WO2011043122A1 - 光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステム - Google Patents

光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステム Download PDF

Info

Publication number
WO2011043122A1
WO2011043122A1 PCT/JP2010/063201 JP2010063201W WO2011043122A1 WO 2011043122 A1 WO2011043122 A1 WO 2011043122A1 JP 2010063201 W JP2010063201 W JP 2010063201W WO 2011043122 A1 WO2011043122 A1 WO 2011043122A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical
port
output
ports
Prior art date
Application number
PCT/JP2010/063201
Other languages
English (en)
French (fr)
Inventor
正宏 坂内
中村 滋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011535310A priority Critical patent/JP5287993B2/ja
Priority to US13/499,904 priority patent/US8811817B2/en
Publication of WO2011043122A1 publication Critical patent/WO2011043122A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0206Express channels arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0269Optical signaling or routing using tables for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures

Definitions

  • the present invention relates to an optical communication network based on wavelength demultiplexing, and more particularly, to an optical signal transmitting apparatus, an optical signal receiving apparatus, a wavelength demultiplexing optical communication apparatus, and a wavelength path system.
  • WDM Widelength Division Multiplexing
  • ROADM Reconfigurable Optical Add Drop Multiplexer
  • Patent Document 1 describes a technology related to high reliability of a wavelength path network.
  • FIG. 1 of Patent Document 1 shows a basic configuration of a wavelength path demultiplexing optical transmission device (hereinafter simply referred to as “transmission device”) and an example of switching when a failure occurs.
  • FIG. 1B of Patent Document 1 shows a switching operation corresponding to the failure of the optical transmitter 12-1
  • FIG. 1C of Patent Document 1 shows a failure of the transmission line 52-1. A switching operation corresponding to is shown.
  • the signal selection circuit 11 switches the signal output destination from the optical transmitter 12-1 to the optical transmitter 13-1, so that the optical transmitter 13-1 prepared as a standby system operates as an active system.
  • the wavelength multiplexing means 14 wavelength-multiplexes the optical signals from the optical transmitters 12-2 to 12-m and 13-1 to generate a wavelength-multiplexed optical signal, and the wavelength-multiplexed optical signal is transmitted to the transmission line 52-1. To send.
  • the wavelength demultiplexing means 21 demultiplexes the wavelength multiplexed optical signal from the transmission line 52-1, into optical signals of each wavelength, and transmits the optical signals of each wavelength to the optical receivers 22-2 to 23-1. To do.
  • Each of the optical receivers 22-2 to 23-1 receives an optical signal of each wavelength and outputs a signal corresponding to the optical signal to the signal selection circuit 24.
  • the signal selection circuit 24 switches the output destination of the signal so that the signal from the optical receiver 23-1 is substituted for the signal from the optical receiver 22-1.
  • the wavelength multiplexing means 14 wavelength-multiplexes the optical signals from the optical transmitters 12-1 to 12-m to generate a wavelength multiplexed optical signal, and outputs the wavelength multiplexed optical signal from the transmission line 52-1. Switch to system transmission line 52-2.
  • the wavelength separation means 21 having the same wavelength input / output characteristics as the wavelength multiplexing means 14 separates the wavelength multiplexed optical signal from the transmission line 52-2 into the optical signals of the respective wavelengths and converts the optical signals of the respective wavelengths.
  • the signals are sent to the optical receivers 22-1 to 22-m, respectively.
  • FIG. 1 of Patent Document 1 shows a case where there are two transmission lines, an active system and a standby system, but it is also possible to use a plurality of operation system transmission lines. Further, as shown in FIG. 9 of Patent Document 1, it is possible to expand the network by an optical add / drop node.
  • FIG. 1A is a diagram illustrating a transmission device described in Patent Document 1.
  • FIG. 1A is a diagram illustrating a transmission device described in Patent Document 1.
  • Signal selection circuits (optical matrix switches) 1501 and 1504 are provided, respectively.
  • the transmission side and the reception side are connected via three or more transmission paths (or networks) 1506 to 1509.
  • optical signals of wavelengths ⁇ 1 to ⁇ 4 transmitted from the optical transmitter 1505 are input to the input / output ports P1 to P4 of the wavelength multiplexing unit 1502 via the optical matrix switch 1501, respectively.
  • the wavelength multiplexing unit 1502 wavelength multiplexes the optical signals of wavelengths ⁇ 1 to ⁇ 4 to generate a wavelength multiplexed optical signal, and outputs the wavelength multiplexed optical signal from the route port # 1. Thereafter, the wavelength multiplexed optical signal is input to the route port # 1 of the wavelength demultiplexing unit 1503 via the transmission line 1506.
  • the wavelength demultiplexing unit 1503 separates the wavelength multiplexed optical signal for each wavelength, generates optical signals with wavelengths ⁇ 1 to ⁇ 4, and outputs the optical signals with wavelengths ⁇ 1 to ⁇ 4 from the input / output ports P1 to P4, respectively.
  • optical signals of wavelengths ⁇ 1 to ⁇ 4 transmitted from the wavelength separation unit 1503 are received by the optical receiver 1510 via the optical matrix switch 1504.
  • the transmission apparatus not only simultaneous switching from the active transmission line to the standby transmission line due to a transmission line failure, or switching operation for failure of the optical transmitter or optical receiver, but also any wavelength in any transmission line. An operation for transmitting an optical signal is required.
  • Patent Document 1 has a problem that a combination of wavelength and path that cannot be selected occurs.
  • wavelength multiplexing unit 1502 and wavelength separation unit 1503 input / output characteristics of the wavelength multiplexing unit 1502 and wavelength separation unit 1503 and input / output characteristics of the optical matrix switches 1501 and 1504 will be described.
  • the wavelength multiplexing unit and the wavelength separation unit have the same configuration.
  • FIGS. 2A and 2B are diagrams showing a connection relationship between the input / output ports P1 to P4 and the route ports # 1 to # 4 of the wavelength multiplexing unit and the wavelength separation unit.
  • 2C and 2D are diagrams showing the connection relationship between the input / output ports P1 to P8 and the route ports # 1 to # 8 of the wavelength multiplexing unit and the wavelength demultiplexing unit.
  • the connection relationship between the input / output ports P1 to P4 and the route ports # 1 to # 4 has wavelength dependency. Therefore, when an optical signal with wavelength ⁇ 1 is input to the input / output port P1, an optical signal with wavelength ⁇ 1 is output from the route port # 1, and when an optical signal with wavelength ⁇ 2 is input to the input / output port P1, the wavelength ⁇ 2 The optical signal is output from the route port # 2.
  • FIG. 3A shows the 4 ⁇ 4 optical matrix switch 1501 shown in FIG. 1A. Note that the optical matrix switch 1504 shown in FIG. 1A has the same configuration as the optical matrix switch 1501.
  • optical switch elements 1701 having first and second input portions and first and second output portions are arranged in a matrix in the same direction.
  • 3B and 3C are diagrams showing the optical switch element 1701.
  • the optical switch element 1701 outputs a light signal received at the first input unit from the first output unit and outputs an optical signal received at the second input unit from the second output unit, and a cross-state.
  • the bar-state that outputs the optical signal received at the first input unit from the second output unit and the optical signal received at the second input unit from the first output unit is alternatively set. Is possible.
  • an arbitrary port in one port group (vertical input / output port group in FIG. 3A) is the other port group (horizontal input / output port group in FIG. 3A). ) Can be connected to any port (non-blocking configuration). Also, in the optical matrix switch 1501, the input optical signals are output without being combined.
  • the optical matrix switch 1501 transmits the wavelength to the input / output port P1 of the wavelength multiplexing unit. It is impossible to input an optical signal of ⁇ 2.
  • An object of the present invention is to provide an optical signal transmitting apparatus, an optical signal receiving apparatus, a wavelength division multiplexing optical communication apparatus, and a wavelength path system that can solve the above-described problems.
  • the optical signal transmitter of the present invention is M (M is an integer of 2 or more) light output means for outputting optical signals having different wavelengths;
  • Optical switch means comprising: M input ports connected to the M optical output means in a one-to-one relationship; M output ports; and switching means for switching connection between the input ports and the output ports; , The M reception ports connected to the M output ports on a one-to-one basis, and the connection with the reception port is switched according to the wavelength of the optical signal input to the reception port (N is 2 Wavelength division means for transmitting a multiplexed optical signal corresponding to the optical signal received by the reception port from the transmission port, the number of transmission ports being an integer of M or less)
  • the switching means has an aggregate connection for connecting Y (Y is an integer not less than 2 and not more than M) specific input ports of the M input ports to one specific output port of the M output ports. When performing, the Y optical signals input to the Y specific input ports are combined to generate a combined signal, and the combined connection is performed by out
  • the optical signal receiver of the present invention is N (N is an integer of 2 or more) receiving ports that accept wavelength-multiplexed optical signals, and M (the connection to the receiving port is switched according to the wavelength of the wavelength-multiplexed optical signal input to the receiving port.
  • M is an integer greater than or equal to N) output ports;
  • Optical switch means comprising: M input ports connected in a one-to-one relationship with the M output ports; M output ports; and a switching means for switching connection between the input ports and the output ports;
  • M wavelength selecting means connected to the M output ports on a one-to-one basis and capable of selecting a transmission wavelength;
  • M light receiving means connected to the M wavelength selecting means on a one-to-one basis and receiving the optical signal transmitted through the wavelength selecting means connected to the M wavelength selecting means;
  • the switching means has a branch connection for connecting one specific input port of the M input ports to Y (Y is an integer of 2 or more and M or less) specific output ports of the M output ports. When performing, the branch connection is performed by dividing the optical signal input to the specific input port into Y branch signals and outputting the Y branch signals to the Y specific output ports, respectively.
  • FIG. 4 shows a transmission side apparatus included in the wavelength path demultiplexing optical transmission apparatus as the first embodiment of the present invention.
  • a transmission side device (optical signal transmission device) includes an optical matrix switch circuit 0101a, a wavelength path multiplexing / demultiplexing circuit 0102a, optical output units 0103aX to 0103aW, an optical transmission wavelength control circuit 0104a, and an optical switch branching / combining ratio control.
  • a circuit 0106a, an optical transmission device control circuit 0105a, a storage unit 2a, and a storage unit 3a are included.
  • the optical transmission wavelength control circuit 0104a, the optical switch branching / multiplexing ratio control circuit 0106a, and the optical transmission device control circuit 0105a are included in the control unit 1a.
  • Control unit 1a can be generally referred to as control means.
  • Storage unit 2a can generally be referred to as storage means.
  • Storage unit 3a can be generally referred to as storage means.
  • the optical matrix switch circuit 0101a can be generally referred to as optical switch means.
  • the light output units 0103aX to 0103aW can be generally called light output means.
  • the wavelength path multiplexing / separating circuit 0102a can be called wavelength multiplexing means.
  • FIG. 5A is a diagram showing a configuration of the optical matrix switch circuit 0101a.
  • M is not limited to 4, and may be an integer of 2 or more.
  • the switching unit 6 can be generally referred to as switching means.
  • the switching unit 6 connects Y (Y is an integer not less than 2 and not more than M) specific input ports among the M input ports 4a to 4d to one specific output port among the M output ports 5a to 5d.
  • Y is an integer not less than 2 and not more than M
  • the Y optical signals input to the Y specific input ports are combined to generate a combined signal, and the combined signal is output to the specific output port.
  • the switching unit 6 multiplexes the Y optical signals so that the powers of the Y optical signals included in the combined signal are equal to each other.
  • the switching unit 6 is composed of a plurality of optical switch elements 0301a connected in a grid.
  • the optical switch element 0301a includes a port a (second input unit), a port b (first input unit), a port c (second output unit), and a port d (first input unit). Output section).
  • the optical switch elements 0301a are arranged in a matrix in M rows and M columns in the same direction.
  • the port b of the optical switch element 0301a in the Mth row (Dth row in FIG. 5A) is connected to the input port 4, and the port c of the optical switch element 0301a in the Mth column is the output port 5 Are connected to each other.
  • the optical switch element 0301a combines the optical input signal from the port b with the optical input signal from the port a by appropriately adjusting the branching / combining ratio of the optical switch element 0301a. Is possible.
  • the optical switch element 0301a can alternatively set a cross state, a bar state, and a combined state.
  • the cross state is a state (Cross-state) in which the optical signal received at port b is output from port d and the optical signal received at port a is output from port c.
  • the bar state is a state (Bar-state) in which an optical signal received at port b is output from port c and an optical signal received at port a is output from port d.
  • the combined state is a state in which the optical signal received at port b and the optical signal received at port a are combined and output from port c.
  • the optical switch element 0301a When performing the aggregate connection, the optical switch element 0301a generates a combined signal and outputs the combined signal from the specific output port in any of the cross state, the bar state, and the combined state. It becomes a state.
  • M optical output units 0103aX to 0103aW are transponders or optical transmitters.
  • the optical output units 0103aX to 0103aW can output an optical signal having an arbitrary WDM signal wavelength by the wavelength variable function.
  • the optical output units 0103aX to 0103aW are connected to the input ports 4a to 4d of the optical matrix switch circuit 0101a on a one-to-one basis, and output optical signals having different wavelengths.
  • the wavelength path multiplexing / demultiplexing circuit 0102a includes M wavelength demultiplexing ports (also referred to as “accepting ports”) P1 to P4 connected one-to-one with the output ports 5a to 5d of the optical matrix switch circuit 0101a, and ports P1 to P4.
  • N is not limited to 4, and may be an integer from 2 to M.
  • the storage unit 2a includes first-a connection information indicating connection relationships depending on wavelengths between the transmission ports # 1 to # 4 and the reception ports P1 to P4, and the reception ports P1 to P4 and the output ports 5a to 5d of the optical matrix switch circuit 0101a. And 2a connection information representing the connection relationship between the input ports 4a to 4d of the optical matrix switch circuit 0101a and the optical output units 0103aX to 0103aW.
  • the 1a connection information, the 2a connection information, and the 3a connection information are included in the transmission side connection information (connection information).
  • the optical output unit is specified as a transmission side communication unit (communication means) that outputs optical signals of Y types of communication wavelengths.
  • the control unit 1a refers to the transmission side connection information in the storage unit 2a, and for each transmission side communication unit, of the M input ports 4a to 4d, the specific input connected to the transmission side communication unit.
  • a port, a specific reception port connected to a communication port among the M reception ports P1 to P4, a specific output port connected to a specific reception port among the M output ports 5a to 5d, and a specific input port The specific optical path in the switching unit 6 to which the output port is connected is specified.
  • the control unit 1a controls the switching unit 6 so that each of the specific optical paths is formed.
  • control unit 1a when the control unit 1a specifies the transmission side communication unit, for each transmission side communication unit, the control unit 1a determines the specific optical path in the optical matrix switch circuit 0101a that is a part of the optical path from the transmission side communication unit to the communication port.
  • the optical switch element 0301a is set to one of a cross state, a bar state, and a combined state so as to be specified by referring to the transmission side connection information in the storage unit 2a and to form each of the specific optical paths.
  • control part 1a sets the specific optical switch element which exists in the location where specific optical paths merge among optical switch elements 0301a to a multiplexing state.
  • Each optical switch element 0301a can multiplex an optical signal received at port b and an optical signal received at port a at an arbitrary ratio in a multiplexed state.
  • the control unit 1a sets the specific optical switch element to the multiplexed state and sets the multiplexing ratio of the optical signals so that the powers of the optical signals after joining are equal.
  • the control unit 1a also includes information indicating a communication port, a communication wavelength, a transmission side communication unit, a specific optical path in the switching unit 6, a specific input port, a specific output port, and a specific reception port. Is stored in the storage unit 3a.
  • the optical transmission device control circuit 0105a When the optical transmission device control circuit 0105a receives the setting request indicating the route and wavelength (specific wavelength) by the higher-level setting means (not shown), the first-a connection information, the second-a connection information, and the third-a connection in the storage unit 2a With reference to the information, the optical transmission wavelength control circuit 0104a and the optical switch branching / combining ratio control circuit 0106a are controlled.
  • the optical transmission wavelength control circuit 0104a sets the wavelength of the optical signal output from the optical output unit 0103a specified in the request to the transmission wavelength specified in the request. Set to (specific wavelength).
  • the optical switch branching / combining ratio control circuit 0106a sets the branching / combining ratio of the optical switch element 0301a designated by the request.
  • FIG. 6 shows a receiving side apparatus of the wavelength path demultiplexing optical transmission apparatus as the first embodiment of the present invention.
  • the receiving side device includes an optical matrix switch circuit 0101b, a wavelength path multiplexing / demultiplexing circuit 0102b, optical receiving units 0103bX to 0103bW, an optical switch branching / combining ratio control circuit 0106b, and an optical transmission device control.
