WO2011033676A1 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2011033676A1 WO2011033676A1 PCT/JP2009/066453 JP2009066453W WO2011033676A1 WO 2011033676 A1 WO2011033676 A1 WO 2011033676A1 JP 2009066453 W JP2009066453 W JP 2009066453W WO 2011033676 A1 WO2011033676 A1 WO 2011033676A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dummy
- light
- semiconductor device
- less
- semiconductor substrate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 title description 17
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 238000000137 annealing Methods 0.000 claims abstract description 8
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000031700 light absorption Effects 0.000 description 32
- 238000010586 diagram Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004020 conductor Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0207—Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
Definitions
- the present invention relates to a method for manufacturing a semiconductor device.
- Japanese Patent Application Publication No. 2009-141075 discloses a method of increasing the temperature of a portion where the temperature of the semiconductor substrate is lowered by forming a dummy pattern in the portion where the temperature of the semiconductor substrate is lowered.
- a technique related to a semiconductor device that can reduce temperature unevenness of a substrate is disclosed.
- the present invention provides a method of manufacturing a semiconductor device that can lower the temperature of the portion where the temperature of the semiconductor substrate is increased in the process of manufacturing the semiconductor device.
- a method of manufacturing a semiconductor device includes a circuit pattern region having a circuit pattern involved in circuit operation, an active area formed on the circuit pattern region, and the active area. And a dummy pattern having a plurality of dummy gates which are formed at a position of 10 ⁇ m or more and 11 ⁇ m or less from the edge of the active area and have a pitch of 10 nm or more and 510 nm or less and which do not participate in the circuit operation.
- the angle formed by the dummy gate arrangement direction and the light projection direction is set to 0 ° or more and 30 ° or less.
- FIG. 1 is a diagram showing a semiconductor device according to a first embodiment of the present invention.
- 1 is a diagram showing a basic structure of a semiconductor device according to a first embodiment.
- FIG. 5 is a diagram showing a manufacturing process of the semiconductor device according to the first embodiment.
- FIG. 5 is a diagram showing a manufacturing process of the semiconductor device according to the first embodiment.
- FIG. 5 is a diagram showing a manufacturing process of the semiconductor device according to the first embodiment.
- the figure which shows the simulation result of a light absorption rate change The figure which shows the change of the light irradiation direction and the light absorption rate of a semiconductor substrate.
- FIG. 1 is a diagram showing a semiconductor device 10 according to the present embodiment.
- the semiconductor device 10 according to the present embodiment has a circuit pattern region 30 having an integrated circuit pattern involved in circuit operation on a semiconductor substrate main surface 20.
- a GC (Gate Conductor: gate) 40, an STI (Shallow Trench Isolation: element isolation region) 50, and an AA (Active Area, active area) 60 are formed.
- AA60 indicates a region where a source / drain region and a channel region are provided in a semiconductor.
- the GC 40 and AA 60 have a configuration mainly containing Si.
- the STI 50 has a configuration mainly including SiO 2 .
- the film thickness of GC40 is 100 to 300 nm, and the length is 10 ⁇ m or more and 500 ⁇ m or less in the channel length direction and the channel width direction of AA60.
- the channel length direction indicates a direction in which conduction occurs between the source and the drain
- the channel width direction indicates a direction perpendicular to the channel length direction.
- the AA 60 is provided with a dummy pattern 77 in which a plurality of dummy GCs (Gate Conductors, dummy gates) 70 are periodically arranged.
- the plurality of dummy GCs 70 constituting the dummy pattern 77 have the same channel length direction and the arrangement direction thereof, and are provided on at least one of 10 ⁇ m to 11 ⁇ m from both ends of the AA 60. Note that the effect of this embodiment can be obtained if there is a part of the dummy pattern 77 within the range of 10 ⁇ m to 11 ⁇ m.
- end is indicated with respect to the AA 60, the effect of the present embodiment can be obtained at the end in any direction of the AA 60.
- the dummy GC 70 has a rectangular shape, the short axis direction coincides with the channel length direction, and the long axis direction coincides with the channel width direction.
- the length of the dummy GC 70 in the channel length direction is 100 nm.
- the length of the dummy GC 70 in the channel width direction matches the length of the AA 60 in the channel width direction.
- the interval between the dummy GC 70 and the dummy GC 70 is referred to as a pitch 75.
- the pitch 75 is 10 nm or more and 510 nm or less.
- the film thickness of the dummy GC 70 is not less than 100 nm and not more than 300 nm.
- the dummy pattern 77 is a portion that does not contribute to the function of the circuit and is for maintaining a temperature balance.
- the dummy pattern 77 can be formed by not providing wiring in a subsequent process of the semiconductor device, or by not forming source / drain regions.
- source / drain regions are formed at both ends of the channel. If the shape of the dummy pattern 77 is rectangular, it is preferable because it is easy to create.
- the semiconductor device 10 has a basic circuit structure constituted by the GC 40 and the STI 50 on the semiconductor substrate 80 as shown in FIG. 2A.
- the semiconductor substrate main surface 20 indicates the surface of the semiconductor substrate 80 on which the semiconductor integrated circuit is arranged.
- FIG. 2B is a diagram for explaining a manufacturing process of the semiconductor device 10 according to the present embodiment.
- FIG. 2B is a cross-sectional view of the semiconductor device 10 shown in FIG. 1 as viewed from the channel length direction, and is a view before the dummy pattern 77 and the GC 40 are formed.
- FIG. 2C is a cross-sectional view of the semiconductor device 10 according to this embodiment as viewed from the channel length direction.
- 2B is obtained by stacking a nitride film on the semiconductor substrate 80, selectively etching, oxidizing the selectively etched region to form the STI 50, and etching the nitride film. At this time, the area sandwiched between the STIs 50 is AA60.
- the semiconductor substrate main surface 20 is heated to a high temperature in a few milliseconds using an optical annealing process called LSA (Laser Spike Annealing). To be processed.
