WO2011032362A1 - 用于在常温常压下处理工业废水的催化剂及其制备方法 - Google Patents

用于在常温常压下处理工业废水的催化剂及其制备方法 Download PDF

Info

Publication number
WO2011032362A1
WO2011032362A1 PCT/CN2010/001430 CN2010001430W WO2011032362A1 WO 2011032362 A1 WO2011032362 A1 WO 2011032362A1 CN 2010001430 W CN2010001430 W CN 2010001430W WO 2011032362 A1 WO2011032362 A1 WO 2011032362A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
activated carbon
soluble
zno
salt
Prior art date
Application number
PCT/CN2010/001430
Other languages
English (en)
French (fr)
Inventor
李伟
万新华
张国涛
郗名悦
杨延红
Original Assignee
新奥科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥科技发展有限公司 filed Critical 新奥科技发展有限公司
Publication of WO2011032362A1 publication Critical patent/WO2011032362A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light

Definitions

  • the present invention relates to a catalyst for catalytic oxidation of industrial wastewater at normal temperature and pressure.
  • coal as an energy source and chemical raw materials has received increasing attention.
  • Coal gasification is a clean and efficient method of coal utilization, but the coal gasification process produces a large amount of highly polluting coal gasification wastewater, which contains various pollutants such as phenol, cyanide, ammonia nitrogen and several aliphatic and aromatic compounds. It needs to be processed effectively before it can be discharged.
  • COD chemical oxygen demand
  • ammonia nitrogen ammonia nitrogen
  • nitrate nitrogen nitrite nitrogen
  • color is often used to indicate the type and/or amount of pollutants in wastewater.
  • COD also known as chemical oxygen demand, refers to the amount of oxidant consumed when a water sample is treated with a certain strong oxidizer under a certain amount of material. It is an indicator of how much reducing substances are present in the water.
  • the reducing substances in water are various organic substances, nitrites, sulfides, ferrous salts, etc., but mainly organic substances. Therefore, COD is often used as an indicator to measure the amount of organic matter in water. The larger the COD, the more serious the contamination of the ice body with organic matter.
  • Ammonia nitrogen refers to nitrogen in the form of ammonia or ammonium ions in water.
  • B0D5 refers to the five-day biological oxygen consumption, that is, the total amount of oxygen consumed during the biodegradation of organic matter in water for 5 days.
  • the chromaticity of water is an indicator of the quantitative measurement of natural water or various water after treatment. Natural ice often shows different colors such as light yellow, light brown or yellowish green. The reason for the color is due to the humus, organic or inorganic substances dissolved in water. Caused by it. In addition, when the water body is contaminated by industrial wastewater, it will also have different colors. These colors are divided into true and color. True color is caused by dissolved substances in water, that is, the color after removing suspended solids in water. The color is the color produced when the suspended matter in the water is not removed. The degree of quantification of these colors is chromaticity.
  • the colorimetric measurement of industrial wastewater is carried out by the dilution factor method, as described in GB11903-89, and the wastewater sample is diluted with optically pure water to visually compare the lean and dry multiples when the color is invisible compared to the optical pure water.
  • the unit is double, the higher the general multiple, the deeper the color of the wastewater.
  • Wet catalytic oxidation is a treatment technology developed in the 1980s to treat high-concentration biodegradable organic wastewater (US 4699720, 1987).
  • the process directly oxidizes the organic matter in the sewage into C0 2 , H 2 0 under the action of a catalyst under the action of a catalyst under the action of H 2 O 2 , 0 3 , C 10 2 or an oxygen oxidant.
  • Innocent ingredients so as to achieve the purpose of purifying water.
  • most of the solid catalysts studied include noble metal catalysts, oxides of transition metals such as Fe, Cu, Ni, Co, Mn, and oxides of rare earth metals such as La, Ce, and the like.
  • Chinese patent CN1876232A discloses an activated carbon supported copper oxide catalyst for coking wastewater treatment.
  • the catalyst was co-oxidized at room temperature and pressure with H 2 O 2 to treat the coking wastewater of Anshan Iron and Steel Plant.
  • the COD value decreased from 1190 mg/L to 48. lmg/L, and the removal rate was 96%.
  • Chinese patent CN1872730A discloses a ⁇ - ⁇ 1 2 0 3 supported copper oxide catalyst for advanced treatment of coking wastewater.
