WO2011040190A1 - ヒュームドシリカの製造方法 - Google Patents

ヒュームドシリカの製造方法 Download PDF

Info

Publication number
WO2011040190A1
WO2011040190A1 PCT/JP2010/065299 JP2010065299W WO2011040190A1 WO 2011040190 A1 WO2011040190 A1 WO 2011040190A1 JP 2010065299 W JP2010065299 W JP 2010065299W WO 2011040190 A1 WO2011040190 A1 WO 2011040190A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorosilane
fumed silica
gas
exhaust gas
reaction
Prior art date
Application number
PCT/JP2010/065299
Other languages
English (en)
French (fr)
Inventor
彩生 秋吉
忠 相本
孝則 手嶋
勝義 藤井
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2011040190A1 publication Critical patent/WO2011040190A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • C01B33/183Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process by oxidation or hydrolysis in the vapour phase of silicon compounds such as halides, trichlorosilane, monosilane

Definitions

  • the present invention relates to a method for producing fumed silica from a silicon compound. More specifically, the present invention relates to a method for producing fumed silica in which exhaust gas generated in the production process of trichlorosilane is used for producing fumed silica from a silicon compound.
  • Trichlorosilane (SiHCl 3 ) is a compound useful as a polysilicon production raw material, and is generally produced by reacting metal silicon with hydrogen chloride.
  • Patent Document 1 discloses a method for producing trichlorosilane by reacting metal silicon and hydrogen chloride in the presence of an iron- and aluminum-containing catalyst using a fluidized bed reactor.
  • trichlorosilane and hydrogen are generated from metal silicon and hydrogen chloride according to the following reaction formula (1).
  • tetrachlorosilane represented by the following reaction formula (2) is used as a side reaction.
  • a small amount of dichlorosilane (SiH 2 Cl 2 ) is also produced. Si + 3HCl ⁇ SiHCl 3 + H 2 (1) Si + 4HCl ⁇ SiCl 4 + 2H 2 (2)
  • chlorosilane other than trichlorosilane is produced together with hydrogen, so the reaction product gas is cooled to -10 ° C. or lower, and chlorosilane is condensed and separated from the gas.
  • the obtained chlorosilane condensate is subjected to distillation to separate and recover trichlorosilane, and the recovered trichlorosilane is used as a raw material for producing polysilicon.
  • Patent Document 2 discloses that a reaction product gas obtained by the reaction between metal silicon and hydrogen chloride is used as it is without performing chlorosilane condensation and separation. Used as a raw material gas in production, chlorosilane contained in the raw material gas is reacted with hydrogen to produce polysilicon by a reduction reaction, and the gas discharged at this time is brought into contact with metal silicon, and the chloride contained in the gas is produced. A process for producing chlorosilane by reaction of hydrogen with metallic silicon has been proposed.
  • the metal silicon used for the production of trichlorosilane contains impurities that greatly affect the quality of polysilicon, such as metal components other than silicon. Therefore, the process of Patent Document 2 that does not discharge exhaust gas still has a problem in that metal components other than silicon are entrained in the gas circulating in the process, and the quality of the obtained polysilicon is greatly affected. . That is, in the process of using the reaction product gas containing trichlorosilane produced by the reaction of metal silicon and hydrogen chloride as it is for the production of polysilicon, the quality of the polysilicon is deteriorated. It is most preferable to recover chlorosilane and selectively recover trichlorosilane from this chlorosilane.
  • chlorosilane such as trichlorosilane is condensed and separated, and effective use of exhaust gas containing metal components other than silicon is effective.
  • the current situation is what is required.
  • chlorosilanes other than trichlorosilane for example, tetrachlorosilane
  • tetrachlorosilane are also obtained by reacting metal silicon with hydrogen chloride, and such chlorosilanes have the same problem.
  • the present inventors paid attention to the fact that the exhaust gas contains hydrogen as a main component, and as a result of diligent research on the reuse of the exhaust gas, fumed silica was reacted with a silicon compound such as tetrachlorosilane in a flame.
  • a silicon compound such as tetrachlorosilane
  • the high-purity fumes are not affected by metal silicon-derived impurities such as metal components other than silicon contained in the exhaust gas.
  • the silica gel can be obtained and can be reused as it is without subjecting the exhaust gas to a special purification treatment, and the present invention has been completed.
  • Metal silicon reacts with hydrogen chloride to produce chlorosilane
  • Chlorosilane is condensed and separated from the reaction product gas containing chlorosilane
  • a method for producing fumed silica characterized in that fumed silica is produced from the silicon compound by supplying the exhaust gas after the chlorosilane has been condensed and separated into a flame together with the gas of the silicon compound.
  • the chlorosilane is trichlorosilane, Is preferred.
  • the exhaust gas after the chlorosilane is condensed and separated from the reaction product gas contains hydrogen as a main component, and further contains a small amount of chlorosilane and metal silicon-derived impure metal components remaining without being condensed and separated. .
  • such exhaust gas is reused in the production of fumed silica by supplying a silicon compound into the flame.
  • chlorosilane contained in the exhaust gas is a compound that can be used as a silicon compound that is a raw material for producing fumed silica. Dosilica is produced. Therefore, it does not adversely affect the fumed silica formation reaction. Further, components other than hydrogen and chlorosilane (that is, metal components other than silicon) contained in the exhaust gas are extremely small and do not adversely affect the physical properties of the fumed silica produced.
  • the exhaust gas generated in the production process of trichlorosilane is used for the production of fumed silica.
  • the production of trichlorosilane is carried out by the reaction of metal silicon and hydrogen chloride. .
  • metal silicon used in the above reaction is a solid material containing metal elemental silicon element such as metallurgical metal silicon, silicon iron, or polysilicon, and any known material can be used without any limitation. Moreover, there is no restriction
  • the reaction between metallic silicon and hydrogen chloride preferably uses a catalyst from the viewpoint of efficiently producing trichlorosilane.
  • a catalyst those known as catalyst components in the reaction between metal silicon and hydrogen chloride can be used without particular limitation.
  • Specific examples of the catalyst component include metals of Group VIII elements such as iron, cobalt, nickel, palladium, and platinum, and chlorides thereof, and metals and chlorides such as aluminum, copper, and titanium. These catalysts can be used alone or in combination of a plurality of catalysts.
