WO2011040772A2 - 해양용 폴리에스테르 원사 및 그의 제조 방법 - Google Patents

해양용 폴리에스테르 원사 및 그의 제조 방법 Download PDF

Info

Publication number
WO2011040772A2
WO2011040772A2 PCT/KR2010/006675 KR2010006675W WO2011040772A2 WO 2011040772 A2 WO2011040772 A2 WO 2011040772A2 KR 2010006675 W KR2010006675 W KR 2010006675W WO 2011040772 A2 WO2011040772 A2 WO 2011040772A2
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
polyester
marine
polysiloxane compound
oil component
Prior art date
Application number
PCT/KR2010/006675
Other languages
English (en)
French (fr)
Other versions
WO2011040772A3 (ko
Inventor
이영수
김영조
김기웅
박현정
Original Assignee
주식회사 코오롱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090092936A external-priority patent/KR101297807B1/ko
Priority claimed from KR1020090134474A external-priority patent/KR101297806B1/ko
Application filed by 주식회사 코오롱 filed Critical 주식회사 코오롱
Priority to US13/499,590 priority Critical patent/US20120189847A1/en
Priority to BR112012007315A priority patent/BR112012007315A2/pt
Priority to EP10820845.5A priority patent/EP2484819A4/en
Priority to CN2010800542912A priority patent/CN102639766A/zh
Publication of WO2011040772A2 publication Critical patent/WO2011040772A2/ko
Publication of WO2011040772A3 publication Critical patent/WO2011040772A3/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/16Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/08Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • D06M13/2243Mono-, di-, or triglycerides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/10Processes in which the treating agent is dissolved or dispersed in organic solvents; Processes for the recovery of organic solvents thereof
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/141Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising liquid, pasty or powder agents, e.g. lubricants or anti-corrosive oils or greases
    • D07B1/142Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising liquid, pasty or powder agents, e.g. lubricants or anti-corrosive oils or greases for ropes or rope components built-up from fibrous or filamentary material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2039Polyesters
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2061Ship moorings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • the present invention relates to a marine polyester yarn for use in anchoring of an oil drilling rig for deep oil field development, and a manufacturing method thereof.
  • marine yarns are mainly used for anchoring oil drilling rigs for deep oil field development.
  • life expectancy in seawater for wire ropes used for anchoring oil drilling ships for deep oil field development is often required to be about 4 years (35,000 hours).
  • abrasion of metals due to environmental materials such as water or sand is often generated. Due to such seawater corrosion and abrasion, wire rope wire breaks often occur within two to three years, and the replacement of the new rope requires replacement of the warranty period. Accordingly, high cost, high corrosion resistance plating is additionally required.
  • the present invention is to provide a marine polyester yarn having a good wear resistance, mechanical strength and form stability so as to be used for a long time in the sea water as a marine yarn and a manufacturing method thereof.
  • the present invention is fixed to the polyester fiber as a yarn surface-treated with an oil component so that the initial length L 0 is 1.4 m, and when left for 24 hours under a load of 50% to the cutting force of the yarn, the following formula 1 Defined as.
  • an offshore polyester yarn with a creep rate of 9% or less.
  • Creep Rate (L-Lo) / L 0 X 100
  • L is the deformed length after loading for 24 hours
  • Lo is the initial length of the yarn and is about 1.4 m long.
  • the present invention is also a yarn surface-treated with an oil component to the polyester fiber, when subjected to 5 to 10 cycling tests under a load of 3.5 g / d according to the ASTM D 885 method of the American Society for Testing and Materials, the following formula
  • the work recovery rate defined in 2 is 55% or more, and the cycling test is performed 5 to 10 times at a load of 6.5 g / d according to the American Society for Testing and Materials Standard ASTM D 885 method
  • Equation 2 Provides marine polyester yarn with a recovery rate of 50% or more
  • W 2 is the Work returned during Recovery in a cycling test according to the ASTM D 885 method.
  • the invention further step to radiation to melt the polyester polymer to the "crude undrawn polyester, the method comprising: processing the surface of the polyester non-drawn filament in the emulsion composition containing the polysiloxane compound, and heat-treating the polyester undrawn Stretching under conditions of a temperature of 70 to 250 ° C to provide a method for producing a marine polyester yarn comprising the step of containing the polysiloxane compound in an amount of at least 40% by weight relative to the total weight of the oil component surface-treated in the yarn.
  • the present invention will be described in more detail.
  • the present invention is characterized in that in order to develop a marine yarn excellent in wear resistance, mechanical strength, and morphological stability, the surface of the polyester fiber with an oil component to ensure the creep rate or work recovery rate of the polyester yarn in the optimum range. .
  • the creep rate for the marine polyester yarn of the present invention can be defined by the following formula 1, fixed to the sample so that the initial length L 0 to 1.4 m, and a 50% load to the cutting force of the yarn 24 hours When left for a while, the creep rate of the polyester yarn may be 9% or less.
  • Creep Rate (LL 0 ) / Lo X 100
  • L is the length of the yarn after being left for 24 hours
  • L 0 is the initial length of 1.4 m when the sample is placed in the creep tester.
  • the cutting strength of the yarn can be measured according to the ASTM D 2256 method, it can be 15 kgf to 25 kgf, preferably 17 kgf to 21 kgf, more preferably 18 kgf to 20 kgf.
  • the load which becomes 50% of the cutting strength of the yarn may be 6 kg to 12 kg, preferably 8 kg to 10 kg, more preferably 9 kg.
  • This polyester yarn of the present invention is 9% or less or 0 to 9%, preferably 6% or less or 2% to 6%, more preferably 5% or less or 3% when the creep rate is left for 24 hours. With a small value of from 5%, the deformation due to the change in load is small and shows excellent form stability.
  • polyester yarns are excellent in form stability and can be effectively used even for a long time of about 5-10 years, minimizing the strong deterioration when applied as marine yarns.
  • polyester yarn Energy recovery can be defined by the following formula 2, when the 5 to 10 times the cycling test was carried out under a load of 3.5 and 6.5 g / d in accordance with the American Material Testing Association standard ASTM D 885 method, the polyester yarn Energy recovery can be 55% or more and 5OT or more, respectively.
  • W 2 is the Work returned during Recovery in a cycling test according to the ASTM D 885 method.
  • the work recovery rate of Equation 2 is the total work that occurs when the first yarn is stretched to a certain load in the elongation to load graph of the cycling test result as shown in FIG. Work done in Ext ens ion) and Work returned during Recovery (W 2 ) when a given load on the yarn is removed after a given cycling.
  • the polyester yarn of the present invention is repeatedly cycled 5 to 10 times under a load of 3.5 and 6.5 g / d at room temperature (25 ° C) using a universal tensile tester according to the American Material Testing Association standard ASTM D 885 method Test
  • the daily recovery rate defined by the above formula .2 may be 55% or more and 50% or more, respectively. That is, the energy recovery of the polyester yarn (Energy Recovery) may be at least 55% or 55% to 95%, preferably at least 60% or 60% to 95% as measured under a derating condition of 3.5 g / d. .
  • the energy recovery of the polyester yarn may be at least 50% or 50% to 90%, preferably at least 55% or 55% to 90% as measured under a load condition of 6.5 g / d. .
  • the polyester yarn of the present invention has such a high work recovery value, the deformation according to the load change is small and can exhibit excellent form stability. Accordingly, even if the polyester yarn is immersed in seawater for a long time and changes in the external environment due to the movement of algae, the deformation of the product hardly occurs. Therefore, the polyester yarn of the present invention is excellent in form stability and can be effectively used for a long time of about 5 to 10 years to minimize the strong deterioration when applied as a marine yarn.
  • the polyester yarn may be 75% or more or 75% to 96%, preferably 80% or more or 80% to 96%, as measured under a load condition of 2.0 g / d.
  • the polyester yarn may be 35% or more or 35% to 85%, preferably 40% or more or 40% to 85% when measured under a load condition of 8.5 g / d,
  • the polyester yarn of the present invention is characterized in that the polyester fiber is surface-treated with an oil component to ensure excellent performance that can be used for a long time as a marine finish yarn.
  • the term 'polyester fiber' in the present invention generally refers to a fibrous polymer that is esterified by reacting with a dicarboxylic acid such as a diol compound and terephthalic acid, and is a basic fiber for producing the 'polyester yarn for marine use' of the present invention. Corresponds to the composition. Polyesters are particularly desirable for the production of fiber ropes which have excellent resistance to moisture and thus replace marine wire ropes. As the polyester fiber in the present invention, all polyester fibers which are commonly used may be used. For example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT),
  • Polyalkylene terephthalates such as polycyclonucleic acid dimethylene terephthalate (PCT), or copolyesters having the main constituents thereof may be used.
  • PCT polycyclonucleic acid dimethylene terephthalate
  • copolyesters having the main constituents thereof may be used.
  • polyethylene terephthalate is more preferable for use as a marine yarn in terms of physical properties such as strength and elongation.
  • the polyester fiber may have an intrinsic viscosity of 8.0 to 1.20 dl / g, preferably 0.90 to 1.05 dl / g, and may have an intrinsic viscosity in the above range in terms of high strength.
  • the term 'oil component' in the present invention refers to all components having an effect of maximizing surface lubricity through physical or chemical bonding to a polyester surface.
  • the oil component may include, for example, a polysiloxane compound, an emulsifier, a solvent.
  • the oil component may be preferably composed of only a polysiloxane compound and an emulsifier, or may be composed of only a polysiloxane compound. That is, in the oil component, the main component that substantially imparts lubricity to the polyester surface means that only the polysiloxane compound is included and no other lubricant component is included.
  • the polysiloxane compound may further include an emulsifier, except that it does not substantially contain other components.
  • an emulsifier may be included in a small amount within a range substantially not detected, and this may also be included in an amount of 1 wt% or less based on the total weight of the entire oil component.
  • the oil component in the present invention is characterized in that it comprises at least 40% by weight of the polysiloxane compound relative to the total weight of the oil component of the final polyester yarn, preferably 50% by weight or more, 60% by weight or more, or 70 to It may be included in an amount of 90% by weight.
