary, and the bonding process can be simplified.
  • a crosslinkable resin such as EVA resin is used as the back surface sealing material layer 43, and after the uncrosslinked EVA resin is brought into contact with the solar cell element 41, the degree of crosslinking of the EVA resin is determined. Is heated under pressure until it reaches 50 to 80% (for example, at 140 ° C. for 12 minutes). When the degree of cross-linking reaches the target value, the pressure heating is stopped and the cross-linking promotion is temporarily stopped. This is also called a semi-crosslinked unit panel. After that, a release layer is formed on the back surface and can be stored in a dark place at room temperature or lower.
  • the semi-crosslinked unit panels are arranged on the top panel 24 with the back surface protective layer side facing down, and after the alignment, the release layer is removed. It is heated under pressure until it becomes at least%, cooled, and the adhesion with the top panel 24 is completed.
  • a dedicated adhesive is not used, an adhesive application step is unnecessary, and the bonding process can be simplified.
  • the surface protective layer 44 may be formed after bonding to the top panel 24.
  • the method of adhering the unit panel sealing material layer as an adhesive layer by thermocompression bonding is preferable in terms of weather resistance, and the type in which a crosslinkable resin is used as the sealing material layer and a semi-crosslinked unit panel is particularly preferable.
  • the panel mounting portion of the solar cell panel is the top panel of the loading platform, but other portions such as the loading platform side surface and the loading platform rear side surface may be used as the panel mounting portion.
  • FIG. 11 shows an example in which amorphous silicon is used as a solar cell panel.
  • FIG. 11A is a schematic perspective view of a panel configuration of an amorphous silicon solar cell
  • FIG. 11B is a plan view of the panel.
  • the thickness of the solar cell panel is 2.3 mm
  • the weight is about 5.7 [kg / m 2 ]
  • the maximum output q per unit weight of the solar cell panel is 5.3 [W / kg].
  • the ratio of the capacity (Wh) of the storage battery to the maximum output (Wp: watt peak) of the solar cell panel is 3 (Wh / Wp)
  • the area Sp of the solar cell panel is about four times the area Sd of the cab. .
  • the configuration of the solar cell panel 240 is such that the surface protective layer 244 is provided on both the light receiving surface side (arrow direction) and the non-light receiving surface side of the solar cell element 241 via the sealing material layers (EVA) 242, 243. (ETFE) and a substrate 245 as a back surface protection layer made of an iron plate.
  • Amorphous silicon has a monolithic structure and is connected by directly contacting a plurality of solar cell elements without using lead wires.
  • the connecting direction is a series element array in which the truck vehicle is connected in series along the traveling direction of the straight traveling state, that is, along the longitudinal direction of the cargo bed, and is orthogonal to the longitudinal direction. Are arranged in multiple columns.
  • FIG. 2A to 2C are diagrams showing other forms of the truck vehicle
  • FIG. 2A is a diagram showing a configuration in which the compressor is driven only by a dedicated electric motor without using the driving force of the engine of the truck vehicle 1.
  • FIG. 2B is a diagram showing a configuration in which a compressor is driven by providing an engine 35 dedicated to a refrigerator, in addition to the engine of the truck vehicle 1
  • FIG. 2C is a diagram showing a part of the storage chamber in the cargo bed body 21 in the freezer 22. It is a figure which shows the structure which is.
  • the compressor 32 that can be driven and controlled using the driving force of the engine of the truck vehicle 1 has been described.
  • the present invention is not limited to this.
  • the compressor may be configured to be driven only by a dedicated electric motor without using the driving force of the engine (electric compressor 34 shown in FIG. 2A).
  • This dedicated electric motor is driven by a battery charged by the engine, and supplementarily uses power generated by the solar cell panel 40 or power supplied from the storage battery 50.
  • FIG. A mode in which the engine 35 is provided and the compressor 36 is driven using the driving force of the engine 35 dedicated to the refrigerator may be applied.
  • the sub-engine type has the advantage that it can always be cooled with a constant capacity compared to the main engine type, and the main engine type has advantages in terms of load (both weight and volume) and fuel costs compared to the sub-engine type. is there.
  • the storage battery 50 is omitted.
  • the freezer 22 is not particularly limited, as a preferred embodiment, the freezer 22 is provided in a region (an adjacent region) near the heat exchange unit 31 in the cargo bed body 21 (a region in front of the truck vehicle 1).
  • the other area of the cargo bed body 21 is a storage chamber 23 for storing a load that does not need to be cooled.
  • the term “refrigerated vehicle” is a generic term for a vehicle in which a refrigerator is provided in a cold storage vehicle, and refers to a truck vehicle that transports a cargo while being stored frozen or refrigerated. Accordingly, the truck vehicle 1 may be a so-called refrigerated vehicle.
  • the freezer (cooling storage) 22 provided in the loading platform 20 corresponds to a refrigerator with a heat insulating structure that accommodates articles that need to be refrigerated
  • the refrigerator 30 is a cooling device that cools (maintains at a low temperature) the inside of the refrigerator. It corresponds to.
  • the loading platform may be structured such that the loading platform body provided with at least a part of the cooling storage can be separated from the loading platform body.
  • a container loaded on a flat body is also included in the cargo bed body of the present invention in the sense of a cargo bed body provided with at least a part of the cooling storage. You may make it lay a solar cell panel in the top plate of this container.
  • the connector of the electric cable from the solar cell panel may be connected to the connector on the driving vehicle side.
  • the truck vehicle according to the first embodiment described above is provided with a cooling means, but in this embodiment, a truck vehicle provided with an air conditioner (air conditioning means) for adjusting the room temperature of the cab is described. .
  • symbol is attached
  • FIG. 12A 1 shows the entire truck vehicle.
  • the truck vehicle 1 includes a driving vehicle 10 and a loading platform 20, and the loading platform 20 is provided with a loading platform body 21 having a storage chamber for storing a load. ing.
  • the driving vehicle 10 is provided with two air conditioners, a main air conditioner 130 for adjusting the room temperature in the cab 13 and a sub air conditioner 131, and the main air conditioner 130 and the sub air conditioner 131 are provided on the outer surface of the cargo bed body 21.
  • a solar battery panel 40 for supplying electric energy to the air conditioner 131 is provided.
  • the loading platform 20 is provided with a storage battery 50 that stores surplus power generated by the solar cell panel 40 and supplements the insufficient power of the solar cell panel 40.
  • the driving vehicle 10 is provided with a driver seat 14 and a passenger seat 15 in the front part of the driver's cab 13, and a nap cabin 16 at the rear.
  • a sub-air conditioner 131 for a nap cabin is provided separately from the main air conditioner 130 on the driver's seat side.
  • the indoor unit 132 of the sub air conditioner 131 is mounted on the rear wall panel of the driving vehicle 10, and the outdoor unit 133 of the sub air conditioner 131 includes the roof of the driving vehicle 10 and the air guide plate 17. It is installed in the space between.
  • the sub air conditioner 131 itself has a known structure, and the outdoor unit 133 is provided with a compressor (not shown) that pressurizes the vaporized refrigerant and a condenser that condenses the refrigerant, and the indoor unit 132 is provided with an evaporator that vaporizes the refrigerant. Although not shown, the refrigerant circulates through the piping.
  • the indoor unit 132 is provided with a blower, and cool air or hot air heat-exchanged by the evaporator is blown into the room.
  • the compressor of the outdoor unit 133 constituting the air conditioner 131 and the air blowing motor provided in the indoor unit 132 are driven and controlled by the electric energy generated by the solar cell panel 40.
  • the main air conditioner 130 also has a well-known structure, and although not particularly illustrated, similarly to the sub air conditioner 131, the main air conditioner 130 includes a compressor that pressurizes the vaporized refrigerant, a condenser that condenses the refrigerant, and an evaporator that vaporizes the refrigerant.
  • a compressor that pressurizes the vaporized refrigerant
  • a condenser that condenses the refrigerant
  • an evaporator that vaporizes the refrigerant.
  • cold air or hot air exchanged from the front of the cab is blown into the room.
  • the compressor is driven by the driving force of the engine while the engine is being driven, and the power transmission with the drive shaft of the engine is switched via the electromagnetic clutch.
  • An electric motor may be connected via a clutch so as to drive even when the engine is stopped, or the compressor may be driven by a dedicated electric motor without using the driving force of the engine. Good.
  • the cargo bed body 21 on which the solar cell panel 40 is installed opens and closes up and down the left and right wings (top panel panel and cargo bed side surfaces) 25 and 25 around the hinge portion 26 at the center of the top surface.
  • the wing body has a rectangular parallelepiped shape like a so-called van body, and the top panels 24 and 24 of the wings 25 and 25 have a substantially horizontal planar shape.
  • a solar cell panel 40 is mounted on the top panel 24, 24 of the wing.
  • the solar cell panel 40 is connected to the control device 60 via an electric cable 420.
  • the indoor unit 132, the outdoor unit 133, and the storage battery 50 of the sub air conditioner 131 are also connected to the control device 60.
  • the control device 60 is provided in the driving vehicle 10 or the loading platform 20, and drives and controls the indoor unit 132 and the outdoor unit 133 of the air conditioner 131.
  • the maximum output per unit weight of the solar cell panel 40 is 1.2 times or more the value obtained by dividing the maximum power consumption of the sub air conditioner 131 by the weight of the solar cell panel 40. It is set as follows. In this way, if the solar cell panel 40 has sufficient sunshine, the sub air conditioner 131 can be driven by the solar cell panel 40 alone. Therefore, the sub air conditioner 131 can be driven even during parking with the engine stopped. Of course, it can also be used for sub air-conditioning drive during travel. Moreover, the output of the solar cell panel 40 can be used as auxiliary power for air conditioning driving regardless of whether the vehicle is parked or traveling.
  • the sub-level for maintaining that temperature steadily after the temperature drops to some extent The power consumption of the air conditioner 131 (power consumption in a steady state) is much less. If power generation exceeding the power consumption in the steady state can be performed, the sub air conditioner 131 can be sufficiently driven for a considerable time only by the power generation energy of the solar cell panel 40.
  • the truck vehicle includes two air conditioners, a main air conditioner 130 with a large maximum power consumption and a sub air conditioner 131 with a small maximum power consumption. The power generation energy can be supplied.
  • an add-on type sub air conditioner 131 and a solar battery panel 40 can be retrofitted to a truck vehicle, and therefore, there is an advantage that it can be easily applied to an existing truck vehicle. Further, there is an advantage that the control system can be simplified by simply connecting the sub air conditioner 131 and the solar battery panel 40 directly.
  • the maximum output per unit weight of the solar panel 40 is 1.2 times or more the value obtained by dividing the maximum power consumption of the sub air conditioner 131 by the weight of the solar panel 40. However, it is preferably 2.0 times or more, more preferably 3.0 times or more.
  • the air conditioners 130 and 131 can cover from 9 am to 4 pm and from 8 am to 5 pm. Moreover, it is 20 times or less normally, Preferably it is 15 times or less, More preferably, it is 10 times or less.
  • the heating operation is performed using exhaust heat of the engine during traveling, the idling is stopped while the vehicle is stopped, and an electric heat pump is used by electric energy from the solar cell panel 40 or the storage battery. Can be driven for heating operation. Of course, electric energy may be used even while traveling.
  • the maximum output q per unit weight of the solar cell panel 40 is preferably 5 [W / kg] or more. Long-time driving is possible without affecting the running performance of the truck. In this embodiment, it is 17.7 [W / kg]. Preferably it is 10 [W / kg] or more, more preferably 15 [W / kg] or more. However, the power generation efficiency of the solar cell is limited, and is usually 100 [W / kg] or less, preferably 70 [W / kg] or less, more preferably 50 [W / kg] or less. Since efficiency is equivalent to 6.7 W / kg at 4%, equivalent to 10 W / kg at 6%, and equivalent to 16.7 W / kg at 10%, it is set as described above.
  • the unit panel of the solar cell 40 is 40 sheets, the maximum output per sheet is 23.6 [Wp], and the total output is 944 [Wp].
  • the ratio of the capacity (Wh) of the storage battery to the maximum output (Wp: watt peak) of the solar cell panel is preferably in the range of 0.1 to 10 (Wh / Wp). More preferably, it is 0.5 (Wh / Wp) or more, still more preferably 1 (Wh / Wp) or more, preferably 8 (Wh / Wp) or less, more preferably 6 (Wh / Wp) or less. In this embodiment, by setting this ratio to 3, it was possible to drive the air conditioning for about 8 hours with the storage battery. Further, in the present embodiment, the area Sp of the solar cell panel is about four times as large as the upper view area Sd of the cab 13, but is preferably 1 to 7 times or less.
  • the air conditioner can be driven while the weight of the solar cell panel is suppressed, and the running stability of the truck is not affected. In addition, the maximum load capacity of the truck is not greatly impaired, and the fuel consumption of the truck is hardly deteriorated.
  • an example in which two air conditioners are provided and electric energy from a solar cell can be supplied to one air conditioner has been described.
  • the present invention is also applicable to a case in which three or more air conditioners are provided. It is possible as long as at least one of the air conditioners can supply electric energy from the solar cell.
  • FIG. 1 an add-on type in which a sub-air conditioner for a nap cabin is newly provided in addition to the existing air conditioner has been described.
  • the compressor is capable of switching between power transmission from the engine drive shaft and power transmission from an electric motor provided separately via an electromagnetic clutch.
  • the engine room side compressor is driven by the driving force of the engine, the transmission of the driving force of the engine side is switched via a clutch and driven by a separate electric motor, although not particularly illustrated. It only has to be. Further, the compressor may be driven by a dedicated electric motor without using the driving force of the engine.
  • an air conditioner air outlet may be provided in the bedroom, or the room temperature in the bedroom may be set and controlled so that air conditioning in the nap cabin can be selectively performed.
  • the maximum output q per unit weight of the solar cell panel 40 is set to be 0.2 times or more the value obtained by dividing the maximum power consumption of the air conditioner 130 by the weight of the solar cell panel 40. Even in this case, it is possible to sufficiently drive the air conditioner 130 for a considerable time with only the generated energy from the solar cell panel 40. That is, if the maximum output per unit weight of the solar cell panel 40 is set to be 0.2 times or more the value obtained by dividing the maximum power consumption of the air conditioner 130 by the weight of the solar cell panel 40, If sufficient sunshine can be secured in the solar cell panel 40, the air conditioner 130 can be driven in a steady state by the solar cell panel 40 alone.
  • the power consumption of 130 is much less. If power generation exceeding the power consumption in the steady state can be achieved, the air conditioner 130 can be sufficiently driven for a considerable amount of time only by the power generation energy from the solar cell panel 40. In other words, if the power generation energy of the solar cell panel 40 can be supplied to the air conditioner 130, the solar cell panel 40 alone can realize the driving of the air conditioner 130 in a steady state if sufficient sunshine is secured. it can.
  • This form (method) is advantageous in terms of cost because it does not use a sub air conditioner, and is particularly advantageous for application to a new vehicle.
  • the maximum output per unit weight of the solar cell panel 40 can be set to be 0.2 times or more the value obtained by dividing the maximum power consumption of the air conditioner 130 by the weight of the solar cell panel 40.
  • the air conditioner 130 can be driven in a steady state by the solar panel 40 alone. It becomes possible to perform air-conditioning driving for only 4 hours or more from 10 am to about 2 to 3 pm on a sunny summer day, that is, for 4 hours or more.
  • the air consumption in the hottest time zone can be covered by the output of the solar cell panel, so the fuel consumption and CO 2 reduction effect is great.
  • the maximum output per unit weight of the solar cell panel 40 is 0.2 times or more the value obtained by dividing the maximum power consumption of the air conditioner 130 by the weight of the solar cell panel 40, preferably Is 0.35 times or more, more preferably 0.5 times or more. They can cover from 9 am to 4 pm and from 8 am to 5 pm. Moreover, it is 20 times or less normally, Preferably it is 15 times or less, More preferably, it is 10 times or less. Note that when the power consumption of the air conditioner 130 is large, such as during rapid cooling, the shortage may be compensated for by electric energy from the storage battery. In addition, the air conditioner 130 may be continuously or intermittently cooled while the truck is stopped to prevent the temperature in the cab from becoming high. According to this, since rapid cooling becomes unnecessary, an apparatus with a small maximum power consumption can be used as the air conditioner 130.
  • the wing type is described as an example of the pallet body.
  • a so-called box-type van type may be used, and the pallet body can be applied to a specially equipped vehicle such as a tank lorry or a container loaded with containers.
  • a tank lorry or a container loaded with containers.
  • the tank lorry it is necessary to satisfy the safety standard for the tank lorry, but for example, it can be applied to a tank of non-dangerous materials such as milk.
  • the loading platform may be structured such that the loading platform body that covers the load storage portion can be separated from the loading platform body.
  • a container loaded on a flat body is also included in the load carrier body of the present invention in the sense of a load carrier body covering the load storage unit. You may make it lay a solar cell panel in the top plate of this container.
  • the connector of the electric cable from the solar cell panel may be connected to the connector on the driving vehicle side.
  • the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