  • the amount of the catalyst component used is not particularly limited as long as it is an amount that efficiently produces TCS, and may be appropriately determined in consideration of the capability of the manufacturing apparatus, etc. It is sufficient to use 0.05 to 40% by weight, particularly 0.1 to 5% by weight, based on the metal silicon.
  • the above catalyst component may be present by adding it to the reaction system.
  • the metal silicon used contains a catalyst component such as an iron compound as an impurity, this impurity is used as a catalyst. It can be effectively used as a component.
  • metal silicon containing a catalyst component as an impurity there is no problem if a catalyst component is further added to the reaction system in order to increase the reactivity between metal silicon and hydrogen chloride.
  • the reaction temperature in the reaction between metal silicon and hydrogen chloride is not particularly limited, and may be appropriately determined in consideration of the material and capability of the manufacturing apparatus. As described above, in the reaction between metal silicon and hydrogen chloride, in addition to trichlorosilane, chlorosilanes such as tetrachlorosilane and dichlorosilane are by-produced. In general, the selectivity of trichlorosilane is more than the reaction temperature is necessary. If it is too high, it tends to decrease, and the above reaction is exothermic. Therefore, considering these points, the reaction temperature is preferably set appropriately in the range of 250 to 500 ° C, preferably 250 to 400 ° C.
  • this condensation / separation step the reaction product gas is cooled, and this cooling temperature may be not more than a temperature at which various chlorosilanes are condensed, and may be appropriately determined in consideration of the cooling capacity of the cooling device. .
  • the pressure in the condensation separation is not particularly limited as long as chlorosilane can be sufficiently removed, and may be appropriately determined in consideration of the ability of the condensation removal apparatus, etc. Generally, it is 300 kPaG or more, particularly 500 kPaG or more. If there is enough.
  • the cooling means for performing the condensation is not particularly limited as long as the reaction product gas can be cooled to the above cooling temperature, and can be performed using a known cooling means.
  • a cooling means for cooling the reaction product gas through a cooled heat exchanger or a cooling means for cooling the reaction product gas using a condensed and cooled condensate. . These methods can be used alone or in combination.
  • the condensate obtained from the reaction product gas by the condensation separation as described above is a mixture of various chlorosilanes, and trichlorosilane is isolated by distillation, and the recovered trichlorosilane is a raw material for precipitation in the process of producing polysilicon.
  • the exhaust gas after chlorosilane has been condensed and separated contains hydrogen gas as a main component, and further contains chlorosilane remaining without being condensed and separated, usually in an amount of 2% by volume or less, depending on the degree of condensation. In addition, although it is in a small amount, it contains an impure metal component derived from metal silicon and is reused in the fumed silica production process described below.
  • a silicon compound is used as a raw material, and this is supplied into a flame together with oxygen gas (or air) and a combustible gas and burned, whereby silica fine particles are generated in the flame and the particles are fused together. Fine and large specific surface area fumed silica is obtained.
  • the exhaust gas after chlorosilane condensation and separation produced in the above-described trichlorosilane production process is supplied as a combustible gas into the flame together with the silicon compound gas. That is, since this exhaust gas is mainly composed of hydrogen, it contributes to the formation of a flame by using it as a combustible gas.
  • chlorosilanes eg, trichlorosilane, tetrachlorosilane, dichlorosilane, etc.
  • contained in the exhaust gas are compounds that can be used as silicon compounds that are the raw materials for producing fumed silica. Converted to silica.
  • metal components other than silicon derived from metal silicon contained in the exhaust gas are extremely small, the physical properties and the like of the obtained fumed silica are not adversely affected.
  • the exhaust gas after condensation and separation is specially purified. Without being subjected to treatment or the like, it can be reused as it is in the production process of fumed silica, which is the greatest advantage of the present invention.
  • the content of chlorosilane in the exhaust gas is about 2% by volume at the most, but of course, even when the content exceeds 2% by volume, such chlorosilane itself reacts. Since fumed silica is produced, the exhaust gas can be supplied as it is to the production process of fumed silica.
  • Organosilanes other than alkoxysilanes For example, tetramethylsilane, diethylsilane, hexamethyldisilazane, etc.
  • Inorganic silane compounds For example, chlorosilanes such as monochlorosilane, dichlorosilane, trichlorosilane, tetrachlorosilane, monosilane, disilane and the like.
  • silicon halides such as chlorosilane are preferable, and tetrachlorosilane is most preferably used.
  • the reaction for producing fumed silica by combustion of a silicon compound is represented by the following formula, taking octamethylcyclotetrasiloxane as an example.
  • hydrogen is not consumed in the combustion reaction of the silicon compound, and hydrogen supplied as a combustible gas forms a flame. Is only consumed.
  • the reaction for producing fumed silica by combustion of tetrachlorosilane is represented by the following formula. SiCl 4 + 2H 2 + O 2 ⁇ SiO 2 + 4HCl + O 2
  • this reaction formula when producing fumed silica from silicon halide, hydrogen is consumed in this combustion reaction, especially in tetrachlorosilane, which consumes the most hydrogen compared to other chlorosilanes. Is done. That is, in this combustion reaction, a large amount of hydrogen is consumed in addition to the formation of flame as compared with the combustion reaction of the above-mentioned non-halogen silicon compound. The cost required for hydrogen can be greatly reduced, and the advantages of the present invention can be fully utilized.
  • the reaction by supplying various gases into the flame can be performed using a single tube burner or a multi-tube burner.
  • a single tube burner generally, a method in which a silicon compound gas, a combustible gas, an oxygen gas, etc. are mixed in advance and then burned in a reaction chamber through a single tube burner is employed.
  • the above-described exhaust gas can be used as a combustible gas alone or together with virgin hydrogen gas.
  • a method of supplying a silicon compound gas and an oxygen gas to the central portion and supplying a combustible gas to the outer peripheral portion and burning in the reaction chamber is adopted.
  • virgin hydrogen gas as the combustible gas supplied to the outer peripheral portion, and supply the above-described exhaust gas from the central portion. That is, if exhaust gas is supplied from the outer periphery, chlorosilane in the exhaust gas reacts near the outlet of the pipe, and the reactant (silica) adheres to the pipe wall, which may block the pipe and hinder continuous operation. It is.