  • Polyester yarn of the present invention as a marine finish yarn (marine finish yarn) in order to ensure high strength and excellent creep characteristics, work recovery rate characteristics, and at the same time to ensure excellent wear resistance that can be used for a long time with excellent performance, in the high content range as described above It is preferable to surface-treat the polyester fiber with an oil component containing a polysiloxane compound.
  • the polysiloxane compound can provide excellent stability and lubricity in the surface treatment of the yarn because there is no reaction function, and especially high content can provide very excellent water repellency and excellent wear resistance and mechanical properties that can almost completely prevent the penetration of water. Turned out to be.
  • a high content of the polysiloxane compound is applied to the yarn, there is a disadvantage in that the processability is remarkably decreased due to the high viscosity and the quality uniformity of the manufactured yarn is very low.
  • the polysiloxane compound may be included in the oil component so as to be 0.5 to 2.0 weight 3 ⁇ 4>, preferably 0.6 to 1.1 weight 3 ⁇ 4> with respect to the polyester fiber weight, in terms of abrasion resistance more than 0.5% by weight based on the polyester fiber weight It is preferably included so as to be included, preferably from an economical point of 2.0 wt% or less.
  • the polysiloxane compound may be represented by the following Chemical Formula 1, and each compound may be used in combination of one kind or two or more kinds:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are the same as or different from each other, and are hydrogen, (alkyl group of : ⁇ (: 20 , or an aryl group of d to C 2 .
  • n is an integer of 1-10,000, Preferably it is an integer of 1-5,000.
  • the number average molecular weight of the polysiloxane compound may be 10 to 1,000,000, preferably 50 to 500, 000, and more preferably 500 to 500,000.
  • the polysiloxane compound may have a viscosity range of 5 to 35,000 est, preferably 50 to 5,000 est, more preferably 100 to 500 est.
  • polysiloxane compounds having a number average molecular weight of 10 or more and a viscosity of 5 est or more can be used in terms of securing excellent lubricating effects.
  • the number average molecular weight is preferably used at 1,000,000 or less or at a viscosity of 35,000 est or less.
  • the viscosity of the polysiloxane compound may be measured using a Canon-Fenske Type Viscometer or the like by a dynamic viscosity measuring method.
  • the polysiloxane compound may also use a specific gravity of 0.950 to 1.000 at room temperature (25 ° C).
  • the polysiloxane compound is represented by the formula
  • At least one of substituents R 4 or R 5 in 1 may be alkyl having 1 to 4 carbon atoms, for example, one or more selected from the group consisting of polydialkylsiloxane and polyalkylarylsiloxane may be used. More preferably, the polydimethylsiloxane may be one or more selected from the group consisting of polydiethylsiloxane and polymethylphenylsiloxane, and it is more preferable to use polydimethylsiloxane in terms of final fabric quality.
  • the oil component of the present invention together with the polysiloxane compound can additionally comprise an emulsifier and the emulsifier can be improved after sacrifice operation and workability, because a properly adjusted, the friction coefficient between the lower the coefficient of friction between the yarn and the metal fibers and yarns. If the friction coefficient between the yarn and the yarn is high, the concentration of the yarn may be increased to give uniform entanglement in the air entanglement process. However, if the friction coefficient between the yarn and the yarn is too high, there is a risk that a lot of shear and trimming occur.
  • the emulsifier may be included in an amount of 60 wt% or less, 50 wt% or less, 40 wt% or less, 30 wt% or less, or 10 to 30 wt%, based on the total weight of the oil component of the yarn.
  • Surface treatment of the polyester fiber with an oil component containing a high content of the polysiloxane compound improves the operability of the process for producing marine yarn, and at the same time secures excellent wear resistance in the final marine yarn product, and shape stability And it is preferable to include an emulsifier below the content range in terms of improving the mechanical strength.
  • the emulsifier may be selected in consideration of a polyester fiber manufacturing process and apparatus, a kind of a polysiloxane compound, a solvent, and the like, and preferably a nonionic surfactant may be used.
  • the emulsifier is a fatty acid monoglycerine ester type nonionic surfactant having 8 to 22 carbon atoms, fatty acid polyglycol ester type nonionic surfactant, fatty acid sorbitan ester type nonionic surfactant, At least one selected from the group consisting of fatty acid sucrose ester nonionic surfactants, fatty acid alkanes, amide nonionic surfactants, and polyethylene glycol condensed nonionic surfactants can be used.
  • the nonionic surfactants include alkyl polyalkylene glycols having 8 to 22 carbon atoms, alkylarylpolyalkylene glycols, alkyldimethyl amine oxides, di-alkyl methyl amine oxides, alkyl amidopropylamine oxides, and alkyl glycols. It may be selected from the group consisting of lucamide, alkylpolyglucoside oxidized peti acid and alkylamine. At this time, the alkyl group of the compounds may be used to replace the alkene group, the carbon number is 8 to 22 Preferably, a linear or branched thing can also be used.
  • the alkylpolyalkylene glycol preferably contains 1 to 20 ethoxy or propoxy units. Most preferably, the nonionic surfactant may be an alkyldimethyl amine oxide having 8 to 22 carbon atoms.
  • the present invention also provides a method for producing a marine polyester yarn with excellent wear resistance, form stability, and mechanical strength as described above.
  • the production method of the present invention comprises the steps of melt spinning a polyester polymer to produce a polyester non-stretched yarn, surface treatment of the polyester unstretched yarn with an emulsion composition containing a polysiloxane compound, and the polyester unstretched
  • the woman is drawn under conditions of a heat treatment temperature of 70 to 250 ° C. so that the polysiloxane compound is included in an amount of at least 40% by weight relative to the total weight of the oil component surface-treated in the yarn.
  • FIG. 1 is a process diagram schematically showing a process for producing a polyester yarn of the present invention.
  • the marine polyester yarn of the present invention first produces a polyester unstretched yarn from a polyester polymer through the detention 110.
  • the molten polymer spun through the detention is cooled with quenching-air, and the emulsion composition is applied to the undrawn yarn using an emulsion or an oil-roll (oil-roll or oil-jet, 120).
  • the pre-interlacer 130 is used to uniformly disperse the emulsion composition applied to the undrawn yarn at a constant air pressure on the surface of the yarn.
  • the stretching process is performed through the multi-stretching apparatus (141 to 146), and after the stretching process, the yarn is interlaced at a constant pressure in a second interlacer (2 nd Inter lacer, 150).
  • the yarn may be manufactured by winding up in 160).
  • Melt spinning and the like of the present invention can be carried out according to a conventional method known as the polyester process, except that the surface treatment of the polyester unstretched yarn with an emulsion composition containing a polysiloxane compound, and in particular a separate process It is not limited to a condition.
  • the stretching step in the production method of the present invention is a heat treatment temperature of 70 to
  • the relaxation rate is 1> or more, preferably 1% to 5%, more preferably 1 to It is set to 3 ⁇ 4, the winding speed can be carried out under conditions of 2,500 m / min or more, preferably 2,500 to 4,500 m / min, more preferably 2,500 to 3,500 m / min.
  • the polyester undrawn yarn is processed by surface treatment of the polyester undrawn yarn with an emulsion composition containing a polysiloxane compound, thereby providing excellent abrasion resistance, mechanical strength, creep properties, and work recovery properties, that is, excellent shape. It has been found that it is possible to produce marine polyester yarns with stability.
  • the oil component including the polysiloxane compound that is, the spinning emulsion composition including the same may be applied by additionally installing a separate device, or may be a conventional emulsion or oil-jet (120) as shown in FIG. Surface treatment to the undrawn polyester using the device.
  • the emulsion composition may be composed of only a polysiloxane compound, an emulsifier, and a solvent. That is, the emulsion composition contains only a polysiloxane compound and does not include other lubricant components as the main components that substantially impart lubricity to the polyester surface, and may further include a small amount of emulsifier to solubilize it in a solvent. Except for this, it is substantially free of other ingredients. However, a trace amount may be included in a range in which other components are not substantially detected as impurities, and may also be included in an amount of 1 wt% or less based on the total weight of the entire composition.
  • the emulsion composition is 15 to 40% by weight of the polysiloxane compound, preferably 20 to 35% by weight, emulsifier 10% by weight or less, preferably 1 to 7% by weight or less, and the residual amount of the solvent relative to the total composition.
  • the solvent may include 60 wt% or more of solvent, more preferably 65 to 85 wt%.
  • the higher the content of the polysiloxane compound in the oil component surface-treated in the marine polyester yarn of the present invention has a very advantageous effect in the stability, lubricity, water repellency, wear resistance and mechanical properties, work recovery characteristics, etc. of the marine yarn It turns out that it can be obtained.
  • high content In the case of the polysiloxane compound, there is a disadvantage that the process workability is significantly decreased due to the high viscosity.
  • the polysiloxane compound is solubilized in a solvent with a predetermined emulsifier and the solvent is subsequently removed, thereby improving the workability of the yarn manufacturing process and preferably at least 40% by weight, more preferably 60 It has been found that marine polyester yarns of good physical properties, including polysiloxane compounds, can be produced with high content of weight percent or more.
  • the polysiloxane compound and the emulsifier may use the above components, and the solvent may be selected in consideration of the polyester fiber manufacturing process and apparatus, the type of the polysiloxane compound, the type of the emulsifier, and the like.
  • water or petroleum-extracted normal paraffin or isoparaffin having 9 to 13 carbon atoms may be preferably used.
  • a nonionic surfactant or the like can be used as an emulsifier.
  • the solvent is preferably not included in the oil component of the finally produced polyester yarn after the yarn manufacturing process, a part thereof may remain as a residual component, for example, 1 weight 3 ⁇ 4 or less, 0.5 weight% It may be included below 0.1% by weight. Even in this case, it can be used as a long-term sedimentation in the seawater as a marine sand.
  • the solvent may be removed through the heat treatment step in the step of drawing the unstretched yarn, but if necessary can be removed by adding a separate drying step.
