WO2011036721A1 - 車載用レーダ装置 - Google Patents

車載用レーダ装置 Download PDF

Info

Publication number
WO2011036721A1
WO2011036721A1 PCT/JP2009/004862 JP2009004862W WO2011036721A1 WO 2011036721 A1 WO2011036721 A1 WO 2011036721A1 JP 2009004862 W JP2009004862 W JP 2009004862W WO 2011036721 A1 WO2011036721 A1 WO 2011036721A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
synthetic aperture
aperture processing
radar device
received signal
Prior art date
Application number
PCT/JP2009/004862
Other languages
English (en)
French (fr)
Inventor
山田直之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/390,804 priority Critical patent/US8866664B2/en
Priority to PCT/JP2009/004862 priority patent/WO2011036721A1/ja
Priority to JP2011532803A priority patent/JP5418794B2/ja
Priority to DE112009005279T priority patent/DE112009005279T5/de
Publication of WO2011036721A1 publication Critical patent/WO2011036721A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9041Squint mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9089SAR having an irregular aperture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/589Velocity or trajectory determination systems; Sense-of-movement determination systems measuring the velocity vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles

Definitions

  • the present invention relates to an on-vehicle radar device, and more particularly to an on-vehicle radar device that detects an object mounted on a vehicle and approaching from the periphery of the vehicle.
  • a vehicle-mounted object detection device mounted on the host vehicle is known in order to detect an object approaching from the front or side of the host vehicle. Specifically, the vehicle-mounted object detection device detects an object approaching the host vehicle with a radar device (for example, a millimeter wave radar device). And the said vehicle-mounted object detection apparatus judges the danger that the own vehicle and an object will collide based on the said detection result. Further, the vehicle-mounted object detection device controls various devices provided in the host vehicle when it is determined that there is a risk of collision between the host vehicle and the object.
  • a radar device for example, a millimeter wave radar device
  • the radar device used in the above-described vehicle-mounted object detection device information on the position, direction, speed, and the like of the object with respect to the host vehicle is obtained with high accuracy with respect to the object existing in front or side of the host vehicle. It is required to accurately grasp the positional relationship between the vehicle and the object.
  • a radar device used for a general vehicle-mounted object detection device it is possible to know the presence of an object but not to accurately determine the size of the object (for example, the vehicle width of another vehicle).
  • the aperture area of the antenna of the radar apparatus cannot be increased. This is because, in the case of a radar device using radio waves, the resolution in the angular direction is proportional to the aperture area of the antenna. That is, since the radar device used in the vehicle-mounted object detection device is assumed to be mounted on a vehicle, the size of the radar device is limited, and the opening area of the antenna cannot be increased so much.
  • a method of arranging a plurality of receiving antenna elements in the radar device is used in order to increase the resolution of the radar device used in the vehicle-mounted object detection device.
  • an in-vehicle object detection device is insufficient for a signal received by each receiving antenna using a signal processing method having a high processing load such as DBF (Digital Beam Forming) or MUSIC (MUltiple SIgnal Classification). The current situation is to compensate for the resolution.
  • a technique disclosed in Patent Document 1 for example, as a technique for realizing a radar having an antenna having a large aperture area even in a radar apparatus having a small number of antenna elements.
  • Patent Document 1 extracts a ground target by synthetically opening a reflected wave obtained by a radar device mounted on a mobile platform such as an aircraft or artificial hygiene.
  • Patent Document 1 assumes that a radar device is mounted on an aircraft, artificial hygiene, or the like, the technique cannot be applied to a vehicle as it is. Further, the technique disclosed in Patent Document 1 reproduces a stationary target on the ground as image data by processing a signal obtained by a radar apparatus. For this reason, there is a problem that complicated processing is required and the processing load increases.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an on-vehicle radar device capable of obtaining a high azimuth resolution with a simple configuration.
  • a vehicle-mounted radar device mounted on a vehicle, wherein the detection unit radiates electromagnetic waves around the vehicle and outputs a reception signal obtained by a reflected wave reflected from an object existing around the vehicle; Vehicle information calculation means for calculating information relating to movement of the vehicle using vehicle information of the vehicle, storage means for storing a plurality of reception signals output at different times by the detection means, and information relating to movement of the vehicle And a synthetic aperture processing means for performing synthetic aperture processing of the received signals respectively obtained at different positions on the vehicle.
  • a second aspect of the present invention relates to the movement of the vehicle according to the first aspect, wherein the vehicle information calculation means uses the vehicle information of the vehicle to indicate information indicating the position at which the received signal is obtained. Calculated as information, the storage means stores the received signal together with information indicating the position where the received signal is obtained, and the synthetic aperture processing means is configured to receive the received signal based on the position where the received signal is obtained. Signal synthetic aperture processing is performed.
  • the vehicle information calculation means further calculates a time interval at which the received signal is obtained based on time information at which the received signal is obtained.
  • the synthetic aperture processing means performs synthetic aperture processing of the received signal based on the position where the received signal is obtained and the time interval when the received signal is obtained.
  • the vehicle information calculation means further uses the vehicle information of the vehicle to indicate the direction of the vehicle from which the reception signal is obtained. Information is calculated, the storage means stores the received signal together with information indicating the direction of the vehicle from which the received signal was obtained, and the synthetic aperture processing means is obtained from the direction of the vehicle from which the received signal was obtained. The synthetic aperture processing of the received signal is performed based on the direction in which the electromagnetic wave is irradiated and the position where the received signal is obtained.
  • the vehicle information calculation means uses the vehicle information of the vehicle to calculate information indicating a trajectory of the vehicle as information related to the movement of the vehicle.
  • the storage means stores information indicating a trajectory of the movement of the vehicle as a first trajectory together with the received signal, and the synthetic aperture processing means includes the first trajectory and the first trajectory.
  • a second trajectory is calculated from the received signal, and synthetic aperture processing of the received signal is performed on the assumption that the received signal is obtained at different positions on the second trajectory.
  • the synthetic aperture processing means performs the synthetic aperture processing by using a predetermined number of the received signals stored in the storage means. It is characterized by that.
  • the synthetic aperture processing means increases or decreases the number of received signals used for the synthetic aperture processing according to a predetermined condition.
  • the synthetic aperture processing means further performs a process of detecting an object around the vehicle by performing the synthetic aperture processing.
  • a ninth aspect of the present invention is characterized in that, in the first aspect, the detection means is mounted on at least one of the front and rear of the vehicle.
  • the tenth aspect of the present invention is characterized in that, in the eighth aspect, the apparatus further comprises a determination means for determining a risk of contact between the object detected by the synthetic aperture processing means and the vehicle.
  • the antenna aperture area is increased (because there is a restriction on the size to be mounted). Even if this is not possible, it is possible to realize characteristics equivalent to those received by a radar apparatus having a large aperture area. Therefore, it is possible to provide an in-vehicle radar device that can obtain a high azimuth resolution with a simple configuration.
  • the synthetic aperture processing can be easily performed.
  • the synthetic aperture processing means can take into account the time interval at which the received signal is obtained in the synthetic aperture processing, so that the synthetic aperture processing can be performed on the received signal more accurately.
  • the synthetic aperture processing can be performed on the received signal more accurately even if the vehicle orientation changes.
  • the synthetic aperture processing can be performed on the received signal more accurately.
  • synthetic aperture processing assuming a target to be separated and detected becomes possible. That is, for example, when it is assumed that a vehicle is parked in an empty space of a parking lot, a higher number of reception signals used for the synthetic aperture processing is set in advance in a scene where higher azimuth resolution is required. be able to.
  • the number of received signals used for the synthetic aperture processing can be increased.
  • the process of detecting an object around the vehicle is performed by performing the synthetic aperture process, for example, a plurality of objects existing around the vehicle can be separately detected.
  • the detection means is mounted on at least one of the front and rear of the vehicle, for example, when a vehicle is parked in an empty space of a parking lot, a plurality of objects existing around the vehicle are separated. Can be detected and parked safely.
  • the risk of contact between the object detected by the synthetic aperture processing means and the vehicle is determined, for example, safety measures such as alerting the driver of the vehicle can be taken.
  • FIG. 1 is a diagram illustrating the movement of the host vehicle mv and the movement of the radar device mounted on the host vehicle mv.
  • FIG. 2 is a diagram illustrating an example of the front mounting position of the radar apparatus 1.
  • FIG. 3 is a block diagram illustrating an example of a configuration of a driver support system including an in-vehicle radar device according to an embodiment.
  • FIG. 4 is a diagram for explaining the movement of the receiving antenna of the radar mounted on the moving body.
  • FIG. 5 is a flowchart illustrating an example of processing performed in each unit of the radar ECU 2 of the in-vehicle radar device according to the embodiment.
  • FIG. 6 is a diagram for explaining an example of the synthetic aperture processing.
  • FIG. 1 is a diagram illustrating the movement of the host vehicle mv and the movement of the radar device mounted on the host vehicle mv.
  • FIG. 2 is a diagram illustrating an example of the front mounting position of the radar apparatus 1.
  • FIG. 3 is a block diagram illustrating
  • FIG. 7 is a diagram illustrating a result of synthetic aperture processing using the reception signal SR (1), the reception signal (2), and the reception signal (3).
  • FIG. 8 is a diagram illustrating an example of a trajectory of the host vehicle mv.
  • FIG. 9 is a diagram showing an example of the surrounding environment of the host vehicle mv.
  • FIG. 10 is a diagram illustrating an example of a configuration of a radar apparatus having a single reception system.
  • FIG. 11 is a diagram illustrating an example of a configuration of a radar apparatus having a plurality of reception systems.
  • FIG. 12 is a diagram illustrating an example of the rear mounting position of the radar apparatus 1.
  • DSS Driver Support System
  • FIG. 1 is a diagram illustrating the movement of the host vehicle mv and the movement of the radar device mounted on the host vehicle mv.
  • the radar devices are mounted on the left and right of the front portion of the host vehicle mv as an example (the right radar device and the left radar device shown in FIG. 1).
  • the host vehicle mv travels from the position A to the position B in the direction of the arrow shown in FIG. 1 (the traveling direction of the host vehicle mv).
  • a plurality of received signals obtained from the right-side radar apparatus are combined (synthetic aperture processing) before the host vehicle mv moves from position A to position B, it is as if a large aperture area (antenna)
  • the on-vehicle radar device stores, for example, a plurality of reception signals output at different times by the right-side radar device, and based on information related to the movement of the own vehicle mv. Synthetic aperture processing is performed on received signals obtained at different positions of mv.
  • the on-vehicle radar device performs synthetic aperture processing on a plurality of received signals obtained by the radar device while moving in a certain section (for example, the section from position A to position B as shown in FIG. 1). As a result, the resolution in the azimuth direction of the radar apparatus is increased.
  • the information regarding the movement of the own vehicle mv is the information which shows the position from which the received signal was obtained, or the movement distance for every position from which the received signal was obtained.
  • the on-vehicle radar device performs synthetic aperture processing on a plurality of received signals based on information indicating the direction of the host vehicle mv (that is, the antenna direction) and the time information on which the received signals are obtained. Also good.
  • FIG. 2 is a block diagram showing an example of the configuration of the driver support system including the on-vehicle radar device according to the present embodiment.
  • the driver support system includes a right radar device 1R, a left radar device 1L, a vehicle information detection unit 2, a radar ECU (Electrical Control Unit) 3, a vehicle control ECU 4, and a safety device 5.
  • a right radar device 1R a left radar device 1L
  • a vehicle information detection unit 2 a radar ECU (Electrical Control Unit) 3, a vehicle control ECU 4, and a safety device 5.
  • a radar ECU Electronic Control Unit
  • the right radar apparatus 1R includes a reception antenna R-atR and a transmission antenna T-atR (not shown) in the right radar apparatus 1R.
  • the right-side radar device 1R is installed at a predetermined position of the host vehicle mv (for example, a position where a headlight or a direction indicator on the right side of the front side of the host vehicle mv is mounted), and outside the host vehicle mv.
  • the electromagnetic wave is irradiated toward the vehicle and the surroundings in front of the vehicle mv are monitored.
  • the right-side radar device 1R irradiates electromagnetic waves toward the right front of the host vehicle mv, and the target (AR in FIG. 3) existing within the detection range of the right-side radar device 1R (AR in FIG. 3).
  • other vehicles, bicycles, pedestrians, buildings, etc. are detected.
  • the left radar apparatus 1L includes a reception antenna R-atL and a transmission antenna T-atL (not shown) in the left radar apparatus 1L.
  • the left radar device 1L is installed at a predetermined position of the host vehicle mv (for example, a position where a headlight or a direction indicator on the left side of the front of the host vehicle mv is mounted), and outside the host vehicle mv.
  • the electromagnetic wave is irradiated toward the vehicle and the surroundings in front of the vehicle mv are monitored.
  • the left radar device 1L irradiates electromagnetic waves toward the left front of the host vehicle mv, and the target (AL in FIG. 3) exists within the detection range of the left radar device 1L (AL in FIG. 3).