  • the catalyst reacts with H 2 O 2 under normal temperature and pressure to catalytically oxidize coking wastewater, and the COD removal rate is as high as 98%.
  • Chinese patent CN1919452A discloses an activated carbon supported iron oxide catalyst for the treatment of phenol-containing wastewater and coking wastewater.
  • the catalyst is at normal temperature and pressure and is not added Oxidation of H 2 0 2 under the conditions of coking wastewater treatment, COD removal rate of 95. 7 ° /. .
  • All of the above catalysts are catalysts formed by a metal oxide such as activated carbon or ⁇ -alumina supported by Fe, Cu, Zn, Ni, Co or Mn.
  • the main active component is only one metal oxide, and the catalytic activity of the catalyst. And the catalytic selectivity is limited. Under normal temperature and pressure, even if it co-oxidizes coking wastewater with H 2 0 2 , the COD removal rate can only reach 98%.
  • the catalyst of a single main active component is present in the absence of a composite compound (Ca talys isl 2323 Communi cat ions 7 (2006) 478 - 483, Appl ied Catalys is B: Environmenta 72 (2007) 205-211)
  • the elution of metal ions is prone to occur, resulting in easy failure of the catalytic activity of the catalyst and poor stability of the catalyst, which greatly limits the industrial application.
  • the present invention relates to a catalyst for catalytic oxidation of industrial wastewater at normal temperature and pressure, comprising Fe-Cu-Zn ternary composite metal oxide supported on activated carbon.
  • the present invention relates to a method for preparing a catalyst for catalytic oxidation of wastewater under normal temperature and pressure, comprising the steps of:
  • the catalyst of the present invention consists of a carrier and an active component supported on a carrier.
  • the carrier is activated carbon, preferably activated carbon having a specific surface area of 800-900 m 2 /g; and the active component is Fe-Cu-Zn ternary composite metal oxide.
  • the catalyst of the present invention is mainly prepared by a precipitation impregnation method.
  • the activated carbon is pretreated with a step comprising washing, drying and heat treatment.
  • the activated carbon is washed with deionized water, the washed activated carbon is dried at 110-120 'C, and then the dried activated carbon is heat treated at 150-200 °C for 2-5 hours.
  • an aqueous solution comprising a soluble iron or ferrous salt, a soluble copper salt and a soluble zinc salt is formulated.
  • the soluble iron salt includes an iron salt of a mineral acid such as iron chloride, iron nitrate or iron sulfate, or an iron salt of an organic acid, such as iron acetate, iron oxalate or the like, and an iron salt of a mineral acid is preferably used.
  • the soluble ferrous salt includes a ferrous salt of a mineral acid such as ferrous chloride, ferrous nitrate or ferrous sulfate, or a ferrous salt of an organic acid, such as ferrous acetate, ferrous oxalate or the like, preferably using a mineral acid.
  • a mineral acid such as ferrous chloride, ferrous nitrate or ferrous sulfate
  • a ferrous salt of an organic acid such as ferrous acetate, ferrous oxalate or the like, preferably using a mineral acid.
  • the soluble copper salt includes a copper salt of a mineral acid such as copper chloride, copper nitrate or copper sulfate, or a copper salt of an organic acid such as copper acetate, cuprous oxalate or the like;
  • the soluble zinc salt includes a mineral acid Zinc salts such as zinc chloride, zinc nitrate or zinc sulfate, or zinc salts of organic acids such as zinc acetate, zinc oxalate and the like.
  • the iron salt or the ferrous salt, the copper salt and the zinc salt may be separately mixed into a solution and then mixed together, or may be directly formulated into a mixed solution.
  • the ratio of the soluble iron or ferrous salt, the soluble copper salt, and the soluble zinc salt is sufficient to provide a shield ratio of the three oxides of Fe 2 O 3 , CuO, and ZnO to Fe 2 0 in the final catalyst.
  • 3 : CuO: ZnO 1-8: 0. 1-1: 0. 1- 1.
  • the ratio of soluble iron or ferrous salt, soluble copper salt and soluble zinc salt is sufficient to provide a mass ratio of the three oxides of Fe 2 O 3 , CuO, ZnO to Fe 2 in the final catalyst.
  • 0 3 : CuO: Zn0 2. 4-8: 0. 3-1: 0. 3 - 1.