  • the circuit includes a circuit 0105b, wavelength tunable filters 0108bX to 0108bW, a wavelength tunable filter control circuit 0107b, a storage unit 2b, and a storage unit 3b.
  • the optical switch branching and multiplexing ratio control circuit 0106b, the optical transmission device control circuit 0105b, and the wavelength tunable filter control circuit 0107b are included in the control unit 1b.
  • Control unit 1b can generally be referred to as control means.
  • Storage unit 2b can be generally referred to as storage means.
  • Storage unit 3b can be generally referred to as storage means.
  • the optical matrix switch circuit 0101b can be generally referred to as optical switch means.
  • the wavelength path multiplexing / separating circuit 0102b can be generally called wavelength separating means.
  • the wavelength tunable filters 0108bX to 0108bW can be generally called wavelength selection means.
  • the light receiving units 0103bX to 0103bW can be generally called light receiving means.
  • the wavelength path multiplexing / demultiplexing circuit 0102b is connected to N wavelength multiplexed ports (hereinafter also referred to as “accepting ports”) # 1 to # 4 for receiving wavelength multiplexed optical signals and to ports # 1 to # 4.
  • N wavelength multiplexed ports hereinafter also referred to as “accepting ports”
  • M wavelength separation ports hereinafter also referred to as “transmission ports”
  • P1 to P4 that are switched according to the wavelength of the wavelength multiplexed optical signal input to .about.4.
  • FIG. 7A is a diagram showing a configuration of the optical matrix switch circuit 0101b. 7A shows a configuration when the optical matrix switch circuit 0101b shown in FIG. 6 is viewed from the back side.
  • the optical matrix switch circuit 0101b includes M input ports 7a to 7d connected to the M transmission ports P1 to P4 of the wavelength path multiplexing / demultiplexing circuit 0102b on a one-to-one basis, and M output ports 8a to 8d. And a switching unit 9 for arbitrarily switching the connection between the input ports 7a to 7d and the output ports 8a to 8d.
  • the switching unit 9 can be generally referred to as switching means.
  • the switching unit 9 When performing branch connection in which one specific input port among the M input ports 7a to 7d is connected to one specific output port among the M output ports 8a to 8d, the switching unit 9 is connected to the specific input port.
  • the input optical signal is divided into Y branch signals, and the Y branch signals are respectively output to Y specific output ports to perform branch connection.
  • the switching unit 9 divides the optical signal input to the specific input port into the Y branch signals so that the powers of the Y branch signals are equal to each other.
  • the switching unit 9 is composed of a plurality of optical switch elements 0301b connected in a grid.
  • the optical switch element 0301b includes a port a (first output unit), a port b (second output unit), a port c (first input unit), and a port d (second output unit). Input section).
  • the optical switch elements 0301b are arranged in a matrix in M rows and M columns in the same direction.
  • the first input portion of the optical switch element 0301b in the Mth column is connected to the input port 7, and the second output portion of the optical switch element 0301b in the Mth row (Dth row in FIG. 7A) It is connected to the output port 8.
  • the optical switch element 0301b can branch the optical input signal from the port c to the port a and the port b by appropriately adjusting the branching / combining ratio of the optical switch element 0301b. is there.
  • the optical switch element 0301a can alternatively set a cross state, a bar state, and a branch state.
  • the branch state is a state in which the optical signal received at port c is divided into two and output from port b and port a, respectively.
  • the optical signal input to the specific input port is divided into Y branch signals, and the Y branch signals are output to the Y specific output ports, respectively.
  • the state is one of a cross state, a bar state, and a branch state.
  • M wavelength variable filters 0108bX to 0108bW are connected to the M output ports 8a to 8d of the optical matrix switch circuit 0101b on a one-to-one basis, and the transmission wavelength can be selected.
  • the light reception units 0103bX to 0103bW are, for example, optical receivers or transponders.
  • the M light receiving units 0103bX to 0103bW are connected to the wavelength tunable filters 0108bX to 0108bW on a one-to-one basis, and among the wavelength tunable filters 0108bX to 0108bW, optical signals having wavelengths transmitted through the wavelength tunable filter 0108b connected to itself. Receive.
  • the storage unit 2b includes 1b connection information representing connection relationships depending on wavelengths between the transmission ports P1 to P4 of the wavelength path multiplexing / demultiplexing circuit 0102b and the receiving ports # 1 to # 4 of the wavelength path multiplexing / demultiplexing circuit 0102b; 2b connection information representing the connection relationship between the transmission ports P1 to P4 of the wavelength path multiplexing / demultiplexing circuit 0102b and the input ports 7a to 7d of the optical matrix switch circuit 0101b, and the output ports 8a to 8d of the optical matrix switch circuit 0101b and the light
  • the 3b connection information representing the connection relationship with the receiving units 0103bX to 0103bW is stored.
  • the 1b connection information, the 2b connection information, and the 3b connection information are included in the reception side connection information (connection information).
  • the control unit 1b When receiving the setting request indicating the communication port that is one of the reception ports # 1 to # 4 and the Y types of communication wavelengths, the control unit 1b receives Y of the M light reception units 0103bX to 0103bW.
  • the light receiving unit is specified as a receiving side communication unit (communication means) that receives optical signals of Y types of communication wavelengths.
  • the control unit 1b refers to the receiving side connection information in the storage unit 1b, and for each receiving side communication unit, of the M output ports 8a to 8d, the receiving side communication unit A specific output port connected to the communication port, a specific output port connected to the communication port among the M output ports P1 to P4 of the wavelength path multiplexing / demultiplexing circuit 0102b, and a specific output port among the M input ports 7a to 7d And a specific optical path in the switching unit 9 for connecting the specific input port and the specific output port, and among the M wavelength variable filters 0108bX to 0108bW, connected to the receiving communication unit
  • the transmission wavelength of the wavelength tunable filter 0108b (specific wavelength selection means) to be set is set to the communication wavelength accepted by the receiving side communication unit among the Y types of communication wavelengths, and that of the specific optical path Les controls the switching unit 9 so as to form.
  • the control unit 1b specifies the reception side communication unit
  • the specific optical path in the optical matrix switch circuit 0101b that becomes a part of the optical path from the communication port to the reception communication unit is determined.
  • the optical switch element 0301b is set to one of the cross state, the bar state, and the branch state so as to be identified with reference to the receiving side connection information in the storage unit 2a and to form each of the specific optical paths.
  • control part 1b sets the specific optical switch element which exists in the location where a specific optical path branches among the optical switch elements 0301b to a branch state.
  • Each of the optical switch elements 0301b can branch the optical signal received at the port c at an arbitrary ratio when performing branch connection.
  • the control unit 1b sets the specific optical switch element to the branching state and sets the branching ratio so that the powers of the branched optical signals of the respective wavelengths become equal.
  • control unit 1b includes information indicating a communication port, a communication wavelength, a reception-side communication unit, a specific optical path in the switching unit 9, a specific input port, a specific output port, and a specific reception port. Are stored in the storage unit 3b.
  • the optical transmission device control circuit 0105b When the optical transmission device control circuit 0105b receives the setting request indicating the route and wavelength (specific wavelength) by the higher setting means (not shown), the 1b connection information, the 2b connection information, and the 3b in the storage unit 2b are received. With reference to the connection information, the wavelength tunable filter control circuit 0107b and the optical switch branching / combining ratio control circuit 0106b are controlled.
  • the optical switch branching / combining ratio control circuit 0106b sets the branching / combining ratio of the optical switch element 0301b in the optical matrix switch circuit 0101b specified by the request. .
  • the wavelength tunable filter control circuit 0107b sets the transmission center wavelength of the wavelength tunable filter 0108bX to a wavelength received by the light receiving unit 0103bX in response to a request from the optical transmission device control circuit 0105b, and the wavelength tunable filter 0108bY. Is set to the wavelength received by the light receiving unit 0103bY, the transmission center wavelength of the wavelength tunable filter 0108bZ is set to the wavelength received by the light receiving unit 0103bZ, and the wavelength tunable filter 0108bW is set. Is set to the wavelength received by the light receiving unit 0103bW.
  • FIG. 8 is a diagram showing a wavelength division multiplexing optical communication system in which the transmission side device shown in FIG. 4 and the reception side device shown in FIG. 6 are connected via transmission lines 1506 to 1509.
  • the optical transmission device control circuit 0105a Upon receiving the wavelength path signal setting request for wavelength ⁇ 1 ⁇ path # 1, the optical transmission device control circuit 0105a specifies the optical output unit 0103aY and sets the wavelength of the optical signal transmitted from the optical output unit 0103aY to ⁇ 1. The optical transmission wavelength control circuit 0104a is notified of the setting.
  • the optical transmission device control circuit 0105a connects the connection relationship between the wavelength separation ports P1-P4 and the route ports # 1- # 4 of the wavelength path multiplexing / demultiplexing circuit 0102a (first-a connection) stored in the storage unit 2a.
  • Information; see FIG. 2B) for setting the wavelength path of ⁇ 1-path # 1, the optical signal transmitted from the optical output unit 0103aY is input to the wavelength separation port P1 of the wavelength path multiplexing / demultiplexing unit 0102a
  • the optical matrix switch circuit 0101a needs to be set.
  • the optical transmission device control circuit 0105a refers to the 2a connection information and the 3a connection information stored in the storage unit 2a, and for the optical switch elements D2, C2, B2, A3, and A4, branch multiplexing Setting (combining state setting) is not performed, but a normal OFF (cross) state is set, and a wavelength signal (optical signal) of wavelength ⁇ 1 input from the optical switch element B2 is applied to the optical switch element A2.
  • the optical switch branching / combining ratio control circuit 0106a is notified that the state (bar state) to be output to the optical switch element A3 is set.
  • the optical switch branching / combining ratio control circuit 0106a sets the optical switch elements D2, C2, B2, A3 and A4 to the cross state and sets the optical switch element A2 to the bar state in accordance with the notification from the optical transmission device control circuit 0105a. Set.
  • the optical transmission wavelength control circuit 0104a sets the wavelength of the optical signal transmitted from the optical output unit 0103aY to ⁇ 1 in accordance with the notification from the optical transmission device control circuit 0105a.
  • the wavelength optical signal having the wavelength ⁇ 1 transmitted from the optical output unit 0103aY is output to the route # 1.
  • the optical transmission device control circuit 0105a When the optical transmission device control circuit 0105a receives the wavelength path signal setting request for wavelength ⁇ 3-path # 3 following the wavelength path signal setting request for wavelength ⁇ 1-path # 1, that is, wavelength ⁇ 1-path #, the optical output unit 0103aX is designated and the wavelength of the optical signal transmitted from the optical output unit 0103aX is set to ⁇ 3. This is notified to the optical transmission wavelength control circuit 0104a.
  • the optical transmission device control circuit 0105a connects the connection relationship between the wavelength separation ports P1-P4 and the route ports # 1- # 4 of the wavelength path multiplexing / demultiplexing circuit 0102a (first-a connection) stored in the storage unit 2a.
  • Information; see FIG. 2B) for the wavelength path setting of ⁇ 3-path # 3, the optical signal transmitted from the optical output unit 0103aX is input to the wavelength separation port P1 of the wavelength path multiplexing / demultiplexing unit 0102a
  • the optical matrix switch circuit 0101a needs to be set.
  • the optical transmission device control circuit 0105a refers to the 2a connection information and the 3a connection information stored in the storage unit 2a, and for the optical switch elements D1, C1, B1, A3, and A4, branch multiplexing Setting (combining state setting) is not performed, but a normal OFF (cross) state is set, and for the optical switch element A1, the wavelength signal of wavelength ⁇ 1 input from the optical switch element B1 is transmitted to the optical switch element A2.
  • the optical switch branching / combining ratio control circuit 0106a is notified of the fact that it is set to the state (bar state) to be output to the optical switch.
  • the optical transmission device control circuit 0105a includes the optical switch element A2 so that the optical switch element A2 aggregates (combines) the wavelength signals from the two input ports into one output port as shown in FIG. 9A.
  • the optical switch branching / combining ratio control circuit 0106a is notified to set the multiplexing state with the branching ratio set to 1/2.
  • the optical switch branching / combining ratio control circuit 0106a sets the optical switch elements D1, C1, B1, A3 and A4 to the cross state and sets the optical switch element A1 to the bar state in accordance with the notification from the optical transmission device control circuit 0105a. Then, the optical switching device A2 is set to a combined state in which the branching ratio of the optical switching device A2 is 1 ⁇ 2.
  • the optical switch element A2 When the branching ratio is set to 1/2, the optical switch element A2 outputs the input signal ( ⁇ 3) from the optical switch element A1 to the optical switch element A3 with a transmission loss of 3 dB, and at the same time inputs from the optical switch element B2 The signal ( ⁇ 1) is output to the optical switch element A3 with a transmission loss of 3 dB. Therefore, assuming that the input optical power to the optical switch element A2 is X for the wavelength signals ⁇ 1 and ⁇ 3, the power of the output optical signal from the optical switch element A2 to the optical switch element A3 is X.
  • the optical transmission wavelength control circuit 0104a sets the wavelength of the optical signal transmitted from the optical output unit 0103aX to ⁇ 3 in accordance with the notification from the optical transmission device control circuit 0105a.
  • the optical signal having the wavelength ⁇ 3 can be input to the wavelength separation port P1 of the wavelength path multiplexing / demultiplexing unit 0102a to which the optical signal having the wavelength ⁇ 1 has already been input. For this reason, the optical signal of wavelength ⁇ 3 transmitted from the optical output unit 0103aX is output to the route # 3.
  • the optical transmission device control circuit 0105a When the optical transmission device control circuit 0105a receives the wavelength path signal setting request for the wavelength ⁇ 2-path # 2 following the wavelength path signal setting request for the wavelength ⁇ 1-path # 1 and the wavelength ⁇ 3-path # 3, That is, upon receiving a wavelength path signal setting request for wavelength ⁇ 1-path # 1, wavelength ⁇ 3-path # 3, and wavelength ⁇ 2-path # 2, the optical output unit 0103aW is designated and the optical output unit The optical transmission wavelength control circuit 0104a is notified that the wavelength of the optical signal transmitted from 0103aW is set to ⁇ 2.
  • the optical transmission device control circuit 0105a connects the connection relationship between the wavelength separation ports P1-P4 and the route ports # 1- # 4 of the wavelength path multiplexing / demultiplexing circuit 0102a (first-a connection) stored in the storage unit 2a.
  • Information; see FIG. 2B) for setting the wavelength path of ⁇ 2-path # 2, the optical signal transmitted from the optical output unit 0103aW is input to the wavelength separation port P1 of the wavelength path multiplexing / demultiplexing unit 0102a
  • the optical matrix switch circuit 0101a needs to be set.
  • the optical transmission device control circuit 0105a refers to the 2a connection information and the 3a connection information stored in the storage unit 2a, and for the optical switch elements D4, C4, and B4, the branch multiplexing setting (multiplexing)
  • the optical switch element A2 is set to the normal OFF (cross) state, and the optical switch element A2 is maintained in the setting state when the wavelength path of ⁇ 3-path # 3 is set.
  • the optical switch branching / combining ratio control circuit 0106a is notified to set the multiplexing state (see FIG. 9A) with the branching ratio being 1/3.
  • the optical switch branching / combining ratio control circuit 0106a sets the optical switch elements D4, C4, and B4 to the cross state according to the notification from the optical transmission apparatus control circuit 0105a, and for the optical switch element A2, the ⁇ 3-path # 3
  • the setting state of the optical switch element at the time of setting the wavelength path is maintained, and the branching ratio of the optical switch element A4 is set to 1/3.
  • the optical switch element A4 When 1/3 is set as the branching ratio, the optical switch element A4 outputs the input signals ( ⁇ 1, ⁇ 3) from the optical switch element A3 to the wavelength separation port P1 with a transmission loss of 1.8 dB.
  • the optical transmission wavelength control circuit 0104a sets the wavelength of the optical signal transmitted from the optical output unit 0103aW to ⁇ 2 in accordance with the notification from the optical transmission device control circuit 0105a.
  • the optical signal having the wavelength ⁇ 2 can be input to the wavelength separation port P1 of the wavelength path multiplexing / demultiplexing unit 0102a to which the optical signals having the wavelengths ⁇ 1 and ⁇ 3 have already been input. For this reason, the optical signal of wavelength ⁇ 2 transmitted from the optical output unit 0103aW is output to the route # 2.
  • the above operations are other than the operation of wavelength setting for the optical output unit 0103a and the operation performed by the wavelength tunable filter control circuit 0107b for setting the transmission wavelength corresponding to the wavelength path signal for the wavelength tunable filters 0108bX to 0108W.
  • the optical signal multiplexing operation in the optical switch element becomes the optical signal branching operation (see FIG. 9B).
  • the switching unit 6 generates a combined signal by combining the Y optical signals input to the Y specific input ports in the aggregated state, and outputs the combined signal as the specific output. Output to port.
  • the switching unit 6 multiplexes the Y optical signals so that the powers of the Y optical signals included in the combined signal are equal to each other. For this reason, it becomes possible to prevent deterioration of the wavelength multiplexed optical signal.
  • control unit 1a refers to the storage unit 2a to control the switching unit 6, thereby forming each of the specific optical paths in the switching unit 6. For this reason, each of the specific optical paths can be formed with high accuracy.