 太陽電池パネルを備えたトラック車輌。トラック車輌は、運転室を含む運転車輌と、運転車輌に連結され積載物収容部を覆う荷台ボディを有する荷台と、荷台ボディに設けられた太陽電池パネルであって、その厚さが25mm以下に設定され、かつ単位面積当たりの重量が6kg/m2以下に設定されている太陽電池パネルとを、備える。

Description

トラック車輌及び荷台並びに太陽電池パネル
 本発明は、荷台に設けられた太陽電池パネルで発電される電気エネルギーにより、空調装置,冷凍機等の温度調整手段等を駆動させる太陽電池パネルを搭載したトラック車輌及び荷台並びに太陽電池パネルに関する。
 荷台に冷凍庫を有するトラックにおいて、荷台に太陽電池パネルを設け、太陽電池パネルで発電された電気エネルギーを、冷凍システムの作動に利用することが提案されている(特許文献1参照)。
 しかしながら、このようなトラック車輌は、未だ普及するに至っていない。一つの理由として、太陽電池パネルを既存の市販車の荷台にオプションとして後付けする際には、車輌の高さ制限が考慮される必要があるが、これまで荷台に搭載する太陽電池パネルの厚さについての検討が充分になされていなかったことが挙げられる。
特開平6-106964号公報
 本発明は、既存のトラック車輌の荷台に対しても、太陽電池パネルをオプションとして後付け可能とすることを目的とする。
 上記した課題を解決するために、本発明のトラック車輌は次のように構成される。
 請求項1に記載の発明は、運転室を含む運転車輌と、
 運転車輌に連結され積載物収容部を覆う荷台ボディを有する荷台と、
 前記荷台ボディに設けられた太陽電池パネルと、
 を備えたトラック車輌において、
 前記太陽電池パネルの厚さが25mm以下に設定され、かつ単位面積当たりの重量が6kg/m2以下に設定されていることを特徴とする。
 請求項2に記載の発明は、前記運転室または前記積載物収容部の少なくとも一部の温度を調整する温度調整手段を備え、
 太陽電池パネルから前記荷台ボディに前記温度調整手段に電気エネルギーを供給することを特徴とする。
 請求項3に記載の発明は、前記積載物収容部の少なくとも一部に冷却貯蔵庫が設けられ、前記温度調整手段が前記冷却貯蔵庫の内部を冷却するための冷却手段であることを特徴とする。
 請求項4に記載の発明は、前記温度調整手段が前記運転室の室温を調整する空調装置であることを特徴とする。
 請求項5に記載の発明は、前記太陽電池パネルで発電された余剰電力を蓄えると共に、太陽電池の不足電力を補う蓄電池を備えていることを特徴とする。
 請求項6に記載の発明は、前記太陽電池パネルの最大出力(Wp:ワットピーク)に対する該蓄電池の容量(Wh)の比が0.1~10(Wh/Wp)の範囲であることを特徴とする。
 請求項7に記載の発明は、前記太陽電池パネルの単位重量当りの最大出力qが5W/kg以上であることを特徴とする。
 請求項8に記載の発明は、前記太陽電池パネルは前記荷台ボディとは別の独立した構造で、前記荷台ボディの外面に対して取り付けられていることを特徴とする。
 請求項9に記載の発明は、前記太陽電池パネルは、前記荷台ボディに対して、取付部材を介して機械的結合により固定されていることを特徴とする。
 請求項10に記載の発明は、前記太陽電池パネルは、前記荷台ボディに対して接着固定されることを特徴とする。
 請求項11に記載の発明は、前記太陽電池パネルは裏面保護層を除いた構成で、前記荷台ボディのパネルに対して一体的に接着され、太陽電池パネル付きの荷台パネルとして構成されることを特徴とする。
 請求項12に記載の発明は、前記太陽電池パネルは、複数の太陽電池素子を車輌が直進している状態での前記荷台の進行方向に沿って直列接続した素子列が、前記進行方向に対して直交方向に複数列配置され、各セル列が並列接続された構成を備えていることを特徴とする。
 また、本発明の荷台は、次のように構成される。
 請求項13に記載の発明は、トラック車輌の運転車輌に連結される荷台であって、積載物収容部を覆う荷台ボディを有し、前記荷台ボディに太陽電池パネルが設けられた荷台において、
 前記太陽電池パネルの厚さが25mm以下に設定され、かつ単位面積当たりの重量が6kg/m2以下に設定されていることを特徴とする。
 請求項14に記載の発明は、前記トラック車輌に設けられた温度調整手段であって、前記運転室または前記積載物収容部の少なくとも一部の温度を調整する温度調整手段に、太陽電池パネルから電気エネルギーが供給されることを特徴とする。
 請求項15に記載の発明は、前記積載物収容部の少なくとも一部に冷却貯蔵庫が設けられ、前記温度調整手段が前記冷却貯蔵庫の内部を冷却するための冷却手段であり、前記冷却手段に前記太陽電池パネルから電気エネルギーが供給されることを特徴とする。
 請求項16に記載の発明は、前記温度調整手段が前記運転室の室温を調整する空調装置であり、前記空調装置に前記太陽電池パネルから電気エネルギーが供給されることを特徴とする。
 請求項17に記載の発明は、前記太陽電池パネルで発電された余剰電力を蓄えると共に、太陽電池の不足電力を補う蓄電池を備えていることを特徴とする。
 請求項18に記載の発明は、前記太陽電池パネルの最大出力(Wp:ワットピーク)に対する該蓄電池の容量(Wh)の比が0.1~10(Wh/Wp)の範囲であることを特徴とする。
 請求項19に記載の発明は、前記太陽電池パネルの単位重量当りの最大出力qが5W/kg以上であることを特徴とする。
 請求項20に記載の発明は、前記太陽電池パネルは前記荷台ボディとは別の独立した構造で、前記荷台ボディの外面に対して取り付けられていることを特徴とする。
 請求項21に記載の発明は、前記太陽電池パネルは、前記荷台ボディに対して、取付部材を介して機械的結合により固定されていることを特徴とする。
 請求項22に記載の発明は、前記太陽電池パネルは、前記荷台ボディに対して接着固定されることを特徴とする。
 請求項23に記載の発明は、前記太陽電池パネルは保護層の基材を除いた構成で、前記荷台ボディのパネルに対して一体的に接着され、太陽電池パネル付きの荷台パネルとして構成されることを特徴とする。
 請求項24に記載の発明は、前記太陽電池パネルは、複数の太陽電池素子を車輌が直進している状態での前記荷台の進行方向に沿って直列接続した素子列が、前記進行方向に対して直交方向に複数列配置され、各セル列が並列接続された構成を備えていることを特徴とする。
 また、本発明の太陽電池パネルは、次のように構成される。
 請求項25に記載の発明は、トラック車輌の運転車輌に連結される荷台の積載物収容部を覆う荷台ボディに設けられた太陽電池パネルにおいて、
 前記太陽電池パネルの厚さが25mm以下に設定され、かつ単位面積当たりの重量が6kg/m2以下に設定されていることを特徴とする。
 請求項26に記載の発明は、前記トラック車輌に設けられた温度調整手段であって、前記運転室または前記積載物収容部の少なくとも一部の温度を調整する温度調整手段に、前記太陽電池パネルから電気エネルギーが供給されることを特徴とする。
 請求項27に記載の発明は、前記積載物収容部の少なくとも一部に冷却貯蔵庫が設けられ、前記温度調整手段が前記冷却貯蔵庫の内部を冷却するための冷却手段であり、前記冷却手段に前記太陽電池パネルから電気エネルギーが供給されることを特徴とする。
 請求項28に記載の発明は、前記温度調整手段が前記運転室の室温を調整する空調装置であり、前記空調装置に前記太陽電池パネルから電気エネルギーが供給されることを特徴とする。
 請求項29に記載の発明は、前記太陽電池パネルの単位重量当りの最大出力qが5W/kg以上であることを特徴とする。
 請求項1,13,25に記載の発明によれば、太陽電池パネルの厚さを25mm以下に設定しているので、既存のトラック車輌の荷台に対して、高さに余裕がある範囲で太陽電池パネルの搭載が可能となる。
 また、25mm以下とすることで荷台内の荷室の容量を圧迫することなく、太陽電池パネルの搭載が可能である。さらに、走行中の風の抵抗が小さく、燃費に影響しない。
 また、太陽電池パネルの単位面積当たりの重量を6kg/m2以下に設定しているので、トラックの重心がそれほど上部に移動せず、走行安定性に影響はでない。さらに、トラックの最大積載量を大きく損なうことがなく、またトラックの燃費の悪化も少ない。
 このようにトラック車輌の規制や走行安定性、積載量等に大きな影響を与えることなく太陽電池パネルを設置できるので、本発明によれば、既存のトラック車輌の荷台に対しても、太陽電池パネルをオプションとして後付け可能となる。
 また本発明は従来のトラック車輌の仕様を変更することなく適用できるので、今後生産されるトラック車輌にも製造プロセス変更無く容易に適用可能である。
 請求項2,14,26に記載の発明によれば、走行安定性や燃費の悪化、積載量低下を伴うことなく、太陽電池パネルの出力で、トラック車輌又は荷台に設けられた電気機器を駆動できるので、燃料削減及びCO2削減効果が期待できる。
 請求項3,15,27に記載の発明によれば、走行安定性や燃費の悪化、積載量低下を伴うことなく、太陽電池パネルの出力で冷却貯蔵庫の冷却装置を駆動できるので、燃料削減及びCO2削減効果が期待できる。
 現在、冷却貯蔵庫付きのトラック車輌であってもエンジン停止中は冷却装置を駆動させないので、停車中には冷却貯蔵庫の温度が上昇してしまう。荷物などの宅配業務を行うトラック車輌は、一般に走行時間と停車時間が同程度あるとされ停車時間が相当長いため、大きな課題となっていた。本発明によれば、停車中も冷却装置を駆動できるので、この課題を解決しうる。
 請求項4,16,28に記載の発明によれば、走行安定性や燃費の悪化、積載量低下を伴うことなく、太陽電池パネルの出力で運転室の空調装置を駆動できるので、燃料削減及びCO削減効果が期待できる。
 なお、太陽電池パネルの出力で冷却貯蔵庫の冷却装置と運転室の空調装置の両方を駆動してもよい。
 請求項5,17に記載の発明によれば、蓄電池を設けることによって、太陽電池パネルで発電された余剰電力を蓄えると共に、太陽電池の不足電力を補うことができる。
 請求項6,18に記載の発明によれば、太陽電池パネルの最大出力電力(Wp:ワットピーク)に対する該蓄電池の容量(Wh)の比を、0.1~10(Wh/Wp)の範囲としたので、日陰やトンネルなどにより短時間、発電不能となっても不足電力を補うことができ空調装置を安定的に駆動できる。比を大きくすれば補える時間は長くなり、天候や日照の一時的変化時、夜間にも安定駆動が可能となる。またこの範囲の蓄電池は数~数十kgと比較的軽量であるためトラックの最大積載量を大きく損なうことがなく、またトラックの燃費の悪化も少ない。
 請求項7,19,29に記載の発明は、太陽電池パネルの単位重量当りの最大出力qが5W/kg以上としたので、トラックの走行性能に影響を与えることなく長時間の駆動が可能となる。
 請求項8,20に記載の発明は、前記太陽電池パネルは荷台ボディとは別の独立した構造で、荷台ボディの外面に対して取り付けられているので、既存の荷台ボディに対して取り付けることが可能となる。
 請求項9,21に記載の発明は、太陽電池パネルは、荷台ボディに対して、取付部材を介して機械的結合により固定されているので、確実に固定することができる。
 請求項10,22に記載の発明は、前記太陽電池パネルは、荷台ボディに対して接着固定されるようにしておけば、取り付け作業が簡単にできる。
 請求項11,23に記載の発明によれば、前記太陽電池パネルは裏面保護層を除いた構成で、前記荷台ボディのパネルに対して一体的に接着したので、太陽電池付きの荷台パネルとしてあらかじめ工場で作っておけば、交換作業は荷台ボディのパネルを交換するだけでよい。
 また高剛性の荷台パネルが太陽電池パネルの裏面保護層(基材層)を兼ねるので、太陽電池パネル設置による厚さや重さの増加を最小限に抑えることができ、かつ太陽電池パネルの強度も十分なものとなる。
 なお、本態様においては、太陽電池パネルの厚さ及び重さには荷台のパネルを含まないものとする。
 請求項12,24に記載の発明によれば、日光は通常道路の両側の建物等によって遮られるので、日陰と日向の境目は荷台の進行方向に向いている時間が圧倒的に多い。したがって、進行方向に直列に接続されている列を進行方向に直交して複数列配置しておくことにより、一部の列が日陰になっても、出力がダウンすることが無い。
本発明の実施の形態1に係る太陽電池搭載トラック車輌の全体構成を示す図 トラック車輌の荷台ボディ内部を説明するための図 トラック車輌の他の形態(専用の電気モータのみで駆動する形態)を示す図 トラック車輌の他の形態(冷凍機専用のエンジンによりコンプレッサを駆動する形態)を示す図 トラック車輌の他の形態(荷台ボディ内の収容室のうち一部の領域が冷凍庫である形態)を示す図 太陽電池パネルの一般的な構成を示す概略断面図 太陽電池素子をパネル化した1単位パネルの平面図 中間のスペーサ部の近傍の拡大断面図 図3Aの太陽電池パネルの設置例を示す図 太陽電池パネルの各太陽電池素子の電気的な接続例を示す回路図 荷台に対する取り付け許容角度の説明図 太陽電池素子の接続がモノリシック構造の場合の説明図 リテーナを用いて太陽電池パネルを荷台ボディへ永久固定する例を示す平面図 図5Aのパネル端部のリベット止め部の断面図 図5Aのパネル中間部のリベット止め部の断面図 太陽電池パネルを荷台ボディへ取り外し可能にボルト止めした取付例におけるボルト部分の断面図 図6Aのボルト部分の直交方向の縦断面図 取り付け部の平面図 電気ケーブルが無い部分のボルト部分の縦断面図 図6Aのボルトをさらに取り外し可能とした取付例の断面図 固定バーの部分平面図 太陽電池パネルの単位パネルを一枚ずつ交換可能とした場合の交換作業の模式的説明図 太陽電池パネルを荷台ボディへ永久固定する他の例を示す平面図 図8Aにおけるパネル端部のリベット止め部の断面図 太陽電池パネルを荷台ボディに両面テープで接着した固定例の平面図 太陽電池パネルを荷台ボディに両面テープで接着した固定例の断面図 荷台ボディの天板パネルを基板として用いる太陽電池パネルの概略分解斜視図 荷台ボディの天板パネルを基板として用いる太陽電池パネルの形成作業の説明図 アモルファスシリコンが用いられた太陽電池パネルの平面図 アモルファスシリコンが用いられた太陽電池パネルの構成の説明図 本発明の実施の形態2に係る太陽電池搭載トラック車輌の全体構成を示す図 他の形態に係る太陽電池搭載トラック車輌の全体構成を示す図 図12Aのトラック車輌の荷台を上から見た図 図12Aのトラック車輌の荷台を後方から見た図 図12Aのトラック車輌の荷台ボディの、一部を切り欠いた側面図