  • the target AL in FIG. 3
  • the right radar device 1R and the left radar device 1L are collectively referred to simply as the radar device 1 unless the right radar device 1R and the left radar device 1L are particularly distinguished from each other.
  • Vehicle information detection unit 2 detects vehicle information of the host vehicle mv.
  • the vehicle information detection unit 2 includes a speed sensor that detects the speed of the host vehicle mv, a travel distance sensor that detects a moving distance of the host vehicle mv, a yaw rate sensor that detects the yaw rate of the host vehicle mv, and the host vehicle.
  • a lateral acceleration sensor (for example, a three-axis G sensor) that detects acceleration in the vehicle width direction that acts on the center of gravity position of mv, a steering angle sensor that detects the steering angle of the host vehicle mv, a roll sensor, a roch sensor, and the current time are reported.
  • Vehicle information is acquired from various sensors such as a clock. Information output from the various sensors (specifically, vehicle speed, moving distance, yaw rate, lateral acceleration, steering angle, current time, and the like of the host vehicle mv) is referred to as vehicle information imv.
  • the radar ECU 3 is an information processing apparatus including a radar signal processing unit 31, a vehicle information processing unit 32, a synthetic aperture processing unit 33, an information storage unit 34, an interface circuit, and the like.
  • the radar signal processing unit 31 acquires the reception signal SR from the right radar device 1R. Similarly, the radar signal processing unit 31 acquires the reception signal SL from the left radar device 1L.
  • the radar device 1 and the radar signal processing unit 31 correspond to an example of a detection unit described in the claims.
  • the vehicle information processing unit 32 detects the movement of the radar device 1 based on the vehicle information imv output from the vehicle information detection unit 2.
  • the vehicle information processing unit 32 corresponds to an example of vehicle information processing means described in the claims.
  • FIG. 4 is a diagram for explaining the movement of the receiving antenna of the radar apparatus mounted on the moving body (for example, the host vehicle mv).
  • a radar apparatus emits electromagnetic waves from a transmission antenna provided in the radar and receives reflected waves by a reception antenna. Further, when the radar apparatus is mounted on a moving body (for example, the host vehicle mv), the radar receiving antenna also moves with the movement of the moving body.
  • reception antenna shown in FIG. 4 is assumed to be the reception antenna R-atR of the right radar apparatus 1R mounted on the host vehicle mv, and the reception antenna R-atR provided in the right radar apparatus 1R is assumed. In the following description, it is assumed that there is one transmission antenna T-atR. Further, the following description will be made assuming that the host vehicle mv is traveling straight in the direction of the arrow Vmv in FIG.
  • the receiving antenna R-atR is at a certain position at a certain time (for example, the position PR (1) of the receiving antenna R-atR (1) in FIG. 4).
  • the receiving antenna R-atR (1) is generated as the host vehicle mv moves in the moving direction of the host vehicle mv (arrow Vmv in FIG. 4). Will also move in the direction of the arrow VatR in FIG.
  • the receiving antenna R-atR (1) at a certain position receives the receiving antenna R-atR (2) and the receiving antenna R-atR as the host vehicle mv moves (runs). (3) and move.
  • the position of the receiving antenna R-atR (1) at a certain position changes with time as the receiving antenna R-atR (2) and the receiving antenna R-atR (3).
  • the vehicle information processing unit 32 calculates the position of the reception antenna R-atR based on the vehicle information imv output from the vehicle information detection unit 2. For example, the vehicle information processing unit 32 determines the position PR (1) of the reception antenna R-atR (1) and the position of the reception antenna R-atR (2) based on the vehicle information imv output from the vehicle information detection unit 2. PR (2) and the position PR (3) of the receiving antenna R-atR (3) are calculated.
  • the vehicle information processing unit 32 uses the reception antenna R-atR (2) and the reception antenna R-atR (3) with reference to the reception antenna R-atR (1) at a certain position based on the vehicle information imv. ) Can be calculated. In other words, the vehicle information processing unit 32 can calculate the movement amount of the reception antenna R-atR (1) (change in the position of the reception antenna R-atR (1) accompanying the movement of the host vehicle mv).
  • the synthetic aperture processing unit 33 performs synthetic aperture processing based on information stored in the information storage unit 34 described later. Details of the synthetic aperture processing performed by the synthetic aperture processing unit 33 will be described later.
  • the synthetic aperture processing unit 33 corresponds to an example of a synthetic aperture processing unit described in the claims.
  • the information storage unit 34 temporarily stores the received signal SR acquired by the radar signal processing unit 31 from the right radar device 1R. Further, the information storage unit 34 indicates the position PR of the right radar device 1R (that is, the position PR of the reception antenna R-atR) when the radar signal processing unit 31 acquires the reception signal SR from the right radar device 1R. Memorize temporarily. At this time, the information storage unit 34 temporarily stores the received signal SR in association with the position PR of the right radar apparatus 1R when the received signal SR is acquired.
  • the information storage unit 34 corresponds to an example of a storage unit described in the claims.
  • the right-side radar device 1R will be specifically described with reference to FIG. 4 as an example.
  • the position of the receiving antenna R-atR (1) is defined as a position PR (1), and the position PR (1)
  • the reception signal SR received by the reception antenna R-atR (1) is set as the reception signal SR (1).
  • the information storage unit 34 temporarily stores the position PR (1) and the received signal SR (1) in association with each other.
  • the position of the reception antenna R-atR (2) is set to a position PR (2), and the reception signal SR received by the reception antenna R-atR (2) at the position PR (2) is received signal SR (2 ) And set.
  • the right radar apparatus 1R that is, the receiving antenna R-atR
  • the vehicle control ECU 4 detects the information output from the radar ECU 3 (specifically, the distance from the host vehicle mv to the target, the target vehicle relative to the host vehicle mv). Based on the existing direction and the relative speed of the target, it is determined whether or not there is a risk of collision (contact) between the host vehicle mv and the target. When the vehicle control ECU 4 determines that there is a risk of collision (contact) between the host vehicle mv and the target, the vehicle control ECU 4 instructs the safety device 5 to take safety measures described later.
  • the safety device 5 alerts the driver of the host vehicle mv in accordance with an instruction from the vehicle control ECU 4 when the risk of a collision with the target is high.
  • the safety device 5 also includes various devices for reducing the damage to the occupant of the host vehicle mv and for easing the occupant protection and collision conditions when a collision with the target is unavoidable.
  • the operations performed by the safety device 5, that is, alerting the driver, collision danger avoiding operation, collision damage reducing operation, and the like are collectively referred to as safety measures.
  • each unit of the radar ECU 3 of the on-vehicle radar device will be described.
  • the radar signal processing unit 31 acquires the reception signal SR from the right-side radar device 1R
  • an example in which each unit of the radar ECU 3 performs the synthetic aperture processing using the reception signal SR is taken as an example. explain.
  • the following description will be made on the assumption that the right radar apparatus 1R is provided with one receiving antenna.
  • FIG. 5 is a flowchart showing an example of processing performed in each part of the radar ECU 3 of the on-vehicle radar device according to the present embodiment.
  • the processing of the flowchart shown in FIG. 5 is performed by the radar ECU 3 executing a predetermined program provided in the radar ECU 3. Furthermore, a program for executing the processing shown in FIG. 5 is stored in advance in a storage area of the radar ECU 3, for example. Further, when the power of the radar ECU 3 is turned on (for example, when the ignition switch of the host vehicle mv is turned on), the processing of the flowchart shown in FIG.
  • the radar signal processing unit 31 acquires the reception signal SR from the right radar device 1R, outputs the reception signal SR to the vehicle information processing unit 32, and proceeds to the next step S12.
  • step S12 the vehicle information processing unit 32 acquires the vehicle information imv output from the vehicle information detection unit 2, and proceeds to the next step S13.
  • the vehicle information processing unit 32 converts the vehicle information imv and the reception signal SR to the vehicle information, respectively. Let imv (2) and received signal SR (2). And the vehicle information processing part 32 advances a process to the following step S14 after the process in the said step.
  • step S14 the information storage unit 34 temporarily stores the vehicle information imv (k) and the reception signal SR (k) output from the vehicle information processing unit 32 in step S13.
  • the information storage unit 34 stores the vehicle information imv (1) and the reception signal SR (1), and the process of the flowchart is repeated, whereby the vehicle information imv. (2) and the received signal SR (2) are stored. That is, in this way, the vehicle information imv when the radar signal processing unit 31 acquires the reception signal SR from the right radar device 1R can be associated. Thereafter, the information storage unit 34 advances the processing to the next step S15.
  • step S15 the vehicle information processing unit 32 determines whether a plurality of pieces of vehicle information imv are stored.
  • the information storage unit 34 is associated with the received signal SR (1), the received signal (2), the received signal (3). 1), vehicle information imv (2), vehicle information imv (3)... Are stored.
  • a plurality of pieces of vehicle information imv are required to calculate the position PR of the right radar apparatus 1R (that is, the receiving antenna R-atR) in the next step S16.
  • the vehicle information processing unit 32 denies the determination (NO) and returns the process to step S11 in the process of this step.
  • the vehicle information processing unit 32 affirms the determination (YES) in the processing of the step.
  • the process proceeds to the next step S16.
  • the vehicle information processing unit 32 determines that the host vehicle mv is not moving as a result of referring to the plurality of vehicle information imv even when a plurality of vehicle information imv is stored in the information storage unit 34. May negate the process of step S15. Then, the plurality of vehicle information imv and the reception signal SR corresponding to the plurality of vehicle information imv may be deleted from the information storage unit 34.
  • the vehicle information processing unit 32 refers to the plurality of vehicle information imv, and as a result, the vehicle information imv indicating the same time point and the vehicle information imv
  • the overlapping vehicle information imv and the reception signal SR corresponding to the vehicle information imv may be deleted, and the process may proceed to step S16.
  • the information storage unit 34 stores the vehicle information imv (5), the received signal SR (5) corresponding to the vehicle information imv (5), the vehicle information imv (6), and the vehicle information imv (6 ) Is stored, the vehicle information processing unit 32 refers to the vehicle information imv (5) and the vehicle information imv (6). As a result, the vehicle information imv (5) If it is determined that the host vehicle mv has not moved until the vehicle information imv (6) is obtained, the vehicle information imv (5) or the vehicle information imv (6) may be deleted.
  • step S16 which is the next process in which the determination in step S15 is affirmed (YES)
  • the vehicle information processing unit 32 calculates the position PR (k) of the right radar apparatus 1R (that is, the receiving antenna R-atR). .
  • the radar signal processing unit 31 first receives the received signal SR (that is, the received signal SR (1)) from the right radar device 1R (that is, the receiving antenna R-atR (1)). Assuming that Note that the position of the receiving antenna R-atR (1) at this time is defined as a position PR (1). Further, the host vehicle mv moves, and then the radar signal processing unit 31 acquires the received signal SR (that is, the received signal SR (2)) from the right radar device 1R (that is, the receiving antenna R-atR (2)). Suppose that. Similarly, the position of the receiving antenna R-atR (2) at this time is defined as a position PR (2).
  • step S16 the vehicle information processing unit 32 calculates the position PR (k) of the right radar device 1R, that is, in the above example, calculates the position PR (1) of the receiving antenna R-atR (1).
  • the processing of the flowchart is started, and the radar signal processing unit 31 first receives the reception signal SR (that is, reception) from the right radar device 1R (that is, reception antenna R-atR (1)).
  • the position PR (1) of the receiving antenna R-atR (1) is calculated with reference to the position PR (1) of the right radar apparatus 1R at the time of the signal SR (1)).
  • the position PR (1) of the receiving antenna R-atR (1) is the position PR (1) (0, 0).
  • the vehicle information processing unit 32 refers to the vehicle information imv (1) and the vehicle information imv (2), and sets the position PR (1) of the reception antenna R-atR (1) as the origin (0, 0).
  • the position PR (2) of the receiving antenna R-atR (2) in the coordinate system (x, y) is calculated.
  • the position PR of the receiving antenna R-atR may be calculated in a coordinate system (x, y) having an arbitrary point as the origin.
  • the vehicle information processing unit 32 determines that the host vehicle mv is traveling straight (for example, as described in FIG. 4), the position PR of the receiving antenna R-atR Each position may be calculated from the moving distance of the receiving antenna R-atR. That is, when the host vehicle mv is traveling straight, the vehicle information processing unit 32 may calculate the position PR using, for example, the travel distance included in the vehicle information imv.
  • the information storage unit 34 stores the reception signal SR and the position PR in association with each other temporarily. Specifically, in the information storage unit 34, the position PR (k) of the right radar device 1R when the radar signal processing unit 31 acquires the received signal SR (k) from the right radar device 1R is stored as a set. . More specifically, for example, the position PR of the right radar device 1R when the radar signal processing unit 31 acquires the received signal SR (2) from the right radar device 1R is stored in the information storage unit 34 at the position PR (2 ) Will be stored.
  • the information storage unit 34 moves the reception antenna R-atR from the reception signal (k) to the reception signal (k + 1).
  • the distance ⁇ d may be stored. That is, the information storage unit 34 stores, for example, the movement distance ⁇ d21 of the reception antenna R-atR from when the radar signal processing unit 31 acquires the reception signal (1) until the reception signal (2) is acquired. Good.
  • the radar signal processing unit 31 also acquires the reception signal SR (k) from the right radar device 1R. You may memorize
  • each part of the radar ECU 3 performs the processes of steps S11 to S17, so that the radar apparatus 1R when the radar signal processor 31 acquires the received signal SR (k) from the right radar apparatus 1R.
  • the position PR (k) can be stored in association with it.
  • the synthetic aperture processing unit 33 performs synthetic aperture processing using the received signal SR and the position PR (which may be the movement amount ⁇ d) stored in the information storage unit 34.
  • the synthetic aperture processing unit 33 may perform the synthetic aperture processing in consideration of the time interval when the radar signal processing unit 31 acquires the reception signal SR (k) from the right radar apparatus 1R.
  • the synthetic aperture processing unit 33 determines whether or not M or more reception signals SR stored in the information storage unit 34 are stored. Specifically, in the processing from step S18 onward, the synthetic aperture processing unit 33 uses the data stored in the information storage unit 34 (the received signal SR and the position PR (or the movement amount ⁇ d corresponding to the received signal SR). )) Is used to perform synthetic aperture processing. In other words, in the process of step S18, the synthetic aperture processing unit 33 determines whether or not data sufficient to allow the synthetic aperture processing unit 33 to perform the synthetic aperture processing is stored in the predetermined information storage unit 34. To do. Note that the number of reception signals SR (k) is one.
  • step S18 if the synthetic aperture processing unit 33 affirms the determination (YES), that is, if it is determined that M or more reception signals SR are stored in the information storage unit 34, the next step The process proceeds to S19. On the other hand, if the determination is negative (YES), that is, if it is determined that M or more reception signals SR are not stored in the information storage unit 34, the synthetic aperture processing unit 33 returns the process to step S11.
  • the synthetic aperture processing unit 33 uses the N received signals SR among the received signals SR stored in the information storage unit 34 to perform synthetic aperture processing. I do.
  • the process which the synthetic aperture process part 33 performs in the said step S19 is demonstrated using FIG.
  • each unit of the radar ECU 3 acquires the reception signal SR (1) from the reception antenna R-atR (1) for the first time after the processing of the flowchart is started. Then, as the host vehicle mv moves, the receiving antenna R-atR (1) moves with the receiving antenna R-atR (2) and the receiving antenna R-atR (3) as shown in FIG. It shall be.
  • the synthetic aperture processing unit 33 performs synthetic aperture processing on the received signal SR (1), the received signal SR (2), and the received signal (3). Will be described as an example.
  • the synthetic aperture processing unit 33 performs synthetic aperture on the reception signal SR obtained from the reception antenna R-atR between the position PR (1) and the position PR (3).
  • reception signals SR for example, data indicating amplitude and phase
  • the synthetic aperture processing unit 33 may perform the synthetic aperture processing based on the reception signal SR stored in the information storage unit 34 and the position PR corresponding to the reception signal SR.
  • the synthetic aperture processing unit 33 may perform the synthetic aperture processing of the received signal SR in consideration of the time interval obtained by the vehicle information processing unit 32 when the received signal SR is obtained. Specifically, the synthetic aperture processing unit 33 obtains the reception signal SR (3) from the reception signal SR (2), the time interval until the reception signal SR (2) is obtained from the reception signal SR (1). Based on the time interval until, for example, the synthetic aperture processing may be performed by combining the reception signal SR (1) and the reception signal SR (3) with the time received at the position PR (2). In general, the radar apparatus detects an object by irradiating an electromagnetic wave around the host vehicle mv and measuring a reflected wave from which the reflected wave returns.
  • the host vehicle mv is not limited to a case where the vehicle is traveling straight ahead, so that the reception signal SR received by the reception antenna may arrive late depending on the position. Therefore, the synthetic aperture processing unit 33 can more accurately perform the synthetic aperture processing on the reception signal SR in consideration of the time interval at which the reception signal SR is obtained in the synthetic aperture processing.
  • the host vehicle mv is not limited to traveling straight ahead.
  • the direction of the host vehicle mv (reception antenna R) at each position PR.
  • the direction of -atR) may also change. Therefore, the synthetic aperture processing unit 33 uses information indicating the direction of the host vehicle mv from which the reception signal SR calculated by the vehicle information processing unit 32 using the vehicle information imv is obtained, and the position where the reception signal is obtained. Based on this, the synthetic aperture processing of the received signal may be performed.
  • the vehicle information processing unit 32 obtains the received signal SR. What is necessary is just to calculate the direction of the own vehicle mv at the time of being given.
  • FIG. 7 is a diagram showing the result of the synthetic aperture processing using the received signal SR (1), the received signal (2), and the received signal (3). As shown in FIG. 7, by performing the synthetic aperture processing, even a radar having one receiving antenna can realize a radar having three receiving antennas.
  • a directivity pattern such as lobe B can be obtained by performing synthetic aperture processing in the B direction (front direction of the receiving antenna) in FIG.
  • a directivity pattern such as lobe C or lobe D can be obtained by performing synthetic aperture processing in the C direction or D direction in FIG. 7 (the left and right directions with respect to the front direction of the receiving antenna). That is, any directivity pattern of the lobe B, the lobe C, and the lobe D is thinner than the directivity pattern (lobe A) shown in FIG.
  • separation and detection of the target Tg1 and the target Tg2 shown in FIG. 7 can be performed.
  • the directivity of the receiving antenna is reduced, the target Tg1 and the target Tg2 that cannot be separated by the directivity of one receiving antenna (when the synthetic aperture processing is not performed) can be detected separately.
  • step S ⁇ b> 20 in FIG. 5 the synthetic aperture processing unit 33 determines whether or not the resolution is appropriate.
  • the case where the process of step S20 is affirmed is a case where the resolution is appropriate.
  • the synthetic aperture processing unit 33 advances the process to step S21.
  • the synthetic aperture processing unit 33 proceeds to step S22.
  • step S20 The case where the process of step S20 is denied is a case where the desired resolution is not obtained.
  • the synthetic aperture processing unit 33 adds L to N and repeats the step.
  • the process of S19 is performed.
  • the value of L is an arbitrary integer (1, 2, 3,).
  • step S20 specific processing performed by the synthetic aperture processing unit 33 in step S20 will be described.
  • the greater the number of reception signals SR used for synthetic aperture processing the higher the resolution in the azimuth direction.
  • the number of received signals SR used for the synthetic aperture processing is three as an example in step S19.
  • N increases in step S16, for example, a directional pattern thinner than lobe B can be obtained. (The same applies to lobe C and lobe D).
  • the synthetic aperture processing unit 33 first analyzes the reception signal SR (1) to the reception signal SR (3) and the transmission signal, The distance from the right radar apparatus 1R to the target and the azimuth of the target with respect to the right radar apparatus 1R are calculated. Then, the synthetic aperture processing unit 33 calculates the angle difference in the azimuth direction (for example, the B direction (front direction of the receiving antenna) in FIG. 7) of a plurality of reflection points at substantially the same distance.
  • the azimuth direction for example, the B direction (front direction of the receiving antenna) in FIG. 7
  • the synthetic aperture processing unit 33 can determine whether or not the resolution is appropriate.
  • the synthetic aperture processing unit 33 includes the reception signal SR (1) to the reception signal SR (3) and the transmission.
  • the synthetic aperture processing unit 33 analyzes the reception signal SR (1) to reception signal SR (3) and the transmission signal, and as a result, the intensity (peak sharpness) of the obtained reflected wave is compared with the desired peak sharpness. If the intensity distribution is dull or gentle (when the intensity distribution of the reflected wave has a gentle gradient), it can be determined that the resolution is not appropriate.
  • step S21 the synthetic aperture processing unit 33 outputs the distance from the right radar apparatus 1R to the target and the direction of the target with respect to the right radar apparatus 1R to the vehicle control ECU 4, and proceeds to the next step S23.
  • step S20 in FIG. 5 described above the synthetic aperture processing unit 33 determines whether or not the resolution is appropriate. If the desired resolution is not obtained, the number of data used for the synthetic aperture processing (that is, the received signal) Number) was used. However, a third example described below can also be used as a method for determining whether or not the resolution is appropriate.
  • the driver always operates the steering wheel, so there is often no constant velocity linear motion.
  • the synthetic aperture processing it is necessary to accurately obtain the position where the host vehicle mv has received the reflected wave. In other words, if the position where the vehicle mv receives the reflected wave is shifted and the synthetic aperture processing is performed at a position different from the position where the reflected wave would have been originally obtained, the desired resolution may not be obtained. .
  • the synthetic aperture processing unit 33 can also use the third example as a method for determining whether or not the resolution is appropriate.
  • a third example of a method for the synthetic aperture processing unit 33 to determine whether or not the resolution is appropriate will be described with reference to FIG.
  • FIG. 8 is a diagram showing an example of the trajectory of the host vehicle mv.
  • the vehicle information processing unit 32 performs the b ′ point, the c ′ point, and the d ′ point based on the vehicle information imv obtained from the vehicle information detection unit 2 with respect to the a ′ point.
  • the own vehicle mv can represent the trajectory of the own vehicle mv as shown by the broken line in FIG.
  • the synthetic aperture processing unit 33 assumes several randomly generated trajectories by, for example, the Monte Carlo method with reference to the trajectory of the host vehicle mv indicated by the broken line in FIG.
  • the synthetic aperture processing unit 33 assumes that the host vehicle mv has traveled on the randomly generated trajectory, and each of the position of the point a ′, the position of the point b ′, the position of the point c ′, and the position of the point d ′.
  • the received signal obtained at the position is subjected to a synthetic aperture process, and the locus having the best reflected wave intensity (peak sharpness) is defined as a true locus (simply referred to as a locus in FIG. 8). That is, the synthetic aperture processing unit 33 performs the synthetic aperture processing based on the positions of the points a ′, b, c, and d shown in FIG. The result is output to the vehicle control ECU 4.
  • the synthetic aperture processing unit 33 proceeds to step S22 when the determination in step S20 is denied in the above-described first method and second method.
  • the synthetic aperture processing unit 33 may increase the number of reception signals used for the synthetic aperture processing by proceeding to step S22 in the third method described above, or may proceed to step S21.
  • the synthetic aperture processing unit 33 may use one or more of the above-described first to third methods.
  • step S23 the synthetic aperture processing unit 33 determines whether to end the process. For example, the synthetic aperture processing unit 33 performs processing of the flowchart shown in FIG. 5 by the synthetic aperture processing unit 33 when the power of the radar ECU 3 is turned off (for example, when the ignition switch of the host vehicle mv is turned off). Exit. On the other hand, when the synthetic aperture processing unit 33 determines to continue the process, the process returns to step S11 and repeats the process.
  • FIG. 9 is a diagram showing an example of the surrounding environment of the host vehicle mv.
  • FIG. 9 for example, it is assumed that there is a utility pole 6, a pedestrian 7, and another vehicle 8 that is stopped around the host vehicle mv.
  • the directivity of one receiving antenna when the synthetic aperture processing is not performed for example, it is difficult to separately detect the target TgA, the target TgB, and the target TgC in FIG. 7. It was difficult to know that three objects such as the other vehicle 8 exist around the host vehicle mv.
  • the in-vehicle radar device can detect the target TgA and the target TgB separately in the scene shown in FIG. 9 as a result of the reduced directivity by performing the synthetic aperture processing. .
  • the number of received signals SR used for the synthetic aperture processing is increased (specifically, the value of N in step S19)
  • the in-vehicle radar device has one unit as shown in FIG.
  • the right corner and the left corner of the other vehicle 8 can be detected as the targets TgC and TgD.
  • the size of an object for example, the vehicle width of the other vehicle 8 shown in FIG. 9 that could not be obtained with a general in-vehicle radar device.
  • the value of N may be set in advance assuming a target to be separated and detected.
  • the right radar apparatus 1R has one receiving antenna. That is, specifically, the description has been made assuming the right-side radar device 1R (left-side radar device 1L) having the configuration shown in FIG.
  • the on-vehicle radar device according to the present embodiment increases the resolution in the azimuth direction by using the motion of the radar device 1 mounted on the host vehicle mv.
  • a general in-vehicle radar device has a plurality of receiving antennas as shown in FIG. 11 in order to achieve the highest possible azimuth direction resolution in the in-vehicle radar device alone, and includes DBF, MUSIC, and the like.
  • the on-vehicle radar device can increase the resolution in the azimuth direction even with a simple configuration including one receiving antenna, for example. Therefore, the circuit configuration can be simplified as compared with the above-described general in-vehicle radar device, and the cost can be reduced and the size can be reduced.
  • each unit of the radar ECU 3 performs the synthetic aperture processing using the reception signal SR
  • each part of the radar ECU 3 may perform the synthetic aperture processing using the received signal SL
  • the radar signal processing unit 31 acquires the received signal SL from the left radar device 1L.
  • the description of the aspect in which each part of the radar ECU 3 performs the synthetic aperture processing using the received signal SL is omitted because it can be analogized by the above description.
  • the right-side radar device 1R and the left-side radar device 1L have a predetermined position at the front part of the host vehicle mv (for example, a headlight or a direction indicator on the front right side (left side) of the host vehicle mv.
  • the position where the vehicle is mounted) the electromagnetic wave is irradiated toward the outside of the host vehicle mv, and the surroundings in front of the host vehicle mv are monitored.
  • the right-side radar device 1R and the left-side radar device 1L are located at predetermined positions on the rear part of the host vehicle mv (for example, a position where a headlight or a direction indicator on the rear right side (left side) of the host vehicle mv is mounted). It may be installed and irradiated with electromagnetic waves toward the outside of the host vehicle mv, and the surroundings behind the host vehicle mv may be monitored.
  • the in-vehicle radar device is useful for an in-vehicle radar device that detects an object that is mounted on a vehicle and that approaches from the periphery of the vehicle, which can obtain a high azimuth resolution with a simple configuration. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

 簡易な構成で、高い方位分解能を得ることのできる車載用レーダ装置を提供する。 車両に搭載される車載用レーダ装置であって、上記車両の周辺に電磁波を照射し、当該車両の周辺に存在する物体から反射された反射波によって得られる受信信号を出力する検出手段と、上記車両の車両情報を用いて、上記車両の移動に関する情報を算出する車両情報算出手段と、上記検出手段が異なる時点で出力した複数の上記受信信号を記憶する記憶手段と、上記車両の移動に関する情報に基づいて、上記車両が異なる位置でそれぞれ得られた上記受信信号の合成開口処理を行う合成開口処理手段とを備える。

Description

車載用レーダ装置
 本発明は、車載用レーダ装置に関し、より特定的には、車両に搭載され、当該車両の周辺から接近してくる物体を検出する車載用レーダ装置に関する。
 従来、自車両の前方や側方から接近してくる物体を検出するために、当該自車両に搭載される車載用物体検出装置が知られている。具体的には、上記車載用物体検出装置は、レーダ装置(例えば、ミリ波レーダ装置)にて上記自車両に接近してくる物体を検出する。そして、上記車載用物体検出装置は、当該検出結果に基づいて、自車両と物体とが衝突する危険性を判断する。さらに、上記車載用物体検出装置は、自車両と物体との衝突の危険性があると判断した場合など、上記自車両に備わっている各種装置を制御するものである。
 ところで、上述した車載用物体検出装置に用いられるレーダ装置では、自車両の前方や側方に存在する物体について、当該自車両に対する物体の位置、方位、速度などの情報を精度良く取得し、自車両と物体との位置関係を正確に把握することが要求される。しかしながら、一般的な車載用物体検出装置に用いられるレーダ装置では、物体の存在は知ることができても、物体の大きさ(例えば他車両の車幅)までは正確に判別することができないことが多い。その理由の1つとしては、レーダ装置のアンテナの開口面積を大きくできないことが挙げられる。なぜなら、電波を利用するレーダ装置の場合、角度方向の解像度はアンテナの開口面積に比例するからである。すなわち、車載用物体検出装置に用いられるレーダ装置は、車両に搭載することを想定しているため、レーダ装置の大きさに制約があり、アンテナの開口面積をあまり大きくできないからである。
 また、一般的に車載用物体検出装置において、当該車載用物体検出装置に用いられるレーダ装置の解像度を高めるために、当該レーダ装置内に複数の受信アンテナ素子を配置する方法がとられる。そして、一般的に車載用物体検出装置は、それぞれの受信アンテナで受信した信号に対してDBF(Digital Beam Forming)やMUSIC(MUltiple SIgnal Classification)などの処理負荷の高い信号処理方式を用いて不足する解像度を補っているのが現状である。しかしその一方で、少ないアンテナ素子を備えたレーダ装置であっても、あたかも大きな開口面積を有するアンテナを備えるレーダを実現する技術として、例えば、特許文献1に開示されている技術がある。
特開昭61-201180号公報
 上記特許文献1に開示されている技術は、航空機や人工衛生等の移動プラットホームに搭載したレーダ装置によって得られた反射波を合成開口することにより地上の目標物を抽出するものである。
 しかしながら、上記特許文献1に開示されている技術は、航空機や人工衛生等にレーダ装置を搭載することを想定しているため、当該技術をそのまま車両には適応することはできない。さらに、上記特許文献1に開示されている技術は、レーダ装置により得られた信号を処理することにより、地上の静止目標を画像データとして再生するものである。そのため、複雑な処理が必要になり、処理負荷が高くなってしまうといった問題もある。
 本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、簡易な構成で、高い方位分解能を得ることのできる車載用レーダ装置を提供することにある。
 本発明は、上記課題を解決するために以下に示すような特徴を有する。
 車両に搭載される車載用レーダ装置であって、上記車両の周辺に電磁波を照射し、当該車両の周辺に存在する物体から反射された反射波によって得られる受信信号を出力する検出手段と、上記車両の車両情報を用いて、上記車両の移動に関する情報を算出する車両情報算出手段と、上記検出手段が異なる時点で出力した複数の上記受信信号を記憶する記憶手段と、上記車両の移動に関する情報に基づいて、上記車両が異なる位置でそれぞれ得られた上記受信信号の合成開口処理を行う合成開口処理手段とを備える。
 本発明の第2の局面は、上記第1の局面において、上記車両情報算出手段は、上記車両の車両情報を用いて、上記受信信号がそれぞれ得られた位置を示す情報を上記車両の移動に関する情報として算出し、上記記憶手段は、上記受信信号が得られた位置を示す情報と共に当該受信信号を記憶し、上記合成開口処理手段は、上記受信信号が得られた位置に基づいて、当該受信信号の合成開口処理を行うことを特徴とする。
 本発明の第3の局面は、上記第2の局面において、上記車両情報算出手段は、上記受信信号が得られた時間情報に基づいて、上記受信信号が得られた時間間隔をさらに算出し、上記合成開口処理手段は、上記受信信号が得られた位置および上記受信信号が得られた時間間隔に基づいて、当該受信信号の合成開口処理を行うことを特徴とする。
 本発明に第4の局面は、上記第1または第3の局面において、上記車両情報算出手段は、上記車両の車両情報を用いて、さらに上記受信信号がそれぞれ得られた上記車両の向きを示す情報を算出し、上記記憶手段は、上記受信信号が得られた車両の向きを示す情報と共に当該受信信号を記憶し、上記合成開口処理手段は、上記受信信号が得られた車両の向きから得られる上記電磁波を照射した方向および上記受信信号が得られた位置に基づいて、当該受信信号の合成開口処理を行うことを特徴とする。
 本発明の第5の局面は、上記第1の局面において、上記車両情報算出手段は、上記車両の車両情報を用いて、上記車両が移動した軌跡を示す情報を上記車両の移動に関する情報として算出し、上記記憶手段は、上記車両が移動した軌跡を示す情報を第1の軌跡として上記受信信号と共に記憶し、上記合成開口処理手段は、上記合成開口処理手段は、上記第1の軌跡と上記受信信号とから第2の軌跡を算出し、当該第2の軌跡上の異なる位置で上記受信信号がそれぞれ得られたものと想定して当該受信信号の合成開口処理を行うことを特徴とする。
 本発明の第6の局面は、上記第1の局面において、上記合成開口処理手段は、上記記憶手段に記憶されている上記受信信号のうち、予め定められた数だけ用いて合成開口処理を行うことを特徴とする。
 本発明の第7の局面は、上記第1の局面において、上記合成開口処理手段は、合成開口処理に用いる上記受信信号の数を予め定められた条件に従い増減することを特徴とする。
 本発明の第8の局面は、上記第1の局面において、上記合成開口処理手段は、合成開口処理を行うことによって上記車両周辺の物体を検出する処理をさらに行うことを特徴とする。
 本発明の第9の局面は、上記第1の局面において、上記検出手段は、上記車両の前方および後方の少なくとも一方に搭載されることを特徴とする。
 本発明の第10の局面は、上記第8の局面において、上記合成開口処理手段が検出した物体と上記車両とが接触する危険性を判断する判定手段をさらに備えることを特徴とする。
 上記第1の局面によれば、車両の動きを利用して、レーダ装置から得られる受信信号を合成開口処理するので、(搭載する大きさに制約があるため)アンテナの開口面積を大きくすることができなくても、あたかも大きな開口面積を有するレーダ装置で受信したのと同等の特性を実現することができる。したがって、簡易な構成で、高い方位分解能を得ることのできる車載用レーダ装置を提供することができる。
 上記第2の局面によれば、受信信号と車両の位置を示す情報とが組として、記憶手段に記憶されるので、容易に合成開口処理を行うことができる。
 上記第3の局面によれば、合成開口処理手段は、合成開口処理において受信信号が得られた時間間隔を考慮することができるので、より正確に受信信号について合成開口処理を行うことができる。
 上記第4の局面によれば、車両の向きが変化しても、より正確に受信信号について合成開口処理を行うことができる。
 上記第5の局面によれば、例えば、ドライバーがハンドル操作を行って車両の動きが複雑になってもより正確に受信信号について合成開口処理を行うことができる。
 上記第6の局面によれば、分離検出したいターゲットを想定した合成開口処理が可能となる。つまり、例えば、駐車場の空きスペースに車両を駐車することを想定している場合など、より高い方位分解能が必要とされる場面では、合成開口処理に用いる受信信号の数を予めより多く設定することができる。
 上記第7の局面によれば、例えば、理論上の解像度が得られていない場合、合成開口処理に用いる受信信号の数を増やすことができる。
 上記第8の局面によれば、合成開口処理を行うことによって車両周辺の物体を検出する処理を行うので、例えば、車両周辺に存在する複数の物体を分離検出することが可能となる。
 上記第9の局面によれば、検出手段車両の前方および後方の少なくとも一方に搭載されるので、例えば、駐車場の空きスペースに車両を駐車する際など、車両周辺に存在する複数の物体を分離検出することができ、安全に駐車することができるようになる。
 上記第10の局面によれば、合成開口処理手段が検出した物体と車両とが接触する危険性を判断するので、例えば、車両のドライバーに対して注意喚起などの安全措置を講じることができる。
図1は、自車両mvの動きと、当該自車両mvに搭載されたレーダ装置の動きを示した図である。 図2は、レーダ装置1の前方搭載位置の一例を示す図である。 図3は、一実施形態に係る車載用レーダ装置を含むドライバーサポートシステムの構成の一例を示すブロック図である。 図4は、移動体に搭載されたレーダの受信アンテナの動きを説明するための図である。 図5は、一実施形態に係る車載用レーダ装置のレーダECU2の各部において行われるの処理の一例を示したフローチャートである。 図6は、合成開口処理の一例を説明するための図である。 図7は、受信信号SR(1)、受信信号(2)および受信信号(3)を用いて合成開口処理をした結果を示す図である。 図8は、自車両mvの軌跡の一例を示した図である。 図9は、自車両mvの周辺環境の一例を示した図である。 図10は、単一の受信系を有するレーダ装置の構成の一例を示した図である。 図11は、複数の受信系を有するレーダ装置の構成の一例を示した図である。 図12は、レーダ装置1の後方搭載位置の一例を示す図である。
 以下、図面を参照しつつ、本発明の一実施形態に係る車載用レーダ装置について説明する。なお、本実施形態では、当該車載用レーダ装置を含むドライバーサポートシステム(DSS(Driver Support System))が、車両(以下、自車両mvと称す)に搭載される場合を想定して説明する。
 まず、本実施形態に係る車載用レーダ装置の概要について、簡単に説明する。
 自車両mvに搭載されたレーダ装置は、自車両mvが移動(走行する)ことによって当該レーダ装置も移動する。図1は、自車両mvの動きと、当該自車両mvに搭載されたレーダ装置の動きを示した図である。なお、図1では、レーダ装置は、一例として、自車両mvの前部の左右に搭載されているものとする(図1に示す右側レーダ装置および左側レーダ装置)。
 ここで、例えば、図1に示すように、自車両mvが位置Aから位置Bまで、図1に示す矢印(自車両mvの進行方向)の方向に走行した場合を仮に想定する。このとき、自車両mvが位置Aから位置Bまで移動するまでの間に、例えば、右側レーダ装置から得られた複数の受信信号を合成(合成開口処理)すれば、あたかも大きな開口面積(アンテナ)を有する右側レーダ装置で受信したのと同等の特性を実現することができる。本実施形態に係る車載用レーダ装置は、具体的には、例えば、右側レーダ装置が異なる時点で出力した複数の受信信号を記憶しておき、自車両mvの移動に関する情報に基づいて、自車両mvが異なる位置でそれぞれ得られた受信信号について合成開口処理を行うものである。