  • the storage unit 3a is information indicating a communication port, a communication wavelength, a receiving-side communication unit, a specific optical path in the switching unit 6, a specific input port, a specific output port, and a specific reception port. Is stored. For this reason, it becomes possible to manage the information regarding the set wavelength path.
  • the switching unit 6 is an optical matrix switch circuit 0101a in which optical switch elements 0301a are arranged in a matrix, and the optical switch element 0301a generates a combined signal in an aggregated state, and the combined signal is output as a specific output. As output from the port, it is in one of a cross state, a bar state, and a combined state. Therefore, it is possible to transmit optical signals having different wavelengths to one wavelength separation port (accepting port) of the wavelength path multiplexing / demultiplexing circuit 0102a using the optical matrix switch circuit 0101a.
  • the switching unit 9 divides the optical signal input to the specific input port into Y branch signals, and outputs the Y branch signals to the Y specific output ports, respectively. Therefore, it becomes possible to appropriately receive the wavelength multiplexed optical signal transmitted from the transmission side apparatus shown in FIG.
  • the switching unit 9 divides the optical signal input to the specific input port into the Y branch signals so that the powers of the Y branch signals are equal to each other. For this reason, it becomes possible to prevent the variation of the wavelength multiplexed optical signal.
  • control unit 1b refers to the storage unit 2b to control the switching unit 9 and the wavelength tunable filters 0108bX to 0108bW, thereby forming each of the specific optical paths in the switching unit 9 and specifying the specific light path to the light receiving unit 0103b.
  • An optical signal having a specific wavelength passing through the optical path is received. For this reason, it becomes possible to receive appropriately the optical signal for every wavelength contained in the wavelength division multiplexing optical signal transmitted from the transmission side apparatus shown in FIG.
  • the storage unit 3b includes information indicating a communication port, a communication wavelength, a receiving-side communication unit, a specific optical path in the switching unit 9, a specific input port, a specific output port, and a specific reception port. Is stored. For this reason, it becomes possible to manage the information regarding the set wavelength path.
  • the switching unit 9 is an optical matrix switch circuit 0101b in which optical switch elements 0301b are arranged in a matrix, and the optical switch element 0301b has Y branches when the optical signal input to the specific input port is branched.
  • the signals are divided into signals, and a cross state, a bar state, or a branch state is set so that Y branch signals are respectively output to Y specific output ports. For this reason, it becomes possible to appropriately receive the wavelength multiplexed optical signal transmitted from the transmission side apparatus shown in FIG. 4 using the optical matrix switch circuit 0101b.
  • a Mach-Zehnder interferometer-type TO (Thermal Optical) switch such as a silica-based waveguide is applied as the optical switch element in the optical matrix switch circuit 0101a shown in FIG. 4 and the optical matrix switch circuit 0101b shown in FIG. To do.
  • the Mach-Zehnder interferometer-type TO (Thermal Optical) switch is a single device or device.
  • FIG. 10 shows the transmission loss characteristics with respect to the heater applied power of the Mach-Zehnder interferometer type optical switch.
  • the Mach-Zehnder interferometer type optical switch is driven at a point indicated by a black circle in the graph of FIG. 10 in the ON / OFF (Bar / Cross) operation.
  • the applied heater power is adjusted according to the multiplexing / branching ratio using the transmission loss characteristics between them.
  • the white circles in the graph of FIG. 10 are points at which equal transmission loss characteristics are obtained for the two output ports of the Mach-Zehnder interferometer type optical switch, each having a transmission loss of 3 dB.
  • FIG. 11A and FIG. 11B are diagrams showing a Mach-Zehnder interferometer type optical switch of a silica-based waveguide that is formed into an 8 ⁇ 8 array and can be connected without blocking between an input 8 port and an output 8 port.
  • a wavelength path multiplexing / separating circuit 0102 is connected to the right side of the optical matrix switch circuit 0101.
  • FIGS. 11A and 11B show an 8 ⁇ 8 optical matrix switch, this embodiment is not limited to this switch scale.
  • the operation shown in FIG. 11A corresponds to the operation of multiplexing the optical signal to a single port on the transmission side described with reference to FIG.
  • the optical switch elements A7, E8, and H7 are set to the complete ON (bar) state, and the optical switch element F5 has the optical signal having the wavelength ⁇ 1 from the input port 1 and the wavelength ⁇ 3 from the port 7.
  • the optical switch branching / combining ratio control circuit 0106b controls the power applied to each heater so that the optical signals are combined and the peak levels of the combined optical signals match.
  • the optical switch element G6 combines the wavelength path signals ( ⁇ 1, ⁇ 3) input from the optical switch element F5 and the wavelength path signal ( ⁇ 2) input from the optical switch element F7, and all the combined signals
  • the optical switch branching / combining ratio control circuit 0106b controls the power applied to each heater so that the peak levels of the optical signals coincide with each other.
  • the optical signals (wavelength path signals) of wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 are combined and input to the wavelength separation port of the wavelength path multiplexing / demultiplexing circuit 0102a.
  • the operation shown in FIG. 11B corresponds to the operation of branching an optical signal to a plurality of ports on the receiving side described with reference to FIG.
  • the optical switch elements A7, E8 and H7 are set to the complete ON (Bar) state, and the optical switch element G6 branches and branches the wavelength path signals ( ⁇ 1, ⁇ 2, ⁇ 3) from the optical switch element H7.
  • the optical switch branching / combining ratio control circuit 0106b controls the power applied to each heater so that the peak levels of the optical signals that have been made coincide.
  • the optical switch element F5 branches the wavelength path signals ( ⁇ 1, ⁇ 2, ⁇ 3) input from the optical switch element G6, and the optical switch branches so that the peak levels of all the branched optical signals match.
  • the multiplexing ratio control circuit 0106b controls the power applied to each heater.
  • the wavelength path signal obtained by combining the wavelength path signals of the wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 passes through the wavelength variable filter 0108b in which the transmission center wavelength is set to the wavelength of the wavelength path to be received. Received at.
  • FIGS. 12A and 12B show the method of selecting a path port of wavelength path multiplexing / demultiplexing circuits 0102a and 0102b (hereinafter simply referred to as “wavelength path multiplexing / demultiplexing circuit 0102”) and the wavelength of the wavelength path multiplexed in the wavelength demultiplexing port. It is a figure for demonstrating the relationship.
  • route ports # 1, 2, 3, and 4 are assigned to routes A, B, C, and D, respectively.
  • an optical signal of wavelength ⁇ 1 from route A An optical signal of wavelength ⁇ 2 from the path B, an optical signal of wavelength ⁇ 3 from the path C, and an optical signal of wavelength ⁇ 4 from the path D are simultaneously transmitted to the path port # 1 of the wavelength path multiplexing / separating circuit 0102,
  • the optical signals (wavelength path signals) of wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 are all output to wavelength separation port P1 (see FIG. 2B). .
  • the center transmission wavelength of the wavelength tunable filter 0108b is adjusted to the wavelength of the wavelength path signal to be selected.
  • route ports # 1, 3, 5, and 7 are assigned to routes A, B, C, and D, respectively.
  • an optical signal of wavelength ⁇ 1 from route A An optical signal of wavelength ⁇ 3 from the path B, an optical signal of wavelength ⁇ 5 from the path C, and an optical signal of wavelength ⁇ 7 from the path D are simultaneously transmitted to the path port # 1 of the wavelength path multiplexing / demultiplexing circuit 0102,
  • the optical signals (wavelength path signals) of wavelengths ⁇ 1, ⁇ 3, ⁇ 5, and ⁇ 7 are all output to wavelength separation port P1 (see FIG. 2B). .
  • the center transmission wavelength of the wavelength variable filter 0108b is adjusted to the wavelength of the wavelength path signal to be selected.
  • the wavelength intervals of the wavelength path signals multiplexed and output to the wavelength separation port are widened, and the wavelength tunable filter 0108b. Therefore, the filter characteristics required for the filter can be made gentle and the cost can be reduced.
  • FIG. 13 shows a MEMS (Micro Electro Mechanical System) optical matrix switch (output switching means) 0405a, a 2: 1 multiplexing / branching optical coupler (generation means) 0401a, and an optical matrix switch circuit 0101a shown in FIG. It is the figure which showed the transmission side apparatus using 1 multiplexing / branching optical coupler (generation means) 0402a and 4: 1 multiplexing / branching optical coupler (generation means) 0403a.
  • MEMS Micro Electro Mechanical System
  • FIG. 14 shows a MEMS optical matrix switch (output switching means) 0405b, a 2: 1 multiplexing / branching optical coupler (branching means) 0401b, and a 3: 1 multiplexing / branching optical coupler as the optical matrix switch circuit 0101b shown in FIG. It is the figure which showed the receiving side apparatus using (branch means) 0402b and 4: 1 multiplexing / branching optical coupler (branch means) 0403b.
  • the optical matrix switch circuit is not limited to the MEMS optical matrix switch as long as the optical matrix switch can connect the input / output ports without blocking.
  • the optical switch elements shown in FIG. 3A are arranged in a matrix in the same direction.
  • N The maximum value of N of the multiplexing / branching optical coupler matches the number of corresponding routes.
  • a 4: 1 multiplexing / branching coupler may be provided.
  • the wavelength path signals of wavelengths ⁇ 1 and ⁇ 2 transmitted from the optical output unit 0103 are set to the route ports # 1 and # 2 of the wavelength path multiplexing / demultiplexing circuit 0102, respectively. The operation will be described.
  • the optical transmission device control circuit 0105a Upon receiving the wavelength path transmission setting request ( ⁇ 1-path # 1, ⁇ 2-path # 2), the optical transmission device control circuit 0105a refers to the storage unit 2a and separates the wavelength paths of the wavelengths ⁇ 1 and ⁇ 2. It is determined that it is necessary to input to port P1.
  • the optical transmission device control circuit 0105a uses the 2: 1 multiplexing / branching optical coupler 0401a to multiplex the wavelength path signals in the storage unit. With reference to 2a, the optical switch branching / combining ratio control circuit 0106a is controlled.
  • the optical transmission device control circuit 0105a also inputs the combined wavelength path signal ( ⁇ 1, ⁇ 2) to the wavelength separation port P1 of the wavelength path demultiplexing / multiplexing circuit 0102, so that the optical switch branching / combining ratio control circuit 0106a To control.
  • the wavelength path of the wavelengths ⁇ 1 and ⁇ 2 is wavelength-separated with reference to the storage unit 2b. It is determined that the data is output from the port P1.
  • the optical transmission device control circuit 0105b uses the 2: 1 multiplexing / branching optical coupler 0401b to branch the wavelength path signal in order to store the storage unit 2a.
  • the optical switch branching / combining ratio control circuit 0106b is controlled.
  • the optical transmission device control circuit 0105b outputs the branched wavelength path signals ( ⁇ 1, ⁇ 2) to the port to which the light receiving unit 0103bX is connected among the ports of the wavelength path demultiplexing / multiplexing circuit 0102b.
  • the optical switch branching / combining ratio control circuit 0106b is controlled with reference to the storage unit 2a.
  • the same setting is performed for the light receiving unit 0103bY, and the transmission center wavelength of the wavelength tunable filter 0108bY is set to the wavelength ⁇ 1.
  • FIGS. 15 and 16 are diagrams showing a WDM wavelength path system in which a plurality of nodes including a wavelength path demultiplexing optical transmission device including any of the transmission side device and the reception side device of the above embodiment are arranged.
  • the WDM wavelength path system includes a wavelength network node 0901 having a wavelength cross-connect-WXC (Wavelength Cross-Connect) function, a transponder (light output means and light reception means) 1406, an optical fiber 0903, a transmission path 0902, and a wavelength.
  • the wavelength network node 0901, the transponder 1406, and the wavelength network management controller 0910 are included in each node in the WDM wavelength path system.
  • Each node multiplexes or separates wavelength paths for a plurality of wavelength path multiplex transmission lines.
  • the wavelength path is configured at least between an optical output unit (for example, a transponder) included in one of arbitrary two nodes and an optical reception unit (for example, a transponder) included in the other.
  • the WDM wavelength path system can construct an arbitrary network topology such as a ring topology shown in FIG. 15 and a mesh topology shown in FIG.
  • FIG. 17 is a diagram illustrating a node 0901 including a wavelength path demultiplexing optical transmission device including any of the transmission side device and the reception side device of the above embodiment.
  • the node 0901 includes a WDM line unit 1423, a transponder accommodation function unit 1422, a transponder 1421, and an optical transmission device control circuit 1432.
  • the transponder accommodating function unit 1422 includes wavelength path multiplexing / demultiplexing units 1404 and 1405.
  • the wavelength path multiplexing / demultiplexing unit 1404 is the receiving-side wavelength path multiplexing / demultiplexing unit 0102b shown in FIG.
  • the wavelength path multiplexing / demultiplexing unit 1405 is the wavelength path multiplexing / demultiplexing unit 0102a on the transmission side illustrated in FIG.
  • the optical matrix switch circuit 1326 is the optical matrix switch circuit 0101b on the receiving side shown in FIG.
  • the optical matrix switch circuit 1327 is the optical matrix switch circuit 0101a on the transmission side shown in FIG.
  • the WDM line unit 1423 includes a plurality of optical branching couplers 1403 and a plurality of wavelength selection circuits 1402.
  • Optical branching coupler 1403 can be generally referred to as optical power branching means.
  • Wavelength selection circuit 1402 can be generally referred to as wavelength selective switch means.
  • the WDM line unit 1423 generates a WDM line signal by wavelength multiplexing the wavelength optical signal transmitted from the transponder 1421 provided in the node, or wavelength-demultiplexes the WDM line signal and receives the wavelength optical signal received by the transponder 1421. Or generate.
  • the WDM line unit 1423 has a function of outputting a wavelength optical signal that enters and passes through this node to an appropriate route.
  • the optical branching coupler 1403 is connected to a plurality of wavelength path multiplex transmission lines on a one-to-one basis.
  • the wavelength selection circuit 1402 is connected to a plurality of wavelength path multiplex transmission lines on a one-to-one basis.
  • the optical branching coupler 1403 divides the wavelength multiplexed optical signal input from the wavelength path multiplexed transmission line connected to itself into the own node into two, and one wavelength multiplexed optical signal is out of the plurality of wavelength selection circuits 1402. Outputs to the wavelength selection circuit 1402 connected to the wavelength path multiplex transmission line other than the wavelength path multiplex transmission line, and outputs the other wavelength multiplexed optical signal to the reception port of the wavelength path multiplexing / separation unit 1404 within itself.
  • the wavelength selection circuit 1402 accepts the wavelength multiplexed optical signal from the optical branching coupler 1403 and the wavelength multiplexed optical signal from the transmission port of the wavelength path multiplexing / separating unit 1405 in its own node. Either one is output to the wavelength path multiplex transmission line connected to itself.
  • FIG. 18 is a diagram showing an input / output interface of the wavelength selection circuit (WSS) 1402.
  • the wavelength selection circuit (WSS) 1402 is output from a port for inputting an arbitrary wavelength multiplexed optical signal input from each transmission line via the optical branching coupler 1403 and a transponder accommodation function unit 1422 provided in the node.
  • the transponder accommodation function unit 1422 and the transponder 1421 correspond to the configuration shown in FIGS. 4 and 6 or the configuration shown in FIGS. 13 and 14.
  • transponder accommodation function unit 1422 and the transponder 1421 are as described in the second embodiment or the second embodiment.
  • the transponder 1421 includes a fully tunable wavelength tunable optical transmitter 1201, an optical receiver 1202, a client signal processing / optical transmitter 1204, and a client signal processing / optical receiver 1203.
  • this embodiment is the same as that of the first embodiment or the second embodiment except that the wavelength selection switch 1402 from the optical transmission device control circuit 1432 needs to be set for the wavelength selection circuit 1402 in the WDM line unit 1423.
  • the operation is the same as that described in the embodiment.
  • the configuration shown in this embodiment makes it possible to set wavelength signals between arbitrary nodes in an arbitrary network topology having an arbitrary number of wavelength network nodes.
  • the first effect is that it is possible to avoid combinations of wavelengths and routes that cannot be selected with respect to the wavelength paths transmitted and received from the wavelength path demultiplexing optical transmission apparatus.
  • wavelength paths of a plurality of different wavelengths can be accommodated between the connection ports between the optical matrix switch circuit, which is wavelength path switching / multiplexing / branching means, and the wavelength path multiplexing / demultiplexing unit.
  • the second effect is that the wavelength discrimination characteristic required for the wavelength tunable filter is relaxed, and the cost of the system can be reduced.
  • the wavelength path multiplexing wavelength paths sharing the same output port can be widened by associating the wavelength path multiplexing ports of the wavelength path multiplexing / demultiplexing unit with the paths with an interval. It is.
  • Optical matrix switch circuit 0103 Transponder optical transmitter or receiver 0102 Wavelength path demultiplexing circuit 1506, 1507, 1508, 1509 Transmission path or network 0301, 1701 Optical switch element 0101 Optical matrix switch circuit 0106 Optical switch branching / combining ratio control circuit 0105, 0805 Optical transmission device control circuit 0104 Optical transmission wavelength control circuit 0107 Variable wavelength filter control circuit 0108 Variable wavelength filter 1201 Fully tunable variable wavelength optical transmitter 1202 Optical receiver 1203 Client signal processing / optical receiver 1204 Client signal processing / Optical transmitter 1402 Wavelength selection circuit 1403 Optical branching coupler 1423 WDM line unit 1422 Transponder accommodation function unit 1421 Transponder 1432 Wavelength path multiplexing Hanareko transmission equipment control circuit 0910 Wavelength network management control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

