WO2011045977A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2011045977A1
WO2011045977A1 PCT/JP2010/063639 JP2010063639W WO2011045977A1 WO 2011045977 A1 WO2011045977 A1 WO 2011045977A1 JP 2010063639 W JP2010063639 W JP 2010063639W WO 2011045977 A1 WO2011045977 A1 WO 2011045977A1
Authority
WO
WIPO (PCT)
Prior art keywords
side heat
heat exchanger
compressor
flow path
usage
Prior art date
Application number
PCT/JP2010/063639
Other languages
English (en)
French (fr)
Inventor
亮一 高藤
智弘 小松
正直 小谷
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to CN201080034785.4A priority Critical patent/CN102472530B/zh
Publication of WO2011045977A1 publication Critical patent/WO2011045977A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery

Definitions

  • the present invention relates to an air-conditioning system and a hot water supply air-conditioning system, such as a house or an office building, and cooling (cooling), heating (heating), isothermal dehumidification (cooling dehumidification / reheating) by a natural circulation cycle and a compression cycle.
  • An air conditioning system that can operate outside air cooling (outside air cooling), natural circulation and compression combined isothermal dehumidification (natural circulation and compression combined cooling and dehumidification and reheating), or an integrated system including a hot water supply air conditioning system It relates to a system that operates efficiently.
  • Patent Document 1 As a prior art of an air conditioner that selectively uses natural circulation operation that does not use a compressor and forced circulation operation that uses a compressor, for example, as shown in Patent Document 1, an expansion valve bypass circuit that bypasses an expansion valve is provided, and the outside air temperature And a technique for reducing annual power consumption by switching to an expansion valve bypass circuit based on room temperature and performing natural circulation operation.
  • compression An air conditioner is shown in which a refrigerant circuit is configured by connecting an evaporator and a compressor by means of circuit connection means while being connected to an expansion valve during a type cycle operation.
  • this patent document 1 discloses switching between the natural circulation type cycle and the compression type cycle according to the outside air temperature and the room temperature, and when the room temperature is higher than the outdoor temperature, the natural circulation type cycle operation is performed. It is disclosed that annual power consumption can be greatly reduced.
  • coolant natural circulation cooling dehumidification apparatus is attached to the indoor heat exchanger of the air conditioning apparatus of a refrigerant
  • the outdoor heat exchanger (condenser) in the natural circulation cycle is in close contact with the evaporator in the compression cycle to efficiently cool the outdoor heat exchanger, so that cooling is possible even when the temperature difference between room temperature and outside air is small. It is disclosed that the dehumidifying ability is secured.
  • a compression cycle is also provided, and cooling and dehumidification are performed using an indoor heat exchanger in the natural circulation cycle, and at the same time, heating operation is performed in the compression cycle. Has been proposed.
  • air conditioning operation (cooling operation, heating operation) using multi-heat source / multi-temperature air conditioning system, that is, renewable energy such as solar heat, geothermal energy, biomass energy, etc.
  • multi-heat source such as solar heat, geothermal energy, biomass energy, etc.
  • it is required to carry out cooling isothermal dehumidification operation, heating isothermal dehumidification operation, outdoor air cooling operation, outdoor air isothermal dehumidification operation).
  • air conditioning apparatuses such as those described in Patent Documents 1 and 2 have been proposed as efficient operations at times when the outside air temperature is low, such as in the middle of summer and winter.
  • energy saving operation is possible by switching between the natural circulation cycle and the compression cycle according to the outside temperature, but heating operation and isothermal dehumidification operation are not described, and consideration is given to operation versatility. Absent.
  • Patent Document 2 a natural circulation type cycle and a compression type cycle are provided side by side, and the natural circulation type cycle is not used during cooling and heating peaks, and the heat exchange function is effectively utilized. I don't get it. Furthermore, in the combined air conditioner shown in the cited document 2, when the outside air temperature is below room temperature and the outside air cooling operation is performed by the natural circulation type, there is a problem that the dehumidifying ability cannot be obtained when the outside air temperature is the indoor dew point temperature or more. Arise.
  • the present invention provides an air conditioner equipped with a compression cycle and a natural circulation cycle, and exhibits air conditioning capability by using the compression cycle at the peak of cooling and heating, and is natural when the outside air temperature is lower than the room temperature.
  • An air conditioner that increases the dehumidification capability even when the difference between the outside air temperature and the room temperature is small by using a circulation cycle and a compression cycle, and further ensures the energy saving of the air conditioning function by utilizing renewable energy It is to provide.
  • the present invention mainly adopts the following configuration.
  • Compressor three use side heat exchangers that use heat by exchanging heat with the heat transfer medium, and heat source side heat that exchanges heat with the heat transfer medium to absorb and release heat to the use side heat exchanger
  • An exchanger two flow path switching valves for switching the flow direction of the refrigerant, and two flow rate adjustment valves for adjusting the pressure or flow rate of the refrigerant, and the compressor, of the two flow path switching valves
  • the first flow path switching valve, the heat source side heat exchanger, the first flow rate adjustment valve of the two flow rate adjustment valves, and the second usage side heat exchange of the three usage side heat exchangers An annular cycle connecting the compressor, the second flow rate adjustment valve, the third use side heat exchanger, and the compressor in this order, and the first flow path switching valve from the compressor to the heat source side heat exchange
  • the compressor and the heat source side to switch the flow path to the compressor and the flow path from the compressor to the third user side heat exchanger Provided between exchanger from the
  • the compressor, the first flow path switching valve, the second flow path switching valve, the heat source side heat exchanger, the first flow switching valve, and the second flow path switching valve are switched.
  • the first small loop comprising the compressor, the second flow path switching valve, the heat source side heat exchanger, the first flow rate adjustment valve, the first usage side heat exchanger, the second And a small loop formed by a second small loop composed of a flow path switching valve.
  • the second air temperature is determined based on the outside air temperature.
  • the heat source side heat exchanger is arranged at a higher position than the first usage side heat exchanger. Further, when executing the reheat dehumidification operation mode in which the cooling dehumidification and reheating are performed using the first to third use side heat exchangers, the second flow path switching valve is controlled based on the outside air temperature. By the flow path switching and the opening adjustment of the first flow rate adjustment valve and the second flow rate adjustment valve, the single operation by the compressor that forms the large loop and the compressor that forms the first small loop A single operation and a single operation can be selected.
  • the second flow path switching valve is controlled based on the outside air temperature.
  • the flow path switching and the opening adjustment of the first flow rate adjustment valve and the second flow rate adjustment valve the single operation by the compressor forming the first small loop and the second small loop are formed. A configuration in which any one of the natural circulation operation and the operation can be selected is adopted.
  • the heat absorption part of another heat source system is connected in parallel to the heat source side heat exchanger.
  • the first, second, and third use side heat exchangers are arranged in parallel with the air flow direction by the use side blower.
  • the first, second and third usage side heat exchangers are respectively installed in parallel with the secondary usage side heat exchangers via liquid pipes, and the secondary usage side heat exchangers are heated.
  • a structure is used in which heat is exchanged with the transport medium and heat is used.
  • the present invention it is possible to greatly exert the cooling capacity and the heating capacity at the cooling and heating peak by devising the arrangement configuration of the use side heat exchanger and the refrigerant flow path switching valve and the operation modes thereof. Furthermore, even when the outside air temperature is equal to or lower than the room temperature and the difference between the outside air temperature and the room temperature is small, the dehumidifying ability can be ensured.
  • renewable energy can be used to save energy in the air conditioning function, enabling air conditioning with low power consumption throughout the year.
  • FIG. 1 is a variable capacity compressor for refrigerant
  • 2 and 3 are four-way valves and the like, and a first flow path switching valve and a second flow path switching valve for switching the flow direction are used.
  • 5 is a first flow rate adjustment valve that acts as an expansion valve in a compression cycle and as a flow rate adjustment valve in a natural circulation cycle
  • 6 to 8 are first to third use side heat exchangers for exchanging heat with a heat transfer medium such as air and water
  • 9 is a second flow rate adjusting valve such as an expansion valve.
  • constituent elements constituting the refrigeration cycle are connected by refrigerant pipes 10 to 16, respectively. That is, the first flow path switching valve 2 is connected to one of the discharge pipe, the suction pipe and the refrigerant pipes 10 and 16 of the compressor 1, and the second flow path switching valve 3 is connected to the refrigerant pipes 10, 11, 14, 15 is connected.
  • the other of the refrigerant pipes 11 is connected to the heat source side heat exchanger 4, the other of the refrigerant pipes 14 is connected to the first use side heat exchanger 6, and the other of the refrigerant pipes 15 is a second use side heat exchange. Connected to the device 7.
  • One of the refrigerant pipes 12 is connected to the heat source side heat exchanger 4 and the other is connected to the first flow rate adjusting valve 5, and one of the refrigerant pipes 13 is connected to the first flow rate adjusting valve 5 and the other is connected to the first use side heat.
  • One of the refrigerant pipes 16 is connected to the third use side heat exchanger 8 and the other is connected to the first flow path switching valve 2.
  • the heat source side heat exchanger 4 returns a liquefied refrigerant to the first use side heat exchanger 6 during the natural circulation cycle, and therefore is higher in height than the first use side heat exchanger 6. Is installed.
  • the general-purpose refrigeration cycle includes a compressor 1, a first flow path switching valve 2, a heat source side heat exchanger 4, and the like.
  • the flow rate adjusting valve 5, the use side heat exchangers 7 and 8, and the flow rate adjusting valve 9 are configured to switch the first flow path switching valve 2 and the flow rate in the dehumidification cycle.
  • Three dehumidification modes of cooling dehumidification / reheating (using a cooling cycle), cooling dehumidification / reheating (using a heating cycle), and natural circulation dehumidification are formed by adjusting the opening and closing of the regulating valves 5 and 9 fully. Met.
  • the second flow path switching unit 3 and the first usage-side heat exchanger 6 are newly placed at the positions shown in the figure. And operating them appropriately so that various modes of operation can be formed, including cooling and heating operations during peak cooling and heating, as described in detail below. It has a configuration and function that can ensure a dehumidifying function even when the difference in room temperature is small. That is, when the use side heat exchanger is disposed in the indoor unit, in addition to the operation mode 201 (compression-only cooling mode) and the operation mode 202 (compression-only heating mode) shown in FIG.
  • Operation mode 203 compression type single cooling dehumidification / reheating mode (cooling large loop)) and operation mode 204 (compression type single cooling dehumidification / reheating mode (heating large loop)), operation mode shown in FIG.
  • operation mode 206 natural circulation type single outside air cooling (outside air cooling) shown in FIG.
  • An operation mode 207 natural air circulation / compression combined outdoor air cooling / cooling dehumidification / reheating can be formed.
  • the various modes of the operation mode described above will be specifically described below.
  • the air that exchanges heat with the refrigerant in the refrigeration cycle is air
  • the plurality of operation modes described above can be appropriately switched according to the room temperature, room humidity, and outside air temperature.
  • the operation mode 201 in FIG. 2 is a compression mode operation mode alone, and the refrigerant circulation path is in the direction of the solid arrow in FIG.
  • the first flow path switching valve 2 connects the discharge pipe and the refrigerant pipe 10 of the compressor 1, and the suction pipe and the refrigerant pipe 16 of the compressor 1, respectively.
  • the refrigerant pipe 10 and the refrigerant pipe 11, and the refrigerant pipe 14 and the refrigerant pipe 15 are connected to each other.
  • the first flow rate adjustment valve 5 is adjusted to a predetermined opening
  • the second flow rate adjustment valve 9 is adjusted to be fully open.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 radiates heat to the heat transfer medium (for example, air or water) passing through the path 301 by the heat source side heat exchanger 4 via the refrigerant pipes 10 and 11. Condensed, liquefied at the heat source side heat exchanger 4 outlet, depressurized and expanded by the first flow rate adjusting valve 5 adjusted to a predetermined opening via the refrigerant pipe 12, and in the gas-liquid two-phase state 1 to the use side heat exchanger 6.
  • the heat transfer medium for example, air or water
  • the gas-liquid two-phase refrigerant that has flowed into the first user-side heat exchanger 6 passes through the refrigerant pipes 14 and 15, and flows through the second and third user-side heat exchangers 7 and 8. Evaporates by absorbing heat from the heat transfer medium passing through the gas, gasifies at the outlet of the third usage-side heat exchanger 8, flows into the compressor 1 from the suction pipe of the compressor 1 via the refrigerant pipe 16, and is compressed The cycle is established.
  • the heat source side heat transfer medium passing through the path 301 is heated, and the use side heat transfer medium passing through the path 300 is cooled (the first to third use side heat exchangers 6 to 8 are arranged in the indoor unit. Because it is, it becomes the cooling mode).
  • the operation mode 202 in FIG. 2 is a compression mode operation mode alone, and the circulation path of the refrigerant is in the direction of the dashed arrow in FIG.
  • the operation mode 201 and the path are in opposite directions, and the first flow path switching valve 2 connects to the discharge pipe and refrigerant pipe 16 of the compressor 1 and the suction pipe and refrigerant pipe 10 of the compressor 1 respectively.
  • the operation mode 201 is the same.
  • the heat is transferred to the heat transfer medium passing through the path 300 to be condensed, liquefied at the outlet of the first use side heat exchanger 6, expanded under reduced pressure by the first flow rate adjusting valve 5, and gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant that has flowed into the heat source side heat exchanger 4 evaporates by absorbing heat from the heat transfer medium passing through the path 301, gasifies at the outlet of the heat source side heat exchanger 4, and returns to the compressor 1.
  • a cycle is established.
  • the heat-source-side heat transfer medium passing through the path 301 is cooled, and the use-side heat transfer medium passing through the path 300 is heated (the first to third use-side heat exchangers 6 to 8 are arranged in the indoor unit. Is in the heating mode).
  • the operation mode 203 in FIG. 4 is an operation mode with a compression type alone, and the refrigerant circulation path is in the direction of the solid arrow in FIG.
  • this operation mode 203 first, the discharge pipe of the compressor 1 and the refrigerant pipe 10 and the suction pipe and the refrigerant pipe 16 of the compressor 1 are connected by the first first flow path switching valve 2, and the second flow is switched.
  • the passage switching valve 3 connects the refrigerant pipe 10 and the refrigerant pipe 11, and the refrigerant pipe 14 and the refrigerant pipe 15 respectively. Subsequently, the first flow rate adjustment valve 5 is fully opened, and the second flow rate adjustment valve 9 is adjusted to a predetermined opening degree.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed by dissipating heat to the heat transfer medium passing through the path 301 in the heat source side heat exchanger 4, and the first use side heat exchanger in the gas-liquid two-phase state. Flows into 6.
  • the gas-liquid two-phase refrigerant that has flowed into the first usage-side heat exchanger 6 is further condensed by dissipating heat to the heat transfer medium passing through the path 304.
  • the gas-liquid two-phase refrigerant flowing into the second usage-side heat exchanger 7 is further condensed by dissipating heat to the heat transfer medium passing through the path 303, and at the outlet of the second usage-side heat exchanger 7. Liquefaction.
  • the liquefied refrigerant is depressurized and expanded by the second flow rate adjusting valve 9 to be in a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant is evaporated by absorbing heat from the heat transfer medium passing through the path 302 in the third usage-side heat exchanger 8, and gasified at the outlet of the third usage-side heat exchanger 8.
  • the cycle is established by flowing into and compressing.
  • Mode 203 is a cooling dehumidification / reheating mode using a compression-only cooling large loop).
  • the operation mode 204 in FIG. 4 is a compression-only operation mode
  • the refrigerant circulation path is in the direction of the dashed arrow in FIG. 5, and the operation mode 203 and the path are in the opposite direction.
  • the operation is similar to that in the operation mode 203 except that the first flow path switching valve 2 is connected to the discharge pipe and the refrigerant pipe 16 of the compressor 1 and the suction pipe and the refrigerant pipe 10 of the compressor 1.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed by dissipating heat to the heat transfer medium passing through the path 302 in the third usage-side heat exchanger 8, and the third usage-side heat exchanger 8 Liquefaction at the outlet.
  • the liquefied refrigerant is depressurized and expanded by the second flow rate adjusting valve 9 to be in a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant evaporates by absorbing heat from the heat transfer medium passing through the paths 303 and 304 in the second usage-side heat exchanger 7 and the first usage-side heat exchanger 6, respectively.
  • the heat exchanger 4 evaporates by absorbing heat from the heat transfer medium passing through the path 301, gasifies at the outlet of the heat source side heat exchanger 4, returns to the compressor 1, and a cycle is established.
  • Mode 204 is a cooling dehumidification / reheating mode using a compression large heating large loop).
  • the operation mode 205 in FIG. 6 is an operation mode by a compression type alone, and the circulation path of the refrigerant is in the direction of the solid line arrow in FIG.
  • the first flow path switching valve 2 connects the discharge pipe and the refrigerant pipe 10 of the compressor 1, the suction pipe and the refrigerant pipe 16 of the compressor 1, and the second flow path switching valve 3.
  • the refrigerant pipe 10 and the refrigerant pipe 15, and the refrigerant pipe 14 and the refrigerant pipe 11 are connected to each other.
  • the second flow rate adjustment valve 9 is adjusted to a predetermined opening degree.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed by dissipating heat to the heat transfer medium passing through the path 303 in the second usage-side heat exchanger 7, and the outlet of the second usage-side heat exchanger 7. Liquefy with.
  • the liquefied refrigerant is decompressed and expanded by the second flow rate adjusting valve 9 to be in a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant evaporates by absorbing heat from the heat transfer medium passing through the path 302 in the third usage-side heat exchanger 8.
  • the gas is gasified at the outlet of the third usage side heat exchanger 8, flows into the compressor 1, and is compressed to form a cycle.
  • This operation mode 205 is a cooling dehumidification / reheating mode using a compression type single cooling / heating small loop).
  • the operation mode 206 in FIG. 8 is a natural circulation type operation mode alone, and the refrigerant circulation path is in the direction of the solid arrow in FIG.
  • this operation mode 206 first, the refrigerant pipe 10 and the refrigerant pipe 15, and the refrigerant pipe 14 and the refrigerant pipe 11 are connected by the second flow path switching valve 3, respectively. Subsequently, the first flow rate adjusting valve 5 is adjusted to a predetermined opening degree. The compressor 1 is stopped.
  • the refrigerant staying in the heat source side heat exchanger 4 dissipates heat to the heat transfer medium passing through the path 300 and condenses and liquefies.
  • the liquid refrigerant having a high density is affected by gravity and flows into the use side heat exchanger 6 via the refrigerant pipes 12 and 13.
  • the first flow rate adjusting valve 5 is appropriately adjusted according to the exchange heat amount desired to be obtained by the use side heat exchanger 6.
  • the refrigerant that has flowed into the use side heat exchanger 6 absorbs heat from the heat transfer medium passing through the path 300 and evaporates, and rises in the refrigerant pipes 14 and 11 due to the pressure gradient due to the density difference from the condensing side, and heat source side heat exchange.
  • the cycle is established by flowing into the vessel 4. In this operation mode 206, the use side heat transfer medium passing through the path 300 is cooled.
  • operation mode 207 (outside air cooling / cooling dehumidification / reheating mode (outside air cooling loop and cooling / heating small loop) combined with natural circulation and compression)” (FIGS. 10 and 11)
  • the operation mode 207 in FIG. 10 is a combined operation mode of natural circulation type and compression type, and the refrigerant circulation path is in the direction of the solid arrow in FIG.
  • this operation mode 207 first, the refrigerant pipe 10 and the refrigerant pipe 15, and the refrigerant pipe 14 and the refrigerant pipe 11 are connected by the second flow path switching valve 3, respectively. Subsequently, the first flow rate adjusting valve 5 is adjusted to a predetermined opening degree.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed by dissipating heat to the heat transfer medium passing through the path 303 in the second usage-side heat exchanger 7, and the second usage side.
  • Liquefaction occurs at the outlet of the heat exchanger 7.
  • the liquefied refrigerant is decompressed and expanded by the second flow rate adjusting valve 9 adjusted to a predetermined opening, and enters a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant evaporates by absorbing heat from the heat transfer medium passing through the path 302 in the third usage-side heat exchanger 8.
  • the gas is gasified at the outlet of the third usage side heat exchanger 8, flows into the compressor 1, and is compressed to form a cycle.
  • the refrigerant staying in the heat source side heat exchanger 4 dissipates heat to the heat transfer medium passing through the path 301, and is condensed and liquefied.
  • the liquid refrigerant having a high density is influenced by gravity and flows into the use side heat exchanger 6 via the refrigerant pipes 12 and 13.
  • the first flow rate adjusting valve 5 is appropriately adjusted according to the exchange heat amount desired to be obtained by the use side heat exchanger 6.
  • the refrigerant that has flowed into the use side heat exchanger 6 absorbs heat from the heat transfer medium passing through the path 304 and evaporates, and rises in the refrigerant pipes 14 and 11 due to the pressure gradient due to the density difference from the condensing side, and heat source side heat exchange.
  • the cycle is established by flowing into the vessel 4.
  • this operation mode 207 the use side heat transfer medium passing through the paths 302 and 304 is cooled, and the use side heat transfer medium passing through the path 303 is heated. Thereby, the outside air cooling (cooling) in the use side heat exchanger 6 by the natural circulation type and the cooling dehumidification / reheating by the heating and cooling in the use side heat exchangers 7 and 8 by the compression type are formed. .
  • this operation mode 207 when the outside air temperature is equal to or lower than the room temperature, by using both the natural circulation type cycle and the compression type cycle, even when the difference between the outside air temperature and the room temperature is small, the cooling type dehumidification (cooling reduction) is achieved.
  • the dehumidifying ability can be increased by the action of (humidity).
  • the same effect can be obtained even when the refrigerant circulation path is in the direction of the broken arrow.
  • the refrigerant from the compressor condenses in the third usage-side heat exchanger 8 while heating the heat transfer medium passing through the path 302, and the second use while cooling the heat transfer medium passing through the path 303. It evaporates in the side heat exchanger 7. That is, the use side heat transfer medium passing through the paths 303 and 304 is cooled, and the use side heat transfer medium passing through the path 302 is heated.
  • the refrigerant in the refrigerant pipe is a substance that changes phase at room temperature, such as a fluorocarbon refrigerant such as R410a, or a hydrocarbon refrigerant such as CO 2 .
  • the heat transfer medium may be any medium that can transfer heat, such as air and water, and brine such as ethylene glycol may be used depending on the usage environment.
  • FIG. 12 is a block diagram of Configuration Example 1 showing an arrangement configuration of each component in the air-conditioning apparatus according to the second embodiment of the present invention.
  • FIG. 13 is a diagram illustrating an operable region in each operation mode in the air-conditioning apparatus according to the second embodiment.
  • FIG. 14 is a block diagram of Configuration Example 2 showing an arrangement configuration of each component in the air-conditioning apparatus according to the second embodiment.
  • the use side heat transfer medium and the heat source side heat transfer medium are both air.
  • symbol 1 to 16 is the same as the structure of the air conditioning apparatus which concerns on 1st Embodiment shown in FIG.
  • the unit 101 including the first to third use side heat exchangers 6 to 8 is an indoor (air-conditioned side) unit of the air conditioner of the present embodiment, and includes the compressor 1 and the heat source side heat exchanger.
  • the unit 100 including 4 is an outdoor (heat source side) unit of the air conditioner of the present embodiment.
  • a part of the refrigerant pipes 13 to 16 is a pipe for connecting the indoor and outdoor units 101 and 100.
  • the second flow path switching valve 3 is installed on the indoor unit side in order to suppress pressure loss due to the piping between the first and second usage-side heat exchangers 6 and 7.
  • the first to third usage side heat exchangers 6 to 8 are arranged in series in order from the upstream side of the usage side air flow 305 from the usage side blower 21.
  • the illustrated use side blower 21 is a blower that pushes air into the heat exchanger, but may be a blower that sucks air through the heat exchanger in accordance with the form of the indoor unit 101.
  • the heat source side heat transfer medium of the heat source side heat exchanger 4 becomes the heat source side air flow 310 from the heat source side blower 20.
  • the air conditioner according to the second embodiment can arbitrarily switch the operation mode according to the outdoor temperature of the environment in which the air conditioner is installed and the set temperature relative to the indoor temperature, as shown in FIG.
  • the indoor unit 101 is in the cooling operation, and the operation mode is 201.
  • the outdoor temperature Ths 35 ° C.
  • the set temperature Tuser 23 ° C.
  • the indoor temperature Tapp 27 ° C.
  • all the refrigerant sides of the first to third usage-side heat exchangers 6 to 8 are evaporated, the usage-side air flow 305 is cooled, and the indoor unit 101 is in a cooling operation.
  • hs is an abbreviation for heat source, app is application, and H is Humidity.
  • the predetermined set temperature can be obtained by adjusting the evaporation temperature of the use side heat exchangers 6 to 8 by increasing or decreasing the rotation speed of the compressor 1 according to the difference between the room temperature and the set temperature.
  • the indoor unit 101 is in the heating operation and the operation mode is 202.
  • the outdoor temperature Ths 7 ° C.
  • the set temperature Tuser 23 ° C.
  • the indoor temperature Tapp 20 ° C.
  • all the refrigerant sides of the first to third usage-side heat exchangers 6 to 8 are condensed, and the usage-side air flow 305 is heated.
  • the predetermined set temperature can be obtained by adjusting the evaporation temperature of the use side heat exchangers 6 to 8 by increasing or decreasing the rotation speed of the compressor 1 according to the difference between the room temperature and the set temperature.
  • the indoor unit 101 is in the reheat dehumidification (cooling dehumidification / reheating) operation, and the operation mode is 203 or 204.
  • the operation mode 203 is such that the refrigerant side of the first and second usage side heat exchangers 6 and 7 is condensed, the refrigerant side of the third usage side heat exchanger 8 is evaporation, and the operation mode 204 is The refrigerant side of the first and second usage side heat exchangers 6 and 7 is evaporated, and the refrigerant side of the third usage side heat exchanger 8 is condensed.
  • the first to third usage-side heat exchangers 6 to 8 are installed in series in order, so reheat dehumidification (cooling dehumidification / reheating) by selecting the operation mode 204.
  • Driving is possible. That is, the air flow 305 exiting from the use side blower 21 is cooled and dehumidified by the first and second use side heat exchangers 6 and 7, reheated by the third use side heat exchanger 8, and set. Adjusted to temperature and humidity.
  • the use side heat exchangers 6, 7 arranged on the windward side of the use side blower 21 have the arrangement configuration of the use side heat exchangers 6, 7, 8 shown in FIG. Since dehumidification is not possible, dehumidification cannot be performed. In this operation mode 203, the dehumidifying function cannot be performed.
  • the evaporation temperatures of the first and second usage side heat exchangers 6 and 7 and the condensation temperature of the third usage side heat exchanger 8 are the same as the condensation temperatures of the compressor 1 and the heat source side heat exchanger 4. It can be arbitrarily adjusted by the air volume of the heat source side air flow 310 coming out of 20 or the opening of the second flow rate adjusting valve 9.
  • the use side blower By increasing the air volume of 21 and increasing the amount of heat released to the outside, the condensation temperature of the third use side heat exchanger 8 is lowered, and the cooling operation is performed while dehumidifying.
  • the condensation of the third usage-side heat exchanger 8 is achieved by reducing the air volume of the usage-side fan 21 and reducing the amount of heat released to the outside. Increase the temperature and perform heating operation while dehumidifying.
  • the operation mode is 203 or 204, in the case of the operation mode 203, the heat source side heat exchanger 4 The condensing temperature is too low, and frost formation occurs in the third use side heat exchanger 8, so that the heat exchanger is clogged and dehumidification cannot be performed.
  • the operation mode 204 the evaporation temperature of the heat source side heat exchanger 4 is excessively lowered, and the heat exchanger is clogged by frosting together with the first and second usage side heat exchangers 6 and 7, thereby dehumidifying. Will not be able to.
  • the operation mode 205 since the refrigerant does not pass through the heat source side heat exchanger 4 outside the room (see FIGS. 6 and 7), the operation can be performed without being affected by the outdoor temperature.
  • this operation mode 205 it is possible to perform the heating operation while dehumidifying.
  • the second use side heat exchanger 7 is evaporated and the third use side heat exchanger 8 is condensed.
  • the first flow path switching valve 2 is switched so that the heating amount and the dehumidification amount can be adjusted by the rotation speed of the compressor 1 and the opening of the second flow rate adjustment valve 9.
  • the reheat dehumidification (cooling dehumidification / reheating) operation mode 205 includes a cooling cycle (solid arrow in FIG. 7) in addition to the heating cycle (dotted arrow in FIG. 7), as shown in FIGS.
  • the two heat exchangers of the use side heat exchangers 7 and 8 are used to condense or evaporate each other. Since the amount of heat of condensation increases from this balance, dehumidification is performed, but the room temperature is warmed.
  • the evaporation temperature of the use side heat exchanger 6 is adjusted by adjusting the opening of the first flow rate adjustment valve 5 on the natural circulation type cycle side according to the difference between the room temperature and the set temperature, and a predetermined set temperature Can be obtained.
  • the compressor 1 is stopped, and power consumption is only the power of the internal and external blowers. For this reason, power consumption can be significantly reduced compared with selecting the operation mode 201 which is a compression cycle.
  • the air flow 305 exiting from the use side blower 21 is cooled and dehumidified by the first and second use side heat exchangers 6 and 7, reheated by the third use side heat exchanger 8, and set temperature and humidity.
  • Adjusted to The evaporation temperature of the first usage-side heat exchanger 6 is arbitrarily adjusted by the opening of the first flow rate adjustment valve 5 on the natural circulation cycle side, and the evaporation temperature of the second usage-side heat exchanger 7, 3, the condensing temperature of the use side heat exchanger 8 is equal to the air volume of the heat source side air flow 310 from the heat source side blower 20 or the second air amount of the condensation temperature of the compressor 1 on the compression cycle side and the heat source side heat exchanger 4.
  • the flow rate adjustment valve 9 can be arbitrarily adjusted by the opening degree.
  • the natural circulation cycle side By increasing the opening of the first flow rate adjustment valve 5, the evaporation temperature of the first use-side heat exchanger 6 is lowered and the difference from the dew point temperature of the air is increased to ensure the dehumidification amount while compressing.
  • the condensation temperature of the third usage side heat exchanger 8 is lowered by lowering the number of revolutions of the compressor 1 on the cycle side, and the cooling operation is performed while dehumidifying.
  • the opening degree of the first flow rate adjustment valve 5 on the natural circulation cycle side can be reduced.
  • the third usage side heat exchanger 6 can be obtained by raising the evaporation temperature of the first usage side heat exchanger 6 so as to take only sensible heat of the air and increasing the rotational speed of the compressor 1 on the compression cycle side. Heating operation is performed while dehumidifying by increasing the condensation temperature of 8.
  • the power of the compressor 1 can be reduced and the power consumption can be reduced as compared with the case where the operation modes 203 and 204, which are only the operation of the compression cycle, are selected.
  • the first user-side heat exchanger 6 exchanges heat with the user-side air flow 306
  • the second user-side heat exchanger 7 exchanges heat with the user-side air flow 307
  • the third The usage-side heat exchanger 8 is installed in parallel with the air flow so as to exchange heat with the usage-side air flow 308.
  • the operation mode 203 can be operated.
  • the usage side air flows 306 and 307 heated by the first and second usage side heat exchangers 6 and 7 whose refrigerant side is condensed in the operation mode 203, and the third usage side heat exchanger 8 whose refrigerant side is evaporation.
  • the use side air flow 308 cooled and dehumidified by the above is mixed while passing through the use side blower 22 and adjusted to a desired temperature and humidity.
  • the operation mode 204 when the operation mode 204 is selected (FIG. 4 and the dotted arrow in FIG. 5), the refrigerant side of the heat source side heat exchanger 4 evaporates, so that the entire evaporation temperature rises and a high dehumidifying temperature cannot be secured. In this case, dehumidification cannot be performed. However, if the operation mode 203 is selected even at such a high outside air temperature, dehumidification is possible and the dehumidifying operation range is expanded.
  • FIG. 15 is a block diagram of the structural example 1 which shows the arrangement configuration of each component in the air conditioning apparatus which concerns on the 3rd Embodiment of this invention.
  • FIG. 16 is a block diagram of the structural example 2 which shows the arrangement configuration of each component in the air conditioning apparatus which concerns on 3rd Embodiment.
  • FIG. 17 is a block diagram of the structural example 3 which shows the arrangement configuration of each component in the air conditioning apparatus which concerns on 3rd Embodiment.
  • the air conditioner according to the third embodiment of the present invention is structurally different in that the use side heat transfer medium is water and the heat source side heat transfer medium is air.
  • each component from 1 to 16 is the same as in the first embodiment.
  • the unit 102 including the first to third use side heat exchangers 6 to 8, the compressor 1, and the heat source side heat exchanger 4 is an outdoor (heat source side) unit of the air conditioner according to the third embodiment. It is.
  • the indoor (air-conditioned side) unit in the third embodiment is 103, and the indoor unit 103 is connected to the outdoor unit 102 by liquid pipes 50 to 52, and each of the liquid pipes 50 to 52 is connected to the indoor unit 103 side.
  • first to third secondary use side heat exchangers 40 to 42 for heat exchange with air.
  • the first to third secondary usage side heat exchangers 40 to 42 are arranged in series in order from the upstream side of the usage side air flow 309 exiting from the usage side blower 21.
  • the liquid pipes 50 to 52 are connected to the first to third usage side heat exchangers 6 to 8, respectively.
  • Liquid pumps 30 to 32 are installed in the path of the liquid pipes 50 to 52, and the fluid in the liquid pipes can be circulated.
  • the first to third usage-side heat exchangers 6 to 8 are connected to the secondary usage-side heat exchangers 40 to 42, respectively. Therefore, the operation and operating range of each use-side heat exchanger with respect to the outside air temperature and the room temperature in each mode are the same as those in the second embodiment.
  • the configuration example 2 of the air conditioner according to the third embodiment illustrated in FIG. 16 includes the liquid piping of the first usage-side heat exchanger 6 and the first secondary usage-side heat exchanger 40,
  • the liquid piping of the second usage side heat exchanger 7 and the second secondary usage side heat exchanger 41 is combined into a liquid piping 53, and the first secondary is passed through the liquid pump 34.
  • the liquid pipe returns to the liquid pump 34 through the usage side heat exchanger 43, the second usage side heat exchanger 7, and the second secondary usage side heat exchanger 44.
  • the liquid piping 54 passing through the third usage-side heat exchanger 8, the third secondary usage-side heat exchanger 45, and the liquid pump 33 is the same as the configuration example 1 shown in FIG.
  • configuration example 3 of the air-conditioning apparatus according to the third embodiment illustrated in FIG. 17 includes a secondary usage-side heat exchanger for the first usage-side heat exchanger 6 and the second usage-side heat exchanger 7. 46, the secondary usage side heat exchanger 46, the liquid pipe 55, the liquid pump 37, and the usage side heat exchangers 6 and 7 are connected. With such a configuration, not only the number of pumps that transport the liquid is two, but the number of pipes that connect the indoor unit 103 and the heat source unit 102 can be reduced.
  • FIG. 18 is a block diagram showing an arrangement configuration of each component in the air conditioning apparatus according to the fourth embodiment of the present invention.
  • both the use side heat transfer medium and the heat source side heat transfer medium are air or water.
  • the configurations of the outdoor unit 100 and the indoor unit 101 are the same as the configurations described in the second embodiment, so the description thereof is cited and the description thereof is omitted here.
  • the configuration of the fourth embodiment is such that the refrigerant pipe 11 connected to the heat source side heat exchanger 4 of the outdoor unit 100 and the refrigerant pipe 13 connected to the first flow rate adjustment valve 5 are respectively.
  • Refrigerant pipes 80 and 81 are connected, and these refrigerant pipes 80 and 81 are connected to the hot water supply / heat storage unit 104.
  • the hot water supply / heat storage unit 104 includes a hot water supply means 60 and a heat storage means 61, and the refrigerant pipes 80 and 81 are connected to a heat absorption part 62 provided in the hot water supply means 60.
  • the hot water supply means 60 and the heat storage means 61 are connected to each other by a liquid pipe (not shown).
  • the heat storage means 61 has a tank for storing a liquid refrigerant such as water (not shown), and renewable energy such as solar heat via the liquid refrigerant.
  • the waste heat of the outdoor unit 100 can be stored, and the stored heat can be radiated to the hot water supply means 60.
  • the hot water supply means 60 is a heat pump type hot water heater, and can efficiently supply hot water via the heat absorption part 62 using the outdoor air, the heat storage means 61, and waste heat from the outdoor unit 100.
  • the waste heat thrown away by the outdoor unit 100 can be used effectively, and the power consumption of the system can be reduced.
  • connection to the second embodiment shown in FIG. 12 is shown, but similarly, connection to the heat source unit 102 of the third embodiment shown in FIGS. 15 to 17 is performed. However, the same effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】圧縮式サイクルと自然循環式サイクルを併設し、冷暖房能力を発揮させるとともに、室温以下の外気温度とその室温との差が小さいときでも除湿能力を高めること。 【解決手段】圧縮機1、第1の流路切替弁2、熱源側熱交換器4、第1の流量調整弁5、第2の利用側熱交換器7、第2の流量調整弁9、第3の利用側熱交換器8の順に接続する環状サイクルを形成し、第1の流路切替弁2に加えて、その第1の流路切替弁2と熱源側熱交換器4の間に第2の流路切替弁3を新たに設け、第2の流路切替弁3と第1の流量調整弁5の間に新たに第1の利用側熱交換器6を設ける構成とする。この構成によって、冷/暖房ピーク時には、すべての熱交換器を用いて圧縮式サイクルを形成し、自然循環式サイクルと圧縮式サイクルを併用して外気温度と室温の差が小さいときでも除湿能力を確保する。

Description

空気調和装置
 本発明は、例えば住宅や事務所ビルなどの空調システムと給湯空調システムに係り、自然循環式サイクルと圧縮式サイクルにより、冷房(冷却)、暖房(加熱)、等温除湿(冷却除湿・再加熱)、外気冷房(外気冷却)、自然循環式・圧縮式併用等温除湿(自然循環式・圧縮式併用冷却除湿・再加熱)の運転が可能な空調システム、又は給湯空調システムをも含めた統合システムを効率的に稼働させるシステムに関する。
 圧縮機を使用しない自然循環運転と圧縮機による強制循環運転とを使い分ける空気調和装置の従来技術として、例えば、特許文献1に示すように、膨張弁をバイパスする膨張弁バイパス回路を設け、外気温度と室内温度に基づいて膨張弁バイパス回路に切り換えて自然循環運転を行うことにより、年間消費電力を低減しようとする技術が開示されている。この特許文献1によると、圧縮機と、凝縮器と、膨張弁と、凝縮器よりも下方に配置した
蒸発器と、蒸発器、圧縮機、および凝縮器に接続する回路接続手段と、膨張弁をバイパスする膨張弁バイパス回路とを備え、自然循環式サイクルでの運転の際には膨張弁バイパス回路に接続すると共に回路接続手段で蒸発器と凝縮器を接続して冷媒回路を構成し、圧縮式サイクル運転の際には膨張弁に接続すると共に回路接続手段で蒸発器と圧縮機を接続して冷媒回路を構成する空気調和機が示されている。そして、この特許文献1には、外気温度と室内温度に応じて自然循環式サイクルと圧縮式サイクルを切り替えることが開示され、室内温度が室外温度よりも高い場合に自然循環式サイクル運転をすることで年間消費電力を大幅に削減できる旨が開示されている。
 また、自然循環式サイクルと圧縮式サイクル(強制循環式サイクル)とを併用する空気調和装置の他の従来技術として、例えば、特許文献2には、室外熱交換器より低い位置にある室内熱交換器を、冷媒配管にて室外熱交換器に環状に接続し、冷媒配管の途中に膨張弁を設けて、室外熱交換器を別装置の圧縮冷凍機の蒸発熱交換器と密結合して、冷媒凝縮過程を効率化して冷却除湿能力を高めることが提案されている。
 そして、この特許文献2には、冷媒圧縮強制循環の空気調和装置の室内熱交換器に冷媒自然循環冷却除湿装置の室内熱交換器を併設し、暖房室内熱交換器に冷媒自然循環冷却除湿装置の室内熱交換器を併設して除湿暖房機能を付加する技術も開示されている。さらに、自然循環式サイクルの室外熱交換器(凝縮器)を圧縮式サイクルの蒸発器と密接させ室外熱交換器を効率良く冷却することで、室温と外気の温度差が小さい場合にも、冷却除湿能力を確保する旨が開示されている。さらに、自然循環式サイクルとは別に圧縮式サイクルを併設し、自然循環式サイクルで室内熱交換器を用いて冷却除湿を行うと同時に、圧縮式サイクルで暖房運転し.暖房除湿運転を可能することが提案されている。
特開平11-182895号公報 特開平10-300128号公報
 ところで、近年、一般の住宅では高断熱・高気密化が進み、暖房負荷が減少している。すなわち、小さい能力の空気調和装置で暖房することが可能となり、空調にかかる消費電力を抑えることができるようになった。しかしながら、冷房負荷は増大する傾向にあり、特に、中間期における潜熱負荷を除去するために室内露点以下まで蒸発温度を下げた運転を行いながら、部屋を冷やし過ぎないように再加熱する再熱除湿をする必要があり、消費電力が増大している。
 また一方で、空気調和機による冷暖房並びに除湿運転の外に、多熱源・多温度空調システム、すなわち太陽熱、地熱、バイオマスエネルギー等の再生可能エネルギをも利用して空気調和運転(冷房運転、暖房運転、冷房等温除湿運転、暖房等温除湿運転、外気冷房運転、外気等温除湿運転)を実施して省エネ性を確保することが求められている。
 そこで、夏期と冬期の中間期などのように外気温度が低い時期に効率の良い運転として、上記の特許文献1,2に挙げるような空気調和装置が提案されているが、上記の特許文献1では、外気温に応じて自然循環式サイクルと圧縮式サイクルを切り替えることで省エネ運転が可能であるが、暖房運転や等温除湿運転については記載されておらず、運転汎用性についての配慮がされていない。
 また、特許文献2では、自然循環式サイクルと圧縮式サイクルを併設しており、冷房及び暖房ピーク時には自然循環式サイクルが使用される構成とはなっておらず、熱交換機能が有効に活用され得ない。さらに、引用文献2に示す併用空調機において、外気温が室温以下となり、自然循環式による外気冷房運転を行う場合、外気温度が室内の露点温度以上のときに除湿能力が得られないという課題が生じる。
 本発明は、圧縮式サイクルと自然循環式サイクルとを併設した空気調和装置において、冷暖房のピーク時に圧縮式サイクルを利用して冷暖房能力を発揮させるとともに、外気温度が室内温度以下の場合に、自然循環式サイクルと圧縮式サイクルを併用することで、外気温度と室内温度の差が小さいときでも除湿能力を高め、さらに、再生可能エネルギを活用して空調機能の省エネ性を確保する空気調和装置を提供することにある。
 前記課題を解決するために、本発明は主として次のような構成を採用する。 
 圧縮機と、熱搬送媒体と熱交換させて熱を利用する3つの利用側熱交換器と、前記利用側熱交換器への熱を吸放熱するために熱搬送媒体と熱交換する熱源側熱交換器と、冷媒の流路方向を切り替える2つの流路切替弁と、冷媒の圧力又は流量を調整する2つの流量調整弁と、を備え、前記圧縮機、前記2つの流路切替弁の内の第1の流路切替弁、前記熱源側熱交換器、前記2つの流量調整弁の内の第1の流量調整弁、前記3つの利用側熱交換器の内の第2の利用側熱交換器、第2の流量調整弁、第3の利用側熱交換器、前記圧縮機の順に接続する環状サイクルを形成し、前記第1の流路切替弁は、前記圧縮機から前記熱源側熱交換器への流路と、前記圧縮機から前記第3の利用側熱交換器への流路を切替えるために、前記圧縮機と前記熱源側熱交換器の間と前記圧縮機から前記第3の利用側熱交換器の間に設けられ、
 前記第1の流路切替弁と前記熱源側熱交換器の間と、前記第1の流量調整弁と前記第2の利用側熱交換器の間に、前記2つの流路切替弁の内の第2の流路切替弁を設け、前記第2の流路切替弁と前記第1の流量調整弁の間に前記3つの利用側熱交換器の内の第1の利用側熱交換器を設ける構成とする。
 また、前記空気調和装置において、前記第2の流路切替弁の切り替えによって、前記圧縮機、前記第1の流路切替弁、前記第2の流路切替弁、前記熱源側熱交換器、第1の流量調整弁、前記第1の利用側熱交換器、第2の利用側熱交換器、前記第2の流量調整弁、第3の利用側熱交換器、前記圧縮機から形成される大ループと、前記圧縮機、前記第1の流路切替弁、前記第2の流路切替弁、第2の利用側熱交換器、前記第2の流量調整弁、第3の利用側熱交換器、前記圧縮機からなる第1の小ループ、及び前記第2の流路切替弁、前記熱源側熱交換器、第1の流量調整弁、前記第1の利用側熱交換器、前記第2の流路切替弁からなる第2の小ループから形成される小ループと、を構成する。
 また、前記空気調和装置において、前記第1~第3の利用側熱交換器を用いて冷却除湿と再加熱を行う再熱除湿運転モードの実行の際に、外気温度に基づいて、前記第2の流路切替弁の流路切り替えと、前記第1の流量調整弁及び第2の流量調整弁の開度調整によって、前記大ループを形成する圧縮機による単独運転と、前記第1の小ループを形成する圧縮機による単独運転と前記第2の小ループを形成する自然循環式運転との併用運転と、のいずれかの運転を選択可能とする構成とする。
 また、前記熱源側熱交換器は、前記第1の利用側熱交換器よりも高い位置に配置される構成とする。さらに、前記第1~第3の利用側熱交換器を用いて冷却除湿と再加熱を行う再熱除湿運転モードの実行の際に、外気温度に基づいて、前記第2の流路切替弁の流路切り替えと、前記第1の流量調整弁及び第2の流量調整弁の開度調整によって、前記大ループを形成する圧縮機による単独運転と、前記第1の小ループを形成する圧縮機による単独運転と、のいずれかの運転を選択可能とする構成とする。さらに、前記第1~第3の利用側熱交換器を用いて冷却除湿と再加熱を行う再熱除湿運転モードの実行の際に、外気温度に基づいて、前記第2の流路切替弁の流路切り替えと、前記第1の流量調整弁及び第2の流量調整弁の開度調整によって、前記第1の小ループを形成する圧縮機による単独運転と、前記第2の小ループを形成する自然循環式運転と、のいずれかの運転を選択可能とする構成とする。
 また、前記空気調和装置において、前記熱源側熱交換器に対して、他の熱源システムの吸熱部を並列に接続する構成とする。さらに、前記第1、第2及び第3の利用側熱交換器は、利用側送風機による空気の流れ方向に並行して配置されている構成とする。さらに、前記第1、第2及び第3の利用側熱交換器は、液配管を介してそれぞれ二次の利用側熱交換器と並列に設置され、前記二次の利用側熱交換器は熱搬送媒体と熱交換されて熱利用される構成とする。
 本発明によれば、利用側熱交換器と冷媒流路切替弁の配置構成、及びこれらの動作態様に工夫を凝らすことによって、冷房及び暖房ピーク時には冷房能力及び暖房能力を大いに発揮させることができ、さらに、外気温が室内温度以下の場合であって外気温度と室内温度の差が小さいときにおいても除湿能力を確保することができる。
 また、再生可能エネルギを活用して空調機能の省エネ性を図ることができ、年間を通して消費電力の少ない空調を可能とすることができる。
本発明の第1の実施形態に係る空気調和装置を構成する各構成要素とそれらの接続関係を表す基本構成図である。 本発明の第1の実施形態に係る空気調和装置の運転モード(冷房、暖房)における各構成要素の動作を示す図である。 本発明の第1の実施形態に係る空気調和装置の運転モード(冷房、暖房)における冷媒流れと熱搬送媒体(空気)流れを示す動作図である。 本発明の第1の実施形態に係る空気調和装置の運転モード(冷却除湿・再加熱(冷・暖房大ループ))における各構成要素の動作を示す図である。 本発明の第1の実施形態に係る空気調和装置の運転モード(冷却除湿・再加熱(冷・暖房大ループ))における冷媒流れと空気流れを示す動作図である。 本発明の第1の実施形態に係る空気調和装置の運転モード(冷却除湿・再加熱(冷・暖房小ループ))における各構成要素の動作を示す図である。 本発明の第1の実施形態に係る空気調和装置の運転モード(冷却除湿・再加熱(冷・暖房小ループ))における冷媒流れと空気流れを示す動作図である。 本発明の第1の実施形態に係る空気調和装置の運転モード(外気冷却)における各構成要素の動作を示す図である。 本発明の第1の実施形態に係る空気調和装置の運転モード(外気冷却)における冷媒流れと空気流れを示す動作図である。 本発明の第1の実施形態に係る空気調和装置の運転モード(外気冷却・冷却除湿・再加熱)における各構成要素の動作を示す図である。 本発明の第1の実施形態に係る空気調和装置の運転モード(外気冷却・冷却除湿・再加熱)における冷媒流れと空気流れを示す動作図である。 本発明の第2の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例1のブロック図である。 第2の実施形態に係る空気調和装置における各運転モードでの運転可能領域を表す図である。 第2の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例2のブロック図である。 本発明の第3の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例1のブロック図である。 第3の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例2のブロック図である。 第3の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例3のブロック図である。 本発明の第4の実施形態に係る空気調和装置における各構成要素の配置構成を示すブロック図である。
[本発明の第1の実施形態]
 本発明の第1の実施形態に係る空気調和装置の構成、機能及び動作に関する概要について、図1を用いて説明する。図1において、1は冷媒用の容量可変型圧縮機、2及び3は四方弁等からなり流路方向を切替えるための第1の流路切替弁および第2の流路切替弁、4は利用側への熱を吸放熱するために空気や水と熱交換する熱源側熱交換器、5は圧縮式サイクルでは膨張弁として自然循環式サイクルでは流量調整弁として作用する第1の流量調整弁、6から8は空気や水などの熱搬送媒体と熱交換させて熱を利用するための第1から第3の利用側熱交換器、9は膨張弁などの第2の流量調整弁、をそれぞれ表す。
 また、上記の各構成要素(機器)の内で冷凍サイクルを構成する構成要素については冷媒配管10から16でそれぞれ接続される。すなわち、第1の流路切替弁2は、圧縮機1の吐出配管と吸込配管および冷媒配管10,16の一方と接続され、第2の流路切替弁3は冷媒配管10,11,14,15の一方と接続される。また、冷媒配管11の他方は熱源側熱交換器4と接続され、冷媒配管14の他方は第1の利用側熱交換器6と接続され、冷媒配管15の他方は第2の利用側熱交換器7と接続されている。
 また、冷媒配管12は一方を熱源側熱交換器4、他方を第1の流量調整弁5と接続され、冷媒配管13は一方を第1の流量調整弁5、他方を第1の利用側熱交換器6と接続され、冷媒配管16は、一方を第3の利用側熱交換器8、他方を第1の流路切替弁2と接続されている。
 また、熱源側熱交換器4は、自然循環式サイクルの際、液化した冷媒を第1の利用側熱交換器6へ戻すため、第1の利用側熱交換器6よりも高低差で高い位置に設置されている。
 ここにおいて、従来の汎用的な冷凍サイクルについて、図1を参照して説明すると、この汎用的冷凍サイクルは、圧縮機1と、第1の流路切替弁2と、熱源側熱交換器4と、流量調整弁5と、利用側熱交換器7,8と、流量調整弁9と、から構成されるものであって、除湿サイクルにおいては、第1の流路切替弁2の切り替えと、流量調整弁5と9の全開調整と絞り調整とによって、冷却除湿・再加熱(冷房サイクル利用)、冷却除湿・再加熱(暖房サイクル利用)、自然循環式除湿、の3つの除湿モードを形成するものであった。
 本発明の第1の実施形態の主たる特徴について端的に云えば、図1を参照すると、第2の流路切替部3と第1の利用側熱交換器6とを図示のような位置に新たに設置し、これらを適宜に動作させることによって、以下に詳細に説明するように、冷房及び暖房ピーク時における冷房及び暖房運転を含めて種々の運転モードを形成できるようにし、特に、外気温度と室温温度の差が小さいときにおいても除湿機能を確保できるような構成と機能を備えるものである。すなわち、利用側熱交換器が室内ユニットに配置されている場合、図2に示す運転モード201(圧縮式単独の冷房モード)と運転モード202(圧縮式単独の暖房モード)の外に、図4に示す運転モード203(圧縮式単独の冷却除湿・再加熱モード(冷房大ループ))と運転モード204(圧縮式単独の冷却除湿・再加熱モード(暖房大ループ))、図6に示す運転モード205(圧縮式単独の冷却除湿・再加熱モード(冷・暖房小ループ))、図8に示す運転モード206(自然循環式単独の外気冷却(外気冷房))に加えてさらに、図10に示す運転モード207(自然循環式・圧縮式併用の外気冷却・冷却除湿・再加熱)を形成することができるものである。
 上述した運転モードの種々の形態について具体的に以下説明する。冷凍サイクルの冷媒と熱交換するのが空気である場合に、室内温度、室内湿度、外気温度に応じて、上述した複数の運転モードを適宜に切り替えることができる。
「運転モード201,202(圧縮式単独の冷房、暖房)」で動作する場合(図2と図3)
 図2の運転モード201は、圧縮式単独での運転モードであり、冷媒の循環経路は図3の実線矢印の向きである。このモードでは、まず、第1の流路切替弁2により、圧縮機1の吐出配管と冷媒配管10、圧縮機1の吸込配管と冷媒配管16、がそれぞれ接続され、第2の流路切替弁3により、冷媒配管10と冷媒配管11、冷媒配管14と冷媒配管15がそれぞれ接続される。続いて第1の流量調整弁5は所定の開度に、第2の流量調整弁9は全開に調整される。
 圧縮機1より吐出された高温高圧のガス冷媒は、冷媒配管10,11を経由して熱源側熱交換器4で経路301を通る熱搬送媒体(例えば、空気又は水など)へ放熱することで凝縮し、熱源側熱交換器4出口で液化して、冷媒配管12を経由して所定の開度に調整された第1の流量調整弁5で減圧、膨張し、気液二相状態で第1の利用側熱交換器6へ流入する。
 第1の利用側熱交換器6へ流入した気液二相冷媒は、冷媒配管14,15を経由して、第2と第3の利用側熱交換器7,8を流れる間に、経路300を通る熱搬送媒体から吸熱することで蒸発し、第3の利用側熱交換器8の出口でガス化し、冷媒配管16を経由して圧縮機1の吸込配管より、圧縮機1へ流入、圧縮されてサイクルが成立する。
 このモードでは、経路301を通る熱源側熱搬送媒体は加熱され、経路300を通る利用側熱搬送媒体は冷却される(第1から第3の利用側熱交換器6から8が室内ユニットに配置されているので、冷房モードとなる)。
 次に、図2の運転モード202は、圧縮式単独での運転モードであり、冷媒の循環経路は図3の破線矢印の向きである。運転モード201と経路が逆向きのサイクルであり、第1の流路切替弁2により、圧縮機1の吐出配管と冷媒配管16、圧縮機1の吸込配管と冷媒配管10、にそれぞれ接続すること以外は、運転モード201と同様である。
 圧縮機1より吐出された高温高圧のガス冷媒は、第3の利用側熱交換器8より流入し、第2の利用側熱交換器7、第1の利用側熱交換器6の順に流れる間に経路300を通る熱搬送媒体へ放熱することで凝縮し、第1の利用側熱交換器6の出口で液化して、第1の流量調整弁5で減圧膨張し、気液二相状態となる。熱源側熱交換器4へ流入した気液二相冷媒は、経路301を通る熱搬送媒体より、吸熱することで蒸発し、熱源側熱交換器4の出口でガス化して圧縮機1へ戻り、サイクルが成立する。
 このモードでは、経路301を通る熱源側熱搬送媒体は冷却され、経路300を通る利用側熱搬送媒体は加熱される(第1から第3の利用側熱交換器6から8が室内ユニットに配置されているので、暖房モードとなる)。
「運転モード203,204(圧縮式単独の冷却除湿・再加熱モード(冷房大ループ)、圧縮式単独の冷却除湿・再加熱モード(暖房大ループ)」で動作する場合(図4と図5)
 図4の運転モード203は、圧縮式単独での運転モードであり、冷媒の循環経路は図5の実線矢印の向きである。この運転モード203では、まず、第1の第1の流路切替弁2により、圧縮機1の吐出配管と冷媒配管10、圧縮機1の吸込配管と冷媒配管16が接続され、第2の流路切替弁3により、冷媒配管10と冷媒配管11、冷媒配管14と冷媒配管15がそれぞれ接続される。続いて第1の流量調整弁5は全開に、第2の流量調整弁9は所定の開度に調整される。
 圧縮機1より吐出された高温高圧のガス冷媒は、熱源側熱交換器4で経路301を通る熱搬送媒体へ放熱することで凝縮し、気液二相状態で第1の利用側熱交換器6へ流入する。第1の利用側熱交換器6へ流入した気液二相冷媒は、経路304を通る熱搬送媒体へ放熱することでさらに凝縮する。続いて、第2の利用側熱交換器7へ流入する気液二相冷媒は、経路303を通る熱搬送媒体へ放熱することでさらに凝縮し、第2の利用側熱交換器7の出口で液化する。
 液化した冷媒は、第2の流量調整弁9で減圧、膨張し、気液二相状態にとなる。気液二相冷媒は第3の利用側熱交換器8で、経路302を通る熱搬送媒体から吸熱することで蒸発し、第3の利用側熱交換器8の出口でガス化し、圧縮機1へ流入、圧縮されてサイクルが成立する。
 この運転モード203では、経路301を通る熱源側熱搬送媒体は加熱され、経路302を通る利用側熱搬送媒体は冷却され、経路303,304を通る利用側熱搬送媒体は加熱される(この運転モード203は、圧縮式単独の冷房大ループを用いた冷却除湿・再加熱モードである)。
 次に、図4の運転モード204は、圧縮式単独での運転モードであり、冷媒の循環経路は図5の破線矢印の向きであり、運転モード203と経路が逆向きのサイクルである。第1の流路切替弁2により、圧縮機1の吐出配管と冷媒配管16、圧縮機1の吸込配管と冷媒配管10に接続すること以外は、運転モード203と同様である。
 圧縮機1より吐出された高温高圧のガス冷媒は、第3の利用側熱交換器8で、経路302を通る熱搬送媒体へ放熱することで凝縮し、第3の利用側熱交換器8の出口で液化する。液化した冷媒は、第2の流量調整弁9で減圧、膨張し、気液二相状態になる。気液二相冷媒は、第2の利用側熱交換器7、第1の利用側熱交換器6で、それぞれ経路303,304を通る熱搬送媒体から吸熱することで蒸発し、さらに、熱源側熱交換器4で経路301を通る熱搬送媒体から吸熱することで蒸発し、熱源側熱交換器4の出口でガス化して圧縮機1へ戻り、サイクルが成立する。
 この運転モード204では、経路301を通る熱源側熱搬送媒体は冷却され、経路302を通る利用側熱搬送媒体は加熱され、経路303,304を通る利用側熱搬送媒体は冷却される(この運転モード204は、圧縮式単独の暖房大ループを用いた冷却除湿・再加熱モードである)。
「運転モード205(圧縮式単独の冷却除湿・再加熱モード(冷・暖房小ループ)」で動作する場合(図6と図7)
 図6の運転モード205は、圧縮式単独での運転モードであり、冷媒の循環経路は図7の実線矢印の向きである。このモードでは、まず、第1の流路切替弁2により、圧縮機1の吐出配管と冷媒配管10、圧縮機1の吸込配管と冷媒配管16がそれぞれ接続され、第2の流路切替弁3により、冷媒配管10と冷媒配管15、冷媒配管14と冷媒配管11がそれぞれ接続される。続いて、第2の流量調整弁9は所定の開度に調整される。
 圧縮機1より吐出された高温高圧のガス冷媒は、第2の利用側熱交換器7で経路303を通る熱搬送媒体へ放熱することで凝縮し、第2の利用側熱交換器7の出口で液化する。液化した冷媒は第2の流量調整弁9で減圧膨張し、気液二相状態となる。気液二相冷媒は、第3の利用側熱交換器8で、経路302を通る熱搬送媒体から吸熱することで蒸発する。第3の利用側熱交換器8の出口でガス化し、圧縮機1へ流入、圧縮されてサイクルが成立する。
 この運転モード205では、経路302を通る利用側熱搬送媒体は冷却され、経路303を通る利用側熱搬送媒体は加熱される。
 さらに、この運転モード205では、循環経路が逆の破線矢印の向きでも同様の効果が得られる。ただし、その際、圧縮機1からの冷媒は、経路302を通る熱搬送媒体を加熱しながら第3の利用側熱交換器8で凝縮し、経路303を通る熱搬送媒体を冷却しながら第2の利用側熱交換器7で蒸発する(この運転モード205は、圧縮式単独の冷・暖房小ループを用いた冷却除湿・再加熱モードである)。
「運転モード206(自然循環式単独の外気冷却モード」で動作する場合(図8と図9)
 図8の運転モード206は、自然循環式単独での運転モードであり、冷媒の循環経路は図9の実線矢印の向きである。この運転モード206では、まず、第2の流路切替弁3により、冷媒配管10と冷媒配管15、冷媒配管14と冷媒配管11がそれぞれ接続される。続いて第1の流量調整弁5は所定の開度に調整される。圧縮機1は停止される。
 熱源側熱交換器4に滞留している冷媒は、経路300を通る熱搬送媒体へ放熱し、凝縮、液化する。密度の大きい液冷媒は重力の影響を受け冷媒配管12,13を経由して利用側熱交換器6へ流入する。このとき、第1の流量調整弁5は、利用側熱交換器6で得たい交換熱量に応じて適宜調整される。
 利用側熱交換器6へ流入した冷媒は、経路300を通る熱搬送媒体より吸熱して蒸発し、凝縮側との密度差による圧力勾配により、冷媒配管14,11を上昇して熱源側熱交換器4へ流入することでサイクルが成立する。この運転モード206では、経路300を通る利用側熱搬送媒体が冷却される。
「運転モード207(自然循環式・圧縮式併用の外気冷却・冷却除湿・再加熱モード(外気冷却ループと冷・暖房小ループ)」で動作する場合(図10と図11)
 図10の運転モード207は、自然循環式と圧縮式の併用運転モードであり、冷媒の循環経路は図11の実線矢印の向きである。この運転モード207では、まず、第2の流路切替弁3により、冷媒配管10と冷媒配管15、冷媒配管14と冷媒配管11がそれぞれ接続される。続いて第1の流量調整弁5は所定の開度に調整される。
 圧縮式サイクル側では、圧縮機1より吐出された高温高圧のガス冷媒は、第2の利用側熱交換器7で経路303を通る熱搬送媒体へ放熱することで凝縮し、第2の利用側熱交換器7の出口で液化する。液化した冷媒は、所定開度に調整された第2の流量調整弁9で減圧膨張し、気液二相状態となる。気液二相冷媒は、第3の利用側熱交換器8で、経路302を通る熱搬送媒体から吸熱することで蒸発する。第3の利用側熱交換器8の出口でガス化し、圧縮機1へ流入、圧縮されてサイクルが成立する。
 一方、自然循環式サイクル側では、熱源側熱交換器4に滞留している冷媒は、経路301を通る熱搬送媒体へ放熱して、凝縮し液化する。密度の大きい液冷媒は重力の影響を受けて冷媒配管12,13を経由して利用側熱交換器6へ流入する。このとき、第1の流量調整弁5は、利用側熱交換器6で得たい交換熱量に応じて適宜調整される。
 利用側熱交換器6へ流入した冷媒は、経路304を通る熱搬送媒体より吸熱して蒸発し、凝縮側との密度差による圧力勾配により、冷媒配管14,11を上昇して熱源側熱交換器4へ流入することでサイクルが成立する。
 この運転モード207では、経路302,304を通る利用側熱搬送媒体は冷却され、経路303を通る利用側熱搬送媒体は加熱される。これにより、自然循環式による利用側熱交換器6での外気冷却(冷房)と、圧縮式による利用側熱交換器7及び8における加熱及び冷却での冷却除湿・再加熱と、が形成される。この運転モード207によると、外気温度が室内温度以下の場合に、自然循環式サイクルと圧縮式サイクルを併用することで、外気温度と室内温度の差が小さいときでも圧縮式による冷却除湿(冷却減湿)の作用によって除湿能力を高めることができる。
 さらに、この運転モード207では、冷媒の循環経路が逆の破線矢印の向きでも同様の効果が得られる。ただしその際、圧縮機からの冷媒は、経路302を通る熱搬送媒体を加熱しながら第3の利用側熱交換器8で凝縮し、経路303を通る熱搬送媒体を冷却しながら第2の利用側熱交換器7で蒸発する。すなわち、経路303,304を通る利用側熱搬送媒体は冷却され、経路302を通る利用側熱搬送媒体は加熱される。
 ここで、冷媒配管内の冷媒は、R410a等のフロン系冷媒、CO等の炭化水素系冷媒などの常温で相変化する物質である。また、熱搬送媒体は、空気、水などをはじめ、熱を搬送できるものであれば良く、利用環境に応じて、エチレングリコールなどのブラインを用いても良い。
[本発明の第2の実施形態]
 次に、本発明の第2の実施形態に係る空気調和装置について、図12、図13及び図14を参照しながら以下詳細に説明する。図12は本発明の第2の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例1のブロック図である。図13は第2の実施形態に係る空気調和装置における各運転モードでの運転可能領域を表す図である。図14は第2の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例2のブロック図である。
 図12に示す構成例1において、利用側熱搬送媒体と熱源側熱搬送媒体はともに空気である。符号1から16までの各構成要素は、図1に示す第1の実施形態に係る空気調和装置の構成と同じである。ただし、第1から第3の利用側熱交換器6から8を内部に含むユニット101は本実施形態の空気調和装置の室内(被空調側)ユニットであり、圧縮機1、熱源側熱交換器4を含むユニット100は本実施形態の空気調和装置の室外(熱源側)ユニットである。
 したがって、冷媒配管13から16の一部は室内外ユニット101,100を接続する配管となる。このとき、第2の流路切替弁3は、第1と第2の利用側熱交換器6,7の間の配管による圧力損失を抑えるため室内ユニット側に設置される。また、第1から第3の利用側熱交換器6から8は、利用側送風機21からの利用側空気流れ305上流側から順に直列に配置されている。
 図示した利用側送風機21は熱交換器に空気を押し込む送風機であるが、室内ユニット101の形態にあわせて、熱交換器を介して空気吸い込む送風機でも良い。また、熱源側熱交換器4の熱源側熱搬送媒体は、熱源側送風機20からの熱源側空気流れ310となる。以上のように構成された本発明の第2の実施形態の空気調和装置の運転モードに対する各構成要素の動作については、本発明の第1の実施形態で説明した各運転モードの動作と同じであるため、詳細な説明を省略する。
 第2の実施形態に係る空気調和機は、図13に示すとおり、設置される環境の室外温度および室内温度に対する設定温度に応じて、運転モードを任意に切り換えることができる。
*室外温度Ths-設定温度Tuser≧0かつ室内温度Tapp-設定温度Tuser≧0の場合
 室内ユニット101は冷房運転となり、運転モードは201となる。例えば室外温度Ths=35℃で設定温度Tuser=23℃、室内温度Tapp=27℃の場合である。このとき、第1から第3の利用側熱交換器6から8の冷媒側はすべて蒸発となり、利用側空気流れ305は冷却され、室内ユニット101は冷房運転となる。なお、図13において、hsはheat source、appはapplication、HはHumidityの略語である。
 室内温度と設定温度の差に応じて、圧縮機1の回転数を増減させることで、利用側熱交換器6から8の蒸発温度を調整することで、所定の設定温度を得ることができる。
*室外温度Ths-設定温度Tuser≧0かつ室内温度Tapp-設定温度Tuser≦0の場合
 室内ユニット101は暖房運転となり、運転モードは202となる。例えば室外温度Ths=7℃で設定温度Tuser=23℃、室内温度Tapp=20℃の場合である。このとき、第1から第3の利用側熱交換器6から8の冷媒側はすべて凝縮となり、利用側空気流れ305は加熱される。
 室内温度と設定温度の差に応じて、圧縮機1の回転数を増減させることで、利用側熱交換器6から8の蒸発温度を調整することで、所定の設定温度を得ることができる。
*室外温度Ths-設定温度Tuser≧0かつ室内湿度Happ-設定湿度Huser≧0の場合
 室内ユニット101は再熱除湿(冷却除湿・再加熱)運転となり、運転モードは203または204となる。このモードにおいて、運転モード203は、第1と第2の利用側熱交換器6,7の冷媒側が凝縮、第3の利用側熱交換器8の冷媒側が蒸発であり、運転モード204は、第1と第2の利用側熱交換器6,7の冷媒側が蒸発、第3の利用側熱交換器8の冷媒側が凝縮となる。
 第2の実施形態の場合、第1から第3の利用側熱交換器6から8は順に直列に設置されているため、運転モード204を選択することで再熱除湿(冷却除湿・再加熱)運転が可能となる。すなわち、利用側送風機21より出た空気流れ305は、第1と第2の利用側熱交換器6,7で冷却・減湿され、第3の利用側熱交換器8で再加熱され、設定温湿度に調整される。なお、運転モード203の場合には、図12に示す利用側熱交換器6,7,8の配置構成であると、利用側送風機21の風上側に配置された利用側熱交換器6,7が凝縮であるので除湿ができず、この運転モード203では除湿機能を果たせないので、運転モード204を選択する。
 第1と第2の利用側熱交換器6,7の蒸発温度、第3の利用側熱交換器8の凝縮温度は、圧縮機1および、熱源側熱交換器4の凝縮温度を熱源側送風機20から出る熱源側空気流れ310の風量、あるいは第2の流量調整弁9の開度により任意に調整が可能である。
 具体的には、例えば設定湿度Huser=40%、室内湿度Happ=60℃かつ設定温度Tuser=23℃、室内温度Tapp=25℃で、室内温度Tapp-設定温度Tuser≧0の場合、利用側送風機21の風量を増加させて室外への放熱量を増すことで、第3の利用側熱交換器8の凝縮温度を低めにし、除湿しながら冷房運転を行う。あるいは、設定温度Tuser=23℃、室内温度Tapp=20℃であれば、利用側送風機21の風量を減少させて室外への放熱量を減らすことで、第3の利用側熱交換器8の凝縮温度を高めにし、除湿しながら暖房運転を行う。
 また、室外温度が低く、例えばThs≦0で設定湿度Huser=40%、室内湿度Happ=60℃の場合、運転モードを203または204とすると、運転モード203の場合に、熱源側熱交換器4の凝縮温度が下がりすぎ、第3の利用側熱交換器8で着霜することで熱交換器が目詰まりして、除湿ができなくなる。また、運転モード204では、熱源側熱交換器4の蒸発温度が下がり過ぎ、第1と第2の利用側熱交換器6,7とともに着霜することで熱交換器が目詰まりして、除湿ができなくなってしまう。
 そこで、運転モード205を選択することで、冷媒は室外にある熱源側熱交換器4を通らないので(図6と図7を参照)、室外温度の影響を受けることなく運転が可能となる。この運転モード205では除湿しながら暖房運転を行うことが可能であり、この運転モード205の構成では、第2の利用側熱交換器7が蒸発、第3の利用側熱交換器8が凝縮となるように第1の流路切替弁2を切り換え、圧縮機1の回転数と第2の流量調整弁9の開度により、加熱量と除湿量を調整できる。
 なお、再熱除湿(冷却除湿・再加熱)の運転モード205は、図6と図7に示すように、暖房サイクル(図7の点線矢印)の外に、冷房サイクル(図7の実線矢印)を用いたモードも選択可能であるが、いずれのモードの場合においても、利用側熱交換器7と8の2つの熱交換器を使用して凝縮又は蒸発が互いに逆となるものであり、熱量のバランスから凝縮の熱量が大きくなるので、除湿は行うが室内温度を暖めることになる。
*室外温度Ths-設定温度Tuser≦0かつ室内温度Tapp-設定温度Tuser≧0の場合
 自然循環式サイクルである運転モード206を選択する。例えばThs=15℃で設定温度Tuser=23℃、室内温度Tapp=27℃の場合である(図8と図9を参照)。このとき、第1の利用側熱交換器6のみ蒸発となり、利用側空気流れ305は冷却され、室内ユニット101は冷房運転となる。
 室内温度と設定温度の差に応じて、自然循環式サイクル側の第1の流量調整弁5の開度を調整することで、利用側熱交換器6の蒸発温度を調整し、所定の設定温度を得ることができる。このモードでは、圧縮機1は停止しており、消費電力は内外の送風機動力のみとなる。このため、圧縮式サイクルである運転モード201を選択するよりも消費電力を大幅に低減できる。
*室外温度Ths-設定温度Tuser≦0かつ室内湿度Happ-設定湿度Huser≧0の場合
 自然循環式サイクルと圧縮式サイクルの併用運転である運転モード207を選択する(図10と図11を参照)。このとき、第1と第2の利用側熱交換器6,7の冷媒側が蒸発、第3の利用側熱交換器8の冷媒側が凝縮となる。
 利用側送風機21より出た空気流れ305は、第1と第2の利用側熱交換器6,7で冷
却・減湿され、第3の利用側熱交換器8で再加熱され、設定温湿度に調整される。第1の
利用側熱交換器6の蒸発温度は自然循環式サイクル側の第1の流量調整弁5の開度により
、任意に調整され、第2の利用側熱交換器7の蒸発温度、第3の利用側熱交換器8の凝縮
温度は、圧縮式サイクル側の圧縮機1および、熱源側熱交換器4の凝縮温度を熱源側送風
機20から出る熱源側空気流れ310の風量、あるいは第2の流量調整弁9の開度により
任意に調整が可能である。
 具体的には、例えば室外温度Ths=15℃で設定湿度Huser=40%、室内湿度Happ=60℃かつ、設定温度Tuser=23℃、室内温度Tapp=25℃の場合、自然循環式サイクル側の第1の流量調整弁5の開度を増すことで、第1の利用側熱交換器6の蒸発温度を下げて、空気の露点温度との差を大きくして除湿量を確保しながら、圧縮式サイクル側の圧縮機1の回転数を下げることで第3の利用側熱交換器8の凝縮温度を低めにして、除湿しながら冷房運転を行う。
 あるいは、設定温度Tuser=23℃、室内温度Tapp=20℃で、室内温度Tapp-設定温度Tuser≦0であれば、自然循環式サイクル側の第1の流量調整弁5の開度を減らすことで、第1の利用側熱交換器6の蒸発温度を上げて、空気の顕熱のみ取るようにし、圧縮式サイクル側の圧縮機1の回転数を上げることで、第3の利用側熱交換器8の凝縮温度を高めにして、除湿しながら暖房運転を行う。
 このことで、圧縮式サイクルのみの運転である運転モード203,204を選択するよりも圧縮機1の動力を低減することができ、消費電力を低減できる。
 以上のように、利用側空気流れの温湿度を任意に設定するため、室外温度に応じて、最も運転効率の良い運転モードを選択することで、大幅に消費電力を低減することが可能となる。
 第2の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例1(図12を参照)では運転モード203のように(図4と、図5の実線矢印とを参照)、再熱除湿(冷却除湿・再加熱)運転時に利用側送風機21の風上側に、冷媒側が蒸発である利用側熱交換器がない場合には(図12では風上側の利用側熱交換器6,7は凝縮)、空気を露点温度以下まで下げて減湿後、加熱するという工程ができない。しかしながら、図14に示す第2の実施形態の構成例2の採用することにより運転が可能となる。
 具体的には、第1の利用側熱交換器6は、利用側空気流れ306と熱交換し、第2の利用側熱交換器7は、利用側空気流れ307と熱交換し、第3の利用側熱交換器8は、利用側空気流れ308と熱交換するように、空気の流れに平行に利用側熱交換器を設置する。
 図14に図示した利用側送風機22は熱交換器を介して空気を吸い込む送風機であるが、室内ユニット101の形態にあわせて、熱交換器に空気を押し込む送風機でも良い。このことで、運転モード203が運転可能となる。運転モード203により冷媒側が凝縮である第1と第2の利用側熱交換器6,7により加熱された利用側空気流れ306,307と、冷媒側が蒸発である第3の利用側熱交換器8により冷却・減湿された利用側空気流れ308は、利用側送風機22を通過しながら混合し、所望の温湿度に調整される。
 ここで、運転モード204を選択すると(図4と、図5の点線矢印)、熱源側熱交換器4の冷媒側が蒸発のため、全体の蒸発温度が上がってしまい除湿量が確保できない高い外気温度では除湿ができないが、このような高い外気温度でも運転モード203を選択すれば除湿が可能となり、除湿運転範囲が拡大する。
[本発明の第3の実施形態]
 次に、本発明の第3の実施形態に係る空気調和装置について、図15、図16及び図17を参照しながら以下詳細に説明する。図15は本発明の第3の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例1のブロック図である。図16は第3の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例2のブロック図である。図17は第3の実施形態に係る空気調和装置における各構成要素の配置構成を示す構成例3のブロック図である。
 本発明の第3の実施形態に係る空気調和装置は、第1の実施形態と対比すると、利用側熱搬送媒体が水であって熱源側熱搬送媒体が空気であることについて、構成上差異を有している。図15において、符号1から16までの各構成要素は、第1の実施形態と同じである。ただし、第1から第3の利用側熱交換器6から8、圧縮機1、熱源側熱交換器4を含むユニット102は、第3の実施形態に係る空気調和装置の室外(熱源側)ユニットである。
 第3の実施形態における室内(被空調側)ユニットは103であり、室内ユニット103は液配管50から52により、室外ユニット102と接続されており、液配管50~52のそれぞれの室内ユニット103側には空気と熱交換する第1から第3の二次利用側熱交換器40から42が設置されている。
 また、第1から第3の二次利用側熱交換器40から42は、利用側送風機21から出る利用側空気流れ309の上流側から順に直列に配置されている。熱源側ユニット102側では、液配管50から52がそれぞれ第1から第3の利用側熱交換器6から8と接続されている。液配管50から52の経路には液ポンプ30から32が設置され、液配管内の流体を循環させることができる。
 以上のように構成された本発明の第3の実施形態の空気調和装置の運転モードに対する各構成要素の動作については、第1の実施形態で説明した各運転モードの動作と同じであるため、それを援用し、ここでは詳細な説明を省略する。
 また、第3の実施形態に係る空気調和装置の構成例1では第1から第3の利用側熱交換器6から8それぞれが二次利用側熱交換器40から42と接続されている。したがって、各モードの外気温や室内温度に対する利用側熱交換器各々の作用および運転範囲については、第2の実施形態と同じである。
 第3の実施形態に係る空気調和装置の構成例1のように、常温で相変化する冷媒を用いる熱源サイクルで作った熱を、水などの液冷媒を介して授受することで空調するシステムでは、熱源サイクル側に可燃性の冷媒や毒性のある冷媒を用いることも比較的容易である。また、他の熱システムからの廃熱を空調側に持ち込むことも比較的容易に可能となる。
 次に、図16に示す第3の実施形態に係る空気調和装置の構成例2は、第1の利用側熱交換器6と第1の二次利用側熱交換器40の液配管と、第2の利用側熱交換器7と第2の二次利用側熱交換器41の液配管と、をひとつにして液配管53としたものであり、液ポンプ34を介して、第1の二次利用側熱交換器43、第2の利用側熱交換器7、第2の二次利用側熱交換器44をとおり液ポンプ34へ戻る液配管となる。
 第3の利用側熱交換器8と第3の二次利用側熱交換器45、液ポンプ33を通る液配管54は、図15に示す構成例1と同じである。
 図16に示すような構成にすることで、液を搬送するポンプが2台となり、図15に示す構成例1に比べより消費電力を低減できる。
 次に、図17に示す第3の実施形態に係る空気調和装置の構成例3は、第1の利用側熱交換器6と第2の利用側熱交換器7に対する二次利用側熱交換器46を一つとし、二次利用側熱交換器46と液配管55と液ポンプ37と、利用側熱交換器6,7を接続した構成である。このような構成にすることで、液を搬送するポンプを2台とするだけでなく、室内ユニット103と熱源ユニット102を接続する配管も少なくできる。
[本発明の第4の実施形態]
 次に、本発明の第4の実施形態に係る空気調和装置について、図18を参照しながら以下詳説明する。図18は本発明の第4の実施形態に係る空気調和装置における各構成要素の配置構成を示すブロック図である。本発明の第4の実施形態に係る空気調和装置は、利用側熱搬送媒体、熱源側熱搬送媒体ともに空気あるいは水である。図18において、室外ユニット100と室内ユニット101の構成は、第2の実施形態で説明した構成と同じであるので、それの説明を援用し、ここでは説明を省略する。
 第4の実施形態の構成は、室外ユニット100の熱源側熱交換器4に接続されている冷媒配管11と、第1の流量調整弁5と接続されている冷媒配管13とに対して、それぞれ冷媒配管80と81が接続されており、これらの冷媒配管80,81が給湯・蓄熱ユニット104に接続されている。
 給湯・蓄熱ユニット104は、給湯手段60と蓄熱手段61から構成され、冷媒配管80と81は、給湯手段60に設けられた吸熱部62に接続されている。給湯手段60と蓄熱手段61は互いに図示しない液配管で接続されており、蓄熱手段61は、図示しない水などの液冷媒を蓄えるタンクを有し、液冷媒を介して、太陽熱などの再生可能エネルギや、室外ユニット100の廃熱を蓄えることができ、また、蓄熱した熱を給湯手段60へ放熱することもできる。給湯手段60はヒートポンプ式の給湯器であり、室外空気、蓄熱手段61、室外ユニット100からの廃熱を利用して、吸熱部62を介して効率よく給湯することができる。
 このように、室外ユニット100と給湯・蓄熱ユニット104を接続することで、室外ユニット100で捨てる廃熱を有効に活用することができ、システムとして消費電力を削減できる。ここで、第4の実施形態では、図12に示す第2の実施形態に接続する例を示したが、同様に図15~図17に示す第3の実施形態の熱源ユニット102に接続することでも同様の効果を得ることができる。
 1 圧縮機
 2 第1の流路切替弁
 3 第2の流路切替弁
 4 熱源側熱交換器
 5 第1の流量調整弁
 6~8 第1~第3の利用側熱交換器
 9 第2の流量調整弁
 10~16 冷媒配管
 20 熱源側送風機
 21 利用側送風機
 22 利用側送風機
 30~35 液ポンプ
 40~47 2次利用側熱交換器
 50~56 液配管
 60 給湯手段
 61 蓄熱手段
 62 吸熱部
 100,102 熱源側システム
 101,103 利用側システム
 104 蓄熱・給湯システム
 200~207 運転モード
 300,302,303,304 利用側熱媒体流れ
 301 熱源側熱媒体流れ
 305~309 利用側空気流れ
 310 熱源側空気流れ

Claims (13)

  1.  圧縮機と、熱搬送媒体と熱交換させて熱を利用する3つの利用側熱交換器と、前記利用側熱交換器への熱を吸放熱するために熱搬送媒体と熱交換する熱源側熱交換器と、冷媒の流路方向を切り替える2つの流路切替弁と、冷媒の圧力又は流量を調整する2つの流量調整弁と、を備え、
     前記圧縮機、前記2つの流路切替弁の内の第1の流路切替弁、前記熱源側熱交換器、前記2つの流量調整弁の内の第1の流量調整弁、前記3つの利用側熱交換器の内の第2の利用側熱交換器、第2の流量調整弁、第3の利用側熱交換器、前記圧縮機の順に接続する環状サイクルを形成し、
     前記第1の流路切替弁は、前記圧縮機から前記熱源側熱交換器への流路と、前記圧縮機から前記第3の利用側熱交換器への流路を切替えるために、前記圧縮機と前記熱源側熱交換器の間と前記圧縮機から前記第3の利用側熱交換器の間に設けられ、
     前記第1の流路切替弁と前記熱源側熱交換器の間と、前記第1の流量調整弁と前記第2の利用側熱交換器の間に、前記2つの流路切替弁の内の第2の流路切替弁を設け、
     前記第2の流路切替弁と前記第1の流量調整弁の間に前記3つの利用側熱交換器の内の第1の利用側熱交換器を設ける構成とする
     ことを特徴とする空気調和装置。
  2.  請求項1において、
     前記第2の流路切替弁の切り替えによって、
     前記圧縮機、前記第1の流路切替弁、前記第2の流路切替弁、前記熱源側熱交換器、第1の流量調整弁、前記第1の利用側熱交換器、第2の利用側熱交換器、前記第2の流量調整弁、第3の利用側熱交換器、前記圧縮機から形成される大ループと、
     前記圧縮機、前記第1の流路切替弁、前記第2の流路切替弁、第2の利用側熱交換器、
    前記第2の流量調整弁、第3の利用側熱交換器、前記圧縮機からなる第1の小ループ、及び前記第2の流路切替弁、前記熱源側熱交換器、第1の流量調整弁、前記第1の利用側熱交換器、前記第2の流路切替弁からなる第2の小ループから形成される小ループと、を構成する
     ことを特徴とする空気調和装置。
  3.  請求項2において、
     前記第1~第3の利用側熱交換器を用いて冷却除湿と再加熱を行う再熱除湿運転モードの実行の際に、外気温度に基づいて、前記第2の流路切替弁の流路切り替えと、前記第1の流量調整弁及び第2の流量調整弁の開度調整によって、前記大ループを形成する圧縮機による単独運転と、前記第1の小ループを形成する圧縮機による単独運転と前記第2の小ループを形成する自然循環式運転との併用運転と、のいずれかの運転を選択可能とする
     ことを特徴とする空気調和装置。
  4.  請求項1、2または3において、
     前記熱源側熱交換器は、前記第1の利用側熱交換器よりも高い位置に配置されることを特徴とする空気調和装置。
  5.  請求項3において、
     前記併用運転の場合、前記第1の流量調整弁の開度と前記圧縮機の回転数により、除湿量と加熱量を制御することを特徴とする空気調和装置。
  6.  請求項3において、
     前記併用運転の場合、前記第1の流量調整弁の開度と前記第2の流量調整弁の開度により、除湿量と加熱量を制御することを特徴とする空気調和装置。
  7.  請求項2において、
     前記第1~第3の利用側熱交換器を用いて冷却除湿と再加熱を行う再熱除湿運転モードの実行の際に、外気温度に基づいて、前記第2の流路切替弁の流路切り替えと、前記第1の流量調整弁及び第2の流量調整弁の開度調整によって、前記大ループを形成する圧縮機による単独運転と、前記第1の小ループを形成する圧縮機による単独運転と、のいずれかの運転を選択可能とする
     ことを特徴とする空気調和装置。
  8.  請求項7において、
     前記第1の小ループを形成する圧縮機による単独運転の場合、前記圧縮機の回転数により除湿量と加熱量を制御することを特徴とする空気調和装置。
  9.  請求項7において、
     前記第1の小ループを形成する圧縮機による単独運転の場合、前記第2の流量調整弁の開度により除湿量と加熱量を制御することを特徴とする空気調和装置。
  10.  請求項2において、
     前記第1~第3の利用側熱交換器を用いて冷却除湿と再加熱を行う再熱除湿運転モードの実行の際に、外気温度に基づいて、前記第2の流路切替弁の流路切り替えと、前記第1の流量調整弁及び第2の流量調整弁の開度調整によって、前記第1の小ループを形成する圧縮機による単独運転と、前記第2の小ループを形成する自然循環式運転と、のいずれかの運転を選択可能とする
     ことを特徴とする空気調和装置。
  11.  請求項1または2において、
     前記熱源側熱交換器に対して、他の熱源システムの吸熱部を並列に接続することを特徴とする空気調和装置。
  12.  請求項1または2において、
     前記第1、第2及び第3の利用側熱交換器は、利用側送風機による空気の流れ方向に並行して配置されていることを特徴とする空気調和装置。
  13.  請求項1または2において、
     前記第1、第2及び第3の利用側熱交換器は、液配管を介してそれぞれ二次の利用側熱交換器と並列に設置され、前記二次の利用側熱交換器は熱搬送媒体と熱交換されて熱利用される
     ことを特徴とする空気調和装置。
PCT/JP2010/063639 2009-10-14 2010-08-11 空気調和装置 WO2011045977A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080034785.4A CN102472530B (zh) 2009-10-14 2010-08-11 空调装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009237404A JP5297968B2 (ja) 2009-10-14 2009-10-14 空気調和装置
JP2009-237404 2009-10-14

Publications (1)

Publication Number Publication Date
WO2011045977A1 true WO2011045977A1 (ja) 2011-04-21

Family

ID=43876032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063639 WO2011045977A1 (ja) 2009-10-14 2010-08-11 空気調和装置

Country Status (3)

Country Link
JP (1) JP5297968B2 (ja)
CN (1) CN102472530B (ja)
WO (1) WO2011045977A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068344A (ja) * 2011-09-21 2013-04-18 Daikin Industries Ltd 冷凍装置
WO2013113308A1 (de) * 2012-02-02 2013-08-08 Ixetic Bad Homburg Gmbh Verdichter-wärmetauscher-einheit für ein heiz-kühl-modul für ein kraftfahrzeug
CN106255856A (zh) * 2014-05-30 2016-12-21 大金工业株式会社 制冷剂流路切换机组

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5815284B2 (ja) * 2011-05-20 2015-11-17 株式会社日本自動車部品総合研究所 冷却装置
JP2012245857A (ja) * 2011-05-26 2012-12-13 Nippon Soken Inc 冷却装置、冷却装置の制御方法および制御装置
JP2013023186A (ja) * 2011-07-26 2013-02-04 Toyota Motor Corp 冷却装置
US9643474B2 (en) * 2011-09-28 2017-05-09 Hanon Systems Air conditioner for vehicle
JP5669778B2 (ja) * 2012-03-16 2015-02-18 株式会社日本自動車部品総合研究所 冷却装置およびそれを備える車両
JP2014047951A (ja) * 2012-08-30 2014-03-17 Hibiya Eng Ltd ヒートポンプシステム
WO2014132433A1 (ja) * 2013-03-01 2014-09-04 三菱電機株式会社 空気調和装置
JP2016176653A (ja) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
JP6742200B2 (ja) * 2016-08-31 2020-08-19 日立ジョンソンコントロールズ空調株式会社 空調給湯システム
JP7328498B2 (ja) * 2019-03-19 2023-08-17 ダイキン工業株式会社 情報処理装置、空気調和装置、情報処理方法、空気調和方法、及びプログラム
JP6989788B2 (ja) * 2019-07-09 2022-01-12 ダイキン工業株式会社 冷凍サイクル装置
JP2021105460A (ja) * 2019-12-26 2021-07-26 株式会社竹中工務店 空調システム
CN114234301B (zh) * 2021-12-13 2023-02-21 广东芬尼克兹节能设备有限公司 除湿机防积液控制方法及除湿机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152172U (ja) * 1984-09-07 1986-04-08
JP2000074515A (ja) * 1998-08-31 2000-03-14 Mitsubishi Electric Building Techno Service Co Ltd 空調装置
JP2000111190A (ja) * 1998-10-09 2000-04-18 Mitsubishi Electric Building Techno Service Co Ltd 冷房装置
WO2009087733A1 (ja) * 2008-01-07 2009-07-16 Mitsubishi Electric Corporation 冷凍サイクル装置および四方弁

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937950B1 (en) * 1998-02-23 2004-10-20 Mitsubishi Denki Kabushiki Kaisha Air conditioner
CN201173633Y (zh) * 2008-03-17 2008-12-31 时代嘉华(中国)科技有限公司 一种冷媒自然循环并用型单元式空调机组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152172U (ja) * 1984-09-07 1986-04-08
JP2000074515A (ja) * 1998-08-31 2000-03-14 Mitsubishi Electric Building Techno Service Co Ltd 空調装置
JP2000111190A (ja) * 1998-10-09 2000-04-18 Mitsubishi Electric Building Techno Service Co Ltd 冷房装置
WO2009087733A1 (ja) * 2008-01-07 2009-07-16 Mitsubishi Electric Corporation 冷凍サイクル装置および四方弁

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068344A (ja) * 2011-09-21 2013-04-18 Daikin Industries Ltd 冷凍装置
WO2013113308A1 (de) * 2012-02-02 2013-08-08 Ixetic Bad Homburg Gmbh Verdichter-wärmetauscher-einheit für ein heiz-kühl-modul für ein kraftfahrzeug
CN104094068A (zh) * 2012-02-02 2014-10-08 麦格纳动力系巴德霍姆堡有限责任公司 用于机动车的加热冷却模块的压缩机换热器单元
CN104094068B (zh) * 2012-02-02 2016-10-19 麦格纳动力系巴德霍姆堡有限责任公司 用于机动车的加热冷却模块的压缩机换热器单元
US9551516B2 (en) 2012-02-02 2017-01-24 Magna Powertrain Bad Homburg GmbH Compressor-heat exchanger unit for a heating-cooling module for a motor vehicle
CN106255856A (zh) * 2014-05-30 2016-12-21 大金工业株式会社 制冷剂流路切换机组

Also Published As

Publication number Publication date
JP2011085294A (ja) 2011-04-28
CN102472530B (zh) 2014-07-09
CN102472530A (zh) 2012-05-23
JP5297968B2 (ja) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5297968B2 (ja) 空気調和装置
JP5380226B2 (ja) 空調給湯システム及びヒートポンプユニット
JP5395950B2 (ja) 空気調和装置および空調給湯システム
JP5279919B2 (ja) 空気調和装置
JP5455521B2 (ja) 空調給湯システム
WO2012070192A1 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
WO2012077166A1 (ja) 空気調和装置
WO2011108068A1 (ja) 空調給湯システム
WO2013008278A1 (ja) 空気調和装置
JPWO2012032580A1 (ja) 空気調和装置
JP2011085331A (ja) 空調給湯システム
JP5373959B2 (ja) 空気調和装置
JP5312606B2 (ja) 空気調和装置
JP2004218943A (ja) 冷暖房給湯装置
WO2014141381A1 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
JP5503167B2 (ja) 空気調和システム
JP2006010137A (ja) ヒートポンプシステム
JP5499153B2 (ja) 空気調和装置
JP2006170536A (ja) 蒸気圧縮式ヒートポンプ
JP2004293889A (ja) 氷蓄熱ユニット、氷蓄熱式空調装置及びその運転方法
JP6208506B2 (ja) 空気熱源ヒートポンプ、及び空調方法
KR20120062153A (ko) 냉매시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034785.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823245

Country of ref document: EP

Kind code of ref document: A1