  • the amount of the precipitant added can be controlled such that the precipitation occurring in the step d below is completely precipitated, and the decomposition occurring in the calcination process of the step f below is also completely decomposed, both the precipitation reaction and the decomposition reaction occur in a stoichiometric ratio, so that the field
  • the skilled person can easily calculate the specific amount of the soluble iron or ferrous salt, soluble copper salt and soluble zinc salt added in this step based on the mass ratio of Fe 2 O 3 : CuO: ZnO in the above final catalyst.
  • the aqueous solution is heated, and the pretreated activated carbon is added thereto, stirred and cooled to room temperature.
  • the aqueous solution is heated to 60-70 ° C and stirred for 3-5 hours.
  • the cooling can be natural cooling.
  • a precipitant capable of precipitating iron ions or ferrous ions, copper ions and zinc ions is added to the aqueous solution to obtain an active component precursor supported on the activated carbon.
  • the precipitating agent is selected from the group consisting of soluble metal hydroxides, soluble metal carbonates, hydrogencarbonates or aqueous ammonia or mixtures thereof, such as NaOH, Na 2 CO 3 or NaHC 0 3 and the like.
  • the amount of precipitant should be sufficient to allow each metal ion to completely precipitate onto the activated carbon in order to control the Fe 2 O 3 , CuO, ZnO in the final catalyst.
  • the mass ratio of the three oxides is selected from the group consisting of soluble metal hydroxides, soluble metal carbonates, hydrogencarbonates or aqueous ammonia or mixtures thereof, such as NaOH, Na 2 CO 3 or NaHC 0 3 and the like.
  • the iron or ferrous ion, the copper ion and the excimer are in the form of hydroxide precipitation, carbonate precipitation or bicarbonate precipitation or a mixture thereof (these precipitates may also be referred to as active components before
  • the precipitate is deposited in the pores of the activated carbon to support the active component precursor on the activated carbon.
  • the amount of precipitant added and the pH of the solution are selected such that these metal ions are substantially completely precipitated onto the activated carbon as a precipitate.
  • step e of the process of the invention the active component precursor supported on activated carbon is aged.
  • the aging can be carried out in two ways: The first is that the product of step d is not subjected to solid-liquid separation, and the active component precursor supported on the activated carbon is allowed to stand in the solution at room temperature for 24 hours in situ. The aging is carried out; the second solid-liquid separation separates the active component precursor supported on the activated carbon, and then the precursor is allowed to stand at room temperature for 24 hours for aging.
  • the solid-liquid separation may be a conventional solid-liquid separation means in the art, such as filtration, centrifugation, and the like. The effect of the ripening is to sufficiently and stably disperse the active component precursor on the surface of the activated carbon.
  • step f of the process of the invention the active component precursor supported on activated carbon is dried and calcined to provide the catalyst.
  • the drying is carried out at 120-150 ° C and the drying time is 2-5 hours.
  • the calcination is carried out in a muffle furnace at 270-300 'C and in the presence of oxygen, and the calcination time is 8-10 hours.
  • the atmosphere in which oxygen is present is preferably an air atmosphere.
  • the active component precursor such as a metal carbonate or hydroxide, decomposes to form a metal oxide.
  • the metal oxides formed during the prolonged calcination in the presence of oxygen in the presence of oxygen are generally the stable oxides of the highest valence of these metals, ie Fe 2 O 3 , Cu 0 , ZnO, so when the content of these active components and the mass ratio between them are mentioned in the present invention, the mass of each metal oxide converted into Fe 2 O 3 , CuO, ZnO is used.
  • the amount of metal oxide formed by the decomposition is estimated from the stoichiometric ratio of the precipitation reaction and the decomposition reaction according to the amount of the soluble iron salt or ferrous salt, the soluble copper salt and the soluble zinc salt in the starting solution. Moreover, it is believed that these metal oxides do not exist independently in mutually incoherent manner, but instead form a composite of metal oxides that interacts with the metal oxides in their respective independent presences in wastewater treatment. It is less likely to cause metal loss under conditions. This will be reflected in the following embodiments.
  • the catalysis of the catalyst of the present invention was examined by the following wastewater treatment experiments.
  • waste water There are two kinds of waste water: One is the coal gasification waste water, the composition of the waste water is complex and the toxicity is large, and the COD is above 200,000 mg/L.
