WO2011040027A1 - 流量計測装置 - Google Patents

流量計測装置 Download PDF

Info

Publication number
WO2011040027A1
WO2011040027A1 PCT/JP2010/005880 JP2010005880W WO2011040027A1 WO 2011040027 A1 WO2011040027 A1 WO 2011040027A1 JP 2010005880 W JP2010005880 W JP 2010005880W WO 2011040027 A1 WO2011040027 A1 WO 2011040027A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
measurement
unit
time
time difference
Prior art date
Application number
PCT/JP2010/005880
Other languages
English (en)
French (fr)
Inventor
竹村 晃一
芝 文一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/499,258 priority Critical patent/US9846065B2/en
Priority to CN201080043081.3A priority patent/CN102549394B/zh
Priority to JP2011534081A priority patent/JP5524972B2/ja
Priority to EP10820148.4A priority patent/EP2485015A4/en
Publication of WO2011040027A1 publication Critical patent/WO2011040027A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • G01F1/668Compensating or correcting for variations in velocity of sound

Definitions

  • the present invention relates to a flow rate measuring device that measures the flow rate of a fluid based on the propagation time of an ultrasonic signal.
  • the first vibrator 102 that transmits ultrasonic waves and the second vibrator 103 that receives the transmitted ultrasonic waves are provided in the middle of the fluid conduit 101 so as to face the upstream and downstream sides in the flow direction.
  • the ultrasonic waves cross the fluid diagonally.
  • the flow rate of the fluid based on the measurement unit 104 that measures the ultrasonic propagation time using the first and second vibrators 102 and 103, the control unit 105 that controls the measurement unit 104, and the measurement result of the measurement unit 104. It is comprised with the calculating part 106 which calculates
  • the sound velocity is C
  • the flow velocity is v
  • the distance between the first and second vibrators 102 and 103 is L
  • the angle between the ultrasonic wave propagation direction and the flow direction is ⁇
  • the upstream of the fluid conduit 101 is C
  • the propagation time is t 1
  • the reverse propagation time is t 2
  • T 1 and t 2 can be obtained by the following equations.
  • the measurement unit 104 needs to have a very small time resolution on the order of ns (nanoseconds), for example, to measure as a single-shot phenomenon.
  • the required time resolution is realized by obtaining the average value. That is, if the time resolution of the measurement unit 104 is T A and the number of repetitions is M, the measurement resolution of the propagation time is T A / M by continuously operating the measurement unit 104 during this repeated measurement. be able to.
  • This type of measuring device can achieve highly accurate measurement when the pressure in the fluid flow path is stable. For example, when applied to a gas meter that measures the flow rate of gas supplied to an ordinary household as an energy source. Face an inherent challenge called the pulsation phenomenon.
  • GHP gas engine
  • the gas moves in the pipe in synchronization with the pressure fluctuation, and it is affected by the movement as if the gas is flowing. A measurement value is detected.
  • the number of repeated measurements M is suppressed to the minimum number that can maintain the measurement accuracy, and then the measurement interval is shortened and executed N times continuously for a relatively long time in small increments. Then, the flow rate calculation is performed using the N measurement results continuously measured.
  • the phase state of the flow velocity fluctuation waveform can be captured evenly, and by averaging them, the true flow velocity with the fluctuation component removed
  • the effect of detecting (flow rate) is aimed (see, for example, Patent Document 1).
  • the number N of times of measurement is controlled according to the detected fluctuation amount of the flow velocity.
  • the measurement number N is reduced under a situation where the flow rate fluctuation is small and it can be determined that there is no pulsation, and the measurement number N is increased under a situation where the flow rate fluctuation is judged to be large and pulsation (for example, , See Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-350202 Patent Document 2 Japanese Patent Laid-Open No. 2003-222548
  • the present invention solves the above-described conventional problems, and provides a highly responsive measuring device that can quickly determine the presence or absence of a flow rate and switch to a measurement method that effectively uses power resources according to the presence or absence of the flow rate.
  • the purpose is to do.
  • a flow rate measuring device includes a first transducer and a second transducer that are provided in a fluid flow path and transmit and receive an ultrasonic signal, and an ultrasonic signal between the transducers.
  • a time measuring means for measuring the propagation time of the two a unit measuring step for measuring the propagation time of the forward and reverse bidirectional ultrasonic signals by the time measuring means while switching the transmission / reception direction of the two vibrators, and the unit measuring step.
  • a flow rate calculating means for calculating a flow rate based on the propagation times for the number of executions, a time difference detecting means for obtaining a propagation time difference in both the forward and reverse directions of the unit measuring step, and a series of unit measurements executed continuously.
  • a measurement control unit that selects an arbitrary unit measurement step from among the steps, and controls the number of executions of the subsequent unit measurement step based on the time difference obtained by the time difference detection unit in the arbitrary unit measurement step; It is a configuration that is equipped.
  • the flow measurement device of the present invention can quickly determine the presence / absence of a flow rate and perform highly responsive measurement capable of switching to a measurement method according to the presence / absence of the flow rate.
  • FIG. 2 is a time chart for explaining an example of a configuration of a flow rate calculation step in the operation of the flow rate measuring device shown in FIG. 1. It is a time chart explaining the measurement interval of the flow volume calculation process shown in FIG. It is a time chart explaining operation
  • movement of the flow measuring device shown in FIG. 2 is a time chart for explaining the operation when the flow rate is zero in the flow rate measuring device shown in FIG. 1.
  • FIG. 7 is a time chart for explaining the time chart shown in FIG. 7 in more detail in the time measuring means shown in FIG. It is a time chart explaining operation
  • the present invention provides a first vibrator and a second vibrator that are provided in a fluid flow path and transmit and receive an ultrasonic signal, a time measuring unit that measures a propagation time of an ultrasonic signal between the vibrators, and both the vibrators
  • the unit measurement step of measuring the propagation time of the forward and reverse bidirectional ultrasonic signals by the time measuring means while switching the transmission / reception direction of the signal, and the unit measurement step are continuously executed, based on the propagation time for the number of executions
  • a flow rate calculation means for calculating a flow rate, a time difference detection means for obtaining a propagation time difference in both the forward and reverse directions of the unit measurement process, and an arbitrary unit measurement process is selected from a series of unit measurement processes that are continuously executed.
  • the flow measurement device is configured to include measurement control means for controlling the number of executions of the subsequent unit measurement process based on the time difference obtained by the time difference detection means. Therefore, it is possible to perform measurement with high responsiveness by determining the presence or absence of a flow rate without a response delay and switching to a measurement method according to the presence or absence of the flow rate.
  • the responsiveness can be further improved by setting the arbitrary unit measurement process as the initial unit measurement process in the series of unit measurement processes.
  • the measurement control means aborts the execution of the subsequent measurement process. Therefore, it is possible to reduce power consumption when there is no flow rate.
  • the flow rate calculation means calculates the flow rate between them as zero. Therefore, when there is no flow rate, complicated flow rate calculation can be saved, so that power consumption can be further reduced.
  • the measurement control means changes the execution interval of the unit flow rate calculation process to be different each time. Therefore, even when periodic pulsation is generated in the flow path, the flow rate is not erroneously determined to be zero, and the measurement accuracy can be improved.
  • the measurement control means continuously performs a plurality of unit measurement processes. Since it is configured to execute continuously, when there is a flow rate, highly accurate measurement is possible.
  • the time measuring means is composed of a reference clock and a counter circuit that counts based on the clock
  • the time difference detecting means is composed of a subtracting circuit using the count value of the counter circuit, and in the process of determining the flow rate zero. Since the multiplication / division is not required, the presence / absence of the flow rate can be determined by a simple calculation method that simply operates the subtraction circuit, so that high-speed control is possible.
  • the time measuring means is composed of at least two reference clocks having different frequencies and a counter circuit
  • the time difference detecting means calculates a time difference for each counter circuit
  • the determining means is all the counters obtained by the time difference detecting means. Therefore, the determination accuracy of zero flow rate can be improved.
  • FIG. 1 is a block diagram illustrating a configuration example of a flow rate measuring device according to the present embodiment.
  • first and second transducers 2 and 3 that transmit and receive ultrasonic signals are obliquely disposed on the middle of the fluid flow path 1.
  • the ultrasonic wave propagates diagonally across the fluid through which the ultrasonic waves flow.
  • known piezoelectric ceramic vibrators that also transmit and receive ultrasonic waves can be suitably used, but are not particularly limited, and other known ultrasonic transmitting and receiving elements are used. Can be used.
  • the transmission unit 4 outputs a drive signal to the first transducer 2, the second transducer 3 receives the ultrasonic signal output from the first transducer 2, and the reception signal is processed by the reception unit 5.
  • the switching means 6 switches the transmission / reception roles of the first vibrator 2 and the second vibrator 3.
  • the measurement control means 7 controls the overall transmission / reception operation executed between the first and second vibrators 2 and 3, and includes a trigger means 8, a repetition means 9, a delay means 10, and a measurement process control means 11. Has been.