  • the temperature of the flame is not particularly limited, and may be appropriately determined in consideration of the ability of the burner to be used. Normally, when producing fumed silica using tetrachlorosilane, the temperature of the burner may be set in the range of 1000 to 2200 ° C. The amount of gas to be supplied, the flow rate of gas, the length of flame, etc. The fumed silica to be produced may be set so as to have an appropriate average particle diameter and specific surface area.
  • the higher the silica (SiO 2 ) concentration in the flame the larger the average particle size of the resulting fumed silica and the smaller the specific surface area, so depending on the physical properties of the target fumed silica.
  • the gas supply amount of the silicon compound may be set. Further, the supply amount of oxygen gas (air) is set to an amount at which at least the silicon compound and hydrogen consumed for formation in the flame can be completely combusted. Usually, a large excess amount of oxygen gas is used. Furthermore, as the flame temperature increases, the average particle size of fumed silica tends to increase and the specific surface area tends to decrease. The flame temperature depends on the amount of hydrogen consumed to form the flame, and this amount of hydrogen is large.
  • the supply amount of hydrogen gas including exhaust gas may be set as appropriate according to the physical properties of the target fumed silica. Furthermore, the longer the flame length, the larger the average particle size of the fumed silica and the smaller the specific surface area. Therefore, the supply rates of various gases are set taking this into consideration.
  • the fumed silica thus obtained has known physical properties, and has a BET specific surface area in the range of about 45 to 500 m 2 / g, for example.
  • Such fumed silica is appropriately subjected to a surface treatment and used for known applications such as fillers for various resins, external additives for electrophotographic toners, and the like.
  • the exhaust gas after condensation produced in the process of producing trichlorosilane can be reused as it is for producing fumed silica, but particularly when producing high-purity fumed silica
  • the exhaust gas can be purified (for example, adsorption treatment with activated carbon) to remove chlorosilane, and the amount of chlorosilane contained in the exhaust gas can be 0.01% by volume or less and supplied to the fumed silica manufacturing process.
  • hydrocarbon gas can also be used together with flammable gas with hydrogen gas (exhaust gas).
  • the present invention has been described by taking as an example the case of using exhaust gas generated when producing trichlorosilane, but the present invention reacts with exhaust gas generated when manufacturing other chlorosilane, for example, metal silicon and hydrogen chloride. It will be apparent to those skilled in the art that the present invention can be similarly applied to exhaust gas generated when tetrachlorosilane is produced.
  • composition analysis of exhaust gas The composition analysis of the exhaust gas was performed by gas chromatography.
  • Compositional analysis of silica The obtained silica was evaluated by specific surface area, bulk density, iron concentration, and aluminum concentration. The specific surface area was measured by the gas adsorption BET single point method. The bulk density was calculated by weighing about 1 L of fumed silica after standing for 30 minutes and then measuring the weight. The iron concentration and the aluminum concentration were measured by ICP emission spectroscopic analysis after appropriately pretreating 2 g of fumed silica.
  • Example 1 Trichlorosilane was produced in a stainless fluidized bed reactor having an inner diameter of 50 mm. That is, 500 g of metal silicon (iron content: 0.15% by weight, aluminum content: 0.25% by weight) was charged into the reactor, and then 3.91 kg (0.107 mol) / min of hydrogen chloride and 0.214 g of hydrogen. (0.107 mol) / min was mixed and supplied to the reactor. The reactor was maintained at a temperature of 350 ° C., and metal silicon was fed at a rate of 60 g (2.14 mol) / hr under atmospheric pressure.
  • metal silicon iron content: 0.15% by weight, aluminum content: 0.25% by weight
  • the reaction product gas discharged from the reactor was cooled by a heat exchanger, pressurized to 600 kPaG by a compressor, and further cooled to ⁇ 50 ° C. to condense and remove chlorosilane.
  • the composition of the exhaust gas after the chlorosilane was condensed and removed was as follows. Exhaust gas composition; Hydrogen: 99.62% by volume Chlorosilane: 0.38% by volume Dichlorosilane (DSC) 0.05% by volume Trichlorosilane (TCS) 0.29% by volume Tetrachlorosilane (STC) 0.04% by volume
  • a multi-tube burner was used to continuously supply from the upper end of the cylindrical reactor to carry out a combustion reaction.
  • the gas mixing ratio was adjusted so that the volume ratio of tetrachlorosilane to hydrogen and air in the exhaust gas was 2: 5: 14, and the premixed gas was fed from the center (inner tube) of the multi-tube burner.
  • fumed silica was produced by supplying air from the outer tube as a sealing gas and a mixed gas of hydrogen and air from the inside.
  • the fumed silica had the following BET specific surface area, bulk density, iron concentration, and aluminum concentration.
  • BET specific surface area 220 m 2 / g
  • Bulk density 25 g / L Iron concentration: less than 1 ppm
  • Aluminum concentration less than 1 ppm
  • Example 2 Exhaust gas having the following composition was obtained in exactly the same manner as in Example 1, except that the chilling pressure and the chilling temperature when the chlorosilane was condensed and separated from the reaction product gas were changed to 650 kPaG and ⁇ 30 ° C., respectively.
  • fumed silica was produced in the same manner as in Example 1 to obtain fumed silica having the following properties.
  • BET specific surface area 220 m 2 / g
  • Bulk density 25 g / L Iron concentration: less than 1 ppm
  • fumed silica was produced under the same conditions as in Example 1 except that virgin hydrogen gas was used instead of exhaust gas.
  • Various physical properties of the obtained fumed silica were as follows. BET specific surface area: 220 m 2 / g Bulk density: 25 g / L Iron concentration: less than 1 ppm Aluminum concentration: less than 1 ppm
  • the exhaust gas after chlorosilane condensation separation obtained in the process of producing trichlorosilane is used as a hydrogen source, which is equivalent to the case of using virgin hydrogen gas. It can be seen that high-purity fumed silica having a specific surface area and a bulk density of 5 nm is obtained. In addition, even if the composition of exhaust gas fluctuates due to changes in the cryogenic conditions for condensing and separating chlorosilane, it does not adversely affect the properties of the resulting fumed silica, and the same fume as when virgin hydrogen gas is used. It can be seen that dosilica is obtained, and that trace metal impurities derived from the starting metal silicon have no influence on the physical properties of fumed silica.