  • the other is the pretreatment of the coal gasification wastewater stock solution - UASB-CASS (pretreatment - upflow anaerobic sludge bed reactor - a circulating activated sludge process cell) process, and finally the effluent of the membrane bioreactor (MBR)
  • MBR membrane bioreactor
  • the reactor is a fixed bed reactor.
  • the material of the reactor is plexiglass, its size is ⁇ 65 * 5 ⁇ ⁇ , the height is 11 00-1150mm, and the bottom of the reactor is provided with a sewage outlet and an aeration port respectively, from the bottom 1-2 cm and from the top 5-6
  • the sides of the cm are respectively provided with a water inlet and a water outlet, and a gas distribution plate is fixed at a distance of 3-4 cm from the bottom.
  • the reactor is divided into five layers with flanges between the layers and sealed with screws and seals.
  • Catalyst loading Firstly, 18 mesh polyethylene mesh is laid on the gas distribution plate at the bottom of the reactor, and then 800-900 g of the catalyst prepared by the invention is layered and loaded into the reactor, and the filling quality of each catalyst is 17 0-180g and loading height is 16-18 cm. A layer of 18 mesh polyethylene mesh and a gas plate were laid on the upper plane of each layer of catalyst particles, and fixed, and then 1-4 mesh quartz sand particles were added to the position of the gas plate at the bottom of the adjacent catalyst layer.
  • a catalyst supporting 3% Fe-Cu_Zn ternary composite metal oxide on activated carbon The composition and content of the catalyst are as follows: The percentage of the shield of the activated carbon carrier is 97%, the main active component is Fe-Cu-Zn ternary composite metal oxide, and the ternary element is Fe 2 O 3 , CuO, ZnO. mass percent of the composite metal oxide is 3%, with Fe 2 0 3, CuO, ZnO meter, Fe 2 0 3, by mass percent content of CuO and ZnO is 2.4%, 0.3% and 0, respectively. 3%.
  • the preparation method of the catalyst comprises the following steps:
  • the pretreated activated carbon granules are added, uniformly stirred for 4 hours, and then cooled to room temperature;
  • the solid is filtered, the solid is washed with deionized water until no metal ions are precipitated, dried at 120 ° C for 2 h, and then calcined in a muffle furnace at 270 ° C for 8 h in an air atmosphere to obtain a load on the activated carbon.
  • the catalytic activity and stability of the catalyst were tested using a fixed bed reactor: 1.
  • Reactor The material of the reactor is plexiglass, its size is ⁇ 65 * 5 ⁇ , the height is 1 1 30mm, and the bottom of the reactor is equipped with a sewage outlet and an aeration port respectively, 2cm from the bottom and 6cm from the top.
  • the side of the space is provided with a water inlet and a drain, respectively, and a gas plate is fixed at a distance of 3 cm from the bottom.
  • the reactor is divided into five layers with flanges between the layers and sealed with screws and seals.
  • Catalyst loading firstly, 18 mesh polyethylene mesh was laid on the gas plate at the bottom of the reactor, and then 860 g of the catalyst of the first embodiment was layered in the reactor, and the filling quality of each catalyst was 172 g. And the filling height is 17. Ocm. After each layer of catalyst is tightly packed, a layer of 18 mesh polyethylene mesh and a gas plate are placed on the upper part and fixed, and then 1-4 mesh quartz sand particles are added to the position of the adjacent layer of catalyst bottom gas plate.
  • the hydraulic retention time is 1. 0-
  • the permeation time is 1. 0-
  • the permeate pump is used to adjust the pH of the wastewater to 5.32, and the wastewater to be treated is slowly pumped into the five-layer catalytic oxidation reactor with a peristaltic pump.
  • the hydraulic retention time is 1. 0- 1. 5 hours, using continuous aeration and continuous injection.
  • the test results show that the COD is reduced to 215 mg/L and the COD removal rate reaches 98.9% after catalytic oxidation treatment of the coal gasification wastewater with a COD of 20300 mg/L at normal temperature and pressure and air as an oxidant.
  • COD is 212-220mg / L of coal gasification wastewater effluent, continuous treatment for more than 4 months, the final effluent PH is 7-8, COD is 70-80mg / L, wastewater color From 300-400 times before treatment to 30 times after treatment, B0D5 is 20rag/L, ammonia nitrogen is 4-6mg/L, suspended matter is 20mg/L, and other indicators can meet GB8978-1996 The primary standard in the emission standards.