- LSA Laser Spike Annealing
- LSA uses a CO 2 laser as a light source to irradiate a semiconductor substrate main surface 20 with a laser beam 25 (also referred to as light) having a wavelength of about 10 ⁇ m to 11 ⁇ m to make the semiconductor substrate main surface 20 a high temperature of 1000 ° C. or higher. It is.
- the incident angle of the laser light with respect to the semiconductor substrate main surface 20 is set to a Brewster angle at which the light absorption intensity is maximized, and the laser light is absorbed almost 100% by the semiconductor substrate main surface 20. For this reason, compared with other optical annealing techniques, there is little damage to the apparatus by reflected light.
- Brewster angle so varies its angle depending on the material
- SiO 2 of Brewster angle constituting the Si and STI50 is a material that mainly constitutes the GC40 and AA60 are approximately equal, the average of these A value can be used.
- the Brewster angle is set to about 76 ° in the present embodiment.
- FIG. 3 is a diagram showing a simulation result of performing LSA on the semiconductor substrate 80 without using the dummy pattern 77.
- FIG. 3 shows that AA 60 is formed on the semiconductor substrate 80.
- an RCWA (Rigoros Coupled Wave Analysis) method that can accurately solve the light interference effect by a vector diffraction method was used.
- the horizontal axis (x axis) indicates the channel length direction
- the vertical axis (z axis) indicates the thickness direction of the semiconductor substrate 80. The darker the color, the stronger the light absorption, that is, the temperature rise.
- the light absorptance of the portion where the temperature rises is high at about 2 to 4% compared to other portions of AA60.
- 1% of the light absorption rate corresponds to a temperature of about 12 ° C. That is, it can be seen that a temperature rise of about 24 ° C. to about 48 ° C. occurs.
- the electrical characteristics of the finally manufactured semiconductor device 10 are deteriorated.
- the electrical activation degree of Si or doped impurities constituting the semiconductor device changes, and basic characteristics such as threshold voltage and resistance value are different for each circuit. It will change. As a result, it is known that the electrical characteristics as an integrated circuit deteriorate.
- Non-Patent Document 1 For example, according to FIG. 3 and FIG. 4 of Non-Patent Document 1, it is understood that the resistance value of the circuit greatly depends on the temperature (laser power), and the temperature needs to be controlled to be uniform. .
- a difference in resistance value or threshold voltage due to temperature unevenness corresponding to 20 ° C. cannot be allowed.
- Non-patent literature 1 A. Shima, A. HIRAIWA, “Ultra-Shallow Junction Formation by Non-Melt Laser Spike Annealing and its Application to Complementary Metal Oxide Semiconductor Devices in 65-nm Node”
- the x-axis values are 25 ( ⁇ m) and 65 ( ⁇ m), that is, light absorption is strong at both ends of AA60. This is because evanescent waves are generated at both ends of the AA 60 due to interference between light incident on the end and reflected light and total reflection of light. The distance from the end of the AA 60 is within the wavelength region in both the region where the incident wave and the reflected wave interfere and the electric field distribution strengthens and the region where the evanescent wave is strong.
- the wavelength of the irradiated laser beam is 10 ⁇ m or more and 11 ⁇ m or less
- the region where the light absorption is strong is that the distance from the end of the AA 60 is about 10 ⁇ m to 11 ⁇ m.
- a region where light absorption is high also has a high temperature, and temperature unevenness occurs in this region. This temperature rise causes temperature unevenness in the semiconductor substrate circuit and causes crystal defects due to thermal stress, circuit dissolution, circuit threshold voltage variation, and the like, leading to deterioration in circuit performance.
- the dummy pattern 77 composed of a plurality of periodically arranged dummy GCs 70 on at least one of 10 ⁇ m or more and 11 ⁇ m or less from both ends of the AA 60, temperature rise at both ends of the AA 60 can be suppressed. .
- the region where the light absorption rate is high is a region whose distance from the end of the AA 60 is 10 ⁇ m to 11 ⁇ m, and thus the dummy pattern 77 that strongly reflects light is placed in this region to lower the light absorption rate.
- the light absorptivity can be made the same as other regions, and the light absorptance can be made uniform.
- FIG. 4 is a diagram showing how the light absorption rate changes in the semiconductor substrate 80 in which the rotation angle ⁇ with the thickness direction of the semiconductor substrate 80 as the rotation axis and the dummy pattern 77 is arranged.
- the horizontal axis represents the rotation angle ⁇
- the vertical axis represents the light absorption rate.
- the thickness of the dummy gate GC70 is 150 nm.
- the rotation angle ⁇ When the rotation angle ⁇ is 90 °, it indicates that the arrangement direction of the plurality of periodically arranged dummy GCs 70 and the projection direction of the laser light are parallel. On the other hand, when the rotation angle ⁇ is 0 °, it indicates that the arrangement direction of the dummy GC 70 is perpendicular to the projection direction of the laser light.
- the projection direction of the laser beam indicates a direction in which the laser beam 90 is projected onto the semiconductor substrate main surface 20 as shown in FIG.
- the plurality of lines shown in FIG. 4 indicate the pitch 75 between the plurality of periodically arranged dummy GCs 70 and are changed in the range of 10 nm to 510 nm.
- the relationship between the rotation angle ⁇ and the light absorption rate is calculated by the RCWA method.
- FIG. 4 shows that the light absorptance is at least 94.3%.
- the light absorption rate when the rotation angle ⁇ is 90 °, although considered to be 100%, in the present embodiment, as GC40 and STI50 and AA60 is composed of Si or SiO 2, is obtained from these materials Since the average value of the Brewster angle is used, it is considered that the error is 1%. That is, in order to realize a temperature drop of about 20 ° C. or more, as can be seen from FIG.
- the pitch 75 between the plurality of periodically arranged dummy GCs 70 is in the range of 10 nm to 510 nm, the rotation angle ⁇ Is set to 0 ° or more and 32 ° or less, the light absorption rate can be lowered within a range of 2% or more and 4% or less. That is, the temperature can be lowered by about 24 ° C. to about 48 ° C.
- the pitch 75 between the dummy GCs 70 is set to 10 nm or more and 510 nm or less, and the dummy patterns 77 are disposed at a distance within the range of the laser light wavelength from both ends of the AA 60.
- the laser beam projection direction is set to 0 ° or more and 30 ° or less with respect to the arrangement direction, a temperature increase can be suppressed at the end of the AA 60, so that temperature unevenness generated in the process of manufacturing the semiconductor device can be reduced. .
- FIG. 6 is a diagram illustrating a modification of the semiconductor device 10 according to the first embodiment. This is different from the first embodiment in that the GC 40 is provided so as to cross a plurality of periodically arranged dummy GCs 70 provided in the AA 60.
- the GC 40 is provided so as to cross the plurality of periodically arranged dummy GCs 70, the light interference effect is generated between the periodically arranged dummy GCs 70, so that the temperature can be lowered.
- FIG. 7 is a diagram illustrating a modification of the semiconductor device 10 according to the first embodiment. The difference from the first embodiment is that the channel length direction of AA 60 and the arrangement direction of the plurality of periodically arranged dummy GCs 70 do not coincide with each other in the semiconductor substrate main surface 20.
- the light interference effect occurs between the periodically arranged dummy GCs 70. Can be lowered.
- FIG. 8 is a diagram showing a semiconductor device 100 according to the second embodiment of the present invention.
- the semiconductor device 100 is different from the semiconductor device 10 in that a dummy pattern 177 having a plurality of periodically arranged dummy GCs 110 is provided in the STI 50. Note that a description of the same configuration as the semiconductor device 10 is omitted.
- the dummy pattern 177 is provided at a position of 10 ⁇ m or more and 11 ⁇ m or less from the end of the AA 60.
- FIG. 9 is a diagram showing a rotation angle ⁇ with the thickness direction of the semiconductor substrate 80 as a rotation axis and how the light absorption rate changes in the semiconductor substrate 80.
- the horizontal axis represents the rotation angle ⁇
- the vertical axis represents the light absorption rate.
- the thickness of the dummy gate GC110 is 150 nm.
- the rotation angle ⁇ is 90 °, it indicates that the arrangement direction of the plurality of periodically arranged dummy GCs 70 and the projection direction of the laser light are parallel.
- the plurality of lines shown in FIG. 9 indicate the pitch 75 between the plurality of periodically arranged dummy GCs 70, and are changed in the range of 10 nm to 510 nm.
- the relationship between the rotation angle ⁇ and the light absorption rate is calculated by the RCWA method.
- FIG. 9 shows that the light absorptance is at least 94.3%.
- the light absorption rate when the rotation angle ⁇ is 90 °, although considered to be 100%, in the present embodiment, as GC40 and STI50 and AA60 is composed of Si or SiO 2, is obtained from these materials Since the average value of the Brewster angle is used, it is considered that the error is 1%. That is, in order to realize a temperature drop of about 20 ° C. or more, the rotation angle ⁇ is set to 0 ° or more and 18 ° or less when the interval between the plurality of periodically arranged dummy GCs 110 is 10 nm or more and 510 nm or less. Then, the light absorption rate can be lowered within a range of 2% or more and 4% or less, so that the temperature can be lowered by about 24 ° C. to about 48 ° C.
- the pitch 75 between the dummy GCs 110 is set to 10 nm or more and 510 nm or less, and the dummy pattern 177 is disposed at a distance within the range of the wavelength of the laser beam from the end of the AA 60.
- the laser beam projection direction is set to 0 ° or more and 18 ° or less with respect to the arrangement direction, temperature rise at the end of the AA 60 can be suppressed, and thus temperature unevenness that occurs in the process of manufacturing the semiconductor device can be reduced. .
- FIG. 10 is a diagram illustrating a modification of the semiconductor device 100 according to the second embodiment. This is different from the first embodiment in that the GC 40 is provided so as to cross a plurality of periodically arranged dummy GCs 110 provided in the STI 50.
- the GC 40 is provided so as to cross the plurality of periodically arranged dummy GCs 110, the light interference effect is generated between the periodically arranged dummy GCs 110, so that the temperature can be lowered.
- FIG. 11 is a diagram showing a semiconductor device 200 according to the third embodiment of the present invention.
- FIG. 11 shows a cross-sectional view seen from the channel width direction.
- the semiconductor device 200 is different from the first embodiment in that the film thickness of the dummy GC 210 constituting the dummy pattern 277 is changed. The description of the same configuration as that of the semiconductor device 10 is omitted.
- the film thickness of the dummy GC 210 according to this embodiment is not less than 300 nm and not more than 500 nm.
- FIG. 12 is a diagram showing a rotation angle ⁇ with the thickness direction of the semiconductor substrate 80 as a rotation axis and how the light absorption rate changes in the semiconductor substrate 80.
- the horizontal axis represents the rotation angle ⁇
- the vertical axis represents the light absorption rate.
- a rotation angle ⁇ of 90 ° indicates that the arrangement direction of the plurality of periodically arranged dummy GCs 210 and the projection direction of the laser light are parallel.
- the plurality of lines shown in FIG. 12 indicate the pitch 75 between the plurality of periodically arranged dummy GCs 210, and are changed in the range of 10 nm to 510 nm.
- the relationship between the rotation angle ⁇ and the light absorption rate is calculated by the RCWA method.
- the light absorption rate when the rotation angle ⁇ is 90 °, although considered to be 100%, in the present embodiment, as GC40 and STI50 and AA60 is composed of Si or SiO 2, is obtained from these materials Since the average value of the Brewster angle is used, it is considered that the error is 1%.
- the rotation angle ⁇ is set to 0 ° or more and 33 ° when the interval between the plurality of periodically arranged dummy GCs 210 is 10 nm or more and 510 nm or less. If it is set below, the light absorptance can be lowered in the range of 2% to 4%, so that the temperature can be lowered by about 24 ° C. to about 48 ° C.
- FIG. 13 is a diagram showing the rotation angle ⁇ with the thickness direction of the semiconductor substrate 80 as the rotation axis and how the light absorption rate changes in the semiconductor substrate 80.
- the horizontal axis represents the rotation angle ⁇
- the vertical axis represents the light absorption rate.
- a rotation angle ⁇ of 90 ° indicates that the arrangement direction of the plurality of periodically arranged dummy GCs 210 and the projection direction of the laser light are parallel.
- the plurality of lines shown in FIG. 13 indicate the pitch 75 between the plurality of periodically arranged dummy GCs 210, and are varied in the range of 10 nm to 510 nm.
- the relationship between the rotation angle ⁇ and the light absorption rate is calculated by the RCWA method.
- the light absorption rate when the rotation angle ⁇ is 90 °, although considered to be 100%, in the present embodiment, as GC40 and STI50 and AA60 is composed of Si or SiO 2, is obtained from these materials Since the average value of the Brewster angle is used, it is considered that the error is 1%.
- the rotation angle ⁇ is 0 ° or more and 46 ° or less when the interval between the plurality of periodically arranged dummy GCs 70 is in the range of 10 nm to 510 nm. If set to, the light absorptance can be lowered in the range of 2% to 4%, so the temperature can be lowered by about 24 ° C. to about 48 ° C.
- the temperature can be lowered with respect to the position where the temperature rise of the AA 60 occurs.
- a semiconductor device with high performance can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
- General Engineering & Computer Science (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
回路動作に関与する回路パターンを有する回路パタ-ン領域30と、回路パターン領域30上に形成されたアクティブエリア60と、アクティブエリア60上であり、アクティブエリア60の端から10μm以上11μm以下の位置に形成され、10nm以上510nm以下のピッチであり、回路動作に関与しない複数のダミーゲートを有するダミーパターン77と、を備えた半導体基板80の主面に波長が10μm以上11μm以下の光を照射するレーザースパイクアニーリングを行う際に、ダミーゲートの配列方向と光の投影方向が0°以上30°以下の角度となるように設定することを特徴とする半導体装置の製造方法。
Description
本発明は、半導体装置の製造方法に関する。
日本国特許出願公開第2009-141075号公報は、半導体基板の温度が低下している箇所にダミーパターンを形成することによって、半導体基板の温度が低下している箇所の温度を上昇させて、半導体基板の温度ムラを低減することができる半導体装置に関する技術を開示している。
しかしながら、日本国特許出願公開第2009-141075号公報に開示された技術では、半導体基板で温度が上昇している箇所の温度を下げるという技術が開示されていない。
そこで、本発明は、半導体装置を製造する工程において、半導体基板の温度が上昇している箇所の温度を下げることができる半導体装置の製造方法を提供する。
本発明の一態様に係る半導体装置の製造方法は、回路動作に関与する回路パターンを有する回路パタ-ン領域と、前記回路パターン領域上に形成されたアクティブエリアと、前記アクティブエリア上であり、前記アクティブエリアの端から10μm以上11μm以下の位置に形成され、10nm以上510nm以下のピッチであり、回路動作に関与しない複数のダミーゲートを有するダミーパターンと、を備えた半導体基板の主面に波長が10μm以上11μm以下の光を照射するレーザースパイクアニーリングを行う際に、前記ダミーゲートの配列方向と前記光の投影方向とのなす角度を0°以上30°以下に設定することを特徴とする。
以下、図面を参照しつつ本発明の実施形態について説明する。また、以下に説明する複数の実施形態において共通する構成については、図面において同じ符号を付すとともに重複した説明は省略する。
(第1の実施形態)
本発明の第1の実施形態に係る半導体装置10について説明する。
図1は、本実施形態に係る半導体装置10を示す図である。本実施形態に係る半導体装置10は、半導体基板主面20上に、回路動作に関与する集積回路パターンを有する回路パターン領域30を有する。
本発明の第1の実施形態に係る半導体装置10について説明する。
図1は、本実施形態に係る半導体装置10を示す図である。本実施形態に係る半導体装置10は、半導体基板主面20上に、回路動作に関与する集積回路パターンを有する回路パターン領域30を有する。
回路パターン領域30には、GC(Gate Conductor:ゲートコンダクター、ゲート)40、STI(Shallow Trench Isolation:素子分離領域)50、AA(Active Area、アクティブエリア)60が形成されている。AA60とは、半導体においてソース・ドレイン領域やチャネル領域が設けられる領域のことを示す。GC40及びAA60は主にSiを含む構成を有している。STI50は、主にSiO2を含む構成を有している。
GC40の膜厚は100~300nmであり、AA60のチャネル長方向とチャネル幅方向ともにその長さは10μm以上500μm以下である。なお、チャネル長方向とは、ソースとドレイン間で導通が起こる方向を示し、チャネル幅方向は、チャネル長方向に垂直な方向を示す。
AA60には、複数のダミーGC(Gate Conductor、ダミーゲート)70が周期的に配置されたダミーパターン77が設けられている。
ダミーパターン77を構成する複数のダミーGC70は、チャネル長方向とその配列方向が一致しており、AA60の両端から10μm以上11μm以下の少なくとも一方に設けられている。なお、上記した10μm以上11μm以下の範囲内にダミーパターン77の一部があれば本実施形態の効果は得られる。ここで、AA60に対して「端」と示す場合、AA60のどの方向の端でも本実施形態の効果は得られる。また、ダミーGC70の形状は長方形であり、短軸方向はチャネル長方向と一致しており、長軸方向はチャネル幅方向と一致している。ダミーGC70のチャネル長方向の長さは100nmとする。ダミーGC70のチャネル幅方向の長さはAA60のチャネル幅方向の長さと一致する。
ダミーパターン77を構成する複数のダミーGC70は、チャネル長方向とその配列方向が一致しており、AA60の両端から10μm以上11μm以下の少なくとも一方に設けられている。なお、上記した10μm以上11μm以下の範囲内にダミーパターン77の一部があれば本実施形態の効果は得られる。ここで、AA60に対して「端」と示す場合、AA60のどの方向の端でも本実施形態の効果は得られる。また、ダミーGC70の形状は長方形であり、短軸方向はチャネル長方向と一致しており、長軸方向はチャネル幅方向と一致している。ダミーGC70のチャネル長方向の長さは100nmとする。ダミーGC70のチャネル幅方向の長さはAA60のチャネル幅方向の長さと一致する。
また、ダミーGC70とダミーGC70との間隔のことをピッチ75という。ピッチ75は、10nm以上510nm以下である。また、ダミーGC70の膜厚は100nm以上300nm以下である。
なお、ダミーパターン77は、回路の機能には寄与しない部分であり、温度の均衡を保つためのものである。ダミーパターン77は、半導体装置の後工程で配線を施さないようにすることや、ソース・ドレイン領域を形成しないようにすることで形成することができる。一方で、GC40は、チャネルを形成するために、そのチャネルの両端にソース・ドレイン領域が形成されている。ダミーパターン77の形状は、長方形状であれば、作成が容易となるので好ましい。
また、本実施形態に係る半導体装置10は、図2Aのような半導体基板80上にGC40とSTI50によって構成される基本回路構造を有する。また、半導体基板主面20とは、半導体集積回路が配置されている半導体基板80の表面を示す。
次に、製造工程及び半導体装置10の動作原理について説明する。
図2Bは、本実施形態に係る半導体装置10の製造工程を説明するための図である。図2Bは、図1に示す半導体装置10をチャネル長方向から見た断面図を示し、ダミーパターン77とGC40を形成する前の図である。図2Cは、本実施形態に係る半導体装置10のチャネル長方向から見た断面図を示す。
図2Bは、本実施形態に係る半導体装置10の製造工程を説明するための図である。図2Bは、図1に示す半導体装置10をチャネル長方向から見た断面図を示し、ダミーパターン77とGC40を形成する前の図である。図2Cは、本実施形態に係る半導体装置10のチャネル長方向から見た断面図を示す。
図2Bの構成は、半導体基板80上に窒化膜を積層し、選択的にエッチングをし、選択的にエッチングした領域を酸化することによりSTI50が形成し、窒化膜をエッチングすることによって得られる。このとき、STI50で挟まれた領域がAA60となる。
次に、マスクをSTI50とAA60上に施し、リソグラフィーとエッチングを用いてダミーパターン77よGC40を形成することにより、図2Cの構成を得る。
最後に、図2Dに示すように、本実施形態に係る半導体基板主面20は、LSA(Laser Spike Annealing、レーザースパイクアニーリング)という光アニール工程を用いて数ミリ秒で半導体基板主面20を高温にすることによって処理される。
最後に、図2Dに示すように、本実施形態に係る半導体基板主面20は、LSA(Laser Spike Annealing、レーザースパイクアニーリング)という光アニール工程を用いて数ミリ秒で半導体基板主面20を高温にすることによって処理される。
LSAは、CO2レーザーを光源として、波長約10μm以上11μm以下のレーザー光25(光とも言う)を半導体基板主面20に照射して、半導体基板主面20を1000℃以上の高温にする技術である。レーザー光の半導体基板主面20に対する入射角度は、光の吸収強度が最大になるブリュースター角に設定されており、半導体基板主面20でレーザー光はほぼ100%吸収される。このため、他の光アニール技術と比較して、反射光による装置の損傷が少ない。なお、ブリュースター角は、物質に依存してその角度が変化するが、GC40及びAA60を主に構成する材料であるSiとSTI50を構成するSiO2のブリュースター角はほぼ等しいので、これらの平均値を用いることができる。ブリュースター角は本実施形態では約76°に設定してある。
図3は、ダミーパターン77を用いないで、LSAを半導体基板80に対して行ったシミュレーション結果を示す図である。図3は半導体基板80上にAA60が形成されていることを示している。シミュレーションは、ベクトル回折手法によって光の干渉効果を厳密に解くことができるRCWA(Rigoros Coupled Wave Analysis)法を用いた。横軸(x軸)はチャネル長方向を示し、縦軸(z軸)は半導体基板80の厚さ方向を示す。色が濃いほど、光の吸収が強いこと、つまり、温度上昇が起きていることを示している。
なお、シミュレーション結果から、この温度上昇が起きている部分の光吸収率は、AA60における他の部分と比較して約2~4%で高い。本実施形態において、光吸収率の1%は約12℃の温度に相当する。つまり、約24℃~約48℃の温度上昇が生じることがわかる。
このように、温度上昇が起こると、最終的に製造された半導体装置10に対する電気的特性の悪化に繋がる。一般的に、20℃以上の温度変化が起こると、半導体装置を構成するSiやドープされている不純物の電気的な活性化度が変化し、閾値電圧、抵抗値などの基本特性が回路ごとに変化してしまう。その結果、集積回路としての電気的特性が悪化してしまうことが知られている。
例えば、非特許文献1のFIG.3、FIG.4によると、回路の抵抗値は温度(レーザーパワー)に大きく依存しており、温度は一様化するように制御する必要があることがわかる。ロジック回路などの半導体集積回路に対し、20℃に相当する温度ムラによる抵抗値や閾値電圧の差は許容できない。(非特許文献1:A. Shima, A. HIRAIWA, “Ultra-Shallow Junction Formation by Non-Melt Laser Spike Annealing and its Application to Complementary Metal Oxide Semiconductor Devices in 65-nm Node”)
図3からわかるように、x軸の値が25(μm)と65(μm)の位置、すなわち、AA60の両端で光の吸収が強くなっていることがわかる。これは、AA60の両端では、端部に入射する光と反射する光の干渉、および光の全反射によってエバネッセント波が発生しているためである。入射波と反射波が干渉して電場分布が強めあう領域、およびエバネッセント波が強く存在する領域は、いずれもAA60の端からの距離が波長領域内である。ここで、照射するレーザー光の波長は10μm以上11μm以下であり、光の吸収が強くなる領域はAA60の端からの距離が10μm~11μm程度ということになる。光の吸収が高い領域は、温度も高くなり、この領域に温度ムラが発生する。この温度上昇は、半導体基板回路内での温度ムラを引き起こし、熱応力による結晶欠陥、回路の溶解、回路の閾値電圧のバラツキ等におり回路性能の劣化を招く。
そこで、本実施形態では、AA60の両端から10μm以上11μm以下の少なくとも一方に複数の周期的に配置されたダミーGC70からなるダミーパターン77を設けることによって、AA60の両端の温度上昇を抑えることができる。これは、光吸収率が高くなっている領域はAA60の端からの距離が10μm~11μmの領域であるため、この領域に光を強く反射するダミーパターン77を置くことで、光吸収率を下げ、他の領域と光吸収率を同じにし、光吸収率を一様化できる。
つまり、ダミーパターン77内で光の反射を誘起して、AA60内で光の過剰な吸収を抑制することができるからである。なお、AA60の外側に配置した場合でも、熱拡散の効果によりAA60の端で起こる温度上昇を下げることができるので、ダミーパターン77をチャネル長方向に沿って配置すれば、本実施形態の効果は得られる。
図4は、半導体基板80の厚さ方向を回転軸とした回転角度φとダミーパターン77を配置した半導体基板80内で光吸収率がどのように変化するかを示す図である。横軸が回転角度φ、縦軸が光吸収率を示している。なお、ダミーゲートGC70の厚さは150nmである。
図4は、半導体基板80の厚さ方向を回転軸とした回転角度φとダミーパターン77を配置した半導体基板80内で光吸収率がどのように変化するかを示す図である。横軸が回転角度φ、縦軸が光吸収率を示している。なお、ダミーゲートGC70の厚さは150nmである。
回転角度φが90°の場合、複数の周期的に配置されたダミーGC70の配列方向とレーザー光の投影方向が平行であることを示す。一方で、回転角度φが0°の場合、レーザー光の投影方向に対してダミーGC70の配列方向が垂直であることを示す。ここで、レーザー光の投影方向とは、図5に示すように、半導体基板主面20上にレーザー光90を投影した方向を示す。
図4に示す複数の線は、複数の周期的に配置されたダミーGC70間のピッチ75を示しており、10nm以上510nm以下の範囲で変化させている。なお、回転角度φと光吸収率の関係は、RCWA法により計算している。
図4より、光吸収率は最低でも94.3%であることがわかる。通常、光吸収率は、回転角度φが90°の場合、100%になると考えるが、本実施形態では、GC40やSTI50やAA60がSiやSiO2から構成されるとして、これらの材料から得られるブリュースター角の平均値を用いているので、誤差が1%と生じていると考えられる。すなわち、約20℃以上の温度降下を実現するには、図4からもわかるように、複数の周期的に配置されたダミーGC70間のピッチ75が10nm以上510nm以下の範囲においては、回転角度φを0°以上32°以下に設定すれば、光吸収率を2%以上4%以下の範囲で下げることができる。つまり、温度を約24℃~約48℃下げることができる。
上記したように、ダミーGC70間のピッチ75を10nm以上510nm以下にし、AA60の両端からレーザー光の波長以下の範囲の距離にダミーパターン77を配置して設け、ダミーパターン77を構成するダミーGC70の配列方向に対してレーザー光の投影方向を0°以上30°以下にすると、AA60の端で温度上昇を抑制することができるので、半導体装置を製造する過程で生じる温度ムラを低減することができる。
(変形例1)
図6は、第1の実施形態に係る半導体装置10の変形例を示す図である。AA60に設けられた複数の周期的に配置されたダミーGC70を横切るようにGC40が設けられている点で第1の実施形態と相違する。
図6は、第1の実施形態に係る半導体装置10の変形例を示す図である。AA60に設けられた複数の周期的に配置されたダミーGC70を横切るようにGC40が設けられている点で第1の実施形態と相違する。
このように、複数の周期的に配置されたダミーGC70を横切るようにGC40を設けても、周期的に配置されたダミーGC70間で光の干渉効果は生じるので、温度を下げることができる。
(変形例2)
図7は、第1の実施形態に係る半導体装置10の変形例を示す図である。AA60のチャネル長方向と複数の周期的に配置されたダミーGC70の配列方向とが半導体基板主面20内で一致していない点で第1の実施形態と相違する。
図7は、第1の実施形態に係る半導体装置10の変形例を示す図である。AA60のチャネル長方向と複数の周期的に配置されたダミーGC70の配列方向とが半導体基板主面20内で一致していない点で第1の実施形態と相違する。
このように、複数の周期的に配置されたダミーGC70の配列方向とAA60の配置方向が一致していなくても、周期的に配置されたダミーGC70間で光の干渉効果は生じるので、温度を下げることができる。
(第2の実施形態)
図8は、本発明の第2の実施形態に係る半導体装置100を示す図である。半導体装置100は、複数の周期的に配置されたダミーGC110を有するダミーパターン177がSTI50内に設けられている点で半導体装置10と相違する。なお、半導体装置10と同様の構成については、説明を省略する。
図8は、本発明の第2の実施形態に係る半導体装置100を示す図である。半導体装置100は、複数の周期的に配置されたダミーGC110を有するダミーパターン177がSTI50内に設けられている点で半導体装置10と相違する。なお、半導体装置10と同様の構成については、説明を省略する。
ダミーパターン177は、AA60の端から10μm以上11μm以下の位置に設けられている。
図9は、半導体基板80の厚さ方向を回転軸とした回転角度φと半導体基板80内で光吸収率がどのように変化するかを示す図である。横軸が回転角度φ、縦軸が光吸収率を示している。なお、ダミーゲートGC110の厚さは150nmである。また、回転角度φが90°場合、複数の周期的に配置されたダミーGC70の配列方向とレーザー光の投影方向が平行であることを示す。
図9に示す複数の線は、複数の周期的に配置されたダミーGC70間のピッチ75を示しており、10nm以上510nm以下の範囲で変化させている。なお、回転角度φと光吸収率の関係は、RCWA法により計算している。
図9より、光吸収率は最低でも94.3%であることがわかる。通常、光吸収率は、回転角度φが90°の場合、100%になると考えるが、本実施形態では、GC40やSTI50やAA60がSiやSiO2から構成されるとして、これらの材料から得られるブリュースター角の平均値を用いているので、誤差が1%と生じていると考えられる。すなわち、約20℃以上の温度降下を実現するには、複数の周期的に配置されたダミーGC110間の間隔が10nm以上510nm以下の範囲においては、回転角度φを0°以上18°以下に設定すれば、光吸収率を2%以上4%以下の範囲で下げることができるので、温度を約24℃~約48℃下げることができる。
上記したように、ダミーGC110間のピッチ75を10nm以上510nm以下にし、AA60の端からレーザー光の波長以下の範囲の距離にダミーパターン177を配置して設け、ダミーパターン177を構成するダミーGC110の配列方向に対してレーザー光の投影方向を0°以上18°以下にすると、AA60の端で温度上昇を抑制することができるので、半導体装置を製造する過程で生じる温度ムラを低減することができる。
(変形例3)
図10は、第2の実施形態に係る半導体装置100の変形例を示す図である。
STI50に設けられた複数の周期的に配置されたダミーGC110を横切るようにGC40が設けられている点で第1の実施形態と相違する。
図10は、第2の実施形態に係る半導体装置100の変形例を示す図である。
STI50に設けられた複数の周期的に配置されたダミーGC110を横切るようにGC40が設けられている点で第1の実施形態と相違する。
このように、複数の周期的に配置されたダミーGC110を横切るようにGC40を設けても、周期的に配置されたダミーGC110間で光の干渉効果は生じるので、温度を下げることができる。
(第3の実施形態)
図11は、本発明の第3の実施形態に係る半導体装置200を示す図である。図11は、チャネル幅方向から見た断面図を示している。
図11は、本発明の第3の実施形態に係る半導体装置200を示す図である。図11は、チャネル幅方向から見た断面図を示している。
半導体装置200は、ダミーパターン277を構成するダミーGC210の膜厚を変化させている点が第1の実施形態と相違する。半導体装置10と同様な構成については、説明を省略する。
本実施形態に係るダミーGC210の膜厚は300nm以上500nm以下である。
図12は、半導体基板80の厚さ方向を回転軸とした回転角度φと半導体基板80内で光吸収率がどのように変化するかを示す図である。横軸が回転角度φ、縦軸が光吸収率を示している。また、回転角度φが90°は、複数の周期的に配置されたダミーGC210の配列方向とレーザー光の投影方向が平行であることを示す。
図12は、半導体基板80の厚さ方向を回転軸とした回転角度φと半導体基板80内で光吸収率がどのように変化するかを示す図である。横軸が回転角度φ、縦軸が光吸収率を示している。また、回転角度φが90°は、複数の周期的に配置されたダミーGC210の配列方向とレーザー光の投影方向が平行であることを示す。
図12に示す複数の線は、複数の周期的に配置されたダミーGC210間のピッチ75を示しており、10nm以上510nm以下の範囲で変化させている。なお、回転角度φと光吸収率の関係は、RCWA法により計算している。
通常、光吸収率は、回転角度φが90°の場合、100%になると考えるが、本実施形態では、GC40やSTI50やAA60がSiやSiO2から構成されるとして、これらの材料から得られるブリュースター角の平均値を用いているので、誤差が1%と生じていると考えられる。
すなわち、図12より約20℃以上の温度降下を実現するには、複数の周期的に配置されたダミーGC210間の間隔が10nm以上510nm以下の範囲においては、回転角度φを0°以上33°以下に設定すれば、光吸収率を2%以上4%以下の範囲で下げることができるので、温度を約24℃~約48℃下げることができる。
図13は、半導体基板80の厚さ方向を回転軸とした回転角度φと半導体基板80内で光吸収率がどのように変化するかを示す図である。横軸が回転角度φ、縦軸が光吸収率を示している。また、回転角度φが90°は、複数の周期的に配置されたダミーGC210の配列方向とレーザー光の投影方向が平行であることを示す。
図13に示す複数の線は、複数の周期的に配置されたダミーGC210間のピッチ75を示しており、10nm以上510nm以下の範囲で変化させている。なお、回転角度φと光吸収率の関係は、RCWA法により計算している。
通常、光吸収率は、回転角度φが90°の場合、100%になると考えるが、本実施形態では、GC40やSTI50やAA60がSiやSiO2から構成されるとして、これらの材料から得られるブリュースター角の平均値を用いているので、誤差が1%と生じていると考えられる。
すなわち、図13より約20℃以上の温度降下を実現するには、複数の周期的に配置されたダミーGC70間の間隔が10nm~510nmの範囲においては、回転角度φを0°以上46°以下に設定すれば、光吸収率を2%以上4%以下の範囲で下げることができるので、温度を約24℃~約48℃下げることができる。
以上から、ダミーGCの膜厚は厚くなるほど、回転角度φの幅が広がるころがわかる。これは、ダミーGC内での光干渉効果がより強くなっているからである。
このようにAA60の両端からレーザー光90の波長以下の範囲の距離にダミーパターン277を配置すると、AA60の温度上昇が生じている位置に対して温度を下げることができるので、温度ムラが少なく回路性能が高い半導体装置を提供することができる。
10、100、200…半導体装置、20…半導体基板主面、30…回路パターン領域、40…GC(Gate Conductor)、50…STI(Shallow Trench Isolation)、60…AA(Active Area)、70、110、210…ダミーGC(Gate Condoctor)、77、177、277…ダミーパターン、80…半導体基板、90…レーザー光
Claims (2)
- 回路動作に関与する回路パターンを有する回路パタ-ン領域と、
前記回路パターン領域上に形成されたアクティブエリアと、
前記アクティブエリア上であり、前記アクティブエリアの端から10μm以上11μm以下の位置に形成され、10nm以上510nm以下のピッチであり、回路動作に関与しない複数のダミーゲートを有するダミーパターンと、
を備えた半導体基板の主面に波長が10μm以上11μm以下の光を照射するレーザースパイクアニーリングを行う際に、
前記ダミーゲートの配列方向と前記光の投影方向とのなす角度を0°以上30°以下に設定することを特徴とする半導体装置の製造方法。 - 回路動作に関与する回路パターンを有する回路パターン領域と、
前記回路パターン領域上に形成されたアクティブエリアと、
前記アクティブエリアの外側であり、前記アクティブエリアの端から10μm以上11μm以下の位置に形成され、10nm以上510nm以下のピッチであり、回路動作に関与しない複数のダミーゲートを有するダミーパターンと、
を備えた半導体基板の主面に波長が10μm以上11μm以下の光を照射するレーザースパイクアニーリングを行う際に、
前記ダミーゲートの配列方向と前記光の投影方向とのなす角度は0°以上18°以下に設定することを特徴とする半導体装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/066453 WO2011033676A1 (ja) | 2009-09-18 | 2009-09-18 | 半導体装置の製造方法 |
JP2011531748A JP5439491B2 (ja) | 2009-09-18 | 2009-09-18 | 半導体装置の製造方法 |
US13/422,153 US8389423B2 (en) | 2009-09-18 | 2012-03-16 | Semiconductor device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/066453 WO2011033676A1 (ja) | 2009-09-18 | 2009-09-18 | 半導体装置の製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/422,153 Continuation US8389423B2 (en) | 2009-09-18 | 2012-03-16 | Semiconductor device manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011033676A1 true WO2011033676A1 (ja) | 2011-03-24 |