  • the yarn-yarn abrasion measurement (yarn-on— yarn abrasion) measured by the lowered 0.34 to 0.45 g / d when the yarn and the yarn friction 5 It should have abrasion resistance that is cut off at more than 000 times, that is, not cut up to 5,000 times.
  • the wear resistance is preferably maintained at least 7,000 times in wet conditions, 9,000 times or more in dry conditions.
  • the abrasion resistance measurement result yarn in dry and wet conditions Failure to maintain more than 7,000 times and 9,000 times, respectively, even when used as a marine rope may cause partial cutting due to frictional force due to external environmental changes, etc., which may cause danger to the ship or human life.
  • the yarn-to- yarn abrasion resistance measurement results are preferably maintained as many times as possible in consideration of safety when used as a marine rope, etc., having excellent performance, usually maintained at 7,000 to 18,000 circuits in wet conditions and 9,000 to dry conditions It can be maintained at 20,000 times.
  • the yarn-on- yarn abrasion axis can be carried out using the apparatus as shown in FIG.
  • the load (230, tension weight) moves up and down through the pulleys 221-222 in one rotation of the crank 21 crank using the gear motor 240, and the yarn is centered on the pulley 223 at this time.
  • the number of rubbings between the yarns is recorded as it moves.
  • wear resistance in dry conditions can be measured at relative humidity of 55% to 75% and 16 to 25 ° C.
  • Wear resistance in wet conditions is soaked in water at 16 to 25 ° C to thoroughly wet the yarn to be measured After leaving, for example, about 1 hour or more is immersed in a water bath or the like and the wear resistance between the yarn and the yarn can be measured using the apparatus.
  • Polyester yarn of the present invention also has the advantage of having excellent morphological stability when applied to marine fibers through high strength and excellent creep characteristics and work recovery characteristics, and even when used for a long time in seawater, such as strong deterioration of physical properties It can be minimized.
  • the polyester yarn of the present invention has a strength retention rate of 50% or more calculated from the strength measured before performing the test with a sample that has been subjected to abrasion resistance evaluation for 1,000 times with the test equipment as shown in FIG. It may be preferably 60% or more.
  • a strength retention rate 50% or more calculated from the strength measured before performing the test with a sample that has been subjected to abrasion resistance evaluation for 1,000 times with the test equipment as shown in FIG. It may be preferably 60% or more.
  • a marine polyester yarn surface-treated with an oil component of polyester fiber and excellent in both high strength, abrasion resistance, and work recovery properties, and a manufacturing method thereof.
  • polyester yarns are excellent in high strength and wear resistance to minimize the generation of frictional heat due to changes in the external environment, as well as excellent creep characteristics and work recovery characteristics. It can be used effectively for a long time due to its physical properties and shape stability.
  • the polyester yarn of the present invention can be very preferably used as a marine yarn or the like.
  • FIG. 1 is a process diagram schematically showing a marine polyester yarn manufacturing process according to an embodiment of the present invention.
  • Figure 2 is a graph showing the cycling test results of the marine polyester yarn according to an embodiment of the present invention.
  • Figure 3 is a schematic view showing a measuring device of yarn-yarn-on- yarn abrasion in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a creep tester used to measure the creep rate according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an apparatus used for measuring the work recovery rate according to an embodiment of the present invention.
  • Figure 6 is a photograph of the test results of the yarn-yarn-yarn abrasion (yarn-on- yarn abrasion) according to Example 4 of the present invention.
  • Figure 7 is a photograph of the test results of the yarn-yarn-abrasion resistance (yarn-on- yarn abrasion) according to Comparative Example 1 of the present invention.
  • Example 1
  • a polyester solid phase polymer chip having an intrinsic viscosity of 1.05 g / dL and 90 wt% or more of polyethylene terephthalate was melted at a temperature of 280 ° C. or higher to discharge molten polyester through spinneret.
  • the discharged molten polyester was delayed quenched in the hood-heater temperature 300 t section, and polydimethylsiloxane (number average molecular weight 100,000, viscosity 350 est) was added to the delayed polyester fiber using an emulsion. It was surface-treated with the containing spinning emulsion and oil component. At this time, the spinning emulsion contained 50% by weight of polydimethylsiloxane, 50% by weight of ordinary spinning solvent (normal paraffin) as a solvent.
  • the surface treated polyester fibers were passed through a pre-interlacer and stretched at a winding speed of 3,000 m / min using a Godet roller. At this time, the solvent was removed by drying while going through the stretching process.
  • the stretched polyester yarn was imparted with an air pressure of 3.0 kg / on 2 and wound with a winder to be coated with an oil component on the polyester fiber for marine poly Ester yarns were prepared.
  • Polyester fiber to polydimethylsiloxane (number average molecular weight 100,000, viscosity
  • Example 1 except that the polyester fiber was treated with a spinning emulsion comprising 30% by weight of polydimethylsiloxane (number average molecular weight 100,000, viscosity 350 est), 10% by weight emulsifier, and 70% by weight solvent with solvent. In the same manner as for the marine polyester yarn was prepared.
  • a spinning emulsion comprising 30% by weight of polydimethylsiloxane (number average molecular weight 100,000, viscosity 350 est), 10% by weight emulsifier, and 70% by weight solvent with solvent.
  • polyester fibers were treated with a polydimethylsiloxane (number average molecular weight 100,000, viscosity 350 est) 25 weight 3 ⁇ 4>, emulsifier 5 weight 3 ⁇ 4>, and a spinning emulsion comprising 70% by weight solvent with a solvent.
  • a marine polyester yarn was prepared in the same manner as in Example 1.
  • polyester fibers were treated with a spinning emulsion containing 10 wt% of polydimethylsiloxane (number average molecular weight 100,000, viscosity 350 est) 20 wt% emulsifier, and 70 wt% solvent. Marine polyester yarns were prepared.
  • Example 4 In the same manner as in Example 4, but instead of the polydimethylsiloxane treated with a spinning emulsion containing 30% by weight of mineral oil and 70% by weight of solvent to prepare a polyester yarn by surface treatment on the polyester fiber It was.
  • Creep rate was measured by the following method about the polyester yarn manufactured according to the said Examples 1-5 and Comparative Examples 1-2, and the measurement result is shown in following Table 2. Creep Rate Measurement
  • Creep rate was measured using a creep tester as shown in FIG. 4.
  • Creep Rate (LL 0 ) / Lo X 100
  • L is the length deformed after applying the load
  • Lo is a yarn length of 1.4 m when the sample is placed in the creep tester.
  • the polyester yarns of Examples 1 to 5 and Comparative Examples 1 and 2 were subjected to different stretching processes under measurement conditions as shown in Table 2 below, and creep was measured.
  • the polyester yarns of Examples 1 to 5 and Comparative Examples 1 and 2 were loaded with 3.5 g / d and 6.5 g / d at a temperature of 25 ° C. After 5 to 10 cycling tests were performed, the Work returned during Recovery and Total Work done in Extension were measured, and each polyester yarn was measured according to the following Equation 2 from the measured values. Daily recovery was measured.
  • W 2 is the Work returned during Recovery in a cycling test according to the ASTM D 885 method.
  • the measurement results of the work recovery are shown in Table 3 below.
  • polyester prepared according to Examples 1 to 5 and Comparative Examples 1 and 2 The physical properties of the yarns were evaluated in the following manner, and the measurement results thereof are shown in Table 4 below.
  • the load is moved up and down in one rotation of the crank, and the result of measuring the number of times the yarn is rubbed while the yarn moves is recorded.
  • the wear resistance at dry and wet conditions was measured, and the dry conditions were subjected to abrasion resistance test after drying at a relative humidity of 55% to 75% and 16 to 25 ° C. for about 1 hour.
  • wet conditions the yarn was immersed in a water bath at 16 to 25 ° C. for at least 1 hour to perform abrasion resistance test while the yarn was wet with water.
  • the frictional resistance until the yarn is cut when the yarn and the yarn is rubbed was measured to evaluate the wear resistance between the yarn and the yarn. Strong retention rate
  • the polyester yarns of Examples 1 to 5 surface-treated with an oil component containing a high content of a polysiloxane compound according to the present invention, mineral oil or ethylene oxide addition, which is a conventional fiber treatment emulsion It can be seen that the creep rate is much lower by up to about 4.8% compared to the polyester yarns of Comparative Examples 1 to 2 surface-treated with diol esters. In particular, by securing such excellent creep properties, it can be seen that the polyester yarn of the present invention has remarkably excellent properties in strength, strength retention, and the like.
  • the polyester yarns of Examples 1 to 5 also had 55% or more of the work recovery when measured under a load condition of 3.5 g / d, and 50% or more of the work recovery when measured under a load condition of 6.5 g / d. As a result, it can be seen that the work recovery is much higher than the comparative examples 1 and 2 and the polyester yarn up to about 25%.
  • the polyester yarns of Examples 1 to 5 exhibited excellent wear resistance of 7, 100 rare to 12,235 and 5,123 to 9,850 cycles in dry and wet conditions, respectively, wherein the strength ratio of the polyester yarn was 75% to 85%. It can be seen that it has excellent characteristics.
  • the polyester yarns of Comparative Examples 1 and 2 are inferior in abrasion resistance to about 4,210 to 4,027 times and 3,258 to 3,019 times under dry and wet conditions, respectively. At this time, the strong retention rate is only 55% to 60%, so that the mechanical strength, abrasion resistance, and shape stability of the marine spray can be remarkably reduced, and thus, it may be seen that complete cutting may occur when used for a long time.
  • polyester yarns of Examples 1 to 5 have at least 1.5 times better abrasion resistance than the polyester yarns of Comparative Example 1 surface-treated with mineral oil which is a conventional fiber treatment emulsion. Furthermore, in Comparative Example 2 which was surface treated with ethylene oxide addition diol ester In the case of polyester yarns, it can be seen that the surface lubricity is poor and the wear resistance is remarkably inferior.
  • the polyester yarn of the present invention is excellent in both high strength, wear resistance and work recovery characteristics, and can be conveniently used as a fiber rope of significantly reduced weight compared to the conventional wire rope when applied as a marine yarn, It can be used for a long time without the occurrence of partial cutting by minimizing the generation of frictional heat or deformation due to the change of external environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Ropes Or Cables (AREA)