  • the switching means 6 connects the first vibrator 2 and the transmission means 4, the second vibrator 3 and the reception means 5, and the first vibrator 2 is connected. Measurement with the transmitting side and the second vibrator 3 as the receiving side is started. For the following description, this will be referred to as forward flow measurement.
  • the forward means sing-around measurement consisting of a predetermined number of repetitions is executed by the operation of the repetition means 9.
  • the number of repetitions is four. However, the number of repetitions is not limited to this. If the measurement resolution is high, only one measurement may be performed instead of the single-around measurement.
  • the trigger means 8 When the four repetitions are completed, after a predetermined delay time is generated from the delay means 10, the trigger means 8 outputs a transmission / reception switching signal to the switching means 6, and this time, transmission with the second vibrator 3 is performed.
  • the means 4, the first vibrator 2 and the receiving means 5 are connected to each other, and measurement is started with the second vibrator 3 as the transmitting side and the first vibrator 2 as the receiving side. For the following explanation, this will be referred to as measurement in the reverse direction of the flow.
  • a trigger signal for starting measurement is output from the trigger means 8. Even in the measurement in the reverse direction in which the roles of transmission and reception are switched, four repeated measurements are executed.
  • a series of operations in which the forward sing-around measurement (four repetitions measurement) and the reverse sing-around measurement (four repetitions) are alternately performed once are referred to as a unit measurement process.
  • the unit measurement process and the flow rate calculation process will be described with reference to the flowcharts of FIGS.
  • the unit measurement process executed first is the first measurement process
  • a delay signal is output from the delay means 10 and the same operation as the first measurement process is repeated. This is the second measurement step. Since the same unit measurement process is repeated a prescribed number of times, the nth unit measurement process is referred to as the nth measurement process.
  • the flow rate measuring device of the present invention measures the flow rate by executing this flow rate calculation step at regular measurement intervals.
  • the length of the fixed measurement interval and the prescribed number of unit measurement steps are not particularly limited, and an appropriate time or number can be set according to various conditions.
  • the time measuring means 12 measures the time from the trigger signal output timing of the trigger means 8 to the end of sing-around, and the first addition means 13 integrates the measured values of the time measuring means 12 in the forward measurement of each unit measuring step.
  • the second adding means 14 integrates the measured values of the time measuring means 12 in the measurement in the reverse direction of each unit measurement process.
  • the flow rate calculation means 15 calculates the flow value using the output values of the first addition means 13 and the second addition means 14.
  • the time difference detection means 16 obtains the difference between the measurement value of the time measurement means 12 in the forward direction measurement and the measurement value of the time measurement means 12 in the reverse direction measurement.
  • the determination means 17 compares the output of the time difference detection means 16 with a determination threshold value. If it is larger than the threshold value, it determines that there is a flow rate, and if it is smaller than the threshold value, it determines that there is no flow rate (zero flow rate). Output.
  • the measurement process control means 11 sets how many times the unit measurement process is executed to obtain the flow rate according to the determination result of the determination means 17.
  • the transmission means 4 As the transmission means 4, the reception means 5, the switching means 6 and the measurement control means 7 described above, specifically, a transmission circuit, a reception circuit, a switching circuit and a controller having a known configuration are used.
  • the configuration is not particularly limited.
  • the specific configurations of the trigger unit 8, the repetition unit 9, the delay unit 10, and the measurement process control unit 11 constituting the measurement control unit 7 are not particularly limited, and a known trigger output circuit, repetition control circuit, delay circuit, A circuit for setting the number of unit measurement steps may be used, and thereby a measurement control circuit may be configured.
  • the trigger unit 8, The repeating unit 9, the delay unit 10, and the measurement process control unit 11 may be a functional configuration of the controller. That is, the trigger unit 8, the repetition unit 9, the delay unit 10, and the measurement process control unit 11 are realized by, for example, a CPU as a controller operating according to a program stored in a storage unit such as a memory (not shown). It may be a configuration.
  • the first addition means 13, the second addition means 14, the flow rate calculation means 15, the time difference detection means 16, and the determination means 17 are realized by a single controller, like the measurement control means 7. It may be a functional configuration.
  • the specific structure of the time measuring means 12 is mentioned later, this invention is not limited to this, Other well-known structures can also be employ
  • the transmission means 4, the reception means 5, the switching means 6, the measurement control means 7 (and the trigger means 8, the repetition means 9, the delay means 10, and the measurement process control means 11), the time measurement means 12, the first The addition unit 13, the second addition unit 14, the flow rate calculation unit 15, the time difference detection unit 16, and the determination unit 17 are components included in the flow rate measurement device according to the present embodiment, and may include other components. Needless to say, these components constitute a circuit unit or a functional unit in the flow rate measuring device as described above.
  • these constituent elements are, for example, a transmission unit or a transmitter, a reception unit or a receiver, a switching unit or a switch, a measurement control unit or a measurement controller (trigger unit, repetition unit, delay unit, And measuring process control unit), time measuring unit or timer, first or second adding unit or first or second adder, flow rate calculating unit or flow rate calculating unit, time difference detecting unit or time difference detector, and determining unit or determining unit Can be read as
  • FIG. 4 is a time chart in which the horizontal axis is the elapsed time from the origin, and the vertical axis is the operation of each part with the output timing of the trigger means 8 indicating the start of measurement in the forward direction of the flow in the first measurement step as the origin.
  • the forward measurement value T d1 of the first measurement process measured by the time measuring means 12 is output to the time difference detecting means 16 and at the same time T d1 is added to the first adding means 13. .
  • a predetermined delay time T int elapsed time t 2 of the flow of the reverse direction measurement is started at time t3, the reverse direction of the measurement value T u1 time difference detection of the first measurement step measured by the time measuring means 12 It is output to the means 16.
  • the time difference detection means 16 obtains the difference between the two measured values T d1 and T u1 , T dif1 using (Equation 5).
  • T dif1 T u1 ⁇ T d1 (Formula 5)
  • T u1 is added to the second addition means 14. Note that switching of control based on the time difference obtained using (Equation 5) will be described later.
  • the addition process is alternately performed by the first addition unit 13 and the second addition unit 14 every time the measurement in the forward direction and the reverse direction is completed.
  • the flow rate calculation means 15 calculates the flow rate.
  • the flow rate calculating unit 15 compares the average value t 1 and t 2 per one transmission time from the value held in the respective first addition means 13 and the second addition means 14 is then obtained, and the (formula The flow rate is obtained by obtaining the flow velocity using 3) and further multiplying by a necessary coefficient.
  • the reason why the flow rate calculation is not executed for each unit measurement step is to save power.
  • the flow state (some physical quantity correlated with the flow rate) is sampled after setting T int shown in FIG. Although it is necessary to improve the accuracy by capturing the state, it is obvious that the calculation amount becomes enormous if the flow rate is obtained each time, resulting in an increase in power consumption.
  • the propagation time is sampled at such a short interval, and the flow rate is calculated using the average value of the sampling results at a stage where the unit measurement process is repeated to some extent (for example, several tens of times), Compared with the case where the flow rate is calculated for each unit measurement process, the calculation amount can be dramatically reduced.
  • the time difference detection means 16 obtains the propagation time difference T dif1 in the forward direction and the reverse direction using (Equation 5).
  • FIG. 5 shows a time chart of the operation when T dif1 is smaller than the threshold value, that is, when there is no flow rate.
  • the determination unit 17 compares T dif1 with a determination threshold value. As a result, if T dif1 is smaller than the determination threshold value, the measurement process control unit 11 performs the second measurement in the measurement control unit 7. Stop outputting trigger signals after the process. Thereby, the execution of the unit measurement process after the first measurement process is aborted. Further, the flow rate calculation means 15 does not execute any flow rate calculation including the above (Equation 3), and calculates the flow rate as zero.
  • the execution interval when the unit measurement process is continuously executed is set to a value of about several ms, but after detecting the flow rate zero, the measurement control means 7 After placing this time than long enough time interval (e.g. 100 ms), and it controls to initiate the first measuring step at time t 4 corresponding to the start of the next rate calculation step.
  • long enough time interval e.g. 100 ms
  • the measurement control means 7 performs an operation based on the time chart shown in FIG. 4, that is, N unit measurement steps continuously at intervals of several ms. And control to execute.
  • the time interval until the next flow rate calculation step is executed is not constant for 100 ms, and if it is always changed with a random value, In the case where periodic pulsations are generated, it is possible to prevent erroneous determination that the flow rate is zero even though the flow rate is generated.
  • the measurement control means 7 selects the first measurement process as a series of unit measurement processes to be executed continuously.
  • the present invention is not limited to this, and the second measurement process is not limited to this.
