WO2011045891A1 - イオン検出装置 - Google Patents

イオン検出装置 Download PDF

Info

Publication number
WO2011045891A1
WO2011045891A1 PCT/JP2010/005533 JP2010005533W WO2011045891A1 WO 2011045891 A1 WO2011045891 A1 WO 2011045891A1 JP 2010005533 W JP2010005533 W JP 2010005533W WO 2011045891 A1 WO2011045891 A1 WO 2011045891A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
electrode
detection
alcohol
breath
Prior art date
Application number
PCT/JP2010/005533
Other languages
English (en)
French (fr)
Inventor
実 坂入
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2011543926A priority Critical patent/JP5518093B2/ja
Publication of WO2011045891A1 publication Critical patent/WO2011045891A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4972Determining alcohol content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/20Workers
    • A61B2503/22Motor vehicles operators, e.g. drivers, pilots, captains
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6893Cars

Definitions

  • the present invention relates to a detection apparatus based on ion detection under atmospheric pressure.
  • the present invention also relates to a drunk driving prevention device and a drowsy driving prevention device for a moving body such as an automobile based on this respiration detection technology. Further, the present invention relates to a sensor in a plant, a non-contact device interface, a breathing exercise device, and an expiration power generation device.
  • Patent Document 1 introduces a micro droplet generated by an ionization method called an electrospray method into a second chamber in a vacuum, and collides with a gas introduced from above in the chamber. This is a method of promoting desolvation and mass-analyzing desolvated ions.
  • Patent Document 2 detects a current of ions generated under atmospheric pressure flowing into a skimmer cone under vacuum and / or a lens electrode of a subsequent ion focusing lens system, and the ion current is kept constant. Thus, the applied voltage of the electrode is controlled.
  • Patent Document 3 performs cleaning of the optical system by largely deflecting ions generated in a vacuum and causing them to collide with an electrode.
  • Patent Document 4 is a method for aerodynamically focusing ions introduced into a vacuum.
  • Patent Document 5 relates to an ion trap mass spectrometer for efficiently trapping ions in a vacuum.
  • Patent Document 6 is a method for improving the SN ratio of a detection signal in a tandem mass spectrometer using an atmospheric pressure ionization method. In any of the above cases, it is a major premise that ions are introduced and detected in a vacuum.
  • a mass spectrometer operating under high vacuum is used to analyze the generated ions. If a mass spectrometer is used, the mass number of ions can be measured and high-precision analysis becomes possible. However, in order to accurately separate ions by mass number in a magnetic field or electric field like a mass spectrometer, the target ions collide with neutral molecules and the ion trajectory changes, or the target is changed by collision. It is necessary to avoid as much as possible that the ions to be decomposed, and it is necessary to greatly reduce the number of neutral molecules present in the mass spectrometer with a high vacuum of 10 ⁇ 2 Pa or less.
  • a high voltage is applied and an electron amplification function is used, such as a secondary electron multiplier.
  • an electron amplification function is used, such as a secondary electron multiplier.
  • the part that detects ions is operated under atmospheric pressure, and the action of air resistance, buoyancy, and gravity, which are characteristic when operating the ions under the atmospheric pressure, as well as the force acting on the ions, By using it, it becomes possible to provide an analysis method for separating ions by a method different from the conventional method. Since the analysis method is operated under atmospheric pressure, a large vacuum pumping system such as a turbo molecular pump is not required, and the apparatus can be greatly reduced in size and the problems can be solved. Also, in order to provide an analysis method that effectively uses the force due to the electric field and the action due to gravity on the ions, the force of the electric field acts in a direction different from that of gravity to separate the ions (for example, It is effective that the directions are different by 90 degrees. Furthermore, when detecting ions by operating under atmospheric pressure, it is easy to improve the detection sensitivity by arranging a plurality of detection units having the same structure. Note that a minute ammeter that operates at atmospheric pressure may be used for ion detection.
  • the sample in conventional mass spectrometers, the sample must be introduced after reaching a certain level of vacuum, but in a device that operates under atmospheric pressure, the sample is introduced as soon as the power is turned on and measurement starts. Can do.
  • the outside air can be detected by a simple method, it is possible to detect expiration in a place where there is a spatial restriction. For example, it is possible to prevent drunk driving based on a breath alcohol test in a car, and to prevent drowsy driving by non-contact measurement of breath.
  • an interface for realizing device operation without contact can be provided. Furthermore, it can also be applied to sensors in plants, non-contact device interfaces, respiratory training devices, and exhalation power generation devices.
  • Configuration diagram of the apparatus of the present invention Calculated values of the velocity in the direction of gravity and the velocity in the direction of electric field perpendicular to gravity due to the radius of the charged water cluster in the apparatus of the present invention.
  • Time to reach the detection electrode due to the radius of the charged water cluster in the apparatus of the present invention Voltage dependence of respiration detection in the device of the present invention
  • Distance dependence of respiration detection in the device of the present invention Effect of exhaust by pump in the apparatus of the present invention
  • An exhalation sensor using a two-layer detection electrode system in the apparatus of the present invention Configuration diagram of a two-layer detection electrode system in the apparatus of the present invention Configuration diagram of two-layer detection electrode system from another angle in the apparatus of the present invention Configuration diagram of electrode and power supply of two-layer type detection electrode system in the apparatus of the present invention
  • Method for detecting respiration by mouth in the apparatus of the present invention Example of detection of breathing by mouth in the apparatus of the present invention
  • exhaled air contains water at a saturated vapor pressure level at about 37 ° C.
  • the water in exhaled air is substantially discharged into the body as a water cluster.
  • a water cluster having a positive charge and a water cluster having a negative charge are present in the water cluster, they can be separated by an electric field.
  • This measuring means is shown in Fig. 1 (a).
  • a potential difference is provided between the voltage application electrode 1a and the detection electrode 2a by the high voltage power source 3a.
  • the high voltage power source 3a When exhaled air containing a water cluster is introduced between the voltage application electrode 1a and the detection electrode 2a from the direction perpendicular to the paper surface of FIG. 1A toward the paper surface, As shown in FIG. 1B, air resistance, buoyancy, gravity, and force due to an electric field work. Due to the relationship between these forces, when a positive voltage is applied to the voltage application electrode 1a, only the water cluster having a positive charge is deflected and collides with the detection electrode 2a to detect a positive current.
  • the current detected by the detection electrode 2a is amplified by the microammeter 4a, converted to a voltage, and transferred to the data processing unit 7a.
  • This data is stored in the internal memory 10a or the external memory 11a via the interface 9a in the data processing unit 7a.
  • the stored data can be output from the speaker 12a or the result can be displayed on the display 13a based on a certain algorithm under the control of the CPU 8a in the data processing unit 7a.
  • the data processing unit can also control the setting of the applied voltage such as the potential difference setting.
  • Air resistance size 6 ⁇ rv g
  • ⁇ f is the density of water.
  • the detection electrode 2a When the distance between the voltage application electrode 1a and the detection electrode 2a is 10 mm, the detection electrode 2a is 40 mm long, and the width is 15 mm, the water cluster having a charge of radius r ( ⁇ m) having a charge of 1.6021 ⁇ 10 ⁇ 19 C
  • r is when the position from the detection electrode is 1 mm It can be seen from FIG. 3 that when the thickness is about 0.5 ⁇ m or less and 3 mm, it is about 0.15 ⁇ m or less and when 5 mm, it is about 0.1 ⁇ m or less.
  • FIG. 4 shows the change in voltage detected by exhalation (introducing exhalation at a wind speed of about 1 to 30 m / sec for several seconds) due to the applied voltage when the distance between the voltage application electrode 1a and the detection electrode 2a is 10 mm. Indicated.
  • the current detected by the water cluster having the charge in the exhalation is finally converted into a voltage.
  • the higher the applied voltage the more clusters with detected charges, that is, the amount of current increases, but the upper limit is determined by the problem of discharge between electrodes.
  • data applied up to 1200 V is shown, but a sufficient amount of current can be obtained with a voltage of 1000 V, that is, an electric field strength of about 100,000 V / m.
  • FIG. 5 shows a change in voltage detected by expiration (introducing exhalation at a wind speed of about 1 to 30 m / sec for several seconds) depending on the distance from the end of the voltage application electrode 1a and the detection electrode 2a to the mouth.
  • the current detected by the water cluster having the charge in the exhalation is finally converted into a voltage.
  • FIG. 6 shows the exhaust dependency of the voltage detected in the exhalation peak due to exhalation (introducing exhalation at a wind speed of about 1 to 30 m / sec for several seconds) in the region between the application electrode 1a and the detection electrode 2a.
  • the current detected by the water cluster having the charge in the exhalation is finally converted into a voltage. Exhausting this region is important from the viewpoint of reducing tailing of the exhalation peak, i.e., having a respiration resolution.
  • a diaphragm pump having an exhaust speed of 0.1 to 10 L / min is used.
  • the pressure in this area becomes atmospheric pressure even if suction is performed with a pump having an exhaust speed of the above level. Yes.
  • the basic invention is as shown in FIG. 1, but it is effective to use the surfaces on both sides of the detection electrode to detect a water cluster having a charge from the viewpoint of increasing the amount of signal to be detected. Examples thereof are shown in FIG. 7, FIG. 8, FIG. 9, and FIG. FIG. 9 is a view of FIG. 8 as seen from a different direction (a cross-sectional view at the pump exhaust port 13b).
  • FIG. 7 In the breath sensor 14 shown in FIG. 7, voltage application electrodes 1b and 1c and a detection electrode 2b are arranged, and a mesh plate 15a is provided on the side where the breath is introduced to prevent an electric shock. .
  • it is effective to provide an exhalation introduction start lamp 16 and an exhalation introduction stop lamp 17.
  • expiration time is several seconds.
  • a buzzer may be used to notify the timing of introducing exhalation and the timing of stopping exhalation.
  • FIG. 8 shows the arrangement of the electrodes in the case of detecting water clusters having a charge in exhaled breath from both sides of the detection electrodes.
  • the voltage application electrodes 1b and 1c are arranged in the breath sensor case 19a via the electrode supports 18a, 18b, 18c, 18d, 18e and 18f so as to face the surfaces on both sides of the detection electrode 2b.
  • Pump exhaust ports 20a and 20b for exhaust are provided.
  • voltages having the same polarity are applied to the voltage application electrodes 1b and 1c. This is because, if voltages having different polarities are applied, currents are canceled out by clusters having positive charges and clusters having negative charges.
  • FIG. 10 shows the arrangement of the electrodes in the case of detecting water clusters having a charge in exhaled breath from both sides of the detection electrodes.
  • the voltage application electrodes 1b and 1c are arranged in the breath sensor case 19a via the electrode supports 18a, 18b, 18c, 18d, 18e and 18f so as
  • the current detected by the detection electrode 2b is sent to a microammeter via a detection electrode cable 22a supported by a cable support 21a and converted into a voltage.
  • the current detected by the detection electrode 2b is amplified by the microammeter 4b, converted to a voltage, and transferred to the data processing unit 7b.
  • This data is stored in the internal memory 10b or the external memory 11b via the interface 9b in the data processing unit 7b.
  • the stored data can be emitted from the speaker 12b or the result can be displayed on the display 13b based on a certain algorithm under the control of the CPU 8a in the data processing unit 7a.
  • FIG. 11 shows a state in which exhalation is blown into the exhalation sensor 14 in a non-contact manner.
  • the expiration sensor cable 23 includes a voltage application electrode cable, an exhaust pump tube, and the like.
  • FIG. 12 shows a series of exhalation peaks obtained by introducing exhalation from the mouth (introducing exhalation at a wind speed of about 1 to 30 m / sec for several seconds) into the exhalation sensor 14 at intervals of about 20 seconds.
  • the obtained peak is called an expiration peak. Since the intensity of exhalation cannot be controlled completely, it can be seen that although the intensity change is observed, the exhalation peak is stably observed by the exhalation sensor of the present invention.
  • the expiration sensor 14 can be brought close to the nose and the expiration from the nose can be observed. In this case, normal respiration is continuously measured, but one of the exhalation peaks corresponds to one respiration, and a series of respirations are stably observed.
  • FIGS. 14, 15, and 16 are further developed, a multilayer breath sensor as shown in FIGS. 14, 15, and 16 is possible.
  • FIG. 14 it is an example at the time of using 3 sets of 2 layer type breath sensors of FIG.
  • FIG. 15 is a view of FIG. 14 as seen from a different direction (a cross-sectional view of the multilayer pump exhaust port 28b).
  • the multilayer type voltage application electrodes 25a, 25b, 25c, and 25d are arranged to face the multilayer type detection electrodes 24a, 24b, and 24c in the multilayer type breath sensor case 27, and these electrodes are used for the multilayer type. It is supported by electrode supports 26a and 26b. These spaces are exhausted by the multilayer pump exhaust ports 28a and 28b.
  • FIG. 16 shows how voltage is applied to the multilayer detection electrodes 24a, 24b, 24c and the multilayer voltage application electrodes 25a, 25b, 25c, 25d. That is, voltages having the same polarity are applied to the multilayer voltage application electrodes 25a, 25b, 25c, and 25d.
  • This multi-layered structure basically has no problem with any number of layers, and when expiratory air needs to be observed from a distant position, it becomes possible to measure diffused expiratory air over a large area, which is advantageous.
  • the voltage applied to the multilayer voltage application electrode can be lower than that in the two-layer structure. There is.
  • the currents detected by the multilayer detection electrodes 24a, 24b, and 24c are amplified by the microammeter 4c, converted into a voltage, and transferred to the data processing unit 7c.
  • This data is stored in the internal memory 10c or the external memory 11c via the interface 9c in the data processing unit 7c.
  • the stored data can be emitted from the speaker 12c or the result can be displayed on the display 13c based on a certain algorithm under the control of the CPU 8c in the data processing unit 7c.
  • the present invention When the present invention is used, it can be used for the breath alcohol sensors 29a, 29b, and 29c in a moving body such as an automobile.
  • a moving body such as an automobile.
  • FIG. 7 structure in which an alcohol sensor unit is arranged behind the breath sensor unit
  • FIG. 18 alcohol in parallel with the breath sensor unit
  • FIG. 19 the structure in which the alcohol sensor unit is disposed in front of the breath sensor unit
  • FIG. 17 showing a structure in which an alcohol sensor unit is arranged behind the breath sensor unit will be described.
  • the breath sensor case 19b of the breath alcohol sensor 29a is provided with a detection electrode 2c and voltage application electrodes 1d and 1e, and both electrodes have a voltage of several hundred volts (the distance between the detection electrode 2c and the voltage application electrodes 1d and 1e is 10 mm). (Approx. 10 to 1500 volts).