 以下、本発明の実施の形態を添付図面を参照して説明する。本発明は、荷台に設けられた太陽電池パネルで発電される電気エネルギーを用いて、トラック車輌又は荷台に設けられた電気機器(電気部品)を駆動させることを特徴とするものである。その一例として、以下に示す実施の形態では、運転室または積載物収容部の少なくとも一部の温度を調整する温度調整手段を備え、太陽電池パネルから温度調整手段に電気エネルギーを供給するトラック車輌について説明する。実施の形態1では、荷台に設けられた太陽電池パネルで発電される電気エネルギーにより、荷台に設けられた冷却貯蔵庫を冷却する温度調整手段としての冷却装置を駆動する太陽電池パネルを搭載したトラック車輌について説明する。また、実施の形態2では、荷台に設けられた太陽電池パネルで発電される電気エネルギーにより、温度調整手段として運転室の空調装置を駆動する太陽電池パネルを搭載したトラック車輌について説明する。
 (実施の形態1)
 図1Aは、本発明を実施する形態の一例を示す図である。
 図1Aにおいて、1はトラック車輌全体を示すもので、このトラック車輌1は、運転室を含む運転車輌10と、荷台20と、温度調整手段としての冷凍機30とを備えている。ここで、冷凍機30は、冷却手段(冷却装置)に相当する。
 荷台20には、図1Bに示すように、冷凍された物品を収容する断熱構造の冷却貯蔵庫(以下、冷凍庫)22と、冷凍機30を構成する構成要素の一部が収容された熱交換ユニット31とを備えた荷台ボディ21が設けられている。
 熱交換ユニット31は、荷台ボディ21において冷凍庫22に対して運転車輌10側で、冷凍庫22に隣接して設けられており、また、運転車輌10の上方に設けられている。
 さらに、荷台ボディ21外面には冷凍機30に電気エネルギーを供給する太陽電池パネル40が設けられている。
 また、荷台20には、太陽電池パネル40で発電された余剰電力を蓄えると共に、太陽電池パネル40の不足電力を補う蓄電池50が設けられている。
 冷凍機30自体は公知の構造であり、気化した冷媒を加圧するコンプレッサ(圧縮機)32と、冷媒を凝縮させるコンデンサ(凝縮器)と、冷媒を気化させるエバポレータ(蒸発器)とを有しており、配管を通して冷媒が循環するように構成されている。ここで、コンプレッサ32は、運転車輌10のエンジンルーム11に設けられている。また、コンデンサとエバポレータとは、熱交換ユニット31に設けられている。
 コンプレッサ32の動力源(駆動源)としては、トラック車輌1の走行用のエンジンを利用するものであり、さらに、本実施の形態では、トラック車輌1のエンジンに加えて、電動モータ33を用いている。
 電動モータ33は、運転車輌10のエンジンルーム11に設けられ、コンプレッサ32にクラッチを介して連結されている。すなわち、コンプレッサ32は、電動モータ33にクラッチを介して連結されているとともに、トラック車輌1のエンジンにクラッチを介して連結されている。
 また、熱交換ユニット31には送風機が設けられ、エバポレータによって熱交換された冷風が冷凍庫22内に送風される。
 冷凍機30を構成するこれらの電動モータ33、および熱交換ユニット31に設けられた送風機のモータが、太陽電池パネル40で発電された電気エネルギーによって駆動される。
 太陽電池パネル40は、電気ケーブルを介して制御装置60に接続されている。制御装置60には、冷凍機30および蓄電池50も接続されている。
 制御装置60は、運転車輌10あるいは荷台20に設けられ、冷凍機30を駆動制御するものである。また、制御装置60は冷凍機30を駆動制御するために、動力源の切り替え制御を行う。
 制御装置60は、エンジンとコンプレッサ32との間のクラッチ、及び、電動モータ33とコンプレッサ32との間のクラッチをそれぞれ制御することにより、トラック車輌1のエンジンの駆動力を用いて冷凍機30を駆動させる場合には、エンジンとコンプレッサ32とを連結させ、また、電動モータ33の駆動力を用いて冷凍機30を駆動させる場合には、電動モータ33とコンプレッサ32とを連結させる。
 このような構成により、制御装置60は冷凍機30を駆動制御することで、エンジン駆動時には、トラック車輌1のエンジンの駆動力を用いて冷凍機30を駆動させ、エンジン停止時には、電動モータ33の駆動力のみを用いて冷凍機30を駆動させることができる。また、エンジン駆動時においては、電動モータ33のみを用いて冷凍機30を駆動させることもできるし、トラック車輌1のエンジンの駆動力に加えて補助的に電動モータ33の駆動力を用いることもできる。
 太陽電池パネル40が設置される荷台ボディ21は、いわゆるバンボディのように直方体形状で、天板パネル24がほぼ水平の平面形状となっている。この天板パネル24に、太陽電池パネル40が装着されている。
<使用しうる太陽電池パネルの詳細な説明>
 太陽電池パネル40は、複数個の太陽電池素子が直列及び/又は並列に接続されてパネルとして構成されるもので、図3Aに示されるように、太陽電池素子41の受光面側(矢印方向)及び非受光面側の双方に、任意に封止材層42、43を介し、表面、裏面側の保護層44,45を備えている。必要に応じてガスバリア層、ゲッター材層など他の層を任意の場所に設けてもよい。
 太陽電池素子41は、通常、少なくとも一対の電極41a,41bで発電層(光電変換層)41cを挟んでなる。発電層41cと電極41a,41bの間にバッファー層を介していてもよい。電極41a,41bは取り出し電極に接続され、発生した電力が外部に取り出せるように構成されている。
 発電層の種類に制限はないが、薄膜単結晶シリコン、薄膜多結晶シリコン、アモルファスシリコン、無機半導体材料、色素及び、有機半導体材料などを好ましく用いることができる。これらは発電効率が比較的高く、薄膜軽量化できるため好ましい。
 発電層として薄膜多結晶シリコンを用いる薄膜多結晶シリコン太陽電池素子は間接光学遷移を利用したタイプの太陽電池素子である。このため、薄膜多結晶シリコン太陽電池素子では基板又は表面に凸凹構造を形成するなど十分な光閉じ込め構造を設けて光吸収を増加させるのが好ましい。薄膜多結晶シリコンはCVD法などの常法により基板上に成膜し形成することができる。
 発電層としてアモルファスシリコンを用いるアモルファスシリコン系太陽電池素子は、結晶シリコンにおける間接光学遷移が構造乱れのために直接遷移となったものであり、可視域での光学吸収係数が大きく、厚さ1μm程度の薄膜でも太陽光を十分に吸収できる長所を有する。このため、太陽電池素子としてアモルファスシリコン系太陽電池素子を用いれば、更に軽量な太陽電池パネルを実現することができる。また、アモルファスシリコンは非結晶質の材料であるため、変形にも耐性を有しフレキシブル化しうる。
 発電層として無機半導体材料(化合物半導体)を用いる化合物半導体系太陽電池素子は発電効率が高く好ましい。なかでもS、Se、Teなどカルコゲン元素を含むカルコゲナイド系発電層が好ましく、更にI-III-VI2族半導体系(カルコパイライト系)発電層が好ましく、特にI族元素としてCuを用いたCu-III-VI2族半導体系発電層は理論的に極めて高い光電変換効率を有し好ましい。中でも特にCIS系半導体及びCIGS系半導体が好ましい。CIS系半導体はCuIn(Se1-ySy)2(0≦y≦1)を指し、CIGS系半導はCu(In1-xGax)(Se1-yy2を指す(0<x<1、0≦y≦1)。
 発電層として例えば酸化チタン層及び電解質層などからなる色素増感型発電層も、発電効率が高く好ましい。
 また発電層として有機半導体材料を用い、有機太陽電池素子としてもよい。有機半導体材料はp型半導体とn型半導体からなる。p型半導体は特に限定されず、低分子材料と高分子材料が挙げられる。低分子系材料としては例えば、ナフタセン、ペンタセン、ピレン、フラーレン等の縮合芳香族炭化水素;α-セキシチオフェン等のチオフェン環を4個以上含むオリゴチオフェン類;チオフェン環、ベンゼン環、フルオレン環、ナフタレン環、アントラセン環、チアゾール環、チアジアゾール環、ベンゾチアゾール環を合計4個以上連結したもの;銅フタロシアニン、亜鉛フタロシアニン、パーフルオロ銅フタロシアニン等のフタロシアニン化合物、テトラベンゾポルフィリンやその金属錯体等のポルフィリン化合物及びその金属塩等の大環状化合物などが挙げられる。
 高分子材料としては例えば、ポリチオフェン、ポリフルオレン、ポリチエニレンビニレン、ポリアセチレン、ポリアニリン等の共役高分子;アルキル置換されたオリゴチオフェン等の高分子半導体が挙げられる。
 n型半導体としては、特に限定されないが例えば、フラーレン誘導体、キノリノール誘導体金属錯体、縮合環テトラカルボン酸ジイミド類、ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ビピリジン誘導体、縮合多環芳香族の全フッ化物、単層カーボンナノチューブなどが挙げられる。
 電極は、導電性を有する任意の材料を1種又は2種以上用いて形成しうる。例えば、白金、金、銀、アルミニウム、クロム、ニッケル、銅、チタン、マグネシウム、カルシウム、バリウム、ナトリウム等の金属あるいはそれらの合金;酸化インジウムや酸化錫等の金属酸化物、あるいはその合金(ITO);ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン等の導電性高分子;前記導電性高分子に、塩酸、硫酸、スルホン酸等の酸、FeCl3等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子などのドーパントを含有させたもの;金属粒子、カーボンブラック、フラーレン、カーボンナノチューブ等の導電性粒子をポリマーバインダー等のマトリクスに分散した導電性の複合材料などが挙げられる。
 電極には正孔及び電子を捕集するのに適した材料を用いることが好ましい。正孔の捕集に適した電極材料は、例えばAu、ITO等の高い仕事関数を有する材料である。一方、電子の捕集に適した電極材料は、例えばAlのような低い仕事関数を有する材料である。電極は2層以上積層してもよく、表面処理によって特性(電気特性やぬれ特性等)を改良してもよい。
 電極の形成方法に制限はない。例えば、真空蒸着、スパッタ等のドライプロセスにより形成することができ、導電性インク等を用いたウェットプロセスにより形成することもできる。導電性インクとしては任意のものを使用することができ、例えば導電性高分子、金属粒子分散液等を用いることができる。
 なお、少なくとも太陽電池素子の受光面側の電極は、発電に用いる光を透過させるため、透明であることが好ましい。但し、発電層の面積に比べて電極の面積が小さいなど、電極が透明でなくても発電性能に著しく悪影響を与えない場合は必ずしも透明でなくてもよい。透明な電極材料を挙げると、例えば、ITO、酸化インジウム亜鉛(IZO)等の酸化物;金属薄膜などが挙げられる。また、この際、光の透過率の具体的範囲に制限は無いが、太陽電池素子の発電効率を考慮すると80%以上が好ましい。なお、光の透過率は通常の分光光度計で測定可能できる。
 太陽電池素子の受光面側には保護層(表面保護層と称する)が設けられる。太陽電池素子と保護層の間には、太陽電池素子の封止と保護層の接着を目的として封止材層を設けてもよい。しかし太陽電池素子上に封止材層を設けることなく保護層を設ける場合は、保護層が太陽電池素子の封止機能を兼ねることとなる。
 表面保護層は通常太陽電池パネルの最表面に位置し、機械的強度、耐侯性、耐スクラッチ性、耐薬品性、ガスバリア性などを目的として形成される。
 具体的強度は、封止材層や裏面保護層の強度とも関係し一概には言えないが、太陽電池パネル全体が良好な曲げ加工性を有し、折り曲げ部分の剥離を生じないような強度を有するのが望ましい。
 また表面保護層は、太陽電池素子の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360~830nm)の光の透過率が80%以上であることが好ましく、90%以上であることがより好ましい。
 また太陽電池パネルは光を受けて熱せられることが多いため、表面保護層も耐熱性を有することが好ましく、表面保護層の構成材料の融点は、通常100℃以上、好ましくは120℃以上であり、また、通常350℃以下、好ましくは320℃以下である。
 表面保護層の材料はこれら特性を考慮して選ぶことができ、特に限定はされないが、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、環状ポリオレフィン樹脂、AS(アクリロニトリル-スチレン)樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、ポリ塩化ビニル樹脂、フッ素系樹脂、ポリエチレンテレフタラート、ポリエチレンナフタレート等のポリエステル樹脂、フェノール樹脂、ポリアクリル系樹脂、(水添)エポキシ樹脂、各種ナイロン等のポリアミド樹脂、ポリイミド樹脂、ポリアミド-イミド樹脂、ポリウレタン樹脂、セルロース系樹脂、シリコーン系樹脂、ポリカーボネート樹脂などが挙げられる。