選択不可能な波長と方路の組み合わせの波長パスが発生する制約を解消する。 光信号送信装置は、互いに異なる波長の光信号を出力するM(Mは2以上の整数)個の光出力手段と、M個の光出力手段と1対1で接続されたM個の入力ポート、M個の出力ポート、および、入力ポートと出力ポートの接続を切り換える切換手段を備える光スイッチ手段と、M個の出力ポートと1対1で接続されたM個の受付ポート、および、受付ポートとの接続が受付ポートに入力された光信号の波長に応じて切り換わるN(Nは2以上M以下の整数)個の送出ポートを備え送出ポートから波長多重信号を送信する波長多重手段とを含み、切換手段は、Y(Yは2以上M以下の整数)個の特定入力ポートを1個の特定出力ポートに接続する集約接続を行う場合、Y個の特定入力ポートに入力されたY個の光信号を合波して特定出力ポートに出力して集約接続を行う。

Description

光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステム
 本発明は、波長多重分離に基づく光通信ネットワークに関し、特には、光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステムに関する。
 光通信ネットワークでは、WDM(Wavelength Division Multiplexing)システムの導入が始まっている。例えば、Point-to-pointで使用される多くの波長パスをコア網に収容するためにWDMが導入され、続いて、メトロ・地域網のWDM化とROADM(Reconfigurable Optical Add Drop Multiplexer)の適用が進んでいる。
 波長パスが多くなるに伴い、より一層の多数サービスを実現するために、多数の光信号が多重されることになる。このため、フォトニック物理層で発生する障害が、複数の上位サービス層へ甚大な影響を及ぼす。さらに、ROADM導入の進展に伴い、波長パスネットワーク内のノードの機能の高度化、高信頼化および低コスト化が要求される。
 特許文献1には、波長パスネットワークの高信頼化に関する技術が記載されている。
 特許文献1の図1には、波長パス多重分離光伝送装置(以下、単に「伝送装置」と称する)の基本構成および障害発生時の切換例が示されている。特許文献1の図1(b)には、光送信器12-1の障害に対応した切換動作が示されており、特許文献1の図1(c)には、伝送路52-1の障害に対応した切換動作が示されている。
 まず、光送信器12-1の障害時の動作を説明する。
 予備系として用意されている光送信器13-1が運用系として動作するように、信号選択回路11が、信号の出力先を光送信器12-1から光送信器13-1に切り換える。そして、波長多重手段14が、光送信器12-2~12-mおよび13-1からの光信号を 波長多重して波長多重光信号を生成し、その波長多重光信号を伝送路52-1に送出する。
 受信側では、波長分離手段21が、伝送路52-1からの波長多重光信号を各波長の光信号に分離し、各波長の光信号を光受信器22-2~23-1にそれぞれ送出する。光受信器22-2~23-1のそれぞれは、各波長の光信号を受け付けると、その光信号に応じた信号を信号選択回路24に出力する。信号選択回路24は、光受信器23-1からの信号が光受信器22-1からの信号の代わりになるように、信号の出力先を切り換える。
 このため、通信が、切換動作の間、遮断された後、障害発生前の通信が再開できる。
 次に、伝送路52-1の障害時の動作を説明する。
 波長多重手段14は、光送信器12-1~12-mからの光信号を波長多重して波長多重光信号を生成し、その波長多重光信号の出力先を、伝送路52-1から予備系の伝送路52-2に切り換える。
 受信側では、波長多重手段14と同一の波長入出力特性を有する波長分離手段21は、伝送路52-2からの波長多重光信号を各波長の光信号に分離し、各波長の光信号を光受信器22-1~22-mにそれぞれ送出する。
 このため、通信が、切換動作の間、遮断された後、障害発生前の通信が再開できる。
 特許文献1の図1では、伝送路が運用系と予備系の2本である場合が示されているが、複数の運用系の伝送路を用いることも可能である。また、特許文献1の図9に示されたように、光分岐挿入ノードにより、ネットワークを拡張することが可能である。
 図1Aは、特許文献1に記載の伝送装置を示した図である。
 図1Aにおいて、光送信器1505と波長多重部1502の間および波長分離部1503と光受信器1510の間には、特許文献1の図3(b)、図5(c)および図8(c)に示されたように、信号選択回路(光マトリクススイッチ)1501および1504がそれぞれ設けられている。また、送信側と受信側が、3つ以上の伝送路(またはネットワーク)1506~1509を介して接続されている。
 光送信器1505から送信された波長λ1~λ4の各光信号は、光マトリクススイッチ1501を介して、波長多重部1502の入出力ポートP1~P4にそれぞれ入力する。
 波長多重部1502は、波長λ1~λ4の各光信号を波長多重して波長多重光信号を生成し、その波長多重光信号を方路ポート#1から出力する。その後、波長多重光信号は、伝送路1506を介して、波長分離部1503の方路ポート#1に入力する。
 波長分離部1503は、波長多重光信号を波長ごとに分離して波長λ1~λ4の各光信号を生成し、波長λ1~λ4の各光信号を入出力ポートP1~P4からそれぞれ出力する。
 波長分離部1503から送信された波長λ1~λ4の各光信号は、光マトリクススイッチ1504を介して、光受信器1510によって受信される。
特開平11-068656号公報
 伝送装置では、伝送路の障害による運用系伝送路から予備系伝送路への一斉切換、または、光送信器または光受信器の障害に対する切換動作のみならず、任意の伝送路に任意の波長の光信号を送信する運用が要求されている。
 しかしながら、特許文献1に示された伝送装置では、選択が不可能な、波長と方路の組み合わせが生じるという課題がある。
 以下に、その理由を説明する。
 まず、波長多重部1502および波長分離部1503の入出力特性と、光マトリクススイッチ1501および1504の入出力特性について説明する。なお、波長多重部と波長分離部は同一構成である。
 図2Aおよび2Bは、波長多重部および波長分離部の入出力ポートP1~P4と方路ポート#1~#4との接続関係を示した図である。図2Cおよび2Dは、波長多重部および波長分離部の入出力ポートP1~P8と方路ポート#1~#8との接続関係を示した図である。
 図2Aおよび2Bに示すように、入出力ポートP1~P4と方路ポート#1~#4との接続関係は、波長依存性を有している。このため、入出力ポートP1に波長λ1の光信号が入力した場合、波長λ1の光信号は方路ポート#1から出力され、入出力ポートP1に波長λ2の光信号が入力した場合、波長λ2の光信号は、方路ポート#2から出力される。
 図3Aは、図1Aに示した4x4の光マトリクススイッチ1501を示した図である。なお、図1Aに示した光マトリクススイッチ1504は、光マトリクススイッチ1501と同一構成である。
 光マトリクススイッチ1501では、第1および第2入力部と第1および第2出力部とを有する光スイッチ素子1701が、互いに同じ向きでマトリクス状に配列されている。図3Bおよび3Cは、光スイッチ素子1701を示した図である。
 光スイッチ素子1701は、第1入力部で受け付けた光信号を第1出力部から出力しかつ第2入力部で受け付けた光信号を第2出力部から出力するCross-state(クロス状態)と、第1入力部で受け付けた光信号を第2出力部から出力しかつ第2入力部で受け付けた光信号を第1出力部から出力するBar-state(バー状態)と、を択一的に設定可能である。
 光マトリクススイッチ1501では、一方のポート群(図3Aで縦に並んだ入出力用のポート群)内の任意のポートは、他方のポート群(図3Aで横に並んだ入出力用のポート群)内の任意のポートに接続が可能である(ノンブロッキング構成)。また、光マトリクススイッチ1501では、入力された各光信号は合波されずに出力される。
 続いて、選択が不可能な、波長と方路の組み合わせについて説明する。
 図1Aに示した伝送装置において、図1Bに示すように、波長λ2で送信されている光信号を方路ポート#1から方路ポート#2へ切り換える場合、図2Bに示した波長多重部の入出力ポート・方路の対応関係より、波長多重部の入出力ポートP1へ波長λ2の光信号が入力するように、光マトリクススイッチ1501内の接続を切り換える必要がある。
 しかしながら、入出力ポートP1は、すでに波長λ1の光信号を方路ポート#1へ出力する経路(光路)として利用しているため、光マトリクススイッチ1501では、波長多重部の入出力ポートP1へ波長λ2の光信号が入力することは不可能である。
 このように、波長パス多重部および波長パス分離部の各入出力ポートに対して唯一の波長を適用する光マトリクススイッチの構成では、選択不可能な波長と方路の組み合わせが発生する。
 本発明の目的は、上述した課題を解決可能な光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステムを提供することにある。
 本発明の光信号送信装置は、
 互いに異なる波長の光信号を出力するM(Mは2以上の整数)個の光出力手段と、
 前記M個の光出力手段と1対1で接続されたM個の入力ポート、M個の出力ポート、および、前記入力ポートと前記出力ポートとの接続を切り換える切換手段、を備える光スイッチ手段と、
 前記M個の出力ポートと1対1で接続されたM個の受付ポート、および、前記受付ポートとの接続が前記受付ポートに入力された光信号の波長に応じて切り換わるN(Nは2以上M以下の整数)個の送出ポート、を備え前記受付ポートが受け付けた光信号に応じた多重光信号を前記送出ポートから送信する波長多重手段と、を含み、
 前記切換手段は、前記M個の入力ポートのうちY(Yは2以上M以下の整数)個の特定入力ポートを前記M個の出力ポートのうち1個の特定出力ポートに接続する集約接続を行う場合、前記Y個の特定入力ポートに入力されたY個の光信号を合波して合波信号を生成し、当該合波信号を前記特定出力ポートに出力することによって前記集約接続を行う。
 本発明の光信号受信装置は、
 波長多重光信号を受け付けるN(Nは2以上の整数)個の受付ポート、および、前記受付ポートとの接続が前記受付ポートに入力された波長多重光信号が有する波長に応じて切り換わるM(MはN以上の整数)個の送出ポート、を備える波長分離手段と、
 前記M個の送出ポートと1対1で接続されたM個の入力ポート、M個の出力ポート、および、前記入力ポートと前記出力ポートとの接続を切り換える切換手段、を備える光スイッチ手段と、
 前記M個の出力ポートと1対1で接続され透過波長を選択可能なM個の波長選択手段と、
 前記M個の波長選択手段と1対1で接続され自己と接続された前記波長選択手段を透過した光信号を受信するM個の光受付手段と、を含み、
 前記切換手段は、前記M個の入力ポートのうち1個の特定入力ポートを前記M個の出力ポートのうちY(Yは2以上M以下の整数)個の特定出力ポートに接続する分岐接続を行う場合、前記特定入力ポートに入力された光信号をY個の分岐信号に分け、当該Y個の分岐信号を前記Y個の特定出力ポートにそれぞれ出力することによって前記分岐接続を行う。
 本発明によれば、選択不可能な波長と方路の組み合わせが生じることを回避することが可能になる。
WDMシステムを示した図である。 WDMシステムを示した図である。 波長パス多重・分離回路のポート構成例を示す図である。 図2Aに示した波長パス多重・分離回路の波長多重ポートと波長分離ポートの対応関係を示す図である。 波長パス多重・分離回路のポート構成例を示す図である。 図2Cに示した波長パス多重・分離回路の波長多重ポートと波長分離ポートの対応関係を示す図である。 光マトリクススイッチの構成例を示し図である。 スイッチ素子の動作を説明するための図である。 スイッチ素子の動作を説明するための図である。 本発明の第1実施形態の送信側装置を示すブロック図である。 光マトリクススイッチ回路による合波の動作を説明する図である。 光マトリクススイッチ回路による合波の動作を説明する図である。 光マトリクススイッチ回路による合波の動作を説明する図である。 本発明の第1実施形態の受信側装置を示すブロック図である。 光マトリクススイッチ回路による分岐の動作を説明する図である。 光マトリクススイッチ回路による分岐の動作を説明する図である。 光マトリクススイッチ回路による分岐の動作を説明する図である。 波長多重分離光通信システムのブロック図である。 合波分岐の動作を説明する図である。 合波分岐の動作を説明する図である。 本発明の第2実施形態における光スイッチ素子の特性および動作を説明する図である。 本発明の第2実施形態における波長パスの合波および分岐動作を説明する図である。 本発明の第2実施形態における波長パスの合波および分岐動作を説明する図である。 本発明の第2実施形態における波長パスの合波および分岐動作を説明する図である。 本発明の第2実施形態における波長パスの合波および分岐動作を説明する図である。 本発明の第3実施形態における波長パスの合波動作を説明する図である。 本発明の第3実施形態における波長パスの分岐動作を説明する図である。 波長パスネットワークシステムの構成例を示す図である。 波長パスネットワークシステムの構成例を示す図である。 本発明の第4実施形態のシステムを示す図である。 WSSを示す図である。 トランスポンダを説明するための図である。
 次に、本発明を実施するための形態について図面を参照して詳細に説明する。
 (第1実施形態)
 図4は、本発明の第1実施形態としての波長パス多重分離光伝送装置に含まれる送信側装置を示す。
 図4において、送信側装置(光信号送信装置)は、光マトリクススイッチ回路0101a、波長パス多重・分離回路0102a、光出力部0103aX~0103aW、光送信波長制御回路0104a、光スイッチ分岐合波比率制御回路0106a、光伝送装置制御回路0105a、記憶部2a、および、格納部3aを含む。光送信波長制御回路0104a、光スイッチ分岐合波比率制御回路0106a、および、光伝送装置制御回路0105aは、制御部1aに含まれる。
 制御部1aは、一般的に制御手段と呼ぶことができる。記憶部2aは、一般的に記憶手段と呼ぶことができる。格納部3aは、一般的に格納手段と呼ぶことができる。光マトリクススイッチ回路0101aは、一般的に光スイッチ手段と呼ぶことができる。光出力部0103aX~0103aWは、一般的に光出力手段と呼ぶことができる。波長パス多重・分離回路0102aは、波長多重手段と呼ぶことができる。