  • an alcohol sensor head 32a such as a semiconductor sensor is provided in the alcohol sensor case 30a disposed behind the breath sensor case 19b.
  • the breath alcohol sensor With such a configuration of the breath alcohol sensor, it is easy to integrate the breath sensor unit and the alcohol sensor unit, and when the breath alcohol sensor is viewed from the side where the breath is introduced, only the breath sensor unit becomes compact. There is an advantage that can be made. Further, as shown in FIG. 20 (in the case of the two-layer structure type) and FIG. 21 (in the case of the multilayer structure type), there is an advantage that the alcohol detection sensitivity can be improved by arranging a plurality of alcohol sensor heads. .
  • FIG. 18 showing a structure in which an alcohol sensor unit is arranged in parallel with the breath sensor unit will be described.
  • the breath alcohol sensor 29b is provided with a detection electrode 2d and voltage application electrodes 1f and 1g. Both electrodes have a voltage of several hundred volts (when the distance between the detection electrode 2d, the voltage application electrodes 1f and 1g is 10 mm, 10 to 1500 Voltage).
  • the alcohol sensor section is provided with an alcohol sensor head 32b such as a semiconductor sensor immediately after the breath alcohol inlet 33 on the front panel of the breath sensor case 29b. As shown in FIG. 18, the breath alcohol inlet 33 may be on the side of the mesh plate 15c, or on the top or bottom.
  • the alcohol sensor head 30a it is also possible to use another type of sensor such as a fuel cell type instead of a semiconductor sensor.
  • a fuel cell type instead of a semiconductor sensor.
  • Such a configuration of the breath alcohol sensor has an advantage that the alcohol peak becomes sharper as compared with a method in which alcohol is detected after being diffused inside the breath sensor.
  • FIG. 19 showing a structure in which the alcohol sensor unit is arranged in front of the breath sensor unit will be described.
  • the breath alcohol sensor 29c is provided with a detection electrode 2e and voltage application electrodes 1h and 1i. Both electrodes have a voltage of several hundred volts (when the distance between the detection electrode 2d, the voltage application electrodes 1f and 1g is 10 mm, 10 to 1500 Voltage).
  • the alcohol sensor unit is provided with an alcohol sensor head 32b such as a semiconductor sensor on the front surface of the breath sensor.
  • the alcohol sensor head 30a it is also possible to use another type of sensor such as a fuel cell type instead of a semiconductor sensor.
  • Such a configuration of the breath alcohol sensor has the advantage that the alcohol detection sensitivity is improved in addition to the sharpness of the alcohol peak compared to the method in which alcohol is detected after being diffused inside the breath sensor. is there.
  • FIG. 22 shows a case where the breath alcohol sensor 29e is housed in the breath alcohol sensor cases 34a and 34b.
  • the breath alcohol sensor cases 34a and 34b are installed on the column cover 36 through the pedestal 35 as shown in FIG. In the pedestal 35, it is important that the angle of the breath alcohol sensor cases 34a and 34b with respect to the driver is variable.
  • An example of the place where the breath alcohol sensor cases 34a and 34b are installed is on the column cover 36 behind the steering wheel 37, as shown in FIGS.
  • the breath alcohol sensor cases 34a and 34b can be removed from the column cover to introduce breath.
  • the column cover 36 With the breath alcohol sensor cases 34a and 34b installed.
  • the exhalation of the driver reaches the exhalation alcohol sensor 29e in the exhalation alcohol sensor cases 34a, 34b from the gap in the upper half of the steering wheel 37. Will do.
  • the distance between the expiration alcohol sensor 29e and the mouth in the expiration alcohol sensor cases 34a and 34b is made constant every time as shown in FIG. 25 (b).
  • the forehead is placed on the steering wheel 37 and the exhalation alcohol sensor 29e in the exhalation alcohol sensor cases 34a and 34b is discharged.
  • the distance between the mouth and the breath alcohol sensor 29e at this time is within 20 cm where the breath peak intensity greatly changes (a person who is not drinking exhales from a remote position instead) It is important in the sense to prevent. This is because, from a remote location, the exhalation peak intensity is weak no matter how strong exhalation is exhaled.
  • FIG. 26 shows an example of an exhalation peak and an alcohol peak linked to the breath peak caused by a person who drinks, using the configuration shown in FIG. At this time, the alcohol peak is displayed with positive and negative signs reversed. In this way, display control can be performed so that either the positive or negative can be reversed and displayed on the screen display unit provided in the data processing device or the like so that the alcohol peak and the breath peak can be easily compared.
  • the peak top of the breath peak and the peak top of the alcohol peak are slightly shifted from each other. However, this is a problem of the time difference between detection of the breath peak and the alcohol peak. Conversely, this time difference is taken into consideration. What is necessary is just to judge whether both timings correspond above.
  • the time difference between the peak top of the breath peak and the peak top of the alcohol peak is about 0.1 to 5 seconds. The rise time of the breath peak and the alcohol peak are almost the same, and this information can also be used.
  • this detection time difference threshold By storing this detection time difference threshold in advance in a control unit such as a data processing device, when there is a peak within the detection time difference, it is determined that the person is exhaling, and the peak is outside the threshold. In this case, since there is a possibility of outside air other than the person such as impersonation, in this case, detection may be performed again or a warning or the like may be displayed. Needless to say, the threshold value is not limited to the above-described range of about 0.1 to 5 seconds, and can be set arbitrarily.
  • FIG. 27 shows the characteristics when the present invention is used for the breath alcohol sensor.
  • the observed exhalation peak is strong (high voltage), but for several hours after drinking
  • the intensity of the exhalation peak is weak.
  • Exhalation peak intensity at the stage of not drinking varies depending on the person, but if each person measures the peak breath intensity at the stage of not drinking, is it possible to drink just by measuring the peak breath intensity? You can get a rough idea.
  • the breath peak is affected by alcohol for a long time, which is convenient for viewing the history of drinking.
  • FIG. 28 shows an algorithm for drinking check when the engine is started when the present invention is used.
  • the driver After starting the engine, the driver immediately exhales for several seconds toward the breath alcohol sensor 29e.
  • the breath alcohol sensor 29e is brought close to the driver's mouth so that a third person cannot interrupt between the driver and the steering wheel 37, and a strong breath peak is detected.
  • it is also effective to provide a finger vein authentication device in or near the steering wheel 37 and incorporate a logic for determining whether or not the driver is holding the steering wheel 37.
  • the effectiveness of this device is that it can perform an alcohol check even in a running state.
  • the algorithm at this time is shown in FIG. While driving, the alcohol sensor is operated, and it is checked whether alcohol is detected constantly or at regular intervals. If alcohol is not detected, the vehicle continues to travel. If alcohol is detected even a little, the driver strongly exhales toward the breath alcohol sensor 29e.
  • a threshold is provided for the intensity of the expiration peak, and when the timing of the expiration peak and the alcohol peak coincide (for example, the time difference between the peak top of the expiration peak and the peak top of the alcohol peak is 5 Within a second, etc.), alert the driver to the surrounding car by flashing the hazard lamp, etc., and guide the driver to stop in a safe place. After that, the inspection mode is entered and the final confirmation of drunk driving is performed.
  • the present invention can perform the alcohol check during traveling with a simple operation.
  • FIG. 30 shows the algorithm of the inspection mode when the vehicle is stopped.
  • a forehead is attached to the steering wheel 37, the distance between the driver's mouth and the breath alcohol sensor 29e is fixed, and the breath is exhaled several times. If the relationship between the breath peak area and the alcohol peak area of a known concentration is stored in a database in advance, the alcohol concentration in the breath can be estimated from the obtained breath peak and alcohol peak detection results. If this result is recorded in the storage means, it becomes one of the evidence of drunk driving.
  • the alcohol check as described above can be applied not only to the driver of a car but also to an operator of a moving object such as a train driver or an airplane pilot. It is also effective to apply to plant operators.
  • the breath alcohol sensor 29e can be attached to the dashboard beside the steering wheel 37.
  • the breath alcohol sensor 29e By disposing the breath alcohol sensor 29e in such a position, it is possible to greatly reduce impersonation by a passenger (a passenger who does not drink alcohol undergoes an alcohol test on behalf of the driver). This is particularly effective on the window side dashboard.
  • the breath alcohol sensor 29e can be provided on the steering wheel 37 (in or around).
  • the time series data from the breath sensor unit and the alcohol sensor unit can be stored in the internal memory or the external memory of the data processing unit. By doing so, it becomes possible to analyze in detail the time when exhaled alcohol was detected and the amount of exhaled alcohol from the data log. It is also effective to collect the time series data in the internal memory and external memory of the data processing unit in the information center through a communication module from the viewpoint of the time when exhaled alcohol was detected and the amount of exhaled alcohol. It is.
  • the detection electrodes 2f and 2g divided into two at the center are longer than the voltage application electrodes 1i and 1j. It has become.
  • An example of impersonation is when a passenger sitting next to exhales exhaled toward the sensor from the next, but in the case of the structure shown in FIG.
  • a wind speed sensor 39a may be provided in a part of the exhalation sensor 29g so that only the exhalation peak that falls within a certain range of wind speed is used. it can.
  • FIG. 33 shows a case where the anemometer inlet 38 is provided on the front panel of the breath sensor 29g
  • FIG. 34 shows a case where it is installed behind the breath sensor 29h.
  • the former has the merit that the direct wind speed of exhalation can be measured, while the latter has the merit that the entire sensor becomes compact.
  • FIG. 35 shows an algorithm when the wind speed is within a certain range.
  • FIG. 36 shows an example of the dozing prevention sensor 40a.
  • FIG. 37 shows the principle of dozing detection
  • FIG. 38 shows changes in the detection of exhalation peak associated with the absence or inclination of the head using the present invention. If you do normal breathing and want to stretch, you will begin to change in the exhalation peak before dilatation (the exhalation peak tends to be small), and the exhalation peak will be completely missing during the period . As shown in FIG. 37, when the head begins to tilt due to sleepiness, the expiration peak decreases, and when the head tilts greatly, the expiration peak is lost.
  • control unit may detect the calculation of the expiration peak based on the signal obtained by the dozing prevention sensor 40a or detect the fluctuation of the expiration peak over time, or a separate calculation unit may be provided.
  • An arithmetic unit connected externally may be used.
  • FIG. 40 shows an example of an algorithm for a dozing prevention operation.
  • the sleep-prevention driving prevention mode is set to ON.
  • the zero crossing time is always monitored, and if it is longer than the first threshold, the first stage warning (warning lamp blinking, warning sound) is given, and if it is longer than the second threshold, the second stage is Warning (vibration for warning, fragrance for warning) should be given. If the number of warnings exceeds a certain number, a message such as “Please take a break immediately in a safe place” will be issued to encourage the driver to take a break.
  • Brain activity under consciousness that makes use of the characteristics of the present invention includes breathing in the mouth, which is medically recognized as a breathing exercise. This is a method of lightly closing the mouth, breathing in from the nose, and exhaling in a state where the mouth is deflated. After turning on the dozing prevention driving mode, the driver starts to breathe and breathe. When the exhalation peak due to mouth breathing falls below the threshold, a warning is issued as shown in FIG. This utilizes the fact that conscious brain activity decreases due to sleepiness, and can detect sleepiness earlier in time than when detecting normal breathing due to unconscious brain activity, It is desirable from the viewpoint of preventing accidents caused by drowsy driving.
  • the dozing prevention sensor 40a according to the present invention needs to be interlocked with the steering wheel drive information. Considering that there are many cases of straight and monotonous driving such as a highway that are not drunk and easily disturbed by sleepiness, the present invention is also effective in preventing a drowsy driving.
  • FIG. 36 shows an example in which scent capsules 41a, 42b, and 43c for warning are provided on the dozing prevention sensor 40a.
  • the present invention can be used in a safe transportation system as shown in FIG.
  • the police vehicle Inspection and alerting to other vehicles can be performed.
  • FIG. 42 when a vehicle equipped with a breath alcohol sensor detects alcohol while running, it may alert other vehicles by blinking a hazard lamp or making a warning sound.
  • it is effective to control the vehicle itself so that the distance between the preceding vehicle and the following vehicle is not less than a certain distance by the millimeter wave radar.
  • the present invention can be used to monitor a biological rhythm of a crew member in a moving body such as a railway vehicle.
  • the railway system collects field level information in the center and performs safe operation management.
  • the biological rhythm visualization sensor 43 is provided in the railway driver as shown in FIG. 44, whereby the biological rhythm of the driver can be acquired as shown in FIG. Obstructive breathing due to apnea syndrome can be clearly observed, which is effective for operation management.
  • the present invention can be used as a sensor in a plant as shown in FIG.
  • a sensor in a plant as shown in FIG.
  • water is delivered to the user through a very long pipe 45, but if a water leak due to a crack in the pipe on the way can be detected at an early stage, the plant is safe. You can drive.
  • the plant sensor 44a as in the present invention is continuously provided in the pipe 45, when water leaks due to the crack 46 at a certain location as shown in FIG. This change occurs, and this change can be detected with high sensitivity by the plant sensor 44b.
  • the present invention can also be used for a device interface 47a for operating a device without contact as shown in FIG. That is, when the expiration sensor detects expiration and the data processing unit 7j drives the interface 48 with an external device such as a relay depending on the presence or absence of the expiration, the external device can be operated.
  • FIG. 49A shows an example in which one expiration is detected. At this time, if a threshold value is set for the obtained signal value, and a signal value equal to or greater than this threshold value is detected, the device is set to be turned on so that the device is contactless. It can be used as an interface for operating.
  • the expiratory peak according to the present invention has good responsiveness because the signal intensity attenuates in about several seconds.
  • FIG. 49 As an interface command for equipment, an example shown in FIG. 49 can be considered.
  • FIG. 49 (a) shows the case of one expiration
  • FIG. 49 (b) shows the case of two expirations
  • FIG. 49 (c) shows the case of three expirations. Is the case.
  • FIG. 49 (d) it is possible to correspond to different commands in the time when exhalation is exhaled plural times and the threshold value is exceeded.
  • FIG. 49 (e) it is possible to correspond to different commands by using a combination of expirations of different strengths (in this case, a combination of strong expiration and weak expiration).