Abstract

본 발명은 심해의 유전 개발을 위한 석유 시추선의 정박 등에 사용하는 해양용 원사에 관한 것으로, 특히 폴리에스테르 섬유에 오일 성분으로 표면 처리된 원사로서 미국재료시험협회규격 ASTM D 885 방법에 따른 사이클링 테스트에서 일 회수율 또는 크리이프율을 소정의 범위로 갖는 해양용 폴리에스테르 원사 및 그의 제조 방법에 관한 것이다. 본 발명의 해양용 폴리에스테르 원사는 기존의 와이어 로프에 비해 현저히 감소된 무게로 편리하게 사용할 수 있음과 동시에, 해양용 원사로 적용시 우수한 기계적 강도, 내마모성, 및 형태안정성 등을 제공하며 장시간 동안 사용이 가능하다.

Description

【명세서】
【발명의 명칭】
해양용 폴리에스테르 원사 및 그의 제조 방법
【기술분야】
본 발명은 심해의 유전 개발을 위한 석유 시추선의 정박 등에 사용하는 해양용 폴리에스테르 원사 및 그의 제조 방법에 관한 것이다.
【배경기술】
일반적으로 해양용 원사는 주로 심해의 유전 개발을 위한 석유시추선의 정박을 위해 사용되고 있다.
이전에는 주로 금속으로 이루어진 와이어 로프 (Wire Rope)를 많이 사용했는데 수심 2,000 m 이상의 심해에 설치되다 보니 로프 무게가 매우 많은 단점을 가지고 있기 때문에 문제시되고 있는 상황이였다.
또한, 심해의 유전 개발을 위한 석유시추선의 정박용으로 사용되는 와이어 로프의 해수중에서의 수명보증은 4년 (35,000시간) 정도로 요구되는 경우가 많은데, 이 같이 해수중에 장기간 침적되면 와이어 로프가 해수 부식되고, 이에 더하여 물이나 모래 등의 주위 환경 물질에 의한 금속의 마모 현상이 발생하는 경우가 많다. 이러한 해수 부식 및 마모 등에 의해 2〜 3년만에 와이어 로프 소선의 단선이 발생하는 경우가 많아서 새로운 로프로의 교체를 필요로 함에 따라 보증기간을 채우지 못하게 된다. 이에 따라 고비용의 고내식 도금이 추가로 필요하게 된다.
이러한 문제점을 개선하고자 고강력이면서 형태안정성이 우수하고 상대적으로 가벼운 섬유용 로프가 와이어 로프를 대체하고 있다 . 그러나, 기존의 섬유용 로프의 경우, 와이어 로프 (Wire Rope) 대비하여 외부 환경 변화에 의한 마찰열 발생시 부분 절단이 발생될 수 있고, 장시간 동안 사용시에는 완전 절단이 발생되어 위험한 상황을 초래할 수도 있다.
특히, 기존의 섬유용 로프는 약 5~10년 정도의 장시간 동안 해수중에 침적될 경우에, 조류의 이동 등에 의한 주위 환경의 지속적인 움직임에 의해 쉽게 피로도가 가중되어 원사의 형태 변형이 발생하며 제품의 강력 등의 기계적 강도가 현저히 저하되는 문제가 있다.
따라서, 외부 환경변화에 의한 마찰열 발생을 최소화시켜 부분 절단 등의 손상이 발생되지 않으며, 장시간 동안 사용하여도 강력 저하 등이 발생하지 않도록 원사에 우수한 내마모성, 기계적 강도, 및 형태 안정성을 동시에 부여할 수 있는 해양용 섬유 원사 개발에 대한 연구가 필요하다. 【발명의 내용】
【해결하려는 과제】
본 발명은 해양용 원사로서 해수 중에 장시간 동안 침적하여 사용할 수 있도록 우수한 내마모성, 기계적 강도 및 형태 안정성을 갖는 해양용 폴리에스테르 원사 및 그의 제조 방법을 제공하고자 한다.
【과제의 해결 수단】
본 발명은 폴리에스테르 섬유에 오일 성분으로 표면 처리된 원사로서 초기 길이 L0가 1.4 m가 되도록 걸어 고정시키고, 원사의 절단 강력에 대하여 50%의 하중을 걸어 24 시간 동안 방치하였을 때 , 하기 계산식 1로 정의되는. 크리이프율이 9% 이하가 되는 해양용 폴리에스테르 원사를 제공한다.
[계산식 1]
크리이프율 = (L-Lo)/L0 X 100
식 중,
L은 24 시간 동안 하중을 가한 후에 변형된 길이이며,
Lo 는 원사의 초기 길이이며 , 1.4 m가 되도톡 한다.
본 발명은 또한, 폴리에스테르 섬유에 오일 성분으로 표면 처리된 원사로서, 미국재료시험협회규격 ASTM D 885 방법에 따라 3.5 g/d의 하중을 걸어 5 내지 10 회 사이클링 테스트를 수행하였을 때, 하기 계산식 2로 정의되는 일 회수율이 55% 이상이 되고, 미국재료시험협회규격 ASTM D 885 방법에 따라 6.5 g/d의 하중을 걸어 5 내지 10 회 사이클링 테스트를 수행하였을 때, 하기 계산식 2로 정의되는 일 회수율이 50% 이상이 되는 해양용 폴리에스테르 원사를 제공하며,
[계산식 2]
일 회수율 (¾>) = W2/Wi X 100
식 중,
Wr 미국재료시험협회규격 ASTM D 885 방법에 따른 사이클링 테스트에서 전체 일 (Total Work done in Extension)이며,
W2는 미국재료시험협회규격 ASTM D 885 방법에 따른 사이클링 테스트에서 회복 일 (Work returned during Recovery)이다.
본 발명은 또한, 폴리에스테르 중합체를 용융 방사하여 폴리에스테르 미연신사를 제'조하는 단계, 폴리실록산 화합물을 포함하는 유제 조성물로 상기 폴리에스테르 미연신사를 표면 처리하는 단계, 및 상기 폴리에스테르 미연신사를 열처리 온도 70 내지 250 °C의 조건 하에서 연신하여 폴리실록산 화합물이 원사에 표면 처리된 오일 성분 총 중량에 대하여 40 중량 % 이상의 함량으로 포함되도록 하는 단계를 포함하는 해양용 폴리에스테르 원사의 제조 방법을 제공한다. 이하, 본 발명을 보다 상세하게 설명한다.
본 발명은 내마모성, 기계적 강도, 및 형태 안정성이 우수한 해양용 원사를 개발하기 위해서, 폴리에스테르 섬유에 오일 성분으로 표면 처리하여 폴리에스테르 원사의 크리이프율 또는 일 회수율을 최적 범위로 확보하는 것을 특징으로 한다.
본 발명의 해양용 폴리에스테르 원사에 대한 크리이프율은 하기 계산식 1로 정의될 수 있으며, 시료에 초기 길이 L0가 1.4 m가 되도록 걸어 고정시키고, 원사의 절단 강력에 50%의 하중을 걸어 24 시간 동안 방치하였을 때, 상기 폴리에스테르 원사의 크리이프율은 9% 이하가 될 수 있다.
[계산식 1]
크리이프율 = (L-L0)/Lo X 100
식 중, L은 24 시간 동안 방치한 후 원사의 길이이며, L0 는 시료를 크리이프 시험기에 걸었올 때 원사의 초기 길이로서 1.4 m이 된다.
여기서, 상기 원사의 절단 강력은 ASTM D 2256 방법에 따라 측정할 수 있으며, 15 kgf 내지 25 kgf , 바람직하게는 17 kgf 내지 21 kgf , 좀더 바람직하게는 18 kgf 내지 20 kgf가 될 수 있다. 특히, 원사가 2,000 데니어인 경우, 원사의 절단 강력에 50%가 되는 하중은 6 kg 내지 12 kg, 바람직하게는 8 kg내지 10 kg, 좀더 바람직하게는 9 kg이 될 수 있다. 이러한 본 발명의 폴리에스테르 원사는 상기 크리이프율이 24 시간 동안 방치하였을 때 9% 이하 또는 0 내지 9%, 바람직하게는 6% 이하 또는 2% 내지 6%, 좀더 바람직하게는 5% 이하 또는 3% 내지 5%의 작은 값을 가짐에 따라, 하중 변화에 따른 변형이 작고 우수한 형태 안정성을 나타낸다. 따라서, 이러한 폴리에스테르 원사는 해수 중에 장기간 침적하여 조류의 이동 등에 의한 외부 환경 변화가 발생하여도 제품의 형태 변형이 거의 발생하지 않는다. 그러므로, 이러한 폴리에스테르 원사는 형태안정성이 우수하여 해양용 원사로서 적용시 강력 저하 등을 최소화하고 약 5~10년 정도의 장시간 동안에도 효과적으로 사용할 수 있다.
또한, 본 발명의 해양용 폴리에스테르 원사에 대한 일 회수율 (Energy
Recovery)은 하기 계산식 2로 정의될 수 있으며, 미국재료시험협회규격 ASTM D 885 방법에 따라 3.5 및 6.5 g/d의 하중을 걸어 5 내지 10 회 ᅳ사이클링 테스트를 수행하였을 때, 상기 폴리에스테르 원사의 일 회수율 (Energy Recovery)은 각각 55%이상 및 5OT이상이 될 수 있다.
[계산식 2]
일 회수율 (%) = W2/Wi X 100
식 중,
Wr 미국재료시험협회규격 ASTM D 885 방법에 따른 사이클링 테스트에서 전체 일 (Total Work done in Extension)이며 ,
W2는 미국재료시험협회규격 ASTM D 885 방법에 따른 사이클링 테스트에서 회복 일 (Work returned during Recovery)이다.
특히, 본 발명의 바람직한 일 실시예에서, 상기 계산식 2의 일 회수율은 도 2에 나타낸 바와 같은 사이클링 테스트 결과의 하중 대비 신장도 그래프에서 최초 원사를 일정 하중까지 신장시켰을 때 발생하는 전체 일 ( , Total Work done in Ext ens ion)과 주어진 사이클링 후 원사에 부여된 일정 하중을 제거했을 때 회복되는 회복 일 (W2, Work returned during Recovery)로부터 얻을 수 있다.
이러한 본 발명의 폴리에스테르 원사는, 미국재료시험협회규격 ASTM D 885 방법에 따라 만능인장시험기를 사용하여 상온 (25 °C)에서 3.5 및 6.5 g/d의 하중을 걸어 반복적으로 5 내지 10 회 사이클링 테스트를 수행하였을 때, 상기 계산식 .2로 정의되는 일 회수율이 각각 55% 이상 및 50% 이상이 될 수 있다. 즉, 상기 폴리에스테르 원사의 일 회수율 (Energy Recovery)은 3.5 g/d의 하증 조건 하에서 측정시 55% 이상 또는 55% 내지 95%, 바람직하게는 60% 이상 또는 60% 내지 95%가 될 수 있다. 또한, 상기 폴리에스테르 원사의 일 회수율 (Energy Recovery)은 6.5 g/d의 하중 조건 하에서 측정시 50% 이상 또는 50% 내지 90%, 바람직하게는 55% 이상 또는 55% 내지 90%가 될 수 있다. 본 발명의 폴리에스테르 원사는 이처럼 높은 일 회수율 값을 가짐에 따라, 하중 변화에 따른 변형이 작고 우수한 형태 안정성을 나타낼 수 있다. 이에 따라, 상기 폴리에스테르 원사는 해수 중에 장기간 침적하여 조류의 이동 등에 의한 외부환경 변화가 발생하여도 제품의 형태 변형이 거의 발생하지 않는다. 그러므로, 이러한 본 발명의 폴리에스테르 원사는 형태안정성이 우수하여 해양용 원사로서 적용시 강력 저하 등을 최소화하고 약 5~10년 정도의 장시간 동안에도 효과적으로 사용할 수 있다.
상기 폴리에스테르 원사는 2.0 g/d의 하중 조건 하에서 측정시, 상기 일 회수율이 75% 이상 또는 75% 내지 96%, 바람직하게는 80% 이상 또는 80% 내지 96%가 될 수 있다. 또한, 상기 폴리에스테르 원사는 8.5 g/d의 하중 조건 하에서 측정시, 상기 일 회수율이 35% 이상 또는 35% 내지 85%, 바람직하게는 40% 이상 또는 40% 내지 85%가 될 수 있다 한편, 본 발명의 폴리에스테르 원사는 전술한 바와 같이 해양사 (marine finish yarn)로서 장시간 사용 가능한 우수한 성능을 확보할 수 있도록 폴리에스테르 섬유에 오일 성분으로 표면 처리된 것을 특징으로 한다.
본 발명에서 '폴리에스테르 섬유'라 함은 통상적으로 디올 화합물과 테레프탈산 등의 디카르복실산과 반웅시켜 에스테르화시킨 섬유상 폴리머를 칭하는 것으로, 본 발명의 '해양용 폴리에스테르 원사'를 제조하기 위한 기본적인 섬유 조성에 해당한다. 폴리에스테르는 특히, 습기에 우수한 내성을 가지고 있어 해양용 와이어 로프를 대체하는 섬유 로프를 제조에 더욱 바람직하다. 본 발명에서 폴리에스테르 섬유로는 통상적으로 사용되는 모든 폴리에스테르 섬유를 사용할 수 있으며, 예를 들면, 폴리에틸렌테레프탈레이트 (PET), 폴리에틸렌나프탈레이트 (PEN), 폴리부틸렌테레프탈레이트 (PBT),