 図5Aは、光マトリクススイッチ回路0101aの構成を示した図である。光マトリクススイッチ回路0101aは、M(M=4)個の光出力部0103aX~0103aWと1対1で接続されたM個の入力ポート4a~4dと、M個の出力ポート5a~5dと、入力ポート4a~4dと出力ポート5a~5dとの接続を任意に切り換え可能な切換部6と、を含む。なお、Mは4に限らず、2以上の整数であればよい。
 切換部6は、一般的に切換手段と呼ぶことができる。切換部6は、M個の入力ポート4a~4dのうちY(Yは2以上M以下の整数)個の特定入力ポートをM個の出力ポート5a~5dのうち1個の特定出力ポートに接続する集約接続を行う場合、Y個の特定入力ポートに入力されたY個の光信号を合波して合波信号を生成し、その合波信号を特定出力ポートに出力することによって集約接続を行う。なお、切換部6は、合波信号に含まれるY個の光信号のパワーが互いに等しくなるように、Y個の光信号を合波する。
 切換部6は、グリッド状に接続された複数の光スイッチ素子0301aから構成されている。
 図5Bおよび図5Cに示すように、光スイッチ素子0301aは、ポートa(第2入力部)、ポートb(第1入力部)、ポートc(第2出力部)、および、ポートd(第1出力部)を有する。光スイッチ素子0301aは、互いに同じ向きでM行M列にマトリクス状に配列されている。
 光マトリクススイッチ回路0101aは、M行目(図5AではD行目)の光スイッチ素子0301aのポートbが入力ポート4とそれぞれ接続され、M列目の光スイッチ素子0301aのポートcが出力ポート5とそれぞれ接続されている。
 光スイッチ素子0301aは、図5Bに示すように、光スイッチ素子0301aの分岐合波比率を適切に調整することにより、ポートaからの光入力信号に対してポートbからの光入力信号を合波することが可能である。
 光スイッチ素子0301aは、クロス状態とバー状態と合波状態とを択一的に設定可能である。
 クロス状態は、ポートbで受け付けた光信号をポートdから出力し、かつ、ポートaで受け付けた光信号をポートcから出力する状態(Cross-state)である。
 バー状態は、ポートbで受け付けた光信号をポートcから出力し、かつ、ポートaで受け付けた光信号をポートdから出力する状態(Bar-state)である。
 合波状態と、ポートbで受け付けた光信号とポートaで受け付けた光信号を合波してポートcから出力する状態である。
 光スイッチ素子0301aは、集約接続を行う場合には、合波信号が生成され、その合波信号が特定出力ポートから出力されるように、クロス状態とバー状態と合波状態とのいずれかの状態になる。
 図4において、M個の光出力部0103aX~0103aWは、トランスポンダまたは光送信器である。光出力部0103aX~0103aWは、波長可変機能により任意のWDM信号波長の光信号を出力可能である。光出力部0103aX~0103aWは、光マトリクススイッチ回路0101aの入力ポート4a~4dと1対1で接続され、互いに異なる波長の光信号を出力する。
 波長パス多重・分離回路0102aは、光マトリクススイッチ回路0101aの出力ポート5a~5dと1対1で接続されたM個の波長分離ポート(「受付ポート」とも称する)P1~P4と、ポートP1~P4との接続がポートP1~P4に入力された光信号の波長によって一意に決まるN(N=4)個の波長多重ポート(「送出ポート」とも称する)#1~#4と、を有する。なお、Nは4に限らず、2以上M以下の整数であればよい。
 記憶部2aは、送出ポート#1~#4と受付ポートP1~P4との波長に依存する接続関係を表す第1a接続情報、受付ポートP1~P4と光マトリクススイッチ回路0101aの出力ポート5a~5dとの接続関係を表す第2a接続情報、および、光マトリクススイッチ回路0101aの入力ポート4a~4dと光出力部0103aX~0103aWとの接続関係を表す第3a接続情報を記憶する。第1a接続情報と第2a接続情報と第3a接続情報は、送信側接続情報(接続情報)に含まれる。
 制御部1aは、送出ポート#1~#4のいずれかである通信用ポートとY種類の通信用波長とを示す設定要求を受け付けると、M個の光出力部0103aX~0103aWのうちY個の光出力部を、Y種類の通信用波長の光信号をそれぞれ出力する送信側通信部(通信手段)として特定する。
 続いて、制御部1aは、記憶部2a内の送信側接続情報を参照して、送信側通信部ごとに、M個の入力ポート4a~4dのうち、その送信側通信部と接続する特定入力ポートと、M個の受付ポートP1~P4のうち通信用ポートと接続する特定受付ポートと、M個の出力ポート5a~5dのうち特定受付ポートと接続する特定出力ポートと、特定入力ポートと特定出力ポートを接続する切換部6内の特定光路と、を特定する。続いて、制御部1aは、特定光路のそれぞれが形成されるように切換部6を制御する。
 例えば、制御部1aは、送信側通信部を特定すると、送信側通信部ごとに、その送信側通信部から通信用ポートまでの光路の一部となる光マトリクススイッチ回路0101a内の特定光路を、記憶部2a内の送信側接続情報を参照して特定し、特定光路のそれぞれが形成されるように、光スイッチ素子0301aを、クロス状態とバー状態と合波状態とのいずれかに設定する。
 なお、制御部1aは、光スイッチ素子0301aのうち、特定光路同士が合流する箇所に存在する特定光スイッチ素子を合波状態に設定する。
 光スイッチ素子0301aのそれぞれは、合波状態では、ポートbで受け付けた光信号とポートaで受け付けた光信号とを、任意の比率で合波可能である。制御部1aは、特定光スイッチ素子を、合波状態に設定すると共に、合流後の各光信号のパワーが等しくなるように、光信号の合波比率を設定する。
 また、制御部1aは、通信用ポートと、通信用波長と、送信側通信部と、切換部6内の特定光路と、特定入力ポートと、特定出力ポートと、特定受付ポートと、を示す情報を、格納部3aに格納する。
 光伝送装置制御回路0105aは、上位設定手段(不図示)による方路と波長(特定波長)を示す設定要求を受け付けると、記憶部2a内の第1a接続情報、第2a接続情報および第3a接続情報を参照して、光送信波長制御回路0104aおよび光スイッチ分岐合波比率制御回路0106aを制御する。
 光送信波長制御回路0104aは、光伝送装置制御回路0105aからの要求に応じて、その要求にて指定された光出力部0103aが出力する光信号の波長を、その要求にて指定された送信波長(特定波長)に設定する。
 光スイッチ分岐合波比率制御回路0106aは、光伝送装置制御回路0105aからの要求に応じて、その要求にて指定された光スイッチ素子0301aの分岐合波比率を設定する。
 図6は、本発明の第1実施形態としての波長パス多重分離光伝送装置の受信側装置を示す。
 図6において、受信側装置(光信号受信装置)は、光マトリクススイッチ回路0101b、波長パス多重・分離回路0102b、光受付部0103bX~0103bW、光スイッチ分岐合波比率制御回路0106b、光伝送装置制御回路0105b、波長可変フィルタ0108bX~0108bW、波長可変フィルタ制御回路0107b、記憶部2b、および、格納部3bを含む。光スイッチ分岐合波比率制御回路0106b、光伝送装置制御回路0105b、および、波長可変フィルタ制御回路0107bは、制御部1bに含まれる。
 制御部1bは、一般的に制御手段と呼ぶことができる。記憶部2bは、一般的に記憶手段と呼ぶことができる。格納部3bは、一般的に格納手段と呼ぶことができる。光マトリクススイッチ回路0101bは、一般的に光スイッチ手段と呼ぶことができる。波長パス多重・分離回路0102bは、一般的に波長分離手段と呼ぶことができる。波長可変フィルタ0108bX~0108bWは、一般的に波長選択手段と呼ぶことができる。光受付部0103bX~0103bWは、一般的に光受付手段と呼ぶことができる。
 波長パス多重・分離回路0102bは、波長多重光信号を受け付けるN個の波長多重ポート(以下「受付ポート」とも称する)#1~#4と、ポート#1~#4との接続がポート#1~#4に入力された波長多重光信号が有する波長に応じて切り換わるM個の波長分離ポート(以下「送出ポート」とも称する)P1~P4と、を有する。
 図7Aは、光マトリクススイッチ回路0101bの構成を示した図である。なお、図7Aでは、図6に示した光マトリクススイッチ回路0101bを裏面側から見た場合の構成を示している。
 光マトリクススイッチ回路0101bは、波長パス多重・分離回路0102bのM個の送出ポートP1~P4と1対1で接続されたM個の入力ポート7a~7dと、M個の出力ポート8a~8dと、入力ポート7a~7dと出力ポート8a~8dとの接続を任意に切り換える切換部9と、を備える。
 切換部9は、一般的に切換手段と呼ぶことができる。切換部9は、M個の入力ポート7a~7dのうち1個の特定入力ポートをM個の出力ポート8a~8dのうち個の特定出力ポートに接続する分岐接続を行う場合、特定入力ポートに入力された光信号をY個の分岐信号に分け、そのY個の分岐信号をY個の特定出力ポートにそれぞれ出力することによって分岐接続を行う。なお、切換部9は、Y個の分岐信号のパワーが互いに等しくなるように、特定入力ポートに入力された光信号を当該Y個の分岐信号に分ける。
 切換部9は、グリッド状に接続された複数の光スイッチ素子0301bから構成されている。
 図7Bおよび図7Cに示すように、光スイッチ素子0301bは、ポートa(第1出力部)、ポートb(第2出力部)、ポートc(第1入力部)、および、ポートd(第2入力部)を有する。光スイッチ素子0301bは、互いに同じ向きでM行M列にマトリクス状に配列されている。
 光マトリクススイッチ回路0101bは、M列目の光スイッチ素子0301bの第1入力部が入力ポート7と接続され、M行目(図7AではD行目)の光スイッチ素子0301bの第2出力部が出力ポート8と接続されている。
 光スイッチ素子0301bは、図7Bに示すように、光スイッチ素子0301bの分岐合波比率を適切に調整することにより、ポートcからの光入力信号をポートaおよびポートbに分岐することが可能である。
 光スイッチ素子0301aは、クロス状態とバー状態と分岐状態とを択一的に設定可能である。
 分岐状態は、ポートcで受け付けた光信号を2つに分けてポートbおよびポートaからそれぞれ出力する状態である。
 光スイッチ素子0301bは、分岐接続を行う場合には、特定入力ポートに入力された光信号がY個の分岐信号に分けられ、そのY個の分岐信号がY個の特定出力ポートにそれぞれ出力されるように、クロス状態とバー状態と分岐状態とのいずれかの状態になる。
 図6において、M個の波長可変フィルタ0108bX~0108bWは、光マトリクススイッチ回路0101bのM個の出力ポート8a~8dと1対1で接続され、透過波長を選択可能である。
 光受付部0103bX~0103bWは、例えば、光受信器またはトランスポンダである。M個の光受付部0103bX~0103bWは、波長可変フィルタ0108bX~0108bWと1対1で接続され、波長可変フィルタ0108bX~0108bWのうち、自己と接続された波長可変フィルタ0108bを透過した波長の光信号を受信する。
 記憶部2bは、波長パス多重・分離回路0102bの送出ポートP1~P4と波長パス多重・分離回路0102bの受付ポート#1~#4との波長に依存する接続関係を表す第1b接続情報と、波長パス多重・分離回路0102bの送出ポートP1~P4と光マトリクススイッチ回路0101bの入力ポート7a~7dとの接続関係を表す第2b接続情報と、光マトリクススイッチ回路0101bの出力ポート8a~8dと光受付部0103bX~0103bWとの接続関係を表す第3b接続情報と、を記憶する。第1b接続情報と第2b接続情報と第3b接続情報とは、受信側接続情報(接続情報)に含まれる。
 制御部1bは、受付ポート#1~#4のいずれかである通信用ポートとY種類の通信用波長とを示す設定要求を受け付けると、M個の光受付部0103bX~0103bWのうちY個の光受付部をY種類の通信用波長の光信号をそれぞれ受け付ける受信側通信部(通信手段)として特定する。
 制御部1bは、受信側通信部を特定すると、記憶部1b内の受信側接続情報を参照して、受信側通信部ごとに、M個の出力ポート8a~8dのうち、その受信側通信部と接続する特定出力ポートと、波長パス多重・分離回路0102bのM個の送出ポートP1~P4のうち通信用ポートと接続する特定送出ポートと、M個の入力ポート7a~7dのうち特定送出ポートと接続する特定入力ポートと、特定入力ポートと特定出力ポートを接続する切換部9内の特定光路と、を特定すると共に、M個の波長可変フィルタ0108bX~0108bWのうちその受信側通信部と接続する波長可変フィルタ0108b(特定波長選択手段)の透過波長をY種類の通信用波長のうちその受信側通信部が受け付ける通信用波長に設定し、特定光路のそれぞれが形成されるように切換部9を制御する。
 例えば、制御部1bは、受信側通信部を特定すると、受信側通信部ごとに、通信用ポートからその受信用通信部までの光路の一部となる光マトリクススイッチ回路0101b内の特定光路を、記憶部2a内の受信側接続情報を参照して特定し、特定光路のそれぞれが形成されるように、光スイッチ素子0301bを、クロス状態とバー状態と分岐状態とのいずれかに設定する。
 なお、制御部1bは、光スイッチ素子0301bのうち、特定光路が分岐する箇所に存在する特定光スイッチ素子を分岐状態に設定する。
 光スイッチ素子0301bのそれぞれは、分岐接続を行う場合には、ポートcで受け付けた光信号を、任意の比率で分岐可能である。制御部1bは、特定光スイッチ素子を分岐状態に設定すると共に、分岐された各波長の光信号のパワーが等しくなるように、分岐比率を設定する。
 また、制御部1bは、通信用ポートと、通信用波長と、受信側通信部と、切換部9内の特定光路と、特定入力ポートと、特定出力ポートと、特定受付ポートと、を示す情報を、格納部3bに格納する。
 光伝送装置制御回路0105bは、上位設定手段(不図示)による方路と波長(特定波長)とを示す設定要求を受け付けると、記憶部2b内の第1b接続情報、第2b接続情報および第3b接続情報を参照して、波長可変フィルタ制御回路0107bおよび光スイッチ分岐合波比率制御回路0106bを制御する。
 光スイッチ分岐合波比率制御回路0106bは、光伝送装置制御回路0105bからの要求に応じて、その要求にて指定された光マトリクススイッチ回路0101b内の光スイッチ素子0301bの分岐合波比率を設定する。
 波長可変フィルタ制御回路0107bは、光伝送装置制御回路0105bからの要求に応じて、波長可変フィルタ0108bXの透過中心波長を、光受付部0103bXで受信される波長に設定し、かつ、波長可変フィルタ0108bYの透過中心波長を、光受付部0103bYで受信される波長に設定し、かつ、波長可変フィルタ0108bZの透過中心波長を、光受付部0103bZで受信される波長に設定し、かつ、波長可変フィルタ0108bWの透過中心波長を、光受付部0103bWで受信される波長に設定する。
 図8は、図4に示した送信側装置と図6に示した受信側装置とが伝送路1506~1509を介して接続された波長多重分離光通信システムを示した図である。
 次に、第1実施形態の動作を説明する。
 まず、図4を参照して、送信側装置において、波長λ1-方路#1に波長パス信号を設定する動作について説明する。
 光伝送装置制御回路0105aは、波長λ1-方路#1の波長パス信号設定要求を受け付けると、光出力部0103aYを指定し、かつ、光出力部0103aYから送信される光信号の波長をλ1に設定する旨を、光送信波長制御回路0104aに通知する。
 その後、光伝送装置制御回路0105aは、記憶部2aに記憶された、波長パス多重・分離回路0102aの波長分離ポートP1-P4と方路ポート#1-#4との接続対応関係(第1a接続情報;図2B参照)を参照し、λ1-方路#1の波長パス設定について、光出力部0103aYから送信された光信号が、波長パス多重・分離部0102aの波長分離ポートP1に入力するように、光マトリクススイッチ回路0101aを設定する必要があると判断する。
 よって、光伝送装置制御回路0105aは、記憶部2aに記憶された第2a接続情報および第3a接続情報を参照し、光スイッチ素子D2、C2、B2、A3およびA4に対しては、分岐合波設定(合波状態の設定)を行わず、通常のOFF(クロス)状態に設定し、光スイッチ素子A2に対しては、光スイッチ素子B2から入力された波長λ1の波長信号(光信号)を光スイッチ素子A3に出力する状態(バー状態)に設定する旨を、光スイッチ分岐合波比率制御回路0106aに通知する。
 光スイッチ分岐合波比率制御回路0106aは、光伝送装置制御回路0105aからの通知に従って、光スイッチ素子D2、C2、B2、A3およびA4を、クロス状態に設定し、光スイッチ素子A2をバー状態に設定する。
 また、光送信波長制御回路0104aは、光伝送装置制御回路0105aからの通知に従って、光出力部0103aYから送信される光信号の波長をλ1に設定する。
 以上により、光出力部0103aYから送信された波長λ1の波長光信号は、方路#1に出力される。
 その後、送信側装置において、波長λ3-方路#3に波長パス信号を設定する動作について説明する。
 光伝送装置制御回路0105aは、波長λ1-方路#1の波長パス信号設定要求に続いて、波長λ3-方路#3の波長パス信号設定要求を受け付けると、つまり、波長λ1-方路#1と波長λ3-方路#3との波長パス信号設定要求を受け付けると、光出力部0103aXを指定し、かつ、光出力部0103aXから送信される光信号の波長をλ3に設定する旨を、光送信波長制御回路0104aに通知する。
 その後、光伝送装置制御回路0105aは、記憶部2aに記憶された、波長パス多重・分離回路0102aの波長分離ポートP1-P4と方路ポート#1-#4との接続対応関係(第1a接続情報;図2B参照)を参照し、λ3-方路#3の波長パス設定について、光出力部0103aXから送信された光信号が、波長パス多重・分離部0102aの波長分離ポートP1に入力するように、光マトリクススイッチ回路0101aを設定する必要があると判断する。
 よって、光伝送装置制御回路0105aは、記憶部2aに記憶された第2a接続情報および第3a接続情報を参照し、光スイッチ素子D1、C1、B1、A3およびA4に対しては、分岐合波設定(合波状態の設定)を行わず、通常のOFF(クロス)状態に設定し、光スイッチ素子A1に対しては、光スイッチ素子B1から入力された波長λ1の波長信号を光スイッチ素子A2に出力する状態(バー状態)に設定する旨を、光スイッチ分岐合波比率制御回路0106aに通知する。
 さらに、光伝送装置制御回路0105aは、光スイッチ素子A2が、図9Aに示すように、2つの入力ポートからの波長信号を1つの出力ポートに集約(合波)するように、光スイッチ素子A2に対しては、分岐比率を1/2とした合波状態を設定する旨を、光スイッチ分岐合波比率制御回路0106aに通知する。
 光スイッチ分岐合波比率制御回路0106aは、光伝送装置制御回路0105aからの通知に従って、光スイッチ素子D1、C1、B1、A3およびA4をクロス状態に設定し、光スイッチ素子A1をバー状態に設定し、光スイッチ素子A2の分岐比率を1/2とした合波状態に設定する。
 光スイッチ素子A2は、分岐比率として1/2が設定されると、光スイッチ素子A1からの入力信号(λ3)を透過損失3dBで光スイッチ素子A3に出力すると同時に、光スイッチ素子B2からの入力信号(λ1)を透過損失3dBで光スイッチ素子A3に出力する。よって、光スイッチ素子A2への入力光パワーが、波長信号λ1、λ3についてそれぞれXであるとすると、光スイッチ素子A2から光スイッチ素子A3への出力光信号のパワーはXとなる。
 また、光送信波長制御回路0104aは、光伝送装置制御回路0105aからの通知に従って、光出力部0103aXから送信される光信号の波長をλ3に設定する。
 以上により、すでに波長λ1の光信号が入力されている波長パス多重・分離部0102aの波長分離ポートP1に対して、波長λ3の光信号を入力することができる。このため、光出力部0103aXから送信された波長λ3の光信号は、方路#3に出力される。
 その後、送信側装置において、波長λ2-方路#2に波長パス信号を設定する動作について説明する。
 光伝送装置制御回路0105aは、波長λ1-方路#1と波長λ3-方路#3との波長パス信号設定要求に続いて、波長λ2-方路#2の波長パス信号設定要求を受け付けると、つまり、波長λ1-方路#1と波長λ3-方路#3と波長λ2-方路#2との波長パス信号設定要求を受け付けると、光出力部0103aWを指定し、かつ、光出力部0103aWから送信される光信号の波長をλ2に設定する旨を、光送信波長制御回路0104aに通知する。
 その後、光伝送装置制御回路0105aは、記憶部2aに記憶された、波長パス多重・分離回路0102aの波長分離ポートP1-P4と方路ポート#1-#4との接続対応関係(第1a接続情報;図2B参照)を参照し、λ2-方路#2の波長パス設定について、光出力部0103aWから送信された光信号が、波長パス多重・分離部0102aの波長分離ポートP1に入力するように、光マトリクススイッチ回路0101aを設定する必要があると判断する。
 よって、光伝送装置制御回路0105aは、記憶部2aに記憶された第2a接続情報および第3a接続情報を参照し、光スイッチ素子D4、C4およびB4に対しては、分岐合波設定(合波状態の設定)を行わず、通常のOFF(クロス)状態に設定し、光スイッチ素子A2については、λ3-方路#3の波長パス設定時の光スイッチ素子の設定状態を維持し、光スイッチ素子A4については、分岐比率を1/3とした合波状態(図9A参照)を設定する旨を、光スイッチ分岐合波比率制御回路0106aに通知する。
 光スイッチ分岐合波比率制御回路0106aは、光伝送装置制御回路0105aからの通知に従って、光スイッチ素子D4、C4およびB4をクロス状態に設定し、光スイッチ素子A2については、λ3-方路#3の波長パス設定時の光スイッチ素子の設定状態を維持し、光スイッチ素子A4の分岐比率を1/3に設定する。
 光スイッチ素子A4は、分岐比率として1/3が設定されると、光スイッチ素子A3からの入力信号(λ1、λ3)を透過損失1.8dBで波長分離ポートP1に出力すると同時に、光スイッチ素子B1からの入力信号(λ2)を透過損失4.8dBで波長分離ポートP1に出力する。よって、光スイッチ素子A4への入力光パワーが、波長信号λ1、λ3についてそれぞれX/2であるとすると、光スイッチ素子A4から波長パス多重・分離部0102aの波長分離ポートP1への出力光信号のパワーはXとなる((X/2+X/2)*2/3+X/3=X)。
 また、光送信波長制御回路0104aは、光伝送装置制御回路0105aからの通知に従って、光出力部0103aWから送信される光信号の波長をλ2に設定する。
 以上により、すでに波長λ1、λ3の光信号が入力されている波長パス多重・分離部0102aの波長分離ポートP1に対して、波長λ2の光信号を入力することができる。このため、光出力部0103aWから送信された波長λ2の光信号は、方路#2に出力される。
 以上の動作は、光出力部0103aに対する波長設定の動作、および、波長可変フィルタ0108bX~0108Wに対して波長パス信号に対応する透過波長を設定するという波長可変フィルタ制御回路0107bにて行われる動作以外は、受信側装置も同様であり、受信側装置では、光スイッチ素子における光信号合波動作が光信号分岐動作(図9B参照)となる。
 本実施形態によれば、切換部6は、集約状況では、Y個の特定入力ポートに入力されたY個の光信号を合波して合波信号を生成し、その合波信号を特定出力ポートに出力する。
 このため、互いに異なる波長を有した光信号を、波長パス多重・分離回路0102aの1つの波長分離ポート(受付ポート)に送信することが可能になる。よって、波長パス多重分離光を送信する送信側装置より送受信する波長パスに関して、選択不可能な波長と方路の組み合わせを回避することができる。
 また、切換部6は、合波信号に含まれるY個の光信号のパワーが互いに等しくなるように、Y個の光信号を合波する。このため、波長多重光信号の劣化を防止することが可能になる。
 また、制御部1aは、記憶部2aを参照して切換部6を制御することによって、切換部6内に特定光路のそれぞれを形成する。このため、特定光路のそれぞれを精度よく形成することが可能となる。
 また、格納部3aは、通信用ポートと、通信用波長と、受信側通信部と、切換部6内の特定光路と、特定入力ポートと、特定出力ポートと、特定受付ポートと、を示す情報を格納する。このため、設定済みの波長パスに関する情報を管理することが可能になる。
 また、切換部6は、光スイッチ素子0301aがマトリクス状に配列された光マトリクススイッチ回路0101aであり、光スイッチ素子0301aは、集約状況では、合波信号が生成され、その合波信号が特定出力ポートから出力されるように、クロス状態とバー状態と合波状態とのいずれかの状態になる。このため、光マトリクススイッチ回路0101aを用いて、互いに異なる波長を有した光信号を、波長パス多重・分離回路0102aの1つの波長分離ポート(受付ポート)に送信することが可能になる。
 また、切換部9は、分岐状況では、特定入力ポートに入力された光信号をY個の分岐信号に分け、そのY個の分岐信号をY個の特定出力ポートにそれぞれ出力する。このため、図4に示した送信側装置から送信された波長多重光信号を適切に受信することが可能になる。
 また、切換部9は、Y個の分岐信号のパワーが互いに等しくなるように、特定入力ポートに入力された光信号を当該Y個の分岐信号に分ける。このため、波長多重光信号のバラツキを防止することが可能になる。
 また、制御部1bは、記憶部2bを参照して切換部9および波長可変フィルタ0108bX~0108bWを制御することによって、切換部9内に特定光路のそれぞれを形成し、光受付部0103bに、特定光路を通ってきた特定波長の光信号を受信させる。このため、図4に示した送信側装置から送信された波長多重光信号に含まれる波長ごとの光信号を適切に受信することが可能になる。
 また、格納部3bは、通信用ポートと、通信用波長と、受信側通信部と、切換部9内の特定光路と、特定入力ポートと、特定出力ポートと、特定受付ポートと、を示す情報を格納する。このため、設定済みの波長パスに関する情報を管理することが可能になる。
 また、切換部9は、光スイッチ素子0301bがマトリクス状に配列された光マトリクススイッチ回路0101bであり、光スイッチ素子0301bは、分岐状況では、特定入力ポートに入力された光信号がY個の分岐信号に分けられ、Y個の分岐信号がY個の特定出力ポートにそれぞれ出力されるように、クロス状態とバー状態と分岐状態とのいずれかの状態になる。このため、光マトリクススイッチ回路0101bを用いて、図4に示した送信側装置から送信された波長多重光信号を適切に受信することが可能になる。
 (第2実施形態)
 次に、本発明の第2実施形態について図面を参照して詳細に説明する。以下では、第2実施形態について、第1実施形態と異なる点を中心に説明する。
 第2実施形態では、図4に示す光マトリクススイッチ回路0101aおよび図6に示す光マトリクススイッチ回路0101b内の光スイッチ素子として、石英系導波路などのマッハツェンダ干渉計型TO(Thermal Optical)スイッチを適用する。なお、マッハツェンダ干渉計型TO(Thermal Optical)スイッチは、1つの装置またはデバイスである。
 図10は、マッハツェンダ型干渉計型光スイッチのヒータ印加電力に対する透過損失特性を示す。
 マッハツェンダ型干渉計型光スイッチは、ON/OFF(Bar/Cross)動作では、図10のグラフ中の黒丸で示したポイントで駆動する。
 一方、本実施形態での光信号合波分岐動作では、それらの間の透過損失特性を利用し、合波分岐比に応じて、印加されるヒータ電力が調節される。
 図10のグラフ中の白丸は、マッハツェンダ干渉計型光スイッチの2つの出力ポートに対して等しい透過損失特性を得るポイントであり、それぞれ3dBの透過損失を有する。
 図11Aおよび図11Bは、8x8アレイ化され、入力8ポートと出力8ポートとの間でブロッキングなしで接続ができる石英系導波路のマッハツェンダ干渉計型光スイッチを示した図である。
 図11Aおよび図11Bにおいて、光マトリクススイッチ回路0101の右側には、波長パス多重・分離回路0102が接続されている。
 なお、図11Aおよび11Bでは、8x8の光マトリクススイッチを示したが、本実施形態は、このスイッチ規模に制約されるものではない。
 図11Aに示した動作は、図4を用いて説明した送信側で光信号を単一ポートに合波する動作に相当する。
 図11Aにおいて、光スイッチ素子A7、E8およびH7が、完全ON(バー:Bar)状態の設定となり、光スイッチ素子F5が、入力ポート1からの波長λ1の光信号とポート7からの波長λ3の光信号を合波し、合波された各光信号のピークレベルが一致するように、光スイッチ分岐合波比率制御回路0106bは、各ヒータへの印加電力を制御する。
 同様に、光スイッチ素子G6が、光スイッチ素子F5から入力される波長パス信号(λ1、λ3)と光スイッチ素子F7から入力される波長パス信号(λ2)を合波し、合波されたすべての光信号のピークレベルが一致するように、光スイッチ分岐合波比率制御回路0106bは、各ヒータへの印加電力を制御する。
 この結果、波長パス多重・分離回路0102aの波長分離ポートには、波長λ1、λ2およびλ3の各光信号(波長パス信号)が合波されて入力される。
 その他の構成および動作は、第1実施形態と同様である。
 図11Bに示した動作は、図6を用いて説明した受信側で光信号を複数ポートに分岐する動作に相当する。