Abstract

【課題】金属シリコンと塩化水素とを反応させてクロロシラン製造する際に生成される反応生成ガスより、クロロシランを凝縮分離した後のガスを再利用する方法を提供する。 【解決手段】金属シリコンと塩化水素とを反応させてクロロシランを生成せしめ、前記クロロシランを含む反応生成ガスからクロロシランを凝縮分離し、クロロシランが凝縮分離された後のガスをテトラクロロシランと共に火炎中に供給することにより、ヒュームドシリカを生成せしめる。

Description

ヒュームドシリカの製造方法
 本発明は、ケイ素化合物からヒュームドシリカを製造する方法に関する。さらに詳しくは、トリクロロシランの製造過程で生成する排ガスをケイ素化合物からヒュームドシリカの製造に利用するヒュームドシリカの製造方法に関する。
 トリクロロシラン(SiHCl)は、ポリシリコン製造原料として有用な化合物であり、一般に、金属シリコンと塩化水素を反応させることにより製造される。例えば、特許文献1では、流動層式反応装置を用いて、金属シリコンと塩化水素とを鉄及びアルミニウム含有触媒の存在下反応させてトリクロロシランを製造する方法が開示されている。
 このようなトリクロロシランの製造方法では、下記反応式(1)により、金属シリコンと塩化水素とからトリクロロシラン及び水素が生成するが、副反応として、下記反応式(2)で表されるテトラクロロシラン(SiCl)生成反応も進行するほか、ジクロロシラン(SiHCl)も微量副生する。
    Si+3HCl → SiHCl+H       (1)
    Si+4HCl → SiCl+2H       (2)
 このように、金属シリコンと塩化水素との反応では、トリクロロシラン以外のクロロシランが水素と共に生成するため、反応生成ガスを-10℃以下に冷却して、該ガスよりクロロシランを凝縮分離し、次いで、得られたクロロシランの凝縮液を蒸留に付してトリクロロシランを分離回収し、回収されたトリクロロシランをポリシリコン製造原料として使用している。
 一方、上記凝縮分離によってクロロシランが分離されている排ガスは、水素を主成分とするが、水素以外に、凝縮分離されなかったクロロシラン等の他、金属シリコンに不可避的不純物としてシリコン以外の金属成分等が含まれている。このため、この排ガスは、流動層式反応装置を用いて、金属シリコンと塩化水素を反応させる際の混合ガスに循環して供給する以外には、これまで有効な再利用手段がなく、適切な処理を経て廃棄されてきた。しかしながら、トリクロロシランの生産量が増大するにつれて、上記のような排ガスの量も増加しており、その有効な再利用方法の確立が望まれてきた。
 また、金属シリコンと塩化水素とからトリクロロシランを製造する方法において、特許文献2には、金属シリコンと塩化水素との反応で得られる反応生成ガスを、クロロシランの凝縮分離を行わず、そのままポリシリコン製造における原料ガスとして用い、この原料ガスに含まれるクロロシランを水素と反応させて還元反応によってポリシリコンを製造し、この際に排出されるガスを金属シリコンと接触させ、該ガス中に含まれる塩化水素と金属シリコンとの反応によってクロロシランを製造するプロセスが提案されている。
 上記特許文献2のプロセスでは、トリクロロシラン製造時に副生する水素は、クロロシランからポリシリコンを製造する際の還元ガスとして消費され、ポリシリコン製造時に副生する塩化水素は、金属シリコンとの反応に消費されるため、排ガスを排出しない点で優れたプロセスである。
 しかしながら、トリクロロシランの製造に使用される金属シリコン中には、シリコン以外の金属成分といった、ポリシリコンの品質に大きな影響を及ぼす不純物が含まれている。従って、排ガスを排出しない特許文献2のプロセスでは、プロセスを循環するガス中にシリコン以外の金属成分が同伴されてしまい、得られるポリシリコンの品質に大きな影響を及ぼすという点で、なお課題がある。即ち、金属シリコンと塩化水素との反応により生成したトリクロロシランを含む反応生成ガスをそのままポリシリコンの製造に利用するプロセスでは、ポリシリコンの品質低下を招くため、やはり反応生成ガスを凝縮分離に付してクロロシランを回収し、このクロロシランからトリクロロシランを選択的に回収することが最も好ましく、結局、トリクロロシラン等のクロロシランが凝縮分離されており且つシリコン以外の金属成分等を含む排ガスの有効利用が求められているのが現状である。
 また、トリクロロシラン以外のクロロシラン(例えばテトラクロロシラン)も金属シリコンと塩化水素とを反応させて得られるものであり、このようなクロロシランも同様の問題を抱えている。
特許第3324922号 特開昭52-133022号公報
 すなわち、本発明の目的は、金属シリコンと塩化水素との反応によりクロロシランを製造するに際して、反応生成ガスからクロロシランを凝縮分離した後の排ガスを再利用する方法を提供することにある。
 本発明者らは、上記排ガスが水素を主成分とすることに着目し、この排ガスの再利用について鋭意検討を行った結果、テトラクロロシラン等のケイ素化合物を火炎中で反応させてヒュームドシリカを製造する際に、この排ガスを水素源としてケイ素化合物と共に火炎中に供給するときには、該排ガス中に含まれるシリコン以外の金属成分等の金属シリコン由来の不純物の影響を受けることなく、高純度のヒュームドシリカを得ることができ、該排ガスを格別の精製処理に付することなく、そのまま再利用できるという知見を得、本発明を完成するに至った。
 即ち、本発明によれば、
 金属シリコンと塩化水素とを反応させてクロロシランを生成せしめ、
 前記クロロシランを含む反応生成ガスからクロロシランを凝縮分離し、
 クロロシランが凝縮分離された後の排ガスを、ケイ素化合物のガスと共に火炎中に供給することにより、該ケイ素化合物からヒュームドシリカを生成せしめることを特徴とするヒュームドシリカの製造方法が提供される。
 本発明においては、
(1)前記ケイ素化合物として、テトラクロロシランを使用すること、
(2)前記クロロシランがトリクロロシランであること、
が好ましい。
 トリクロロシランを製造する場合を例にとると、金属シリコンと塩化水素との反応により生成する反応生成ガスには、既に述べたように、トリクロロシランと共に、水素及びトリクロロシラン以外のクロロシラン(例えばテトラクロロシランやジクロロシランなど)を含んでおり、さらには、原料金属シリコン中に不可避的不純物として存在しているシリコン以外の金属成分等も含んでいる。これは、他のクロロシランを、金属シリコンと塩化水素とを反応させて製造する場合も全く同様である。
 従って、この反応生成ガスからクロロシランを凝縮分離した後の排ガスは、水素を主成分として含み、さらに、少量ではあるが凝縮分離されずに残ったクロロシラン及び金属シリコン由来不純金属成分などを含んでいる。本発明では、このような排ガスを、ケイ素化合物を火炎中に供給してヒュームドシリカの製造に再利用する。