  • a catalyst for supporting 5% Fe-Cu-Zn ternary composite metal oxide on activated carbon The composition and content of the catalyst are: the mass percentage of the activated carbon carrier is 95%, and the main active component is Fe-Cu-Zn ternary composite metal oxide, with Fe 2 0 3 , CU0, mass percent of ZnO ternary complex metal oxide basis is 5%, with Fe 2 0 3, Cu0, ZnO meter, Fe 2 0 3> mass percent content of CuO and ZnO were 4%, 0.53 ⁇ 4 And 0.5% 0
  • the preparation method of the catalyst comprises the following steps:
  • the solid is filtered, the solid is washed with deionized water until no metal ions are precipitated, dried at 110 ° C for 2 h, and then calcined in a muffle furnace at 270 ° C for 8 h in an air atmosphere to obtain a load on the activated carbon.
  • the reactor is a fixed-bed five-layer plexiglass reactor with a size of ⁇ 65*5 ⁇ ⁇ and a height of lllOmni.
  • the bottom of the reactor is provided with a sewage outlet and an aeration port respectively, and the upper and lower sides are respectively provided with Nozzle and drain.
  • Catalyst loading 850 g of the catalyst of this example was packed in five layers in a reactor, each having a loading mass of 170 g and a packing height of 16.7 cra.
  • the pH value of the waste ice is adjusted to 5.20 with sulfuric acid.
  • the waste water to be treated is slowly pumped into the five-layer catalytic oxidation reactor with a peristaltic pump, and the hydraulic retention time is 1.0-1.5 hours.
  • a catalyst for supporting 10% Fe-Cu-Zn ternary composite metal oxide on activated carbon is provided.
  • the composition and content of the catalyst are: 90% by mass of the activated carbon carrier.
  • the main active component is Fe-Cu-Zn ternary composite metal oxide, ternary composite metal based on Fe 2 O 3 , CuO, ZnO 0% ⁇ 1. 0% ⁇ 1. 0%, 1. 0% and 1. 0%, respectively, the mass percentage of the content of Fe 2 0 3 , CuO, ZnO, Fe 2 0 3 , CuO and ZnO are respectively 8. 0%, 1. 0% and 1. 0% .
  • the preparation method of the catalyst comprises the following steps:
  • the catalytic activity and stability of the catalyst were tested using a fixed bed reactor: 1.
  • the reactor is a fixed-bed five-layer plexiglass reactor with a size of ⁇ 65*5 ⁇ and a height of 1120 mm.
  • Catalyst loading 855 g of the catalyst of this example was packed in five layers in a reactor, each of which had a packing mass of 171 g and a packing height of 16.8 cm.
  • the catalyst containing 1% Fe-Cu-Zn ternary composite metal oxide on activated carbon has the composition and content of the catalyst: the mass percentage of the activated carbon carrier is 99%, and the main active component is Fe-Cu-Zn ternary composite metal oxides to Fe 2 0 3, CuO, ZnO basis of mass percent of ternary metal oxide is 1%, wherein the Fe 2 0 3, CuO, ZnO meter, Fe 2 0 3, CuO and ZnO The percentage of shield volume is 0.83%, 0.083% and 0.083%, respectively.
  • the preparation method of the catalyst comprises the following steps:
  • Reactor The material of the reactor is plexiglass, its size is ⁇ 65 * 5 legs, the height is 11 30mm, and the bottom of the reactor is equipped with a sewage outlet and an aeration port respectively, 2cm from the bottom and 6cm from the top.
  • the sides are respectively provided with a water inlet and a water outlet, and a gas distribution plate is fixed at a distance of 3 cm from the bottom.
  • the reactor is divided into five layers, with flanges between the layers and ⁇ sealed with screws and seals.
  • Catalyst loading First, a 18 mesh polyethylene mesh was laid on the gas plate at the bottom of the reactor, and then 860 g of the catalyst of this example was layered in the reactor, and the loading quality of each catalyst was 172 g and packed. The height is 17. 0cm. After each layer of catalyst is tightly packed, a layer of 18 mesh polyethylene mesh and a gas plate are placed on the upper part and fixed, and then 1-4 mesh quartz sand particles are added to the position of the adjacent layer of catalyst bottom gas plate.