 図11Bにおいて、光スイッチ素子A7、E8およびH7が、完全ON(Bar)状態の設定となり、光スイッチ素子G6が、光スイッチ素子H7からの波長パス信号(λ1、λ2、λ3)を分岐し分岐された光信号のピークレベルが一致するように、光スイッチ分岐合波比率制御回路0106bは、各ヒータへの印加電力を制御する。
 同様に、光スイッチ素子F5が、光スイッチ素子G6から入力される波長パス信号(λ1、λ2、λ3)を分岐し、分岐されたすべての光信号のピークレベルが一致するように、光スイッチ分岐合波比率制御回路0106bは、各ヒータへの印加電力を制御する。
 この結果、波長λ1、λ2およびλ3の波長パス信号が合波された波長パス信号は、透過中心波長が受信すべき波長パスの波長に設定された波長可変フィルタ0108bを通して、複数の光受付部0103bで受信される。
 その他の構成および動作は、第1実施形態と同じである。
 図12Aおよび12Bは、波長パス多重・分離回路0102aおよび0102b(以下、単に「波長パス多重・分離回路0102」と称する)の方路ポートの選択方法と波長分離ポートに多重される波長パスの波長との関係を説明するための図である。
 なお、図12Aおよび12Bでは、波長パス多重・分離回路0102が、波長分離ポートP1~P8、および、方路ポート#1~#8を有するものとする。また、波長パス多重・分離回路0102の波長分離ポートは、100GHzの波長間隔を持ち、さらにFSR(Free Spectrum Range)=800GHzの周回性を有するものとする。
 図12Aでは、方路A、B、CおよびDに対して、方路ポート#1、2、3および4を、それぞれ割り当てており、このとき、方路Aから波長λ1の光信号が、方路Bから波長λ2の光信号が、方路Cから波長λ3の光信号が、および、方路Dから波長λ4の光信号が、同時に、波長パス多重・分離回路0102の方路ポート#1、#2、#3および#4にそれぞれ入力されると、波長λ1、λ2、λ3およびλ4のそれぞれの光信号(波長パス信号)は、すべて、波長分離ポートP1に出力される(図2B参照)。
 これら100GHz間隔の4つの波長パス信号から必要な波長のみを選択するために、波長可変フィルタ0108bの中心透過波長が、選択すべき波長パス信号の波長に調節される。
 図12Bでは、方路A、B、CおよびDに対して、方路ポート#1、3、5および7を、それぞれ割り当てており、このとき、方路Aから波長λ1の光信号が、方路Bから波長λ3の光信号が、方路Cから波長λ5の光信号が、および、方路Dから波長λ7の光信号が、同時に、波長パス多重・分離回路0102の方路ポート#1、#3、#5および#7にそれぞれ入力されると、波長λ1、λ3、λ5およびλ7のそれぞれの光信号(波長パス信号)は、すべて、波長分離ポートP1に出力される(図2B参照)。
 これら200GHz間隔の4つの波長パス信号から必要な波長のみを選択するために、波長可変フィルタ0108bの中心透過波長が、選択すべき波長パス信号の波長に調節される。
 以上のように、方路ポートへの方路の割り当てを図12Bのように間隔を空けることによって、波長分離ポートに多重されて出力される波長パス信号の波長間隔が広くなり、波長可変フィルタ0108bに要求されるフィルタ特性がなだらかになり、低コスト化を図ることができる。
 (第3実施形態)
 次に、本発明の第3実施形態について図面を参照して詳細に説明する。以下では、第3実施形態について、第1実施形態と異なる点を中心に説明する。
 図13は、図4に示す光マトリクススイッチ回路0101aとして、MEMS(Micro Electro Mechanical System)光マトリクススイッチ(出力切換手段)0405aと、2:1合波分岐光カプラ(生成手段)0401aと、3:1合波分岐光カプラ(生成手段)0402aと、4:1合波分岐光カプラ(生成手段)0403aと、を用いた送信側装置を示した図である。
 図14は、図6に示す光マトリクススイッチ回路0101bとして、MEMS光マトリクススイッチ(出力切換手段)0405bと、2:1合波分岐光カプラ(分岐手段)0401bと、3:1合波分岐光カプラ(分岐手段)0402b、および、4:1合波分岐光カプラ(分岐手段)0403bと、を用いた受信側装置を示した図である。
 なお、本実施形態では、入出力ポート間がブロッキングなしで接続できる光マトリクススイッチであれば、光マトリクススイッチ回路は、MEMS光マトリクススイッチに限定されるものではない。
 MEMS光マトリクススイッチ0405aおよび0405b内には、図3Aに示した光スイッチ素子が互いに同じ向きでマトリクス状に配列されている。
 N:1合波分岐光カプラのNの最大値は、対応方路数に一致する。図13および図14では、波長パス多重・分離回路0102が最大4方路対応であるとすると、4:1合波分岐カプラが具備されればよい。
 また、光カプラの数量については、図13および図14における波長分離ポート数=8に対して接続可能な光出力部または光受付部は最大8個であるため、4:1合波分岐光カプラが2個、3:1合波分岐光カプラが2個、2:1合波分岐光カプラが4個となる(図13および図14では一部省略)。
 その他の装置構成は、図4または図6と同様である(図13および図14では省略)。
 次に、図13を用いて、光出力部0103より送信される波長λ1およびλ2の波長パス信号を、それぞれ、波長パス多重・分離回路0102の方路ポート#1および#2に設定するための動作について説明する。
 光伝送装置制御回路0105aは、波長パス送信設定要求(λ1-方路#1、λ2-方路#2)を受けると、記憶部2aを参照して、波長λ1およびλ2の波長パスを波長分離ポートP1に入力する必要があると判断する。
 さらに、設定要求は、2つの波長パスについてのものであるため、光伝送装置制御回路0105aは、2:1合波分岐光カプラ0401aを利用して波長パス信号を合波するために、記憶部2aを参照して、光スイッチ分岐合波比率制御回路0106aを制御する。
 また、光伝送装置制御回路0105aは、合波された波長パス信号(λ1、λ2)を波長パス分離・多重回路0102の波長分離ポートP1に入力するために、光スイッチ分岐合波比率制御回路0106aを制御する。
 以上により、λ1-方路#1、λ2-方路#2の波長パス設定が完了する。
 次に、図14を用いて、λ1-方路#1およびλ2-方路#2の波長パス信号を、それぞれ、光受付部0103bYおよび0103bXで受信する設定を行う動作について説明する。
 光伝送装置制御回路0105bは、波長パス受信設定要求(λ1-方路#1およびλ2-方路#2)を受けると、記憶部2bを参照して、波長λ1およびλ2の波長パスが波長分離ポートP1より出力されると判断する。
 さらに、設定要求は、2つの波長パスについてのものであるため、光伝送装置制御回路0105bは、2:1合波分岐光カプラ0401bを利用して波長パス信号を分岐するために、記憶部2aを参照して、光スイッチ分岐合波比率制御回路0106bを制御する。
 また、光伝送装置制御回路0105bは、分岐された波長パス信号(λ1、λ2)を、波長パス分離・多重回路0102bのポートのうち、光受付部0103bXが接続されているポートに出力するために、記憶部2aを参照して、光スイッチ分岐合波比率制御回路0106bを制御する。
 また、光伝送装置制御回路0105bは、波長可変フィルタ0108bXの透過中心波長を、光受付部0103bXが受信する波長パス信号の波長=λ2に設定するために、波長可変フィルタ制御回路0107bを制御する。光受付部0103bYについても同様の設定が行われ、波長可変フィルタ0108bYの透過中心波長が、波長λ1に設定される。
 以上により、λ1-方路#1およびλ2-方路#2の波長パスの設定が完了する。
 (第4実施形態)
 次に、本発明の第4実施形態について図面を参照して詳細に説明する。
 図15および図16は、上記実施形態のいずれかの送信側装置および受信側装置を備えた波長パス多重分離光伝送装置を含む複数のノードが配備されたWDM波長パスシステムを示す図である。
 WDM波長パスシステムは、波長クロスコネクト-WXC(Wavelength Cross-Connect)機能を有する波長ネットワークノード0901と、トランスポンダ(光出力手段および光受付手段)1406と、光ファイバ0903と、伝送路0902と、波長ネットワーク管理制御装置0910と、を含む。波長ネットワークノード0901と、トランスポンダ1406と、波長ネットワーク管理制御装置0910とは、WDM波長パスシステム内の各ノードに含まれる。
 各ノードは、複数の波長パス多重伝送路に対して波長パスを多重または分離する。波長パスは、少なくとも、任意の2ノードのうちの一方に含まれる光出力部(例えば、トランスポンダ)と、他方に含まれる光受付部(例えば、トランスポンダ)と、の間で構成される。
 WDM波長パスシステムは、図15に示すリングトポロジ、図16に示すメッシュトポロジなど、任意のネットワークトポロジを構築できる。
 図17は、上記実施形態のいずれかの送信側装置および受信側装置を備えた波長パス多重分離光伝送装置を具備したノード0901を示す図である。
 ノード0901は、WDMライン部1423と、トランスポンダ収容機能部1422と、トランスポンダ1421と、光伝送装置制御回路1432と、を含む。トランスポンダ収容機能部1422は、波長パス多重・分離部1404および1405を含む。
 波長パス多重・分離部1404は、図6に示した受信側の波長パス多重・分離部0102bである。波長パス多重・分離部1405は、図4に示した送信側の波長パス多重・分離部0102aである。光マトリクススイッチ回路1326は、図6に示した受信側の光マトリクススイッチ回路0101bである。光マトリクススイッチ回路1327は、図4に示した送信側の光マトリクススイッチ回路0101aである。
 WDMライン部1423は、複数の光分岐カプラ1403と、複数の波長選択回路1402と、を含む。光分岐カプラ1403は、一般的に光パワー分岐手段と呼ぶことができる。波長選択回路1402は、一般的に波長選択スイッチ手段と呼ぶことができる。
 WDMライン部1423は、ノード内に配備されているトランスポンダ1421が送信する波長光信号を波長多重してWDMライン信号を生成したり、WDMライン信号を波長分離してトランスポンダ1421が受信する波長光信号を生成したりする。
 また、WDMライン部1423は、本ノードに進入して通過する波長光信号を適当な方路に出力する機能を有する。
 光分岐カプラ1403は、複数の波長パス多重伝送路と1対1で接続されている。および波長選択回路1402は、複数の波長パス多重伝送路と1対1で接続されている。
 光分岐カプラ1403は、自己と接続された波長パス多重伝送路から自ノードへ入力される波長多重光信号を2つに分け、一方の波長多重光信号を、複数の波長選択回路1402のうち、その波長パス多重伝送路以外の波長パス多重伝送路と接続された波長選択回路1402に出力すると共に、他方の波長多重光信号を、自己内の波長パス多重・分離部1404の受付ポートに出力する。
 波長選択回路1402は、光分岐カプラ1403からの波長多重光信号と、自ノード内の波長パス多重・分離部1405の送出ポートからの波長多重光信号と、を受け付け、受け付けられ波長多重光信号のいずれかを、自己と接続された波長パス多重伝送路に出力する。
 図18は、波長選択回路(WSS)1402の入出力インターフェースを示した図である。波長選択回路(WSS)1402は、各伝送路から光分岐カプラ1403を介して入力される任意の波長多重光信号を入力するポートと、ノード内に配備されているトランスポンダ収容機能部1422より出力された波長多重光信号を受け付けるadd用入力ポート(A01用入力ポート)と、入力されたすべての波長多重光信号の中から任意の波長多重光信号を選択的に出力する出力ポートと、を備える。
 トランスポンダ収容機能部1422およびトランスポンダ1421は、図4と図6で示した構成、もしくは、図13と図14で示した構成に相当する。
 トランスポンダ収容機能部1422およびトランスポンダ1421のそれぞれの機能は、第2実施形態、または、第2実施形態で説明したとおりである。
 トランスポンダ1421は、図19に示すように、フルチューナブル波長可変光送信器1201、光受信器1202、クライアント信号処理・光送信器1204、および、クライアント信号処理・光受信器1203を備えている。
 本実施形態の動作は、WDMライン部1423内の波長選択回路1402に対する、光伝送装置制御回路1432からの波長選択スイッチの制御設定が必要である点を除き、すでに第1実施形態もしくは第2実施形態で説明した動作と同様である。
 本実施形態に示した構成により、任意の個数の波長ネットワークノードを有する任意のネットワークトポロジにおいて、任意のノード間で波長信号を設定することが可能となる。
 次に、上記各実施形態の効果を説明する。
 第1の効果は、波長パス多重分離光伝送装置より送受信する波長パスに関して、選択不可能な波長と方路の組み合わせを回避することができることである。
 その理由は、波長パス切替・合波分岐手段である光マトリクススイッチ回路と波長パス多重・分離部との接続ポート間において複数の異なる波長の波長パスを収容することができるためである。
 また、第2の効果は、波長可変フィルタに要求される波長弁別特性が緩和され、システムの低コスト化が可能となることである。
 その理由は、波長パス多重・分離部の波長パス多重ポートを間隔を空けて方路と対応付けることにより、光マトリクススイッチ回路で同一出力ポートを共有する波長パスの波長間隔を広くすることができるためである。
 以上、各実施形態を参照して本願発明を説明したが、本願発明は上記各実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2009年10月7日に出願された日本出願特願2009-233510を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1501 光マトリクススイッチ回路
0103 トランスポンダ光送信器または受信器
0102 波長パス多重分離回路
1506、1507、1508、1509 伝送路またはネットワーク
0301、1701 光スイッチ素子
0101 光マトリクススイッチ回路
0106 光スイッチ分岐合波比率制御回路
0105、0805 光伝送装置制御回路
0104 光送信波長制御回路
0107 波長可変フィルタ制御回路
0108 波長可変フィルタ
1201 フルチューナブル波長可変光送信器
1202 光受信器
1203 クライアント信号処理・光受信器
1204 クライアント信号処理・光送信器
1402 波長選択回路
1403 光分岐カプラ
1423 WDMライン部
1422 トランスポンダ収容機能部
1421 トランスポンダ
1432 波長パス多重分離光伝送装置制御回路
0910 波長ネットワーク管理制御装置