  • the device interface 47a using the present invention as shown in FIG. 48 is used, (1) on a mobile body such as an automobile, when making a call using a mobile phone, on / off of the call, up / down of the volume, etc. (2) In a medical institution such as a hospital, if you want to operate the device in a non-contact manner from a hygiene point of view, (3) A handicapped person or an elderly person operates the device at home In some cases (TV switch, light switch, etc.) For the elderly, it is also good for the health to perform device operations on a daily basis using such a breathing-based device interface because the breathing is repeated at a certain level or higher.
  • the device interface 47a if a history of operations performed by the device interface 47a is recorded, it is possible to provide a monitoring service for the elderly living alone. In other words, when the operation by the device interface is not performed for a certain period of time, it is a service such as contacting a close relative.
  • FIG. 50A shows an example of the operation of the personal computer (especially turning on / off the power, adding another operation when the keyboard is hit with both hands), and FIG. Example of operation when hand is occupied (phone correspondence, operation of other household appliances, etc.), FIG. 50 (c) shows operation assistance for the handicapped (bed operation, digital device operation) Is an example of
  • the responsiveness when air of the same humidity is introduced it is detected as a mouth by detecting the difference in peak intensity during continuous breathing and analyzing the fluctuation of the peak difference with the calculation unit or control unit In addition to the variation in distance to the vessel, it represents the quality of breathing (difference in exhalation humidity due to abdominal or chest breathing).
  • the peak difference it becomes possible to grasp the user's condition, display the current breathing status on a monitor, etc. using a separate external connection device, etc., and further store the ideal breathing state in advance If read from and displayed, it can be used for a breathing exercise method or a breathing game for scoring breathing quality.
  • an opening may be provided in the installation unit for installing the finger so that moisture from the surface of the living body can be detected, but at the upper part of the breath sensor unit shown in FIG. What is necessary is just to set it as the structure to provide.
  • a light source and an imaging unit at a position where light necessary for imaging a finger or a camera is not affected.
  • the light source is disposed above the finger, and the imaging unit is disposed immediately below the opening in the finger installation unit, or the light source from the light source is disposed so as not to be blocked by the detection electrodes.
  • the arrangement of the light source, the imaging unit, and the detection electrode is not limited to this arrangement.
  • the finger authentication device and the sensor according to the present invention can be placed in parallel.
  • a multilayer breath sensor as shown in FIG. 14 can acquire current from a water cluster having a charge from exhalation, and can be used for exhalation power generation.
  • a current can be continuously obtained by positioning the multilayer breath sensor near the mouth or nose. Combined with power storage technology, it can function as a power generation infrastructure in large-scale offices.
  • the arrangement of the mesh plate from the viewpoint of electric shock prevention is described in FIG. 7 for the voltage application electrode to which a high voltage is applied and the detection electrode for detecting the generated current.
  • the mesh plate when the mesh plate is provided, a part of the exhalation is reflected by the mesh plate, which becomes a resistance when the exhalation passes through the mesh plate.
  • the influence cannot be ignored, and the detection accuracy may be affected.
  • the voltage application electrode 1s and the detection electrode 2k are opened to facilitate introduction of exhalation, and from the viewpoint of preventing electric shock, the exhalation introduction side voltage application electrode 1s and the detection electrode
  • a method of covering a part of 2k with electrode covers 49a and 49b made of an insulating material is conceivable.
  • the distance between the voltage application electrode 1s and the detection electrode 2k is 10 mm, and the exhalation introduction side of the voltage application electrode 1s and the detection electrode 2k is covered with about 2 mm with an insulating material.
  • the width of the mouth for introducing exhalation is An example of about 6 mm is shown.
  • FIG. 52 shows a case where the distance between the voltage application electrode and the detection electrode is 10 mm, and 1000 V is applied to the voltage application electrode, and (b) when there is an insulating material electrode cover and (b) when there is no insulating material electrode cover. The difference in exhalation peak intensity is shown. At this time, the distance between the breath sensor and the mouth is about 8 cm. It can be seen that the strength is stronger when there is an insulating electrode cover. The reason can be considered as follows.
  • FIG. 53 shows the electrostatic potential when the distance between the voltage application electrode and the detection electrode is 10 mm and 1000 V is applied to the voltage application electrode (in the figure, equipotential lines are shown every 100 V).
  • 53A shows a case where there is an electrode cover made of an insulating material
  • FIG. 53B shows a case where there is no electrode cover made of an insulating material.
  • the equipotential line leaks greatly outside the electrode, whereas when there is an insulating electrode cover, the leakage is small. This indicates that when there is an electrode cover made of an insulating material, the water cluster receives a strong electric field force in a short time after being taken into the parallel plate electric field.
  • a phenomenon in which a water cluster having a charge is generated from a water cluster is an electrostatic atomization phenomenon (when the electric field on the liquid surface increases, the electrostatic force acting on the surface makes the electrohydrodynamic instability unstable.
  • the generation efficiency of charged droplets is better when affected by an electric field in a short time. That is, as shown in FIG. 51, it is possible to understand the effect of providing the electrode cover 49a, 49b made of an insulating material on the breath introduction side of the voltage application electrode 1s and the detection electrode 2k and receiving a strong electric field force in a short time.
  • the breath sensor can be reduced in size, it can be installed in a headset and used as a biological rhythm visualization sensor as shown in FIG.
  • an exhalation sensor is installed in such a headset, it is necessary to reduce the weight of components installed in the headset as much as possible so that it can withstand long-time measurement.
  • the expiration sensor is separated into an expiration introduction unit 50, an expiration transmission unit 51, and an expiration detection unit 52.
  • the exhalation introduction unit 50 is a short tube (or L-shaped tube) having a diameter of about 10 mm
  • the exhalation transmission unit 51 is a tube that is soft and easily deformed (for example, a silicon tube having an inner diameter of about 1 to 20 mm).
  • the exhalation detection unit 52 has substantially the same structure as the exhalation sensor, but is connected to the tube of the exhalation transmission unit 51 so that exhalation is directly introduced.
  • FIG. 55 shows an example of measurement of exhalation from the nose by the exhalation introduction unit 50, the exhalation transmission unit 51, and the exhalation detection unit 52.
  • the inner diameter of the tube of the breath transmission part 51 is about 10 mm.
  • the intensity of the expiratory peak detected decreases as the length of the tube increases due to the attenuation of the longitudinal wave in the tube of the expiratory transfer part 51.
  • exhalation from the nose can be measured even if the length of the tube is 150 cm.
  • the length of the tube used for the exhalation transmission unit can be about several hundred cm.
  • the breath sensor can be divided into three parts, and the breath introduction part can be easily attached to the headset, so that the usage is greatly expanded in addition to the visualization of the biological rhythm of FIG.
  • marketing application when evaluating a new product or new advertisement.
  • market research using an MRI apparatus has also been performed, but although detailed brain function measurement can be performed, the apparatus is expensive and it is difficult to perform a plurality of evaluations at the same time.
  • an exhalation sensor as shown in FIG. 54 captures changes in breathing when a new product or a new advertisement is viewed while setting a headset on the subject and measuring the breathing from the natural nose. As a result, it is possible to measure many subjects at the same time, and as a result, it is possible to evaluate whether or not the change in respiration is synchronized, which can be a new index for evaluation.
  • exhalation When exhalation is introduced in a state where the distance between the mouth or nose and the exhalation sensor is long, exhalation collides with molecules in the air and diffuses. In this case, a simple collection mechanism is required.
  • FIG. 56 shows an example.
  • FIG. 56 (b) is a cross-sectional view of FIG. 56 (a) as viewed from above, but the collar has a shape protruding several cm from the main body of the breath sensor 14d. Normally, the collar portion may be folded and expanded when used.
  • FIG. 57 shows the difference in exhalation peak intensity between when (a) the collar is attached and (b) when the collar is not attached. It can be seen that when the collar is attached, the intensity of the observed exhalation peak is stronger, and it is more effective to attach the collar for collecting the expiration.
  • an inhalation part for inhaling so that exhalation is collected around the exhalation sensor may be provided alone or in the collar 53a as a collection mechanism.
  • the collar 53a is normally grounded.
  • the exhalation sensor basically measures exhalation, but if the amplification factor in the microammeter is greatly increased, it is possible to detect even a slight movement of the object.
  • the flow of air changes slightly, it uses the fact that the detection efficiency of the water cluster in the breath sensor changes, and it should be a moving object detection sensor.
  • the collar 53b that is not grounded is provided on the moving object detection sensor 54a, a capacitor is formed between the collar 53b and the detection electrode, and an induced current is induced when an object having a charge such as a person approaches,
  • the detection electrode can also detect the current.
  • the moving direction of the object can also be detected by devising the arrangement of the voltage application electrode and the detection electrode.
  • 58 shows an example of the moving object detection sensor 54a in which four electrodes, that is, the voltage application electrode 1t, the detection electrode 21, the voltage application electrode 1u, the detection electrode 2m, and the collar 53b are arranged from the right.
  • a case having a collar is shown, but it goes without saying that a flat plate having no collar may be used.
  • 58 shows a changeover switch 58 for easily switching between the case where the collar 53b is grounded (in the case of an expiration sensor) and the case where it is not (in the case of a moving body detection sensor).
  • FIG. 59 shows the result of detecting movement in two directions as indicated by the arrows shown in FIG. 58 with respect to the moving object detection sensor 54a. This is because when (a) a person passes from left to right at a speed of about 1 meter per second and (b) a person is about 1 meter per second at a distance of about 1 m from the moving object detection sensor 54a. It is a waveform obtained when passing from right to left.
  • the voltage application electrode 1000 V was applied, and an electrode cover made of an insulating material as shown in FIG. 51 was used. Since the same is repeated three times, three peaks are obtained for each.
  • a time-series first peak, second peak, A third peak and a fourth peak are observed.
  • the first peak is larger in the case of movement from the right to the left than in the case of movement from the left to the right
  • the fourth peak is left in the case of movement from the right to the left.
  • the case of moving from right to right is larger. That is, the direction of movement can be specified by comparing the first peak and the fourth peak.
  • An optical sensor or the like is also used for human detection, but it is a major feature of the present invention that the moving direction can be specified.
  • FIG. 60 (a) is an application example that is expected to increase in the future and is for an elderly living alone.
  • the motion detection sensor of the present invention which is highly sensitive to motion detection and can check the direction of movement, is installed at major locations in the house (e.g., entrance, dining table, toilet, bathroom, bedroom, etc.), the privacy of the elderly You can watch the life of the elderly while keeping it. Since the daily life pattern is fixed to some extent, if each sensor does not respond regularly, there will be no response to life, which means that the elderly living alone will be checked.
  • FIG. 61 (b) it can also be used to prevent theft of exhibits in important public facilities such as museums.
  • the sensor reacts with high sensitivity even at night or when the exhibit is moved or moved, which is effective in preventing theft.
  • FIG. 60C it can be used for a gate.
  • the moving object detection sensor according to the present invention can be detected only by arranging the sensor on one side, and at the same time, the moving direction can be detected, so that it is possible to determine whether the room is entering or leaving.
  • FIG. 25 when installed in the car, it can be used as a seating sensor by catching the signal when the driver sits on the seat, and a person other than the car owner opened the door In some cases, a warning sound can be used to prevent theft.
  • a time series obtained from the waveform obtained by obtaining a result detected by the sensor You may comprise so that the arithmetic unit which has a calculating part which compares these peak values may be connected by a wire or a radio
  • a predetermined threshold is preferably set to detect the presence or absence of movement as in the above example, the moving direction, etc. with respect to the comparison result, A warning device may be provided in at least one of the sensor and the calculation device so as to issue a warning when the threshold value is exceeded.
  • Such a configuration makes it possible to use not only for detection of exhalation but also as a body motion sensor.
  • the present invention can be used for non-contact and non-invasive breath detection.
  • the present invention can also be used for a drunk driving prevention device and a drowsy driving prevention device in a moving body such as an automobile. It can also be used as an interface for operating devices without contact. Furthermore, it can be used as a pretreatment for breathing training and analysis.
  • Water cluster 7a with a large charge Data processing unit 7b Data processing unit 7c Data processing unit 7d Data processing unit 7e Data Processing unit 7f ⁇ Data processing unit 7g ⁇ ⁇ Data processing unit 7h ⁇ ⁇ Data processing unit 7i ⁇ ⁇ Data processing unit 7j ⁇ ⁇ Data processing unit 8a ⁇ ⁇ CPU 8b CPU 8c CPU 8d CPU 8e CPU 8f CPU 8g CPU 8h CPU 8i CPU 8j CPU 9a, interface 9b, interface 9c, interface 9d, interface 9e, interface 9f, interface 9g, interface 9h, interface 9i, interface 9j, interface 10a, internal memory 10b, internal memory Internal memory 10d, Internal memory 10g, Internal memory 10g, Internal memory 10i, Internal memory 10j, Internal memory 11a, External memory 11b, External memory 11c ⁇ ⁇ External memory 11d ⁇ ⁇ External memory 11e ⁇ ⁇ External memory 11f ⁇ ⁇ External memory 11g ⁇ ⁇ External memory 11h ⁇ ⁇ External memory
  • Expiration introduction stop lamp 18a Electrode support 18b .. Electrode support 1 Electrode support 18d Electrode support 18e Electrode support 19a Breath sensor case 19b Breath sensor case 19c Breath sensor case 19d Breath sensor case 19e Breath sensor case 20a.
  • Alcohol sensor head 32d ... Alcohol sensor head 32e ... Call sensor head 32f..Alcohol sensor head 32g..Alcohol sensor head 33..Break alcohol introduction port 34a..Break alcohol sensor case 34b..Break alcohol sensor case 35..Base 36.Column cover 37.Steering wheel 38..Anemometer inlet 39a..Anemometer head 39b..Anemometer head 40a..Doze prevention sensor 40b..Doze prevention sensor 41a..Aroma capsule 41b..Aroma capsule 41c..Aroma capsule 42 ..
  • Air inlet 43 biological rhythm visualization sensor 44a ⁇ ⁇ plant sensor 44b ⁇ ⁇ plant sensor 45 ⁇ ⁇ piping 46 ⁇ ⁇ crack 47a ⁇ ⁇ device interface 47b ⁇ ⁇ device interface 47c ⁇ ⁇ device interface 47d ⁇ ⁇ Interface 48 ⁇ ⁇ Interface 49a with external equipment ⁇ Electrode cover 49b ⁇ Electrode cover 50 ⁇ ⁇ Breath introduction part 51 ⁇ ⁇ Breath transmission part 52 ⁇ ⁇ Breath detection part 53a ⁇ ⁇ brim 53b ⁇ ⁇ brim 54a ⁇ ⁇ Motion detection sensor 54b ⁇ ⁇ Motion detection sensor 54c ⁇ ⁇ Motion detection sensor 55 ⁇ ⁇ Table 56 ⁇ ⁇ Exhibit 57 ⁇ ⁇ Gate 58 ⁇ ⁇ Switch

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Urology & Nephrology (AREA)
  • Developmental Disabilities (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hematology (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Traffic Control Systems (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

ドライバーを対象とした、飲酒運転防止、居眠り運転防止を行うための、有効な方法がなかった。呼気中の水クラスターを高感度に検出することにより、飲酒運転防止、居眠り運転防止を行う。また、非接触で機器操作を行う。空間的制約がある場所において呼気検知することが可能となる。

Description

イオン検出装置
 本発明は、大気圧下におけるイオン検出を基本とした、検出装置に関する。また、この呼吸検出技術を基盤とした、自動車などの移動体における飲酒運転防止装置及び居眠り運転防止装置に関する。さらに、プラントにおけるセンサー、非接触の機器インターフェイス、呼吸訓練装置、呼気発電装置に関する。
 従来の呼気検出、呼気中アルコール検出、居眠り検出などの技術分野においては、目的とする物質をイオン化して真空中に存在する質量分析部により検出する方法がある。
特許文献1に開示されている方法は、エレクトロスプレー法と呼ばれるイオン化法により発生した微小液滴を、真空中のセカンドチャンバーに導入して、そのチャンバー内で上方から導入されたガスとの衝突により脱溶媒化を促進し、脱溶媒化したイオンを質量分析するという方法である。
 特許文献2に開示されている方法は、真空下のスキマーコーンおよび或いは後続のイオン収束レンズ系のレンズ電極に流入する、大気圧下で生成したイオンの電流を検出し、そのイオン電流が一定になるように電極の印加電圧を制御するものである。
 特許文献3に記載の方法は、真空中で発生したイオンを大きく偏向して電極に衝突させ、光学系のクリーニングを行うものである。
 特許文献4に記載の方法は、真空中に導入するイオンを、空気力学的に収束する方法である。
 特許文献5に記載の方法は、真空中で効率的にイオンをトラップするためのイオントラップ型質量分析計に関するものである。
 特許文献6に記載の方法は、大気圧イオン化法を用いたタンデム型質量分析計において、検出信号のSN比を改善するための方法である。
上記いずれの場合においても、イオンを真空中に導入して検出することが大きな前提となっている。
US6278111号公報 特開平07-325020号公報 特開2003-257328号公報 特表2006-510905号公報 特表2000-510638号公報 US2004031917号公報
 上記のいずれの方法でも、生成したイオンを分析するために高真空下で動作する質量分析計を用いている。質量分析計を用いると、イオンの質量数を測定でき高精度の分析が可能となる。しかし、質量分析計のように、磁場や電場の中で、イオンを質量数毎に正確に分離させるには、目的とするイオンが中性分子と衝突しイオン軌道が変化する、あるいは衝突により目的とするイオンが分解することをできるだけ避ける必要があり、質量分析計内部は10-2Pa以下の高真空にして存在する中性分子の数を大幅に減少させることが必要である。また、目的とするイオンを高感度に検出するには、2次電子増倍管などのように、高電圧を印加して電子の増幅作用を利用するため、高真空にしておかないとこの検出器部分で放電が発生し、イオンが検出できなくなるというのも、質量分析計を高真空にする理由のひとつである。そのため、ターボ分子ポンプ、ロータリポンプなどの真空排気系を設けるため、装置が大型化するという大きな問題があった。
 従来技術においては、磁場、電場の中で、イオンを質量数毎に分離するために、ターボ分子ポンプなどの真空排気系を設けざるを得ず、装置が大型化していた。このとき、イオンに働く力は磁場や電場による力であり、重力は関係しない。
 ここで、イオンを検出する部分を大気圧下で動作させ、イオンに働く力を、電場による力だけでなく、大気圧下で動作させる際に特徴となる、空気抵抗、浮力、重力の作用を使用することによって、これまでとは異なる方法でイオンの分離を行う分析方法を提供することが可能となる。当該分析方法は、大気圧下で動作させることから、ターボ分子ポンプのような大型の真空排気系は不要となり装置を大幅に小型化でき、課題を解決することができる。また、イオンに対する電場による力と重力による作用を効果的に使用する分析法を提供するために、重力とは異なる方向に電場の力を作用させイオンを分離する(例えば、重力と電場による力の方向が90度異なるなど)ことが有効となる。さらに、大気圧下で動作させてイオンを検出する場合、同様の構造を持つ検出部を複数並べて、検出感度を向上させることが容易となる。なお、イオン検出には、大気圧で動作する微小電流計を用いれば良い。
 一方、従来の質量分析計ではあるレベルの真空に達してから試料を導入しなければならないが、大気圧下で動作する装置では電源を投入すればすぐに試料を導入して測定を開始することができる。
 簡便な方法で外気を検出することができると、空間的制約がある場所において呼気検知することが可能となる。例えば、自動車の車内において呼気中アルコール検査に基づく飲酒運転防止、呼気の非接触計測による居眠り運転防止を行うことができる。
また、非接触で機器操作を実現するためのインターフェイスを提供できる。
さらに、プラントにおけるセンサー、非接触の機器インターフェイス、呼吸訓練装置、呼気発電装置にも展開できる。
本発明の装置の構成図 本発明の装置における、電荷を持つ水クラスターの半径による重力方向の速度と重力と垂直の電界方向の速度の計算値 本発明の装置における、電荷を持つ水クラスターの半径による検出電極に到達するまでの時間 本発明の装置における、呼吸の検出の電圧依存性 本発明の装置における、呼吸の検出の距離依存性 本発明の装置における、ポンプによる排気の効果 本発明の装置における、2層型検出電極方式による呼気センサー 本発明の装置における、2層型検出電極方式の構成図 本発明の装置における、別の角度からの2層型検出電極方式の構成図 本発明の装置における、2層型検出電極方式の電極、電源の構成図 本発明の装置における、口による呼吸の検出法 本発明の装置における、口による呼吸の検出例 本発明の装置における、鼻による呼吸の検出例 本発明の装置における、多層型検出電極方式の構成図 本発明の装置における、別の角度からの多層型検出電極方式の構成図 本発明の装置における、多層型検出電極方式の電極、電源の構成図 本発明の装置における、呼気アルコールセンサーの構成図 本発明の装置における、呼気アルコールセンサーの構成図 本発明の装置における、呼気アルコールセンサーの構成図 本発明の2層型検出電極方式において、アルコールセンサーを複数配置した例 本発明の多層型検出電極方式において、アルコールセンサーを複数配置した例 本発明の装置を収めたセンサーボックス 本発明において、呼気アルコールセンサーをコラムに設置した例 本発明における、呼気アルコールセンサーの使用例 本発明における、呼気アルコールセンサーの使用例 本発明における、呼気とアルコールの同時検出例 本発明における、呼気とアルコール強度の時間変化の検出例 本発明の装置を用いた場合のエンジン始動のアルコール検出アルゴリズム 本発明の装置を用いた場合の走行中のアルコール検出アルゴリズム 本発明の装置を用いた場合の検査モードにおけるアルコール検出アルゴリズム 本発明の装置において、なりすまし防止用検出電極を用いた場合の例 本発明の装置において、なりすまし防止用検出電極を用いた場合のアルコール検出アルゴリズム 本発明の装置において、風速センサーを設けた場合の例 本発明の装置において、風速センサーを設けた場合の例 本発明の装置において、風速センサーを設けた場合の呼気検出アルゴリズム 本発明の装置における、居眠り防止センサー 本発明の装置における、居眠り防止センサーの検出原理 本発明の装置を用いた場合の欠伸、頭の傾きの検出例 本発明の装置を用いた場合の居眠り検出法 本発明の装置を用いた場合の居眠り検出アルゴリズム 本発明における交通システムの例 本発明における交通システムの例 本発明における鉄道システムの例 本発明における移動体乗務員の生体リズム可視化センサーの例 本発明を用いた場合の無呼吸による呼気ピーク欠損、荒い呼吸の検出例 本発明におけるプラント用センサーの例 本発明における湿度の検出例 本発明における機器インターフェイス 本発明の装置を用いた場合の機器操作コマンド 本発明における機器インターフェイスの例 本発明の装置において、絶縁材の電極カバーを設けた場合の例 本発明の装置において、絶縁材の電極カバーを設けた場合の効果の例 本発明の装置において、絶縁材の電極カバーを設けた場合の静電ポテンシャルの計算例 本発明において、呼気センサーを、呼気導入部、呼気伝達部、呼気検出部に分割した構成図 本発明において、呼気センサーを、呼気導入部、呼気伝達部、呼気検出部に分割した際の呼気検出例 本発明における、呼気センサーにつばをつけた構成図 本発明の装置において、呼気センサーにつばをつけた効果の例 本発明における、人等の動きを検出する動体検知センサーの構成図 本発明において、人の移動を検出した例 本発明における動体検知センサーの設置例
 本実施例では、非接触で非侵襲に外気である呼気を検出する例を示す。
呼気中には、約37℃における飽和蒸気圧レベルの水が含まれることから、呼気中の水は実質的に水クラスターとなって体外に出される。このとき、水クラスター中に、正の電荷を持つ水クラスターと負の電荷を持つ水クラスターが存在すると、電界により分離することができる。
 このとき、一方の電圧印加電極に高電圧を印加し対向する検出電極を電流計に接続した平行平板電極中に、呼気中の水クラスターを導入すると、印加した電圧と同じ極性を持つクラスターのみが電界により偏向し、検出電極に補足され電流が検出される。すなわち、電圧印加電極に正の電圧を印加すると、検出電極には正の電荷を持つ水クラスターが捕捉され正の電流が検出される。一方、電圧印加電極に負の電圧を印加すると、検出電極には負の電荷を持つ水クラスターが捕捉され負の電流が検出される。この電流の時間変化を計測することによって、呼気を間接的に計測することができる。
通常の呼気のクラスターでは、その全体の電流量を計測すると電流量はほぼ零であることから、正の電荷を持つ水クラスターと負の電荷を持つ水クラスターは呼気中ではほぼ同数存在すると考えられる。
 この計測手段を、図1(a)に示す。高圧電源3aによって、電圧印加電極1aと検出電極2aの間に電位差を設ける。このとき、電圧印加電極1aと検出電極2aとの間に、水クラスターを含む呼気を、図1(a)の紙面に垂直な方向から紙面に向かって導入すると、電荷も持つ水クラスターには、図1(b)に示すように、空気抵抗、浮力、重力、電界による力が働く。これらの力の関係によって、電圧印加電極1aに正の電圧を印加すると、正の電荷を持つ水クラスターのみが偏向し検出電極2aに衝突して正の電流が検出される。一方、電圧印加電極1aに負の電圧を印加すると、負の電荷を持つ水クラスターのみが偏向し検出電極2aに衝突して負の電流が検出される。従って、図1(a)に示すように、偏向して検出電極2aに衝突するのは、ある径を持つ径の小さな電荷を持つ水クラスター5であり、径の大きな電荷を持つ水クラスター6は検出電極2aに衝突せず検出されない。
 検出電極2aで検出された電流は、微小電流計4aで増幅後、電圧に変換され、データ処理部7aに転送される。このデータは、データ処理部7aにあるインターフェイス9aを介して、内部メモリ10a、あるいは外部メモリ11aに記憶される。記憶されたデータは、データ処理部7aにあるCPU8aの制御により、あるアルゴリズムに基づいて、スピーカ12aで音を出したり、表示器13aに結果を表示することができる。また、電位差の設定等、印加電圧の設定等の制御についても当該データ処理部より制御することが可能である。
 以上の過程を理解するには、電荷を持つ水クラスターの重力方向の運動と、重力と直角方向の運動を解析する必要がある。まず、電荷を持つ水クラスターの重力方向の運動について解析する。
 小さな水クラスターに働く空気抵抗は、ストークスによって球の半径rと重力方向の球の速度vに比例することが求められている。その大きさは、空気の粘性率ηを用いて次式で表される。
 空気抵抗の大きさ=6πηrv
また、空気による浮力の大きさはその物体が排除した空気に働く重力と等しいので、半径rの球の場合、空気の密度ρ,重力加速度gを用いて
 空気による浮力の大きさ=(4/3)πrρ
と表される。従って,質量mの水クラスターが重力方向に働く運動方程式は、
 m・(dvg/dt)=(4/3)πrρg-6πηrv-(4/3)πrρ
と表される。ここで、ρは水の密度である。1気圧、25℃で空気中を落下する水滴を考えると、水の密度ρ=997.04kg/m3、空気の密度ρ=1.1843kg/m、空気の粘性率η(25℃)=0.0000182、重力加速度g=9.807m/s、となる。vが正であれば、時間が経過するにつれて加速度は0となり、空気中の水クラスターは一定速度で等速運動をするようになる。この速度の終末速度vg0は上式をゼロと置くことにより次式となる。
 vg0=2r(ρ-ρ)g/(9η)
 次に、電荷を持つ水クラスターの重力方向と直角方向の運動について解析する。電荷を持つ水クラスターの電荷をqとすると、電場の大きさがEのとき、電荷を持つ水クラスターに対して重力方向と直角方向に運動するときの運動方程式は次式となる。
 m・(dvt/dt)=qE-6πηrv
従って、このときの終末速度vt0は、
 vt0=qE/(6πηr)
となる。ここで、電荷q=1.6021×10-19C(A・s)である。電界は、例えば、距離10mmの電圧印加電極と検出用電極間に1000Vを印加したとすると、電界E=100000V/mとなる。
 ここで、1気圧、25℃で、空気中の水クラスターの場合を考える。水の密度ρ=997.04kg/m3、空気の密度ρ=1.1843kg/m、空気の粘性率η=0.0000182、重力加速度g=9.807m/s、電荷q=1.6021×10-19C(A・s)、電界E=100000V/mとして、水クラスターの半径r(μm)によるvg0(m/s)とvt0(m/s)の変化を計算すると、図2のようになる。
 電圧印加電極1aと検出電極2aの距離を10mm、検出電極2aとして縦40mm、幅15mmの大きさの場合、電荷1.6021×10-19Cを持つ半径r(μm)の電荷を持つ水クラスターが中心の20mmの位置から落下する間に、偏向して検出電極2aに衝突して検出されるには、検出時間として10秒程度を考えると、rとして、検出電極からの位置が1mmのときに約0.5μm以下、3mmのときに約0.15μm以下、5mmのときに約0.1μm以下であることが、図3からわかる。
 図4には、電圧印加電極1aと検出電極2aの距離を10mmとした場合に、印加する電圧による、呼気(風速1~30m/sec程度の呼気を数秒導入)により検出される電圧の変化を示した。ここでは、呼気中の電荷を持つ水クラスターにより検出された電流を最終的に電圧に変換している。上記の解析からわかるように、印加する電圧が高いほど検出される電荷を持つクラスターは増える、すなわち電流量が増えるが、電極間の放電の問題からその上限は決まる。ここでは、1200vまで印加したデータを示しているが、電圧として1000V、すなわち電界強度100000V/m程度で十分な電流量が得られる。
 図5には、電圧印加電極1aと検出電極2aの端から口までの距離による、呼気(風速1~30m/sec程度の呼気を数秒導入)により検出される電圧の変化を示している。ここでは、呼気中の電荷を持つ水クラスターにより検出された電流を最終的に電圧に変換している。当然のことながら、距離が近いほど検出される電圧が高く、特に10cm以内では大きく電圧が変化していることがわかる。
 図6には、呼気(風速1~30m/sec程度の呼気を数秒導入)による呼気ピークの検出された電圧の、印加電極1aと検出電極2aの間の領域の排気依存性を示している。ここでは、呼気中の電荷を持つ水クラスターにより検出された電流を最終的に電圧に変換している。この領域を排気することは、呼気ピークのテーリングを少なくする、すなわち、一呼吸の分解能を持たせるという観点から重要である。通常、排気速度が0.1から10L/minのダイアフラムポンプを用いている。なお、図1に示すように、電圧印加電極1aと検出電極2aとの間は開放系の領域であるので、上記程度排気速度のポンプで吸引してもこの領域の圧力は大気圧となっている。
 基本的な発明は図1に示したとおりであるが、電荷を持つ水クラスターの検出に、検出電極の両側の面を用いることは、検出される信号量を増やすという観点から有効である。その例を図7、図8、図9、図10に示した。図9は、図8を異なる方向(ポンプ排気口13bにおける断面図)からみた図である。図7に示す呼気センサー14の中には、電圧印加電極1b、1cと検出電極2bが配置されており、呼気を導入する側には、感電防止のためにメッシュ状板15aが設けられている。また、呼気を導入するタイミングを知らせるために、呼気導入開始ランプ16と呼気導入停止ランプ17を設けることは有効である。通常、呼気導入の時間は数秒である。また、呼気を導入するタイミング、停止するタイミングを知らせるのはブザーでもよい。
 図8には、検出電極の両側から、呼気中の電荷を持つ水クラスターを検出する場合の電極の配置を示している。検出電極2bの両側の面に対向するように、電圧印加電極1b、1cを電極支え18a、18b、18c、18d、18e、18fを介して呼気センサーケース19a内に配置し、しかもこの空間内を排気するポンプ排気口20a、20bを設けている。図10に示すように、電圧印加電極1b、1cには同じ極性の電圧を印加することになる。異なる極性の電圧を印加してしまうと、正の電荷を持つクラスターと負の電荷を持つクラスターとで電流が相殺されてしまうことになるからである。検出電極2bで検出された電流は、図9に示すように、ケーブル支え21aにより支えられた検出電極用ケーブル22aを介して、微小電流計に送られ、電圧に変換される。図10に示すように、検出電極2bで検出された電流は、微小電流計4bで増幅後、電圧に変換され、データ処理部7bに転送される。このデータは、データ処理部7bにあるインターフェイス9bを介して、内部メモリ10b、あるいは外部メモリ11bに記憶される。記憶されたデータは、データ処理部7aにあるCPU8aの制御により、あるアルゴリズムに基づいて、スピーカ12bで音を出したり、表示器13bに結果を表示することができる。
 図11に、呼気を呼気センサー14に、非接触で吹き込む様子を示した。呼気センサーケーブル23には、検出電極用ケーブルに加えて、電圧印加電極用ケーブル、排気用のポンプの管などが入っている。
 口からの呼気(風速1~30m/sec程度の呼気を数秒導入)を、呼気センサー14に20秒程度の間隔で導入して得られる一連の呼気ピークを図12に示した。ここでは、得られたピークを呼気ピークと呼ぶこととする。呼気の強度を完全に制御することができないので、強度の変化が観測されているものの、本発明の呼気センサーにより安定に呼気ピークが観測されていることがわかる。また、図13に示すように、呼気センサー14を鼻に近づけ、鼻からの呼気を観測することもできる。この場合は通常の呼吸を連続して計測した場合であるが、呼気ピークのひとつが一回の呼吸に対応しており、一連の呼吸が安定に観測されている。ちなみに、呼気の場合、正の電荷を持つ水クラスターと負の電荷を持つ水クラスターが同程度発生するので、どちらの場合でも同様の結果が得られる。図12、図13に示した実験では、電圧印加電極には-1000Vを印加し、負での電荷を持つ水クラスターを計測している。
 図7の考え方をさらに発展させると、図14、図15、図16に示すような多層型呼気センサーが可能である。図14の場合は、図7の2層型呼気センサーを3組用いた場合の例である。図15は、図14を異なる方向(多層型用ポンプ排気口28bにおける断面図)からみた図である。多層型呼気センサーケース27内における多層型用検出電極24a、24b、24cに対して、多層型用電圧印加電極25a、25b、25c、25dを対向するように配置し、これらの電極を多層型用電極支え26a、26bにより支える。これらの空間は、多層型用ポンプ排気口28a、28bにより排気される。図16に、多層型用検出電極24a、24b、24c、多層型用電圧印加電極25a、25b、25c、25dにおける電圧の印加の仕方を示した。すなわち、多層型用電圧印加電極25a、25b、25c、25dには、同じ極性の電圧を印加する。この多層構造は基本的に何層でも問題なく、呼気を離れた位置から観測する必要がある場合には、拡散した呼気を大面積で計測できることになり有利となる。しかも、多層構造では、多層型用電圧印加電極と多層型用検出電極との距離を短くできるので、2層構造に比較すると、多層構造型用電圧印加電極に印加する電圧は低くてすむというメリットがある。多層型検出電極24a、24b、24cで検出された電流は、微小電流計4cで増幅後、電圧に変換され、データ処理部7cに転送される。このデータは、データ処理部7cにあるインターフェイス9cを介して、内部メモリ10c、あるいは外部メモリ11cに記憶される。記憶されたデータは、データ処理部7cにあるCPU8cの制御により、あるアルゴリズムに基づいて、スピーカ12cで音を出したり、表示器13cに結果を表示することができる。
 本発明を用いると、自動車などの移動体における呼気アルコールセンサー29a、29b、29cに利用可能である。本発明を自動車に利用する場合について、図7に示す2層構造型に基づいて、図17(呼気センサー部の後ろにアルコールセンサー部を配置した構造)、図18(呼気センサー部と並列にアルコールセンサー部を配置した構造)、図19(アルコールセンサー部を呼気センサー部の前に配置した構造)に示した。
 まず、呼気センサー部の後ろにアルコールセンサー部を配置した構造を示す図17について説明する。呼気アルコールセンサー29aの呼気センサーケース19bには、検出電極2c、電圧印加電極1d、1eを設け、両電極には数百ボルトの電圧(検出電極2c、電圧印加電極1d、1eの距離が10mmのとき、10~1500ボルト程度である)を印加する。一方、呼気センサーケース19bの後ろに配置されたアルコールセンサーケース30a内には、半導体センサーなどのアルコールセンサーヘッド32aを設けている。アルコールセンサーヘッド30aには、半導体センサーではなく燃料電池方式など、別方式のセンサーを使用することも可能である。このような呼気アルコールセンサーの構成にすると、呼気センサー部とアルコールセンサー部を一体化することが容易であり、また、呼気を導入する側から呼気アルコールセンサーをみると呼気センサー部だけとなり装置をコンパクトにできるというメリットがある。また、図20(2層構造型の場合)、図21(多層構造型の場合)に示すように、アルコールセンサーヘッドを2個以上の複数配置してアルコールの検出感度を向上できるというメリットがある。
 次に、呼気センサー部と並列にアルコールセンサー部を配置した構造を示す図18について説明する。呼気アルコールセンサー29bには、検出電極2d、電圧印加電極1f、1gを設け、両電極には数百ボルトの電圧(検出電極2d、電圧印加電極1f、1gの距離が10mmのとき、10~1500ボルト程度である)を印加する。一方、アルコールセンサー部は、半導体センサーなどのアルコールセンサーヘッド32bを、呼気センサーケース29bの前面パネルの呼気アルコール導入口33の直後に設けている。この呼気アルコール導入口33は、図18のように、メッシュ状板15cの横でも良いし、上でも下でも良い。アルコールセンサーヘッド30aには、半導体センサーではなく燃料電池方式など、別方式のセンサーを使用することも可能である。このような呼気アルコールセンサーの構成にすると、アルコールが呼気センサー内部で拡散された後に検出するという方式に比較してアルコールピークがシャープになるというメリットがある。
 最後に、アルコールセンサー部を呼気センサー部の前に配置した構造を示す図19について説明する。呼気アルコールセンサー29cには、検出電極2e、電圧印加電極1h、1iを設け、両電極には数百ボルトの電圧(検出電極2d、電圧印加電極1f、1gの距離が10mmのとき、10~1500ボルト程度である)を印加する。一方、アルコールセンサー部は、半導体センサーなどのアルコールセンサーヘッド32bを、呼気センサーの前面に設けている。アルコールセンサーヘッド30aには、半導体センサーではなく燃料電池方式など、別方式のセンサーを使用することも可能である。このような呼気アルコールセンサーの構成にすると、アルコールが呼気センサー内部で拡散された後に検出するという方式に比較してアルコールピークがシャープになるというメリットに加え、アルコールの検出感度が向上するというメリットがある。
 図22は、呼気アルコールセンサー29eを、呼気アルコールセンサーケース34a、34bに収納する場合を示している。この呼気アルコールセンサーケース34a、34bは、台座35を通して、図23に示すように、コラムカバー36上に設置される。台座35において、呼気アルコールセンサーケース34a、34bの運転者に対する角度を可変にしておくことは重要である。呼気アルコールセンサーケース34a、34bの設置場所の一例は、図23(a)、図23(b)に示すように、ステアリングホイール37の後ろにあるコラムカバー36の上である。
 実際の呼気アルコールセンサーの使用では、図24に示すように、呼気アルコールセンサーケース34a、34bをコラムカバーからはずして呼気を導入することも可能である。また、しかし、走行中での検査を考えると、コラムカバー36に呼気アルコールセンサーケース34a、34b設置したままで使用することは有効である。この場合、図25(a)、図25(b)に示すように、運転者の呼気がステアリングホイール37の上半分の隙間から、呼気アルコールセンサーケース34a、34b内にある呼気アルコールセンサー29eに到達することになる。図4に示すように、呼気ピーク強度の距離依存性があることから、図25(b)のように、呼気アルコールセンサーケース34a、34b内の呼気アルコールセンサー29eと口との距離を毎回一定にすべく、額をステアリングホイール37にのせて、呼気アルコールセンサーケース34a、34b内の呼気アルコールセンサー29eめがけて呼気を吐き出すようにすることは安定したデータを取得する観点から重要である。また、このときの口と呼気アルコールセンサー29eとの距離を、呼気ピーク強度が大きく変化する20cm以内に位置させることは、なりすまし(飲酒していない人が、離れた位置から代わりに呼気を吐き出す)を防ぐ意味でも重要である。これは、離れた位置からでは、どんなに強く呼気を吐き出しても呼気ピーク強度が弱いためである。
 図26に、図17の構成を用いて、飲酒した人による、呼気ピークとこれに連動するアルコールピークの例を示した。このとき、アルコールピークは正負を逆に表示している。このように、アルコールピークと呼気ピークを比較しやすいように、データ処理装置等に備えられた画面表示部にいずれかの正負を逆転させて表示できるように表示制御することも可能である。
 これは、アルコール濃度11%のワインを360ml摂取して1時間後の呼気測定による結果である。このように、呼気ピークを検出した上でアルコールピークを検出することは、単なるアルコール(エタノール)を検出しているのではなく、呼気中アルコールを検出していることを示す上で重要な指標となる。この特性を用いると、同乗者がアルコールを飲んで車内にアルコール(エタノール)を吐き出しても、それに由来するアルコール(エタノール)によるバックグランドと区別することが可能となる。
 図26では呼気ピークのピークトップとアルコールピークのピークトップの位置が少しずれているが、これは呼気ピークとアルコールピークの検出の時間的な差の問題であり、逆に、この時間差を考慮した上で両者のタイミングが一致しているかを判断すればよい。図17に示したような構成を用いると、呼気ピークのピークトップとアルコールピークのピークトップの時間的な差は、0.1~5秒程度におさまることになる。また、呼気ピークとアルコールピークの立ち上がり時間はほぼ一致しており、この情報も活用することはできる。
 この検出の時間差の閾値を予めデータ処理装置等の制御部に記憶させておくことで、検出時間差以内にピークがそれぞれあった場合には、本人の呼気と判定し、閾値外にピークが合った場合には、なりすまし等本人以外の外気等の可能性があるため、この場合には、再度検出を実行するか、警告等を表示させるようにすることも可能である。上記の閾値は、上述した0.1~5秒程度に限らず、任意に設定することが可能であることは言うまでも無い。
 また、本発明を呼気アルコールセンサーに用いた場合の特徴を図27に示した。飲酒していない段階、あるいは完全にアルコールが代謝された段階では(図中の時間0分、1200分における値)、観測される呼気ピークは強い(電圧が高い)ものの、飲酒後数時間の間、呼気中にアルコールが含まれる段階では、呼気ピークの強度は弱くなっている。飲酒していない段階での呼気ピーク強度は人による違いがあるが、飲酒していない段階の呼気ピーク強度をそれぞれの人で計測しておけば、呼気ピーク強度を計測するだけでも飲酒しているかどうかの目安を得ることができる。また、アルコールセンサーに比較すると、呼気ピークはアルコールによる影響を長い時間受けるので、飲酒の履歴をみる上でも都合が良い。
 本発明を用いた場合の、エンジンスタート時の飲酒チェックのアルゴリズムを図28に示した。エンジンスタート後、運転者には、すぐに呼気アルコールセンサー29eに向かって数秒間吐き出してもらう。このとき、運転者とステアリングホイール37の間に第3者が割り込めないように、呼気アルコールセンサー29eに運転者の口を近づけてもらい、強い呼気ピークを検出するようにしておく。この際、ステアリングホイール37に、あるいは近傍に指静脈認証装置を設けておき、運転者がステアリングホイール37を握っているかどうかを判断するロジックを組み込むことも有効である。
 呼気ピーク検出についてある閾値を設けておき、この値を上回らない場合は、再度呼気を吐き出してもらう。呼気ピーク強度が十分の場合には、アルコールチェックに入り、アルコール(エタノール)が全く検出されない場合には、シフトレバーを可動状態などにして走行可能とする。アルコール(エタノール)が検出された場合には、呼気ピークの検出とアルコールピークの検出のタイミングが一致しているかを判断する。一致しない場合には、シフトレバーを可動状態などにして走行可能とする。一致した場合は、車内スピーカー等から音ないし飲酒状態でないかを確認する音声を発したり、車内モニターに表示をしたりといった警告や、シフトレバーをロックしたり、エンジンを停止したりして、走行できないようにするように、自動車に設けられた制御部により各部を制御する。その上で、検査モードに入り飲酒運転の最終確認を行う。
 この装置の有効性は、走行状態でもアルコールチェックを行うことができる点にある。このときのアルゴリズムを図29に示した。走行中、アルコールセンサーを稼動させておき、常に、あるいは一定時間毎に、アルコールが検出されるかどうかをチェックする。アルコールが検出されない場合には、そのまま走行続行となるが、アルコールが少しでも検出された場合には、運転者に、呼気アルコールセンサー29e向かって呼気を強く吐き出してもらう。図26の場合と同様に、呼気ピークの強度に閾値を設けておき、呼気ピークとアルコールピークのタイミングが一致したら(例えば、呼気ピークのピークトップとアルコールピークのピークトップの時間的な差が5秒以内など)、ハザードランプを点滅させるなどしてまわりの車の注意を喚起すると同時に、安全な場所に停車するように運転者を誘導する。その上で、検査モードに入り飲酒運転の最終確認を行う。以上のように、センサーに直接呼気を導入するアルコールチェック方式に比較すると、本発明は簡単な操作で走行中のアルコールチェックを行うことができる。
 図30には、自動車停車時の検査モードのアルゴリズムを示した。額をステアリングホイール37につけて、運転者の口と呼気アルコールセンサー29eの距離を固定化し、何度か呼気を吐き出してもらう。あらかじめ、呼気ピーク面積と既知濃度のアルコールピーク面積との関係をデータベース化しておけば、得られた呼気ピークとアルコールピークの検出結果から、呼気中のアルコール濃度を推定することができる。この結果を記憶手段に記録に残しておけば、飲酒運転の証拠のひとつとなる。
 以上のようなアルコールチェックは、自動車の運転者に限らず、電車の運転手、飛行機のパイロットなど移動体の操作者に適用できることは言うまでもない。また、プラントの運転者に適用することも有効である。