  • a unit measurement process after the measurement process can be arbitrarily selected.
  • the unit measurement process is repeated N times, even if the Nth measurement process is selected, the subsequent unit measurement process cannot be terminated. It is preferable that one of the unit measurement steps from the first time to the (N-1) th time is selected.
  • the measurement control unit 7 is configured to select an initial unit measurement process as much as possible from a series of unit measurement processes.
  • the initial term here may be any unit measurement step from the first time to an integer number smaller than N / 2 (that is, a time before half of all N times). If the upper limit value of the selectable number of times is N max , N max may be a maximum integer of at least less than N / 2, and may be an integer less than N / 3, for example, depending on the magnitude of N. It may be an integer smaller than N / 4 or a smaller integer.
  • the measurement control means 7 is configured to abort the execution of the unit measurement process after an arbitrary unit measurement process.
  • the number of executions can be controlled by a control other than aborting the execution. There may be. For example, there is a control in which the unit measurement process is stopped after being performed several times, the number of times is significantly reduced, or the number of times is thinned out under a preset condition.
  • the presence or absence of flow volume can be determined substantially instantaneously, and based on this determination, it can switch to the measuring method according to the presence or absence of flow volume substantially instantaneously.
  • the power consumption can be significantly reduced, it is only necessary to be configured to quickly determine whether or not there is a flow rate and to quickly switch to an appropriate measurement method, even if it is not instantaneous.
  • the clock means 12 includes an oscillation circuit 31 that generates a clock signal (a), a signal (c) that switches supply / stop of the clock signal output from the oscillation circuit 31, and a clock signal (a).
  • the gate circuit 32 includes an AND circuit, the counter circuit 33 counts the reference clock (d) output through the gate circuit 32, and the latch circuit 34 reads the count value of the counter circuit 33 at an appropriate timing.
  • 6A to 6G show digital signals transmitted between the time measuring means 12 and each component.
  • the signal (b) becomes “L” and the counter circuit 33 is cleared.
  • the clock (a) output from the oscillation circuit 31 is supplied to the counter circuit 33 as the reference clock (d) through the gate circuit 32. Is done.
  • the counter circuit 33 is an up counter that is incremented by one count every time the reference clock is supplied. (E) shows the count value of the counter circuit 33.
  • FIG. 7 shows the operation of each signal when the period in which the gate signal (c) is “H” is determined as a short period of 3 clock cycles + ⁇ .
  • the measured value of the time measuring means 12 is 3.
  • FIG. 8 is a time chart showing the operation of the time measuring means 12 in more detail, with the horizontal axis indicating the elapsed time and the vertical axis indicating the voltage levels of the signals (a) to (c).
  • Signal (a) is an ultrasonic drive signal output from the transmission means 4, and a rectangular AC signal having a frequency of about 500 kHz is output.
  • the signal (b) is an ultrasonic reception waveform that is signal-processed by the receiving means 5.
  • the reception means 5 forms a waveform shaping circuit (not shown) that is regarded as reception completion after first reaching 0 V (zero cross point) after exceeding the threshold voltage Vref , and when reception completion is detected. Again, an ultrasonic drive signal is output from the transmission means 4.
  • the repeated part in the middle is omitted, and the last sing-around reception completion point is shown.
  • the period of the ultrasonic reception waveform and the period of the reference clock are shown to be approximately the same.
  • the reference clock should be sufficiently smaller than the period of the ultrasonic reception waveform.
  • the error for one clock can be set within a range where there is no problem.
  • the configuration of the time measuring means 12 is a simple configuration of only the reference clock generating means (the oscillation circuit 31 and the gate circuit 32) and the counter means (counter circuit 33) that is counted in synchronization therewith,
  • the time difference calculation in the time difference detection means 16 and the threshold value determination in the determination means 17 can be configured with only a simple subtraction circuit.
  • the counter means constituting the time measuring means 12 is composed of one counter circuit 33.
  • the present invention is not limited to this, and the counter means includes two or more counter circuits. It may be constituted by. An example of this configuration will be specifically described.
  • the specific configuration of the flow rate measuring apparatus in the present embodiment is the same as that of the first embodiment except for the counter means of the time measuring means 12, and therefore the detailed description thereof is omitted.
  • the reference clock frequency in the time measuring means 12 may be increased.
  • it is advantageous from the viewpoint of power saving to increase the frequency too much. is not. Therefore, a method of configuring the time measuring means 12 using two counters having different frequencies has been conventionally used.
  • the zero flow rate determination is simple with only the subtraction circuit. It can be realized with a simple configuration.
  • the counter means included in the time measuring means 12 is composed of two (a low speed counter circuit and a high speed counter circuit).
  • “(C) Low-speed clock” in FIG. 9 corresponds to “(c) clock” in FIG. 8, and the low-speed counter circuit uses this low-speed clock as a reference clock.
  • the high-speed counter circuit uses a high-speed clock having a frequency (for example, several hundred times) much higher than that of the low-speed clock as a reference clock.
  • FIG. 9 the time chart is shown so that the frequency of the low-speed clock is clear, but in FIG. 10, the time chart of FIG. 9 is shown so that the relationship between the low-speed clock and the high-speed clock is clear. A time chart in which a part is extracted is described.
  • the high-speed clock starts operation from the reception point ⁇ 1 and operates until ⁇ 2 which is the rising timing of the low-speed clock next to ⁇ 1 , and the high-speed counter circuit counts the time from ⁇ 1 to ⁇ 2 .
  • the operating time of the high-speed counter circuit is T z
  • the required time T y2 for the sing-around can be obtained by the following arithmetic expression.
  • T sc is the period of the low-speed clock.
  • T y2 T y + T sc ⁇ T z (Expression 10) It can be expressed.
  • the count value of the low-speed counter circuit is N
  • the count value of the high-speed counter circuit is M
  • the cycle of the high-speed clock is T fc
  • Equation 10 can be further modified as follows.
  • T y2 (N + 1) ⁇ T sc ⁇ M ⁇ T fc (Formula 11)
  • the measurement error is one clock of the period T fc of the high-speed counter, and the time accuracy is significantly improved as compared with FIG. Moreover, since the operation time of the high-speed clock with large current consumption is extremely short, the power consumption is not increased unnecessarily.
  • the flow rate zero can be determined by the following determination. .
  • time measuring means 12 is composed of two counter circuits having different frequencies, it is still possible to determine the presence or absence of the flow rate by using only the subtracting circuit.
  • the time measuring means 12 is configured using two counter circuits having different frequencies, but in order to further improve time accuracy, the time measuring means 12 is configured by combining three or more counter circuits having different frequencies. It goes without saying that the same effect can be obtained even in this case.
  • the flow rate measurement device of the present invention is an arbitrary measurement step in a series of measurement steps (“unit measurement step” in the above-described example) that are continuously executed. Since the measurement control means for controlling the number of executions of the subsequent measurement process is provided based on the time difference obtained by the time difference detection means in FIG. Highly responsive measurement capable of switching to a measurement method is possible.
  • the responsiveness can be further improved by setting the arbitrary measurement process as an initial measurement process in a series of measurement processes.
  • the measurement control means is configured to abort the subsequent measurement process. It is possible to reduce power consumption when there is no flow rate.
  • the flow rate calculation means calculates the flow rate between them as zero. When there is no flow rate, it is possible to further reduce power consumption.
  • the unit flow rate calculation step is defined as the unit flow rate calculation step from the start of a series of measurement steps, and when the flow rate is zero, the measurement control means changes the execution interval of the unit flow rate calculation step so that it is different each time. Since the configuration is adopted, even when periodic pulsation occurs in the flow path, the flow rate is not erroneously determined to be zero, and the measurement accuracy can be improved.
  • the measurement control means continuously performs a plurality of measurement processes continuously. Since it is configured to execute, when there is a flow rate, highly accurate measurement is possible.
  • the time measuring means is composed of a reference clock and a counter circuit that counts based on the clock
  • the time difference detecting means is composed of a subtracting circuit using the count value of the counter circuit, and in the process of determining the flow rate zero. Since the multiplication / division is not required, the presence / absence of the flow rate can be determined by a simple calculation method that simply operates the subtraction circuit, so that control with high immediacy is possible.
  • the time measuring means is composed of at least two reference clocks having different frequencies and a counter circuit
  • the time difference detecting means calculates a time difference for each counter circuit
  • the determining means is all the counters obtained by the time difference detecting means. Therefore, the determination accuracy of zero flow rate can be improved.
  • the flow measurement device of the present invention can quickly determine the presence or absence of a flow rate and provide a highly responsive measurement device that can be switched to a measurement method according to the presence or absence of the flow rate. It can also be applied to industrial flowmeters.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 本発明の流量計測装置においては、第1振動子(2)と第2振動子(3)との送受信の方向を切り替えて超音波伝搬時間を計測する手順を単位計測工程と定め、単位計測工程で実行される双方向の伝搬時間を計時手段(12)で求める。更に、計時手段(12)で求めた双方向の伝搬時間差を時間差検出手段(16)で求め、その値から判定手段(17)で流量の有無を判定している。そして、この流量の有無に従って、単位計測工程の実行回数を定めている。したがって、リアルタイムの状況判定が可能となるので、流量の有無を迅速に判定することができる。それゆえ、流量の有無に応じた計測方法に迅速に切り替え可能な応答性を高めることができる。