 中でも好ましくはフッ素系樹脂が挙げられ、その具体例を挙げるとポリテトラフルオロエチレン(PTFE)、4-フッ化エチレン-パークロロアルコキシ共重合体(PFA)、4-フッ化エチレン-6-フッ化プロピレン共重合体(FEP)、2-エチレン-4-フッ化エチレン共重合体(ETFE)、ポリ3-フッ化塩化エチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)等が挙げられる。
 なお、表面保護層は2種以上の材料で形成されていても良い。また表面保護層は、単層であっても、2層以上からなる積層体であってもよい。
 表面保護層の厚みは特に規定されないが、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
 但し表面保護層が封止材層を兼ねる場合には、表面保護層の厚みは通常100μm以上、好ましくは150μm以上、より好ましくは200μm以上であり、また、通常3mm以下、好ましくは1.5mm以下、より好ましくは1mm以下である。
 封止材層は、通常、太陽電池素子の封止と保護層の接着を目的として設けられるが、機械的強度、耐侯性、ガスバリア性などの向上にも寄与している。また少なくとも受光面側の封止材層は表面保護層と同様、可視光を透過させ、耐熱性の高いものが好ましい。
 封止材層の材料はこれら特性を考慮して選ぶことができ、特に限定はされないが、例えば、エチレン-酢酸ビニル共重合体(EVA)樹脂、ポリオレフィン系樹脂、AS(アクリロニトリル-スチレン)樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、ポリ塩化ビニル樹脂、フッ素系樹脂、ポリエチレンテレフタラート、ポリエチレンナフタレート等のポリエステル樹脂、フェノール樹脂、ポリアクリル系樹脂、(水添)エポキシ樹脂、各種ナイロン等のポリアミド樹脂、ポリイミド樹脂、ポリアミド-イミド樹脂、ポリウレタン樹脂、セルロース系樹脂、シリコーン系樹脂、ポリカーボネート樹脂などが挙げられる。
 中でも好ましくはエチレン系共重合体樹脂が挙げられ、より好ましくはエチレン-酢酸ビニル共重合体(EVA)樹脂またはエチレンと他のオレフィンとの共重合体からなるポリオレフィン系樹脂が挙げられる。例えば、プロピレン・エチレン・α-オレフィン共重合体、エチレン・α-オレフィン共重合体等からなる樹脂等である。
 エチレン-酢酸ビニル共重合体(EVA)樹脂組成物は、通常、耐候性の向上のために架橋剤を配合して架橋構造を構成させ、EVA樹脂とする。架橋剤としては、一般に100℃以上でラジカルを発生する有機過酸化物が用いられる。例えば、2,5-ジメチルヘキサン;2,5-ジハイドロパーオキサイド;2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン;3-ジ-t-ブチルパーオキサイド等が挙げられる。有機過酸化物の配合量は、EVA樹脂100重量部に対して通常1~5重量部である。また架橋助剤を含有させてもよい。
 EVA樹脂組成物には、接着力向上の目的でシランカップリング剤を含有させたり、安定性を向上させる目的でハイドロキノン等を含有させたりしてもよい。
 プロピレン・エチレン・α-オレフィン共重合体としては通常、プロピレン系重合体と軟質プロピレン系共重合体を適切な組成で配合した熱可塑性樹脂組成物が用いられる。
 なお、封止材層は2種以上の材料で形成されていても良い。また封止材層は、単層であっても、2層以上からなる積層体であってもよい。
 各封止材層それぞれの厚みは、特に限定されないが、通常100μm以上、好ましくは150μm以上、より好ましくは200μm以上であり、また、通常3mm以下、好ましくは1.5mm以下、より好ましくは1mm以下である。厚みを厚くすることで太陽電池パネルの機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まりまた可視光の透過率が向上する傾向にある。
 これら表面保護層及び/又は封止材層は、予めフィルム・シート状に形成しておいたものを圧着、液状樹脂を塗布・印刷成膜、液状樹脂の注型成形など、従来公知の方法により形成することができる。
 非受光面側には保護層(裏面保護層と称する)が設けられる。裏面保護層は支持部材、基板としての機能も有するため機械的強度が高く、耐候性、耐熱性、耐水性等に優れると同時に軽量であることが好ましく、また太陽電池パネルの設置部位の変形に追従して変形できるものが好ましい。
 裏面保護層を形成する材料としては、例えば、ガラス、サファイア、チタニア等の無機材料;ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエーテルスルホン樹脂、ポリイミド樹脂、(水添)エポキシ樹脂、ナイロン樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル樹脂、ポリエチレン樹脂、セルロース樹脂、ポリ塩化ビニリデン樹脂、アラミド樹脂、ポリフェニレンスルフィド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリノルボルネン樹脂等の有機材料;紙、合成紙等の紙材料;ステンレス、チタン、アルミニウム等の金属に、耐腐食性や絶縁性を付与するために表面をコート或いはラミネートしたもの等の複合材料;などが挙げられる。なお、裏面保護層の材料は2種以上を任意の組み合わせ及び比率で併用しても良い。
 太陽電池パネルは石飛び、立木等との接触などに曝される虞があり、また衝突時の安全性の観点から割れにくいことが望ましい。従って基材層としては金属を含む複合材料、有機材料、紙材料などが好ましい。
 軽量かつフレキシブルであるという点で有機材料がより好ましい。更にこれら有機材料に無機繊維(炭素繊維、ガラス繊維、セラミックス繊維等)、有機繊維(アラミド、ポリエステル、ポリアミド、高強度ポリプロピレン、ポリパラフェニレンベンゾビスオキサゾール等)、金属繊維(ボロン、チタン、スチール等)などの繊維を含ませ、機械的強度を上げてもよい。この補強により軽量で強靭な車輌用太陽電池パネルが得られる。
 裏面保護層の形状に制限は無いが、通常は、板状又はフィルム状のものを用いる。また、裏面保護層を板状に成形する場合、裏面保護層は平板状に形成しても良いが、車輌の装着部分の形状に応じて湾曲や凹凸のある形状に形成しても良い。
 また、裏面保護層には太陽電池パネル40を荷台に装着するため、必要に応じて取付部材が設けられていてもよい。
 裏面保護層の寸法に制限は無いが、厚みは通常12μm以上、好ましくは20μm以上である。強度、操作性などの観点からである。また、通常23mm以下、好ましくは20mm以下である。軽量化、可撓性及び加工性などの観点からである。
 太陽電池パネル40の強度を向上させるために、パネル裏面などに金属などからなる枠体(フレーム)を設けることもできる。この場合、太陽電池パネルの厚さや重量には枠体も含めるものとする。
 なお、太陽電池パネルの裏面保護層が荷台ボディのパネルを兼ねており荷台の一部を構成するようにしてもよい。なお、太陽電池パネルが、荷台ボディの一部を構成するように、荷台のパネルに対して一体的に接着されていてもよい。
 次に、図3を参照して、本実施の形態に用いられる具体的な太陽電池パネル40の構成について説明する。
 図3Aに示すように、太陽電池パネル40は、複数個の多結晶シリコンを発電層として用いた太陽電池素子41と、太陽電池素子41間を接続するリード線46を封止する封止材層42,43と、ETFE樹脂よりなる表面保護層44と、アルミ板よりなる裏面保護層としての基板45とによって構成され、全体として3.8mm程度の厚みとなっている。封止材層42は、太陽電池素子41に接する水添エポキシ樹脂層及びこれに接して形成されるEVA樹脂層の2層からなる。封止材層43も同様である。太陽電池素子41自体は、上記した通り、図示例のものに限らず、種々の構成が可能である。
 この例では、図3Bに示すように、四角形状の太陽電池素子41を格子状に複数、図示例では縦3列横2列に並べたもの一つの単位パネル401とし、この単位パネル401を設置面に応じて複数枚並べて大きなパネルとして使用する。単位パネル401は、縦3列が電気的に直列に接続され、横2列は電気的には独立に構成されている。単位パネル401間には、単位パネル401間の間隔を保持するためのスペーサ47が介装されている。各太陽電池素子41は表裏面が正極、負極となり、図3Cに示すように、電気的な接続はリード線46によって接続され、リード線46はスペーサ47上で接続されている。単位パネル401の端部には取り出し電極があり、隣接する単位パネル401と電気的に接続可能となっている。2列の素子例の電極端子は同極性に構成されている。
 単位パネル401を、この例では、図4Aに示すように、荷台ボディ21の左右の天板パネル24、24に、2列ずつ荷台ボディ21の長手方向に複数枚設置している。荷台20の長手方向は、車輌が直進している状態での荷台20の進行方向に対応する。
 単位パネル401は、図4Bに示すように、各単位パネル401の2列の太陽電池素子の素子列が直列接続となるように接続される。
 単位パネル401自体は、リード線46を介さないで、図4Dに示すように、太陽電池素子41の異極の表裏面同士を直接部分的に重ねて接続するモノリシックな構造としてもよい。なお、単位パネル401の太陽電池素子41の数、配列は任意である。
 そして、荷台20の長手方向に沿って直列接続された太陽電池素子41の素子列が、進行方向に対して直交方向に複数列配置され、各素子列が両端で並列接続される構成となっている。
 通常、道路の両側の建物等によって遮られるので、日陰と日向の境目は車輌の進行方向に沿って向いている時間が多いと考えられる。したがって、太陽電池素子41の直列接続の方向は任意であるが、本実施の形態のように、進行方向に直列に接続されている太陽電池素子41の素子列を進行方向に直交して複数列配置しておくことにより、一部の列が日陰になっても、出力がダウンすることが無く、好ましい。
 太陽電池素子41の素子列の配列は、車輌の直進状態の進行方向に完全に平行である必要はなく、通常5~20度程度の角度は許容される。
 また、太陽電池パネル40を設置する際、図4Cに示すように、単位パネル401の前端頂点Aから荷台の進行方向に平行に引いた直線と、パネル後端頂点Bとの距離が通常5mm以下、好ましくは3mm以下、より好ましくは1mm以下とする。
 また、各単位パネル401に対してバイパスダイオードを設けてもよい。複数直列接続したうちの一部のパネルが日陰等で発電しなくなっても、当該パネルが抵抗になり発電に悪影響を及ぼすことが無い。
 太陽電池パネル40は、本実施の形態では3.8mmであるが、その厚みは、0.3mm~25mmの範囲とするのが好ましい。好ましくは0.5mm以上、より好ましくは0.7mm以上であり、また、好ましくは10mm以下、より好ましくは5mm以下である。25mm以下とすると走行中の風の抵抗が小さく、燃費に影響しない。
 また、太陽電池パネル41の単位面積当たりの重量は、本実施の形態では4.9[kg/m2]であるが、6[kg/m2]以下とすることが好ましい。重量が6[kg/m2]以下としておけば、トラックの重心がそれほど上部に移動せず、走行安定性に影響はでない。
 例えば自動車の最大安定傾斜角は一般に35度以上が必要とされ、値が大きいほど走行安定性が高いが、10トン車の荷台に太陽電池パネルを設置する場合、総重量約100kg以下であれば最大安定傾斜角45度を確保でき、十分な走行安定性を得ることができる。なお、10トン車の荷台天井面積は約18m2であり、6kg/m2の太陽電池パネルを設置すると総重量約100kgである。
 太陽電池パネル41の単位面積当たりの重量は、好ましくは5[kg/m2]以下、より好ましくは4[kg/m2]以下である。また重量は通常0.3[kg/m2]以上、好ましくは0.5[kg/m2]以上、より好ましくは1.0[kg/m2]以上である。
 また、太陽電池パネル40の単位重量当りの最大出力qが、5[W/kg]以上であることが好適である。トラックの走行性能に影響を与えることなく長時間の駆動が可能となる。本実施の形態では17.7[W/kg]である。
 好ましくは10[W/kg]以上、より好ましくは15[W/kg]以上である。但し、太陽電池の発電効率には限界があり、通常、100[W/kg]以下、好ましくは70[W/kg]以下、より好ましくは50[W/kg]以下である。効率4%で6.7W/kg相当、6%で10W/kg相当、10%で16.7W/kg相当であるため上記のように設定される。
 この例では、太陽電池40の単位パネルが40枚で、一枚あたりの最大出力が23.6[Wp]、全出力は944[Wp]となる。
 太陽電池パネルの最大出力(Wp:ワットピーク)に対する該蓄電池の容量(Wh)の比は、0.1~10(Wh/Wp)の範囲である。
 好ましくは0.5(Wh/Wp)以上、より好ましくは1(Wh/Wp)以上、また好ましくは8(Wh/Wp)以下、より好ましくは6(Wh/Wp)以下である。
 次に、太陽電池パネル40の取り付け構造について説明する。
例1
 図5Aは、天板パネル24に対して、太陽電池パネル40を永久固定した例である。
 この例は、各単位パネル401のパネル列410の長手方向側縁を、荷台ボディ21の長手方向に延びるリテーナ70で押さえ、リテーナ70と各単位パネル401をリベット71で共に結合したものである。
 図5B、図5Cに示してあるように、リテーナ70の幅方向中央部には凸部74が、幅方向の左右側縁には押さえリブが設けられている。凸部74と押さえリブ75,75の間には隙間が設けられている。リテーナ70の凸部にはリベット孔72が設けられ、リベット孔72とリベット71との間にシール材73を介して水密に固定されている。2列の場合には、リテーナ70は2列の単位パネル401のパネル列410の中間部分と左右両端部の3箇所を固定する構成となっている。
例2
 図6A~図6Dは、天板パネル24に対して、太陽電池パネル40を交換可能に取り付けた例である。
 この例では、リベット87で固定した固定バー81に対して、各単位パネル401に固定した取付プレート82をボルト83,ナット84によって固定している。すなわち、固定バー81にボルト83の頭部83aが回転不能に取り付けられ、ボルト83のねじ軸83bが固定バー81から上方に突出しており、このボルト83のねじ軸83bに単位パネル401に固定した取付けプレート82の取付孔82aを挿入し、ナット84によって締め付け固定するように構成されている。また、固定バー81には、支持ブラケット86を介して電気ケーブル420が固定されている。
 取付プレート82は固定バー81に沿って延びる断面S字形状に屈曲した薄板で、固定バー81の側面に沿って延びる縦片部と、縦片部の上端から固定バー81の上面側に屈曲して延びるボルト固定片部と、縦片部の下端から固定バー81と反対側に屈曲して単位パネル401に固定されるパネル固定片部とを備えている。
例3
 図7A~図7Cは、例2のボルト83を固定バー81から取り外し可能としたもので、固定バー81には、ボルト83を装着するための切欠き81aが設けられている。このようにすれば、太陽電池パネル40の単位パネル401単位で交換することができる。
 例2、例3のように、太陽電池パネルを取り外し可能としておけば、図7Cに示すように、単位パネル単位で交換することが可能となり、作業性やコスト面で有利である。
 図では、取付方法は具体的に記載していないが、例2、例3のように取り外し可能に固定する構成とし、各単位パネルに対応する位置にはリード線を通す孔が設けられている。
例4
 図8A、図8Bは、例2、例3の単位パネル401が、取付プレート282とパネル押さえバー287を介して、リベット288によって荷台の天板パネル24に一体的に固定された構成となっている。太陽電池パネル自体をリベット288で直接固定するようにしている点が、例2、例3と相違する。このパネル押さえバー287は固定バー81とほぼ同一高さであり、取付プレート282は平板構成となっている。その他の構成は、例2と同様であり、同一の構成部分については同一の符号を付して説明を省略する。
 以上の例1~例4は、太陽電池パネル40を、荷台20に対して、リベット、リテーナ、固定バー、ボルト、ナット等の取付部材を介して、機械的な結合により固定した例であるが、機械的結合例としては、このような構成に限定されず、公知の種々の機械的結合を利用することができる。
例5
 図9A、図9Bは、太陽電池パネル40を、両面テープ90を用いて天板パネル24に接着固定した例である。
 接着固定の方法としては、両面テープ90のような粘着テープを利用するものだけでなく、接着剤を用いて接着するようにしてもよい。
例6
 図10A、図10Bは、太陽電池の裏面保護層自体が荷台の天板パネルを兼ねた構成としたものである。
 すなわち、この太陽電池パネル(図10A)は、太陽電池素子41の表裏面にEVA樹脂や熱可塑性オレフィン樹脂等からなる封止材層42、43が積層され、表面にETFE等の表面保護層44が設けられた単位パネル340を、荷台20の天板パネル24に対して接着することにより、天板パネル24を太陽電池(単位パネル340)の裏面保護層として利用したものである。
 図10Bに示してあるように、この太陽電池パネルは、あらかじめ電極取り出し口24aが開口形成された天板パネル24に、単位パネル340を位置合わせして載置し、加熱加圧などにより接着し封止材層43を天板パネル24に熱融着して一体化することにより、形成することが出来る。
 なお荷台の天板パネル24に代えて荷台側面パネル、荷台後方側面パネルなど他の部分を用いてもよい。
 その方法としては例えば、単位パネル340を接着剤により接着する方法や、単位パネル340の封止材層43を接着層として加熱圧着により接着する方法などがある。
[1]単位パネル340を接着剤により接着する方法について説明する。
 表面保護層44、表面封止材層42、太陽電池素子41、裏面封止材層43で構成される単位パネル340を常法により作製する。裏面封止材層43側の面を例えばフッ素樹脂(例えばPTFE、ETFE、PFA、PBDF、PVF等)からなる離型層(図示せず)を形成することで、室温以下で保管可能となり、荷台の天板パネル24への接着に随時使用できる。反対側の面も離型フィルムで覆ってもよい。
 天板パネル24への接着時は、単位パネル340を裏面封止材層43側を下にして天板パネル24上に並べ、位置合わせの後、天板パネル24の接着位置に接着剤を塗布し、離型層を取り除き加圧接着する。必要に応じて加熱してもよい。接着後は一定時間放置等するなどして接着を安定させる。接着剤としては特に制限なく、接着対象の種類等に応じて従来公知のものを使用しうる。本例によれば大面積施工が比較的容易である。
 他の例として、液状接着剤の塗布に代えてシート状の接着剤を挟み、同様に加圧接着してもよい。大面積施工が比較的容易であるのに加え、工程サイクルタイムが短縮できる。
 さらに他の例として、天板パネル24への接着後に表面保護層44を形成してもよい。
[2]単位パネル340の裏面封止材層43を接着層として加熱圧着により接着する方法について説明する。
 単位パネル340を作製する際に、裏面封止材層43として熱可塑性ポリオレフィンなど熱可塑性樹脂を用い、太陽電池素子41にポリオレフィン樹脂シートを接触させた後、加圧加熱しシートを軟化させ融着する。その後裏面に離型層を形成し、室温以下で保管可能とする。
 天板パネル24への接着時は、単位パネル340を裏面封止材層43側を下にして天板パネル24上に並べ、位置合わせの後、離型層を取り除き、加圧加熱し裏面保護層43を軟化させ天板パネル24に熱融着し、冷却し接着を完了させる。
 本例によれば、専用の接着剤を用いず、接着剤塗布工程が不要で接着プロセスが簡略化できる。
 他の例として、単位パネルを作製する際に、裏面封止材層43としてEVA樹脂など架橋性樹脂を用い、太陽電池素子41に未架橋のEVA樹脂を接触させた後、EVA樹脂の架橋度が50~80%となるまで加圧加熱(例えば140℃で12分)し、架橋度が目標値となったところで加圧加熱を停止し、一旦架橋促進を休止させる。これを半架橋単位パネルとも呼ぶ。その後裏面に離型層を形成し、室温以下で暗所保管可能とする。
 天板パネル24への接着時は、半架橋単位パネルを裏面保護層側を下にして天板パネル24上に並べ、位置合わせの後、離型層を取り除き、例えば145℃で架橋度が85%以上となるまで加圧加熱し、冷却し、天板パネル24との接着を完了させる。
 本例によれば、専用の接着剤を用いず、接着剤塗布工程が不要で接着プロセスが簡略化できる。
 他の例として、天板パネル24への接着後に表面保護層44を形成してもよい。
 単位パネルの封止材層を接着層として加熱圧着により接着する方法は耐候性の点で好ましく、特に封止材層として架橋性樹脂を用い半架橋単位パネルとするタイプが好ましい。
 なお、本実施の形態では太陽電池パネルのパネル装着部を荷台の天板パネルとしたが、荷台側面、荷台後方側面などの他の部分をパネル装着部としてもよい。
 (太陽電池パネルの他の形態)
 図11は、太陽電池パネルとして、アモルファスシリコンを用いた例である。
 図11Aはアモルファスシリコン太陽電池のパネル構成の概略斜視図、同図Bはパネルの平面図である。
 この形態では、太陽電池パネルの厚さは2.3mm、重量は約5.7[kg/m2]、太陽電池パネルの単位重量あたりの最大出力qは5.3[W/kg]である。また太陽電池パネルの最大出力(Wp:ワットピーク)に対する蓄電池の容量(Wh)の比は3(Wh/Wp)であり、太陽電池パネルの面積Spは運転室の面積Sdの約4倍である。
 この場合も、太陽電池パネル240の構成は、太陽電池素子241の受光面側(矢印方向)及び非受光面側の双方に、封止材層(EVA)242、243を介し、表面保護層244(ETFE)、鉄板よりなる裏面保護層としての基板245を備えた構成となっている。
 アモルファスシリコンはモノリシックな構造で、複数の太陽電池素子をリード線を介さないで直接接触させて接続されたものである。
 その接続方向は、図4A等を用いて説明したように、トラック車輌が直進状態の進行方向に沿って、すなわち荷台の長手方向に沿って直列に接続した直列素子列を、長手方向と直交方向に複数列配列したものである。
 図2A~図2Cは、トラック車輌の他の形態を示す図であり、図2Aはトラック車輌1のエンジンの駆動力を利用しないで、専用の電気モータのみでコンプレッサを駆動する構成を示す図、図2Bはトラック車輌1のエンジンとは別に、冷凍機専用のエンジン35を設けることでコンプレッサを駆動する構成を示す図、図2Cは荷台ボディ21内の収容室のうち一部の領域が冷凍庫22である構成を示す図である。
 本実施の形態では、トラック車輌1のエンジンの駆動力を用いて駆動制御可能なコンプレッサ32を適用した場合について説明したが、これに限るものではない。すなわち、コンプレッサは、エンジンの駆動力を利用しないで、専用の電気モータのみで駆動するような構成(図2Aに示す電動コンプレッサ34)となっていてもよい。この専用の電動モータは、エンジンにより充電されるバッテリによって駆動されるもので、補助的に、太陽電池パネル40で発電された電力や蓄電池50から供給される電力を利用するものである。なお、太陽電池パネル40で発電された余剰電力を、蓄電池50ではなく、エンジンにより充電されるバッテリに蓄えるようにしてもよい。
 また、コンプレッサの駆動に関して、トラック車輌1の走行用のエンジンの駆動力を利用する形態(メインエンジン式)ではなく、図2Bに示すように、トラック車輌1のエンジンとは別に、冷凍機専用のエンジン35を設け、冷凍機専用のエンジン35の駆動力を利用してコンプレッサ36を駆動する形態(サブエンジン式)を適用してもよい。サブエンジン式は、メインエンジン式に対して、常に一定能力で冷却できるメリットがあり、メインエンジン式は、サブエンジン式に比べて、積載量(重さと容積の両方)や燃料費等に関してメリットがある。なお、図2Bにおいては、蓄電池50が省略されている。
 また、本実施の形態では、荷台ボディ21内の全ての領域が冷凍庫22を構成する場合について説明したが、これに限るものではない。すなわち、図2Cに示すように、荷台ボディ21内の収容室のうち一部の領域が冷凍庫22を構成するものであってもよい。この場合、冷凍庫22の位置は特に限定されないが、好ましい態様としては、冷凍庫22は荷台ボディ21のうち熱交換ユニット31に近い(隣接した)領域(トラック車輌1の前方の領域)に設けられ、荷台ボディ21のうち他の領域は、冷却する必要の無い積載物を収容する収容室23となる。
 なお、本明細書において冷凍車とは保冷車に冷凍機を装備した車輌の総称で、積荷を冷凍または冷蔵保管したまま輸送するトラック車輌を言う。従ってトラック車輌1はいわゆる冷蔵車であってもよい。この場合、荷台20に設けられた冷凍庫(冷却貯蔵庫)22は、冷蔵の必要な物品を収容する断熱構造の冷蔵庫に相当し、冷凍機30は、冷蔵庫内を冷却する(低温に保つ)冷却装置に相当する。
 また、荷台としては、冷却貯蔵庫が少なくとも一部に設けられた荷台ボディが荷台本体に対して分離できるような構造となっていてもよい。たとえば、平ボディに積載するコンテナについても、冷却貯蔵庫が少なくとも一部に設けられた荷台ボディという意味で、本願発明の荷台ボディに含まれる。このコンテナの天板に太陽電池パネルを敷設するようにしてもよい。コンテナのように荷台ボディが分離できるような場合には、太陽電池パネルからの電気ケーブルのコネクタを、運転車輌側のコネクタと接続可能としておけばよい。
 (実施の形態2)
 以下に、実施の形態2について説明する。上述した実施の形態1のトラック車輌は冷却手段を備えるものであったが、本実施の形態では、運転室の室温を調整する空調装置(空調手段)を備えたトラック車輌について説明するものである。なお、実施の形態1で説明した構成部分と同様の構成部分については同一の符号を付して、その説明は省略する。
 図12Aにおいて、1はトラック車輌全体を示すもので、このトラック車輌1は、運転車輌10と荷台20とを備え、荷台20には積載物を収容する収容室を備えた荷台ボディ21が設けられている。運転車輌10には、運転室13内の室温を調整するメインの空調装置130と、サブの空調装置131の二つの空調装置が設けられ、荷台ボディ21外面には、メインの空調装置130とサブの空調装置131に電気エネルギーを供給する太陽電池パネル40が設けられている。また、荷台20には、太陽電池パネル40で発電された余剰電力を蓄えると共に、太陽電池パネル40の不足電力を補う蓄電池50が設けられている
 運転車輌10は、図13Aに概略的に示すように、運転室13の前部に運転席14、助手席15が設けられ、後方に仮眠キャビン16が設けられている。この実施の形態では、運転席側のメインの空調装置130とは別に仮眠キャビン用のサブの空調装置131が設けられている。図12Aに示すように、サブの空調装置131の室内機132は、運転車輌10の後壁パネルに装着され、サブの空調装置131の室外機133は、運転車輌10の屋根と導風板17の間の空間に装着されている。