Family
ID=43758302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/066453 WO2011033676A1 (ja) | 2009-09-18 | 2009-09-18 | 半導体装置の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8389423B2 (ja) |
JP (1) | JP5439491B2 (ja) |
WO (1) | WO2011033676A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9209182B2 (en) * | 2012-12-28 | 2015-12-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dummy metal gate structures to reduce dishing during chemical-mechanical polishing |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008047923A (ja) * | 2006-08-17 | 2008-02-28 | Toshiba Corp | 複数の光源を用いるレーザースパイクアニール |
JP2008211214A (ja) * | 2007-02-26 | 2008-09-11 | Internatl Business Mach Corp <Ibm> | 改善されたアニール一様性のためのデバイス固有のフィルの構造及び方法 |
JP2009141075A (ja) * | 2007-12-05 | 2009-06-25 | Toshiba Corp | 半導体装置及びその製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7692275B2 (en) | 2007-02-26 | 2010-04-06 | International Business Machines Corporation | Structure and method for device-specific fill for improved anneal uniformity |
-
2009
- 2009-09-18 JP JP2011531748A patent/JP5439491B2/ja not_active Expired - Fee Related
- 2009-09-18 WO PCT/JP2009/066453 patent/WO2011033676A1/ja active Application Filing
-
2012
- 2012-03-16 US US13/422,153 patent/US8389423B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008047923A (ja) * | 2006-08-17 | 2008-02-28 | Toshiba Corp | 複数の光源を用いるレーザースパイクアニール |
JP2008211214A (ja) * | 2007-02-26 | 2008-09-11 | Internatl Business Mach Corp <Ibm> | 改善されたアニール一様性のためのデバイス固有のフィルの構造及び方法 |
JP2009141075A (ja) * | 2007-12-05 | 2009-06-25 | Toshiba Corp | 半導体装置及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011033676A1 (ja) | 2013-02-07 |
US20120178269A1 (en) | 2012-07-12 |
US8389423B2 (en) | 2013-03-05 |
JP5439491B2 (ja) | 2014-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4322255B2 (ja) | 半導体装置及びその製造方法 | |
JP5242145B2 (ja) | 半導体装置の製造方法 | |
US8168520B2 (en) | Method of manufacturing semiconductor device | |
TW201724217A (zh) | 半導體結構與其製造方法 | |
JP2010153862A (ja) | 二回のカット工程によって多結晶シリコンのライン端部短縮の問題を解決する方法 | |
JP5211689B2 (ja) | 半導体装置及びその製造方法 | |
US20100159681A1 (en) | Ion implantation method and method for manufacturing semiconductor apparatus | |
JP2009130243A (ja) | 半導体装置の製造方法 | |
JP6012987B2 (ja) | イメージセンサの製造方法 | |
JP5439491B2 (ja) | 半導体装置の製造方法 | |
KR100574939B1 (ko) | 포톤 흡수막을 갖는 반도체 소자 및 그 제조방법 | |
JP2013021040A (ja) | 炭化珪素半導体装置の製造方法および炭化珪素半導体装置 | |
CN115458400B (zh) | 用于在半导体基底中制造沟槽的方法和半导体器件 | |
JP4789421B2 (ja) | フォトン吸収膜を有する半導体素子及びその製造方法 | |
CN103578917B (zh) | 一种用于缩小金属硬掩膜层的关键尺寸的方法 | |
JP5994238B2 (ja) | 半導体装置の製造方法 | |
US7862991B2 (en) | Method for fabricating recess pattern in semiconductor device | |
JP2010026416A (ja) | フォトマスクパターンの作成方法 | |
JP5161941B2 (ja) | 半導体装置の製造方法 | |
TWI780695B (zh) | 電晶體結構及其製造方法 | |
JP4893518B2 (ja) | 光デバイスの製造方法 | |
KR20020001512A (ko) | 반도체 장치의 제조 방법 | |
JP2013182892A (ja) | イメージセンサ及びその製造方法 | |
KR100685130B1 (ko) | 반도체 소자의 제조 방법 | |
KR20090096969A (ko) | 어시스트 패턴 형성방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09849535 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011531748 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09849535 Country of ref document: EP Kind code of ref document: A1 |