 図23に示した例に加えて、呼気アルコールセンサー29eをステアリングホイール37横のダッシュボード上につけることも可能である。このような位置に呼気アルコールセンサー29eを配置することによって、同乗者によるなりすまし(アルコールを飲んでいない同乗者が運転者に代わりアルコール検査を受けること)を大幅に低減できる。特に、窓側ダッシュボード上は有効である。ただし、ステアリングホイール37横のダッシュボード上につける場合は、エンジン始動時のアルコール検査が主体となる。さらに、呼気アルコールセンサー29eをステアリングホイール37(中、あるいは周囲)に設けることも可能である。
 また、図17、図18、図19に示した呼気アルコールセンサー29a、29b、29cにおいて、呼気センサー部とアルコールセンサー部からの時系列データを、データ処理部の内部メモリ、あるいは外部メモリに保存できるようにすると、そのデータログから、呼気アルコールが検出された時刻と呼気アルコールの量を詳細に解析することが可能となる。また、データ処理部の内部メモリ、外部メモリの時系列データを、通信モジュールをして情報センターに集めるようにすることも、呼気アルコールが検出された時刻と呼気アルコールの量の解析の点から有効である。
 本発明を用いると、呼気アルコールセンサーにおいて、なりすまし(飲酒していない人がかわりに呼気をセンサーに向かって吐き出すことこと)をより低減できる。図31に示した例は、2層構造の場合の例であるが、図7に示した場合と異なり、中心にあるふたつに分割された検出電極2f、2gが電圧印加電極1i、1jより長くなっている。なりすましの一例は、隣に座っている同乗者が隣からセンサーに向かって呼気を吐き出す場合であるが、図30に示した構造の場合、図面で左から斜めに呼気を吐き出すと、長くなった検出電極2fにあたり、呼気を吐き出した側と反対側の部分(図30の、検出電極2gと電圧印加電極1jで囲まれた部分)には呼気が導入されにくく、検出電極2gで検出される電流は、検出電極2fで検出される電流よりも低くなる。通常、前面から呼気を吐き出せば両者の電流量はほぼ一定である。このように、通常の呼気による電流値との比較により、このようななりすましのケースを検出することができる。このときの検出アルゴリズムを図32に示した。また、中心にある検出電極をふたつに分割しないで全体の電流を計測し、呼気を斜めから導入する場合には通常よりも検出される電流が低くなる性質を利用してもよい。
 多層構造にした場合でも、中心にある検出電極を少し前面に出すことによって2層構造の場合と同様な効果がることは言うまでもない。
 呼気の強さは訓練によってある程度安定化できるが、図33のように、呼気センサー29gの一部に風速センサー39aを設け、風速がある範囲に入った呼気ピークだけを使用するようにすることもできる。図33は、風速計用導入口38を呼気センサー29gの前面パネルに設けた場合を示し、図34は、呼気センサー29hの後ろに設置した場合を示している。前者では、呼気の直接の風速が計測できるというメリットがあるのに対して、後者ではセンサー全体がコンパクトになるというメリットがある。
 風速センサーには、加熱した電熱線に風が当たると熱が奪われる現象を利用した熱線式風速センサーなどを用いることができる。風速がある範囲にある場合のアルゴリズムを図35に示した。
 本発明を用いると、自動車などの移動体における居眠り運転防止装置にも利用可能である。図36は、居眠り防止センサー40aの一例を示したものである。図37は、居眠り検出の原理、図38は、本発明を用いて、欠伸や頭の傾きに伴う呼気ピーク検出の変化を示したものである。通常の呼吸をしていて欠伸をしたくなると、欠伸をする前に呼気ピークに変化が生じ始め(呼気ピークが小さくなる傾向がある)、欠伸によってその間は完全に呼気ピークが欠落することになる。また、図37に示すように、眠気におそわれて頭が傾きはじめると呼気ピークが小さくなり、頭が大きく傾くことによって呼気ピークが欠落する。このように居眠り防止センサー40aによって得られた信号にもとづく呼気ピークの算出や、時間的な呼気ピークの変動を検知するのは制御部であっても良いし、別途演算手段を設けても良いし、外部接続される演算装置であっても良い。
 この特性を利用すると、居眠り運転防止を行うことができる。図25に示すように、本発明による居眠り防止センサー40aをステアリングホイール37のコラムカバー36上に配置した場合を考える。この場合には、図39(a)に示すように、呼気ピークが観測される。個別にある閾値を設定し、それ以下の数値をゼロとすると、図39(b)に示すような波形になる。呼気ピーク間でゼロとなる時間(ゼロクロス時間)は、呼吸が安定していれば、ほぼある時間(この場合はTである)となる。このような場合に、欠伸がでたり、頭が大きく傾くと呼気ピークの間隔(T)が長くなる。そこで、Tがある数値(Tより大きい数値)より大きくなった場合に、警告を出すようにする。警告の種類としては、警告ランプの点滅、警告音、警告用の運転席振動、警告用の香りなど、多様なものが考えられる。
 図40に示したのは、居眠り防止運転のアルゴリズムの一例である。この場合、眠気を感じたらこの居眠り運転防止運転モードをオンにする設定としている。この後、常にゼロクロス時間をモニターしておき、第1閾値より長くなったら、第1段階の警告(警告ランプの点滅、警告音)を行い、さらに第2閾値より長くなったら、第2段階の警告(警告用の振動、警告用の香り)を行うようにしておく。警告の回数がある回数を超えた場合には、“安全な場所ですぐに休憩をとってください”などのメッセージを出して、運転者の休憩をすすめることになる。
 図40に示したアルゴリズムは、呼吸という無意識の脳活動に注目したものであるが、これでは居眠り運転による事故を回避するには時間的に間に合わない場合がある。そこで、意識下の脳活動をアルゴリズムに組み込むこともできる。本発明の特徴を生かした意識下の脳活動としては、呼吸訓練法として医学的に認知されている、口すぼめ呼吸がある。これは、軽く口を閉じて鼻から息を吸い、口をすぼめた状態で息を吐き出す方法である。居眠り防止運転モードをオンにした後、運転者に口すぼめ呼吸を開始させる。口すぼめ呼吸による呼気ピークが閾値を下回った場合には、図40に示したように警告を出すというものである。これは、眠気により、意識下の脳活動が低下することを利用したものであり、無意識の脳活動による通常の呼吸を検出する場合より、時間的に早い段階で眠気を検知することができ、居眠り運転による事故を防ぐという観点から望ましい。
 ただし、図25に示すように、本発明による居眠り防止センサー40aをステアリングホイール37近くに配置した場合、ステアリングホイール37を大きく切ると呼気検出は困難となるので、この場合の呼気ピークの変動は無視する必要がある。従って、本発明による居眠り防止センサー40aでは、ステアリングホイール駆動情報と連動させる必要がある。飲酒していないで眠気におそわれやすいのが、高速道路のような直線的で単調な運転の場合が多いことを考えると、本発明は居眠り運転防止にも有効である。
図36には、居眠り防止センサー40aに、警告用の香りカプセル41a、42b、43cを設けた例を示している。この方法で居眠りが検出された場合には、香りカプセル41a、41b、41cから発生したやや強い刺激臭(メントールなど)を運転者に向かって、空気導入口30を介して空気ポンプにより刺激臭を含む空気流を発生させ、運転者を覚醒させることになる。
以上のような居眠り防止は、自動車の運転手に限らず、電車の運転手、飛行機のパイロットなど移動体の操作者に適用できることは言うまでもない。また、プラントの運転者に適用することも有効である。
 本発明を用いると、図41のように、安全な交通システムに使用できる。本発明による飲酒運転防止センサーと居眠り運転防止センサーを搭載した車からの情報を、他のGPS情報などとともに、GPS通信モジュールを介して情報センターに集め、その情報を配信することにより、警察車両による検査、他の車両への注意喚起を行うことができる。また、図42のように、呼気アルコールセンサーを搭載した車が、走行中にアルコールが検出された場合、ハザードランプを点滅したり警告音を出すことにより、他の車両への注意を喚起したり、ミリ波レーダーにより前走車、後走車との距離が一定の距離以下にならないように、車両自体を制御することは有効である。
 本発明を用いると、鉄道車両のような移動体における乗務員の生体リズム監視に使用できる。一般に、図43に示すように、鉄道システムでは、現場レベルの情報を中央で収集し、安全な運行管理を実施している。この中に、図44のように、鉄道の運転者に生体リズム可視化センサー43を設けることにより、図45のように、運転者の生体リズムを取得することができる。無呼吸症候群による呼吸停止などを明確に観測することができ、運行管理に有効である。
 本発明を用いると、図46のように、プラントにおけるセンサーとしても活用できる。例えば、図46(a)に示す水処理プラントにおいては、非常に長い配管45を介して、水をユーザーに届けるが、途中の配管の亀裂などによる水漏れを早い段階で検出できれば、安全なプラント運転を実施できる。本発明のようなプラント用センサー44aを配管45に連続して設けておくと、図46(b)のように、ある個所で亀裂46により水漏れが起こった場合、配管45近傍で湿度の急激な変化が起こり、この変化をプラント用センサー44bにより高感度に検出することができる。図47は、従来の湿度計とプラント用センサー44bによる計測値の比較を示したものであるが、非常に高い相関があり、これは、プラント用センサー44bにより水漏れを検出できることを示している。さらに、従来の湿度計と比較すると応答性が速く感度が高いため、早い段階での検出が可能である。また、配管を通る物質に従って、図17のアルコールセンサー部に設けたセンサーの種類を変えることにより、多様な物質を計測することができる。
 本発明を用いると、図48のように、非接触で機器を操作するための機器インターフェイス47aにも利用可能である。すなわち、呼気センサー部で呼気を検出し、その呼気の有無によって、データ処理部7jにおいて、リレーなどの外部機器とのインターフェイス48を駆動させれば外部の機器操作が可能となる。図49(a)は呼気1回を検出した例を示している。このとき、得られる信号値に対して閾値を設定しておき、この閾値以上の信号値が検出された場合には、機器の電源をオンになるように設定しておくと、非接触で機器を操作するためのインターフェイスとして利用できる。本発明による呼気ピークは数秒程度で信号強度が減衰するので、応答性も良い。
 機器用のインターフェイスのコマンドとしては、図49に示す例が考えられる。図49(a)は呼気1回の場合、図49(b)は呼気2回の場合、図49(c)は呼気3回の場合であるが、これは呼気の回数で異なるコマンドに対応させる場合である。また、図49(d)のように、呼気を複数回吐いて閾値を越えた時間で、異なるコマンドに対応させることもできる。さらに、図49(e)に示すように、異なる強度の呼気の組み合わせ(この場合は、強い呼気と弱い呼気の組み合わせ)を用いて、異なるコマンドに対応させることができる。
 図48のような本発明を用いた機器インターフェイス47aを用いると、(1)自動車などの移動体において、携帯電話を用いて通話をする際に、通話のオン・オフ、ボリュームのアップ・ダウンなどを行う場合、(2)病院などの医療機関において、衛生上での観点から、非接触で機器操作をしたい場合、(3)手の不自由な方、あるいは高齢者が自宅で機器操作を行う場合(テレビのスイッチ、ライトのスイッチなど)、などいろいろな利用場面がある。なお、高齢者にとって、このような呼吸に基づく機器インターフェイスを用いて機器操作を日常的に行うことは、一定レベル以上の呼吸を繰り返すことになるので健康にとってもよい。また、このような機器インターフェイス47aによる操作の履歴を記録しておくと、ひとりで暮している高齢者の見守りサービスも可能となる。すなわち、機器インターフェイスによる操作が一定時間行われない場合には、近親者に連絡するなどのサービスである。
 図50(a)は、パソコンの操作の例(特に、電源のオン、オフ操作や、両手でキーボードを打っている場合の別の操作の付加など)、図50(b)は、料理などで手がふさがっている場合の操作の例(電話の対応、他の家電製品の操作など)、図50(c)は、体の不自由な方の操作補助(ベッドの操作、デジタル機器の操作)を行う例である。
 同一の湿度の空気を導入した場合の応答性を考えると、連続した呼吸の際のピーク強度の差を検出し、そのピーク差の変動を演算部や制御部で解析することによって、口と検出器との距離の変動に加えて、呼吸の質(腹式呼吸か、胸式呼吸かによる呼気の湿度の差)を表している。当該ピーク差を利用すればユーザーの状態を把握することが可能となり、別に設けられる外部接続機器等を用いてモニター等に呼吸の現状を表示させ、更に理想の呼吸状態を予め記憶されるメモリ等から読み出して表示するようにすると、呼吸訓練法、あるいは呼吸の質を得点化する呼吸ゲームに活用することができる。
 図1、図7あるいは図17に示した装置を用いて、指から発生する液体、気体を検出することも可能である。特に、指からの汗を導入して、生成した水クラスターを呼気アルコールセンサー29aと同様な装置に導入すると、指からの汗の導入を検出した上で、アルコールが簡便に検出できる。このとき、指静脈認証と組み合わせることにより、個人を識別した上でアルコールを検出できることになり、飲酒運転防止に効果がある。
 具体的には指認証装置において、指を設置する設置部に生体表面から出る水分が検出可能なように開口部を設ければ良いが、図17に示す呼気センサー部の、側面ではなく上部に設ける構成とすればよい。このとき、指の撮像に必要な光や、カメラが影響されない位置に光源や撮像部を配置する必要がある。その配置は、例えば、光源を指よりも上方に配置し、指設置部における開口部の直下に撮像部を配置する構成や、光源からの光が全て検出電極に遮光されないように対向配置させたりすることが挙げられる。この配置に限らず、光源と撮像部、検出電極の配置は、光源から指に向かう光を全て遮光しなければよい。また、指認証装置に使用する指と、本発明によるセンサーに用いる指が異なる場合には、指認証装置と本発明によるセンサーを並列に置くことも可能である。
 特に、図14に示すような多層型呼気センサーでは、呼気からの電荷を持つ水クラスターから電流を取得できるので、呼気発電に利用することも可能である。例えば、図44のように、多層型呼気センサーを口あるいは鼻の近くに位置させることにより、継続して電流を得ることができる。蓄電技術と組み合わせることにより、大規模なオフィスでは発電インフラとして機能させることができる。
 高電圧が印加される電圧印加電極と、生成した電流を検出する検出電極に対して、感電防止の観点からメッシュ状板を配置することは、図7に記載した。しかし、メッシュ状板を設けると、呼気の一部がメッシュ状板で反射し、呼気がメッシュ状板を通過する際の抵抗となる。特に、呼気センサーと、口あるいは鼻との距離が離れた状態で呼気を導入する場合にはその影響が無視できなり、検出精度に影響する可能性も考えられる。
 そこで、図51に示すように、電圧印加電極1sと検出電極2kとの間をオープンとして呼気が導入されやすいようにし、しかも、感電防止の観点から、呼気導入側の電圧印加電極1sと検出電極2kの一部を絶縁材の電極カバー49a、49bで被覆する方法が考えられる。この図では、電圧印加電極1sと検出電極2kとの距離が10mm、電圧印加電極1sと検出電極2kの呼気導入側を絶縁材で2mm程度被覆し、結果として、呼気を導入する口の幅が6mm程度となっている一例を示している。
 このような構造にすることのメリットはもうひとつある。図52は、電圧印加電極と検出電極の距離を10mmとし、電圧印加電極に1000Vを印加した場合に、(a)絶縁材の電極カバーがある場合と(b)絶縁材の電極カバーがない場合の呼気ピーク強度の差を示している。このとき、呼気センサーと口との距離は8cm程度である。絶縁材の電極カバーがある場合のほうが、強度が強いことがわかる。この理由は以下のように考えることができる。