 ところで、ケイ素化合物を火炎中に供給すると、酸素と反応しての燃焼反応により、火炎中でシリカ(SiO)の微細粒子が生成し、この微細粒子が融着して比表面積が大きく、微細なヒュームドシリカが得られるわけであるが、この反応には、火炎の形成のために、酸素と共に、可燃性ガスとして水素を使用することができる。即ち、本発明では、この水素として、上記の排ガスを使用するわけである。
 このように、排ガスを水素源として使用した場合において、排ガス中に含まれているクロロシランは、ヒュームドシリカの製造原料であるケイ素化合物として使用され得る化合物であるため、火炎中での反応によってヒュームドシリカを生成する。従って、このヒュームドシリカの生成反応に悪影響を及ぼすことはない。また、排ガス中に含まれている水素及びクロロシラン以外の成分(即ち、シリコン以外の金属成分等)は極微量であり、生成するヒュームドシリカの物性に悪影響を与えることはない。
 このように、クロロシランの製造過程において、金属シリコンと塩化水素との反応により生成する反応生成ガスより、クロロシランを凝縮分離した後の排ガスは、適切な再利用方法がなく、従来は、その大部分が廃棄されてきたが、本発明によれば、この排ガスを、特別な精製処理を行うことなく、そのままヒュームドシリカの製造に有効利用することができる。
 これにより、排ガスの廃棄処分にかかるコストを大幅に削減できるばかりか、ヒュームドシリカの製造コストを削減することもでき、工業的に極めて有用である。
 以下、トリクロロシランを製造する場合を例にとって本発明を説明する。
<トリクロロシランの製造>
 本発明においては、トリクロロシランの製造過程で発生する排ガスをヒュームドシリカの製造に利用するわけであるが、トリクロロシランの製造は、既に述べたとおり、金属シリコンと塩化水素との反応により行われる。
1.金属シリコン;
 上記反応に使用される金属シリコンとしては、冶金製金属シリコンや珪素鉄、或いはポリシリコン等の金属状態のケイ素元素を含む固体物質で、公知のものが何ら制限なく使用される。また、それら金属ケイ素に含まれる鉄化合物等の不純物についても、その成分や含有量において特に制限はない。
2.塩化水素;
 金属シリコンとの反応に使用される塩化水素は、窒素や水素等が混入していても何ら制限なく使用される。しかしながら、一般的に、トリクロロシラン、テトラクロロシラン、ジクロロシラン等のクロロシランは、加水分解性が高い為に水分と反応してしまう。このため、塩化水素に水分が含まれていると、生成したトリクロロシランの収率を下げる虞がある。従って、この塩化水素は乾燥状態にあることが好ましい。
3.金属シリコンと塩化水素との反応;
 金属シリコンと塩化水素との反応は、効率良くトリクロロシランを製造するという観点から、触媒を用いることが好ましい。かかる触媒としては、金属シリコンと塩化水素との反応における触媒成分として公知のものが、特に制限なく用いることが可能である。触媒成分として具体的には、鉄、コバルト、ニッケル、パラジウム、白金等の第VIII族元素の金属やその塩化物等、アルミニウム、銅、チタン等の金属や塩化物が挙げられる。これらの触媒は単独で用いることも、或いは複数の触媒を組み合わせて用いることも可能である。上記触媒成分の使用量は、効率良くTCSを製造する量であれば、特に制限されず、製造装置の能力等を勘案して適宜決定すれば良いが、一般的には、金属元素換算で、金属シリコンに対して0.05~40重量%、特に0.1~5重量%用いれば十分である。
 なお、上記の触媒成分は、反応系内に添加することで存在させても良いが、使用する金属シリコンに、不純物として鉄化合物等の触媒成分が含まれている場合には、この不純物を触媒成分として有効に利用することができる。無論、触媒成分を不純物として含有する金属シリコンを使用する場合でも、金属シリコンと塩化水素の反応性を高める為に、触媒成分を更に反応系内に添加しても何ら問題はない。
 上記金属シリコンと塩化水素との反応において、用いる反応装置としては、公知の反応装置を特に制限なく用いることが可能である。かかる反応装置として具体的には、固定床式反応装置、或いは流動床式反応装置等が挙げられる。上記反応装置の中でも流動床式反応装置を用いるのが、連続的に金属シリコンと塩化水素を供給して、連続的にトリクロロシランを製造することが可能である点、及び上記反応が発熱反応であるため、反応熱の除熱効果が高いという観点からも好ましい。
 金属シリコンと塩化水素との反応における反応温度についても、特に制限されず、製造装置の材質や能力等を勘案して適宜決定すれば良い。前記のとおり、金属シリコンと塩化水素との反応では、トリクロロシランの他に、テトラクロロシランやジクロロシラン等のクロロシランが副生するが、一般的に、トリクロロシランの選択率は、反応温度が必要以上に高いと低下する傾向があり、また、上記反応は発熱反応である。従って、これらの点を勘案して、反応温度は、250~500℃、好適には250~400℃の範囲で適宜設定するのが好ましい。
4.クロロシランの凝縮分離及び蒸留;
 上記金属シリコンと塩化水素との反応により、トリクロロシランを含む反応生成ガスが発生するが、このガス中には、副生物であるテトラクロロシランやジクロロシラン等のトリクロロシラン以外のクロロシランが含まれており、さらに、副生する水素に加え、金属シリコン由来のシリコン以外の金属成分等が含まれている。
 従って、上記の反応生成ガスからトリクロロシランを回収するにあたっては、先ず、凝縮分離に供せられ、この反応生成ガス中からトリクロロシランを含むクロロシランが凝縮分離される。
 この凝縮分離工程では、反応生成ガスは冷却されることとなるが、この冷却温度は各種のクロロシランが凝縮する温度以下であれば良く、冷却装置の冷却能力等を勘案して適宜決定すれば良い。冷却温度が低い程、クロロシランの除去効果が高い傾向にあるが、一般的には、-10℃以下、特に-30℃以下であれば十分である。また凝縮分離における圧力についても、クロロシランが十分に除去可能であれば特に制限されず、凝縮除去装置の能力等を勘案して適宜決定すれば良く、一般的には、300kPaG以上、特に500kPaG以上であれば十分である。
 また、凝縮を行うための冷却手段としては、反応生成ガスを上記の冷却温度に冷却することが可能であれば、特に制限なく、公知の冷却手段を用いて行うことが可能である。かかる冷却手段として具体的には、反応生成ガスを冷却された熱交換器を通過させて冷却させる冷却手段、又は、凝縮され冷却された凝縮物によって反応生成ガスを冷却する冷却手段等が挙げられる。これらの方法をそれぞれ単独で、又は併用して採用することも可能である。
 さらに、ガスの圧力を上昇させることを目的に、クロロシランの凝縮除去に先だって、加圧機を設置することも可能である。また、該加圧機の保護のため、予備的なクロロシラン凝縮やフィルターなども加圧機より上流側に設置してもよい。これらの点は、工業的なプロセス設計の常套手段として採用することが可能である。