폴리사이클로핵산디메틸렌테레프탈레이트 (PCT) 등의 폴리알킬렌테레프탈레이트, 또는 이를 주된 구성 성분으로 하는 코폴리에스테르 등을 사용할 수 있다. 특히, 폴리에틸렌테레프탈레이트가 강도 및 신도 등의 물성 측면에서 해양용 원사로 사용하기에 좀더 바람직하다.
상기 폴리에스테르 섬유는 고유점도가 8.0 내지 1.20 dl/g, 바람직하게는 0.90 내지 1.05 dl/g가 될 수 있으며, 고강력 측면에서 상기 범위의 고유점도를 갖는 것이 좋다.
또한, 본 발명에서 '오일 성분'이라 함은 폴리에스테르 표면에 물리적 또는 화학적 결합을 통해 표면 윤활성을 극대화시켜 주는 효과를 갖는 모든 성분을 칭하는 것이다. 본 발명의 바람직한 일례에 따르면, 상기 오일 성분에는 예컨대, 폴리실록산 화합물, 유화제, 용제가 포함될 수 있다. 특히, 상기 오일 성분은 바람직하게는 폴리실록산 화합물 및 유화제만으로 이루어진 것, 또는 폴리실록산 화합물만으로 이루어진 것이 될 수 있다. 즉, 상기 오일 성분에서 실질적으로 폴리에스테르 표면에 윤활성을 부여하는 주요 성분으로는 폴리실록산 화합물만을 포함하고 다른 윤활제 성분을 포함하지 않는 것을 의미한다. 이때, 상기 폴리실록산 화합물의 공정 성능 개선을 위하여 유화제를 추가로 포함할 수 있으나, 이를 제외하고는 다른 성분을 실질적으로 포함하지 않는다. 다만, 공정상의 잔류 불순물로서 용제가 실질적으로 검출되지 않는 범위의 미량 포함될 수 있으며, 이 또한 전체 오일 성분의 총중량에 대하여 1 중량 % 이하로 포함될 수 있다.
본 발명자들의 실험 결과 폴리에스테르 섬유에 표면 처리된 오일 성분에서 윤활제 성분으로 폴리실록산 화합물만을 사용함에 따라, 다른 윤활제 성분이나 대전방지제, 산화 /노화방지제를 포함하는 오일 성분으로 표면 처리된 타 폴리에스테르 원사에 비해 우수한 내마모성 및 형태안정성, 기계적 강도를 개선 효과를 나타낼 수 있음이 밝혀졌다.
본 발명에서 상기 오일 성분은 폴리실록산 화합물을 최종 제조된 폴리에스테르 원사의 오일 성분 총 중량에 대하여 40 중량 % 이상 포함하는 것을 특징으로 하고, 바람직하게는 50 중량 % 이상, 60 중량 % 이상, 또는 70 내지 90 중량 %의 함량으로 포함할 수 있다. 본 발명의 폴리에스테르 원사가 해양사 (marine finish yarn)로서 고강도 및 우수한 크리이프 특성, 일 회복율 특성을 확보함과 동시에 우수한 성능으로 장시간 동안 사용할 수 있는 우수한 내마모성을 확보하기 위해서는, 상기와 같은 높은 함량 범위로 폴리실록산 화합물을 포함하는 오일 성분으로 폴리에스테르 섬유를 표면 처리하는 것이 바람직하다.
상기 폴리실록산 화합물은 반웅 가능한 작용기가 없어 원사의 표면 처리시 우수한 안정성 및 윤활성을 제공할 수 있으며, 특히 높은 함량일수록 물의 침투를 거의 완전 방어할 수 있을 정도로 매우 뛰어난 발수성 및 우수한 내마모성과 기계적 특성을 제공할 수 있음이 밝혀졌다. 다만, 높은 함량의 폴리실록산 화합물을 원사에 적용하는 경우, 점도가 높아 공정상의 조업성이 현저히 떨어지고 이에 따라 제조된 원사의 품질 균일성이 매우 낮게 되는 단점이 있었다. 그러나, 본 발명에서는 후술하는 바와 같이, 높은 함량의 폴리실록산 화합물을 유화제와 용제를 함께, 또는 용제 단독으로만 흔합하여 원사에 적용함으로써, 전체 공정의 작업성을 향상시키고 우수한 물성의 해양용 폴리에스테르 원사를 제조할 수 있음이 밝혀졌다.
또한, 상기 폴리실록산 화합물은 폴리에스테르 섬유 중량에 대하여 0.5 내지 2.0 중량 ¾>, 바람직하게는 0.6 내지 1.1 중량 ¾>가 되도록 오일 성분에 포함될 수 있으며, 내마모성 측면에서 폴리에스테르 섬유 중량에 대하여 0.5 중량 % 이상이 되도록 포함되는 것이 바람직하고, 경제적 측면에서 2.0 중량 % 이하가 되도톡 포함되는 것이 바람직하다.
본 발명에서 상기 폴리실톡산 화합물은 하기 화학식 1로 표시될 수 있으며, 각각의 화합물 1종 또는 2종 이상을 병용하여 사용할 수 있으며 :
[화학식 1]
Figure imgf000010_0001
식 중,
R1, R2, R3, R4, R5, R6, 및 R7은 각각 동일하거나 상이하고, 수소, (:广(:20의 알킬기, 또는 d~C2。의 아릴기이고,
n은 1~10,000의 정수, 바람직하게는 1~5,000의 정수이다.
상기 폴리실톡산 화합물의 수평균분자량은 10 내지 1,000,000, 바람직하게는 50 내지 500, 000, 더욱 바람직하게는 500 내지 500 ,000가 될 수 있다. 또한, 상기 폴리실록산 화합물은 점도 범위가 5 내지 35,000 est, 바람직하게는 50 내지 5,000 est, 더욱 바람직하게는 100 내지 500 est이 될 수 있다. 해양용 원사로서 우수한 윤활 효과를 확보하는 측면에서 수평균분자량 10 이상 또는 점도 5 est 이상의 폴리실록산 화합물을 사용할 수 있으며, 폴리실록산 화합물의 분자량 및 점도가 높아져 섬유 표면에의 확산 침투 속도가 저하되는 것을 감안하여 수평균분자량은 1,000,000 이하 또는 점도 35,000 est 이하로 사용하는 것이 바람직하다.
이 때, 상기 폴리실록산 화합물의 점도는 동점도 (Dynamic viscosity) 측정법으로 캐논-펜스케형 점도계 (Cannon-Fenske Type Viscometer) 등을 이용하여 측정할 수 있다.
상기 폴리실록산 화합물은 또한, 상온 (25 °C)에서 비중이 0.950 내지 1.000인 것을 사용할 수 있다.
특히, 바람직한 일례에서, 상기 폴리실록산 화합물은 상기 화학식
1에서 치환기 R4 또는 R5의 적어도 하나가 탄소수 1 내지 4의 알킬인 것을 사용할 수 있으며, 예컨대, 폴리디알킬실록산 및 폴리알킬아릴실록산으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 좀더 바람직하게는, 폴리디메틸실록산ᅳ 폴리디에틸실록산, 및 폴리메틸페닐실록산으로 이루어진 군에서 선택된 1종 이상이 될 수 있으며, 최종 제조된 훤사 품질 측면에서 폴리디메틸실록산을 사용하는 것이 더욱 바람직하다.
또한, 본 발명의 상기 오일 성분은 상기 폴리실록산 화합물과 함께 유화제를 추가로 포함할 수 있으며, 상기 유화제는 원사와 금속간의 마찰계수를 낮추고 원사와 원사간의' 마찰계수를 적절하게 조절하기 때문에 제사 조업성과 후가공성을 향상시킬 수 있다. 원사와 원사간의 마찰계수가 높으면 원사의 집속성이 증가하여 공기 교락 공정에서 균일한 교락을 부여할 수 있다. 그러나, 원사와 원사간의 마찰계수가 너무 높은 경우에는 모우 및 사절이 많이 발생될 위험이 있다.
특히, 본 발명에서 상기 유화제는 상기 원사의 오일 성분 총 중량에 대하여 60 중량 ¾ 이하, 50 중량 % 이하, 40 중량 ¾> 이하, 30 중량 ¾> 이하 또는 10 내지 30 중량 %의 함량으로 포함할 수 있다. 폴리에스테르 섬유를 상기 폴리실록산 화합물이 높은 함량으로 포함된 오일 성분으로 표면 처리하여 해양용 원사를 제조하는 공정의 조업성을 향상시킴과 동시에, 최종 해양용 원사 제품에서 우수한 내마모성을 확보함과 함께 형태안정성 및 기계적 강도를 향상시키는 측면에서 상기 함량 범위 이하로 유화제를 포함하는 것이 바람직하다.
상기 유화제는 폴리에스테르 섬유 제조 공정 및 장치, 폴리실록산 화합물의 종류, 용제 등을 고려하여 선정될 수 있으며, 바람직하게는 비이온성 계면활성제 등을 사용할 수 있다.
본 발명의 바람직한 일 구현예에서, 상기 유화제로는 8~22개의 탄소수를 갖는 지방산 모노글리세린 에스테르형 비이온성 계면활성제, 지방산 폴리글리콜에스테르형 비이온성 계면활성제, 지방산 소르비탄에스테르형 비이온성 계면활성제, 지방산 자당 에스테르형 비이온성 계면활성제, 지방산 알칸을아미드형 비이온성 계면활성제, 및 폴리에틸렌 글리콜 축합형 비이온성 계면활성제로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
보다 구체적으로는, 상기 비이온성 계면활성제는 탄소수 8〜 22개의 알킬폴리알킬렌 글리콜, 알킬아릴폴리알킬렌 글리콜, 알킬디메틸 아민옥사이드, 디 -알킬 메틸 아민옥사이드, 알킬아미도프로필아민옥사이드, 알킬글루카마이드, 알킬폴리글루코사이드 옥시레이티드 페티 액시드 및 알킬아민으로 이루어진 군에서 선택될 수 있다. 이때, 상기 화합물들의 알킬기는 알켄기로 대체하여 사용할 수 있으며, 탄소수는 8 내지 22인 것이 바람직하고, 직쇄 또는 분지상인 것도 사용할 수 있다. 상기 알킬폴리알킬렌 글리콜은 1 내지 20개의 에록시 또는 프로폭시 단위를 함유하는 것이 바람직하다. 가장 바람직하게는, 상기 비이온성 계면활성제로는 탄소수 8~22개의 알킬디메틸 아민옥사이드가 사용될 수 있다.
좀더 구체적인 일례로는, 폴리옥시에틸렌스테아릴에테르, 폴리옥시에틸렌스테아릴을레일에테르, 폴리옥시에틸렌을레일에테르, 폴리옥시에틸렌세틸에테르, 폴리옥시에틸렌라우릴에테르 , 프로필렌옥시드 /에틸렌옥시드가 공중합한 모노부틸에테르, 폴리옥시에틸렌비스페놀 A 디라우릴레이트, 폴리옥시에틸렌비스페놀 A 라우릴레이트, 폴리옥시에틸렌비스페놀 A 디스테아레이트, 폴리옥시에틸렌비스페놀 A 스테아레이트, 폴리옥시에틸렌비스페놀 A 디올레이트, 폴리옥시에틸렌비스페놀 A 올레이트, 폴리옥시에틸렌스테아릴아민, 폴리옥시에틸렌라우릴아민, 폴리옥시에틸렌올레일아민, 폴리옥시에틸렌올레인산 아미드, 폴리옥시에틸렌스테아린산 아미드, 폴리옥시에틸렌라우린산 에탄을아미드, 폴리옥시에틸렌을레인산 에탄을아미드 , 폴리옥시에틸렌올레인산 디에탄을아미드, 디에틸렌트리아민을레인산 아미드, 폴리옥시프로필렌스테아릴에테르, 폴리옥시프로필렌비스페놀 A 스테아레이트, 폴리프로필렌스테아릴아민, 폴리프로필렌올레인산 아미드, 글리세릴 모노 알킬레이트, 글리세릴 트리 알킬레이트, 소르비탄 모노 알킬레이트, 소르비탄 트리 알킬레이트, 캐스터 오일 등을 들 수 있다.
본 발명은 또한, 상기와 같이 우수한 내마모성 및 형태안정성, 기계적 강도를 해양용 폴리에스테르 원사를 제조하는 방법을 제공한다. 특히, 본 발명의 제조 방법은 폴리에스테르 중합체를 용융 방사하여 폴리에스테르 미연신사를 제조하는 단계, 폴리실톡산 화합물을 포함하는 유제 조성물로 상기 폴리에스테르 미연신사를 표면 처리하는 단계, 및 상기 폴리에스테르 미연신사를 열처리 온도 70 내지 250 °C의 조건 하에서 연신하여 폴리실록산 화합물이 원사에 표면 처리된 오일 성분 총 중량에 대하여 40 중량 % 이상의 함량으로 포함되도록 하는 단계를 포함한다. 이하, 첨부한 도면을 참고로 하여, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 용융 방사 및 연신 공정의 실시 형태를 상세히 설명한다.
도 1은 본 발명의 폴리에스테르 원사 제조공정을 모식적으로 나타낸 공정도이다. 특히, 바람직한 일례로 도 1에서 나타낸 바와 같이, 본 발명의 해양용 폴리에스테르 원사는 먼저, 구금 (110)을 통해 폴리에스테르 중합체로부터 폴리에스테르 미연신사를 제조한다. 이때, 상기 구금을 통해 방사된 용융 고분자를 급넁 공기 (quenching-air)로 냉각시키고, 유제 를 또는 오일-젯 (oil-roll 또는 oil-jet, 120)을 이용하여 미연신사에 유제 조성물을 부여하고, 프리 -인터레이서 (pre-interlacer, 130)를 사용하여 일정한 공기압력으로 미연신사에 부여된 유제 조성물을 원사의 표면에 균일하게 분산시킨다. 이후, 다단의 연신장치 (141~146)를 통하여 연신과정을 거치고, 상기 연신 과정 후에 최종적으로 세컨드 인터레이서 (2nd Inter lacer, 150)에서 일정한 압력으로 원사를 인터밍글 (intermingle)시켜 권취기 (160)에서 권취하여 원사를 제조할 수 있다.