 サブの空調装置131自体は公知の構造で、室外機133に気化した冷媒を加圧する不図示のコンプレッサと冷媒を凝縮させるコンデンサが設けられ、室内機132に冷媒を気化させるエバポレータが設けられ、特に図示しないが、配管を通して冷媒が循環している。室内機132には送風機が設けられ、エバポレータによって熱交換された冷風あるいは温風が室内に送風される。空調装置131を構成する室外機133のコンプレッサおよび室内機132に設けられた送風用のモータ等が、太陽電池パネル40で発電された電気エネルギーによって駆動制御される。
 メインの空調装置130も公知の構造で、特に図示しないが、サブの空調装置131と同様に、気化した冷媒を加圧するコンプレッサと、冷媒を凝縮させるコンデンサと、冷媒を気化させるエバポレータを備え、エバポレータによって運転室の前部からから熱交換された冷風あるいは温風が室内に送風される。コンプレッサは、エンジンの駆動中は、エンジンの駆動力によって駆動されるもので、電磁クラッチを介してエンジンの駆動軸との動力伝達が切替えられる。エンジン停止時にも駆動するように、クラッチを介して電気モータが連結されていてもよいし、コンプレッサをエンジンの駆動力を利用しないで、専用の電気モータで駆動するような構成となっていてもよい。
 太陽電池パネル40が設置される荷台ボディ21は、図13Bに示すように、天面部中央のヒンジ部26を中心にして左右のウィング(天板パネル及び荷台側面)25、25が上下に開閉するウィングボディであり、ウィング25,25が閉じた状態ではいわゆるバンボディのように直方体形状で、各ウィング25、25の天板パネル24、24がほぼ水平の平面形状となっている。このウィングの天板パネル24、24に、太陽電池パネル40が装着されている。
 太陽電池パネル40は、電気ケーブル420を介して制御装置60に接続されている。制御装置60には、サブの空調装置131の室内機132、室外機133および蓄電池50も接続されている。制御装置60は、運転車輌10あるいは荷台20に設けられ、空調装置131の室内機132及び室外機133が駆動制御される。
 そして、本実施の形態では、太陽電池パネル40の単位重量あたりの最大出力を、サブの空調装置131の最大の消費電力を太陽電池パネル40の重量で割った値の1.2倍以上となるように設定している。
 このようにしておけば、太陽電池パネル40に十分な日照が確保できていれば、太陽電池パネル40単独でサブの空調装置131の駆動を実現することができる。従ってエンジンを停止した駐車中にもサブの空調装置131を駆動することができる。もちろん、走行時のサブ空調駆動にも使うことができる。また、駐車中、走行中を問わず太陽電池パネル40の出力を空調駆動の補助電力として使うこともできる。
 真夏の炎天下に駐車していたトラックの運転室13内の温度を急速に下げたいときの空調の消費電力に比べて、ある程度温度が下がった後、定常的にその温度を維持するためのサブの空調装置131の消費電力(定常状態での消費電力)はずっと少ない。この定常状態の消費電力を上回る発電ができれば、太陽電池パネル40の発電エネルギーのみで相当程度の時間、十分にサブの空調装置131の駆動をまかない得る。
 本実施の形態の場合、トラック車輌が最大消費電力の大きいメインの空調装置130と最大消費電力の小さいサブの空調装置131の二台の空調装置を備え、サブの空調装置131に太陽電池パネル40の発電エネルギーを供給可能としている。
 急速冷暖房時はメインの空調装置130のみ、またはメインとサブ両方の空調装置130、131を駆動させ、定常状態ではサブの空調装置131のみを駆動させる。このとき十分な日照が確保できていれば、サブの空調装置131の駆動を太陽電池パネル40単独で実現することができる。
 本実施の形態によれば、トラック車輌にアドオンタイプのサブの空調装置131と太陽電池パネル40を後付けすれば可能となるため、既存のトラック車輌に容易に適用できる利点がある。またサブの空調装置131と太陽電池パネル40を直接接続すればよく制御システムも簡易なものとなる利点がある。
 ところで、一日の標準的な日照量変化パターンから、太陽電池パネル40の発電による出力変化を概略算出することができる。検討によれば、快晴の夏の日の午前10時から午後2~3時頃まで、即ち4時間以上の空調駆動を太陽電池パネル40のみで行うことが可能となる。最も暑い時間帯の空調を太陽電池パネルの出力でまかなえるため燃料消費量及びCO2の削減効果が大きい。
 本実施の形態の場合、太陽電池パネル40の単位重量あたりの最大出力を、サブの空調装置131の最大の消費電力を太陽電池パネル40の重量で割った値の1.2倍以上となるように設定されるが、好ましくは2.0倍以上、より好ましくは3.0倍以上である。それぞれ、同午前9時から午後4時頃まで、同午前8時から午後5時頃までをまかなうことができる。また通常20倍以下、好ましくは15倍以下、より好ましくは10倍以下である。
 なお、空調装置130、131を暖房運転する際は、例えば走行中はエンジンの排熱を利用して暖房運転し、停車中はアイドリングストップし太陽電池パネル40または蓄電池からの電気エネルギーにより電動ヒートポンプなどを駆動し暖房運転することができる。勿論、走行中にも電気エネルギーを利用してもよい。
 また、太陽電池パネル40の単位重量当りの最大出力qが、5[W/kg]以上であることが好適である。トラックの走行性能に影響を与えることなく長時間の駆動が可能となる。本実施の形態では17.7[W/kg]である。
 好ましくは10[W/kg]以上、より好ましくは15[W/kg]以上である。但し、太陽電池の発電効率には限界があり、通常、100[W/kg]以下、好ましくは70[W/kg]以下、より好ましくは50[W/kg]以下である。効率4%で6.7W/kg相当、6%で10W/kg相当、10%で16.7W/kg相当であるため上記のように設定される。
 この例では、太陽電池40の単位パネルが40枚で、一枚あたりの最大出力が23.6[Wp]、全出力は944[Wp]となる。
 太陽電池パネルの最大出力(Wp:ワットピーク)に対する該蓄電池の容量(Wh)の比は、0.1~10(Wh/Wp)の範囲であると好ましい。より好ましくは0.5(Wh/Wp)以上、更により好ましくは1(Wh/Wp)以上、また好ましくは8(Wh/Wp)以下、より好ましくは6(Wh/Wp)以下である。
 本実施の形態では、この比を3とすることで、蓄電池で約8時間の空調の駆動が可能であった。
 また本実施の形態では、太陽電池パネルの面積Spは運転室13の上視面積Sdの約4倍であったが、好ましくは1~7倍以下である。より好ましくは1.5倍以上である。また5倍以下がより好ましい。空調の駆動を可能としつつ、太陽電池パネルの重量が抑えられトラックの走行安定性に影響が出ない。また、トラックの最大積載量を大きく損なうことがなく、またトラックの燃費の悪化も少ない。
 なお、本実施の形態では、2台の空調装置を備え、一つの空調装置について太陽電池からの電気エネルギーを供給可能とした例について説明したが、空調装置を3台以上備えた場合についても適用できるし、そのうちの少なくとも1つの空調装置について太陽電池からの電気エネルギーの供給が可能となっていればよい。
 本実施の形態では、既存の空調装置とは別に、新たに仮眠キャビン用のサブの空調装置を設けたアドオンタイプについて説明したが、図12Bに示すように、運転席側の既存の空調装置130を一つのみ備えた形態で、太陽電池パネルからの電力によって、エンジンルーム側のコンプレッサおよび室内機の送風モータ等を駆動するように構成したものである。
 コンプレッサは、電磁クラッチを介してエンジンの駆動軸からの動力伝達と、別途設けられる電気モータからの動力伝達が切換え可能となっている。
 エンジンルーム側のコンプレッサは、エンジンの駆動力によって駆動されている場合には、特に図示しないが、エンジン側の駆動力の伝達をクラッチを介して切換え、別途の電気モータによって駆動するような構成となっていればよい。
 また、コンプレッサをエンジンの駆動力を利用しないで、専用の電気モータで駆動するような構成となっていてもよい。またはエンジンの駆動力を利用してオルタネータ(発電機)により発電し、得られる電気エネルギーを専用の電気モータへ供給できる構成となっていてもよい。
 また、選択的に仮眠キャビン内の空調を可能とするよう、エアコンの送風口を寝室に設けたり、寝室の室温を設定且つコントロールするようにしてもよい。
 そして、太陽電池パネル40の単位重量あたりの最大出力qを、空調装置130の最大消費電力を太陽電池パネル40の重量で割った値の0.2倍以上となるように設定する。
 この場合でも、太陽電池パネル40からの発電エネルギーのみで相当程度の時間、十分に空調装置130の駆動をまかない得る。
 すなわち、太陽電池パネル40の単位重量あたりの最大出力を、空調装置130の最大の消費電力を太陽電池パネル40の重量で割った値の0.2倍以上となるように設定しておけば、太陽電池パネル40に十分な日照が確保できていれば、空調装置130の定常状態での駆動を太陽電池パネル40単独で実現することができる。
 真夏の炎天下に駐車していたトラックの運転室13内の温度を急速に下げたいときの空調の消費電力に比べて、ある程度温度が下がった後、定常的にその温度を維持するための空調装置130の消費電力(定常状態での消費電力)はずっと少ない。この定常状態の消費電力を上回る発電ができれば、太陽電池パネル40からの発電エネルギーのみで相当程度の時間、十分に空調装置130の駆動をまかない得る。
 すなわち、太陽電池パネル40の発電エネルギーを空調装置130に供給可能としておけば、十分な日照が確保できていれば、空調装置130の定常状態での駆動を太陽電池パネル40単独で実現することができる。この形態(方法)は、サブ空調装置を使用しないため、コスト面で有利であり、特に新規車輌への適用に利点がある。
 上記したとおり、太陽電池パネル40の単位重量あたりの最大出力を、空調装置130の最大の消費電力を太陽電池パネル40の重量で割った値の0.2倍以上となるように設定しておけば、上記実施の形態と同様に、太陽電池パネル40に十分な日照が確保できていれば、空調装置130の定常状態での駆動を太陽電池パネル40単独で実現することができる。快晴の夏の日の午前10時から午後2~3時頃まで、即ち4時間以上の空調駆動を太陽電池パネルのみで行うことが可能となる。最も暑い時間帯の空調を太陽電池パネルの出力でまかなえるため燃料消費量及びCO2の削減効果が大きい。
 本実施の形態の場合、太陽電池パネル40の単位重量あたりの最大出力を、空調装置130の最大の消費電力を太陽電池パネル40の重量で割った値の0.2倍以上であるが、好ましくは0.35倍以上、より好ましくは0.5倍以上である。それぞれ、同午前9時から午後4時頃まで、同午前8時から午後5時頃までをまかなうことができる。また通常20倍以下、好ましくは15倍以下、より好ましくは10倍以下である。
 なお、急速冷房時など空調装置130の消費電力が大きい時に、蓄電池からの電気エネルギーにより不足分を補ってもよい。
 また、トラックの停車中にも連続的または断続的に空調装置130を定常状態で冷房運転し続けておくことで、運転室内温度が高温となるのを防ぐシステムとしてもよい。これによれば、急速冷房が不要となるため、空調装置130として最大消費電力の小さい装置が使用できる。
 荷台ボディは、図示例ではウィングタイプを例にとって説明したが、いわゆる箱型のバンタイプでもよいし、タンクローリー、コンテナを積んだ荷台等の特装車輌にも適用可能である。タンクローリーについては、安全基準を満たす必要があることはもちろんであるが、たとえば、牛乳等の非危険物のタンクについては適用可能である。
 また、平ボディであっても、幌等の屋根を付けてその上に取り付けるようにしてもよく、要するに積載物を収容する収容部を備えた荷台ボディであればよい。
 また、荷台としては、積載物収納部を覆う荷台ボディが荷台本体に対して分離できるような構造となっていてもよい。たとえば、平ボディに積載するコンテナについても、積載物収納部を覆う荷台ボディという意味で、本願発明の荷台ボディに含まれる。このコンテナの天板に太陽電池パネルを敷設するようにしてもよい。コンテナのように荷台ボディが分離できるような場合には、太陽電池パネルからの電気ケーブルのコネクタを、運転車輌側のコネクタと接続可能としておけばよい。
 その他、本発明は上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
1 トラック車輌
10 運転車輌
11 エンジンルーム
13 運転室
16 仮眠キャビン
17 導風板
20 荷台
21 荷台ボディ
 22 冷凍庫
 23 収容室
 24 天板パネル
 24a 電極取出し口
 25 ウィング
 26 ヒンジ部
30 冷凍機
 31 熱交換ユニット
 32 コンプレッサ
 33 電動モータ
40 太陽電池パネル
 41 太陽電池素子、41a,41b 電極、41c 発電層
 42,43 封止材層、44 表面保護層、45 基板 (基材層)
 46 リード線、47 スペーサ
50 蓄電池
60 制御装置
70 リテーナ、
 71 リベット、72 リベット孔、73 シール材、
 74 凸部、75 リブ
81 固定バー
 81a 切欠き
82 取付プレート
83 ボルト、83a 頭部、83b 軸、84 ナット
86 支持ブラケット、87 リベット
282 取付プレート、287 パネル押えバー、288 リベット
90 両面テープ
130 メインの空調装置
131 サブの空調装置
 132 室内機
 133 室外機
240 太陽電池パネル
 241 太陽電池素子、244 表面保護層、245 基材層
340 単位パネル