Claims (14)

  1.  互いに異なる波長の光信号を出力するM(Mは2以上の整数)個の光出力手段と、
     前記M個の光出力手段と1対1で接続されたM個の入力ポート、M個の出力ポート、および、前記入力ポートと前記出力ポートとの接続を切り換える切換手段、を備える光スイッチ手段と、
     前記M個の出力ポートと1対1で接続されたM個の受付ポート、および、前記受付ポートとの接続が前記受付ポートに入力された光信号の波長に応じて切り換わるN(Nは2以上M以下の整数)個の送出ポート、を備え前記受付ポートが受け付けた光信号に応じた多重光信号を前記送出ポートから送信する波長多重手段と、を含み、
     前記切換手段は、前記M個の入力ポートのうちY(Yは2以上M以下の整数)個の特定入力ポートを前記M個の出力ポートのうち1個の特定出力ポートに接続する集約接続を行う場合、前記Y個の特定入力ポートに入力されたY個の光信号を合波して合波信号を生成し、当該合波信号を前記特定出力ポートに出力することによって前記集約接続を行う、光信号送信装置。
  2.  請求項1に記載の光信号送信装置において、
     前記切換手段は、前記合波信号に含まれるY個の光信号のパワーが互いに等しくなるように、当該Y個の光信号を合波する、光信号送信装置。
  3.  請求項1または2に記載の光信号送信装置において、
     前記送出ポートと前記受付ポートの接続関係と、前記受付ポートと前記出力ポートの接続関係と、前記入力ポートと前記光出力手段の接続関係と、を表す接続情報を記憶した記憶手段と、
     前記送出ポートのいずれかである通信用ポートとY種類の通信用波長とを示す設定要求を受け付けると、前記M個の光出力手段のうちY個の光出力手段を前記Y種類の通信用波長の光信号をそれぞれ出力する通信手段として特定し、前記記憶手段内の接続情報を参照して、前記通信手段ごとに、前記M個の入力ポートのうち当該通信手段と接続する前記特定入力ポートと、前記M個の受付ポートのうち前記通信用ポートと接続する特定受付ポートと、前記M個の出力ポートのうち前記特定受付ポートと接続する前記特定出力ポートと、前記特定入力ポートと前記特定出力ポートを接続する前記切換手段内の特定光路と、を特定し、当該特定光路のそれぞれが形成されるように前記切換手段を制御する制御手段と、をさらに含む光信号送信装置。
  4.  請求項3に記載の光信号送信装置において、
     格納手段をさらに含み、
     前記制御手段は、前記通信用ポートと、前記通信用波長と、前記通信手段と、前記切換手段内の特定光路と、前記特定入力ポートと、前記特定出力ポートと、前記特定受付ポートと、を示す情報を、前記格納手段に格納する、光信号送信装置。
  5.  請求項1から4のいずれか1項に記載の光信号送信装置において、
     前記切換手段は、第1および第2入力部と第1および第2出力部とを有する光スイッチ素子が互いに同じ向きでM行M列にマトリクス状に配列され、M行目の光スイッチ素子の第1入力部が前記入力ポートと接続され、かつ、M列目の光スイッチ素子の第2出力部が前記出力ポートと接続された光マトリクススイッチであり、
     前記光スイッチ素子は、前記集約接続を行う場合には、前記合波信号が生成され、当該合波信号が前記特定出力ポートから出力されるように、クロス状態と、バー状態と、前記第1入力部で受け付けた光信号と前記第2入力部で受け付けた光信号を合波して前記第2出力部から出力する合波状態と、のいずれかの状態になる、光信号送信装置。
  6.  請求項1から4のいずれか1項に記載の光信号送信装置において、
     前記切換手段は、
     前記集約接続を行う場合に前記合波信号を生成する生成手段と、
     前記生成手段にて生成された合波信号を、前記特定出力ポートに出力する出力切換手段と、を含む、光信号送信装置。
  7.  波長多重光信号を受け付けるN(Nは2以上の整数)個の受付ポート、および、前記受付ポートとの接続が前記受付ポートに入力された波長多重光信号が有する波長に応じて切り換わるM(MはN以上の整数)個の送出ポート、を備える波長分離手段と、
     前記M個の送出ポートと1対1で接続されたM個の入力ポート、M個の出力ポート、および、前記入力ポートと前記出力ポートとの接続を切り換える切換手段、を備える光スイッチ手段と、
     前記M個の出力ポートと1対1で接続され透過波長を選択可能なM個の波長選択手段と、
     前記M個の波長選択手段と1対1で接続され自己と接続された前記波長選択手段を透過した光信号を受信するM個の光受付手段と、を含み、
     前記切換手段は、前記M個の入力ポートのうち1個の特定入力ポートを前記M個の出力ポートのうちY(Yは2以上M以下の整数)個の特定出力ポートに接続する分岐接続を行う場合、前記特定入力ポートに入力された光信号をY個の分岐信号に分け、当該Y個の分岐信号を前記Y個の特定出力ポートにそれぞれ出力することによって前記分岐接続を行う、光信号受信装置。
  8.  請求項7に記載の光信号受信装置において、
     前記切換手段は、前記Y個の分岐信号のパワーが互いに等しくなるように、前記特定入力ポートに入力された光信号を当該Y個の分岐信号に分ける、光信号受信装置。
  9.  請求項7または8に記載の光信号受信装置において、
     前記受付ポートと前記送出ポートの接続関係、前記送出ポートと前記入力ポートの接続関係、および、前記出力ポートと前記光受付手段の接続関係、を表す接続情報を記憶した記憶手段と、
     前記受付ポートのいずれかである通信用ポートとY種類の通信用波長とを示す設定要求を受け付けると、前記M個の光受付手段のうちY個の光受付手段を前記Y種類の通信用波長の光信号をそれぞれ受け付ける通信手段として特定し、前記記憶手段内の接続情報を参照して、前記通信手段ごとに、前記M個の出力ポートのうち当該通信手段と接続する前記特定出力ポートと、前記M個の送出ポートのうち前記通信用ポートと接続する特定送出ポートと、前記M個の入力ポートのうち前記特定送出ポートと接続する前記特定入力ポートと、前記特定入力ポートと前記特定出力ポートを接続する前記切換手段内の特定光路と、を特定すると共に、前記M個の波長選択手段のうち当該通信手段と接続する特定波長選択手段の透過波長を前記Y種類の通信用波長のうち当該通信手段が受け付ける通信用波長に設定し、当該特定光路のそれぞれが形成されるように前記切換手段を制御する制御手段と、をさらに含む光信号受信装置。
  10.  請求項9に記載の光信号受信装置において、
     格納手段をさらに含み、
     前記制御手段は、前記通信用ポートと、前記通信用波長と、前記通信手段と、前記切換手段内の特定光路と、前記特定入力ポートと、前記特定出力ポートと、前記特定受付ポートと、を示す情報を、前記格納手段に格納する、光信号受信装置。
  11.  請求項7から10のいずれか1項に記載の光信号受信装置において、
     前記切換手段は、第1および第2入力部と第1および第2出力部とを有する光スイッチ素子が互いに同じ向きでM行M列にマトリクス状に配列され、M列目の光スイッチ素子の第1入力部が前記入力ポートと接続され、かつ、M行目の光スイッチ素子の第2出力部が前記出力ポートと接続された光マトリクススイッチであり、
     前記光スイッチ素子は、前記分岐接続を行う場合には、前記特定入力ポートに入力された光信号がY個の分岐信号に分けられ、当該Y個の分岐信号が前記Y個の特定出力ポートにそれぞれ出力されるように、クロス状態と、バー状態と、前記第1入力部で受け付けた光信号を2つに分けて前記第1および第2出力部からそれぞれ出力する分岐状態と、のいずれかの状態になる、光信号受信装置。
  12.  請求項7から11のいずれか1項に記載の光信号受信装置において、
     前記切換手段は、
     前記分岐接続を行う場合に前記特定入力ポートに入力された光信号を前記Y個の分岐信号に分ける分岐手段と、
     前記分岐手段からの前記Y個の分岐信号を、前記Y個の特定出力ポートにそれぞれ出力する出力切換手段と、を含む、光信号受信装置。
  13.  請求項1から6のいずれか1項に記載の光信号送信装置と、
     請求項7から12のいずれか1項に記載の光信号受信装置と、を含む波長多重分離光通信装置。
  14.  複数の波長パス多重伝送路に対して波長パスを多重または分離する複数のノードを含む波長パスシステムであって、
     前記ノードは、
     請求項13に記載の波長多重分離光通信装置と、
     前記複数の波長パス多重伝送路と1対1で接続された複数の光パワー分岐手段と、
     前記複数の波長パス多重伝送路と1対1で接続された複数の波長選択スイッチ手段と、を含み、
     前記波長パスは、少なくとも、任意の2ノードのうちの一方に含まれる光出力手段と、他方に含まれる光受付手段と、の間で構成されるものであり、
     前記光パワー分岐手段は、自己と接続された波長パス多重伝送路から自ノードへ入力される波長多重光信号を2つに分け、一方の波長多重光信号を、前記複数の波長選択スイッチ手段のうち、当該波長パス多重伝送路以外の波長パス多重伝送路と接続された波長選択スイッチ手段に出力し、他方の波長多重光信号を、自己内の波長分離手段の受付ポートに出力し、
     前記波長選択スイッチ手段は、前記光パワー分岐手段からの波長多重光信号と、自ノード内の波長多重手段の送出ポートからの波長多重光信号と、を受け付け、受け付けられた波長多重光信号のいずれかを、自己と接続された波長パス多重伝送路に出力する、波長パスシステム。
PCT/JP2010/063201 2009-10-07 2010-08-04 光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステム WO2011043122A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011535310A JP5287993B2 (ja) 2009-10-07 2010-08-04 光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステム
US13/499,904 US8811817B2 (en) 2009-10-07 2010-08-04 Optical signal transmission device, optical signal reception device, wavelength division multiplexing optical communication device, and wavelength path system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-233510 2009-10-07
JP2009233510 2009-10-07

Publications (1)

Publication Number Publication Date
WO2011043122A1 true WO2011043122A1 (ja) 2011-04-14

Family

ID=43856602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063201 WO2011043122A1 (ja) 2009-10-07 2010-08-04 光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステム

Country Status (3)

Country Link
US (1) US8811817B2 (ja)
JP (1) JP5287993B2 (ja)
WO (1) WO2011043122A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137555A1 (ja) * 2011-04-07 2012-10-11 独立行政法人産業技術総合研究所 導波路型光スイッチ
JP2013005388A (ja) * 2011-06-21 2013-01-07 Nec Corp 光ノード装置及び光ノード装置の制御方法
US9215010B2 (en) 2011-09-02 2015-12-15 Nec Corporation Node device, and control method and control program thereof
JP2016025623A (ja) * 2014-07-24 2016-02-08 日本電気株式会社 ノード光スイッチ装置および光スイッチ方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053320A1 (ja) * 2010-10-22 2012-04-26 日本電気株式会社 励起光分配装置、励起光分配方法、光増幅システム及びノード装置
US11296810B2 (en) * 2016-12-27 2022-04-05 Accelink Technologies Co., Ltd. Add drop structure
US10908369B1 (en) * 2017-06-26 2021-02-02 Amazon Technologies, Inc. Flexible onboard optics for networking switches
US11187806B2 (en) * 2017-07-24 2021-11-30 Huawei Technologies Co., Ltd. LIDAR scanning system
US11616279B2 (en) * 2018-11-26 2023-03-28 Thinkrf Corporation Stackable RF filter for a receiver or transmitter
JP7435726B2 (ja) * 2020-02-25 2024-02-21 日本電信電話株式会社 伝送装置間接続登録装置、伝送装置間接続登録方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091340A1 (en) * 2000-05-22 2001-11-29 Sumitomo Electric Industries, Ltd. Wdm transmission system
JP2002262317A (ja) * 2001-02-28 2002-09-13 Fujitsu Ltd 光アッド/ドロップ装置
WO2009022478A1 (ja) * 2007-08-11 2009-02-19 National University Corporation Nagoya University 光通信ネットワーク用ノード装置のルーティング方法および光通信ネットワーク用ノード装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533316B2 (ja) 1997-08-12 2004-05-31 日本電信電話株式会社 波長多重伝送装置および波長多重伝送システム
JP2000004460A (ja) 1998-06-17 2000-01-07 Nippon Telegr & Teleph Corp <Ntt> 光通信ノードおよび光通信ネットワーク
US20020163693A1 (en) * 1999-07-26 2002-11-07 Assaf Rubissa Method and system for switching and routing, while logically managing and controlling, multichannel optical signals in an optical communication system
US6594049B1 (en) * 1999-10-29 2003-07-15 Lucent Technologies Inc. Optical router
US6496615B2 (en) 2000-05-22 2002-12-17 Sumitomo Electric Industries, Ltd. WDM transmission system
US7298540B2 (en) * 2001-08-22 2007-11-20 Avanex Corporation Equalizing optical wavelength routers
JP2004117449A (ja) 2002-09-24 2004-04-15 Nippon Telegr & Teleph Corp <Ntt> 波長選択フィルタ
KR100491975B1 (ko) * 2002-10-24 2005-05-27 한국전자통신연구원 광 스위치의 출력변화를 감지하여 광 스위치의 오동작을검출하는 방법 및 장치
JP2004343228A (ja) * 2003-05-13 2004-12-02 Nippon Telegr & Teleph Corp <Ntt> 光クロスコネクト装置
JP3972066B2 (ja) * 2004-03-16 2007-09-05 大日精化工業株式会社 光制御式光路切替型データ配信装置および配信方法
JP4530821B2 (ja) * 2004-08-16 2010-08-25 富士通株式会社 光分岐挿入装置
JP4382635B2 (ja) * 2004-11-10 2009-12-16 富士通株式会社 光伝送装置
US7466914B2 (en) * 2005-01-21 2008-12-16 The Board Of Trustees Of The Leland Stanford Junior University Optoelectronic switch having cascaded optical nodes
JP2009022478A (ja) 2007-07-18 2009-02-05 Terumo Corp 状態管理装置およびその情報処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091340A1 (en) * 2000-05-22 2001-11-29 Sumitomo Electric Industries, Ltd. Wdm transmission system
JP2002262317A (ja) * 2001-02-28 2002-09-13 Fujitsu Ltd 光アッド/ドロップ装置
WO2009022478A1 (ja) * 2007-08-11 2009-02-19 National University Corporation Nagoya University 光通信ネットワーク用ノード装置のルーティング方法および光通信ネットワーク用ノード装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137555A1 (ja) * 2011-04-07 2012-10-11 独立行政法人産業技術総合研究所 導波路型光スイッチ
JP2012220664A (ja) * 2011-04-07 2012-11-12 National Institute Of Advanced Industrial & Technology 導波路型光スイッチ
JP2013005388A (ja) * 2011-06-21 2013-01-07 Nec Corp 光ノード装置及び光ノード装置の制御方法
US9215010B2 (en) 2011-09-02 2015-12-15 Nec Corporation Node device, and control method and control program thereof
JP2016025623A (ja) * 2014-07-24 2016-02-08 日本電気株式会社 ノード光スイッチ装置および光スイッチ方法

Also Published As

Publication number Publication date
US8811817B2 (en) 2014-08-19
JP5287993B2 (ja) 2013-09-11
JPWO2011043122A1 (ja) 2013-03-04
US20120195594A1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5287993B2 (ja) 光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステム
US7983560B2 (en) Modular WSS-based communications system with colorless add/drop interfaces
JP5004914B2 (ja) 光クロスコネクト装置および光ネットワーク
US8126330B2 (en) Dynamic wavelength service over a ROADM optical network
US7162632B2 (en) Efficient optical network design using multi-granular optical cross-connects with wavelength band switching
JP5470379B2 (ja) 光信号を切り換えるためのデバイス
US8116630B2 (en) Methods for dynamic wavelength add/drop in a ROADM optical network
EP3017558B1 (en) Photonic switch chip for scalable reconfigurable optical add/drop multiplexer
JP6021492B2 (ja) 光クロスコネクト装置
US20020197000A1 (en) Optical cross-connect switch using programmable multiplexers/demultiplexers
US8165467B2 (en) Optical transmission system and optical node
WO2010036268A1 (en) Modular wss-based communications system with colorless add/drop interfaces
JP5527716B2 (ja) 波長パス分離多重光伝送装置
US7437075B2 (en) Integrated reconfigurable optical add/drop multiplexer
JPWO2008114352A1 (ja) 光伝送装置
WO2004077716A1 (ja) 光通信ネットワークシステム、波長ルーティング装置、通信ノード、ならびに、光クロスコネクト装置における光パス管理方法及びその装置
JP2003198485A (ja) クロスコネクト装置及び光通信システム
US20040131356A1 (en) Optical line terminal arrangement, apparatus and methods
JP4852491B2 (ja) 光クロスコネクトスイッチ機能部及び光クロスコネクト装置
JP6510443B2 (ja) 波長クロスコネクト装置
JP4408806B2 (ja) Wdmネットワークのためのパス保護の方法及びそれに応じたノード
JP7537070B2 (ja) 再構成可能光アドドロップマルチプレクサ、光ネットワーク、及び光信号処理方法
JP2000115133A (ja) 光パスクロスコネクト装置及び光ネットワーク
JP5622197B2 (ja) 光パスネットワークの階層型光パスクロスコネクト装置
JP4387234B2 (ja) 光分岐挿入装置及び光分岐挿入装置体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13499904

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011535310

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10821793

Country of ref document: EP

Kind code of ref document: A1