 上記のような凝縮分離によって反応生成ガスから得られた凝縮液は、種々のクロロシランの混合物であり、蒸留によってトリクロロシランを単離し、回収されたトリクロロシランは、ポリシリコンを製造する工程における析出原料として使用される。
 また、クロロシランが凝縮分離された後の排ガスは、水素ガスを主成分として含み、さらに凝縮分離されずに残存するクロロシランを、凝縮の程度にもよるが、通常、2体積%以下の量で含有しており、また微量ではあるが、金属シリコン由来の不純金属成分等を含んでおり、以下に述べるヒュームドシリカ製造工程で再利用される。
<ヒュームドシリカの製造>
 この製造工程では、ケイ素化合物を原料とし、これを酸素ガス(或いは空気)及び可燃性ガスと共に火炎中に供給して燃焼させることにより、火炎中でシリカ微粒子が生成し且つ粒子同士の融着により微細で且つ比表面積の大きなヒュームドシリカが得られる。
 本発明においては、前述したトリクロロシラン製造工程で生成したクロロシラン凝縮分離後の排ガスを可燃性ガスとして、上記のケイ素化合物のガスと共に火炎中に供給する。即ち、この排ガスは、水素を主体とするものであるため、可燃性ガスとして使用することにより、火炎の形成に寄与する。しかも、この排ガス中に含まれるクロロシラン(例えばトリクロロシラン、テトラクロロシラン、ジクロロシラン等)は、ヒュームドシリカの製造原料であるケイ素化合物として使用され得る化合物であるため、火炎中での燃焼によりヒュームドシリカに転換される。また、排ガス中に含まれる金属シリコン由来のシリコン以外の金属成分等は極微量であるため、得られるヒュームドシリカの物性等に悪影響を与えることはない。
 上記の説明から理解されるように、排ガス中に含まれる水素以外の成分は、ヒュームドシリカの特性に悪影響を及ぼすことがなく、従って、本発明では、凝縮分離後の排ガスを、格別の精製処理等に供することなく、そのまま、ヒュームドシリカの製造工程に再利用でき、これは、本発明の最大の利点である。
 また、上記の排ガス中のクロロシラン含量は、多くても2体積%程度であるが、勿論、この含有量が2体積%を超えている場合であっても、このようなクロロシラン自体が反応してヒュームドシリカが生成するため、該排ガスをそのままヒュームドシリカの製造工程に供給することができる。
 本発明において、原料のケイ素化合物としては、常温でガス状または液状であるものが使用される。その具体例としては、以下のケイ素化合物を例示することができる。
シロキサン類;
  例えば、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、オクタメチルトリシロキサンなど。
アルコキシシラン類;
  例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシランなど。
アルコキシシラン以外の有機シラン;
  例えば、テトラメチルシラン、ジエチルシラン、ヘキサメチルジシラザンなど。
無機シラン化合物;
  例えば、モノクロロシラン、ジクロロシラン、トリクロロシラン、テトラクロロシラン等のクロロシランや、モノシラン、ジシランなど。
 本発明においては、上記で例示したケイ素化合物の中でも、クロロシラン等のハロゲン化ケイ素が好ましく、テトラクロロシランが最も好適に使用される。
 即ち、ケイ素化合物の燃焼によりヒュームドシリカを生成する反応は、オクタメチルシクロテトラシロキサンを例に取ると、下記式で表される。
 Si(CH+16O→4SiO+8CO+12H
 この反応式から理解されるように、非ハロゲン系のケイ素化合物からヒュームドシリカを製造する場合、ケイ素化合物の燃焼反応に水素は消費されず、可燃性ガスとして供給される水素は、火炎の形成に消費されるのみである。
 一方、テトラクロロシランの燃焼によりヒュームドシリカを生成する反応は、下記式で表される。
 SiCl+2H+O→SiO+4HCl+O
 この反応式から理解されるように、ハロゲン化ケイ素からヒュームドシリカを製造する場合には、この燃焼反応に水素が消費され、特にテトラクロロシランでは、他のクロロシランに比して最も多く水素が消費される。即ち、この燃焼反応では、前述した非ハロゲン系ケイ素化合物の燃焼反応に比して、火炎の形成以外にも多量の水素が消費されるため、本発明にしたがって、前述した排ガスを供給することにより、水素に要するコストを大幅に低減することができ、本発明の利点を最大限に活用することができるのである。
 尚、上述したケイ素化合物の燃焼に使用される水素ガスの全量を前述した排ガスとすることもできるし、水素ガスの一部を排ガスとし、この排ガスをバージンの水素ガスと混合して供給することもできる。
 また、各種ガスを火炎中に供給しての反応は、単一管のバーナーを用いて行うこともできるし、多重管のバーナーを用いて行うこともできる。
 例えば、単一管のバーナーを用いる場合には、一般に、ケイ素化合物のガス、可燃性ガス及び酸素ガス等を予め混合した後、単一管のバーナーを経て反応室内で燃焼させる方法が採用されるが、上述した排ガスは、それ単独で或いはバージンの水素ガスと共に、可燃性ガスとして使用することができる。
 また、多重管のバーナーを使用する場合には、一般に、中心部にケイ素化合物のガス及び酸素ガスを供給し、外周部に可燃性ガスを供給し反応室内で燃焼させる方法が採用されるが、この場合、外周部に供給する可燃性ガスとしてはバージンの水素ガスを使用し、上述した排ガスは、中心部から供給するのがよい。即ち、排ガスを外周部から供給すると、管の出口付近で排ガス中のクロロシランが反応し、反応物(シリカ)が管壁に付着し、管を閉塞して連続運転に支障を来たすおそれがあるためである。
 また、火炎の温度についても特に制限されず、用いるバーナーの能力等を勘案して適宜決定すれば良い。通常、テトラクロロシランを用いてヒュームドシリカを製造する際には、バーナーの温度は1000~2200℃の範囲に設定すれば良く、また、供給するガス量、ガスの流速、火炎の長さ等は、生成するヒュームドシリカが適宜の平均粒径や比表面積を有するように設定すればよい。
 例えば、火炎中でのシリカ(SiO)濃度が高いほど、得られるヒュームドシリカの平均粒径が大きく、且つ比表面積が小さくなる傾向があるため、目的とするヒュームドシリカの物性に応じて、ケイ素化合物のガス供給量を設定すればよい。
 また、酸素ガス(空気)の供給量は、少なくともケイ素化合物及び火炎に形成に消費される水素が完全燃焼し得る量に設定され、通常は、大過剰量の酸素ガスが使用される。
 さらに、火炎の温度が高くなるほどヒュームドシリカの平均粒子径は大きくなり、比表面積は小さくなる傾向があり、火炎温度は、火炎の形成に消費される水素量に依存し、この水素量が多いほど、火炎の温度が高くなるため、排ガスを含めた水素ガスの供給量も、目的とするヒュームドシリカの物性に応じて適宜設定すればよい。