본 발명의 용융 방사 등은 폴리실록산 화합물을 포함하는 유제 조성물로 폴리에스테르 미연신사를 표면 처리하는 단계를 포함하는 것을 제외하고는 폴리에스테르 공정으로 알려진 통상적인 방법에 따라 수행할 수 있으며, 특별히 별도의 공정 조건에 한정되는 것은 아니다.
다만, 본 발명의 제조 방법에서 연신 공정은 열처리 온도 70 내지
250 °C에서 수행하고, 바람직하게는 80 내지 230 °C에서 수행할 수 있다. 상기 연신 단계에서 미연신사에 표면처리된 유제 조성물 중 불필요한 휘발성 성분을 층분히 제거하고, 고강도의 우수한 일 회복율 특성을 갖는 연신사를 제조하기 위해서는 상기 범위의 열처리 온도 조건 하에서 수행하는 것이 바람직하다. 또한, 상기 열처리 온도 조건 하에서, 전체 연신비를 4 내지 7, 바람직하게는 5 내지 6.5의 고배율 조건으로 연신하는 것이 바람직하다. 다만, 고배율 조건의 연신 공정이 실질적인 조업성을 저하시킬 수 있으므로, 원사의 우수한 일 회복율 특성과 함께 효과적인 조업성을 유지할 수 있는 최적 범위로 연신비를 유지할 수 있다. 이때, 이완율은 1> 이상, 바람직하게는 1% 내지 5%, 더욱 바람직하게는 1 내지 ¾로 하고, 권취속도는 2,500 m/min 이상, 바람직하게는 2,500 내지 4,500 m/min, 더욱 바람직하게는 2,500 내지 3,500 m/min의 조건으로 수행할 수 있다.
특히, 본 발명의 제조 방법에서는 폴리에스테르 미연신사를 폴리실록산 화합물을 포함하는 유제 조성물로 상기 폴리에스테르 미연신사를 표면 처리하여 가공함으로써, 우수한 내마모성, 기계적 강도, 크리이프 특성, 및 일 회복율 특성, 즉 우수한 형태 안정성을 갖는 해양용 폴리에스테르 원사를 제조할 수 있게 됨이 밝혀졌다.
본 발명에서 폴리실톡산 화합물을 포함하는 오일 성분, 즉, 이를 포함하는 방사 유제 조성물은 별도의 장치를 추가 장착하여 적용하거나, 또는 상기 도 1에 나타낸 바와 같은 기존의 유제 를 또는 오일-젯 (120) 장치를 이용하여 폴리에스테르 미연신사에 표면 처리될 수 있다.
상기 유제 조성물은 폴리실록산 화합물, 유화제, 및 용제만으로 이루어진 것이 될 수 있다. 즉, 상기 유제 조성물은 실질적으로 폴리에스테르 표면에 윤활성을 부여하는 주요 성분으로는 폴리실록산 화합물만을 포함하고 다른 윤활제 성분을 포함하지 않으며, 이를 용제에 가용화하기 위한 소량의 유화제를 추가로 포함할 수 있으며, 이를 제외하고는 다른 성분을 실질적으로 포함하지 않는다. 다만, 공정상 불순물로서 기타 성분이 실질적으로 검출되지 않는 범위로 미량 포함될 수 있으며, 이 또한 전체 조성물의 총중량에 대하여 1 중량 % 이하로 포함될 수 있다.
또한, 상기 유제 조성물은 전체 조성물에 대하여, 폴리실록산 화합물 15 내지 40 중량 %, 바람직하게는 20 내지 35중량 %이며, 유화제 10 중량 % 이하, 바람직하게는 1 내지 7 중량 % 이하이며, 및 잔량의 용제, 바람직하게는 용제 60 중량 % 이상, 좀더 바람직하게는 65 내지 85 증량 %를 포함할 수 있다.
전술한 바와 같이, 본 발명의 해양용 폴리에스테르 원사에서 표면처리된 오일 성분 중 폴리실록산 화합물의 함량이 높을수록 해양용 원사의 안정성, 윤활성, 발수성, 내마모성 및 기계적 특성, 일 회수율 특성 등에서 매우 유리한 효과를 얻을 수 있음이 밝혀졌다. 다만, 높은 함량의 폴리실록산 화합물의 경우 점도가 높아 공정 작업성이 현저히 떨어지는 단점이 있다 . 그러나, 본 발명에 따라 폴리실록산 화합물을 소정의 유화제로 용제에 가용화하고, 추후에 용제를 제거함으로써, 원사 제조 공정의 작업성을 개선하고 오일 성분에 바람직하게는 40 중량 % 이상, 좀더 바람직하게는 60 중량 % 이상의 고함량으로 폴리실록산 화합물을 포함하는 우수한 물성의 해양용 폴리에스테르 원사를 제조할 수 있음이 밝혀졌다. 본 발명의 방사 유제 조성물에서 폴리실록산 화합물 및 유화제는 전술한 바와 같은 성분을 사용할 수 있으며, 용제는 폴리에스테르 섬유 제조 공정 및 장치, 폴리실록산 화합물의 종류, 유화제의 종류 등을 고려하여 선정될 수 있다. 특히, 상기 용제로는 바람직하게는, 물이나 석유 추출 탄소수 9 내지 13의 노말 파라핀 또는 이소 파라핀 등을 사용할 수 있다. 용제로서 석유 추출 탄소수 9 내지 13의 노말 파라핀 또는 이소 파라핀 등을 사용하는 경우에는 유화제로 비이온성 계면활성제 등을 사용할 수 있다.
상기 용제는 원사 제조 공정을 마친 후에 최종적으로 제조된 폴리에스테르 원사의 오일 성분에서는 포함되지 않는 것이 바람직하나, 그의 일부가 잔류 성분으로 남아 있을 수도 있으며, 예를 들어, 1중량 ¾ 이하, 0.5 중량 % 이하, 0.1 증량 % 이하로 포함될 수 있다. 이 경우에도 해양사로서 층분히 해수중에 장기간 침전되어 사용될 수 있다.
본 발명의 제조 방법에서 상기 용제는 미연신사를 연신하는 단계에서 열처리 공정을 통해 층분히 제거될 수 있으나, 필요한 경우 별도의 건조 단계를 추가하여 제거할 수 있다.
한편, 본 발명의 폴리에스테르 원사는 해양용 섬유 원사로 효과적으로 사용되기 위해서는, 원사-원사간 내마모성 (yarn-on— yarn abrasion) 측정하여 하증 0.34 내지 0.45 g/d으로 원사와 원사를 마찰시켰을 때 5 ,000회 이상에서 절사되는ᅤ 즉 5,000 회까지는 절사되지 않는 내마모성을 갖는 것이어야 한다. 특히, 상기 내마모성은 습식 조건에서 최소 7,000 회 이상, 건식 조건에서 9,000 회 이상이 유지되는 것이 바람직하다. 상기 내마모성 측정 결과 원사가 건식 및 습식 조건에서 각각 7,000 회 이상 및 9,000 회 이상을 유지하지 못하면, 해양용 로프로 사용시에도 외부환경변화에 의한 마찰력 등으로 부분 절단 등이 발생하여 선박이나 인명상에 위험을 초래할 수도 있다.
상기 원사-원사간 내마모성 측정 결과는 해양용 로프 등으로 사용시 안전성을 고려하여 최대한 많은 횟수로 유지되어 우수한 성능을 갖는 것이 바람직하며, 통상적으로는 습식 조건에서 7,000 내지 18,000 회로 유지되고 건식 조건에서는 9,000내지 20,000회로 유지될 수 있다.
본 발명의 바람직한 일례에서, 상기 원사-원사간 내마모성 (yarn-on- yarn abrasion) 축정은 도 3에 나타낸 바와 같은 장치를 이용하여 수행할 수 있다. 상기 측정 장치에서 기어모터 (240)를 이용한 크랭크 (21으 crank)의 1회전에 도르래 (221-222)를 통해 하중 (230, tension weight)이 상하 운동을 하고 이때 도르래 (223)을 중심으로 원사가 이동하면서 원사간에 마찰된 회수를 측정한 결과를 기록하게 된다. 또한, 건식 조건에서 내마모성은 상대습도 55% 내지 75% 및 16 내지 25 °C에서 측정할 수 있으며, 습식 조건에서 내마모성은 측정하고자 하는 원사가 층분히 젖을 수 있도록 16 내지 25 °C에서 물 속에 담궈둔 후에, 예를 들면 약 1시간 이상을 워터 배쓰 등에 담궈둔 후에 상기 장치를 이용하여 원사-원사간 내마모성을 측정할 수 있다.
본 발명의 폴리에스테르 원사는 또한, 고강도 및 우수한 크리이프 특성과 일 회수율 특성을 통해 해양용 섬유로 적용시, 우수한 형태 안정성을 갖는 장점이 있으며, 해수 중에 장시간 침적하여 사용하여도 강력 등의 물성 저하를 최소화할 수 있다.
이러한 본 발명의 폴리에스테르 원사는 도 3과 같은 시험장비를 가지고 1,000회 동안 내마모성 평가를 한 샘플을 가지고 측정한 강력이 시험을 수행하기 전에 측정한 강력에 대하여 %로 계산한 강력 유지율이 50% 이상, 바람직하게는 60% 이상이 될 수 있다. 이같이 도 3과 같은 시험장비를 사용하여 1,000회 마모시험 후 채취한 원사의 강력유지율이 우수한 범위로 유지됨으로써, 해양용 섬유 원사로 적용시 우수한 성능을 발휘할 수 있다.
본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.
【발명의 효과】
본 발명에 따르면 , 폴리에스테르 섬유에 오일 성분으로 표면 처리되고 고강도 및 내마모성 , 일 회수율 특성이 모두 우수한 해양용 폴리에스테르 원사 및 그의 제조 방법이 제공된다.
이러한 폴리에스테르 원사는 고강도 및 내마모성이 우수하여 외부환경 변화에 따른 마찰열 발생을 최소화할 뿐 만 아니라, 우수한 크리이프 특성과 일 회수율 특성으로 해양용 섬유 로프 등으로 사용시에도 부분 절단 등이 발생되지 않고 우수한 기계적 물성 및 형태안정성으로 장시간 동안 효과적으로 사용할 수 있다.
따라서, 본 발명의 폴리에스테르 원사는 해양용 원사 등으로 매우 바람직하게 사용될 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 일실시예에 따른 해양용 폴리에스테르 원사 제조공정을 모식적으로 나타낸 공정도.
도 2는 본 발명의 일실시예에 따른 해양용 폴리에스테르 원사의 사이클링 테스트 결과를 나타낸 그래프.
도 3은 본 발명의 일실시예에 따른 원사-원사간 내미^모성 (yarn— on- yarn abrasion)의 측정장치를 나타낸 개략도.
도 4는 본 발명의 일실시예에 따른 크리이프율의 측정에 사용되는 크리이프 테스터의 개략적 모식도.
도 5는 본 발명의 일실시예에 따른 일 회수율의 측정에 사용되는 장치의 개략적 모식도.
도 6은 본 발명의 실시예 4에 따른 원사-원사간 내마모성 (yarn-on- yarn abrasion)의 테스트 결과 사진.
도 7은 본 발명의 비교예 1에 따른 원사-원사간 내마모성 (yarn-on- yarn abrasion)의 테스트 결과 사진.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 실시예 1
고유점도 1.05 g/dL이고 폴리에틸렌테레프탈레이트를 90 중량 % 이상 포함하는 폴리에스테르 고상중합 칩을 280 °C 이상의 온도에서 용융하여 방사 구금을 통해 용융 폴리에스테르를 토출하였다. 상기 토출된 용융 폴리에스테르를 후드-히터온도 300 t 구간에서 지연 급넁 (delayed quenching)시키고, 상기 지연급넁된 폴리에스테르 섬유에 유제 를을 이용하여 폴리디메틸실록산 (수평균분자량 100,000, 점도 350 est)을 포함하는 방사 유제, 오일 성분으로 표면 처리하였다. 이때, 상기 방사 유제는 폴리디메틸실록산 50 중량 %, 용제로 통상의 방사 솔벤트 (노말 파라핀) 50중량 %를 포함하는 것이었다.
상기 표면 처리된 폴리에스테르 섬유는 프리-인터레이서에 통과시키고, 고데트 롤러를 이용하여 권취속도 3,000 m/min으로 연신하였다. 이때, 상기 연신 과정을 거치면서 상기 솔벤트를 건조시켜 제거하였다.
상기 연신 후에, 2단 인터레이서를 이용하여, 상기 연신된 폴리에스테르 원사에 공기압력 3.0 kg/on2로 인터밍글을 부여하고, 권취기로 권취하여 폴리에스테르 섬유에 오일 성분으로 표면처리된 해양용 폴리에스테르 원사를 제조하였다.
제조된 폴리에스테르 원사에서 추출법에 의해 사염화탄소를 사용하여 오일 성분을 추출하고 크로마토그래피법으로 조성을 분석한 결과, 오일 성분의 총중량에 대하여 폴리디메틸실록산 95 중량 % 포함되었음을 확인하였다.
실시예 2
폴리에스테르 섬유를 폴리디메틸실록산 (수평균분자량 100,000, 점도
350 est) 20 중량 %, 용제로 물을 사용하여 80중량 %를 포함하는 방사 유제로 처리하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 해양용 폴리에스테르 원사를 제조하였다.
제조된 폴리에스테르 원사에서 추출법에 의해 사염화탄소를 사용하여 오일 성분을 추출하고 크로마토그래피법으로 조성을 분석한 결과, 오일 성분의 총중량에 대하여 폴리디메틸실록산 95 중량 % 포함되었음을 확인하였다.
실시예 3
폴리에스테르 섬유를 폴리디메틸실록산 (수평균분자량 100,000, 점도 350 est) 30 중량 %, 유화제 10 중량 %, 및 용제로 솔벤트 70중량 %를 포함하는 방사 유제로 처리하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 해양용 폴리에스테르 원사를 제조하였다.
제조된 폴리에스테르 원사에서 추출법에 의해 사염화탄소를 사용하여 오일 성분을 추출하고 크로마토그래피법으로 조성을 분석한 결과, 오일 성분의 총중량에 대하여 폴리디메틸실록산 90 중량 %, 유화제 5 중량 % 포함되었음을 확인하였다.
실시예 4
폴리에스테르 섬유를 폴리디메틸실록산 (수평균분자량 100,000, 점도 350 est) 25 중량 ¾>, 유화제 5 중량 ¾>, 및 용제로 솔벤트 70중량 %를 포함하는 방사 유제로 처리하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 해양용 폴리에스테르 원사를 제조하였다.
제조된 폴리에스테르 원사에서 추출법에 의해 사염화탄소를 사용하여 오일 성분을 추출하고 크로마토그래피법으로 조성을 분석한 결과, 오일 성분의 총중량에 대하여 폴리디메틸실록산 95 중량 %, 유화제 2 중량 % 포함되었음을 확인하였다. 실시예 5
폴리에스테르 섬유를 폴리디메틸실록산 (수평균분자량 100,000, 점도 350 est) 20 중량 유화제 10 중량 %, 및 용제 70 중량 %를 포함하는 방사 유제로 처리하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 해양용 폴리에스테르 원사를 제조하였다.
제조된 폴리에스테르 원사에서 추출법에 의해 사염화탄소를 사용하여 오일 성분을 추출하고 크로마토그래피법으로 조성을 분석한 결과, 오일 성분의 총중량에 대하여 폴리디메틸실록산 90 중량 ¾, 유화제 5 중량%만이 포함되었음을 확인하였다. 비교예 1
상기 실시예 4와 동일한 방법으로 실시하되, 상기 폴리디메틸실록산 대신에 미네랄 오일 30 중량 %와 솔벤트 70 증량 %를 포함하는 방사 유제로 처리하여 상기 급넁된 폴리에스테르 섬유에 표면 처리하여 폴리에스테르 원사를 제조하였다.
제조된 폴리에스테르 원사에서 추출법에 의해 사염화탄소를 사용하여 오일 성분을 추출하고 크로마토그래피법으로 조성을 분석한 결과, 오일 성분의 총중량에 대하여 미네랄 오일 95 중량 %만이 포함되었음을 확인하였다.
비교예 2
상기 실시예 4와 동일한 방법으로 실시하되, 상기 폴리디메틸실록산 대신에 에틸렌옥사이드 부가 디을 에스테르를 30 중량 %와 솔벤트 70 중량 ¾»를 포함하는 방사 유제로 처리하여 상기 급넁된 폴리에스테르 섬유에 표면 처리하여 폴리에스테르 원사를 제조하였다.
제조된 폴리에스테르 원사에서 추출법에 의해 사염화탄소를 사용하여 오일 성분을 추출하고 크로마토그래피법으로 조성을 분석한 결과, 오일 성분의 총중량에 대하여 에틸렌옥사이드 부가 디을 에스테르 95 중량 %만이 포함되었음을 확인하였다. 상기 실시예 1~5 및 비교예 1~2에서 유제 성분의 조성 및 제조된 폴리에스테르 원사에서 위와 같은 방법으로 측정한 오일 성분의 함량은 하기 표 1에 나타내었다.
【표 1]
Figure imgf000021_0001
상기 실시예 1~5 및 비교예 1~2에 따라 제조된 폴리에스테르 원사에 대하여 아래와 같은 방법으로 크리이프율을 측정하고, 그의 측정 결과를 하기 표 2에 나타내었다. 크리이프율 측정
도 4에 도시된 바와 같은 크리이프 테스터기를 사용하여 크리이프율을 측정하였다.
이러한 크리이프 테스터기를 사용하여 상기 실시예 1 내지 5 및 비교예 1 내지 2의 폴리에스테르 원사 (초기 시료 길이 L0 = 1,400 mm)에 초기 하중을 절단강력에 50%를 부여하여 길이 변화를 측정하였다.
[계산식 1]
크리이프율 = (L-L0)/Lo X 100
식 증,
L은 하중을 가한 후에 변형된 길이이며, Lo 는 시료를 크리이프 시험기에 걸었을 때 원사 길이 1.4 m이다. 이때, 실시예 1 내지 5 및 비교예 1 내지 2의 폴리에스테르 원사는 하기 표 2에 나타낸 바와 같은 측정 조건으로 연신 공정을 달리 수행하며 크리이프을을 측정하였다.
【표 2]
Figure imgf000022_0001
상기 실시예 1~5 및 비교예 1~2에 따라 제조된 폴리에스테르 원사에 대하여 아래와 같은 방법으로 일 회수율을 측정하고, 그의 측정 결과를 하기 표 3에 나타내었다. 일 회수율 측정
도 5에 도시된 바와 같은 만능인장시험기 (Inst ron社 제조)를 사용하여 미국재료시험협회규격 ASTM D 885 방법에 따라 일 회수율 (Energy Recovery)을 측정하였다.
상기 만능인장시험기를 사용하여 실시예 1~5 및 비교예 1~2의 폴리에스테르 원사에 , 25 °C의 온도에서 3.5 g/d 및 6.5 g/d의 하중을 걸어 5내지 10 회 사이클링 테스트 (cycling test)를 수행한 후에 회복 일 (Work returned during Recovery) 및 전체 일 (Total Work done in Extension)을 측정하였으며, 상기 측정값으로부터 하기 계산식 2에 따라 각 폴리에스테르 원사의 일 회수율을 측정하였다.
[계산식 2]
일 회수율 (%) = W2/Wi X 100
식 중,
은 미국재료시험협회규격 ASTM D 885 방법에 따른 사이클링 테스트에서 전체 일 (Total Work done in Extension)이며 ,
W2는 미국재료시험협회규격 ASTM D 885 방법에 따른 사이클링 테스트에서 회복 일 (Work returned during Recovery)이다. 이러한 일 회수율의 측정 결과를 하기 표 3에 나타내었다.
【표 3】
Figure imgf000023_0001
또한, 상기 실시예 1~5 및 비교예 1~2에 따라 제조된 폴리에스테르 원사에 대한 물성을 아래와 같은 방법으로 평가하고, 그의 측정 결과를 하기 표 4에 나타내었다. 원사-원사간 내마모성 평가
도 3에서 나타낸 바와 같이, 크랭크의 1회전에 하중이 상하 운동을 하고 이때 원사가 이동하면서 원사간에 마찰된 회수를 측정한 결과를 기록하게 된다. 각각의 원사에 대하여, 건식 조건 및 습식 조건에서의 내마모성을 측정하였으며, 건식 조건은 상대습도 55% 내지 75% 및 16 내지 25 °C에서 약 1 시간 동안 건조시킨 후에 내마모성 테스트를 수행하였다. 습식 조건은 16 내지 25 °C의 물 배쓰에 원사를 1 시간 이상 동안 층분히 담궈 원사가 물에 층분히 젖은 상태에서 내마모성 테스트를 수행하였다. 본 발명에서는 2,000 De 원사에 하중 700 g을 적용하여 원사와 원사를 마찰시켰을 때 절사될 때까지의 마찰회수를 측정하여 원사-원사간 내마모성을 평가하였다. 강력유지율
상기 실시예 1~5 및 비교예 1~2에 따라 제조된 폴리에스테르 원사에 대하여 도 3과 같은 시험장비를 사용하여 1,000회 마모시험 후 채취한 원사의 강력유지율을 인스트통을 사용하여 ASTM D 2256 법에 준하여 측정하였다.
【표 4】
구분 내마모성측정결과 (회) 강도 절신 강력유지율 건식조건 습식조건 (gd) (%) (%) 실시예 1 7,100 5,123 9.2 14 75 실시예 2 10,324 9,120 9.4 13 80 실시예 3 11,352 9,317 9.4 13 82 실시예 4 12,235 9,850 9.6 12 85 실시예 5 10,021 8,701 9.6 12 80 비교예 1 4,210 3,258 9.4 13 60 비교예 2 4,027 3,019 9.2 14 55 이러한 물성 평가와 함께, 상기 실시예 4 및 비교예 1의 경우, 내마모성 테스트 결과사진을 각각 도 6 및 도 7로 나타내었다.
상기 표 1~4에 나타낸 바와 같이, 본 발명에 따라 폴리실록산 화합물을 높은 함량으로 포함하는 오일 성분으로 표면처리된 실시예 1~5의 폴리에스테르 원사가, 통상의 섬유 처리 유제인 미네랄 오일이나 에틸렌옥사이드 부가 디올 에스테르로 표면처리된 비교예 1~2의 폴리에스테르 원사에 비해 최대 약 4.8% 정도까지 훨씬 낮은 크리이프율을 나타내는 것을 알 수 있다. 특히, 이같이 우수한 크리이프 특성을 확보함으로써, 본 발명의 폴리에스테르 원사가 강도 및 강력유지율 등에서 현저히 우수한 특성을 갖는 것을 알수 있다.
상기 실시예 1~5의 폴리에스테르 원사는 또한, 3.5 g/d의 하중 조건 하에서 측정시 상기 일 회수을이 55% 이상이 되고, 6.5 g/d의 하중 조건 하에서 측정시 상기 일 회수율이 50% 이상으로, 상기 비교예 1~2와 폴리에스테르 원사에 비해 최대 25% 정도까지 훨씬 높은 일 회수율을 나타내는 것을 알 수 있다.
또한, 실시예 1~5의 폴리에스테르 원사가 건식 조건 및 습식 조건에서 각각 7, 100 희 내지 12,235 회 및 5,123 회 내지 9,850 회의 우수한 내마모성을 나타내고, 이때 강력유지율이 75% 내지 85%로 매우 우수한 특성을 갖는 것을 알 수 있다. 반면에, 비교예 1~2의 폴리에스테르 원사는 건식 조건 및 습식 조건에서 각각 4,210 회 내지 4,027 회 및 3,258 회 내지 3,019 회 정도로 내마모성이 현저히 떨어지는 것을 알 수 있다. 이때 강력유지율 또한 55% 내지 60%에 불과하여 해양용사로 적용시 기계적 강도, 내마모성, 및 형태안정성 등이 현저히 떨어져 장시간 동안 사용시 완전 절단 등이 발생될 수도 있음을 알 수 있다.
특히, 상기 실시예 1~5의 폴리에스테르 원사가, 통상의 섬유 처리 유제인 미네랄 오일로 표면처리된 비교예 1의 폴리에스테르 원사에 비해 내마모성이 최소 1.5 배 이상으로 우수한 것을 알 수 있다. 더욱이, 에틸렌옥사이드 부가 디올 에스테르로 표면 처리한 비교예 2의 폴리에스테르 원사의 경우에 , 표면 윤활성이 떨어져 내마모성이 현저히 떨어지는 것을 알수 있다.
이러한 원사의 내마모성은, 도 6 및 도 7의 사진으로부터 육안으로도 확인할 수 있는 바와 같이, 본 발명에 따라 폴리디메틸실록산으로 표면처리된 상기 실시예 4의 폴리에스테르 원사가 미네랄 오일로 표면처리된 비교예 1의 폴리에스테르 원사에 비해 표면 윤활성이 월등히 우수한 내마모성을 갖는 것을 확인할 수 있다.
이와 같이, 본 발명의 폴리에스테르 원사는 고강도 및 내마모성, 일 회수율 특성이 모두 우수하여, 해양용 원사로서 적용시 기존의 와이어 로프에 비해 현저히 감소된 무게의 섬유 로프로 편리하게 사용할 수 있음과 동시에, 외부환경 변화에 따른 마찰열 발생이나 형태 변형을 최소화하여 부분 절단 등의 발생 없이 장시간 동안 사용이 가능하다.

Claims

【특허청구범위】 【청구항 1】 폴리에스테르 섬유에 오일 성분으로 표면 처리된 원사로서, 초기 길이 L0가 1.4 m가 되도록 걸어 고정시키고, 원사의 절단 강력에 대하여 50%의 하중을 걸어 24 시간 동안 방치하였을 때, 하기 계산식 1로 정의되는 크리이프율이 9% 이하가 되는 해양용 폴리에스테르 원사:
[계산식 1]
크리이프율 = (L-Lo)/L0 X 100
식 중,
L은 24 시간 동안 하중을 가한 후에 변형된 길이이며,
Lo 는 원사의 초기 길이이며, 1.4 m가 되도록 함.
【청구항 2】
제 1항에 있어서,
상기 원사의 절단 강력은 15 kgf 내지 25 kgf인 해양용 폴리에스테르 원사
【청구항 3]
폴리에스테르 섬유에 오일 성분으로 표면 처리된 원사로서, 미국재료시험협회규격 ASTM D 885 방법에 따라 3.5 g/d의 하중을 걸어 5 내지 10 회 사이클링 테스트를 수행하였을 때, 하기 계산식 2로 정의되는 일 희수율이 55% 이상이 되고,
미국재료시험협회규격 ASTM D 885 방법에 따라 6.5 g/d의 하중을 걸어 5 내지 10 회 사이클링 테스트를 수행하였을 때, 하기 계산식 2로 정의되는 일 회수율이 50% 이상이 되는 해양용 폴리에스테르 원사:
[계산식 2]
일 회수율 (¾) = W2/Wi X 100
식 중,
^은 미국재료시험협회규격 ASTM D 885 방법에 따른 사이클링 테스트에서 전체 일 (Total Work done in Extension)이며,
W2는 미국재료시험협회규격 ASTM D 885 방법에 따른 사이클링 테스트에서 회복 일 (Work returned during Recovery)임 .
【청구항 4]
제 3항에 있어서,
2.0 g/d의 하중 조건 하에서 측정시, 상기 일 회수율이 75% 이상이 되는 해양용 폴리에스테르 원사.
【청구항 5】
거 13항에 있어서,
8.5 g/d의 하중 조건 하에서 측정시, 상기 일 회수을이 35% 이상이 되는 해양용 폴리에스테르 원사.
【청구항 6]
제 1항 또는 제 3항에 있어서,
폴리실록산 화합물이 상기 원사의 오일 성분 총 증량에 대하여 40 중량 ¾» 이상의 함량으로 포함된 것인 해양용 폴리에스테르 원사.
【청구항 7]
게 1항 또는 제 3항에 있어서,
상기 폴리실록산 화합물은 다음 화학식 1로 표시되는 것인 해양용 폴리에스테르 원사:
[화학식 1]
Figure imgf000028_0001
식 중,
R1, R2, R3, R4, R5, R6, 및 R7은 각각 동일하거나 상이하고 수소,
C广 C20의 알킬기, 또는 d~C20의 아릴기이고,
n은 1~10,000의 정수임 .
【청구항 8】
제 1항 또는 제 3항에 있어서,
상기 폴리실록산 화합물은 수평균분자량이 10 내지 30, 000인 해양용 폴리에스테르 원사.
【청구항 9] 제 1항 또는 제 3항에 있어서,
상기 폴리실톡산 화합물은 점도가 5 내지 35 000 est인 해양용 폴리에스테르 원사.
【청구항 10】
제 7항에 있어서,
상기 폴리실록산 화합물은 상기 R4 또는 R5의 적어도 하나가 탄소수 1 내지 4의 알킬인 해양용 폴리에스테르 원사.
【청구항 111
제 7항에 있어서,
상기 폴리실록산 화합물은 폴리디메틸실록산, 폴리디에틸실록산, 및 폴리메틸페닐실록산으로 이루어진 군에서 선택된 1종 이상인 해양용 폴리에스테르 원사.
【청구항 12]
제 7항에 있어서,
상기 오일 성분이 유화제를 추가로 포함하는 해양용 폴리에스테르 원사.
【청구항 13]
제 12항에 있어서,
유화제는 상기 원사의 오일 성분 총 중량에 대하여 60 중량 % 이하의 함량으로 포함된 것인 해양용 폴리에스테르 원사.
【청구항 14]
제 12항에 있어서,
상기 유화제는 8 22개의 탄소수를 갖는 지방산 모노글리세린 에스테르형 비이온성 계면활성제, 지방산 폴리글리콜에스테르형 비이온성 계면활성제, 지방산 소르비탄에스테르형 비이온성 계면활성제, 지방산 자당 에스테르형 비이온성 계면활성제, 지방산 알칸올아미드형 비이온성 계면활성제, 및 폴리에틸렌 글리콜 축합형 비이온성 계면활성제로 이루어진 군에서 선택된 1종 이상인 해양용 폴리에스테르 원사.
【청구항 15]
제 12항에 있어서 상기 오일 성분은 폴리실록산 화합물 및 유화제만으로 이루어진 것인 해양용 폴리에스테르 원사.
【청구항 16]
제 1항 또는 제 3항에 있어서,
상기 오일 성분은 폴리실록산 화합물만으로 이루어진 것인 해양용 폴리에스테르 원사.
【청구항 17]
제 1항 또는 제 3항에 있어서,
상기 폴리에스테르 섬유는 고유점도가 8.0내지 1.20 dl/g인 해양용 폴리에스테르 원사.
【청구항 18]
계 1항 또는 제 3항에 있어서,
상기 폴리에스테르 섬유는 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트 , 폴리사이클로핵산디메틸렌테레프탈레이트, 및 이들의 코폴리에스테르로 이루어진 군으로부터 선택된 것인 해양용 폴리에스테르 원사.
【청구항 19]
제 1항 또는 계 3항에 있어서,
하중 0.34 내지 0.45 g/d으로 원사와 원사를 마찰시켰을 때 5 ,000회 이상에서 절사되는 내마모성을 갖는 해양용 폴리에스테르 원사.
【청구항 20】
제 1항 또는 계 3항에 있어서,
하중 0.34 내지 0.45 g/d으로 원사와 원사를 1,000회 이상 마찰시킨 후에 강력유지율이 50%이상인 해양용 폴리에스테르 원사.
【청구항 21】
폴리에스테르 중합체를 용융 방사하여 폴리에스테르 미연신사를 제조하는 단계,
폴리실록산 화합물을 포함하는 유제 조성물로 상기 폴리에스테르 미연신사를 표면 처리하는 단계, 및
상기 폴리에스테르 미연신사를 열처리 온도 70 내지 250 °C의 조건 하에서 연신하여 폴리실록산 화합물이 원사에 표면 처리된 오일 성분 총 중량에 대하여 40 중량 % 이상의 함량으로 포함되도록 하는 단계
를 포함하는 해양용 폴리에스테르 원사의 제조 방법.
【청구항 22]
제 21항에 있어서,
상기 연신 단계는 연신비 4 내지 7, 이완율 1% 이상, 권취속도 2,500 m/min 이상의 조건 하에서 수행하는 해양용 폴리에스테르 원사의 제조 방법.
【청구항 23】
제 21항에 있어서,
상기 유제 조성물은 폴리실톡산 화합물, 유화제, 및 용제만으로 이루어진 것인 해양용 폴리에스테르 원사의 제조 방법.
【청구항 24]
제 23항에 있어서,
상기 유제 조성물은 폴리실록산 화합물 15 내지 25 중량 %, 유화제 10 중량 ¾ 이하 및 잔량의 용제를 포함하는 것인 해양용 폴리에스테르 원사의 제조 방법 .
【청구항 25]
제 23항에 있어서,
상기 용제는 물, 및 석유 추출 탄소수 9 내지 13의 노말 파라핀 또는 이소 파라핀으로 이루어진 군에서 선택된 1종 이상인 해양용 폴리에스테르 원사의 제조 방법 .
PCT/KR2010/006675 2009-09-30 2010-09-30 해양용 폴리에스테르 원사 및 그의 제조 방법 WO2011040772A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/499,590 US20120189847A1 (en) 2009-09-30 2010-09-30 Marine polyester yarn and preparation method thereof
BR112012007315A BR112012007315A2 (pt) 2009-09-30 2010-09-30 fio de poliéster marinho e seu método de preparação
EP10820845.5A EP2484819A4 (en) 2009-09-30 2010-09-30 MARINE POLYESTER FIBER AND MANUFACTURING METHOD THEREFOR
CN2010800542912A CN102639766A (zh) 2009-09-30 2010-09-30 海洋聚酯纱线及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0092936 2009-09-30
KR1020090092936A KR101297807B1 (ko) 2009-09-30 2009-09-30 해양용 폴리에스테르 원사 및 그의 제조 방법
KR10-2009-0134474 2009-12-30
KR1020090134474A KR101297806B1 (ko) 2009-12-30 2009-12-30 해양용 폴리에스테르 원사 및 그의 제조 방법

Publications (2)

Publication Number Publication Date
WO2011040772A2 true WO2011040772A2 (ko) 2011-04-07
WO2011040772A3 WO2011040772A3 (ko) 2011-08-25

Family

ID=43826797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006675 WO2011040772A2 (ko) 2009-09-30 2010-09-30 해양용 폴리에스테르 원사 및 그의 제조 방법

Country Status (5)

Country Link
US (1) US20120189847A1 (ko)
EP (1) EP2484819A4 (ko)
CN (1) CN102639766A (ko)
BR (1) BR112012007315A2 (ko)
WO (1) WO2011040772A2 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2888151A1 (en) * 2012-10-19 2014-04-24 Invista Technologies S.A R.L. Thermoplastic-poly (dihydrocarbylsiloxane) compositions, and fibers, and processes for making fibers
CN103060942A (zh) * 2012-12-14 2013-04-24 浙江海利得新材料股份有限公司 一种海洋缆绳用高强涤纶工业丝及其制备方法
KR20150035423A (ko) * 2013-09-27 2015-04-06 코오롱인더스트리 주식회사 브레이크 호스
EP3298184A1 (en) * 2015-05-22 2018-03-28 PrimaLoft, Inc. Siliconized synthetic filament yarn
CN110524739A (zh) * 2019-09-06 2019-12-03 枣阳市东航塑编彩印有限公司 一种塑料编织袋回收利用工艺
CN112723791B (zh) * 2020-12-29 2022-03-18 江苏恒力化纤股份有限公司 一种聚酯纤维增强沥青混合料及其制备方法
CN112746349B (zh) * 2020-12-29 2021-12-21 江苏恒力化纤股份有限公司 高强型抗蠕变性涤纶工业丝及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475204A (en) * 1967-09-18 1969-10-28 Du Pont Polyester tire cord lubricant
DE2606211C3 (de) * 1976-02-17 1980-01-03 Bayer Ag, 5090 Leverkusen FiberfiU aus Polyesterfasern
JPH05106168A (ja) * 1991-10-15 1993-04-27 Teijin Ltd 詰綿用難燃ポリエステル繊維
JP3133177B2 (ja) * 1992-12-09 2001-02-05 帝人株式会社 熱安定性に優れたポリエチレンナフタレート繊維およびその製造方法
JP3232737B2 (ja) * 1993-02-02 2001-11-26 東レ株式会社 ポリエステル繊維の製造方法
DE69635226T2 (de) * 1996-07-19 2006-06-14 Toray Industries Mittel zur verringerung der reibung für sicherheitsgurte
JP3786484B2 (ja) * 1996-11-21 2006-06-14 帝人ファイバー株式会社 高集束性マルチフィラメント糸
US6329053B2 (en) * 1999-07-28 2001-12-11 Kolon Industries, Inc. Polyester multifilamentary yarn for tire cords, dipped cord and production thereof
WO2001032975A1 (fr) * 1999-11-04 2001-05-10 Teijin Limited Fibres en polyester a fonctionnalite conferee, structure etablie a partir de ces fibres et procede de fabrication correspondant
KR100602286B1 (ko) * 2000-03-31 2006-07-14 주식회사 코오롱 폴리에스테르 섬유 및 그 제조방법
KR101306235B1 (ko) * 2007-11-09 2013-09-17 코오롱인더스트리 주식회사 크리이프 특성이 우수한 산업용 고강도 폴리에스테르 원사 및 그 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2484819A4

Also Published As

Publication number Publication date
US20120189847A1 (en) 2012-07-26
CN102639766A (zh) 2012-08-15
BR112012007315A2 (pt) 2016-04-19
WO2011040772A3 (ko) 2011-08-25
EP2484819A4 (en) 2013-07-31
EP2484819A2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2011040772A2 (ko) 해양용 폴리에스테르 원사 및 그의 제조 방법
EP2208821B1 (en) Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
AU765393B2 (en) Spin finish
US10087560B2 (en) Braid
JP4531771B2 (ja) ヤーン用組成物、改善された特性を有するヤーン及びこれらのヤーンの使用
EP0145150B1 (en) Lubricating agents for processing synthetic yarns and method of processing synthetic yarns therewith
CN112543827A (zh) 合成纤维用处理剂及合成纤维
WO2008007803A1 (fr) Fil de fausse torsion polyester antistatique, son procédé de production, et fil de fausse torsion composite spécial antistatique comprenant le fil de fausse torsion polyester antistatique
KR101297807B1 (ko) 해양용 폴리에스테르 원사 및 그의 제조 방법
JP3856617B2 (ja) 仮撚加工用ポリエステル繊維
KR101586459B1 (ko) 어망용 폴리에스테르 원사
KR101297806B1 (ko) 해양용 폴리에스테르 원사 및 그의 제조 방법
KR20150078377A (ko) 어망용 폴리에스테르 원착사
CN111235895B (zh) 合成纤维用处理剂、合成纤维的处理方法和合成纤维
JP2000017573A (ja) 合成繊維用処理剤および合成繊維
JPS60151385A (ja) 仮撚用合成繊維フイラメント処理用油剤
JP3510744B2 (ja) シートベルト用原着ポリエステル繊維
JPH06173169A (ja) 合成繊維用処理剤
WO2023095746A1 (ja) 弾性繊維用処理剤及び弾性繊維
JP2007262588A (ja) マイクロファイバー用マルチフィラメント糸
JP2003239176A (ja) 仮撚加工用ポリエステル繊維
JP3089764B2 (ja) 合成繊維用処理剤
JP2005029936A (ja) ポリエステル系複合繊維
WO2013048203A2 (en) Polyester fiber and rope including the same
JPH06346367A (ja) 合成繊維用処理剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054291.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010820845

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13499590

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012007315

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012007315

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120330