  • the hydraulic retention time is 1. 0-.
  • the pressure of the wastewater is adjusted to 1. 0. 1. 5 hours, using continuous aeration and continuous injection.
  • the catalyst was found to have a COD of 260 mg/L and a COD removal rate of 98.7% after catalytic oxidation treatment of a coal gasification wastewater having a COD of 20,000 mg/L at room temperature and atmospheric pressure and atmospheric air pressure.
  • COD is 200-215mg / L of coal gasification wastewater effluent, continuous treatment for more than 3.5 months, the final effluent PH is 7-8, COD is 70-80mg / L, waste ice color from 300-400 before treatment The ratio is reduced to 30 times after treatment, B0D5 is 20 mg/L, ammonia nitrogen is 4-6 mg/L, suspended matter is 20 mg/L, and other indicators can meet the first level in GB8978-1996 Integrated Wastewater Discharge Standard. standard.
  • a catalyst for supporting 6% Fe-Cu-Zn ternary composite metal oxide on activated carbon The composition and content of the catalyst are: The content of the activated carbon carrier is 94%, the main active component is Fe-Cu-Zn ternary composite metal oxide, and the ternary composite is calculated by Fe 2 O 3 , CuO, ZnO. content of the metal oxide mass percentage is 6%, with Fe 2 0 3, Cu0, ZnO meter, Fe 2 0 3, CuO and ZnO mass percent content of 4.8%, respectively, 0.6% and 0.6 %.
  • the preparation method of the catalyst comprises the following steps:
  • Reactor The material of the reactor is plexiglass, its size is ⁇ 65*5 ⁇ , the height is 1130 legs, and the bottom of the reactor is equipped with a sewage outlet and an aeration port respectively, 2cm from the bottom and 6cm from the top. Water inlets and drains are provided on the sides, and air distribution plates are fixed at 3 cm from the bottom.
  • the reactor is divided into five layers with flanges between the layers and sealed with screws and seals.
  • Catalyst loading First, a 18 mesh polyethylene mesh was laid on the gas plate at the bottom of the reactor, and then 860 g of the catalyst of this example was layered in the reactor, and the loading quality of each catalyst was 172 g and packed. The height is 17. Ocm. After each layer of catalyst is tightly packed, a layer of 18 mesh polyethylene mesh and a gas plate are placed on the upper part and fixed, and then 1-4 mesh quartz sand particles are added to the position of the adjacent layer of catalyst bottom gas plate.
  • the hydrodynamic residence time is 1. 0- The permeation time is 1. 0- 1. 5 hours, using continuous aeration and continuous injection. 0%; Catalytic oxidation, COD reduction to 210mg / L, COD removal rate of 99.0%; catalytic oxidation treatment of COD of 20200mg / L of coal gasification wastewater after normal temperature and pressure and air as an oxidant conditions
  • COD is 212-225mg/L coal gasification wastewater effluent, continuous treatment for more than 4 months, the final effluent PH is 7-8
  • COD is 70-80mg / L
  • wastewater color From 300-400 times before treatment to 30 times after treatment B0D5 is 20 mg/L, ammonia nitrogen is 4-6 mg/L, suspended matter is 20 mg/L, and other indicators can meet GB8978-1996 Level 1 standard in the Emission Standards.
  • a catalyst for supporting 9% Fe-Cu-Zn ternary composite metal oxide on activated carbon The composition and content of the catalyst are:
  • the mass percentage content of the activated carbon carrier is 91%
  • the main active component is Fe-Cu-Zn ternary composite metal oxide
  • the content of ternary composite metal oxide in terms of Fe 2 O 3 , CuO, ZnO is 9%, of which Fe 2 0 3, CuO, ZnO meter, Fe 2 0 3, rounded mass percentage of the amount of CuO and ZnO 7.
  • 0. 93 ⁇ 4 0 and 0.9% respectively
  • the preparation method of the catalyst comprises the following steps:
  • the pretreated activated carbon granules are added, uniformly stirred for 4 hours, and then cooled to room temperature;
  • Reactor The material of the reactor is plexiglass, its size is ⁇ 65 * 5 ⁇ , the height is 1130 legs, and the bottom of the reactor is provided with a sewage outlet and an aeration port respectively, 2cm from the bottom and 6cm from the top. Water inlets and drains are provided on the sides, and air distribution plates are fixed at 3 cm from the bottom.