 さらにまた、火炎の長さが長くなるほどヒュームドシリカの平均粒子径は大きく、比表面積は小さくなるため、これを勘案して、各種ガスの供給速度は設定される。
 このようにして得られるヒュームドシリカは、それ自体公知の物性を有するものであり、例えばBET比表面積は45~500m/g程度の範囲にある。かかるヒュームドシリカは、適宜、表面処理を行い、それ自体公知の用途、例えば各種樹脂の充填剤、電子写真用トナーの外添剤などに供される。
 尚、上述した本発明においては、トリクロロシラン製造過程で生成する凝縮分離後の排ガスを、そのまま、ヒュームドシリカの製造に再利用できるが、特に高純度のヒュームドシリカを製造する場合には、この排ガスを精製処理(例えば活性炭での吸着処理)してクロロシランを除去し、排ガス中に含まれるクロロシランの量を0.01体積%以下としてヒュームドシリカの製造工程に供給することも可能である。
 また、可燃性ガスとして、水素ガス(排ガス)と共に、炭化水素ガスを併用することもできる。
 以上、トリクロロシランを製造する際に生じる排ガスを用いる場合を例にとって本発明を説明したが、本発明は、他のクロロシランを製造する際に生じる排ガス、例えば金属シリコンと塩化水素とを反応させてテトラクロロシランを製造する際に生じる排ガスにも同様にして本発明を適用し得ることは、当業者には自明であろう。
 以下、本発明を実施例によりさらに説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 なお、排ガスの組成及び得られたシリカの分析は、以下の方法で行った。
排ガスの組成分析;
 排ガスの組成分析をガスクロマトグラフィーにより行った。
シリカの組成分析;
 得られたシリカを、比表面積、嵩密度、鉄濃度、アルミニウム濃度により評価した。
 比表面積はガス吸着BET一点法により測定した。
 嵩密度は、約1Lのヒュームドシリカを30分静置した後、重量測定を行い算出した。
 鉄濃度及びアルミニウム濃度は、ヒュームドシリカ2gに適切な前処理をした後、ICP発光分光分析法により測定した。
(実施例1)
 内径50mmのステンレス製流動層式反応器でトリクロロシランを製造した。
 即ち、500gの金属ケイ素(鉄含量:0.15重量%、アルミニウム含量:0.25重量%)を反応器に仕込み、次いで、塩化水素3.91kg(0.107mol)/minと水素0.214g(0.107mol)/minを混合し、反応器に供給した。
 この反応器を350℃の温度に保持し、大気圧下、金属ケイ素を60g(2.14mol)/hrの速度で供給した。
 上記反応器より排出された反応生成ガスは、熱交換器で冷却したのち、圧縮機で600kPaGまで加圧し、さらに-50℃に冷却してクロロシランを凝縮除去した。クロロシランを凝縮除去した後の排ガスの組成は、以下の通りであった。
  排ガス組成;
    水素:99.62体積%
    クロロシラン:0.38体積%
            ジクロロシラン(DSC) 0.05体積%
            トリクロロシラン(TCS) 0.29体積%
            テトラクロロシラン(STC) 0.04体積%
 テトラクロロシラン、上記で回収された排ガス及び空気を予混合した後、多重管バーナーを用いて円筒状反応器の上端より連続的に供給して燃焼反応を行った。
 尚、ガスの混合比は、テトラクロロシランと排ガス中の水素と空気との体積比が2:5:14となるように調整し、予混合したガスは多重管バーナーの中心部(内管)から供給した。また、シールガスとして、外管から空気を、その内側から水素と空気の混合ガスを供給し、ヒュームドシリカを製造した。
 このヒュームドシリカのBET比表面積、嵩密度、鉄濃度、アルミニウム濃度は、以下の通りであった。
   BET比表面積:220m/g
   嵩密度:25g/L
   鉄濃度:1ppm未満
   アルミニウム濃度:1ppm未満
(実施例2)
 反応生成ガスからクロロシランを凝縮分離する際の深冷圧力及び深冷温度を、それぞれ、650kPaG、-30℃に変更した以外は、実施例1と全く同様にして、下記組成の排ガスを得た。
  排ガス組成;
    水素:98.98体積%
    クロロシラン:1.02体積%
            ジクロロシラン(DSC) 0.09体積%
            トリクロロシラン(TCS) 0.84体積%
            テトラクロロシラン(STC) 0.09体積%
 上記の排ガスを用いて、実施例1と同様にしてヒュームドシリカを製造し、下記性状のヒュームドシリカを得た。
   BET比表面積:220m/g
   嵩密度:25g/L
   鉄濃度:1ppm未満
   アルミニウム濃度:1ppm未満
(実施例3)
 反応生成ガスからクロロシランを凝縮分離する際の深冷圧力及び深冷温度を、それぞれ、130kPaG、-30℃に変更した以外は、実施例1と全く同様にして、下記組成の排ガスを得た。
  排ガス組成;
    水素:97.30体積%
    クロロシラン:2.70体積%
            ジクロロシラン(DSC) 0.3体積%
            トリクロロシラン(TCS) 2.2体積%
            テトラクロロシラン(STC) 0.2体積%
 上記の排ガスを用いて、実施例1と同様にしてヒュームドシリカを製造し、下記性状のヒュームドシリカを得た。
   BET比表面積:220m/g
   嵩密度:25g/L
   鉄濃度:1ppm未満
   アルミニウム濃度:1ppm未満
 以上の実施例1~3において、ヒュームドシリカの製造に用いた排ガスの組成は、下記表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
(参考例1)
 ヒュームドシリカを製造するに当り、排ガスの代わりにバージンの水素ガスを使用した以外は、実施例1と全く同様の条件でヒュームドシリカを製造した。
 得られたヒュームドシリカの各種物性等は以下の通りであった。
   BET比表面積:220m/g
   嵩密度:25g/L
   鉄濃度:1ppm未満
   アルミニウム濃度:1ppm未満
 以上の実験結果から理解されるように、本発明によれば、トリクロロシランの製造過程で得られるクロロシラン凝縮分離後の排ガスを水素源として使用することにより、バージンの水素ガスを用いた場合と同等の比表面積及び嵩密度を有し、且つ高純度のヒュームドシリカが得られることが判る。
 また、クロロシランを凝縮分離するための深冷条件の変更により、排ガスの組成が変動したとしても、得られるヒュームドシリカの物性に悪影響を与えず、バージンの水素ガスを用いた場合と同等のヒュームドシリカが得られること、及び出発原料の金属シリコンに由来する微量の金属不純物もヒュームドシリカの物性には全く影響を与えていないことが判る。