Claims (29)

  1.  運転室を含む運転車輌と、
     運転車輌に連結され積載物収容部を覆う荷台ボディを有する荷台と、
     前記荷台ボディに設けられた太陽電池パネルと、
     を備えたトラック車輌において、
     前記太陽電池パネルの厚さが25mm以下に設定され、かつ単位面積当たりの重量が6kg/m2以下に設定されていることを特徴とするトラック車輌。
  2.  前記運転室または前記積載物収容部の少なくとも一部の温度を調整する温度調整手段を備え、
     前記太陽電池パネルから前記温度調整手段に電気エネルギーを供給する請求項1に記載のトラック車輌。
  3.  前記積載物収容部の少なくとも一部に冷却貯蔵庫が設けられ、前記温度調整手段が前記冷却貯蔵庫の内部を冷却するための冷却手段である請求項2に記載のトラック車輌。
  4.  前記温度調整手段が前記運転室の室温を調整する空調装置である請求項2に記載のトラック車輌。
  5.  前記太陽電池パネルで発電された余剰電力を蓄えると共に、太陽電池の不足電力を補う蓄電池を備えている請求項1乃至4のいずれか1項に記載のトラック車輌。
  6.  前記太陽電池パネルの最大出力(Wp:ワットピーク)に対する該蓄電池の容量(Wh)の比が0.1~10(Wh/Wp)の範囲である請求項5に記載のトラック車輌。
  7.  前記太陽電池パネルの単位重量当りの最大出力qが5W/kg以上である請求項1乃至6のいずれか1項に記載のトラック車輌。
  8.  前記太陽電池パネルは前記荷台ボディとは別の独立した構造で、前記荷台ボディの外面に対して取り付けられている請求項1乃至7のいずれか1項に記載のトラック車輌。
  9.  前記太陽電池パネルは、前記荷台ボディに対して、取付部材を介して機械的結合により固定されている請求項8に記載のトラック車輌。
  10.  前記太陽電池パネルは、前記荷台ボディに対して接着固定される請求項8に記載のトラック車輌。
  11.  前記太陽電池パネルは裏面保護層を除いた構成で、前記荷台ボディのパネルに対して一体的に接着され、太陽電池パネル付きの荷台パネルとして構成される請求項1乃至10のいずれか1項に記載のトラック車輌。
  12.  前記太陽電池パネルは、複数の太陽電池素子を車輌が直進している状態での前記荷台の進行方向に沿って直列接続した素子列が、前記進行方向に対して直交方向に複数列配置され、各セル列が並列接続された構成を備えている請求項1に記載のトラック車輌。
  13.  トラック車輌の運転車輌に連結される荷台であって、積載物収容部を覆う荷台ボディを有し、前記荷台ボディに太陽電池パネルが設けられた荷台において、
     前記太陽電池パネルの厚さが25mm以下に設定され、かつ単位面積当たりの重量が6kg/m2以下に設定されていることを特徴とする荷台。
  14.  前記トラック車輌に設けられた温度調整手段であって、前記運転室または前記積載物収容部の少なくとも一部の温度を調整する温度調整手段に、太陽電池パネルから電気エネルギーが供給される請求項13に記載の荷台。
  15.  前記積載物収容部の少なくとも一部に冷却貯蔵庫が設けられ、前記温度調整手段が前記冷却貯蔵庫の内部を冷却するための冷却手段であり、前記冷却手段に前記太陽電池パネルから電気エネルギーが供給される請求項14に記載の荷台。
  16.  前記温度調整手段が前記運転室の室温を調整する空調装置であり、前記空調装置に前記太陽電池パネルから電気エネルギーが供給される請求項14に記載の荷台。
  17.  前記太陽電池パネルで発電された余剰電力を蓄えると共に、太陽電池の不足電力を補う蓄電池を備えている請求項13乃至16のいずれかに記載の荷台。
  18.  前記太陽電池パネルの最大出力(Wp:ワットピーク)に対する該蓄電池の容量(Wh)の比が0.1~10(Wh/Wp)の範囲である請求項17に記載の荷台。
  19.  前記太陽電池パネルの単位重量当りの最大出力qが5W/kg以上である請求項13乃至18のいずれか1項に記載の荷台。
  20.  前記太陽電池パネルは前記荷台ボディとは別の独立した構造で、前記荷台ボディの外面に対して取り付けられている請求項13乃至19のいずれか1項に記載の荷台。
  21.  前記太陽電池パネルは、前記荷台ボディに対して、取付部材を介して機械的結合により固定されている請求項20に記載の荷台。
  22.  前記太陽電池パネルは、前記荷台ボディに対して接着固定される請求項20に記載の荷台。
  23.  前記太陽電池パネルは保護層の基材を除いた構成で、前記荷台ボディのパネルに対して一体的に接着され、太陽電池パネル付きの荷台パネルとして構成される請求項13乃至22のいずれか1項に記載の荷台。
  24.  前記太陽電池パネルは、複数の太陽電池素子を車輌が直進している状態での前記荷台の進行方向に沿って直列接続した素子列が、前記進行方向に対して直交方向に複数列配置され、各セル列が並列接続された構成を備えている請求項13に記載の荷台。
  25.  トラック車輌の運転車輌に連結される荷台の積載物収容部を覆う荷台ボディに設けられた太陽電池パネルにおいて、
     前記太陽電池パネルの厚さが25mm以下に設定され、かつ単位面積当たりの重量が6kg/m2以下に設定されていることを特徴とする太陽電池パネル。
  26.  前記トラック車輌に設けられた温度調整手段であって、前記運転室または前記積載物収容部の少なくとも一部の温度を調整する温度調整手段に、前記太陽電池パネルから電気エネルギーが供給される請求項25に記載の太陽電池パネル。
  27.  前記積載物収容部の少なくとも一部に冷却貯蔵庫が設けられ、前記温度調整手段が前記冷却貯蔵庫の内部を冷却するための冷却手段であり、前記冷却手段に前記太陽電池パネルから電気エネルギーが供給される請求項26に記載の太陽電池パネル。
  28.  前記温度調整手段が前記運転室の室温を調整する空調装置であり、前記空調装置に前記太陽電池パネルから電気エネルギーが供給される請求項26に記載の太陽電池パネル。
  29.  前記太陽電池パネルの単位重量当りの最大出力qが5W/kg以上である請求項25乃至28のいずれか1項に記載の太陽電池パネル。
PCT/JP2010/068151 2009-10-16 2010-10-15 トラック車輌及び荷台並びに太陽電池パネル WO2011046198A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010900012362U CN202656915U (zh) 2009-10-16 2010-10-15 货车车辆、车厢以及太阳能电池板
JP2011536188A JPWO2011046198A1 (ja) 2009-10-16 2010-10-15 トラック車輌及び荷台並びに太陽電池パネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-239876 2009-10-16
JP2009239876 2009-10-16