Description

流量計測装置
 本発明は、超音波信号の伝搬時間にもとづき流体の流量を計測するようにした流量計測装置に関するものである。
 従来、この種の流量計においては、2つの振動子間の送受信を複数回繰り返すことにより、計測分解能を高めるシングアラウンド法が知られているところである。
 この種の計測装置を家庭用のガスメータに適用した例について図11を用いて説明する。
 すなわち、流体管路101の途中に、超音波を送信する第1振動子102と送信された超音波を受信する第2振動子103とが流れ方向上下流側に対向して設けてあり、流れる流体を超音波が斜めに横切るようにしてある。
 また、前記第1,2振動子102,103を用いて超音波の伝搬時間を計測する計測部104と、この計測部104を制御する制御部105、計測部104の計測結果を基に流体流量を求める演算部106とで構成されている。
 図11において、音速をC、流速をv、第1,2振動子102,103間の距離をL、超音波の伝搬方向と流れの方向とがなす角度をθとし、流体管路101の上流側に配置された第1振動子102から超音波を送信し、下流側に配置された第2振動子103で受信した場合の伝搬時間をt、逆方向の伝搬時間をtとした場合、tおよびtは次式で求めることができる。
  t=L/(C+vcosθ)       (式1)
  t=L/(C-vcosθ)       (式2)
 (式1)および(式2)を変形し、(式3)で流速vが求まる。
 v=L・(1/t -1/t)/2cosθ  (式3)
(式3)で求めた値に流体管路の断面積を掛ければ流体の流量を求めることができる。ところで、(式3)において、括弧内の項は(式4)のように変形できる。
  (t-t)/t・t          (式4)
 ここで、(式4)の分母の項は流速の変化に関わらずほぼ一定の値となるが、分子の項は流速とほぼ比例した値となる。
 したがって、2つの伝搬時間の差を精度よく計測する必要がある。そのため、流速が遅くなるほど、微小な時間差を求める必要があり、単発現象として計測するには計測部104は、例えば、ns(ナノ秒)オーダーの非常に小さな時間分解能を有する必要がある。
 これだけの時間分解能を実現するのは難しく、仮に実現できたとしても時間分解能を上げることによる消費電力の増大を招くこととなる。そのため、超音波の送信を何回も繰り返し実行し、その一連の繰り返し計測の所要時間を計測部104で計測する。
 そして、その平均値を求めることにより必要な時間分解能を実現している。すなわち、計測部104の時間分解能をT、繰り返し回数をMとすれば、この繰り返し計測の間、計測部104を連続して動作させることにより、伝搬時間の計測分解能はT/Mとすることができる。
 この種の計測装置は、流体流路内の圧力が安定している時には精度の高い計測が実現できるが、例えば、一般家庭にエネルギー源として供給されるガス流量を計測するガスメータに適用した場合には、脈動現象と呼ばれる固有の課題に直面する。
 これは、例えばGHPと呼ばれるガスエンジンを利用した空調機のように、ガスエンジンの回転に同期して周辺のガス供給配管内の圧力に変動を及ぼす現象である。この脈動が発生した場合、ガス器具を使用していない場合であっても、圧力の変動に同期してガスが配管内を移動し、その動きに影響されて、あたかもガスが流れているかの如き計測値が検出されてしまう。
 この現象による影響を抑える方法として、例えば、繰り返し計測回数Mを計測精度が維持できる最低限の回数に抑えた上で、計測間隔を短くして、小刻みに比較的長時間連続してN回実行し、連続して計測したN回の計測結果を用いて流量演算を行うというものである。
 特に、計測間隔を圧力変動周期よりも充分短い間隔で行うことで、流速変動波形の位相状態を満遍なく捉えることができるようになり、それらを平均化することで、変動成分を取り除いた真の流速(流量)を検出する効果を狙っている(例えば、特許文献1参照)。
 しかし、このような計測方法常時続けることは消費電力の点では得策ではない。そこで、不要な消費電力を小さくするために、検出した流速の変動量に応じて、計測回数Nを制御する。すなわち、流量変動が小さく脈動がないと判断できる状況下においては計測回数Nを小さく、流量変動が大きく脈動があると判断される状況下においては、計測回数Nを大きくするというものである(例えば、特許文献2参照)。
特許文献1 特開2002-350202号公報
特許文献2 特開2003-222548号公報
 しかしながら、前記従来の構成では、脈動が発生していない場合に、消費電力を低減することは可能であるが、流量の大小に応じた計測方法に関する開示がなされていない。
 特に、限られた電力資源を有効に使用するためには、脈動がない場合に消費電力を抑えるだけでなく、積算流量に影響を及ぼさない場合、すなわち、流量が流れていない場合には計測頻度を抑えて装置全体の消費電力を低減する方法が求められている。しかも、流量が流れているかどうかを迅速に判断し、応答遅れの小さな計測方法が望まれている。
 本発明は、上記従来の課題を解決するもので、流量の有無を迅速に判定し、流量有無に応じて、電力資源を有効に利用する計測方法に切り替え可能な応答性の高い計測装置を提供することを目的としている。
 前記従来の課題を解決するために、本発明の流量計測装置は、流体流路に設けられ超音波信号を発信受信する第1振動子及び第2振動子と、前記振動子間における超音波信号の伝搬時間を計測する計時手段と、前記両振動子の送受信方向を切り替えながら、前記計時手段により順逆双方向の超音波信号の伝搬時間を計測する単位計測工程と、前記単位計測工程を連続して実行し、前記実行回数分の伝搬時間を基に流量を演算する流量演算手段と、前記単位計測工程の順逆両方向の伝搬時間差を求める時間差検出手段と、連続して実行される一連の単位計測工程のうち任意の単位計測工程を選択し、当該任意の単位計測工程において前記時間差検出手段で求めた時間差に基づいて、後続の単位計測工程の実行回数を制御する計測制御手段と、を備えている構成である。
 前記構成によれば、流量の有無を迅速に判定し、流量の有無に応じた計測方法に切り替え可能な応答性の高い計測装置を提供することができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明の流量計測装置は、流量の有無を迅速に判定し、流量の有無に応じた計測方法に切り替え可能な応答性の高い計測が可能である。
本発明の実施の形態1における流量計測装置の構成の一例を示すブロック図である。 図1に示す流量計測装置の動作において、流量算出工程の構成の一例を説明するタイムチャートである。 図2に示す流量算出工程の計測間隔を説明するタイムチャートである。 図1に示す流量計測装置の動作を説明するタイムチャートである。 図1に示す流量計測装置において、流量ゼロの時の動作を説明するタイムチャートである。 図1に示す流量計測装置における計時手段の回路構成の一例を示す模式図である。 図6に示す計時手段の動作を説明するタイムチャートである。 図6に示す計時手段において、図7に示すタイムチャートを更に詳細に説明するタイムチャートである。 本発明の実施の形態2における流量計測装置が備える計時手段の動作を説明するタイムチャートである。 図9に示すタイムチャートの要部を説明するタイムチャートである。 従来の流量計測装置の構成の一例を示すブロック図である。
 1 流体流路
 2 第1振動子
 3 第2振動子
 7 計測制御手段
 12 計時手段
 15 流量演算手段
 16 時間差検出手段
 17 判定手段
 33 カウンタ回路
 本発明は、流体流路に設けられ超音波信号を発信受信する第1振動子及び第2振動子と、前記振動子間における超音波信号の伝搬時間を計測する計時手段と、前記両振動子の送受信方向を切り替えながら、前記計時手段により順逆双方向の超音波信号の伝搬時間を計測する単位計測工程と、前記単位計測工程を連続して実行し、前記実行回数分の伝搬時間を基に流量を演算する流量演算手段と、前記単位計測工程の順逆両方向の伝搬時間差を求める時間差検出手段と、連続して実行される一連の単位計測工程のうち任意の単位計測工程を選択し、当該任意の単位計測工程において前記時間差検出手段で求めた時間差に基づいて、後続の単位計測工程の実行回数を制御する計測制御手段を備えた構成の流量計測装置である。それゆえ、流量の有無を応答遅れなく判定し、流量の有無に応じた計測方法に切り替え可能な応答性の高い計測が可能である。
 さらに、その任意の単位計測工程を一連の単位計測工程のうちの初期の単位計測工程とすることで、応答性をより高めることが可能である。
 さらに、連続して実行される一連の単位計測工程のうち任意の単位計測工程において時間差検出手段で求めた時間差が閾値よりも小さければ、計測制御手段が、以降の計測工程の実行を打ち切る構成としているので、流量がない場合の消費電力を低減することが可能である。
 さらに、連続して実行される一連の単位計測工程のうち任意の単位計測工程において時間差検出手段で求めた時間差が閾値よりも小さければ、流量演算手段が、その間の流量をゼロと算出する構成としているので、流量がない場合に、複雑な流量演算を省力できるため、更に消費電力を低減することが可能である。
 さらに、一連の単位計測工程の開始から流量演算の終了までを単位流量算出工程と定め、流量ゼロが連続した場合には、計測制御手段が、単位流量算出工程の実行間隔を毎回異なるように変化させる構成としているので、流路内に周期的な脈動が発生している場合であっても、誤って流量をゼロと判断することがなくなり、計測精度の向上が図れる。
 さらに、連続して実行される一連の単位計測工程のうち任意の単位計測工程において時間差検出手段で求めた時間差が閾値よりも大きければ、計測制御手段が、継続して複数回の単位計測工程を連続して実行する構成としているので、流量がある場合には、精度の高い計測が可能である。
 さらに、計時手段は基準クロックと前記クロックに基づいて計数を行うカウンタ回路とで構成され、時間差検出手段は、前記カウンタ回路の計数値を用いた減算回路により構成し、流量ゼロを判断する過程における乗除算を不要とした構成としているので、減算回路を動作させるだけの簡単な演算手法で流量の有無を判定できるので、迅速性の高い制御が可能となる。
 さらに、計時手段は周波数の異なる少なくとも2つ以上の基準クロックとカウンタ回路とで構成され、時間差検出手段はカウンタ回路毎の時間差を算出し、判定手段は、時間差検出手段で求められた全てのカウンタの計数差の組み合わせから流量ゼロを判断する構成としているので、流量ゼロの判定精度を高めることが可能である。
 以下本発明の実施の形態について図面を参照して説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
また、以下の実施の形態は、本発明を限定するものではない。
 (実施の形態1)
 まず、図1、図2および図3を参照して、本実施の形態における流量計測装置の構成を説明する。図1は、本実施の形態における流量計測装置の構成例を示すブロック図である。
 図1に示すように、本実施の形態における流量計測装置においては、流体流路1の途中上下流側には、超音波信号を送、受信する第1,第2振動子2,3が斜めに対向して配置されており、超音波が流れる流体を斜めに横切るように伝搬するようにしている。これら第1振動子2および第2振動子3としては、超音波の送受信を兼ねた公知の圧電セラミック振動子を好適に用いることができるが、特に限定されず、公知の他の超音波送受信素子を用いることができる。
 送信手段4は第1振動子2へ駆動信号を出力し、その第1振動子2から出力された超音波信号を第2振動子3が受信し、その受信信号が受信手段5で信号処理される。
 切換手段6は第1振動子2と第2振動子3の送受信の役割の切り換えを行う。
 計測制御手段7は、前記第1,第2振動子2,3間で実行される送受信の動作全般を制御し、トリガ手段8、繰り返し手段9、遅延手段10、計測工程制御手段11とで構成されている。
 まず、トリガ手段8により計測開始のトリガ出力がなされると、切換手段6が第1振動子2と送信手段4、第2振動子3と受信手段5を接続して、第1振動子2を送信側、第2振動子3を受信側とする計測が開始される。以降の説明のため、これを流れの順方向の計測と称する。
 送信手段4から駆動信号が出力されると、第1振動子2から超音波信号が出力され、これが第2振動子3に到達すると受信手段5で受信処理を行う。一旦、受信処理が行われると、繰り返し手段9の作用により、所定の繰り返し回数からなる、流れの順方向のシングアラウンド計測が実行される。本実施の形態では繰り返し回数を4回とするが、これに限られるものではなく、計測分解能が高ければシングアラウンド計測ではなく1回のみの計測としても良い。
 4回の繰り返しが完了すると、遅延手段10から所定の遅延時間が発生された後、トリガ手段8が切換手段6に対して送受信の切換信号を出力し、今度は、第2振動子3と送信手段4、第1振動子2と受信手段5が各々接続され、第2振動子3を送信側、第1振動子2を受信側とする計測が開始される。以降の説明のため、これを流れの逆方向の計測と称する。
 また、この時、トリガ手段8から計測開始のトリガ信号が出力される。送受信の役割が切り換った、逆方向の計測においても、4回の繰り返し計測が実行される。
 以上のように、流れの順方向のシングアラウンド計測(4回の繰り返し計測)と、逆方向のシングアラウンド計測(4回の繰り返し計測)を交互に1回行う一連の動作を単位計測工程と称する。この単位計測工程と流量算出工程とについて、図2および図3のフローチャートを参照して説明する。
 図2に示すように、最初に実行される単位計測工程を第1計測工程とした場合、これが完了すると、遅延手段10から遅延信号が出力されて、第1計測工程同様の動作が繰り返される。これを第2計測工程とする。以下同様の単位計測工程が規定の回数繰り返されるので、第n回目の単位計測工程を第n計測工程という。
 計測工程制御手段11によって、規定の回数(n=N回)の単位計測工程が実行された後、流量演算が実行される。この規定の回数の単位計測工程をまとめて流量算出工程と称する。本発明の流量計測装置は、図3に示すように、この流量算出工程を一定の計測間隔ごとに実行することで流量を測定している。なお、この一定の計測間隔の長さも、前記単位計測工程の規定の回数も特に限定されるものではなく、種々の条件に応じて適切な時間または回数を設定することができる。
 計時手段12は、トリガ手段8のトリガ信号出力タイミングからシングアラウンド終了までの時間を計測し、第1加算手段13は、各単位計測工程の順方向の計測における計時手段12の計測値を積算し、第2加算手段14は、各単位計測工程の逆方向の計測における計時手段12の計測値を積算する。
 そして、定められたN回の単位計測工程の動作が完了すると、流量演算手段15が第1加算手段13および第2加算手段14の出力値を用いて流量値を算出する。
 一方、時間差検出手段16は、第1計測工程が完了すると順方向の計測における計時手段12の計測値と、逆方向の計測における計時手段12の計測値の差を求める。
 判定手段17は時間差検出手段16の出力を判定閾値と比較し、閾値より大ならば流量あり、閾値より小ならば流量なし(流量ゼロ)と判定し、その判定結果を計測工程制御手段11に出力する。
 計測工程制御手段11は、判定手段17の判定結果に応じて、単位計測工程を何回実行して流量を求めるかを設定する。
 なお、前述した送信手段4、受信手段5、切換手段6、および計測制御手段7としては、具体的には、公知の構成の送信回路、受信回路、切換回路、制御器が用いられるが、これら構成に特に限定されない。
 また、計測制御手段7を構成するトリガ手段8、繰り返し手段9、遅延手段10、および計測工程制御手段11の具体的構成も特に限定されず、公知のトリガ出力回路、繰り返し制御回路、遅延回路、単位計測工程の回数を設定するための回路が用いられ、これらによって計測制御回路が構成されてもよいし、計測制御手段7が単一の制御器で構成される場合には、トリガ手段8、繰り返し手段9、遅延手段10、および計測工程制御手段11は、前記制御器の機能構成であってもよい。つまり、トリガ手段8、繰り返し手段9、遅延手段10、および計測工程制御手段11は、制御器としての例えばCPUが、図示されないメモリ等の記憶部に格納されるプログラムに従って動作することにより実現される構成であってもよい。
 また、第1加算手段13、第2加算手段14、流量演算手段15、時間差検出手段16、および判定手段17としては、具体的には、公知の加算回路、演算器、時間差検出回路、判定回路が用いられるが、これら構成に特に限定されない。また、例えば、第1加算手段13、第2加算手段14、流量演算手段15、時間差検出手段16、および判定手段17は、前述した計測制御手段7と同様に、単一の制御器により実現される機能構成であってもよい。なお、計時手段12の具体的構成については後述するが、本発明はこれに限定されず、公知の他の構成を採用することもできる。
 更に、送信手段4、受信手段5、切換手段6、計測制御手段7(およびこれを構成するトリガ手段8、繰り返し手段9、遅延手段10、および計測工程制御手段11)、計時手段12、第1加算手段13、第2加算手段14、流量演算手段15、時間差検出手段16、および判定手段17は、本実施の形態の流量計測装置が備える構成要素であり、他の構成要素を備えていてもよいことは言うまでもないが、これら構成要素は、前述したように、流量計測装置における回路ユニットまたは機能ユニットを構成するものである。したがって、これら構成要素は、本実施の形態において、例えば、送信部または送信器、受信部または受信器、切換部または切換器、計測制御部または計測制御器(トリガ部、繰り返し部、遅延部、および計測工程制御部)、計時部またはタイマー、第1または第2加算部若しくは第1または第2加算器、流量演算部または流量演算器、時間差検出部または時間差検出器、および判定部または判定器と読み替えることができる。
 次に、図4を参照して、先に説明した各部の動作の流れを説明する。図4は第1計測工程で流れの順方向の計測開始を示すトリガ手段8の出力タイミングを原点として横軸が原点からの経過時間、縦軸が各部の動作を示したタイムチャートである。
 まず、時間tで、計時手段12で計測された第1計測工程の順方向の計測値Td1が、時間差検出手段16に出力されると同時にTd1が第1加算手段13に加算される。その後、所定の遅延時間Tint経過した時間tから流れの逆方向の計測が開始され、時間t3で、計時手段12で計測された第1計測工程の逆方向の計測値Tu1が時間差検出手段16に出力される。
 ここで、時間差検出手段16はふたつの計測値Td1とTu1の差、Tdif1を(式5)を使って求める。
 Tdif1=Tu1-Td1     (式5)
 また、それと同時にTu1が第2加算手段14に加算される。なお、(式5)を使って求めた時間差に基づく制御の切り替えについては後述する。
 以下、同様に第2計測工程以降においても、順方向、逆方向の計測が終わる毎に第1加算手段13と第2加算手段14で交互に加算処理が実行される。
 そして、定められた回数の単位計測工程が全て終了する時間tにおいて、第1加算手段13および第2加算手段14に加算された順方向、逆方向それぞれの伝搬時間の合計値を用いて、流量演算手段15で流量演算を行う。
 流量演算手段15では、まず、第1加算手段13および第2加算手段14のそれぞれに保持された値から伝搬時間1回当たりの平均値tおよびtが求められた後、前記した(式3)を用いて流速を求め、更に必要な係数を乗じることで、流量値が求められる。なお、ここで、時間t=0から流量演算が実行される時間tまでを単位流量算出工程と称することとする。
 なお、ここで、単位計測工程毎に、流量演算を実行しないのは、省電力化のためである。流体の流れが生じている場合には、図4で示すTintをある程度短い間隔(例えば数ms)に設定した上で流れの状態(流量と相関のある何らかの物理量)をサンプリングすることで、流体の状態を捉えて精度を上げる必要があるが、その都度、流量を求めていると計算量が膨大となり、消費電力の増大を招くのは明白である。
 そのため、伝搬時間だけを、このような短い間隔でサンプリングしておいて、ある程度(例えば数10回)単位計測工程を重ねた段階で、サンプリング結果の平均値を使って流量を演算することで、単位計測工程毎に流量を演算する場合に比べて演算量を劇的に減らすことが可能である。
 次に、図5を参照して、流路内に流れが発生していない場合の動作について説明する。図4の場合と同様、第1計測工程が終了する時間t3において、時間差検出手段16によって、(式5)を用いて順方向、逆方向の伝搬時間差Tdif1が求められる。
 流体の流れがない場合には、この値はほぼゼロに等しくなる。そこで、流れがゼロとみなせる適当な閾値を設定し、この閾値を越えているかどうかによって、以降の動作を変更するように計測制御手段7が動作する。
 図5は、Tdif1が閾値より小さい場合、すなわち、流量がない場合の動作のタイムチャートを示すものである。まず、時間t3において、判定手段17でTdif1と判定閾値の大小比較が行われ、その結果、Tdif1が判定閾値より小さければ、計測制御手段7において、計測工程制御手段11は、第2計測工程以降のトリガ信号の出力を停止する。これによって、第1計測工程から後の単位計測工程の実行が打ち切られる。また、流量演算手段15は、前記(式3)を含めた一切の流量演算を実行せず、流量をゼロと算出する。
 図4を参照した先の説明で、単位計測工程を連続して実行する場合の実行間隔は数ms程度の値に設定されているが、流量ゼロを検出した後は、計測制御手段7は、この時間より十分長い時間間隔(例えば100ms)を置いたのち、時間tで次の流量算出工程のスタートにあたる第1計測工程を開始するよう制御する。
 逆に、Tdif1が閾値より大きい場合には、計測制御手段7は、図4に示すタイムチャートに基づく動作、すなわち、数msの間隔をおいて、連続してN回の単位計測工程が連続して実行するよう制御することになる。
 したがって、流体の流れがない場合のみ、100ms程度の間隔をおいて1つの単位計測工程のみの計測が実行されることになるが、流量が発生している場合のように数ms間隔で単位計測工程が実行される場合に比べて、動作時間が短く、かつ複雑な流量演算も省略されるので、大幅な消費電力の低減が可能である。
 特に、家庭用のガスメータに適用された場合を考えると、一日のうち、大半はガス器具を使わない時間帯であるため、ガスが流れていない場合には省電力化が図れる。ガスメータは屋外設置の形態を取るため電池電源が使用されるが、限られた電力エネルギーをガス器具を使っている時間帯に振り分けることができるようになる。
 また、一旦、流量ゼロを検出した場合、次の流量算出工程を実行するまでの時間間隔は100ms一定ではなく、ランダム性を持たせた値で、常に変更するようにしておけば、流路内で周期的な脈動が発生しているような場合に、流量が発生しているにもかかわらず、流量ゼロと誤って判断されることが防止できる。
 なお、本実施の形態では、計測制御手段7は、連続して実行される一連の単位計測工程として、第1計測工程を選択しているが、本発明はもちろんこれに限定されず、第2計測工程より後の単位計測工程を任意に選択することができる。ここで、単位計測工程がN回繰り返されるときに、第N計測工程を選択しても、後続の単位計測工程を打ち切ることができないので、計測制御手段7は、任意の単位計測工程として、第1回から第N-1回までの単位計測工程のいずれかを選択するように構成されていることが好ましい。
 また、消費電力を低減させる観点から、計測制御手段7は、一連の単位計測工程のうち、なるべく初期の単位計測工程を選択するように構成されていると、より好ましい。ここでいう初期とは、第1回からN/2より小さい整数回まで(すなわち全N回のうち半分より前までの回)のいずれかの単位計測工程であればあればよい。選択可能な回数の上限値をNmaxとすれば、Nmaxは、少なくともN/2未満の最大の整数であればよく、Nの大きさに応じて、例えば、N/3より小さい整数であってもよいし、N/4より小さい整数であってもよいし、さらに小さい整数であってもよい。
 また、本実施の形態では、計測制御手段7は、任意の単位計測工程以降の単位計測工程の実行を打ち切るように構成されているが、実行回数の制御としては、実行を打ち切る以外の制御であってもよい。例えば、単位計測工程を数回行った後に打ち切ったり、回数を大幅に減らしたり、予め設定された条件で回数を間引いたりする制御が挙げられる。
 なお、本実施の形態の構成であれば、流量の有無を実質的に瞬時に判定し、この判定に基づいて、流量の有無に応じた計測方法に実質的に瞬時に切り替え可能となっているが、消費電力を有意に低減できるのであれば、瞬時でなくても、流量の有無を迅速に判定し、かつ、適切な計測方法に迅速に切り替えるように構成されていればよい。
 次に、計時手段12の構成について、図6および図7を用いて説明する。図6に示すように、計時手段12は、クロック信号(a)を生成する発振回路31、発振回路31から出力されるクロック信号の供給/停止を切り換える信号(c)とクロック信号(a)のAND回路で構成されたゲート回路32、ゲート回路32を介して出力される基準クロック(d)をカウントするカウンタ回路33、カウンタ回路33の計数値を適当なタイミングで読み出すラッチ回路34とで構成されている。また、図6における(a)~(g)は計時手段12と各構成要素の間を伝送されるデジタル信号を示している。
 トリガ手段8から計測開始のトリガ信号が出力されると、信号(b)が"L"となり、カウンタ回路33がクリアされる。同時に、信号(c)が"H"となり、ゲート回路32がアクティブとなるため、発振回路31から出力されるクロック(a)がゲート回路32を介して基準クロック(d)としてカウンタ回路33に供給される。
 カウンタ回路33は、基準クロックが供給される毎に1カウントずつインクリメントされるアップカウンタである。(e)はカウンタ回路33の計数値を示している。
 そして、所定の繰り返し回数が終了すると、繰り返し手段9から制御信号が出力され、信号(c)が"L"となりゲート回路32がインアクティブとなり、以降、カウンタ回路33への基準クロック(d)の供給が停止される。それと同時に信号(f)が"H"となるので、このタイミングで、カウンタ回路33の計数値がラッチ回路34に出力される。ラッチ回路34で読み込んだ値は信号(g)として、時間差検出手段16や、第1加算手段13、第2加算手段14へ出力される。
 図7はゲート信号(c)が"H"となる期間をクロックの3周期+αという短い期間に定めた場合の各信号の動作を示したものである。図7に示す場合であれば、計時手段12の計測値は3ということになる。
 図8は、計時手段12の動作を更に詳細に示すタイムチャートであり、横軸が経過時間、縦軸が(a)~(c)の信号の電圧レベルを示している。
 信号(a)は送信手段4から出力される超音波駆動信号であり、周波数500kHz程度の矩形の交流信号が出力される。信号(b)は受信手段5で信号処理される超音波受信波形である。
 受信手段5では閾値電圧Vrefを超えた後に、最初に0Vに達する点(ゼロクロス点)を以って、受信完了とみなす波形整形回路(図示せず)をなしており、受信完了を検知すると再度、送信手段4から超音波駆動信号が出力される。
 図8に示す例は、途中の繰り返し部分を省略し、最後のシングアラウンドの受信完了点を示したものである。図8に示す例において、シングアラウンドの開始時間をτと終了時間をτとすると、所要時間正確な値は
 T=τ-τ   (式6)
 で表せるが、図8で示したように、計時手段12はτの手前のクロックの立ち上がりタイミングτまでの時間を計数するので、この場合の計測値は、
 T=τ-τ   (式7)
と表せる。
 この時、τとτの差は基準クロック1周期以内であるので、計測誤差は1クロック以内であることはいうまでもない。
 説明を簡単とするため、超音波受信波形の周期と基準クロックの周期は同程度で示しているが、実際の計測においては基準クロックの方を超音波受信波形の周期に比べて充分小さく取って、1クロック分の誤差は問題のない範囲に設定することは可能である。
 また、基準クロックの周期をTscとすれば、T
 T=N×Tsc    (式8)
 で表せる。ここで、Nはカウンタ回路33の計数値である。したがって、時間差検出手段16における演算は順逆両方向におけるカウンタ回路33の計数値の差を求める減算回路のみで構成できる。そればかりか、判定手段17の閾値判定までを単純な減算回路だけで構成できる。
 このように、計時手段12の構成を、基準クロック生成手段(発振回路31およびゲート回路32)と、これに同期してカウントされるカウンタ手段(カウンタ回路33)のみの単純な構成にすれば、時間差検出手段16における時間差演算および、判定手段17の閾値判定までを単純な減算回路だけで構成できる。
 したがって、乗除算をも行わずに流量有無の判定が可能となり、単位計測工程が終わった直後に短時間で結果を出すことが可能であり、応答遅れも大きな電力消費もなく、流量ゼロの判定が可能である。
 (実施の形態2)
 前記実施の形態1では、計時手段12を構成するカウンタ手段が1つのカウンタ回路33から構成されているが、本発明はこれに限定されるものではなく、カウンタ手段は、2つ以上のカウンタ回路で構成されてもよい。この構成の一例について具体的に説明する。なお、本実施の形態における流量計測装置の具体的な構成は、計時手段12のカウンタ手段を除いて実施の形態1と同一であるので、その具体的な説明は省略する。
 前記実施の形態1で説明した構成の流量計測装置においては、計測誤差を小さくするには、計時手段12における基準クロック周波数を上げれば良いが、周波数を上げ過ぎることは省電力の観点からは得策ではない。そこで、周波数の異なる2つのカウンタを使って、計時手段12を構成する方法が従来から取られているが、この場合であっても、本発明においては、流量ゼロ判定は、減算回路のみの簡便な構成で実現可能である。
 これについて、図9を使って説明する。図9に示す例では、計時手段12が備えるカウンタ手段が、低速カウンタ回路および高速カウンタ回路の2つから構成されている(いずれも図示せず)。図9における「(c)低速クロック」が、図8における「(c)クロック」に対応し、低速カウンタ回路は、この低速クロックを基準クロックとして用いている。また、高速カウンタ回路は、低速クロックよりも更に遥かに高い周波数(例えば数100倍)の高速クロックを基準クロックとして用いている。
 ここで、低速クロック側の動作は先の図8と同じであるため説明を省略し、高速クロック側の動作について、図9に加えて図10を参照して説明する。図9においては、低速クロックの周波数が明確となるようにタイムチャートを記載しているが、図10においては、低速クロックと高速クロックとの関係が明確となるように、図9のタイムチャートの一部を抜き出すような形式のタイムチャートを記載している。
 高速クロックは、受信点τから動作を開始し、τの次の低速クロックの立ち上がりタイミングであるτまで動作し、高速カウンタ回路は、τからτまでの時間を計数する。この時、高速カウンタ回路の動作時間をTとすると次のような演算式でシングアラウンドの所要時間Ty2を求めることができる。
 T≒Ty2=(τ-τ)-T=(τ+Tsc-τ)-T   (式9)
 ただし、Tscは低速クロックの周期である。ここで、(式7)を用いると
 Ty2=T+Tsc-T    (式10)
 と表せる。更に、低速カウンタ回路の計数値をN、高速カウンタ回路の計数値をM、高速クロックの周期をTfcとすれば(式10)は更に次のように変形できる。
 Ty2=(N+1)×Tsc-M×Tfc    (式11)
 図9および図10に示す例では、計測誤差は高速カウンタの周期Tfcの1クロック分となり図8に比べて格段に時間精度が高まる。しかも、消費電流の大きな高速クロックの動作時間が極めて短いので、いたずらに消費電力を増やすこともない。
 ここで、ふたつのカウンタ回路で求めたそれぞれの値について、時間差検出手段16で順方向の計測値と逆方向の計測値の時間差を求めるならば、例えば次のような判定で流量ゼロを判定できる。
 ・Δsn=0のかつ|Δfn|≦2の時 流量ゼロ
 ・|Δsn|≧1の時 流量あり
 ただし、ここでΔsn、Δfnはそれぞれ時間差検出手段16で求められた、低速カウンタ回路側の差分値、高速カウンタ回路側の差分値を示している。つまり、流量ゼロならば、低速カウンタ回路側の差分は0であり、高速カウンタ回路側で求めた値のみが僅かに異なるだけであるという考えに基づく。
 したがって、計時手段12を周波数の異なるふたつのカウンタ回路で構成した場合であったとしても、減算回路だけで、流量の有無が判定できることに変わりはない。
 ここでは、周波数が異なる2つのカウンタ回路を用いて計時手段12を構成する例について示したが、更に時間精度を上げるため周波数の異なる3つ以上のカウンタ回路を組合せて、計時手段12を構成した場合であっても同様の効果が得られることは言うまでもない。
 以上、実施の形態1および2において説明してきたように、本発明の流量計測装置は、連続して実行される一連の計測工程(前述した例では「単位計測工程」)のうち任意の計測工程において前記時間差検出手段で求めた時間差に基づいて、後続の計測工程の実行回数を制御する計測制御手段を備えた構成としているので、流量の有無を応答遅れなく判定し、流量の有無に応じた計測方法に切り替え可能な応答性の高い計測が可能である。
 また、その任意の計測工程を一連の計測工程のうちの初期の計測工程とすることで、応答性をより高めることが可能である。
 また、連続して実行される一連の計測工程のうち任意の計測工程において時間差検出手段で求めた時間差が閾値よりも小さければ、計測制御手段が、以降の計測工程の実行を打ち切る構成としているので、流量がない場合の消費電力を低減することが可能である。
 また、連続して実行される一連の計測工程のうち任意の計測工程において時間差検出手段で求めた時間差が閾値よりも小さければ、流量演算手段が、その間の流量をゼロと算出する構成としているので、流量がない場合に、更に消費電力を低減することが可能である。
 また、一連の計測工程の開始から流量演算の終了までを単位流量算出工程と定め、流量ゼロが連続した場合には、計測制御手段が、単位流量算出工程の実行間隔を毎回異なるように変化させる構成としているので、流路内に周期的な脈動が発生している場合であっても、誤って流量をゼロと判断することがなくなり、計測精度の向上が図れる。
 また、連続して実行される一連の計測工程のうち任意の計測工程において時間差検出手段で求めた時間差が閾値よりも大きければ、計測制御手段が、継続して複数回の計測工程を連続して実行する構成としているので、流量がある場合には、精度の高い計測が可能である。
 また、計時手段は基準クロックと前記クロックに基づいて計数を行うカウンタ回路とで構成され、時間差検出手段は、前記カウンタ回路の計数値を用いた減算回路により構成し、流量ゼロを判断する過程における乗除算を不要とした構成としているので、減算回路を動作させるだけの簡単な演算手法で流量の有無を判定できるので、即時性の高い制御が可能となる。
 更に、計時手段が周波数の異なる少なくとも2つ以上の基準クロックとカウンタ回路とで構成され、時間差検出手段はカウンタ回路毎の時間差を算出し、判定手段は、時間差検出手段で求められた全てのカウンタの計数差の組み合わせから流量ゼロを判断する構成としているので、流量ゼロの判定精度を高めることが可能である。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明の流量計測装置は、流量の有無を迅速に判定し、流量の有無に応じた計測方法に切り替え可能な応答性の高い計測装置を提供できるので、ガスメータのみならず気体用流量計や液体用流量計にも適用可能である。 

Claims (8)

  1.  流体流路に設けられ超音波信号を発信受信する第1振動子及び第2振動子と、
     前記振動子間における超音波信号の伝搬時間を計測する計時手段と、
     前記両振動子の送受信方向を切り替えながら、前記計時手段により順逆双方向の超音波信号の伝搬時間を計測する単位計測工程と、前記単位計測工程を連続して実行し、前記実行回数分の伝搬時間を基に流量を演算する流量演算手段と、
     前記単位計測工程の順逆両方向の伝搬時間差を求める時間差検出手段と、
     連続して実行される一連の単位計測工程のうち任意の単位計測工程を選択し、当該任意の単位計測工程において前記時間差検出手段で求めた時間差に基づいて、後続の単位計測工程の実行回数を制御する計測制御手段と、
    を備えたことを特徴とする流量計測装置。
  2.  前記計測制御手段は、前記任意の単位計測工程として、一連の単位計測工程のうちの初期の単位計測工程を選択することを特徴とする、請求項1に記載の流量計測装置。
  3.  前記任意の単位計測工程において前記時間差検出手段で求めた時間差が閾値よりも小さければ、前記計測制御手段は、前記任意の単位計測工程以降の単位計測工程の実行を打ち切ることを特徴とする、請求項1に記載の流量計測装置。
  4.  前記任意の単位計測工程において前記時間差検出手段で求めた時間差が閾値よりも小さければ、前記流量演算手段は、その間の流量をゼロと算出することを特徴とする、請求項3に記載の流量計測装置。
  5.  一連の単位計測工程の開始から流量演算の終了までを単位流量算出工程と定め、流量ゼロが連続した場合には、前記計測制御手段は、前記単位流量算出工程の実行間隔を毎回異なるように変化させることを特徴とする、請求項3または4に記載の流量計測装置。
  6.  連続して実行される一連の単位計測工程のうち任意の単位計測工程において前記時間差検出手段で求めた時間差が閾値よりも大きければ、前記計測制御手段は、継続して複数回の単位計測工程を連続して実行することを特徴とする、請求項1から5いずれか1項に記載の流量計測装置。
  7.  前記計時手段は、基準クロックと前記クロックに基づいて計数を行うカウンタ回路とで構成され、
     前記時間差検出手段は、前記カウンタ回路の計数値を用いた減算回路により構成することにより、流量ゼロを判断する過程における乗除算を不要とした構成であることを特徴とする、請求項1から6いずれか1項に記載の流量計測装置。
  8.  前記計時手段は、周波数の異なる少なくとも2つ以上の基準クロックとカウンタ回路とで構成され、
     前記時間差検出手段は、前記カウンタ回路毎の計数差を算出し、
     前記判定手段は、前記時間差検出手段で求められた全ての前記カウンタ回路の計数差の組み合わせから流量ゼロを判断するよう構成されていることを特徴とする、請求項7に記載の流量計測装置。
     
     
PCT/JP2010/005880 2009-09-30 2010-09-30 流量計測装置 WO2011040027A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/499,258 US9846065B2 (en) 2009-09-30 2010-09-30 Flow meter device
CN201080043081.3A CN102549394B (zh) 2009-09-30 2010-09-30 流量测量装置
JP2011534081A JP5524972B2 (ja) 2009-09-30 2010-09-30 流量計測装置
EP10820148.4A EP2485015A4 (en) 2009-09-30 2010-09-30 Flow rate measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-226952 2009-09-30
JP2009226952 2009-09-30

Publications (1)

Publication Number Publication Date
WO2011040027A1 true WO2011040027A1 (ja) 2011-04-07

Family

ID=43825872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005880 WO2011040027A1 (ja) 2009-09-30 2010-09-30 流量計測装置

Country Status (5)

Country Link
US (1) US9846065B2 (ja)
EP (1) EP2485015A4 (ja)
JP (1) JP5524972B2 (ja)
CN (1) CN102549394B (ja)
WO (1) WO2011040027A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096901A (ja) * 2011-11-02 2013-05-20 Toyo Gas Meter Kk 超音波式流量計
WO2014068952A1 (ja) * 2012-11-05 2014-05-08 パナソニック株式会社 流量計測装置およびその流量算出方法
CN106030255A (zh) * 2014-02-24 2016-10-12 通用电气公司 超声信号传送和接收电路组装件和使用该电路组装件的超声系统和方法
KR20200113377A (ko) * 2019-03-25 2020-10-07 한국전자기술연구원 초음파 스마트 가스미터 측정방법 및 시스템

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753970B2 (ja) * 2010-10-22 2015-07-22 パナソニックIpマネジメント株式会社 流量計測装置
JP2012127663A (ja) * 2010-12-13 2012-07-05 Panasonic Corp 流量計測装置
JP2013148523A (ja) * 2012-01-23 2013-08-01 Panasonic Corp 流量計測装置
CN103541716A (zh) * 2012-07-12 2014-01-29 成都科盛石油科技有限公司 具备预处理的油田石油流量测量系统
WO2016130113A1 (en) * 2015-02-10 2016-08-18 Halliburton Energy Services Inc. System and method for leak detection
US9869572B2 (en) * 2015-09-08 2018-01-16 Kabushiki Kaisha Toshiba Semiconductor acoustic measurement device that determines the presence or absence of the second ultrasonic measurement
WO2017111896A1 (en) * 2015-12-21 2017-06-29 Dwyer Instruments, Inc. System, method, and apparatus for balancing an hvac system
JP6366021B2 (ja) * 2015-12-24 2018-08-01 パナソニックIpマネジメント株式会社 流量計測装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122117A (ja) * 1994-10-19 1996-05-17 Matsushita Electric Ind Co Ltd 流量計測装置
JPH0921667A (ja) * 1995-07-07 1997-01-21 Matsushita Electric Ind Co Ltd 流量計測装置
JP2002350202A (ja) 2001-05-30 2002-12-04 Matsushita Electric Ind Co Ltd 流量計測装置
JP2003222548A (ja) 2001-11-22 2003-08-08 Matsushita Electric Ind Co Ltd 流量計測装置
JP2004144744A (ja) * 2002-10-04 2004-05-20 Osaka Gas Co Ltd 超音波流量計
JP2007051890A (ja) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd 流体の流れ計測装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575050A (en) * 1968-12-04 1971-04-13 Panametrics Fluid flowmeter
DD143108A1 (de) * 1979-04-19 1980-07-30 Johann Gaetke Sing-around-verfahren zur akustischen stroemungsmessung
ATE471497T1 (de) * 1999-05-11 2010-07-15 Panasonic Corp Durchflussmessvorrichtung
EP1243901A4 (en) * 1999-06-24 2006-07-05 Matsushita Electric Ind Co Ltd FLOW METER
US7290455B2 (en) * 2005-08-22 2007-11-06 Daniel Measurement And Control, Inc. Driver configuration for an ultrasonic flow meter
CN101162164A (zh) * 2007-11-16 2008-04-16 浙江理工大学 时差法超声波流量计的频率调制波形标记方法
CN101464171B (zh) * 2007-12-18 2010-12-01 深圳职业技术学院 一种超声波流量检测方法
JP5753970B2 (ja) * 2010-10-22 2015-07-22 パナソニックIpマネジメント株式会社 流量計測装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122117A (ja) * 1994-10-19 1996-05-17 Matsushita Electric Ind Co Ltd 流量計測装置
JPH0921667A (ja) * 1995-07-07 1997-01-21 Matsushita Electric Ind Co Ltd 流量計測装置
JP2002350202A (ja) 2001-05-30 2002-12-04 Matsushita Electric Ind Co Ltd 流量計測装置
JP2003222548A (ja) 2001-11-22 2003-08-08 Matsushita Electric Ind Co Ltd 流量計測装置
JP2004144744A (ja) * 2002-10-04 2004-05-20 Osaka Gas Co Ltd 超音波流量計
JP2007051890A (ja) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd 流体の流れ計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2485015A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096901A (ja) * 2011-11-02 2013-05-20 Toyo Gas Meter Kk 超音波式流量計
WO2014068952A1 (ja) * 2012-11-05 2014-05-08 パナソニック株式会社 流量計測装置およびその流量算出方法
JP2014092467A (ja) * 2012-11-05 2014-05-19 Panasonic Corp 流量計測装置
US9638557B2 (en) 2012-11-05 2017-05-02 Panasonic Intellectual Property Management Co., Ltd. Ultrasonic flowmeter having an arithmetic operation unit for calculating propagation time correction value
CN106030255A (zh) * 2014-02-24 2016-10-12 通用电气公司 超声信号传送和接收电路组装件和使用该电路组装件的超声系统和方法
KR20200113377A (ko) * 2019-03-25 2020-10-07 한국전자기술연구원 초음파 스마트 가스미터 측정방법 및 시스템
KR102294787B1 (ko) * 2019-03-25 2021-08-27 한국전자기술연구원 초음파 스마트 가스미터 측정방법 및 시스템

Also Published As

Publication number Publication date
EP2485015A4 (en) 2017-12-20
EP2485015A1 (en) 2012-08-08
US9846065B2 (en) 2017-12-19
JP5524972B2 (ja) 2014-06-18
CN102549394B (zh) 2014-02-19
JPWO2011040027A1 (ja) 2013-02-21
CN102549394A (zh) 2012-07-04
US20120185183A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5524972B2 (ja) 流量計測装置
JP5753970B2 (ja) 流量計測装置
JP5402620B2 (ja) 流量計測装置
JP4788235B2 (ja) 流体の流れ計測装置
JP3432210B2 (ja) 流量計測装置
JP4835068B2 (ja) 流体の流れ計測装置
JP5467332B2 (ja) 流体の流れ計測装置
JPH09304139A (ja) 流量計測装置
JP2006214793A (ja) 流量計測装置
JP2008014800A (ja) 流量計測装置
JP4266117B2 (ja) 超音波流量計
JP2004286762A (ja) 流量計測装置
JP3945530B2 (ja) 流量計測装置
JP3627722B2 (ja) 流量計
JP2003232663A (ja) 流量計測装置
JP2007322442A (ja) 流量計測装置
JP2006214794A (ja) 流量計測装置
JP2003287450A (ja) 流量計
JP5548951B2 (ja) 流量計測装置
JP2011137840A (ja) 流体の流れ計測装置
JP2008203112A (ja) 超音波流速計
JP2004069530A (ja) 流量計測装置
JP2003156373A (ja) 超音波流量計の流量変動検出装置及び超音波流量計
JP2004028705A (ja) 超音波流量計
JPH08313317A (ja) 流量計測装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043081.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534081

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13499258

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010820148

Country of ref document: EP