Claims (3)

  1.  金属シリコンと塩化水素とを反応させてクロロシランを生成せしめ、
     前記クロロシランを含む反応生成ガスからクロロシランを凝縮分離し、
     クロロシランが凝縮分離された後の排ガスを、ケイ素化合物のガスと共に火炎中に供給することにより、該ケイ素化合物からヒュームドシリカを生成せしめることを特徴とするヒュームドシリカの製造方法。
  2.  前記ケイ素化合物として、テトラクロロシランを使用する請求項1に記載のヒュームドシリカの製造方法。
  3.  前記クロロシランがトリクロロシランである請求項1に記載のヒュームドシリカの製造方法。
PCT/JP2010/065299 2009-09-29 2010-09-07 ヒュームドシリカの製造方法 WO2011040190A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009224670 2009-09-29
JP2009-224670 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011040190A1 true WO2011040190A1 (ja) 2011-04-07

Family

ID=43826018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065299 WO2011040190A1 (ja) 2009-09-29 2010-09-07 ヒュームドシリカの製造方法

Country Status (2)

Country Link
TW (1) TW201127751A (ja)
WO (1) WO2011040190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012118A1 (ja) * 2013-07-24 2015-01-29 株式会社トクヤマ Cmp用シリカ、水性分散液およびcmp用シリカの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002138A (ja) * 2001-10-19 2004-01-08 Tokuyama Corp シリコンの製造方法
JP2006321675A (ja) * 2005-05-18 2006-11-30 Tokuyama Corp シリコンの製造方法
WO2008058894A1 (de) * 2006-11-16 2008-05-22 Wacker Chemie Ag PYROGENE KIESELSÄURE HERGESTELLT IN EINER PRODUKTIONS-ANLAGE MIT GROßER KAPAZITÄT

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002138A (ja) * 2001-10-19 2004-01-08 Tokuyama Corp シリコンの製造方法
JP2006321675A (ja) * 2005-05-18 2006-11-30 Tokuyama Corp シリコンの製造方法
WO2008058894A1 (de) * 2006-11-16 2008-05-22 Wacker Chemie Ag PYROGENE KIESELSÄURE HERGESTELLT IN EINER PRODUKTIONS-ANLAGE MIT GROßER KAPAZITÄT

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012118A1 (ja) * 2013-07-24 2015-01-29 株式会社トクヤマ Cmp用シリカ、水性分散液およびcmp用シリカの製造方法
JP6082464B2 (ja) * 2013-07-24 2017-02-15 株式会社トクヤマ Cmp用シリカ、水性分散液およびcmp用シリカの製造方法
JPWO2015012118A1 (ja) * 2013-07-24 2017-03-02 株式会社トクヤマ Cmp用シリカ、水性分散液およびcmp用シリカの製造方法
US9593272B2 (en) 2013-07-24 2017-03-14 Tokuyama Corporation Silica for CMP, aqueous dispersion, and process for producing silica for CMP

Also Published As

Publication number Publication date
TW201127751A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
JP5956461B2 (ja) 不均化操作を伴う実質的に閉ループの方法における多結晶シリコンの製造
US20110150739A1 (en) Method for removing boron-containing impurities from halogen silanes and apparatus for performing said method
JP4740646B2 (ja) シリコンの製造方法
JP5637866B2 (ja) 多結晶シリコンの製造法
JP5317707B2 (ja) クロロシラン統合プラント内での高沸点化合物の再利用方法
KR20130005223A (ko) 폴리실리콘의 제조 방법
EP2630081B1 (en) Production of polycrystalline silicon in closed-loop processes and systems
JPH1149508A (ja) 多結晶シリコンの廃棄物の少ない製造方法
US9394180B2 (en) Production of polycrystalline silicon in substantially closed-loop systems
US8449848B2 (en) Production of polycrystalline silicon in substantially closed-loop systems
JP5914240B2 (ja) 多結晶シリコンの製造方法
US20140124706A1 (en) Process for preparing chlorosilanes by means of high-boiling chlorosilanes or chlorosilane-containing mixtures
JP4831285B2 (ja) 多結晶シリコンの製造方法
WO2011040190A1 (ja) ヒュームドシリカの製造方法
JP2006176357A (ja) ヘキサクロロジシランの製造方法
JP5742622B2 (ja) トリクロロシラン製造方法及び製造装置
JP7369323B2 (ja) トリクロロシランの製造方法及び多結晶シリコンロッドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP