WO2011034083A1 - エンジン制御装置及びその制御方法 - Google Patents

エンジン制御装置及びその制御方法 Download PDF

Info

Publication number
WO2011034083A1
WO2011034083A1 PCT/JP2010/065927 JP2010065927W WO2011034083A1 WO 2011034083 A1 WO2011034083 A1 WO 2011034083A1 JP 2010065927 W JP2010065927 W JP 2010065927W WO 2011034083 A1 WO2011034083 A1 WO 2011034083A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
characteristic data
ecu
correction characteristic
written
Prior art date
Application number
PCT/JP2010/065927
Other languages
English (en)
French (fr)
Inventor
宏司 増田
康男 野間
西村 昭人
塩見 秀雄
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009216588A external-priority patent/JP5355326B2/ja
Priority claimed from JP2009216590A external-priority patent/JP5468339B2/ja
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2011034083A1 publication Critical patent/WO2011034083A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • F02D41/2435Methods of calibration characterised by the writing medium, e.g. bar code
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/11After-sales modification devices designed to be used to modify an engine afterwards
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control device mounted on a work vehicle such as a tractor and a control method therefor.
  • a common rail fuel injection device is used to supply high pressure fuel to the injector for each cylinder, and the injection pressure, injection timing, and injection period (injection amount) of the fuel from each injector are electronically controlled.
  • NOx nitrogen oxide
  • the ECU controls the operation of the common rail fuel injection device based on output characteristic data such as a map format and a function table format, a rotational speed and a torque.
  • the engine output is adjusted by the fuel injection amount corresponding to the operation amount of the shift lever or the like.
  • the output characteristic data corresponds to the work vehicle on which the engine is mounted, and usually only one type or a limited type is stored in the ECU. Therefore, the conventional configuration has a problem that even if the engine type is the same, for example, the ECU of the tractor engine is difficult to apply as the ECU of the backhoe engine (that is, the versatility of the ECU is low). It was. Such a problem exists not only in the common rail fuel injection device but also in the electronic governor type.
  • the present invention has a technical problem to solve the above problems.
  • the invention of claim 1 includes an engine, a fuel injection device that injects fuel into the engine, a detection unit that detects a driving state of the engine, detection information of the detection unit, and output characteristic data unique to the engine.
  • An area where data can be written is provided, and the area is shipped without writing the correction characteristic data, and when the engine is mounted on the work vehicle, the area conforms to the work characteristic of the work vehicle. The corrected characteristic data is written.
  • the invention of claim 2 includes an engine, a fuel injection device that injects fuel into the engine, a detection unit that detects a driving state of the engine, detection information of the detection unit, and output characteristic data unique to the engine.
  • a control method for an engine control device comprising an ECU for controlling the operation of the fuel injection device based on the ECU, in order to correct the operation of the fuel injection device separately from the output characteristic data
  • An area where writable correction characteristic data can be written is provided, and the area is shipped without writing the correction characteristic data, and when the engine is mounted on the work vehicle, the work vehicle is operated in the area.
  • the correction characteristic data suitable for the characteristic is written, and the ECU to which the correction characteristic data is written is based on the detection information of the detection means. By querying the corrected characteristic data, it is that operating the fuel injector based on the query results.
  • an engine a fuel injection device that injects fuel into the engine, a detection unit that detects a driving state of the engine, detection information of the detection unit, and output characteristic data unique to the engine
  • An ECU for controlling the operation of the fuel injection device based on the ECU, the ECU having a correction characteristic for correcting the operation of the fuel injection device separately from the output characteristic data
  • An area in which data can be written is provided, and further, a prohibiting means for prohibiting writing to the area is provided.
  • the correction characteristic data is not written in the area, and the engine is mounted on a work vehicle. In this case, the write prohibition state by the prohibiting means is released, and the correction characteristic data adapted to the work characteristics of the work vehicle is stored in the area. It is that is written.
  • an engine a fuel injection device that injects fuel into the engine, a detection unit that detects a driving state of the engine, detection information of the detection unit, and output characteristic data unique to the engine
  • An ECU for controlling the operation of the fuel injection device based on the ECU, the ECU having a correction characteristic for correcting the operation of the fuel injection device separately from the output characteristic data Data can be written, and the ECU to which the correction characteristic data is written inquires the correction characteristic data based on the detection information of the detection means, and determines the fuel injection device based on the inquiry result. It is configured to allow operation.
  • the ECU in which the correction characteristic data is written preferentially inquires about the correction characteristic data based on detection information of the detection means. It is configured.
  • the engine control device in the engine control device according to the fourth or fifth aspect, after the correction characteristic data is normally written, rewriting of the correction characteristic data is prohibited in terms of hardware or software. It is said that it is comprised.
  • the invention according to claim 7 is the engine control apparatus according to any one of claims 4 to 6, wherein each of the characteristic data is data indicating a relationship between a rotational speed and torque in the engine, and the correction characteristic data Is set so as to limit the torque with respect to a predetermined rotational speed as compared with the output characteristic data.
  • the invention according to claim 8 includes an engine, a fuel injection device that injects fuel into the engine, a detection unit that detects a driving state of the engine, detection information of the detection unit, and output characteristic data unique to the engine.
  • An ECU for controlling the operation of the fuel injection device based on the ECU the ECU is shipped with the output characteristic data written therein, and when the engine is mounted on a work vehicle, The correction characteristic data for correcting the operation of the fuel injection device can be written by an external tool connected to the ECU.
  • a plurality of the correction characteristic data are stored in the external tool in accordance with a work characteristic of a work vehicle.
  • the correction characteristic data to be read from the external tool is determined by the setting of the identification means associated with the correction characteristic data.
  • a tenth aspect of the present invention is the engine control device according to the eighth or ninth aspect, further comprising key means for prohibiting writing to the ECU in terms of hardware or software, and mounting the engine on a work vehicle.
  • the write prohibition state by the key means is released, and the correction characteristic data is written to the ECU using the external tool.
  • the correction characteristic data already written in the ECU is set so that reading and rewriting outside the ECU are impossible. It is protected and is configured to permit the reading and rewriting of the correction characteristic data only to a specific user in a state where the external tool is connected to the ECU.
  • the engine the fuel injection device that injects fuel into the engine, the detection means that detects the driving state of the engine, the detection information of the detection means, and the output characteristic data unique to the engine,
  • An ECU for controlling the operation of the fuel injection device based on the ECU, wherein the ECU includes a correction for correcting the operation of the fuel injection device separately from the output characteristic data
  • An area in which characteristic data can be written is provided, and the area is shipped without writing the correction characteristic data, and when the engine is mounted on a work vehicle, the work characteristic of the work vehicle is added to the area. Since the adapted correction characteristic data is written, if the engine model is the same, the output characteristic data stored in the ECU is not used. Can those be the same (common).
  • the correction characteristic data adapted to the work characteristic of the work vehicle can be written into the area later. Therefore, the engine manufacturer who manufactures the engine can improve the versatility of the ECU, and the engine purchase manufacturer has the effect of ensuring the suitability of the ECU for the work vehicle.
  • the invention of claim 2 includes an engine, a fuel injection device that injects fuel into the engine, a detection unit that detects a driving state of the engine, detection information of the detection unit, and output characteristic data unique to the engine.
  • a control method for an engine control device comprising an ECU for controlling the operation of the fuel injection device based on the ECU, in order to correct the operation of the fuel injection device separately from the output characteristic data
  • An area where writable correction characteristic data can be written is provided, and the area is shipped without writing the correction characteristic data, and when the engine is mounted on the work vehicle, the work vehicle is operated in the area.
  • the correction characteristic data suitable for the characteristic is written, and the ECU to which the correction characteristic data is written is based on the detection information of the detection means.
  • the correction characteristic data is inquired, and the fuel injection device is operated based on the inquiry result. Therefore, the correction characteristic data suitable for the work characteristic of the work vehicle on which the engine is mounted is obtained regardless of the initial setting of the engine. Used to control the engine. Therefore, it is easy for engine purchasers to set their own specifications, and even an engine purchased from the outside can be easily changed to the optimum setting for their specifications and provide an easy-to-use work vehicle. .
  • an engine a fuel injection device that injects fuel into the engine, a detection unit that detects a driving state of the engine, detection information of the detection unit, and output characteristic data unique to the engine
  • An ECU for controlling the operation of the fuel injection device based on the ECU, the ECU having a correction characteristic for correcting the operation of the fuel injection device separately from the output characteristic data
  • An area in which data can be written is provided, and further, a prohibiting means for prohibiting writing to the area is provided.
  • the correction characteristic data is not written in the area, and the engine is mounted on a work vehicle. In this case, the write prohibition state by the prohibiting means is released, and the correction characteristic data adapted to the work characteristics of the work vehicle is stored in the area. Since is written, even engine manufacturer, the write-rewrite or to the area, it is possible to prevent further extraction of the written content (reverse engineering). Therefore, there is an advantage that important information (the correction characteristic data) of the engine purchase manufacturer can be surely protected.
  • the engine the fuel injection device for injecting fuel into the engine, the detection means for detecting the driving state of the engine, the detection information of the detection means, and the output characteristic data unique to the engine
  • An ECU for controlling the operation of the fuel injection device based on the ECU, wherein the ECU includes a correction for correcting the operation of the fuel injection device separately from the output characteristic data
  • the ECU in which the corrected characteristic data is written inquires the corrected characteristic data based on detection information of the detecting means, and the fuel injection device based on the inquiry result If the engine model is the same, the output characteristic data stored in the ECU All of them can be the same (common), and different ECUs are designed and manufactured for each type of vehicle on which the engine is mounted and for each working machine (cultivator, plow, bucket, etc.) mounted on the work vehicle. There is no need to prepare various ECUs. Therefore, only one type of ECU needs to be designed and manufactured for one type of engine, and the versatility of the E
  • the ECU in which the correction characteristic data is written preferentially inquires about the correction characteristic data based on detection information of the detection means. Therefore, a specific device in which the correction characteristic data is written in the ECU (for example, a manufacturer other than an engine manufacturer such as a work vehicle manufacturer who purchases the engine) uses the output characteristic data that is initially set. There is no need to delete or change the control program. Therefore, the engine output characteristics data can be changed, but the engine is very easy to handle.
  • the engine control device in the engine control device according to the fourth or fifth aspect, after the correction characteristic data is normally written, rewriting of the correction characteristic data is prohibited in terms of hardware or software.
  • rewriting of the correction characteristic data is prohibited in terms of hardware or software.
  • each characteristic data is data indicating a relationship between a rotational speed and a torque in the engine, and the correction characteristic Since the data is set so as to limit the torque with respect to the predetermined rotational speed as compared with the output characteristic data, the fuel injection control using the correction characteristic data is more than the fuel injection control using the output characteristic data. Fuel injection is suppressed. Therefore, although it is possible to select the optimal fuel injection control for each vehicle type on which the engine is mounted or for each work machine mounted on the work vehicle, one type of ECU is used for one type of engine. This has the effect of dealing with exhaust gas regulations and taking environmental pollution into consideration.
  • the engine the fuel injection device for injecting fuel into the engine, the detection means for detecting the driving state of the engine, the detection information of the detection means, and the output characteristic data specific to the engine, And an ECU for controlling the operation of the fuel injection device based on the ECU, wherein the ECU is shipped with the output characteristic data written therein, and the engine is mounted on a work vehicle. Since the correction characteristic data for correcting the operation of the fuel injection device can be written by an external tool connected to the ECU, as in the case of claim 1, for the engine manufacturer, If the engine types are the same, the output characteristic data stored in the ECU can be made common.
  • An engine purchase manufacturer who mounts the engine on a work vehicle can easily write the correction characteristic data conforming to the company's specifications to the ECU later using the external tool. That is, there is an effect that the flexible setting of the ECU with respect to the fuel injection control can be easily and reliably ensured while the versatility of the ECU can be improved.
  • an engine purchase manufacturer when the same engine is purchased and the engine is mounted on a work vehicle, it is possible to deal with various applications by adding external products and writing to the ECU. It also has the effect of reducing the number of market supplements.
  • a plurality of the correction characteristic data are stored in the external tool in accordance with a work characteristic of a work vehicle. Since the correction characteristic data to be read from the external tool is determined by the setting of the identification means associated with each correction characteristic data, it is optimum for the ECU regardless of the type of vehicle or the work machine by only setting the identification means.
  • the correction characteristic data can be easily selected from the external tool. Therefore, it is easy for an engine purchase manufacturer to switch to their own specifications, and even an engine purchased from the outside can be easily changed to an optimal setting for their specifications. Also, for example, an engine purchase manufacturer having various applications can store engine characteristics suitable for various applications in the external tool in advance after purchasing the same engine, so when installing the engine on a work vehicle, There is also an effect that the engine characteristics can be easily changed.
  • key means for prohibiting writing to the ECU in terms of hardware or software is provided, and the engine is mounted on a work vehicle.
  • the write prohibition state by the key means is canceled and the correction characteristic data is written to the ECU using the external tool, unauthorized reading / writing with respect to the ECU can be easily and reliably performed. Can be prevented. Therefore, it is possible to protect important information (characteristic data) of the engine manufacturer and the engine purchase manufacturer.
  • the correction characteristic data already written in the ECU is set so that reading and rewriting outside the ECU is impossible. And is configured to allow only the specific user with the external tool connected to the ECU to read and rewrite the correction characteristic data. For example, using an unauthorized tool or the like Further, it is possible to prevent characteristic data different from the regular data from being written in the ECU or the regular data to be easily rewritten, thereby ensuring security. In addition, even the engine manufacturer cannot read, rewrite and extract (reverse engineer) the correction characteristic data, so that there is an advantage that important information (the correction characteristic data) of the engine purchase manufacturer can be reliably protected. .
  • the common rail system 117 includes a cylindrical common rail 120.
  • a fuel tank 118 is connected to the suction side of the fuel supply pump 116 via a fuel filter 121 and a low-pressure pipe 122.
  • the fuel in the fuel tank 118 is sucked into the fuel supply pump 116 via the fuel filter 121 and the low pressure pipe 122.
  • the fuel supply pump 116 of the embodiment is disposed in the vicinity of the intake manifold 73.
  • the cylinder block 75 is provided on the right side surface (the intake manifold 73 installation side) and below the intake manifold 73.
  • the common rail 120 is connected to the discharge side of the fuel supply pump 116 via a high-pressure pipe 123.
  • injectors 115 for four cylinders are connected to the common rail 120 via four fuel injection pipes 126, respectively.
  • the fuel in the fuel tank 118 is pumped to the common rail 120 by the fuel supply pump 116, and high-pressure fuel is stored in the common rail 120.
  • Each fuel injection valve 119 is controlled to open and close, whereby high-pressure fuel in the common rail 120 is injected from each injector 115 to each cylinder of the diesel engine 70. That is, by electronically controlling each fuel injection valve 119, the injection pressure, injection timing, and injection period (injection amount) of the fuel supplied from each injector 115 are controlled with high accuracy. Therefore, nitrogen oxide (NOx) from the diesel engine 70 can be reduced, and noise vibration of the diesel engine 70 can be reduced.
  • NOx nitrogen oxide
  • a fuel supply pump 116 is connected to the fuel tank 118 via a fuel return pipe 129.
  • a common rail return pipe 131 is connected to the end of the cylindrical common rail 120 in the longitudinal direction via a return pipe connector 130 that limits the pressure of fuel in the common rail 120. That is, surplus fuel from the fuel supply pump 116 and surplus fuel from the common rail 120 are collected in the fuel tank 118 via the fuel return pipe 129 and the common rail return pipe 131.
  • an ECU 11 integrated ECU
  • the ECU 11 is a CPU that executes various arithmetic processes and controls, an EEPROM that stores control programs and data, a flash memory, a RAM that temporarily stores control programs and data, a CAN controller, and an input / output An interface or the like is provided, and the diesel engine 70 or the vicinity thereof is disposed.
  • the number of fuel injections of the injector 115 the number of fuel injections during the fuel injection period of one stroke
  • an accelerator operating tool such as a throttle lever or an accelerator pedal.
  • a throttle position sensor 16 that detects the operation position (not shown), a turbo booster sensor 17 that detects the pressure of the turbocharger 100, an intake air temperature sensor 18 that detects the intake air temperature of the intake manifold 73, and a diesel engine 70
  • a cooling water temperature sensor 19 for detecting the temperature of the cooling water of It is connected.
  • electromagnetic solenoids of the fuel injection valves 119 for at least four cylinders are respectively connected. That is, the high-pressure fuel stored in the common rail 120 is injected from the fuel injection valve 119 in a plurality of times during one stroke while controlling the fuel injection pressure, the injection timing, the injection period, and the like, so that nitrogen oxide (NOx ), And complete combustion with reduced generation of soot and carbon dioxide is performed to improve fuel efficiency.
  • NOx nitrogen oxide
  • the ECU 11 (for example, storage means, flash memory, EEPROM, etc.) is provided with a manufacturing area U1 for the engine manufacturer and a purchasing area U2 for the engine purchase manufacturer. Yes.
  • an output characteristic map M1 (see FIG. 4) as output characteristic data indicating the relationship between the rotational speed N of the diesel engine 70 and the torque T (load) is stored in advance.
  • This kind of output characteristic map M1 is obtained by experiments or the like.
  • the output characteristic data is not limited to the map format as in the embodiment, and may be a function table, set data (data table), or the like. In the output characteristic map M1 shown in FIG.
  • the rotational speed N is taken on the horizontal axis and the torque T is taken on the vertical axis.
  • a solid line Tmx1 drawn in an upwardly convex curve is a maximum torque line representing the maximum torque for each rotational speed N.
  • the output characteristic maps M1 stored in the manufacturing side area U1 of the ECU 11 are all the same (common).
  • the ECU 11 basically obtains the torque T from the rotational speed N detected by the engine speed sensor 14 and the throttle position detected by the throttle position sensor 16, and uses the torque T and the output characteristic map M1 to perform target fuel injection.
  • the fuel injection control for calculating the amount R and operating the common rail system 117 based on the calculation result is executed.
  • the fuel injection amount is adjusted by adjusting the valve opening period of each fuel injection valve 119 and changing the injection period to each injector 115.
  • the purchase area U2 of the ECU 11 is an area in which data other than the manufacturer of the diesel engine 70 (for example, a vehicle manufacturer who purchases the diesel engine 70) writes data. Yes.
  • a correction characteristic map M2 as correction characteristic data for correcting the operation of the common rail system 117 is displayed. Is written after shipment (see FIG. 2).
  • the correction characteristic map M2 written later indicates the relationship between the rotational speed N of the diesel engine 70 and the torque T (load), similarly to the output characteristic map M1 of the ECU 11.
  • the rotational speed N is taken on the horizontal axis and the torque T is taken on the vertical axis.
  • a solid line Tmx2 drawn in an upward convex curve is a maximum torque line representing the maximum torque for each rotational speed N.
  • the correction characteristic data is not limited to the map format as in the embodiment, but may be a function table, set data (data table), or the like, as with the output characteristic data.
  • the correction characteristic map M2 (shown by a solid line in FIG. 5) is set so as to limit the torque T with respect to a predetermined rotational speed N, as compared with the output characteristic map M1 (shown by a broken line in FIG. 5). That is, the maximum torque at the same rotational speed N is smaller than that obtained from the correction characteristic map M2 than that obtained from the output characteristic map M1 (Tmx1 ⁇ Tmx2), so that the correction characteristic map M2 and the output characteristic map M1
  • the relationship is set (set so that the maximum torque line Tmx2 on the modified characteristic map M2 side is positioned inside (lower side) the maximum torque line Tmx1 on the output characteristic map M1 side).
  • the correction characteristic map M2 stored in the purchase-side area U2 of the ECU 11 is a work machine (cultivator that is mounted on the work vehicle or for each vehicle type on which the diesel engine 70 is mounted. , Plows, buckets, etc.).
  • a work machine cultivator that is mounted on the work vehicle or for each vehicle type on which the diesel engine 70 is mounted. , Plows, buckets, etc.
  • As an example of the setting of the correction characteristic map M2 for example, in order to suppress the engine stall with respect to work with large load fluctuations, output characteristics for obtaining a high torque over a wide range of rotational speeds, or for work with small load fluctuations.
  • output characteristics that reduce rotation fluctuation due to load fluctuations in order to increase work efficiency, and output characteristics that reduce rotation speed before connection in order to reduce the shock of connection to clutch connection work. Etc. are considered.
  • the ECU 11 in which the correction characteristic map M2 is written in the purchase side area U2 preferentially inquires the correction characteristic map M2 instead of the output characteristic map M1, and determines the torque T based on the detected values of the engine speed sensor 14 and the throttle position sensor 16. Is calculated to obtain the target fuel injection amount R, and the common rail system 117 is operated based on the inquiry calculation result (performed execution of the corrected fuel injection control using the corrected characteristic map M2 is permitted) ( (See FIG. 1).
  • the limit torque value is calculated from the detection values of the engine speed sensor 14 and the throttle position sensor 16, the output characteristic data, and the correction characteristic data. And the target fuel injection amount R is obtained, and the common rail system 117 is operated based on the calculation result (so that the torque T with respect to the predetermined rotational speed N is limited).
  • selection means for setting whether or not to use the modified characteristic map M2 may be referred to as selection means for alternatively selecting each of the characteristic maps M1 and M2).
  • selection means the structure selected with the jumper pin provided in ECU11 or the selection switch provided in the cabin of the working vehicle can be considered.
  • the characteristic maps M1 and M2 may be selected by a control signal from a main unit ECU (another ECU) provided in the work vehicle.
  • the engine control apparatus of the embodiment writes the output characteristic map M1 in the manufacturing side area U1 of the ECU 11 and does not write the correction characteristic map M2 in the purchase side area U2.
  • the purchase-side area U2 is set to be writable / rewritable only by the engine purchase manufacturer and not writable / rewritable by the engine manufacturer by the hardware or software prohibition means as described above.
  • a correction characteristic map M2 adapted to the work characteristics of the work vehicle is written.
  • FIG. 6 is a flowchart showing a process of writing / rewriting to the purchase area U2 as an example of the prohibiting means.
  • the writing / rewriting process is performed not by the engine manufacturer but by the engine purchase manufacturer.
  • the engine purchase manufacturer first writes the correction characteristic map M2 in the purchase-side area U2 of the ECU 11, for example, a manufacturer ID (unique information) unique to the engine purchase manufacturer is written together.
  • the manufacturer ID is set so as not to be overwritten, and is deleted only when the purchase area U2 is initialized.
  • step S31: YES it is determined whether or not the manufacturer ID has already been written in the purchase area U2.
  • Step S32 If the manufacturer ID is not written (S32: NO), the manufacturer ID and the correction characteristic map M2 are written in the purchase area U2 (step S33).
  • the manufacturer ID has been written (S32: YES)
  • the purchase side area U2 is entered.
  • Writing / rewriting is permitted, and only the new correction characteristic map M2 from the writing tool is overwritten (step S35). If they do not match (S34: NO), writing / rewriting to the purchase-side area U2 is prohibited (step S36), and the process ends.
  • the ECU 11 of the embodiment inquires the correction characteristic map M2 preferentially and detects the engine speed sensor 14 and the throttle position sensor 16.
  • the torque T is calculated from the value to obtain the target fuel injection amount R, and the common rail system 117 is operated based on the inquiry calculation result.
  • the ECU 11 determines which characteristic map is to be selected (step S1). In the embodiment, it is determined whether or not the correction characteristic map M2 is written in the purchase side area U2.
  • step S2 When the output characteristic map M1 is selected (without writing), the detected values of the engine speed sensor 14 and the throttle position sensor 16 are read at a predetermined timing (appropriately every time) (step S2), and then the ECU 11 has its own output.
  • the characteristic map M1 is inquired, and the target fuel injection amount R is calculated by obtaining the torque T from the rotational speed N and the throttle position read earlier (step S3).
  • the common rail system 117 is operated based on the target fuel injection amount R (step S4). Thereafter, if the power application key switch (not shown) is in the on state (S5: YES), the process returns to step S2 to continue the fuel injection control using the output characteristic map M1.
  • step S6 When the correction characteristic map M2 is selected (with writing), the detection values of the engine speed sensor 14 and the throttle position sensor 16 are read at a predetermined timing (step S6), and then the ECU 11 corrects the correction characteristic map in the purchase area U2. M2 is inquired, a torque T (limit torque value) is obtained from the rotational speed N and throttle position read earlier, and a target fuel injection amount R is calculated (step S7). Then, the common rail system 117 is operated based on the target fuel injection amount R (step S8). Thereafter, if the key switch for power supply (not shown) is in the on state (S9: YES), the process returns to step S6 and the corrected fuel injection control using the corrected characteristic map M2 is continued.
  • T limit torque value
  • the ECU 11 includes an ECU 11 that controls the operation of the fuel injection device 117 based on detection information of the detection means 14 and 16 and output characteristic data M1 unique to the engine 70.
  • the ECU 11 includes: In addition to the output characteristic data M1, there is provided an area U2 in which correction characteristic data M2 for correcting the operation of the fuel injection device 117 can be written, and the correction characteristic data M2 is not written in the area U2.
  • the area U2 conforms to the work characteristics of the work vehicle.
  • the long type of engine 70 are the same, can be output characteristic data M1 stored in the ECU11 to those either identical (common). Further, for an engine purchase manufacturer who mounts the engine 70 on a work vehicle, the correction characteristic data M2 adapted to the work characteristic of the work vehicle can be written to the area U2 later. Therefore, it is possible to improve the versatility of the ECU for an engine manufacturer that manufactures the engine 70, and to ensure compatibility of the ECU with the work vehicle for an engine purchase manufacturer.
  • the engine 70, the fuel injection device 117 for injecting fuel into the engine 70, and the detection means 14 and 16 for detecting the driving state of the engine 70 A control method for an engine control device comprising an ECU 11 for controlling the operation of the fuel injection device 117 based on detection information of the detection means 14 and 16 and output characteristic data M1 unique to the engine 70, In addition to the output characteristic data M1, the ECU 11 is provided with an area U2 in which correction characteristic data M2 for correcting the operation of the fuel injection device 117 can be written.
  • the area U2 includes the correction characteristic data.
  • the corrected characteristic data M2 adapted to the business characteristics is written, and the ECU 11 to which the corrected characteristic data M2 is written inquires the corrected characteristic data M2 based on the detection information of the detection means 14 and 16, and the inquiry Since the fuel injection device 117 is operated based on the result, the engine 70 is used by using the correction characteristic data M2 adapted to the work characteristics of the work vehicle on which the engine 70 is mounted regardless of the initial setting of the engine 70. Can be controlled. Therefore, it is easy for the engine purchase manufacturer to set to the company's specifications, and even the engine 70 purchased from the outside can be easily changed to the optimum setting for the company's use and provide an easy-to-use work vehicle. Play.
  • the ECU 11 includes an ECU 11 that controls the operation of the fuel injection device 117 based on detection information of the detection means 14 and 16 and output characteristic data M1 unique to the engine 70.
  • the ECU 11 includes: In addition to the output characteristic data M1, an area U2 in which correction characteristic data M2 for correcting the operation of the fuel injection device 117 can be written is provided, and a prohibition unit for prohibiting writing to the area U2 is provided. In the area U2, the modified characteristic data M2 is shipped without being written, and the engine 70 is used as a work vehicle.
  • the area U2 since the write prohibition state by the prohibiting means is released and the correction characteristic data M2 adapted to the work characteristics of the work vehicle is written in the area U2, even if it is an engine manufacturer, the area It is possible to disable writing / rewriting to U2 and extraction (reverse engineering) of written contents. Therefore, there is an advantage that important information (the correction characteristic data M2) of the engine purchase manufacturer can be reliably protected.
  • the ECU 11 includes an ECU 11 that controls the operation of the fuel injection device 117 based on detection information of the detection means 14 and 16 and output characteristic data M1 unique to the engine 70.
  • the ECU 11 includes: Apart from the output characteristic data M1, it is possible to write correction characteristic data M2 for correcting the operation of the fuel injection device 117, and the ECU 11 in which the correction characteristic data M2 has been written is used for the detection.
  • the corrected characteristic data M2 is inquired based on the detection information of the means 14, 16, and the fuel injection device 11 is inquired based on the inquiry result.
  • the output characteristic data M1 stored in the ECU 11 can be the same (common), and the engine 70 can be operated. It is necessary to design and manufacture different ECUs 11 for each type of vehicle on which the 70 is mounted and for each work machine (cultivator, plow, bucket, etc.) mounted on the work vehicle 201 to prepare a wide variety of ECUs 11. There is no. Therefore, only one type of ECU 11 needs to be designed and manufactured for one type of engine 70, and the versatility of the ECU 11 can be greatly improved.
  • the ECU 11 in which the correction characteristic data M2 is written is configured to preferentially inquire the correction characteristic data M2 based on detection information of the detection means 14 and 16. Therefore, the specific data (for example, other than the engine manufacturer such as the work vehicle manufacturer who purchases the engine 70) in which the correction characteristic data M2 is written in the ECU 11 is the output characteristic data M1 that is initially set. There is no need to delete each one or change the control program. Therefore, while the output characteristic data M1 of the engine 70 can be changed, the handleability of the engine 70 is very good.
  • the ECU 11 is configured to prohibit the rewriting of the correction characteristic data M2 in terms of hardware or software after the correction characteristic data M2 is normally written. It is possible to prevent the modified specific data M2 from being easily rewritten by using, for example, an unauthorized tool other than the specific one in which the modified characteristic data M2 is written. This is highly effective in terms of security after the modification specific data M2 is written.
  • the characteristic data M1 and M2 are data indicating the relationship between the rotational speed N and the torque T in the engine 70, and the correction characteristic data M2 is the output characteristic. Since it is set to limit the torque T with respect to the predetermined rotational speed N as compared with the data M1, the fuel injection control using the correction characteristic data M2 is more fuel than the fuel injection control using the output characteristic data M1. Injection is suppressed. Therefore, the optimal fuel injection control can be selected for each vehicle type on which the engine 70 is mounted or for each work machine mounted on the work vehicle 201, but for the one-type engine 70, there is one type.
  • the ECU 11 can cope with exhaust gas regulations and consider environmental pollution.
  • the selection means for selecting the respective characteristic data M1, M2 since the selection means for selecting the respective characteristic data M1, M2 is provided, the characteristic data M1, M2 can be switched, and the fuel injection control desired by the user can be performed. There is an effect that it is possible to easily respond to the condition in detail.
  • the correction characteristic map (correction characteristic data) is not limited to one type as shown in FIG. 6, but is attached to each vehicle type on which the diesel engine 70 is mounted or to a work vehicle as shown in FIG.
  • a plurality of types may be stored corresponding to each work machine (cultivator, plow, bucket, etc.).
  • each of the correction characteristic maps M2 and M3 may be selected by a jumper pin provided in the ECU 11 or a selection switch provided in the cabin of the work vehicle. You may comprise so that the correction characteristic map M2, M3 corresponding to the said working machine may be selected by mounting
  • the structure which selects each characteristic map M2 and M3 with the control signal from this machine ECU (separate ECU) provided in the working vehicle may be sufficient.
  • the correction characteristic data is not limited to the above-described map format M2, M3, function table, or the like.
  • the torque limit stored in the purchase area U2 is used.
  • the rate Dr is also possible to employ the rate Dr as correction characteristic data (see FIGS. 9 and 10).
  • the control flow shown in FIG. 10 is basically the same as that in FIG. 7, but when calculating the target fuel injection amount R, the ECU 11 calculates the torque in the purchase area U2.
  • the limit rate Dr is inquired, and an operation based on the rotational speed N and the throttle position, the output characteristic map M1, and the torque limit rate Dr is executed.
  • the manufacturing side area U1 and the purchasing side area U2 are not separated, and those other than the manufacturer of the diesel engine 70 (for example, the diesel engine 70).
  • Vehicle manufacturer, etc. can write data different from the output characteristic map M1 shown in FIG. 4 using an external tool 24 such as a microcomputer.
  • an external tool 24 such as a microcomputer.
  • a correction characteristic map M2 or M3 as correction characteristic data for correcting the operation of the common rail system 117 is displayed on the ECU 11 by a person other than the manufacturer of the diesel engine 70 using the external tool 24. 'Will be written.
  • the correction characteristic maps M2 and M3 written later indicate the relationship between the rotational speed N of the diesel engine 70 and the torque T (load), similarly to the output characteristic map M1 of the ECU 11 ′.
  • a plurality of correction characteristic maps M2 and M3 are stored in the external tool 24 in accordance with the work characteristics of the work vehicle on which the diesel engine 70 is mounted. That is, the correction characteristic maps M2 and M3 are provided in a plurality of types and external tools 24 corresponding to each vehicle type on which the diesel engine 70 is mounted and each work machine (cultivator, plow, bucket, etc.) mounted on the work vehicle. I remember it.
  • the setting of the correction characteristic maps M2 and M3 for example, in order to suppress the engine stall with respect to work with large load fluctuations, output characteristics for obtaining high torque over a wide range of rotational speeds, and load fluctuations are small. In order to increase the work efficiency for the work, the output characteristics were made to reduce the rotation fluctuation due to the load fluctuation, and the rotation speed was lowered before the connection in order to reduce the shock of the connection for the clutch connection work. The output characteristics can be considered.
  • the ECU11 ' is comprised so that the correction characteristic map M2, M3 read from the external tool 24 may be determined by the setting of the identification means 25 linked
  • the identification means 25 for selecting each of the correction characteristic maps M2 and M3 may be, for example, a jumper pin provided in the ECU 11 ′ or a selection switch provided in the cabin of the work vehicle.
  • the structure which selects the correction characteristic map M2, M3 corresponding to the said working machine by mounting a working machine on a working vehicle may be sufficient.
  • a configuration in which each of the characteristic maps M2 and M3 is selected by a control signal from the main unit ECU (another ECU) of the work vehicle can also function as the identification unit 25.
  • the ECU 11 ′ can specify the correction characteristic maps M2 and M3 to be installed when the external tool 24 is connected.
  • the engine control apparatus of the embodiment is shipped from the engine manufacturer with the output characteristic map M1 written in the ECU 11 ′.
  • correction characteristic maps M2 and M3 adapted to the work characteristics of the work vehicle can be written in the ECU 11 ′.
  • the correction characteristic map M2 is written into the ECU 11 'using an external tool 24 such as a microcomputer connected to the ECU 11' via a communication terminal line. Reading / writing by the external tool 24 is executed as long as key information K (for example, a password, encryption key / decryption key, etc.) as key means on the external tool 24 side does not match key means (key information K) on the ECU 11 ′ side.
  • key information K for example, a password, encryption key / decryption key, etc.
  • the output characteristic data M1 is protected by a setting in which reading and rewriting outside the ECU 11 ′ are impossible unless the key information K on the external tool 24 side and the ECU 11 ′ side match.
  • the correction characteristic data M2 and M3 are also protected by settings that cannot be read out and rewritten outside the ECU 11 ′.
  • only the engine purchase manufacturer (specific user) is allowed to read and rewrite the correction characteristic data M2 and M3 with the external tool 24 connected to the ECU 11 ′.
  • a software method such as the above-described key collation method may be used, or a hardware method such as a writing prohibition method or a seal seal on a flexible disk may be used.
  • FIG. 14 is a flowchart showing an access process to the ECU 11 ′.
  • the access process is performed not only by the engine manufacturer but also by the engine purchase manufacturer.
  • the engine manufacturer writes key information K as key means together when writing the output characteristic map M1 in the ECU 11 ′.
  • the key information K is set so as not to be overwritten, and is deleted only when the ECU 11 'is initialized.
  • a maker ID unique information
  • the manufacturer ID is set so that it cannot be overwritten, and is deleted only when the ECU 11 'is initialized.
  • step S131: YES when the ECU 11 ′ receives a write request signal from the external tool 24 (step S131: YES), the ECU 11 ′ receives the identification signal K sent from the external tool 24 together with the write request signal. Then, it is determined whether or not it matches the key information K stored in itself (step S132). If they do not match (S132: NO), reading / writing to the ECU 11 'is prohibited (step S137), and the process ends. If they match (S132: YES), it is then determined whether or not the manufacturer ID has already been written in the ECU 11 '(step S133).
  • the correction characteristic data M2 or M3 specified corresponding to the identification means 25 and the manufacturer ID are written in the ECU 11 '(step S134).
  • the manufacturer ID has already been written (S133: YES)
  • only when the written manufacturer ID matches the manufacturer ID sent from the external tool 24 (S135: YES)
  • the read / Only the corrected characteristic data M2 or M3 specified corresponding to the identification means 25 is read from the external tool 24 and written in the ECU 11 ′ (step S136). If they do not match (S135: NO), reading / writing to the ECU 11 'is prohibited (step S137), and the process ends.
  • the ECU 11 ′ in which the correction characteristic map M 2 or M 3 is written calculates the torque T based on the detected values of the engine speed sensor 14 and the throttle position sensor 16, the output characteristic map M 1, and the correction characteristic map M 2 or M 3.
  • the fuel injection amount R is obtained, and the common rail system 117 is operated based on the calculation result (so as to limit the torque T with respect to the predetermined rotational speed N).
  • the limit torque value is calculated from the detection values of the engine speed sensor 14 and the throttle position sensor 16, the output characteristic data, and the correction characteristic data.
  • the target fuel injection amount R is obtained, and the common rail system 117 is operated based on the calculation result (so that the torque T with respect to the predetermined rotational speed N is limited).
  • the ECU 11 ′ first determines the setting of the identification means 25 (step S101). If the setting of the identification means 25 corresponds to “no writing” in the correction characteristic map (S101: NO), the detection values of the engine speed sensor 14 and the throttle position sensor 16 are read at a predetermined timing (appropriately every time).
  • Step S102 the ECU 11 ′ refers to the output characteristic map M1 that the ECU 11 ′ has, calculates the torque T from the rotation speed N and the throttle position read earlier, and calculates the target fuel injection amount R (Step S103). ). Then, the common rail system 117 is operated based on the target fuel injection amount R (step S104). Thereafter, if the key switch for power supply (not shown) is in the on state (S105: YES), the process returns to step S102 and the fuel injection control using the output characteristic map M1 is continued.
  • step S101 if the setting of the identification means 25 corresponds to “with writing” in the correction characteristic map M2 (S101: YES), the detected values of the engine speed sensor 14 and the throttle position sensor 16 are set at predetermined timings (as appropriate). Then, the ECU 11 refers to the output characteristic map M1 and the correction characteristic map M2 to obtain the torque T from the rotation speed N and the throttle position read earlier, and (torque The limited target fuel injection amount R is calculated (step S107). Then, the common rail system 117 is operated based on the target fuel injection amount R whose torque is limited (step S108). Thereafter, if the key switch for power supply (not shown) is in the on state (S109: YES), the process returns to step S5 and the corrected fuel injection control that also refers to the corrected characteristic map M2 is continued.
  • the engine 70 the fuel injection device 117 that injects fuel into the engine 70, detection means 14 and 16 that detect the driving state of the engine 70,
  • An engine control device including an ECU 11 ′ that controls the operation of the fuel injection device 117 based on detection information of the detection means 14 and 16 and output characteristic data M1 unique to the engine 70, the ECU 11 ′ A correction for correcting the operation of the fuel injection device 117 by the external tool 24 connected to the ECU 11 ′ when the engine 70 is mounted on a work vehicle when the output characteristic data M1 is written.
  • the engine 70 Since the characteristic data M2 and M3 can be written, for the engine manufacturer, the engine 70 If the formula is the same, the possible to those of both the output characteristic data M1 stored in the ECU 11 'same (common). Further, an engine purchase manufacturer who mounts the engine 70 on a work vehicle can easily write the correction characteristic data M2 and M3 conforming to his / her specifications into the ECU 11 ′ later using the external tool 24. In other words, while the versatility of the ECU 11 ′ can be improved, the flexible setting of the ECU 11 ′ for fuel injection control can be easily and reliably ensured.
  • a plurality of the correction characteristic data M2 and M3 are stored in the external tool 24 in accordance with the work characteristics of the work vehicle on which the engine 70 is mounted.
  • the ECU 11 ' determines the correction characteristic data to be read from the external tool 24 according to the setting of the identification means 25 associated with each of the correction characteristic data M2 and M3.
  • the optimum correction characteristic data for the ECU 11 ′ can be easily selected from the external tool 24. Therefore, it is easy for the engine purchase manufacturer to switch to the company's specifications, and even the engine 70 purchased from the outside can be easily changed to the optimum setting for the company's specifications.
  • an engine purchase manufacturer having various applications can purchase the same engine 70 and store engine characteristics suitable for various applications in the external tool 24 in advance. There is also an effect that the engine characteristics can be easily changed at the time of mounting.
  • the correction characteristic data M2 and M3 written in the ECU 11 ′ are protected by a setting that cannot be read out and rewritten outside the ECU 11 ′.
  • Is configured to permit only the specific user to read and rewrite the modified characteristic data M2 and M3 while the external tool 24 is connected to the regular tool. Therefore, it is possible to prevent characteristic data different from the above from being written in the ECU 11 'without permission or to easily rewrite the regular data M1 to M3, thereby ensuring security.
  • even the engine manufacturer cannot read, rewrite, and extract (reverse engineering) the correction characteristic data M2 and M3, so the important information (the correction characteristic data M2 and M3) of the engine purchase manufacturer is surely obtained. There is a merit that can be protected.
  • the diesel engine 70 which describes the overall structure of the diesel engine 70, is a four-cylinder type, and is arranged on the left side surface of the cylinder head 72 in the diesel engine 70.
  • An exhaust manifold 71 is disposed.
  • An intake manifold 73 is disposed on the right side surface of the cylinder head 72.
  • the cylinder head 72 is mounted on a cylinder block 75 in which a crankshaft 74 and a piston (not shown) are built. Front and rear end portions of the crankshaft 74 are protruded from both front and rear side surfaces of the cylinder block 75, respectively.
  • a cooling fan 76 is provided on the front side of the cylinder block 75. The rotational force is transmitted from the front end side of the crankshaft 74 to the cooling fan 76 via the V belt 77.
  • a flywheel housing 78 is fixed to the rear surface of the cylinder block 75.
  • a flywheel 79 is disposed in the flywheel housing 78.
  • the flywheel 79 is pivotally supported on the rear end side of the crankshaft 74.
  • the flywheel 79 is configured to rotate integrally with the crankshaft 74.
  • the drive unit of the tractor 201 is configured to extract the power of the diesel engine 70 via the flywheel 79.
  • An oil pan 81 is disposed on the lower surface of the cylinder block 75.
  • Engine leg mounting portions 82 are respectively provided on the left and right side surfaces of the cylinder block 75 and the left and right side surfaces of the flywheel housing 78. Each engine leg mounting portion 82 is bolted to an engine leg 83 having vibration-proof rubber.
  • the diesel engine 70 is supported in an anti-vibration manner on the engine support chassis 84 of the tractor 201 via the engine legs 83.
  • an air cleaner (not shown) is provided on the inlet side of the intake manifold 73 via a collector 92 constituting an EGR device 91 (exhaust gas recirculation device). Connected. The outside air removed and purified by the air cleaner 88 is sent to the intake manifold 73 through the collector 92 of the EGR device 91 and supplied to each cylinder of the diesel engine 70.
  • EGR device 91 exhaust gas recirculation device
  • the EGR device 91 generates recirculated exhaust gas (EGR gas from the exhaust manifold 71) and fresh air (external air from the air cleaner) of the diesel engine 70.
  • a collector (EGR main body case) 92 that is mixed and supplied to the intake manifold 73, a recirculation exhaust gas pipe 95 connected to the exhaust manifold 71 via an EGR cooler 94, and a collector 92 communicated with the recirculation exhaust gas pipe 95.
  • EGR valve 96 is provided.
  • the turbocharger 100 is attached to the left side surface of the cylinder head 72.
  • the turbocharger 100 includes a turbine case 101 with a turbine wheel (not shown) and a compressor case 102 with a blower wheel (not shown).
  • An exhaust manifold 71 is connected to the exhaust gas intake pipe 105 of the turbine case 101.
  • a tail pipe is connected to the exhaust gas discharge pipe 103 of the turbine case 101 via a muffler or a diesel particulate filter. That is, the exhaust gas discharged from each cylinder of the diesel engine 70 to the exhaust manifold 71 is discharged from the tail pipe to the outside via the turbocharger 100 and the like.
  • the air intake side of the air cleaner is connected to the air intake side of the compressor case 102 via the air supply pipe 104.
  • An intake manifold 73 is connected to the supply / discharge side of the compressor case 102 via a supercharging pipe 108.
  • the outside air removed by the air cleaner is supplied from the compressor case 102 to each cylinder of the diesel engine 70 through the supercharging pipe 108.
  • a tractor 201 as a work vehicle supports a traveling machine body 202 with a pair of left and right rear wheels 204 as well as a pair of left and right front wheels 203, and a diesel engine 70 mounted on a front portion of the traveling machine body 202 supports the rear wheels 204 and By driving the front wheel 203, it is configured to travel forward and backward.
  • the diesel engine 70 mounted on the front part of the traveling machine body 202 is covered with a bonnet 206.
  • a cabin 207 is installed on the upper surface of the traveling machine body 202.
  • a steering seat 208 on which an operator sits and a steering handle 209 having a round handle shape as steering means positioned in front of the steering seat 208 are provided inside the cabin 207.
  • a steering angle (steering angle) of the left and right front wheels 203 changes according to the amount of operation.
  • a step 210 for an operator to board is provided at the bottom of the cabin 207.
  • the ECU 11 or 11 '(integrated ECU) is arranged.
  • the traveling aircraft body 202 includes an engine frame 214 having a front bumper 212 and a front axle case 213, and left and right aircraft frames 216 that are detachably connected to the rear portion of the engine frame 214 by fastening bolts. Composed.
  • the front wheel 203 is attached via a front axle case 213 mounted so as to protrude outward from the outer surface of the engine frame 214.
  • a transmission case 217 is connected to the rear part of the body frame 216 for appropriately shifting the output from the diesel engine 70 and transmitting the output to the rear wheel 204 (front wheel 203).
  • the rear wheel 204 is attached to the mission case 217 via a rear axle case (not shown) mounted so as to protrude outward from the outer surface of the mission case 217.
  • a hydraulic working machine lifting mechanism 220 for lifting and lowering a working machine (not shown) such as a tiller or a plow is attachable and detachable. It is attached.
  • the work machine is connected to the rear part of the mission case 217 via a lower link 221 and a top link 222 so as to be movable up and down.
  • a PTO shaft 223 for driving the work machine is provided on the rear side surface of the mission case 217.
  • the rotational power of the diesel engine 70 is transmitted from the rear surface side of the diesel engine 70 to the front surface side of the transmission case 217 via the crankshaft 74, the flywheel 79, and the like.
  • the rotational power of the diesel engine 70 is transmitted to the transmission case 217, and then the rotational power of the diesel engine 70 is appropriately shifted by the hydraulic continuously variable transmission or the traveling auxiliary transmission gear mechanism of the transmission case 217 to obtain a differential gear mechanism or the like.
  • the driving force is transmitted from the mission case 217 to the rear wheel 204 via the transmission.
  • the rotation of the diesel engine 70 that is appropriately shifted by the traveling auxiliary transmission gear mechanism is transmitted from the transmission case 217 to the front wheel 203 via the differential gear mechanism of the front axle case 213 and the like.
  • the present invention is not limited to the above-described embodiment, and can be embodied in various forms.
  • the present invention is not limited to an engine control device for an engine mounted on a tractor, but can also be applied as an engine control device for an engine mounted on a farm work machine such as a combine or rice transplanter or a special work vehicle such as a wheel loader. is there.
  • the fuel injection device is not limited to a common rail type, but may be an electronic governor type.
  • the configuration of each unit is not limited to the illustrated embodiment, and various modifications can be made without departing from the spirit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 本願発明は、1型式のエンジン70に対するECU11の汎用性を向上させたエンジン制御装置を提供することを目的としている。本願発明のエンジン制御装置は、エンジン70と、前記エンジン70に燃料を噴射する燃料噴射装置117と、前記エンジン70の駆動状態を検出する検出手段14,16と、前記検出手段14,16の検出情報と前記エンジン70固有の出力特性データM1とに基づいて前記燃料噴射装置117の作動を制御するECU11とを備える。前記ECU11には、前記出力特性データM1とは別に、前記燃料噴射装置117の作動を修正するための修正特性データM2を書き込み可能なエリアU2を設ける。前記エリアU2には前記修正特性データM2を書き込まない状態で出荷され、前記エンジン70を作業車両に搭載する際に、前記エリアU2に前記作業車両の作業特性に適合した前記修正特性データM2が書き込まれる。

Description

エンジン制御装置及びその制御方法
 本願発明は、例えばトラクタのような作業車両に搭載されるエンジン制御装置及びその制御方法に関するものである。
 近年のエンジンにおいては、コモンレール式燃料噴射装置を利用して、各気筒に対するインジェクタに高圧燃料を供給し、各インジェクタからの燃料の噴射圧力、噴射時期、噴射期間(噴射量)を電子制御することによって、エンジンから排出される窒素酸化物(NOx)の低減や、エンジンの騒音振動の低減を図るという技術が知られている(特許文献1等参照)。
特開平10-9033号公報
 ところで、この種のエンジンを搭載したトラクタ等の作業車両では、ECUが例えばマップ形式や関数表形式等の出力特性データ、回転速度及びトルクに基づいてコモンレール式燃料噴射装置の作動を制御することにより、変速レバー等の操作量に応じた燃料噴射量にてエンジン出力を調節している。出力特性データとは、エンジンが搭載される作業車両に対応したものであり、通常、ECUに1種類又は限られた種類だけ記憶させている。このため、前記従来の構成では、エンジンの型式が同じであっても、例えばトラクタ用エンジンのECUを、バックホウ用エンジンのECUとして適用し難い(すなわち、ECUの汎用性が低い)という問題があった。なお、かかる問題は、コモンレール式の燃料噴射装置だけでなく、電子ガバナ式の場合も存在していた。
 そこで、本願発明は、上記の問題点を解消することを技術的課題とするものである。
 請求項1の発明は、エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能なエリアが設けられており、前記エリアには前記修正特性データを書き込まない状態で出荷され、前記エンジンを作業車両に搭載する際に、前記エリアに前記作業車両の作業特性に適合した前記修正特性データが書き込まれるというものである。
 請求項2の発明は、エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置の制御方法であって、前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能なエリアが設けられており、前記エリアには前記修正特性データを書き込まない状態で出荷され、前記エンジンを作業車両に搭載する際に、前記エリアに前記作業車両の作業特性に適合した前記修正特性データが書き込まれ、前記修正特性データが書き込まれた前記ECUは、前記検出手段の検出情報に基づき前記修正特性データを照会して、前記照会結果に基づき前記燃料噴射装置を作動させるというものである。
 請求項3の発明は、エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能なエリアが設けられており、更に前記エリアに書き込みを禁止する禁止手段を備えており、前記エリアには前記修正特性データを書き込まない状態で出荷され、前記エンジンを作業車両に搭載する際には、前記禁止手段による書き込み禁止状態が解除され、前記エリアに前記作業車両の作業特性に適合した前記修正特性データが書き込まれるというものである。
 請求項4の発明は、エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込むことが可能になっており、前記修正特性データが書き込まれた前記ECUは、前記検出手段の検出情報に基づき前記修正特性データを照会して、前記照会結果に基づき前記燃料噴射装置を作動させることを許容するように構成されているというものである。
 請求項5の発明は、請求項4に記載したエンジン制御装置において、前記修正特性データが書き込まれた前記ECUは、前記検出手段の検出情報に基づき前記修正特性データを優先的に照会するように構成されているというものである。
 請求項6の発明は、請求項4又は5に記載したエンジン制御装置において、前記修正特性データが正常に書き込まれた後は、前記修正特性データの書換えをハードウェア的又はソフトウェア的に禁止するように構成されているというものである。
 請求項7の発明は、請求項4~6のうちいずれかに記載したエンジン制御装置において、前記各特性データは、前記エンジンにおける回転速度とトルクとの関係を示すデータであり、前記修正特性データは、前記出力特性データと比較して、所定回転速度に対するトルクを制限するように設定されているというものである。
 請求項8の発明は、エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、前記ECUは前記出力特性データを書き込んだ状態で出荷され、前記エンジンを作業車両に搭載する際に、前記ECUに接続される外部ツールによって、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能になっているというものである。
 請求項9の発明は、請求項8に記載したエンジン制御装置において、前記修正特性データは、作業車両の作業特性に応じて複数個、前記外部ツールに格納されており、前記ECUは、前記各修正特性データに関連付けられた識別手段の設定によって、前記外部ツールから読み込む修正特性データを決定するというものである。
 請求項10の発明は、請求項8又は9に記載したエンジン制御装置において、前記ECUへの書き込みをハードウェア的又はソフトウェア的に禁止するキー手段を備えており、前記エンジンを作業車両に搭載する際には、前記キー手段による書き込み禁止状態を解除して、前記外部ツールを用いて前記ECUに前記修正特性データが書き込まれるというものである。
 請求項11の発明は、請求項8~10のうちいずれかに記載したエンジン制御装置において、前記ECUに書き込み済みの前記修正特性データは、前記ECU外への読み出し及び書き換えが不能な設定にて保護されていて、前記ECUに前記外部ツールを接続した状態で特定ユーザのみに、前記修正特性データの前記読み出し及び書き換えを許可するように構成されているというものである。
 請求項1の発明によると、エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能なエリアが設けられており、前記エリアには前記修正特性データを書き込まない状態で出荷され、前記エンジンを作業車両に搭載する際に、前記エリアに前記作業車両の作業特性に適合した前記修正特性データが書き込まれるから、前記エンジンの型式が同じであれば、前記ECUに記憶される出力特性データをいずれも同一(共通)のものにできる。また、前記エンジンを作業車両に搭載するエンジン購入メーカにとっては、前記作業車両の作業特性に適合した前記修正特性データを、後から前記エリアに書き込みできる。従って、前記エンジンを製造するエンジン製造メーカにとっては、前記ECUの汎用性を向上でき、エンジン購入メーカにとっては、前記ECUの前記作業車両に対する適合性を確保できるという効果を奏する。
 請求項2の発明は、エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置の制御方法であって、前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能なエリアが設けられており、前記エリアには前記修正特性データを書き込まない状態で出荷され、前記エンジンを作業車両に搭載する際に、前記エリアに前記作業車両の作業特性に適合した前記修正特性データが書き込まれ、前記修正特性データが書き込まれた前記ECUは、前記検出手段の検出情報に基づき前記修正特性データを照会して、前記照会結果に基づき前記燃料噴射装置を作動させるから、前記エンジンの初期設定に拘らず、前記エンジンが搭載される作業車両の作業特性に適合した前記修正特性データを用いて、前記エンジンを制御できることになる。従って、エンジン購入メーカにとって自社の仕様に設定し易く、外部から購入したエンジンであっても、簡単に自社の仕様に最適な設定に変更して、使い勝手のよい作業車両を提供できるという効果を奏する。
 請求項3の発明は、エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能なエリアが設けられており、更に前記エリアに書き込みを禁止する禁止手段を備えており、前記エリアには前記修正特性データを書き込まない状態で出荷され、前記エンジンを作業車両に搭載する際には、前記禁止手段による書き込み禁止状態が解除され、前記エリアに前記作業車両の作業特性に適合した前記修正特性データが書き込まれるから、エンジン製造メーカであっても、前記エリアへの書き込み・書き換えや、書き込まれた内容の抽出(リバースエンジニアリング)をできなくすることが可能である。従って、エンジン購入メーカの重要情報(前記修正特性データ)を確実に保護できるメリットがある。
 請求項4の発明によると、エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込むことが可能になっており、前記修正特性データが書き込まれた前記ECUは、前記検出手段の検出情報に基づき前記修正特性データを照会して、前記照会結果に基づき前記燃料噴射装置を作動させることを許容するように構成されているから、前記エンジンの型式が同じであれば、前記ECUに記憶される出力特性データをいずれも同一(共通)のものにでき、前記エンジンが搭載される車種毎や、作業車両に装着される作業機(耕耘機やプラウ、バケット等)毎に、異なるECUを各別に設計製造して、多種多様なECUを用意したりする必要がない。従って、1型式のエンジンに対して1種類のECUを設計製造すれば済み、前記ECUの汎用性を格段に向上できるという効果を奏する。
 その上、前記エンジンが搭載される車種毎や、作業車両に装着される作業機毎に、最適な燃料噴射制御を実行させたい場合は、例えば前記エンジンを購入する作業車両製造メーカといったエンジン製造メーカ以外のものが、前記ECUに前記修正特性データを書き込めば足りることになる。従って、前記ECUの汎用性を格段に向上できるものでありながら、燃料噴射制御に対する前記ECUの柔軟性(融通性)を簡単且つ確実に確保できるという効果をも奏する。
 請求項5の発明によると、請求項4に記載したエンジン制御装置において、前記修正特性データが書き込まれた前記ECUは、前記検出手段の検出情報に基づき前記修正特性データを優先的に照会するように構成されているから、前記ECUに前記修正特性データを書き込みした特定のもの(例えば前記エンジンを購入する作業車両製造メーカといったエンジン製造メーカ以外のもの)は、初期設定されている出力特性データを一々削除したり、制御プログラムを変更したりしなくて済む。従って、前記エンジンの出力特性データを変更できるものでありながら、前記エンジンの取り扱い性も極めてよいのである。
 請求項6の発明によると、請求項4又は5に記載したエンジン制御装置において、前記修正特性データが正常に書き込まれた後は、前記修正特性データの書換えをハードウェア的又はソフトウェア的に禁止するように構成されているから、前記ECUに前記修正特性データを書き込みした特定のもの以外が、例えば不正なツール等を用いて前記修正特定データを安易に書き換えることを防止できる。前記修正特定データ書き込み後のセキュリティの点で効果が高いのである。
 請求項7の発明によると、請求項4~6のうちいずれかに記載したエンジン制御装置において、前記各特性データは、前記エンジンにおける回転速度とトルクとの関係を示すデータであり、前記修正特性データは、前記出力特性データと比較して、所定回転速度に対するトルクを制限するように設定されているから、修正特性データを用いた燃料噴射制御では、出力特性データを用いた燃料噴射制御よりも燃料噴射が抑制されることになる。従って、前記エンジンが搭載される車種毎や、作業車両に装着される作業機毎に、最適な燃料噴射制御を選択できるものでありながら、1型式のエンジンに対しては、1種類のECUにて排気ガス規制に対処して環境汚染に配慮できるという効果を奏する。
 請求項8の発明によると、エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、前記ECUは前記出力特性データを書き込んだ状態で出荷され、前記エンジンを作業車両に搭載する際に、前記ECUに接続される外部ツールによって、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能になっているから、請求項1の場合と同様に、エンジン製造メーカにとっては、前記エンジンの型式が同じであれば、前記ECUに記憶される出力特性データをいずれも共通のものにできる。前記エンジンを作業車両に搭載するエンジン購入メーカにとっては、自社の仕様に適合した前記修正特性データを、前記外部ツールを用いて前記ECUに後から簡単に書き込みできる。つまり、前記ECUの汎用性を向上できるものでありながら、燃料噴射制御に対する前記ECUの柔軟な設定を簡単且つ確実に確保できるという効果を奏する。また例えば、エンジン購入メーカにとっては、同一のエンジンを購入した上で、作業車両へのエンジン搭載時に、外回り製品の追加と前記ECUへの書き込みとにより、種々のアプリケーションに対応できるため、工場ストックや市場補用品の種類を減らせるという効果もある。
 請求項9の発明によると、請求項8に記載したエンジン制御装置において、前記修正特性データは、作業車両の作業特性に応じて複数個、前記外部ツールに格納されており、前記ECUは、前記各修正特性データに関連付けられた識別手段の設定によって、前記外部ツールから読み込む修正特性データを決定するから、前記識別手段の設定だけで、車種や作業機の違いに拘らず、前記ECUに最適な修正特性データを前記外部ツールから簡単に選別できる。従って、エンジン購入メーカにとって自社の仕様への切換えがし易く、外部から購入したエンジンであっても、簡単に自社の仕様に最適な設定に変更できるという効果を奏する。また例えば、色々なアプリケーションを持っているエンジン購入メーカは、同一エンジンを購入した上で、種々のアプリケーションに合うエンジン特性を予め前記外部ツールに格納しておけるので、作業車両へのエンジン搭載時に、前記エンジン特性を簡単に変更できるという効果もある。
 請求項10の発明によると、請求項8又は9に記載したエンジン制御装置において、前記ECUへの書き込みをハードウェア的又はソフトウェア的に禁止するキー手段を備えており、前記エンジンを作業車両に搭載する際には、前記キー手段による書き込み禁止状態を解除して、前記外部ツールを用いて前記ECUに前記修正特性データが書き込まれるものであるから、前記ECUに対する不正な読み出し・書き込みを簡単且つ確実に防止できる。従って、エンジン製造メーカ及びエンジン購入メーカの重要情報(各特性データ)の保護が可能になるという効果を奏する。
 請求項11の発明によると、請求項8~10のうちいずれかに記載したエンジン制御装置において、前記ECUに書き込み済みの前記修正特性データは、前記ECU外への読み出し及び書き換えが不能な設定にて保護されていて、前記ECUに前記外部ツールを接続した状態で特定ユーザのみに、前記修正特性データの前記読み出し及び書き換えを許可するように構成されているから、例えば不正なツール等を用いて、正規データと異なる特性データが前記ECUに勝手に書き込まれたり、正規データが安易に書き換えられたりするのを防止でき、セキュリティ確保が容易である。その上、エンジン製造メーカであっても、前記修正特性データの読み出し、書き換え及び抽出(リバースエンジニアリング)をできないから、前記エンジン購入メーカの重要情報(前記修正特性データ)を確実に保護できるメリットがある。
第1実施形態を要約した概念説明図である。 エンジン出荷前後のECUの状態を示す概念説明図である。 ディーゼルエンジンの燃料系統説明図である。 出力特性マップの説明図である。 修正特性マップの説明図である。 書き込み・書き換え処理のフローチャートである。 燃料噴射制御のフローチャートである。 第1別例の修正特性マップの説明図である。 第2別例における回転速度とトルクとの関係を示す説明図である。 第2別例の燃料噴射制御のフローチャートである。 第2実施形態を要約した概念説明図である。 エンジン出荷前後のECUの状態を示す概念説明図である。 ディーゼルエンジンの燃料系統説明図である。 アクセス処理のフローチャートである。 燃料噴射制御のフローチャートである。 ディーゼルエンジンの外観斜視図である。 ディーゼルエンジンの吸気マニホールド設置側の側面図である。 ディーゼルエンジンの排気マニホールド設置側の側面図である。 ディーゼルエンジンのフライホイール設置側の側面図である。 ディーゼルエンジンの冷却ファン設置側の側面図である。 ディーゼルエンジンの平面図である。 トラクタの側面図である。 トラクタの平面図である。
 以下に、本願発明を具体化した実施形態を、作業車両としてのトラクタに搭載されるディーゼルエンジンに適用した場合の図面に基づいて説明する。
 (1).コモンレールシステム及びディーゼルエンジンの燃料系統構造
 まず、主に図3を参照しながら、コモンレールシステム117(コモンレール式燃料噴射装置)及びディーゼルエンジン70の燃料系統構造について説明する。図3に示すように、ディーゼルエンジン70に設けられた4気筒分の各インジェクタ115に、コモンレールシステム117及び燃料供給ポンプ116を介して、燃料タンク118が接続されている。各インジェクタ115は電磁開閉制御型の燃料噴射バルブ119を備えている。コモンレールシステム117は円筒状のコモンレール120を備えている。
 図3に示すように、燃料供給ポンプ116の吸入側には、燃料フィルタ121及び低圧管122を介して燃料タンク118が接続される。燃料タンク118内の燃料が燃料フィルタ121及び低圧管122を介して燃料供給ポンプ116に吸い込まれる。実施形態の燃料供給ポンプ116は吸気マニホールド73の近傍に配置されている。具体的には、シリンダブロック75の右側面側(吸気マニホールド73設置側)で且つ吸気マニホールド73の下方に設けられている。一方、燃料供給ポンプ116の吐出側には、高圧管123を介してコモンレール120が接続される。また、コモンレール120には、4本の燃料噴射管126を介して4気筒分の各インジェクタ115がそれぞれ接続されている。
 上記の構成により、燃料タンク118の燃料が燃料供給ポンプ116によってコモンレール120に圧送され、高圧の燃料がコモンレール120に蓄えられる。各燃料噴射バルブ119がそれぞれ開閉制御されることによって、コモンレール120内の高圧の燃料が各インジェクタ115からディーゼルエンジン70の各気筒に噴射される。すなわち、各燃料噴射バルブ119を電子制御することによって、各インジェクタ115から供給される燃料の噴射圧力、噴射時期、噴射期間(噴射量)が高精度にコントロールされる。従って、ディーゼルエンジン70からの窒素酸化物(NOx)を低減できると共に、ディーゼルエンジン70の騒音振動を低減できる。
 なお、図3に示すように、燃料タンク118には、燃料戻り管129を介して燃料供給ポンプ116が接続されている。円筒状のコモンレール120の長手方向の端部に、コモンレール120内の燃料の圧力を制限する戻り管コネクタ130を介して、コモンレール戻り管131が接続されている。すなわち、燃料供給ポンプ116の余剰燃料とコモンレール120の余剰燃料とが、燃料戻り管129及びコモンレール戻り管131を介して、燃料タンク118に回収されることになる。
 (2).第1実施形態におけるコモンレールの燃料噴射制御
 次に、図1~図5を参照しながら、第1実施形態におけるコモンレール120の燃料噴射制御について説明する。図3に示す如く、ディーゼルエンジン70における各気筒の燃料噴射バルブ119を作動させるECU11(統合ECU)を備えている。詳細は図示しないが、ECU11は、各種演算処理や制御を実行するCPUの他、制御プログラムやデータを記憶させるEEPROM、フラッシュメモリ、制御プログラムやデータを一時的に記憶させるRAM、CANコントローラ及び入出力インターフェイス等を備えており、ディーゼルエンジン70又はその近傍に配置されている。
 ECU11の入力側には、少なくともコモンレール120内の燃料圧力を検出するレール圧センサ12と、燃料ポンプ116を回転又は停止させる電磁クラッチ13と、ディーゼルエンジン70の回転速度(クランク軸74のカムシャフト位置)を検出するエンジン速度センサ14と、インジェクタ115の燃料噴射回数(1行程の燃料噴射期間中の燃料噴射回数)を検出及び設定する噴射設定器15と、スロットルレバー又はアクセルペダル等のアクセル操作具(図示省略)の操作位置を検出するスロットル位置センサ16と、ターボ過給機100の圧力を検出するターボ昇圧センサ17と、吸気マニホールド73の吸気温度を検出する吸気温度センサ18と、ディーゼルエンジン70の冷却水の温度を検出する冷却水温度センサ19とが接続されている。これらセンサ類12~19がディーゼルエンジン70の駆動状態を検出する検出手段を構成している。
 また、ECU11の出力側には、少なくとも4気筒分の各燃料噴射バルブ119の電磁ソレノイドがそれぞれ接続されている。すなわち、コモンレール120に蓄えた高圧燃料が燃料噴射圧力、噴射時期及び噴射期間等を制御しながら、1行程中に複数回に分けて燃料噴射バルブ119から噴射されることによって、窒素酸化物(NOx)の発生を抑えると共に、すすや二酸化炭素等の発生も低減した完全燃焼を実行し、燃費を向上させるように構成されている。
 図1~図3に示すように、ECU11(例えば記憶手段、フラッシュメモリやEEPROM等)には、エンジン製造メーカ用の製造側エリアU1と、エンジン購入メーカ用の購入側エリアU2とが設けられている。ECU11の製造側エリアU1には、ディーゼルエンジン70の回転速度NとトルクT(負荷)との関係を示す出力特性データとしての出力特性マップM1(図4参照)が予め記憶されている。この種の出力特性マップM1は実験等にて求められる。なお、出力特性データとしては、実施形態のようなマップ形式に限らず、例えば関数表やセットデータ(データテーブル)等でも差し支えない。図4に示す出力特性マップM1では、回転速度Nを横軸に、トルクTを縦軸に採っている。出力特性マップM1において、上向き凸湾曲状に描かれた実線Tmx1が各回転速度Nに対する最大トルクを表した最大トルク線である。この場合、ディーゼルエンジン70の型式が同じであれば、ECU11の製造側エリアU1に記憶される出力特性マップM1はいずれも同一(共通)のものになる。
 ECU11は基本的に、エンジン速度センサ14にて検出される回転速度N及びスロットル位置センサ16にて検出されるスロットル位置からトルクTを求め、トルクTと出力特性マップM1とを用いて目標燃料噴射量Rを演算し、当該演算結果に基づいてコモンレールシステム117を作動させるという燃料噴射制御を実行するように構成されている。ここで、燃料噴射量は、各燃料噴射バルブ119の開弁期間を調節して、各インジェクタ115への噴射期間を変更することによって調節される。
 図1~図3に示すように、ECU11の購入側エリアU2は、ディーゼルエンジン70の製造メーカ以外のもの(例えばディーゼルエンジン70を購入する車両製造メーカ等)がデータを書き込むための領域になっている。購入側エリアU2には、出力特性マップM1とは別に、コモンレールシステム117の作動を修正するための修正特性データとしての修正特性マップM2を、ディーゼルエンジン70の製造メーカ以外のものが例えばディーゼルエンジン70の出荷後に書き込むことになる(図2参照)。後に書き込まれる修正特性マップM2は、ECU11の出力特性マップM1と同様に、ディーゼルエンジン70の回転速度NとトルクT(負荷)との関係を示すものである。図5に示す修正特性マップM2でも、回転速度Nを横軸に、トルクTを縦軸に採っている。修正特性マップM2において、上向き凸湾曲状に描かれた実線Tmx2が各回転速度Nに対する最大トルクを表した最大トルク線である。なお、修正特性データとしては、出力特性データと同様に、実施形態のようなマップ形式に限らず、例えば関数表やセットデータ(データテーブル)等でも差し支えない。
 修正特性マップM2(図5では実線で示す)においては、出力特性マップM1(図5では破線で示す)と比較して、所定回転速度Nに対するトルクTを制限するように設定されている。すなわち、同一回転速度Nでの最大トルクは出力特性マップM1から求めた場合より修正特性マップM2から求めた方が小さくなるように(Tmx1≦Tmx2)、修正特性マップM2と出力特性マップM1との関係が設定されている(出力特性マップM1側の最大トルク線Tmx1の内側(下側)に修正特性マップM2側の最大トルク線Tmx2が位置するように設定されている)。
 ECU11の購入側エリアU2に記憶される修正特性マップM2は、ディーゼルエンジン70の型式が同じであっても、ディーゼルエンジン70が搭載される車種毎や、作業車両に装着される作業機(耕耘機やプラウ、バケット等)毎に各別に設定できる。かかる修正特性マップM2の設定の一例としては、例えば負荷変動が大きい作業に対してエンストを抑制するため、広範囲の回転速度域にわたって高トルクを得るようにした出力特性や、負荷変動が小さい作業に対して作業能率を高めるため、負荷変動による回転変動を小さくするようにした出力特性、クラッチの接続作業に対して接続の衝撃を緩和するため、接続前に回転速度を低下させるようにした出力特性等が考えられる。
 購入側エリアU2に修正特性マップM2が書き込まれているECU11は、出力特性マップM1ではなく修正特性マップM2を優先的に照会して、エンジン速度センサ14及びスロットル位置センサ16の検出値からトルクTを演算して目標燃料噴射量Rを求め、当該照会演算結果に基づいてコモンレールシステム117を作動させる(修正特性マップM2を用いた修正燃料噴射制御の実行を許容する)ように構成されている(図1参照)。
 ここで、例えば修正特性データとして例えば関数(数式)やセットデータを採用した場合は、エンジン速度センサ14及びスロットル位置センサ16の検出値と、出力特性データと、修正特性データとから、制限トルク値を求めて目標燃料噴射量Rを求め、当該演算結果に基づいて(所定回転速度Nに対するトルクTが制限されるように)コモンレールシステム117を作動させることになる。
 なお、修正特性マップM2を用いるか否かを設定する選択手段(各特性マップM1,M2を択一的に選択する選択手段といってもよい)を備えることも可能である。選択手段としては、ECU11に設けられたジャンパピンや、作業車両のキャビン内に設けられた選択スイッチにて選択する構成が考えられる。また、作業車両に設けられた本機ECU(別ECU)からの制御信号にて、各特性マップM1,M2を選択するように構成してもよい。
 また、特定のもの(例えば書き込みした車両製造メーカやそのディーラ等)以外が、購入側エリアU2に書き込みしたり、購入側エリアU2に正常に書き込まれた修正特性マップM2を書き換えたりするのを禁止することも可能である。書き込み禁止の方策としては、例えばフレキシブルディスクにおける書き込み禁止方式のようにハードウェア的なものでもよいし、キー照合方式のようにソフトウェア的なものでもよいことは言うまでもない。
 図1及び図2に示すように、実施形態のエンジン制御装置は、ECU11の製造側エリアU1には出力特性マップM1を書き込んでおき、購入側エリアU2には修正特性マップM2を書き込まない状態で、エンジン製造メーカから出荷される。購入側エリアU2は、前述のようなハードウェア的又はソフトウェア的な禁止手段によって、エンジン購入メーカだけが書き込み・書き換え可能で、エンジン製造メーカでは書き込み・書き換え不能に設定される。ECU11の購入側エリアU2には、エンジン購入メーカにおいて、ディーゼルエンジン70を作業車両に搭載する際に、作業車両の作業特性に適合した修正特性マップM2が書き込まれることになる。
 図6は、禁止手段の一例としての購入側エリアU2への書き込み・書き換え処理を示すフローチャートである。当該書き込み・書き換え処理は、エンジン製造メーカではなくエンジン購入メーカにて行われるものである。エンジン購入メーカは、ECU11の購入側エリアU2に修正特性マップM2を始めて書き込む際に、例えばエンジン購入メーカ固有のメーカID(固有情報)を一緒に書き込んでおく。メーカIDは上書き不能に設定されていて、購入側エリアU2を初期化した場合のみ削除される。図6に示すように、ECU11がエンジン購入メーカの書き込みツール(図示省略)からの書き込み要求信号を受信すると(ステップS31:YES)、購入側エリアU2にメーカIDが既に書き込み済みか否かを判別する(ステップS32)。メーカIDが書き込まれていない場合は(S32:NO)、メーカIDと修正特性マップM2とを購入側エリアU2に書き込む(ステップS33)。メーカIDが書き込み済みの場合は(S32:YES)、前記書き込み済みのメーカIDと、書き込みツールからの信号(メーカID)とが一致するときに限り(S34:YES)、購入側エリアU2への書き込み・書き換えを許可し、書き込みツールからの新規な修正特性マップM2のみを上書きする(ステップS35)。一致しなければ(S34:NO)、購入側エリアU2への書き込み・書き換えを禁止して(ステップS36)終了する。
 (3).燃料噴射制御の説明
 次に、図7のフローチャートを参照して、燃料噴射制御の一例を説明する。前述の通り、実施形態のECU11は、購入側エリアU2に修正特性マップM2が書き込まれているために、修正特性マップM2を優先的に照会して、エンジン速度センサ14及びスロットル位置センサ16の検出値からトルクTを演算して目標燃料噴射量Rを求め、この照会演算結果に基づいてコモンレールシステム117を作動させる。この場合、図7のフローチャートに示すように、ECU11は、選択すべき特性マップがいずれであるかを判別する(ステップS1)。実施形態では、購入側エリアU2に修正特性マップM2が書き込まれているか否かを判別する。出力特性マップM1を選択する場合(書き込みなし)は、エンジン速度センサ14及びスロットル位置センサ16の検出値を所定タイミング(適宜時間毎)にて読み込み(ステップS2)、次いで、ECU11が自身の有する出力特性マップM1を照会し、先ほど読み込まれた回転速度N及びスロットル位置からトルクTを求めて目標燃料噴射量Rを演算する(ステップS3)。そして、目標燃料噴射量Rに基づいてコモンレールシステム117を作動させる(ステップS4)。その後、電源印加用のキースイッチ(図示省略)が入り状態であれば(S5:YES)、ステップS2に戻って、出力特性マップM1を用いた燃料噴射制御を続行する。
 修正特性マップM2を選択する場合(書き込みあり)は、エンジン速度センサ14及びスロットル位置センサ16の検出値を所定タイミングにて読み込み(ステップS6)、次いで、ECU11が購入側エリアU2内の修正特性マップM2を照会し、先ほど読み込まれた回転速度N及びスロットル位置からトルクT(制限トルク値)を求めて目標燃料噴射量Rを演算する(ステップS7)。そして、目標燃料噴射量Rに基づいてコモンレールシステム117を作動させる(ステップS8)。その後、電源印加用のキースイッチ(図示省略)が入り状態であれば(S9:YES)、ステップS6に戻って、修正特性マップM2を用いた修正燃料噴射制御を続行するのである。
 上記の記載並びに図1~図7から明らかなように、エンジン70と、前記エンジン70に燃料を噴射する燃料噴射装置117と、前記エンジン70の駆動状態を検出する検出手段14,16と、前記検出手段14,16の検出情報と前記エンジン70固有の出力特性データM1とに基づいて前記燃料噴射装置117の作動を制御するECU11とを備えているエンジン制御装置であって、前記ECU11には、前記出力特性データM1とは別に、前記燃料噴射装置117の作動を修正するための修正特性データM2を書き込み可能なエリアU2が設けられており、前記エリアU2には前記修正特性データM2を書き込まない状態で出荷され、前記エンジン70を作業車両に搭載する際に、前記エリアU2に前記作業車両の作業特性に適合した前記修正特性データM2が書き込まれているから、前記エンジン70の型式が同じであれば、前記ECU11に記憶される出力特性データM1をいずれも同一(共通)のものにできる。また、前記エンジン70を作業車両に搭載するエンジン購入メーカにとっては、前記作業車両の作業特性に適合した前記修正特性データM2を、後から前記エリアU2に書き込みできる。従って、前記エンジン70を製造するエンジン製造メーカにとっては、前記ECUの汎用性を向上でき、エンジン購入メーカにとっては、前記ECUの前記作業車両に対する適合性を確保できる。
 また、上記の記載並びに図1~図7から明らかなように、エンジン70と、前記エンジン70に燃料を噴射する燃料噴射装置117と、前記エンジン70の駆動状態を検出する検出手段14,16と、前記検出手段14,16の検出情報と前記エンジン70固有の出力特性データM1とに基づいて前記燃料噴射装置117の作動を制御するECU11とを備えているエンジン制御装置の制御方法であって、前記ECU11には、前記出力特性データM1とは別に、前記燃料噴射装置117の作動を修正するための修正特性データM2を書き込み可能なエリアU2が設けられており、前記エリアU2には前記修正特性データM2を書き込まない状態で出荷され、前記エンジン70を作業車両に搭載する際に、前記エリアU2に前記作業車両の作業特性に適合した前記修正特性データM2が書き込まれ、前記修正特性データM2が書き込まれた前記ECU11は、前記検出手段14,16の検出情報に基づき前記修正特性データM2を照会して、前記照会結果に基づき前記燃料噴射装置117を作動させるから、前記エンジン70の初期設定に拘らず、前記エンジン70が搭載される作業車両の作業特性に適合した前記修正特性データM2を用いて、前記エンジン70を制御できることになる。従って、エンジン購入メーカにとって自社の仕様に設定し易く、外部から購入したエンジン70であっても、簡単に自社の使用に最適な設定に変更して、使い勝手のよい作業車両を提供できるという効果を奏する。
 上記の記載並びに図1~図7から明らかなように、エンジン70と、前記エンジン70に燃料を噴射する燃料噴射装置117と、前記エンジン70の駆動状態を検出する検出手段14,16と、前記検出手段14,16の検出情報と前記エンジン70固有の出力特性データM1とに基づいて前記燃料噴射装置117の作動を制御するECU11とを備えているエンジン制御装置であって、前記ECU11には、前記出力特性データM1とは別に、前記燃料噴射装置117の作動を修正するための修正特性データM2を書き込み可能なエリアU2が設けられており、更に前記エリアU2に書き込みを禁止する禁止手段を備えており、前記エリアU2には前記修正特性データM2を書き込まない状態で出荷され、前記エンジン70を作業車両に搭載する際には、前記禁止手段による書き込み禁止状態が解除され、前記エリアU2に前記作業車両の作業特性に適合した前記修正特性データM2が書き込まれるから、エンジン製造メーカであっても、前記エリアU2への書き込み・書き換えや、書き込まれた内容の抽出(リバースエンジニアリング)をできなくすることが可能である。従って、エンジン購入メーカの重要情報(前記修正特性データM2)を確実に保護できるメリットがある。
 上記の記載並びに図1~図7から明らかなように、エンジン70と、前記エンジン70に燃料を噴射する燃料噴射装置117と、前記エンジン70の駆動状態を検出する検出手段14,16と、前記検出手段14,16の検出情報と前記エンジン70固有の出力特性データM1とに基づいて前記燃料噴射装置117の作動を制御するECU11とを備えているエンジン制御装置であって、前記ECU11には、前記出力特性データM1とは別に、前記燃料噴射装置117の作動を修正するための修正特性データM2を書き込むことが可能になっており、前記修正特性データM2が書き込まれた前記ECU11は、前記検出手段14,16の検出情報に基づき前記修正特性データM2を照会して、前記照会結果に基づき前記燃料噴射装置117を作動させることを許容するように構成されているから、前記エンジン70の型式が同じであれば、前記ECU11に記憶される出力特性データM1をいずれも同一(共通)のものにでき、前記エンジン70が搭載される車種毎や、作業車両201に装着される作業機(耕耘機やプラウ、バケット等)毎に、異なるECU11を各別に設計製造して、多種多様なECU11を用意したりする必要がない。従って、1型式のエンジン70に対して1種類のECU11を設計製造すれば済み、前記ECU11の汎用性を格段に向上できるという効果を奏する。
 その上、前記エンジン70が搭載される車種毎や、作業車両201に装着される作業機毎に、最適な燃料噴射制御を実行させたい場合は、例えば前記エンジン70を購入する作業車両製造メーカといったエンジン製造メーカ以外のものが、前記ECU11に前記修正特性データM2を書き込めば足りることになる。従って、前記ECU11の汎用性を格段に向上できるものでありながら、燃料噴射制御に対する前記ECU11の柔軟性(融通性)を簡単且つ確実に確保できるという効果をも奏する。
 上記の記載並びに図7から明らかなように、前記修正特性データM2が書き込まれた前記ECU11は、前記検出手段14,16の検出情報に基づき前記修正特性データM2を優先的に照会するように構成されているから、前記ECU11に前記修正特性データM2を書き込みした特定のもの(例えば前記エンジン70を購入する作業車両製造メーカといったエンジン製造メーカ以外のもの)は、初期設定されている出力特性データM1を一々削除したり、制御プログラムを変更したりしなくて済む。従って、前記エンジン70の出力特性データM1を変更できるものでありながら、前記エンジン70の取り扱い性も極めてよいのである。
 上記の記載から明らかなように、前記修正特性データM2が正常に書き込まれた後は、前記修正特性データM2の書換えをハードウェア的又はソフトウェア的に禁止するように構成されているから、前記ECU11に前記修正特性データM2を書き込みした特定のもの以外が、例えば不正なツール等を用いて前記修正特定データM2を安易に書き換えることを防止できる。前記修正特定データM2書き込み後のセキュリティの点で効果が高いのである。
 上記の記載並びに図6から明らかなように、前記各特性データM1,M2は、前記エンジン70における回転速度NとトルクTとの関係を示すデータであり、前記修正特性データM2は、前記出力特性データM1と比較して、所定回転速度Nに対するトルクTを制限するように設定されているから、修正特性データM2を用いた燃料噴射制御では、出力特性データM1を用いた燃料噴射制御よりも燃料噴射が抑制されることになる。従って、前記エンジン70が搭載される車種毎や、作業車両201に装着される作業機毎に、最適な燃料噴射制御を選択できるものでありながら、1型式のエンジン70に対しては、1種類のECU11にて排気ガス規制に対処して環境汚染に配慮できるという効果を奏する。
 上記の記載から明らかなように、前記各特性データM1,M2を選択するための選択手段を備えているから、前記特性データM1,M2の切り換えが可能になり、ユーザの所望する燃料噴射制御の条件に細やかに応答することが簡単に行えるという効果を奏する。
 ところで、修正特性マップ(修正特性データ)は、図6に示すように1種類に限るものではなく、図8に示すように、ディーゼルエンジン70が搭載される車種毎や、作業車両に装着される作業機(耕耘機やプラウ、バケット等)毎に対応して複数種類記憶させていてもよい。このような第1の別例の場合、各修正特性マップM2,M3の選択は、ECU11に設けられたジャンパピンや、作業車両のキャビン内に設けられた選択スイッチにて行ってもよいし、作業車両に作業機(耕耘機やプラウ、バケット等)を装着することによって、当該作業機に対応する修正特性マップM2,M3が選択されるように構成してもよい。また、作業車両に設けられた本機ECU(別ECU)からの制御信号にて、各特性マップM2,M3を選択する構成でもよい。
 また、修正特性データは、前述したマップ形式M2,M3や関数表等に限らないことは言うまでもないが、例えば前述の修正特性マップM2,M3の代わりに、購入側エリアU2に記憶させたトルク制限率Drを、修正特性データとして採用することも可能である(図9及び図10参照)。このような第2の別例の場合、図10に示す制御フローは基本的に図7の場合と同様であるが、目標燃料噴射量Rを演算するに当たって、ECU11が購入側エリアU2内のトルク制限率Drを照会して、回転速度N及びスロットル位置と、出力特性マップM1と、トルク制限率Drとに基づく演算を実行することになる。
 (4).第2実施形態におけるコモンレールの燃料噴射制御
 次に、図11~図15を参照しながら、第2実施形態におけるコモンレール120の燃料噴射制御について説明する。ここで、第2実施形態以降の実施形態において、構成及び作用が第1実施形態と変わらないものには、第1実施形態と同じ符号を付してその詳細な説明を省略する。
 図11~図13に示すように、第2実施形態のECU11′では、製造側エリアU1と購入側エリアU2とが分けられておらず、ディーゼルエンジン70の製造メーカ以外のもの(例えばディーゼルエンジン70を購入する車両製造メーカ等)が、マイクロコンピュータ等の外部ツール24を用いて、図4に示す出力特性マップM1とは別のデータを書き込むことが可能になっている。例えばディーゼルエンジン70の出荷後に、コモンレールシステム117の作動を修正する修正特性データとしての修正特性マップM2又はM3(図8参照)を、ディーゼルエンジン70の製造メーカ以外のものが外部ツール24にてECU11′に書き込むことになる。後に書き込まれる修正特性マップM2,M3は、ECU11′の出力特性マップM1と同様に、ディーゼルエンジン70の回転速度NとトルクT(負荷)との関係を示すものである。
 修正特性マップM2,M3は、ディーゼルエンジン70が搭載される作業車両の作業特性に応じて複数個、外部ツール24に格納されている。すなわち、修正特性マップM2,M3は、ディーゼルエンジン70が搭載される車種毎や、作業車両に装着される作業機(耕耘機やプラウ、バケット等)毎に対応して複数種類、外部ツール24に記憶させている。かかる修正特性マップM2,M3の設定の一例としては、例えば負荷変動が大きい作業に対してエンストを抑制するため、広範囲の回転速度域にわたって高トルクを得るようにした出力特性や、負荷変動が小さい作業に対して作業能率を高めるため、負荷変動による回転変動を小さくするようにした出力特性、クラッチの接続作業に対して接続の衝撃を緩和するため、接続前に回転速度を低下させるようにした出力特性等が考えられる。
 ECU11′は、各修正特性マップM2,M3に関連付けられた識別手段25の設定によって、外部ツール24から読み込む修正特性マップM2,M3を決定するように構成されている。各修正特性マップM2,M3を選択する識別手段25は、例えばECU11′に設けられたジャンパピンや、作業車両のキャビン内に設けられた選択スイッチであってもよい。また、作業車両に作業機を装着することによって、当該作業機に対応する修正特性マップM2,M3を選択する構成でもよい。更に、作業車両の本機ECU(別ECU)からの制御信号にて各特性マップM2,M3を選択するという構成も、識別手段25として機能できる。かかる識別手段25の設定により、ECU11′は、外部ツール24が接続された際にインストールすべき修正特性マップM2,M3を特定できることになる。
 図11及び図12に示すように、実施形態のエンジン制御装置は、ECU11′には出力特性マップM1を書き込んだ状態で、エンジン製造メーカから出荷される。ECU11′には、エンジン購入メーカにてディーゼルエンジン70を作業車両に搭載する際に、作業車両の作業特性に適合した修正特性マップM2,M3を書き込むことが可能になっている。ECU11′への修正特性マップM2の書き込みは、ECU11′に通信端末線を介して接続されるマイクロコンピュータ等の外部ツール24を用いて行われる。外部ツール24による読み出し・書き込みは、外部ツール24側のキー手段としてのキー情報K(例えば暗証番号や暗号キー・復号キー等)がECU11′側のキー手段(キー情報K)と一致しない限り実行できなくなっている。つまり、出力特性データM1は、外部ツール24側及びECU11′側のキー情報Kが一致しない限り、ECU11′外への読み出し及び書き換えが不能な設定にて保護されている。また、修正特性データM2,M3も、ECU11′外への読み出し及び書き換えが不能な設定にて保護されている。その上、ECU11′に外部ツール24を接続した状態でエンジン購入メーカ(特定ユーザ)のみに、修正特性データM2,M3の読み出し及び書き換えを許可するように構成されている。なお、読み出し・書き込み禁止の方策としては、前述のキー照合方式のようなソフトウェア的なものでもよいし、例えばフレキシブルディスクにおける書き込み禁止方式や封印シールのようにハードウェア的なものでもよい。
 図14は、ECU11′へのアクセス処理を示すフローチャートである。当該アクセス処理は、エンジン製造メーカだけではなくエンジン購入メーカでも行われる。エンジン製造メーカは、ECU11′に出力特性マップM1を書き込む際に、キー手段としてのキー情報Kを一緒に書き込んでおく。キー情報Kは上書き不能に設定されていて、ECU11′を初期化した場合のみ削除される。また、エンジン購入メーカは、ECU11′に修正特性マップM2,M3を始めて書き込む際に、例えばエンジン購入メーカ固有のメーカID(固有情報)を一緒に書き込んでおく。メーカIDも、前述のキー情報Kと同様に、上書き不能に設定されていて、ECU11′を初期化した場合のみ削除される。
 図14のフローチャートに示すように、ECU11′が外部ツール24からの書き込み要求信号を受信すると(ステップS131:YES)、ECU11′は、外部ツール24から書き込み要求信号と共に送られてきた識別信号Kが、自らに格納されたキー情報Kと一致するか否かを判別する(ステップS132)。不一致であれば(S132:NO)、ECU11′に対する読み出し・書き込みを禁止して(ステップS137)、終了する。一致していれば(S132:YES)、次いで、ECU11′にメーカIDが既に書き込み済みか否かを判別する(ステップS133)。メーカIDが書き込まれていない場合は(S133:NO)、識別手段25に対応して特定された修正特性データM2又はM3と、メーカIDとをECU11′に書き込む(ステップS134)。メーカIDが書き込み済みの場合は(S133:YES)、前記書き込み済みのメーカIDと、外部ツール24から送られてきたメーカIDとが一致するときに限り(S135:YES)、ECU11′に対する読み出し・書き込みを許可し、識別手段25に対応して特定された修正特性データM2又はM3のみを外部ツール24から読み出して、ECU11′に書き込む(ステップS136)。一致しなければ(S135:NO)、ECU11′に対する読み出し・書き込みを禁止して(ステップS137)、終了する。
 修正特性マップM2又はM3が書き込まれたECU11′は、エンジン速度センサ14及びスロットル位置センサ16の検出値と、出力特性マップM1と、修正特性マップM2又はM3とに基づきトルクTを演算して目標燃料噴射量Rを求め、当該演算結果に基づいて(所定回転速度Nに対するトルクTを制限するように)コモンレールシステム117を作動させる。ここで、例えば修正特性データとして例えば関数(数式)やセットデータを採用した場合は、エンジン速度センサ14及びスロットル位置センサ16の検出値と、出力特性データと、修正特性データとから、制限トルク値を求めて目標燃料噴射量Rを求め、当該演算結果に基づいて(所定回転速度Nに対するトルクTが制限されるように)コモンレールシステム117を作動させることになる。
 以下に、図15のフローチャートを参照しながら、燃料噴射制御の一例を説明する。ここで、外部ツール24にて書き込まれた修正特性データは、修正特性マップM2であるものとする。この場合、図15に示すように、ECU11′はまず、識別手段25の設定を判別する(ステップS101)。識別手段25の設定が修正特性マップの「書き込みなし」に対応したものであれば(S101:NO)、エンジン速度センサ14及びスロットル位置センサ16の検出値を所定タイミング(適宜時間毎)にて読み込み(ステップS102)、次いで、ECU11′が、自身の有する出力特性マップM1を参照して、先ほど読み込まれた回転速度N及びスロットル位置からトルクTを求めて目標燃料噴射量Rを演算する(ステップS103)。そして、目標燃料噴射量Rに基づいてコモンレールシステム117を作動させる(ステップS104)。その後、電源印加用のキースイッチ(図示省略)が入り状態であれば(S105:YES)、ステップS102に戻って、出力特性マップM1を用いた燃料噴射制御を続行する。
 ステップS101に戻り、識別手段25の設定が修正特性マップM2の「書き込みあり」に対応したものであれば(S101:YES)、エンジン速度センサ14及びスロットル位置センサ16の検出値を所定タイミング(適宜時間毎)にて読み込み(ステップS106)、次いで、ECU11が、出力特性マップM1と修正特性マップM2とを参照して、先ほど読み込まれた回転速度N及びスロットル位置からトルクTを求めて、(トルク制限された)目標燃料噴射量Rを演算する(ステップS107)。そして、トルク制限された目標燃料噴射量Rに基づいてコモンレールシステム117を作動させる(ステップS108)。その後、電源印加用のキースイッチ(図示省略)が入り状態であれば(S109:YES)、ステップS5に戻って、修正特性マップM2をも参照する修正燃料噴射制御を続行するのである。
 上記の記載並びに図11~図15から明らかなように、エンジン70と、前記エンジン70に燃料を噴射する燃料噴射装置117と、前記エンジン70の駆動状態を検出する検出手段14,16と、前記検出手段14,16の検出情報と前記エンジン70固有の出力特性データM1とに基づいて前記燃料噴射装置117の作動を制御するECU11′とを備えているエンジン制御装置であって、前記ECU11′は前記出力特性データM1を書き込んだ状態で出荷され、前記エンジン70を作業車両に搭載する際に、前記ECU11′に接続される外部ツール24によって、前記燃料噴射装置117の作動を修正するための修正特性データM2,M3を書き込み可能になっているから、エンジン製造メーカにとっては、前記エンジン70の型式が同じであれば、前記ECU11′に記憶される出力特性データM1をいずれも同一(共通)のものにできる。また、前記エンジン70を作業車両に搭載するエンジン購入メーカにとっては、自社の仕様に適合した前記修正特性データM2,M3を、前記外部ツール24を用いて前記ECU11′に後から簡単に書き込みできる。つまり、前記ECU11′の汎用性を向上できるものでありながら、燃料噴射制御に対する前記ECU11′の柔軟な設定を簡単且つ確実に確保できるという効果を奏する。また例えば、エンジン購入メーカにとっては、同一のエンジン70を購入した上で、作業車両へのエンジン70搭載時に、外回り製品の追加と前記ECU11′への書き込みとにより、種々のアプリケーションに対応できるため、工場ストックや市場補用品の種類を減らせるという効果もある。
 上記の記載並びに図11~図14から明らかなように、前記修正特性データM2,M3は、前記エンジン70が搭載される作業車両の作業特性に応じて複数個、前記外部ツール24に格納されており、前記ECU11′は、前記各修正特性データM2,M3に関連付けられた識別手段25の設定によって、前記外部ツール24から読み込む修正特性データを決定するから、前記識別手段25の設定だけで、車種や作業機の違いに拘らず、前記ECU11′に最適な修正特性データを前記外部ツール24から簡単に選別できる。従って、エンジン購入メーカにとって自社の仕様への切換えがし易く、外部から購入したエンジン70であっても、簡単に自社の仕様に最適な設定に変更できるという効果を奏する。また例えば、色々なアプリケーションを持っているエンジン購入メーカは、同一エンジン70を購入した上で、種々のアプリケーションに合うエンジン特性を予め前記外部ツール24に格納しておけるので、作業車両へのエンジン70搭載時に、前記エンジン特性を簡単に変更できるという効果もある。
 上記の記載並びに図14から明らかなように、前記ECU11′への書き込みをハードウェア的又はソフトウェア的に禁止するキー手段Kを備えており、前記エンジン70を作業車両に搭載する際には、前記キー手段Kによる書き込み禁止状態を解除して、前記外部ツール24を用いて前記ECU11′に前記修正特性データM2,M3が書き込まれるものであるから、前記ECU11′に対する不正な読み出し・書き込みを簡単且つ確実に防止できる。従って、エンジン製造メーカ及びエンジン購入メーカの重要情報(各特性データM1~M3)の保護が可能になるという効果を奏する。
 上記の記載並びに図14から明らかなように、前記ECU11′に書き込み済みの前記修正特性データM2,M3は、前記ECU11′外への読み出し及び書き換えが不能な設定にて保護されていて、前記ECU11′に前記外部ツール24を接続した状態で特定ユーザのみに、前記修正特性データM2,M3の前記読み出し及び書き換えを許可するように構成されているから、例えば不正なツール等を用いて、正規データと異なる特性データが前記ECU11′に勝手に書き込まれたり、正規データM1~M3が安易に書き換えられたりするのを防止でき、セキュリティ確保が容易である。その上、エンジン製造メーカであっても、前記修正特性データM2,M3の読み出し、書き換え及び抽出(リバースエンジニアリング)をできないから、前記エンジン購入メーカの重要情報(前記修正特性データM2,M3)を確実に保護できるメリットがある。
 (5).ディーゼルエンジンの全体構造
 次に、図16~図21を参照しながら、ディーゼルエンジン70の全体構造について説明するディーゼルエンジン70は4気筒型のものであり、ディーゼルエンジン70におけるシリンダヘッド72の左側面に排気マニホールド71が配置されている。シリンダヘッド72の右側面には吸気マニホールド73が配置されている。シリンダヘッド72は、クランク軸74とピストン(図示省略)が内蔵されたシリンダブロック75上に搭載されている。シリンダブロック75の前後両側面からクランク軸74の前後先端部をそれぞれ突出させている。シリンダブロック75の前面側には冷却ファン76が設けられている。クランク軸74の前端側からVベルト77を介して冷却ファン76に回転力を伝達するように構成されている。
 図17~図20に示すように、シリンダブロック75の後面にフライホイールハウジング78が固着されている。フライホイールハウジング78内にフライホイール79が配置されている。フライホイール79はクランク軸74の後端側に軸支されている。フライホイール79は、クランク軸74と一体的に回転するように構成されている。トラクタ201の駆動部に、フライホイール79を介してディーゼルエンジン70の動力を取り出すように構成されている。
 シリンダブロック75の下面にはオイルパン81が配置されている。シリンダブロック75の左右側面とフライホイールハウジング78の左右側面とには、機関脚取付部82がそれぞれ設けられている。各機関脚取付部82には、防振ゴムを有する機関脚体83がボルト締結されている。ディーゼルエンジン70は、各機関脚体83を介して、トラクタ201のエンジン支持シャーシ84に防振支持される。
 図16、図17、図19及び図21に示すように、吸気マニホールド73の入口側には、EGR装置91(排気ガス再循環装置)を構成するコレクタ92を介して、エアクリーナ(図示省略)が連結される。エアクリーナ88にて除塵・浄化された外気は、EGR装置91のコレクタ92を介して、吸気マニホールド73に送られ、そして、ディーゼルエンジン70の各気筒に供給される。
 図16、図17、図19及び図21に示すように、EGR装置91は、ディーゼルエンジン70の再循環排気ガス(排気マニホールド71からのEGRガス)と新気(エアクリーナからの外部空気)とを混合させて吸気マニホールド73に供給するコレクタ(EGR本体ケース)92と、排気マニホールド71にEGRクーラ94を介して接続する再循環排気ガス管95と、再循環排気ガス管95にコレクタ92を連通させるEGRバルブ96とを備えている。
 上記の構成により、エアクリーナからコレクタ92内に外部空気を供給する一方、排気マニホールド71からEGRバルブ96を介してコレクタ92内にEGRガス(排気マニホールド71から排出される排気ガスの一部)を供給する。エアクリーナからの外部空気と、排気マニホールド71からのEGRガスとが、コレクタ92内で混合された後、コレクタ92内の混合ガスが吸気マニホールド73に供給される。すなわち、ディーゼルエンジン70から排気マニホールド71に排出された排気ガスの一部が、吸気マニホールド73からディーゼルエンジン70に還流されることによって、高負荷運転時の最高燃焼温度が下がり、ディーゼルエンジン70からのNOx(窒素酸化物)の排出量が低減される。
 図16及び図18~図21に示すように、シリンダヘッド72の左側面には、ターボ過給機100が取り付けられている。ターボ過給機100は、タービンホイール(図示省略)を内蔵したタービンケース101と、ブロアホイール(図示省略)を内蔵したコンプレッサケース102とを備えている。タービンケース101の排気ガス取入れ管105に排気マニホールド71が接続されている。図示は省略するが、タービンケース101の排気ガス排出管103には、マフラー又はディーゼルパティキュレートフィルタ等を介してテールパイプが接続される。すなわち、ディーゼルエンジン70の各気筒から排気マニホールド71に排出された排気ガスは、ターボ過給機100等を経由して、テールパイプから外部に放出される。
 一方、コンプレッサケース102の給気取入れ側には、給気管104を介してエアクリーナの給気排出側が接続される。コンプレッサケース102の給気排出側には、過給管108を介して吸気マニホールド73が接続される。すなわち、エアクリーナによって除塵された外気は、コンプレッサケース102から過給管108を介してディーゼルエンジン70の各気筒に供給される。
 (6).トラクタの概略
 次に、図22及び図23を参照しながら、ディーゼルエンジン70が搭載されるトラクタ201の概略について説明する。作業車両としてのトラクタ201は、走行機体202を左右一対の前車輪203と同じく左右一対の後車輪204とで支持し、走行機体202の前部に搭載されたディーゼルエンジン70にて後車輪204及び前車輪203を駆動することにより、前後進走行するように構成される。
 走行機体202の前部に搭載されたディーゼルエンジン70はボンネット206にて覆われている。走行機体202の上面にはキャビン207が設置され、キャビン207の内部には、オペレータが着座する操縦座席208と、操縦座席208の前方に位置する操向手段としての丸ハンドル形状の操縦ハンドル209が設けられている。操縦座席208に着座したオペレータが操縦ハンドル209を回動操作することにより、その操作量に応じて左右前車輪203のかじ取り角(操向角度)が変わるように構成されている。キャビン207の底部には、オペレータが搭乗するためのステップ210が設けられている。キャビン207のフロントコラム内に、ECU11又は11′(統合ECU)が配置されている。
 図22に示すように、走行機体202は、前バンパ212及び前車軸ケース213を有するエンジンフレーム214と、エンジンフレーム214の後部にボルトの締結にて着脱可能に連結する左右の機体フレーム216とにより構成される。前車輪203は、エンジンフレーム214の外側面から外向きに突出するように装着された前車軸ケース213を介して取り付けられている。また、機体フレーム216の後部には、ディーゼルエンジン70からの出力を適宜変速して後車輪204(前車輪203)に伝達するためのミッションケース217が連結されている。後車輪204は、ミッションケース217に対して、当該ミッションケース217の外側面から外向きに突出するように装着された後車軸ケース(図示省略)を介して取り付けられている。
 図22及び図23に示すように、ミッションケース217の後部上面には、耕耘機やプラウ等の作業機(図示省略)を昇降動するための油圧式の作業機用昇降機構220が着脱可能に取り付けられている。作業機は、ミッションケース217の後部にロワーリンク221及びトップリンク222を介して昇降動可能に連結される。更に、ミッションケース217の後側面に、作業機を駆動するPTO軸223が設けられている。
 詳細は図示していないが、ディーゼルエンジン70の後面側からクランク軸74及びフライホイール79等を介して、ミッションケース217の前面側にディーゼルエンジン70の回転動力を伝達するように構成している。ディーゼルエンジン70の回転動力をミッションケース217に伝達し、次いで、ミッションケース217の油圧無段変速機や走行副変速ギヤ機構にてディーゼルエンジン70の回転動力を適宜変速して、差動ギヤ機構等を介してミッションケース217から後車輪204に駆動力を伝達するように構成している。また、走行副変速ギヤ機構にて適宜変速したディーゼルエンジン70の回転を、前車軸ケース213の差動ギヤ機構等を介してミッションケース217から前車輪203に伝達するように構成している。
 (7).その他
 本願発明は、前述の実施形態に限らず、様々な態様に具体化できる。例えば本願発明はトラクタに搭載されるエンジンのエンジン制御装置に限らず、コンバインや田植機等の農作業機や、ホイルローダ等の特殊作業用作業車両に搭載されるエンジンのエンジン制御装置としても適用可能である。燃料噴射装置はコモンレール式のものに限らず、電子ガバナ式のものであってもよい。その他、各部の構成は図示の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更が可能である。
M1 出力特性マップ
M2,M3 修正特性マップ
N 回転速度
T トルク
U1 製造側エリア
U2 購入側エリア
11,11′ ECU(統合ECU)
14 エンジン速度センサ(検出手段)
16 スロットル位置センサ(検出手段)
20 記憶手段
20a 修正特性用領域
24 外部ツール
25 識別手段
70 ディーゼルエンジン
115 インジェクタ
117 コモンレールシステム
120 コモンレール

Claims (11)

  1.  エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、
     前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能なエリアが設けられており、
     前記エリアには前記修正特性データを書き込まない状態で出荷され、前記エンジンを作業車両に搭載する際に、前記エリアに前記作業車両の作業特性に適合した前記修正特性データが書き込まれる、
    エンジン制御装置。
  2.  エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置の制御方法であって、
     前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能なエリアが設けられており、
     前記エリアには前記修正特性データを書き込まない状態で出荷され、前記エンジンを作業車両に搭載する際に、前記エリアに前記作業車両の作業特性に適合した前記修正特性データが書き込まれ、
     前記修正特性データが書き込まれた前記ECUは、前記検出手段の検出情報に基づき前記修正特性データを照会して、前記照会結果に基づき前記燃料噴射装置を作動させる、
    エンジン制御装置の制御方法。
  3.  エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、
     前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能なエリアが設けられており、更に前記エリアに書き込みを禁止する禁止手段を備えており、
     前記エリアには前記修正特性データを書き込まない状態で出荷され、前記エンジンを作業車両に搭載する際には、前記禁止手段による書き込み禁止状態が解除され、前記エリアに前記作業車両の作業特性に適合した前記修正特性データが書き込まれる、
    エンジン制御装置。
  4.  エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、
     前記ECUには、前記出力特性データとは別に、前記燃料噴射装置の作動を修正するための修正特性データを書き込むことが可能になっており、前記修正特性データが書き込まれた前記ECUは、前記検出手段の検出情報に基づき前記修正特性データを照会して、前記照会結果に基づき前記燃料噴射装置を作動させることを許容するように構成されている、
    エンジン制御装置。
  5.  前記修正特性データが書き込まれた前記ECUは、前記検出手段の検出情報に基づき前記修正特性データを優先的に照会するように構成されている、
    請求項4に記載したエンジン制御装置。
  6.  前記修正特性データが正常に書き込まれた後は、前記修正特性データの書換えをハードウェア的又はソフトウェア的に禁止するように構成されている、
    請求項4又は5に記載したエンジン制御装置。
  7.  前記各特性データは、前記エンジンにおける回転速度とトルクとの関係を示すデータであり、前記修正特性データは、前記出力特性データと比較して、所定回転速度に対するトルクを制限するように設定されている、
    請求項4~6のうちいずれかに記載したエンジン制御装置。
  8.  エンジンと、前記エンジンに燃料を噴射する燃料噴射装置と、前記エンジンの駆動状態を検出する検出手段と、前記検出手段の検出情報と前記エンジン固有の出力特性データとに基づいて前記燃料噴射装置の作動を制御するECUとを備えているエンジン制御装置であって、
     前記ECUは前記出力特性データを書き込んだ状態で出荷され、前記エンジンを作業車両に搭載する際に、前記ECUに接続される外部ツールによって、前記燃料噴射装置の作動を修正するための修正特性データを書き込み可能になっている、
    エンジン制御装置。
  9.  前記修正特性データは、作業車両の作業特性に応じて複数個、前記外部ツールに格納されており、前記ECUは、前記各修正特性データに関連付けられた識別手段の設定によって、前記外部ツールから読み込む修正特性データを決定する、
    請求項8に記載したエンジン制御装置。
  10.  前記ECUへの書き込みをハードウェア的又はソフトウェア的に禁止するキー手段を備えており、前記エンジンを作業車両に搭載する際には、前記キー手段による書き込み禁止状態を解除して、前記外部ツールを用いて前記ECUに前記修正特性データが書き込まれる、
    請求項8又は9に記載したエンジン制御装置。
  11.  前記ECUに書き込み済みの前記修正特性データは、前記ECU外への読み出し及び書き換えが不能な設定にて保護されていて、前記ECUに前記外部ツールを接続した状態で特定ユーザのみに、前記修正特性データの前記読み出し及び書き換えを許可するように構成されている、
    請求項8~10のうちいずれかに記載したエンジン制御装置。
PCT/JP2010/065927 2009-09-18 2010-09-15 エンジン制御装置及びその制御方法 WO2011034083A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-216590 2009-09-18
JP2009216588A JP5355326B2 (ja) 2009-09-18 2009-09-18 エンジン制御装置及びその制御方法
JP2009-216588 2009-09-18
JP2009216590A JP5468339B2 (ja) 2009-09-18 2009-09-18 エンジン制御装置

Publications (1)

Publication Number Publication Date
WO2011034083A1 true WO2011034083A1 (ja) 2011-03-24

Family

ID=43758684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065927 WO2011034083A1 (ja) 2009-09-18 2010-09-15 エンジン制御装置及びその制御方法

Country Status (1)

Country Link
WO (1) WO2011034083A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210200451A1 (en) * 2018-05-17 2021-07-01 Kohler Co. Method and device for writing software objects into an electronic control unit of an internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125991A (ja) * 1995-11-02 1997-05-13 Yanmar Diesel Engine Co Ltd 電子ガバナの制御特性調整機構及び方法
JPH10159599A (ja) * 1996-11-29 1998-06-16 Yanmar Diesel Engine Co Ltd 電子ガバナ制御機構
JP2001263156A (ja) * 2000-03-16 2001-09-26 Honda Motor Co Ltd 車両制御装置のためのメモリ書き換えシステム
JP2002014009A (ja) * 2000-06-29 2002-01-18 Nissan Motor Co Ltd 車両用自動運転装置
JP2002089352A (ja) * 2001-06-25 2002-03-27 Hitachi Ltd 自動車の制御装置
JP2006170214A (ja) * 2002-08-01 2006-06-29 Toyota Motor Corp 自動適合装置
JP2006207387A (ja) * 2005-01-25 2006-08-10 Mitsubishi Electric Corp 車載エンジン制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125991A (ja) * 1995-11-02 1997-05-13 Yanmar Diesel Engine Co Ltd 電子ガバナの制御特性調整機構及び方法
JPH10159599A (ja) * 1996-11-29 1998-06-16 Yanmar Diesel Engine Co Ltd 電子ガバナ制御機構
JP2001263156A (ja) * 2000-03-16 2001-09-26 Honda Motor Co Ltd 車両制御装置のためのメモリ書き換えシステム
JP2002014009A (ja) * 2000-06-29 2002-01-18 Nissan Motor Co Ltd 車両用自動運転装置
JP2002089352A (ja) * 2001-06-25 2002-03-27 Hitachi Ltd 自動車の制御装置
JP2006170214A (ja) * 2002-08-01 2006-06-29 Toyota Motor Corp 自動適合装置
JP2006207387A (ja) * 2005-01-25 2006-08-10 Mitsubishi Electric Corp 車載エンジン制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210200451A1 (en) * 2018-05-17 2021-07-01 Kohler Co. Method and device for writing software objects into an electronic control unit of an internal combustion engine

Similar Documents

Publication Publication Date Title
CN101368518B (zh) 快速主动燃料管理重新激活
CN101240747B (zh) 节气门和egr阀的协同控制
CN102374090B (zh) 基于发动机振动检测燃料喷射器失常的系统和方法
WO2011034084A1 (ja) エンジン制御装置
CN101684756A (zh) 在协同扭矩控制系统中确保节流面积
JP2011156948A (ja) 作業車両
KR20140024368A (ko) 엔진 장치
CN103732878A (zh) 带涡轮增压器的内燃机的控制装置
EP3081793A1 (en) Vehicle having engine control system with power boost in response to torque demand
CN1263948C (zh) 用于内燃机的集成废气再循环系统
WO2011034083A1 (ja) エンジン制御装置及びその制御方法
JP5468339B2 (ja) エンジン制御装置
JP2008297989A (ja) 多気筒ディーゼルエンジン
JP5559907B2 (ja) エンジン制御装置
JP5355326B2 (ja) エンジン制御装置及びその制御方法
US7263426B2 (en) System for controlling fuel delivery at altitude
JP2007092626A (ja) 作業機用エンジン
JP5809230B2 (ja) エンジン制御装置
JP2011064159A (ja) エンジン制御装置
JP5559908B2 (ja) エンジン制御装置
Scarlett Integration of tractor engine, transmission and implement depth controls: part 2, control systems
JP5940182B2 (ja) エンジン制御装置
JP3900034B2 (ja) 内燃機関の制御装置
JP2011064168A (ja) エンジン制御装置
JP2008088858A (ja) ディーゼルエンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817196

Country of ref document: EP

Kind code of ref document: A1