 図53は、電圧印加電極と検出電極の距離を10mmとし、電圧印加電極に1000Vを印加した場合の、静電ポテンシャル(図では、100V毎に等電位線を示している)を示している。図53(a)は、絶縁材の電極カバーがある場合、図53(b)は、絶縁材の電極カバーがない場合である。絶縁材の電極カバーがない場合には、等電位線が電極外側に大きく漏れ出しているのに対し、絶縁材の電極カバーがある場合は、その漏れ出しが小さい。このことは、絶縁材の電極カバーがある場合には、水クラスターが平行平板電界中に取り込まれてから、短い時間で強い電界の力を受けることを示している。本発明における、水クラスターから電荷を持つ水クラスターが生成する現象が、静電霧化現象(液体表面の電界が大きくなると、表面に働く静電気力によって電気流体力学的に不安定になり、液滴が多数の帯電液滴を発生する現象)に類似の現象であるとすると、短い時間で電界の影響を受ける方が帯電液滴の生成効率が良いことが予想される。すなわち、図51のように、電圧印加電極1sと検出電極2kの呼気導入側に絶縁材の電極カバー49a、49bを設け、短い時間で強い電界の力を受けることの効果が理解できる。
一方、光センサーを用いて、電圧印加電極と検出電極との間に、指や物が入った場合には高電圧が遮断されるようにすると、さらに安全であることは言うまでもない。
 呼気センサーは小型にすることが可能であるので、図44に示すように、ヘッドセットに設置し、生体リズム可視化センサーとして活用することが可能となる。しかし、このようなヘッドセットに呼気センサーを設置する場合には、長時間の計測に耐えられるように、ヘッドセットに設置する部品をできるだけ軽量化する必要がある。
 これを解決する方法として、図54のように、呼気センサーを、呼気導入部50、呼気伝達部51、呼気検出部52に分離する方法がある。呼気導入部50は、口径10mm程度の短い管(あるいは、L字管)、呼気伝達部51は、柔らかく容易に変形するチューブ(例えば、内径1から20mm程度のシリコンチューブなど)である。呼気検出部52は呼気センサーとほぼ同じ構造をしているが、呼気伝達部51のチューブが接続され、呼気が直接導入されるようになっている。呼気導入部50から導入された呼気を、呼気伝達部51のチューブを通して伝達する場合、チューブ内に空気だけが充填されている場合には、呼気そのものがチューブを通過する時間が必要となり、リアルタイム計測はできない。
しかし、あらかじめチューブ内に呼気もしくは呼気と同等の湿度を有する気体を充填しておくと、呼気そのものが伝達媒体となって、呼気導入部50からの呼気の変化をほぼリアルタイムで計測することが可能となる。呼吸の変化が、呼気(実質的には、湿度の高い空気)が媒体となって、縦波としてチューブ内を伝搬するためである。
 図55には、呼気導入部50、呼気伝達部51、呼気検出部52による、鼻からの呼気計測の例を示した。このとき、呼気伝達部51のチューブの内径は10mm程度である。図55(a)に示すように、呼気伝達部51のチューブ内での縦波の減衰により、チューブの長さが長くなると検出される呼気ピークの強度は低下するが、図55(b)に示すように、チューブの長さが150cmあっても鼻からの呼気が計測可能である。呼気伝達部に用いるチューブの長さは内径を10mm程度とした場合、数百cm程度は使用可能である。
 以上のように、呼気センサーは3つの部分に分割でき、呼気導入部は簡単にヘッドセットに装着できるので、図44の生体リズム可視化以外にも、利用の仕方は大きく広がる。例えば、ある新商品や新広告を評価する際のマーケティングへの応用である。最近では、MRI装置を用いたマーケットリサーチも行われているが、詳細な脳機能計測はできるものの、装置が高価であり、同時に複数の評価を行うことは難しい。それに対して、図54に示すような呼気センサーは、被験者にヘッドセットをセットし、自然な鼻からの呼吸を計測しながら、新商品や新広告などをみた際の呼吸の変化を捉えるものであるので、同時に多くの被験者の計測が可能となり、結果として、呼吸の変化が同期するかどうかで評価が可能となり、評価のための新しい指標になりえる。
 口、あるいは鼻と呼気センサーとの距離が離れた状態で、呼気を導入する場合には、呼気は空気中の分子を衝突して拡散する。この場合には、簡単に、捕集する仕組みが必要となる。
 このために、呼気センサー14dに、捕集手段であるつば53aを設けることは有効である。図56には、その一例を示した。図56(b)は、図56(a)を上から見た断面図であるが、つばは呼気センサー14dの本体から数cm飛び出た形状となっている。通常は、つば部分を折りたたんでおき、使用する場合に広げるようにしても良い。図57には、(a)つばをつけた場合と、(b)つばをつけていない場合の、呼気ピークの強度差を示した。つばをつけた場合の方が、観測される呼気ピークの強度が強く、呼気捕集のために、つばをつけることが有効であることがわかる。また図示しないが、捕集機構として呼気センサー周辺に呼気が集まる様に吸気させる吸気部を単独、もしくはつば53aに設けるようにしても良い。なお、このつば53aは通常接地しておく。
 呼気センサーは、基本的に呼気を計測するものであるが、微小電流計における増幅率を大幅に上げると、物体のわずかな動きも検出することが可能となる。わずかに空気の流れが変化すると、呼気センサーにおける水クラスターの検出効率が変化することを利用するものであり、動体検知センサーというべきものである。さらに、動体検知センサー54aに、接地されていない、つば53bを設けると、つば53bと検出電極との間でコンデンサーが形成され、人のような電荷を有する物体が近づくと誘導電流が誘起され、検出電極でその電流も検出可能となる。このセンサーでは、電圧印加電極と検出電極の配置を工夫することにより、物体の動く方向も検出することができる。図58に、右から、電圧印加電極1t、検出電極2l、電圧印加電極1u、検出電極2mの、4枚の電極、そしてつば53bを配置した、動体検知センサー54aの例を示した。なお、この実施例では、つばを持つ形状の場合を示しているが、つばを持たない平板状であっても良いことは言うまでもない。また、図58中には、つば53bを接地する場合(呼気センサーの場合)としない場合(動体検知センサーの場合)を簡単に切り替えるための切り替えスイッチ58を示した。
 検出例として、動体検知センサー54aに対して、図58に示した矢印のような2方向の動きを検出した結果を図59に示した。これは、動体検知センサー54aから1m程度離れたところを、(a)人が毎秒1メートル程度のスピードで、左から右に通過した場合と、(b)人が毎秒1メートル程度のスピードで、右から左に通過した場合に得られる波形である。電圧印加電極には、1000Vを印加し、図51に示すような絶縁材の電極カバーを用いた。3回同じことを繰り返しているので、それぞれ3個のピークが得られている。図58のような電極の配置の場合、人が(a)左から右に、あるいは(b)右から左に通過すると、図59に示すような、時系列の第1ピーク、第2ピーク、第3ピーク、第4ピークが観測される。このとき、第1ピークは、左から右への移動の場合より、右から左への移動の場合の方が大きいのに対し、第4ピークでは、右から左への移動の場合より、左から右への移動の場合の方が大きい。すなわち、第1ピークと第4ピークを比較することによって、どの方向の移動かを特定することができる。人の検出には光センサーなども使用されるが、移動方向も特定できるのが本発明の大きな特徴である。
 このような特性を生かすと、いろいろな応用が考えられる。図60(a)は、今後増えると予想される、独居高齢者宅への応用例である。動体検知に高感度で、移動の方向も確認できる、本発明の動体検知センサーを、家における主要な場所(玄関、食卓、トイレ、風呂場、寝室など)に設置すれば、高齢者のプライバシーを保ったまま、高齢者の生活を見守ることができる。一日の生活パターンはある程度決まっているので、それぞれのセンサーが定期的に反応しなければ生活反応がないということで、独居高齢者宅をチェックすることになる。
 一方、図61(b)に示すように、博物館など重要な公共施設における展示品の盗難防止にも活用できる。夜間など、展示品に近づく、あるいは展示品を動かすことによっても、センサーが高感度に反応するので盗難防止に有効である。さらに、図60(c)のように、ゲートにも使用できる。発光部と受光部が必要な光センサーと異なり、本発明における動体検知センサーは片側にセンサーを配置するだけで検出可能であると同時に、動く方向も検出できるので入室か退室かを判断できる。
 さらに、図25に示すように、車の中に設置しておくと、ドライバーが座席に座る際の信号をつかまえて着座センサーとしても使用できるし、車の所有者以外の人間がドアを開けた場合には警告音がなるようにして盗難防止としても活用できる。
 上記の検出例においては、動体検知センサー内で時系列のピークを比較する例を挙げたが、これに限らずセンサーによって検知した結果を取得して波形を算出し、当該波形から得られる時系列のピーク値を比較する演算部を有する演算装置とを有線または無線にて接続するように構成しても良い。当該演算装置に表示装置を接続しておけば、リアルタイムで検出波形をモニタリングできる。動体検知センサー単独の場合、演算装置と接続された場合の双方において、好ましくは比較結果に対して上記例の様な動きの有無、移動方向等を検知するために一定の閾値を設けておき、当該閾値を超えたときに警告を発するように警告装置をセンサー、演算装置の少なくともいずれか一方に設けるようにしても良い。
 このような構成とすることで、呼気検知のみでなく体動センサーとして用いることも可能となる。
 本発明は、非接触で非侵襲の呼気検出に利用可能である。自動車などの移動体における飲酒運転防止装置、居眠り運転防止装置にも利用可能である。また、非接触で機器を操作するためのインターフェイスにも利用可能である。さらに、呼吸訓練法、分析の前処理としても使用できる。
1a・・電圧印加電極
1b・・電圧印加電極
1c・・電圧印加電極
1d・・電圧印加電極
1e・・電圧印加電極
1f・・電圧印加電極
1g・・電圧印加電極
1h・・電圧印加電極
1i・・電圧印加電極
1j・・電圧印加電極
1k・・電圧印加電極
1l・・電圧印加電極
1m・・電圧印加電極
1n・・電圧印加電極
1o・・電圧印加電極
1p・・電圧印加電極
1q・・電圧印加電極
1r・・電圧印加電極
1s・・電圧印加電極
1t・・電圧印加電極
1u・・電圧印加電極
2a・・検出電極
2b・・検出電極
2c・・検出電極
2d・・検出電極
2e・・検出電極
2f・・検出電極
2g・・検出電極
2h・・検出電極
2i・・検出電極
2j・・検出電極
2k・・検出電極
2l・・検出電極
2m・・検出電極
3a・・高圧電源
3b・・高圧電源
3c・・高圧電源
4a・・微小電流計
4b・・微小電流計
4c・・微小電流計
4d・・微小電流計
4e・・微小電流計
4f・・微小電流計
4g・・微小電流計
4h・・微小電流計
5・・径の小さな電荷を持つ水クラスター
6・・径の大きな電荷を持つ水クラスター
7a・・データ処理部
7b・・データ処理部
7c・・データ処理部
7d・・データ処理部
7e・・データ処理部
7f・・データ処理部
7g・・データ処理部
7h・・データ処理部
7i・・データ処理部
7j・・データ処理部
8a・・CPU
8b・・CPU
8c・・CPU
8d・・CPU
8e・・CPU
8f・・CPU
8g・・CPU
8h・・CPU
8i・・CPU
8j・・CPU
9a・・インターフェイス
9b・・インターフェイス
9c・・インターフェイス
9d・・インターフェイス
9e・・インターフェイス
9f・・インターフェイス
9g・・インターフェイス
9h・・インターフェイス
9i・・インターフェイス
9j・・インターフェイス
10a・・内部メモリ
10b・・内部メモリ
10c・・内部メモリ
10d・・内部メモリ
10e・・内部メモリ
10f・・内部メモリ
10g・・内部メモリ
10h・・内部メモリ
10i・・内部メモリ
10j・・内部メモリ
11a・・外部メモリ
11b・・外部メモリ
11c・・外部メモリ
11d・・外部メモリ
11e・・外部メモリ
11f・・外部メモリ
11g・・外部メモリ
11h・・外部メモリ
11i・・外部メモリ
11j・・外部メモリ
12a・・スピーカー
12b・・スピーカー
12c・・スピーカー
12d・・スピーカー
12e・・スピーカー
12f・・スピーカー
12g・・スピーカー
12h・・スピーカー
12i・・スピーカー
12j・・スピーカー
13a・・表示器
13b・・表示器
13c・・表示器
13d・・表示器
13e・・表示器
13f・・表示器
13g・・表示器
13h・・表示器
13i・・表示器
13j・・表示器
14a・・呼気センサー
14b・・呼気センサー
14c・・呼気センサー
14d・・呼気センサー
15a・・メッシュ状板
15b・・メッシュ状板
15c・・メッシュ状板
15d・・メッシュ状板
15e・・メッシュ状板
15f・・メッシュ状板
15g・・メッシュ状板
16・・呼気導入開始ランプ
17・・呼気導入停止ランプ
18a・・電極支え
18b・・電極支え
18c・・電極支え
18d・・電極支え
18e・・電極支え
18f・・電極支え
19a・・呼気センサーケース
19b・・呼気センサーケース
19c・・呼気センサーケース
19d・・呼気センサーケース
19e・・呼気センサーケース
20a・・ポンプ排気口
20b・・ポンプ排気口
20c・・ポンプ排気口
20d・・ポンプ排気口
20e・・ポンプ排気口
20f・・ポンプ排気口
20g・・ポンプ排気口
20h・・ポンプ排気口
21a・・ケーブル支え
21b・・ケーブル支え
21c・・ケーブル支え
22a・・検出電極用ケーブル
22b・・検出電極用ケーブル
22c・・検出電極用ケーブル
23・・呼気センサーケーブル
24a・・多層型用検出電極
24b・・多層型用検出電極
24c・・多層型用検出電極
25a・・多層型用電圧印加電極
25b・・多層型用電圧印加電極
25c・・多層型用電圧印加電極
25d・・多層型用電圧印加電極
26a・・多層型用電極支え
26b・・多層型用電極支え
27・・多層型用呼気センサーケース
28a・・多層型用ポンプ排気口
28b・・多層型用ポンプ排気口
28c・・多層型用ポンプ排気口
28d・・多層型用ポンプ排気口
29a・・呼気アルコールセンサー
29b・・呼気アルコールセンサー
29c・・呼気アルコールセンサー
29d・・呼気アルコールセンサー
29e・・呼気アルコールセンサー
29f・・呼気アルコールセンサー
29g・・呼気アルコールセンサー
29h・・呼気アルコールセンサー
30a・・アルコールセンサーケース
30b・・アルコールセンサーケース
30c・・アルコールセンサーケース
30d・・アルコールセンサーケース
30e・・アルコールセンサーケース
30f・・アルコールセンサーケース
30g・・アルコールセンサーケース
30h・・アルコールセンサーケース
30i・・アルコールセンサーケース
30j・・アルコールセンサーケース
30k・・アルコールセンサーケース
30l・・アルコールセンサーケース
30m・・アルコールセンサーケース
30k・・アルコールセンサーケース
31a・・アルコールセンサー用ケーブル
31b・・アルコールセンサー用ケーブル
31c・・アルコールセンサー用ケーブル
31d・・アルコールセンサー用ケーブル
32a・・アルコールセンサーヘッド
32b・・アルコールセンサーヘッド
32c・・アルコールセンサーヘッド
32d・・アルコールセンサーヘッド
32e・・アルコールセンサーヘッド
32f・・アルコールセンサーヘッド
32g・・アルコールセンサーヘッド
33・・呼気アルコール導入口
34a・・呼気アルコールセンサーケース
34b・・呼気アルコールセンサーケース
35・・台座
36・・コラムカバー
37・・ステアリングホイール
38・・風速計用導入口
39a・・風速計ヘッド
39b・・風速計ヘッド
40a・・居眠り防止センサー
40b・・居眠り防止センサー
41a・・香りカプセル
41b・・香りカプセル
41c・・香りカプセル
42・・空気導入口
43・・生体リズム可視化センサー
44a・・プラント用センサー
44b・・プラント用センサー
45・・配管
46・・亀裂
47a・・機器インターフェイス
47b・・機器インターフェイス
47c・・機器インターフェイス
47d・・機器インターフェイス
48・・外部機器とのインターフェイス
49a・・電極カバー
49b・・電極カバー
50・・呼気導入部
51・・呼気伝達部
52・・呼気検出部
53a・・つば
53b・・つば
54a・・動体検知センサー
54b・・動体検知センサー
54c・・動体検知センサー
55・・食卓
56・・展示品
57・・ゲート
58・・スイッチ