Publications (1)

Publication Number Publication Date
WO2011046198A1 true WO2011046198A1 (ja) 2011-04-21

Family

ID=43876247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068151 WO2011046198A1 (ja) 2009-10-16 2010-10-15 トラック車輌及び荷台並びに太陽電池パネル

Country Status (3)

Country Link
JP (1) JPWO2011046198A1 (ja)
CN (1) CN202656915U (ja)
WO (1) WO2011046198A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2804222A4 (en) * 2012-01-13 2015-08-12 Sanyo Electric Co SOLAR CELL MODULE FOR USE IN A VEHICLE
JP2015189250A (ja) * 2014-03-27 2015-11-02 三輪精機株式会社 キャブチルト装置
CN106394703A (zh) * 2015-08-31 2017-02-15 李宏江 晒不热的车厢和室厢
CN109177857A (zh) * 2018-11-14 2019-01-11 珠海格力电器股份有限公司 冷链运输车
CN110228352A (zh) * 2019-06-14 2019-09-13 沛县迅驰专用车辆制造有限公司 一种能提高厢体内部通风性能的厢式半挂车
WO2020035578A1 (de) * 2018-08-17 2020-02-20 Keestrack N.V. Raupenmobile baumaschine
CN111845365A (zh) * 2020-06-30 2020-10-30 江苏爱派电动车有限公司 一种太阳能电动车充电组件
WO2021156651A1 (en) 2020-02-05 2021-08-12 Machinery Plant „Astra“ Ab Photovoltaic electrical energy generation and control system and method of road tanker for liquid or gas products method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104228525B (zh) * 2014-09-17 2016-08-17 太仓京和机电有限公司 一种可对驾驶室进行温度控制的冷冻冷藏车
CN105034823A (zh) * 2015-07-03 2015-11-11 澳柯玛股份有限公司 一种电动太阳能冷藏车
CN114228624B (zh) * 2022-01-27 2024-01-12 德龙动能科技(深圳)有限公司 一种新能源车顶行李箱及工作方法
CN115447678B (zh) * 2022-09-28 2023-07-07 广州霸道新能源科技有限公司 一种基于光伏发电的集成化卡车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106964A (ja) * 1992-09-25 1994-04-19 Nissan Diesel Motor Co Ltd ソーラ発電利用冷凍車の制御方法
JP2000085449A (ja) * 1998-09-09 2000-03-28 Mitsubishi Motors Corp 車載用冷却装置
JP2001206046A (ja) * 2000-01-26 2001-07-31 Showa Alum Corp 車両用冷房又は暖房システム
JP2006200820A (ja) * 2005-01-20 2006-08-03 Sanyo Electric Co Ltd 太陽光発電装置搭載冷凍車
US20090211621A1 (en) * 2008-02-21 2009-08-27 Leblanc Kenneth Flexible Magnetically Attached Solar Electric Collector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106964A (ja) * 1992-09-25 1994-04-19 Nissan Diesel Motor Co Ltd ソーラ発電利用冷凍車の制御方法
JP2000085449A (ja) * 1998-09-09 2000-03-28 Mitsubishi Motors Corp 車載用冷却装置
JP2001206046A (ja) * 2000-01-26 2001-07-31 Showa Alum Corp 車両用冷房又は暖房システム
JP2006200820A (ja) * 2005-01-20 2006-08-03 Sanyo Electric Co Ltd 太陽光発電装置搭載冷凍車
US20090211621A1 (en) * 2008-02-21 2009-08-27 Leblanc Kenneth Flexible Magnetically Attached Solar Electric Collector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2804222A4 (en) * 2012-01-13 2015-08-12 Sanyo Electric Co SOLAR CELL MODULE FOR USE IN A VEHICLE
JP2015189250A (ja) * 2014-03-27 2015-11-02 三輪精機株式会社 キャブチルト装置
CN106394703A (zh) * 2015-08-31 2017-02-15 李宏江 晒不热的车厢和室厢
WO2020035578A1 (de) * 2018-08-17 2020-02-20 Keestrack N.V. Raupenmobile baumaschine
CN109177857A (zh) * 2018-11-14 2019-01-11 珠海格力电器股份有限公司 冷链运输车
CN110228352A (zh) * 2019-06-14 2019-09-13 沛县迅驰专用车辆制造有限公司 一种能提高厢体内部通风性能的厢式半挂车
WO2021156651A1 (en) 2020-02-05 2021-08-12 Machinery Plant „Astra“ Ab Photovoltaic electrical energy generation and control system and method of road tanker for liquid or gas products method thereof
CN111845365A (zh) * 2020-06-30 2020-10-30 江苏爱派电动车有限公司 一种太阳能电动车充电组件

Also Published As

Publication number Publication date
JPWO2011046198A1 (ja) 2013-03-07
CN202656915U (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2011046198A1 (ja) トラック車輌及び荷台並びに太陽電池パネル
WO2011046206A1 (ja) トラック車輌及び荷台並びに太陽電池パネル
WO2011078109A1 (ja) トラック車輌用の空調制御装置、トラック車輌、車輌、及びその制御装置
JPWO2011078109A6 (ja) トラック車輌用の空調制御装置、トラック車輌、車輌、及びその制御装置
US8455755B2 (en) Concentrated photovoltaic and thermal solar energy collector
US9882527B2 (en) De-icing solar panel
WO2010107491A2 (en) Photovoltaic module with heater
US20110297459A1 (en) Solar powered electric motor vehicle
US20140026945A1 (en) Concentrated Photovoltaic and Thermal Solar Energy Collector
US20140338730A1 (en) Photovoltaic module with heater
CN101020420A (zh) 车用太阳能电池板层式自动伸缩装置
US6631943B2 (en) Sliding roof for motor vehicles
US20190084428A1 (en) Photovoltaic Module and Container Equipped Therewith
JP6094572B2 (ja) 有機薄膜太陽電池モジュールの製造方法、及び有機薄膜太陽電池モジュール
JP2015082611A (ja) 太陽電池一体型融雪シート、及び太陽電池一体型融雪シートの設置方法
WO2012168700A2 (en) Tensile solar cell, method of manufacturing, apparatus and system
CA2820527C (en) Concentrated photovoltaic and thermal solar energy collector
JP3188001U (ja) トラック車輌及び荷台並びに太陽電池パネル
JP3188002U (ja) トラック車輌及び荷台並びに太陽電池パネル
US20100251752A1 (en) Ventilated panel and vehicle equipped with such a panel
CN203839391U (zh) 太阳能光伏光热复合组件
CN204131447U (zh) 太阳能汽车电源
JP2010021500A (ja) 電力供給システム
JP2012062737A (ja) 太陽電池パネル及び有機el照明を備えた建築物及びその屋根部材
CN110667495A (zh) 车辆驾驶室能量回收系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201090001236.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823466

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536188

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823466

Country of ref document: EP

Kind code of ref document: A1