 つまり、本実施形態に係る車載用レーダ装置は、自車両mvに搭載されているレーダ装置(アンテナ)の位置や向きが、自車両mvが移動(走行)することに伴って変化することに着目してなされたものである。すなわち、本実施形態に係る車載用レーダ装置は、ある区間(例えば図1に示したような位置Aから位置Bの区間)を動きながらレーダ装置により得られた複数の受信信号を合成開口処理することにより、レーダ装置の方位方向の解像度を高めるものである。
 なお、詳細は後述するが、自車両mvの移動に関する情報とは、受信信号が得られた位置を示す情報であったり、受信信号が得られた位置毎の移動距離であったりする。なお、本実施形態に係る車載用レーダ装置は、自車両mvの向き(つまりアンテナの向き)を示す情報や受信信号が得られた時間情報に基づいて、複数の受信信号を合成開口処理してもよい。
 図2は、本実施形態に係る車載用レーダ装置を含むドライバーサポートシステムの構成の一例を示すブロック図である。図2に示すように、ドライバーサポートシステムは、右側レーダ装置1R、左側レーダ装置1L、車両情報検出部2、レーダECU(Electrical Control Unit)3、車両制御ECU4、および安全装置5を備える。
 右側レーダ装置1Rは、当該右側レーダ装置1R内に受信アンテナR-atRと送信アンテナT-atRとを備える(図示せず)。そして、右側レーダ装置1Rは、自車両mvの所定の位置(例えば、自車両mvの前部右側の前照灯や方向指示器などが搭載されている位置)に設置され、自車両mvの外側に向けて電磁波を照射し、自車両mv前方の周囲を監視している。例えば、図3に示すように、右側レーダ装置1Rは、自車両mvの斜め右前方に向けて電磁波を照射し、当該右側レーダ装置1Rの検出範囲内(図3のAR)に存在するターゲット(例えば、他車両、自転車、歩行者、建造物など)を検出する。
 左側レーダ装置1Lは、当該左側レーダ装置1L内に受信アンテナR-atLと送信アンテナT-atLとを備える(図示せず)。そして、左側レーダ装置1Lは、自車両mvの所定の位置(例えば、自車両mvの前部左側の前照灯や方向指示器などが搭載されている位置)に設置され、自車両mvの外側に向けて電磁波を照射し、自車両mv前方の周囲を監視している。例えば、図3に示すように、左側レーダ装置1Lは、自車両mvの斜め左前方に向けて電磁波を照射し、当該左側レーダ装置1Lの検出範囲内(図3のAL)に存在するターゲット(例えば、他車両、自転車、歩行者、建造物など)を検出する。
 なお、以下の説明において、右側レーダ装置1Rと左側レーダ装置1Lとを特に区別する場合を除き、右側レーダ装置1Rおよび左側レーダ装置1Lを総称して、単にレーダ装置1と称する。
 車両情報検出部2は、自車両mvの車両情報を検出する。具体的には、車両情報検出部2は、自車両mvの速度を検出する速度センサ、自車両mvの移動距離を検出する走行距離距離センサ、自車両mvのヨーレートを検出するヨーレートセンサ、自車両mvの重心位置に作用する車幅方向の加速度を検出する横加速度センサ(例えば3軸Gセンサ)、自車両mvの舵角を検出する舵角センサ、およびロールセンサ、ロッチセンサ、現在時刻を報知する時計、などの各種センサ等から車両情報を取得する。なお、当該各種センサから出力される情報(具体的には、自車両mvの車速、移動距離、ヨーレート、横加速度、舵角、現在時刻等)を車両情報imvと称す。
 レーダECU3は、レーダ信号処理部31、車両情報処理部32、合成開口処理部33、情報記憶部34、およびインターフェース回路などを備える情報処理装置である。
 レーダ信号処理部31は、右側レーダ装置1Rから受信信号SRを取得する。同様に、レーダ信号処理部31は、左側レーダ装置1Lから受信信号SLを取得する。なお、レーダ装置1およびレーダ信号処理部31は、請求項に記載の検出手段の一例に相当する。
 車両情報処理部32は、上記車両情報検出部2から出力される車両情報imvに基づいて、レーダ装置1の動きを検出する。なお、車両情報処理部32は、請求項に記載の車両情報処理手段の一例に相当する。
 ここで、車両情報処理部32が行う処理について、図4を用いて簡単に説明する。図4は、移動体(例えば自車両mv)に搭載されたレーダ装置の受信アンテナの動きを説明するための図である。一般的に、レーダ装置は、当該レーダに備わった送信アンテナから電磁波を照射し、受信アンテナで反射波を受信している。また、上記レーダ装置が移動体(例えば自車両mv)に搭載されている場合、当該移動体の動きに伴ってレーダの受信アンテナも移動することになる。
 なお、図4で示した受信アンテナは、自車両mvに搭載された右側レーダ装置1Rの受信アンテナR-atRであると仮に想定し、また、右側レーダ装置1Rに備わっている受信アンテナR-atRおよび送信アンテナT-atRはそれぞれ1つであるとして、以下説明する。さらに自車両mvは図4の矢印Vmv方向に直進しているとして、以下説明する。
 図4に示すように、例えば、ある時刻において受信アンテナR-atRが、ある位置にあったとする(例えば、図4の受信アンテナR-atR(1)の位置PR(1))。一方、右側レーダ装置1Rは自車両mvに搭載されているので、自車両mvが当該自車両mvの移動方向(図4の矢印Vmv)に移動するに伴って、受信アンテナR-atR(1)も、図4の矢印方向VatRに移動することになる。つまり、図4に示すように、ある位置にある受信アンテナR-atR(1)は、自車両mvが移動(走行)するに伴って、受信アンテナR-atR(2)、受信アンテナR-atR(3)と移動することになる。言い換えると、ある位置にある受信アンテナR-atR(1)は、時間経過とともに、受信アンテナR-atR(2)、受信アンテナR-atR(3)と位置が変化することになる。
 そこで、車両情報処理部32は、受信アンテナR-atRの位置を上記車両情報検出部2から出力される車両情報imvに基づいて算出する。例えば、車両情報処理部32は、上記車両情報検出部2から出力される車両情報imvに基づいて受信アンテナR-atR(1)の位置PR(1)、受信アンテナR-atR(2)の位置PR(2)、受信アンテナR-atR(3)の位置PR(3)を算出する。
 車両情報処理部32が行う処理の一例をより具体的に説明すると、例えば、受信アンテナR-atR(1)の位置PR(1)を基準とした場合、車両情報処理部32は、上記車両情報imvに含まれる自車両mvの移動距離等から、受信アンテナR-atR(2)の位置PR(2)、受信アンテナR-atR(3)の位置PR(3)を算出することができる。つまり、車両情報処理部32は、上記車両情報imvに基づいて、ある位置にある受信アンテナR-atR(1)を基準して、受信アンテナR-atR(2)および受信アンテナR-atR(3)までの距離を算出することができる。言い換えると、車両情報処理部32は、受信アンテナR-atR(1)の移動量(自車両mvの移動にともなう受信アンテナR-atR(1)の位置の変化)を算出することができる。
 図3の説明に戻って、図3に示すように、合成開口処理部33は、後述する情報記憶部34に記憶されている情報に基づいて、合成開口処理を行う。なお、合成開口処理部33が行う合成開口処理の詳細については後述する。また、合成開口処理部33は、請求項に記載の合成開口処理手段の一例に相当する。
 情報記憶部34は、レーダ信号処理部31が、右側レーダ装置1Rから取得した受信信号SRを一時的に記憶する。また、情報記憶部34は、レーダ信号処理部31が、右側レーダ装置1Rから受信信号SRを取得したときの、当該右側レーダ装置1Rの位置PR(つまり、受信アンテナR-atRの位置PR)を一時的に記憶する。なお、このとき、情報記憶部34は、受信信号SRと、当該受信信号SRを取得したときの右側レーダ装置1Rの位置PRとを関連付けて一時的に記憶する。また、情報記憶部34は、請求項に記載の記憶手段の一例に相当する。
 ここで、上述の図4を用いて、右側レーダ装置1Rを例に具体的に説明すると、例えば、受信アンテナR-atR(1)の位置を位置PR(1)とし、当該位置PR(1)において受信アンテナR-atR(1)が受信した受信信号SRを受信信号SR(1)と設定する。このようにすれば、情報記憶部34には、位置PR(1)と受信信号SR(1)とが関連付けられて一時的に記憶される。同様に、例えば、受信アンテナR-atR(2)の位置を位置PR(2)とし、当該位置PR(2)において受信アンテナR-atR(2)が受信した受信信号SRを受信信号SR(2)と設定する。つまり、情報記憶部34に、位置PRと受信信号SRとを関連付けて、時系列的に一時的に記憶させておけば、右側レーダ装置1R(つまり、受信アンテナR-atR)が位置PR(k)のとき受信した受信信号SRは、受信信号SR(k)であることが分かる(k=1、2、3…K)。
 図3の説明に戻って、図3に示すように、車両制御ECU4は、レーダECU3から出力される情報(具体的には、自車両mvからターゲットまでの距離、自車両mvに対してターゲットの存在する方向、およびターゲットの相対速度)に基づいて、自車両mvとターゲットとが衝突(接触)する危険性があるか否かを判断する。そして、車両制御ECU4が、自車両mvとターゲットとが衝突(接触)する危険性があると判断した場合、安全装置5に指示し、後述する安全措置を講じる。
 安全装置5は、車両制御ECU4からの指示に従って、ターゲットとの衝突の危険性が高い場合には自車両mvのドライバーに対して注意喚起を行う。また、安全装置5は、ターゲットとの衝突が避けられない場合に、自車両mvの乗員の被害を低減する、乗員保護や衝突条件の緩和を行うための各種装置も含む。以下、安全装置5が行う動作、すなわち、ドライバーへの注意喚起、衝突危険回避動作、および衝突被害低減動作等を総称して安全措置と称する。
 次に、図5を参照して、本実施形態に係る車載用レーダ装置のレーダECU3の各部が行う動作の一例を説明する。なお、以下では、レーダ信号処理部31が、右側レーダ装置1Rから受信信号SRを取得した場合を想定して、レーダECU3の各部が当該受信信号SRを用いて合成開口処理を行う場合を例に説明する。また、上述したように、説明を簡単にするために、右側レーダ装置1Rに受信アンテナを1つ備えている場合を想定して、以下説明する。
 図5は、本実施形態に係る車載用レーダ装置のレーダECU3の各部において行われるの処理の一例を示したフローチャートである。なお、図5に示したフローチャートの処理は、レーダECU3内に備わった所定のプログラムを当該レーダECU3が実行することによって行われる。さらに、図5に示した処理を実行するためのプログラムは、例えばレーダECU3の記憶領域に予め格納されている。また、レーダECU3の電源がONになったとき(例えば、自車両mvのイグニッションスイッチがONされた場合等)当該レーダECU3によって図5に示したフローチャートの処理が実行される。
 図5のステップS11において、レーダ信号処理部31は、右側レーダ装置1Rから受信信号SRを取得し、当該受信信号SRを車両情報処理部32に出力し、次のステップS12に処理を進める。
 ステップS12において、車両情報処理部32は、車両情報検出部2から出力される車両情報imvを取得し、次のステップS13に処理を進める。
 ステップS13において、車両情報処理部32は、受信信号SR(k)および車両情報imv(k)を設定する(k=1、2、3…K)。具体的には、例えば、当該フローチャートの処理が開始されて、レーダECU3の各部が初めて受信信号SRおよび車両情報imvを取得した場合、車両情報処理部32は、車両情報検出部2から取得した車両情報imvを車両情報imv(1)とする。そして、同時に、車両情報処理部32は、レーダ信号処理部31から出力された受信信号SRを受信信号SR(1)とする。同様に例えば、当該フローチャートの処理が繰り返されて、レーダECU3の各部が再び受信信号SRおよび車両情報imvを取得した場合、車両情報処理部32は、車両情報imvおよび受信信号SRをそれぞれ、車両情報imv(2)および受信信号SR(2)とする。そして、車両情報処理部32は、当該ステップでの処理の後、次のステップS14に処理を進める。