Claims (9)

  1. 筐体内が大気圧環境下であって、
    当該筐体内に、外気を筐体内に導入する導入手段と、
    当該導入手段によって、筐体内に導入された外気に含まれる荷電粒子の偏向された一部を
    検出する検出電極と、
    当該検出電極と対抗する対抗電極を有することを特徴とするイオン検出装置。
  2. 請求項1に記載のイオン検出装置において、
    前記対向電極と、前記検出電極との間に電位差を発生させる制御手段を有することを特徴
    とするイオン検出装置。
  3. 請求項1に記載のイオン検出装置において、
    前記筐体内に外気が滞留することを防ぐ排気手段を備えることを特徴とするイオン検出装
    置。
  4. 請求項1に記載のイオン検出装置において、
    前記外気は呼気であることを特徴とするイオン検出装置。
  5. 大気圧下におかれた筐体内に気体を導入する導入口と、当該導入された気体からイオンを
    補集する第一電極と、当該第一電極を挟み込むように配置された第二電極と、前記第一電
    極に接続された電流計測手段を備え、当該電流計測手段における計測結果を基に、
    当該気体に含まれる成分を分析するデータ解析装置を備えることを特徴とするイオン検出
    装置。
  6. 筐体内が大気圧環境下であって、
    当該筐体内に、
    呼気を筐体内に導入する導入手段と、
    筐体内に導入された外気に含まれる荷電粒子の偏向された一部を検出する検出電極と、
    当該検出電極と対向する対向電極とを備え、
    導入された外気中の成分を検出するセンサーを有することを特徴とするイオン検出装置。
  7. 請求項6に記載のイオン検出装置において、
    前記センサーは、アルコールセンサーであることを特徴とするイオン検出装置。
  8. 請求項7に記載のイオン検出装置において、
    前記センサーによって検出される検出信号を元に呼気スペクトルを算出する演算手段を備
    えることを特徴とするイオン検出装置。
  9. 請求項8に記載のイオン検出装置において、
    前記呼気スペクトルから呼気のピークを特定し、
    呼気ピークの時間変化を検出することを特徴とするイオン検出装置。
PCT/JP2010/005533 2009-10-13 2010-09-10 イオン検出装置 WO2011045891A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543926A JP5518093B2 (ja) 2009-10-13 2010-09-10 イオン検出装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-235877 2009-10-13
JP2009235877 2009-10-13
JP2010-121110 2010-05-27
JP2010121110 2010-05-27

Publications (1)

Publication Number Publication Date
WO2011045891A1 true WO2011045891A1 (ja) 2011-04-21

Family

ID=43875948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005533 WO2011045891A1 (ja) 2009-10-13 2010-09-10 イオン検出装置

Country Status (2)

Country Link
JP (2) JP5518093B2 (ja)
WO (1) WO2011045891A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192050A1 (ja) * 2013-05-27 2014-12-04 株式会社日立製作所 イオン検出装置
JP2016053573A (ja) * 2015-10-28 2016-04-14 株式会社日立製作所 外気測定器とそれを備えた移動体
JP2017504231A (ja) * 2013-11-21 2017-02-02 クアルコム,インコーポレイテッド スニッフィングスマートフォン
EP3795405A1 (de) * 2019-09-20 2021-03-24 VitaScale GmbH Transportvorrichtung mit einer insassenkabine umfassend mindestens einen sensor zur atemgasanalyse, mindestens eine positionsbeschimmungsvorrichtung und mindestens eine datenverarbeitungsvorrichtung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062267A (ja) * 2016-10-13 2018-04-19 株式会社東海理化電機製作所 飲酒運転防止システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014694A (ja) * 2001-06-29 2003-01-15 Andes Denki Kk イオン測定器
JP2003156477A (ja) * 2001-11-22 2003-05-30 Sharp Corp イオン量検出方法及びイオン量検出装置
JP2009139348A (ja) * 2007-12-11 2009-06-25 Tokai Rika Co Ltd イオン濃度測定器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211443B2 (ja) * 1992-12-28 2001-09-25 株式会社豊田中央研究所 アルコール検出装置
JP4028006B2 (ja) * 1996-06-17 2007-12-26 秀雄 植田 呼気中の特定ガス成分の分析装置
US6495823B1 (en) * 1999-07-21 2002-12-17 The Charles Stark Draper Laboratory, Inc. Micromachined field asymmetric ion mobility filter and detection system
US6512224B1 (en) * 1999-07-21 2003-01-28 The Charles Stark Draper Laboratory, Inc. Longitudinal field driven field asymmetric ion mobility filter and detection system
JP2001318069A (ja) * 2000-05-10 2001-11-16 Matsushita Electric Ind Co Ltd 呼気ガス分析装置
JP3987031B2 (ja) * 2001-06-25 2007-10-03 イオンフィニティ エルエルシー フィールドイオン化素子およびその応用
JP4750781B2 (ja) * 2004-02-26 2011-08-17 デルタ,ダンスク エレクトロニック,リス アンド アクスティック 生体粒子を検出するための方法、チップ、装置及び統合システム
JP4597622B2 (ja) * 2004-09-27 2010-12-15 根本特殊化学株式会社 電気化学式ガスセンサ
JP4570971B2 (ja) * 2005-01-24 2010-10-27 日本電信電話株式会社 酒気帯びチェッカーおよび酒気帯び検知方法
JP2009501927A (ja) * 2005-07-19 2009-01-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 流体分析装置
JP2007205994A (ja) * 2006-02-03 2007-08-16 Matsushita Electric Ind Co Ltd 呼気成分溶解容器、呼気成分測定装置、及び呼気成分測定方法
JP4967920B2 (ja) * 2007-08-10 2012-07-04 株式会社豊田中央研究所 ガス検出装置
DE102008005281B4 (de) * 2008-01-19 2014-09-18 Airsense Analytics Gmbh Verfahren und Vorrichtung zur Detektion und Identifizierung von Gasen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014694A (ja) * 2001-06-29 2003-01-15 Andes Denki Kk イオン測定器
JP2003156477A (ja) * 2001-11-22 2003-05-30 Sharp Corp イオン量検出方法及びイオン量検出装置
JP2009139348A (ja) * 2007-12-11 2009-06-25 Tokai Rika Co Ltd イオン濃度測定器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192050A1 (ja) * 2013-05-27 2014-12-04 株式会社日立製作所 イオン検出装置
JPWO2014192050A1 (ja) * 2013-05-27 2017-02-23 株式会社日立製作所 イオン検出装置
US10241106B2 (en) 2013-05-27 2019-03-26 Hitachi, Ltd. Atmospheric pressure ion detector for outside air measurement
JP2017504231A (ja) * 2013-11-21 2017-02-02 クアルコム,インコーポレイテッド スニッフィングスマートフォン
JP2016053573A (ja) * 2015-10-28 2016-04-14 株式会社日立製作所 外気測定器とそれを備えた移動体
EP3795405A1 (de) * 2019-09-20 2021-03-24 VitaScale GmbH Transportvorrichtung mit einer insassenkabine umfassend mindestens einen sensor zur atemgasanalyse, mindestens eine positionsbeschimmungsvorrichtung und mindestens eine datenverarbeitungsvorrichtung

Also Published As

Publication number Publication date
JP2014002162A (ja) 2014-01-09
JPWO2011045891A1 (ja) 2013-03-04
JP5518093B2 (ja) 2014-06-11
JP5750478B2 (ja) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5750478B2 (ja) イオン検出装置
JP5254432B2 (ja) イオン検出装置
US20200139165A1 (en) Systems and methods for respiratory health management
JP2023093609A (ja) 肺健康管理のためのシステムおよび方法
CN107530563B (zh) 用于空气过滤监测的系统和方法
US20160363582A1 (en) Breath analyzer
KR101484581B1 (ko) 상호작용형 알콜측정
CN111754729A (zh) 疲劳驾驶提示装置及提示方法
Reche et al. Athletes' exposure to air pollution during World Athletics Relays: A pilot study
US8044772B1 (en) Expert system assistance for persons in danger
US10065138B2 (en) Remote controllable air treatment apparatus
US20160371590A1 (en) Longitudinal Health And Predictive Modeling From Air Analyzer And Treatment System
JP2009529673A (ja) 服薬遵守モニターシステム
Kulle et al. Formaldehyde dose-response in healthy nonsmokers
Ding et al. Aerosols from speaking can linger in the air for up to nine hours
CN103278601B (zh) 汽车车内气体分析方法
CN104925113A (zh) 一种新型多功能方向盘
JP5767843B2 (ja) イオン検出装置
AU2019298413A1 (en) Digital aroma dispersion system for predicting and mitigating motion sickness
JP2016154759A (ja) 生体情報収集椅子及びこれを用いた乗り物並びに生体情報診断システム
Johnson et al. Testing for cannabis intoxication: current issues and latest advancements
CN104948726A (zh) 一种新型换档杆
Messan et al. Bronchospasm diagnosis in motorcycle taxi drivers exposed to automotive pollutants in Porto-Novo
Salvi et al. Effects of air pollution on allergy and asthma
CN203815457U (zh) 一种可调式车载呼吸监测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543926

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823160

Country of ref document: EP

Kind code of ref document: A1