 ステップS14において、情報記憶部34は、上記ステップS13において車両情報処理部32から出力される車両情報imv(k)および受信信号SR(k)を一時的に記憶する。例えば、当該フローチャートの処理が開始されることにより、情報記憶部34には、車両情報imv(1)および受信信号SR(1)が記憶され、当該フローチャートの処理が繰り返されることにより、車両情報imv(2)および受信信号SR(2)が記憶されることになる。すなわち、このようにすれば、レーダ信号処理部31が受信信号SRを右側レーダ装置1Rから取得したときの車両情報imvを関連付けることができる。その後、情報記憶部34は、次のステップS15に処理を進める。
 ステップS15において、車両情報処理部32は、車両情報imvは複数個記憶されているか否かを判断する。上述したように、当該フローチャートの処理が繰り返されることによって、情報記憶部34には、受信信号SR(1)、受信信号(2)、受信信号(3)…、それぞれと関連付けられ車両情報imv(1)、車両情報imv(2)、車両情報imv(3)…が記憶されている。そして、後述より明らかとなるが、次のステップS16において、右側レーダ装置1R(つまり、受信アンテナR-atR)の位置PRを算出するために、車両情報imvが複数個必要となる。なお、例えば、情報記憶部34に車両情報imv(1)のみが記憶されている場合、当該ステップの処理において、車両情報処理部32は、判断を否定し(NO)、ステップS11に処理を戻す。一方、例えば、情報記憶部34に車両情報imv(1)および車両情報imv(2)が記憶されている場合、当該ステップの処理において、車両情報処理部32は、判断を肯定し(YES)、次のステップS16に処理を進める。
 なお、車両情報処理部32は、情報記憶部34に車両情報imvが複数個記憶されている場合でも、当該複数の車両情報imvを参照した結果、自車両mvは移動していないと判断した場合は、ステップS15の処理を否定してもよい。そして、当該複数の車両情報imvおよび当該複数の車両情報imvに対応する受信信号SRを情報記憶部34から消去してもよい。また、車両情報処理部32は、情報記憶部34に車両情報imvが複数個記憶されている場合において、当該複数の車両情報imvを参照した結果、同じ時点であることを示す車両情報imvと当該車両情報imvに対応する受信信号SRが複数記憶されていた場合、重複する車両情報imvと当該車両情報imvに対応する受信信号SRとを消去して、ステップS16に進めてもよい。具体的には、例えば、情報記憶部34に、車両情報imv(5)と当該車両情報imv(5)に対応する受信信号SR(5)、車両情報imv(6)と当該車両情報imv(6)に対応する受信信号SR(6)が記憶されていた場合、車両情報処理部32は、車両情報imv(5)と車両情報imv(6)とを参照した結果、車両情報imv(5)が得られてから車両情報imv(6)が得られるまで、自車両mvは移動していないと判断した場合、車両情報imv(5)または車両情報imv(6)を消去してもよい。
 上記ステップS15の判断が肯定(YES)された次の処理であるステップS16において、車両情報処理部32は、右側レーダ装置1R(つまり、受信アンテナR-atR)の位置PR(k)を算出する。
 以下、上述した図4を再び参照しながら、当該ステップにおいて車両情報処理部32が行う処理について説明する。例えば、図4において、当該フローチャートの処理が開始されて、レーダ信号処理部31が右側レーダ装置1R(つまり受信アンテナR-atR(1))から初めて受信信号SR(つまり受信信号SR(1))を取得したと仮に想定する。なお、このときの受信アンテナR-atR(1)の位置を位置PR(1)とする。さらに、自車両mvが移動し、次に、レーダ信号処理部31が右側レーダ装置1R(つまり受信アンテナR-atR(2))から受信信号SR(つまり受信信号SR(2))を取得したと仮に想定する。なお、同様に、このときの受信アンテナR-atR(2)の位置を位置PR(2)とする。
 車両情報処理部32は、ステップS16において、右側レーダ装置1Rの位置PR(k)を算出、つまり上述の例では、受信アンテナR-atR(1)の位置PR(1)の算出する。例えば、当該ステップS16での処理の一例として、当該フローチャートの処理が開始されて、レーダ信号処理部31が右側レーダ装置1R(つまり受信アンテナR-atR(1))から初めて受信信号SR(つまり受信信号SR(1))ときの当該右側レーダ装置1Rの位置PR(1)を基準として、受信アンテナR-atR(1)の位置PR(1)を算出する。この場合、受信アンテナR-atR(1)の位置PR(1)は、位置PR(1)(0、0)となる。そして、車両情報処理部32は、車両情報imv(1)および車両情報imv(2)を参照して、受信アンテナR-atR(1)の位置PR(1)を原点(0、0)とする座標系(x、y)における受信アンテナR-atR(2)の位置PR(2)を算出する。また、受信アンテナR-atRの位置PRは任意の点を原点とする座標系(x、y)において当該位置PRを算出してもよい。このように、受信アンテナR-atRの位置PRをそれぞれ算出することによって、受信アンテナR-atRは、ある時点でどの位置にあるかを知ることができる。なお、車両情報処理部32は、車両情報imvを参照した結果、自車両mvは、(例えば、図4で説明したように)直進していると判断した場合、受信アンテナR-atRの位置PRをそれぞれの位置は、受信アンテナR-atRの移動距離から算出されてもよい。つまり、車両情報処理部32は、自車両mvが直進している場合、位置PRを、例えば、車両情報imvに含まれる移動距離を用いて算出してもよい。
 図5のフローチャートの説明に戻って、図5のステップS17において、情報記憶部34は、受信信号SRおよび位置PR(を示す情報)を関連付けて、一時的に記憶する。具体的には、情報記憶部34には、レーダ信号処理部31が受信信号SR(k)を右側レーダ装置1Rから取得したときの当該右側レーダ装置1Rの位置PR(k)を組として記憶する。より具体的に説明すると、例えば、レーダ信号処理部31が受信信号SR(2)を右側レーダ装置1Rから取得したときの当該右側レーダ装置1Rの位置PRは、情報記憶部34に位置PR(2)として記憶されることになる。また、上述したように、自車両mvが直進している場合、情報記憶部34は、受信信号(k)を取得してから受信信号(k+1)を取得するまでの受信アンテナR-atRの移動距離Δdを記憶してもよい。すなわち、情報記憶部34は、例えば、レーダ信号処理部31が受信信号(1)を取得してから受信信号(2)を取得するまでの受信アンテナR-atRの移動距離Δd21として記憶してもよい。なお、情報記憶部34は、受信信号SR、位置PR、移動距離Δdを情報記憶部34に記憶する際に、あわせてレーダ信号処理部31が受信信号SR(k)を右側レーダ装置1Rから取得した時間間隔を記憶してもよい。
 このように、レーダECU3の各部が、上記ステップS11~ステップS17の処理を行うことによって、レーダ信号処理部31が受信信号SR(k)を右側レーダ装置1Rから取得したときの当該レーダ装置1Rの位置PR(k)とを関連付けて記憶することができる。
 そして、ステップS18以降の処理において、合成開口処理部33は、情報記憶部34に記憶されている受信信号SRおよび位置PR(移動量Δdでもよい)を用いて合成開口処理を行う。なお、合成開口処理部33は、レーダ信号処理部31が受信信号SR(k)を右側レーダ装置1Rから取得した時間間隔を考慮して合成開口処理を行ってもよい。
 図5のステップS18において、合成開口処理部33は、情報記憶部34に記憶されている受信信号SRはM個以上記憶されているか否かを判断する。具体的には、当該ステップS18以降の処理において、合成開口処理部33は、情報記憶部34に記憶されているデータ(受信信号SRおよび、当該受信信号SRに対応する位置PR(または移動量Δd))を複数個用いて、合成開口処理を行う。言い換えると、当該ステップS18の処理において、合成開口処理部33が合成開口処理を行うことができるだけのデータが予め定められた情報記憶部34に記憶されているかを、当該合成開口処理部33が判断する。なお、個数とは、受信信号SR(k)を1個とする。
 そして、ステップS18の処理において、合成開口処理部33は、判断を肯定した場合(YES)、つまり、情報記憶部34に受信信号SRがM個以上記憶されていると判断した場合、次のステップS19に処理を進める。一方、合成開口処理部33は、判断を否定した場合(YES)、つまり、情報記憶部34に受信信号SRがM個以上記憶されていないと判断した場合、上記ステップS11に処理を戻す。
 上記ステップS18での判断が肯定された次のステップS19において、合成開口処理部33は、情報記憶部34に記憶されている受信信号SRのうち、N個の受信信号SRを用いて合成開口処理を行う。ここで、図6を用いて、当該ステップS19において合成開口処理部33が行う処理について説明する。また、以下の説明において、合成開口処理に用いる受信信号SRは3個(N=3)として説明する。なお、合成開口処理に用いるデータは3個(N=3)とした場合、上記ステップS18において、情報記憶部34にデータが3個以上記憶されている必要があるため、M≧3と設定しなければならない。また、後述より明らかとなるが、合成開口処理に用いる受信信号SRはN個にさらにL個加えて処理をする場合を想定している場合は、M≧(N+L)と設定すればよい。
 図6に示すように、例えば、レーダECU3の各部が、当該フローチャートの処理が開始されて、受信アンテナR-atR(1)から受信信号SR(1)を初めて取得したと仮に想定する。そして、受信アンテナR-atR(1)は、自車両mvが移動するに伴って、図6に示すように、受信アンテナR-atR(2)、受信アンテナR-atR(3)と移動しているものとする。ここで、上述したように、一例としてN=3しているので、合成開口処理部33は、受信信号SR(1)と受信信号SR(2)と受信信号(3)を合成開口処理する場合を例に説明する。つまり、合成開口処理部33は、位置PR(1)から位置PR(3)までの間に受信アンテナR-atRから得られた受信信号SRを合成開口する。なお、位置PR(1)から位置PR(3)までの間に受信アンテナR-atRが受信した受信信号SR(例えば、振幅や位相を示すデータ)は、それぞれの位置で記憶されている。したがって、合成開口処理部33は、情報記憶部34に記憶されている受信信号SRと当該受信信号SRに対応する位置PRに基づいて合成開口処理を行えばよい。
 なお、合成開口処理部33は、車両情報処理部32によって算出される、受信信号SRが得られた時間間隔を考慮し、当該受信信号SRの合成開口処理を行ってもよい。具体的には、合成開口処理部33は、受信信号SR(1)から受信信号SR(2)が得られたまでの時間間隔、受信信号SR(2)から受信信号SR(3)が得られたまでの時間間隔に基づいて、例えば、位置PR(2)で受信した時刻に受信信号SR(1)および受信信号SR(3)を合わせて、合成開口処理を行ってもよい。一般的に、レーダ装置は、自車両mvの周辺に電磁波を照射し、反射波の戻ってくる反射波を計測することで、物体を検出している。一方、一般的に自車両mvは直進的に進行している場合に限られないので、位置によっては、受信アンテナが受信する受信信号SRは遅れて到達することがある。そのため、合成開口処理部33は、合成開口処理において受信信号SRが得られた時間間隔を考慮すれば、より正確に受信信号SRについて合成開口処理を行うことができる。
 さらに、一般的に自車両mvは直進的に進行している場合に限られず、例えば自車両mvのドライバーがハンドル操作などを行うことにより、それぞれの位置PRで自車両mvの向き(受信アンテナR-atRの向き)も変わることも考えられる。そのため、合成開口処理部33は、車両情報imvを用いて車両情報処理部32によって算出される受信信号SRがそれぞれ得られた自車両mvの向きを示す情報と当該受信信号が得られた位置に基づいて、当該受信信号の合成開口処理を行えばよい。具体的には、車両情報imvに含まれる、例えば、自車両mvの舵角、ヨーレート、ロールセンサ、ロッチセンサ、3軸Gセンサ等を用いて、車両情報処理部32は、受信信号SRがそれぞれ得られた時点の自車両mvの向きを算出すればよい。
 図7は、受信信号SR(1)、受信信号(2)および受信信号(3)を用いて合成開口処理をした結果を示す図である。図7に示すように、合成開口処理を行うことにより、受信アンテナを1つ備えたレーダであっても、あたかも受信アンテナ3つを備えたレーダを実現することができる。
 より具体的に説明すると、例えば、図7のB方向(受信アンテナの正面方向)について合成開口処理を行うことによりローブBのような指向性パターンを得ることができる。また、例えば、図7のC方向やD方向(受信アンテナの正面方向に対して左右の方向)について合成開口処理を行うことによりローブCやローブDのような指向性パターンを得ることができる。つまり、ローブB、ローブC、およびローブDの何れの指向性パターンは、図6で示した指向性パターン(ローブA)と比べて細い。その結果、図7に示したターゲットTg1およびターゲットTg2の分離検出が可能となる。言い換えると、受信アンテナの指向性が細くなったことにより、(合成開口処理を行わない場合の)受信アンテナ1つの指向性では分離できなったターゲットTg1およびターゲットTg2を分離検出できるようになる。
 図5のフローチャートの説明に戻って、図5のステップS20において合成開口処理部33は、解像度は適切か否かを判断する。なお、当該ステップS20の処理が肯定される場合とは、解像度が適切であった場合である。この場合、合成開口処理部33は、合成開口処理部33は、判断を肯定した場合(YES)、ステップS21に処理を進める。一方、合成開口処理部33は、解像度が適切ではなかった場合、判断を否定した場合はステップS22に処理を進める。
 なお、当該ステップS20の処理が否定される場合とは、所望の解像度が得られていない場合であり、次のステップS22において、合成開口処理部33は、NにLだけ加算して、再度ステップS19の処理を行う。なおLの値は任意の整数(1、2、3・・)である。
 ここで、上記ステップS20において、合成開口処理部33が行う具体的な処理について説明する。一般的に、合成開口処理においては、合成開口処理に用いる受信信号SRの数を増やせば増やすほど、方位方向の解像度が高くなる。つまり、上記ステップS19において一例として合成開口処理に用いる受信信号SRは3個としたが、当該ステップS16においてNの値が大きくすればするほど、例えばローブBよりさらに細い指向性パターンが得られるようになる(ローブC、ローブDについても同様)。
 例えば、合成開口処理部33は、解像度は適切か否かを判断する方法の第1の例として、まず、受信信号SR(1)~受信信号SR(3)および送信信号を解析することにより、右側レーダ装置1Rからターゲットまでの距離および右側レーダ装置1Rに対するターゲットの方位を算出する。そして、合成開口処理部33は、ほぼ同一の距離にある複数の反射点の方位方向(例えば、図7のB方向(受信アンテナの正面方向))の角度差を演算する。一方、一般的に、合成開口処理に用いるデータの数と方位方向の解像度は比例関係にあるため、例えば、右側レーダ装置1Rからみて同一距離にある方位の異なる2つのターゲットが識別できる最小方位差(理論上の解像度)は予め計算することができる。これによって、合成開口処理部33は、解像度は適切か否かを判断することができる。
 また、例えば、合成開口処理部33は、解像度は適切か否かを判断する方法の第2の例として、合成開口処理部33は、受信信号SR(1)~受信信号SR(3)および送信信号を解析することにより、反射波の強度(ピークの鋭さ)を指標として、解像度は適切か否か、つまり、所望の解像度が得られているか否かを判断することもできる。例えば、合成開口処理部33は、受信信号SR(1)~受信信号SR(3)および送信信号を解析した結果、得られた反射波の強度(ピークの鋭さ)が所望するピークの鋭さと比べて強度分布が鈍っていたり、なだらかであった場合(反射波の強度分布の勾配がゆるやかであった場合)、解像度は適切ではないと判断することもできる。
 その後、ステップS21において、合成開口処理部33は、右側レーダ装置1Rからターゲットまでの距離および右側レーダ装置1Rに対するターゲットの方位を車両制御ECU4に出力し、次のステップS23に処理を進める。
 なお、上述の図5のステップS20において合成開口処理部33は、解像度は適切か否かを判断し、所望の解像度が得られなかった場合、合成開口処理に用いるデータの数(つまり受信信号の数)を増やす手法を用いた。しかし、解像度は適切か否かを判断する手法として、以下に説明する第3の例も用いることができる。
 一般的に、車両(例えば自車両mv)の場合、衛星や航空機などと比べて、例えば、ドライバーが常にハンドル操作を行っているため等速直線運動ではない場合が多い。また一方で、合成開口処理は、自車両mvが反射波を受信した位置を正確に求める必要がある。言い換えると、自車両mvが反射波を受信した位置がずれて、反射波が本来得られたであろう位置とは異なる位置で合成開口処理を行うと、所望の解像度が得られない場合がある。
 そこで、合成開口処理部33は、解像度は適切か否かを判断する手法として、第3の例も用いることができる。以下、図8を用いて、合成開口処理部33が解像度は適切か否かを判断する方法の第3の例を説明する。
 図8は、自車両mvの軌跡の一例を示した図である。図8に示すように、例えば、車両情報処理部32が、a’点を基準にして車両情報検出部2から得られた車両情報imvに基づいて、b’点、c’点およびd’点の位置を算出した場合、自車両mvは、図8の破線で示したような自車両mvの軌跡を表すことができる。合成開口処理部33は、図8の破線で示した自車両mvの軌跡を基準にして、例えば、モンテカルロ法などにより幾つかのランダムに生成した軌跡を仮定する。そして、合成開口処理部33は、上記ランダムに生成した軌跡を自車両mvが走行したものとして、a’点の位置、b’点の位置、c’点の位置、d’点の位置それぞれの位置で得られた受信信号を合成開口処理し、反射波の強度(ピークの鋭さ)が最も良好であった軌跡を真の軌跡(図8では単に軌跡と称した)とする。つまり、合成開口処理部33は、図8に示す、a’点の位置、b点の位置、c点の位置、d点の位置それぞれの位置に基づいて合成開口処理をしたものとして、当該処理結果を車両制御ECU4に出力する。
 なお、合成開口処理部33は、上述の第1の手法および第2の手法では、ステップS20での判断が否定された場合、ステップS22に処理を進めた。しかしながら、合成開口処理部33は、上述の第3の手法ではステップS22に処理を進めて合成開口処理に用いる受信信号を増やしてもよいし、ステップS21に進めてもよい。また、合成開口処理部33は、上述の第1~第3の手法を単独または複数用いてもよい。
 ステップS23において、合成開口処理部33は、処理を終了するか否かを判断する。例えば、合成開口処理部33は、レーダECU3の電源がOFFになったとき(例えば、自車両mvのイグニッションスイッチがOFFされた場合等)当該合成開口処理部33によって図5に示したフローチャートの処理を終了する。一方、合成開口処理部33は、処理を継続すると判断した場合、上記ステップS11に戻って処理を繰り返す。
 以上説明したように、本実施形態によれば、通常の車載用レーダ装置では得られない、高い方位方向の解像度が得られることができる。ここで、図9を用いてより具体的に説明する。図9は、自車両mvの周辺環境の一例を示した図である。図9に示すように、例えば、自車両mvの周辺に電柱6、歩行者7、および停車している他車両8があったとする。このような場面で、合成開口処理を行わない場合の受信アンテナ1つの指向性では、例えば、図9のターゲットTgAとターゲットTgBとターゲットTgCとを分離検出することは難しく、そのため電柱6、歩行者7、他車両8といった3つの物体が自車両mvの周辺に存在することを知ることは難しかった。しかしながら、本実施形態に係る車載用レーダ装置は、合成開口処理を行うことによって指向性が細くなった結果、図9に示したような場面で、ターゲットTgAおよびターゲットTgBを分離検出できるようになる。また、本実施形態に係る車載用レーダ装置は、合成開口処理に用いる受信信号SRの数を増やせば(具体的には、上記ステップS19のNの値)、図9に示すように、1台の他車両8の右角部および左角部をターゲットTgCおよびTgDとして検出できるようになる。その結果、一般的な車載用レーダ装置では得ることのできなかった物体の大きさ(例えば図9に示す他車両8の車幅)を検出できるようになる。なお、Nの値は、分離検出したいターゲットを想定して予め設定すればよい。
 なお、上述した例では、説明を簡単にするために、右側レーダ装置1Rに備わっている受信アンテナは1つであると仮に想定して、以下説明した。つまり、具体的には、図10に示すような構成を有する右側レーダ装置1R(左側レーダ装置1L)を想定して説明した。上述したように、本実施形態に係る車載用レーダ装置は、自車両mvに搭載されているレーダ装置1の動きを利用して方位方向の解像度を高めるものである。また、一般的な車載用レーダ装置は、当該車載用レーダ装置単体において、出来る限り高い方位方向の解像度を実現するために、図11に示すように、複数の受信アンテナを備え、DBF、MUSICなどの信号処理により方位方向の解像度を高めている。しかしながら、本実施形態に係る車載用レーダ装置は、図10に示すように、例えば、受信アンテナ1つを備えたシンプルな構成であっても方位方向の解像度を高めることができるようになる。そのため、上記の一般的な車載用レーダ装置に比べて回路構成を簡素化でき、コストの低減、小型化をも実現できるようになる。
 なお、上述では、右側レーダ装置1Rからレーダ信号処理部31が受信信号SRを取得した場合を想定して、レーダECU3の各部が当該受信信号SRを用いて合成開口処理を行う場合を例に説明した。しかしながら、左側レーダ装置1Lからレーダ信号処理部31が受信信号SLを取得した場合を想定して、レーダECU3の各部が当該受信信号SLを用いて合成開口処理を行ってもよいことは言うまでもない。なお、レーダECU3の各部が当該受信信号SLを用いて合成開口処理を行う態様についての説明は、上述の説明によって類推適応可能であるので省略する。
 さらに、上述の図2では、右側レーダ装置1Rおよび左側レーダ装置1Lは、自車両mv前部の所定の位置(例えば、自車両mvの前部右側(左側)の前照灯や方向指示器などが搭載されている位置)に設置され、自車両mvの外側に向けて電磁波を照射し、自車両mv前方の周囲を監視している態様を説明した。しかしながら、右側レーダ装置1Rおよび左側レーダ装置1Lは、自車両mv後部の所定の位置(例えば、自車両mvの後部右側(左側)の前照灯や方向指示器などが搭載されている位置)に設置し、自車両mvの外側に向けて電磁波を照射し、自車両mv後方の周囲を監視してもよい。
 例えば、図12に示すように、自車両mvが位置Cから位置Dまで、図12に示す矢印(自車両mvの進行方向)の方向に走行した場合、位置Cから位置Dまで移動するまでの間に、例えば、(後方の)レーダ装置1が受信した受信信号を合成(合成開口処理)すれば、あたかも大きな開口面積(アンテナ)を有するレーダ装置1で受信したのと同等の特性を実現することができる。
 以上、本発明を詳細に説明してきたが、上述の説明はあらゆる点において本発明の一例にすぎず、その範囲を限定しようとするものではない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。
 本発明に係る車載用レーダ装置は、簡易な構成で、高い方位分解能を得ることのできる、車両に搭載され、当該車両の周辺から接近してくる物体を検出する車載用レーダ装置等に有用である。
 1R…右側レーダ装置
 1L…左側レーダ装置
 2…車両情報検出部
 31…レーダ信号処理部
 32…車両情報処理部
 33…開口合成処理部
 34…情報記憶部
 4…車両制御ECU
 5…安全装置
 6…電柱
 7…歩行者
 8…他車両

Claims (10)

  1.  車両に搭載される車載用レーダ装置であって、
     前記車両の周辺に電磁波を照射し、当該車両の周辺に存在する物体から反射された反射波によって得られる受信信号を出力する検出手段と、
     前記車両の車両情報を用いて、前記車両の移動に関する情報を算出する車両情報算出手段と、
     前記検出手段が異なる時点で出力した複数の前記受信信号を記憶する記憶手段と、
     前記車両の移動に関する情報に基づいて、前記車両が異なる位置でそれぞれ得られた前記受信信号の合成開口処理を行う合成開口処理手段とを備える、車載用レーダ装置。
  2.  前記車両情報算出手段は、前記車両の車両情報を用いて、前記受信信号がそれぞれ得られた位置を示す情報を前記車両の移動に関する情報として算出し、
     前記記憶手段は、前記受信信号が得られた位置を示す情報と共に当該受信信号を記憶し、
     前記合成開口処理手段は、前記受信信号が得られた位置に基づいて、当該受信信号の合成開口処理を行うことを特徴とする、請求項1に記載の車載用レーダ装置。
  3.  前記車両情報算出手段は、前記受信信号が得られた時間情報に基づいて、前記受信信号が得られた時間間隔をさらに算出し、
     前記合成開口処理手段は、前記受信信号が得られた位置および前記受信信号が得られた時間間隔に基づいて、当該受信信号の合成開口処理を行うことを特徴とする、請求項2に記載の車載用レーダ装置。
  4.  前記車両情報算出手段は、前記車両の車両情報を用いて、さらに前記受信信号がそれぞれ得られた前記車両の向きを示す情報を算出し、
     前記記憶手段は、前記受信信号が得られた車両の向きを示す情報と共に当該受信信号を記憶し、
     前記合成開口処理手段は、前記受信信号が得られた車両の向きから得られる前記電磁波を照射した方向および前記受信信号が得られた位置に基づいて、当該受信信号の合成開口処理を行うことを特徴とする、請求項1または3に記載の車載用レーダ装置。
  5.  前記車両情報算出手段は、前記車両の車両情報を用いて、前記車両が移動した軌跡を示す情報を前記車両の移動に関する情報として算出し、
     前記記憶手段は、前記車両が移動した軌跡を示す情報を第1の軌跡として前記受信信号と共に記憶し、
     前記合成開口処理手段は、前記第1の軌跡と前記受信信号とから第2の軌跡を算出し、当該第2の軌跡上の異なる位置で前記受信信号がそれぞれ得られたものと想定して当該受信信号の合成開口処理を行うことを特徴とする、請求項1に記載の車載用レーダ装置。
  6.  前記合成開口処理手段は、前記記憶手段に記憶されている前記受信信号のうち、予め定められた数だけ用いて合成開口処理を行うことを特徴とする、請求項1に記載の車載用レーダ装置。
  7.  前記合成開口処理手段は、合成開口処理に用いる前記受信信号の数を予め定められた条件に従い増減することを特徴とする、請求項1に記載の車載用レーダ装置。
  8.  前記合成開口処理手段は、前記合成開口処理を行うことによって前記車両周辺の物体を検出する処理をさらに行うことを特徴とする、請求項1に記載の車載用レーダ装置。
  9.  前記検出手段は、前記車両の前方および後方の少なくとも一方に搭載されることを特徴とする、請求項1に記載の車載用レーダ装置。
  10.  前記合成開口処理手段が検出した物体と前記車両とが接触する危険性を判断する判定手段をさらに備えることを特徴とする、請求項7に記載の車載用レーダ装置。
PCT/JP2009/004862 2009-09-25 2009-09-25 車載用レーダ装置 WO2011036721A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/390,804 US8866664B2 (en) 2009-09-25 2009-09-25 Vehicle-mounted radar device
PCT/JP2009/004862 WO2011036721A1 (ja) 2009-09-25 2009-09-25 車載用レーダ装置
JP2011532803A JP5418794B2 (ja) 2009-09-25 2009-09-25 車載用レーダ装置
DE112009005279T DE112009005279T5 (de) 2009-09-25 2009-09-25 Fahrzeugseitige radarvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004862 WO2011036721A1 (ja) 2009-09-25 2009-09-25 車載用レーダ装置

Publications (1)

Publication Number Publication Date
WO2011036721A1 true WO2011036721A1 (ja) 2011-03-31

Family

ID=43795494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004862 WO2011036721A1 (ja) 2009-09-25 2009-09-25 車載用レーダ装置

Country Status (4)

Country Link
US (1) US8866664B2 (ja)
JP (1) JP5418794B2 (ja)
DE (1) DE112009005279T5 (ja)
WO (1) WO2011036721A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118406A (ja) * 2014-12-18 2016-06-30 パナソニックIpマネジメント株式会社 レーダ装置及びレーダ状態推定方法
WO2022249533A1 (ja) * 2021-05-25 2022-12-01 ソニーグループ株式会社 情報処理装置、キャリブレーションシステム及び情報処理方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037173A1 (ja) * 2013-09-12 2015-03-19 パナソニック株式会社 レーダ装置、車両及び移動体速度検出方法
FR3013849B1 (fr) 2013-11-26 2015-11-27 Thales Sa Radar anticollision, notamment pour un aeronef au roulage et systeme anticollision
DE102015201828A1 (de) 2015-02-03 2016-08-04 Conti Temic Microelectronic Gmbh Bestimmen von Höheninformationen von Objekten in der Umgebung eines Fahrzeugs
US9903945B2 (en) * 2015-02-04 2018-02-27 GM Global Technology Operations LLC Vehicle motion estimation enhancement with radar data
DE102015202230A1 (de) 2015-02-09 2016-08-11 Conti Temic Microelectronic Gmbh Fusionierte Eigenbewegungsberechnung für ein Fahrzeug
JP6421935B2 (ja) * 2015-03-31 2018-11-14 パナソニックIpマネジメント株式会社 車両移動推定装置および車両移動推定方法
JP6838658B2 (ja) * 2017-07-04 2021-03-03 日本電気株式会社 物体検知装置、物体検知方法、及びプログラム
DE102018124215A1 (de) * 2018-10-01 2020-04-02 Conti Temic Microelectronic Gmbh Verfahren zur Erfassung von Umgebungsinformationen mittels mehrerer Radarsensoren
CN112180372A (zh) * 2020-08-19 2021-01-05 福瑞泰克智能系统有限公司 一种基于双角雷达的目标检测方法、装置和雷达系统
EP4177635A1 (en) * 2021-11-05 2023-05-10 GM Cruise Holdings LLC Automotive radar for mapping and localization

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141812A (ja) * 1999-11-16 2001-05-25 Nec Corp Fm−cwレーダ装置
JP2007033258A (ja) * 2005-07-27 2007-02-08 Nec Corp 被観測対象物の観測方法及び装置
JP2007199085A (ja) * 2007-04-13 2007-08-09 Mitsubishi Electric Corp ミリ波レーダ装置
WO2008029038A1 (fr) * 2006-09-07 2008-03-13 Renault S.A.S. Dispositif et procede d'estimation des dimensions d'une place de parking, vehicule automobile comportant un tel dispositif
JP2009019952A (ja) * 2007-07-11 2009-01-29 Mitsubishi Electric Corp 移動目標検出装置
JP2009128019A (ja) * 2007-11-20 2009-06-11 Mitsubishi Electric Corp 合成開口レーダ画像再生装置、合成開口レーダ画像再生方法及び合成開口レーダ画像再生プログラム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE31254E (en) * 1978-08-28 1983-05-24 Sanders Associates, Inc. Self calibration of a LORAN-C navigation receiver
JPS61201180A (ja) 1985-03-05 1986-09-05 Nec Corp 合成開口レ−ダ画像処理装置
JPH0758331B2 (ja) 1987-06-08 1995-06-21 三菱電機株式会社 地中埋設物探査方式
US5057833A (en) * 1989-11-07 1991-10-15 Otl, Inc. Passive optical air traffic alert system
JPH09230039A (ja) 1996-02-27 1997-09-05 Mitsubishi Electric Corp 干渉型合成開口レーダ装置及び合成開口レーダ装置を用いた地形高さ測定方法
JP2856186B2 (ja) 1997-01-22 1999-02-10 日本電気株式会社 合成開口レーダシステム、その情報処理装置および方法
SE513210C2 (sv) * 1998-10-30 2000-07-31 Ericsson Telefon Ab L M Förfarande för att fastställa rörelsedata för objekt
US7068211B2 (en) * 2000-02-08 2006-06-27 Cambridge Consultants Limited Methods and apparatus for obtaining positional information
DE10225894A1 (de) 2002-06-11 2004-02-05 Robert Bosch Gmbh Verfahren zur Bestimmung eines Abstandes zwischen zwei im Wesentlichen in einer Ebene sich befindenden Gegenständen auf Basis synthetischer Apertur
US6992581B2 (en) * 2003-07-16 2006-01-31 Dmatek Ltd. Method and apparatus for attenuating of a broadcasting received signal for achieving a better distance resolution in monitoring systems
US7639171B2 (en) * 2007-09-27 2009-12-29 Delphi Technologies, Inc. Radar system and method of digital beamforming
WO2009110096A1 (ja) * 2008-03-07 2009-09-11 独立行政法人海洋研究開発機構 合成開口処理システム及び合成開口処理方法
US7948439B2 (en) * 2008-06-20 2011-05-24 Honeywell International Inc. Tracking of autonomous systems
US8462043B2 (en) * 2011-06-12 2013-06-11 John Belcea Method for detecting radar signals affected by interference

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141812A (ja) * 1999-11-16 2001-05-25 Nec Corp Fm−cwレーダ装置
JP2007033258A (ja) * 2005-07-27 2007-02-08 Nec Corp 被観測対象物の観測方法及び装置
WO2008029038A1 (fr) * 2006-09-07 2008-03-13 Renault S.A.S. Dispositif et procede d'estimation des dimensions d'une place de parking, vehicule automobile comportant un tel dispositif
JP2007199085A (ja) * 2007-04-13 2007-08-09 Mitsubishi Electric Corp ミリ波レーダ装置
JP2009019952A (ja) * 2007-07-11 2009-01-29 Mitsubishi Electric Corp 移動目標検出装置
JP2009128019A (ja) * 2007-11-20 2009-06-11 Mitsubishi Electric Corp 合成開口レーダ画像再生装置、合成開口レーダ画像再生方法及び合成開口レーダ画像再生プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118406A (ja) * 2014-12-18 2016-06-30 パナソニックIpマネジメント株式会社 レーダ装置及びレーダ状態推定方法
WO2022249533A1 (ja) * 2021-05-25 2022-12-01 ソニーグループ株式会社 情報処理装置、キャリブレーションシステム及び情報処理方法

Also Published As

Publication number Publication date
JPWO2011036721A1 (ja) 2013-02-14
US20120169532A1 (en) 2012-07-05
DE112009005279T5 (de) 2013-01-03
JP5418794B2 (ja) 2014-02-19
US8866664B2 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
JP5418794B2 (ja) 車載用レーダ装置
JP5505427B2 (ja) 衝突位置予測装置
JP5003674B2 (ja) レーダ装置および移動体
JP5316549B2 (ja) 物体認識装置および物体認識方法
JP5626224B2 (ja) 障害物検出装置
US20090237293A1 (en) Recognition system for vehicle
JP2014006123A (ja) 物体検出装置、情報処理装置、物体検出方法
JP6323064B2 (ja) 走行車線識別装置、車線変更支援装置、走行車線識別方法
Kishida et al. 79 GHz-band high-resolution millimeter-wave radar
EP3690484B1 (en) Radar device and target detection method
JP3733914B2 (ja) 車両の物体検出装置,車両の安全制御方法,自動車
EP2026096B1 (en) Object-detection device for vehicle
CN112654888A (zh) 电子设备、电子设备的控制方法、以及电子设备的控制程序
KR102172071B1 (ko) 물체 분류로 자동차의 주변 영역을 포착하는 방법, 제어 장치, 운전자 보조 시스템, 및 자동차
JP2014006122A (ja) 物体検出装置
WO2019116548A1 (ja) レーダ信号処理装置、レーダ装置およびレーダ信号処理方法
JP5495143B2 (ja) レーダ装置
JP6927132B2 (ja) 運転支援システムおよび方法
JP5590777B2 (ja) レーダ装置
JP2009282760A (ja) 車両制御装置
JP6943347B2 (ja) レーダ装置、車両および物体位置検出方法
EP3816668A1 (en) Vehicle control device and vehicle control method
JP2011247761A (ja) 物体検知装置
JP2008304210A (ja) 車両ホイール用ループアンテナおよびそれを用いた車両側方認識装置
WO2020070908A1 (ja) 検知装置、移動体システム、及び検知方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849752

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011532803

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13390804

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090052797

Country of ref document: DE

Ref document number: 112009005279

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849752

Country of ref document: EP

Kind code of ref document: A1