  • the reactor is divided into five layers with flanges between the layers and sealed with screws and seals.
  • Catalyst loading First, a 18 mesh polyethylene mesh was laid on the air distribution plate at the bottom of the reactor, and then 860 g of the catalyst of this example was layered and loaded into the reactor. Ocm ⁇ The mass of the loading is 172g and the filling height is 17. Ocm. After each layer of catalyst is tightly packed, a layer of 18 mesh polyethylene mesh and a gas plate are placed on the upper part and fixed, and then 1-4 mesh quartz sand particles are added to the position of the adjacent layer of catalyst bottom gas plate.
  • the hydrostatic residence time is 1. 0-
  • the residual water is slowly pumped into the five-layer catalytic oxidation reactor with a peristaltic pump. 1. 5 hours, using continuous aeration and continuous injection.
  • the catalyst was found to have a COD of 220 mg/L and a COD removal rate of 98.9% after being subjected to a catalytic oxidation treatment of a COD of 200 00 mg/L for 1 hour under normal temperature and atmospheric pressure and air as an oxidizing agent.
  • Oxidation pretreatment - UASB-CASS- MBR treatment process C0D is 212-230mg / L of coal gasification wastewater effluent, continuous treatment for more than 4 months, the final effluent PH is 7-8, C0D is 70-80mg / L, waste water color The degree is reduced from 300-400 times before treatment to 30 times after treatment, B0D5 is 20 mg/L, ammonia nitrogen is 4-6 mg/L, suspended matter is 20 mg/L, and other indicators can meet GB8978-1996.
  • the primary standard in the Integrated Wastewater Discharge Standard The primary standard in the Integrated Wastewater Discharge Standard.
  • Examples 1 - 6 show that the activated carbon loaded 1%, 3%, 5%, 6%, 9% and 10% Fe-Cu-Zn ternary composite transition metal oxide catalysts of the present invention all exhibit a ratio There are technical catalysts with high catalytic activity and stability.
  • the activated carbon supported Fe-Cu-Zn ternary composite transition metal oxide catalyst overcomes the catalytic selectivity and catalytic activity limitation of a single active component catalyst.
  • the activated carbon supported by the invention is supported by Fe-Cu-Zn ternary composite transition metal oxide catalyst.
  • Fe 2 O 3 , CuO and ZnO have different catalytic selectivity and catalytic activity, the three metal oxides can be combined after being compounded. Better catalytic performance than single oxides.
  • the catalyst of the present invention catalyzes the oxidation of COD to
  • the COD removal rate of the 20000 mg/L or more coal gasification wastewater has a COD removal rate of 99.0%, which is higher than that of the activated carbon-supported single active component catalyst.
  • the coal gasification wastewater from the pretreatment-UASB-CASS-MBR treatment process is difficult to degrade, especially the chroma.
  • the final effluent color is 30 times and the COD can be reduced to 70-80rag. /L o

Description

用于在常温常压下处理工业废水
的催化剂及其制备方法 技术领域
本发明涉及一种用于在常温常压下对工业废水进行催化氧化 的催化剂。
背景技术
以煤炭作为能源和化工原料的应用越来越受到重视。 煤气化 是清洁、 高效的煤炭利用方式, 但煤气化工艺过程产生大量的高 污染煤气化废水, 这种废水含有多种污染质, 例如酚、 氰、 氨氮 和数种脂肪族以及芳香族化合物, 需要对其进行有效的处理, 方 可进行排放。
废水处理领域常常用化学需氧量(COD )、 氨氮、 硝态氮、 亚 硝态氮和色度等指标来表示废水中的污染物的类型和 /或量。其中 COD, 也称作化学需氧量, 是指在一定的奈件下, 采用一定的强氧 化剂处理水样时, 所消耗的氧化剂量。 它是表示水中还原性物质 多少的指标。 水中的还原性物质有各种有机物、 亚硝酸盐、 硫化 物、 亚铁盐等,但主要的是有机物。 因此, COD又往往作为衡量水 中有机物质含量多少的指标。 COD 越大, 说明氷体受有机物的污 染越严重。
氨氮,指水中以氨或铵离子形式存在的氮元素。
B0D5是指五日生物耗氧量, 即生物降解水中有机物 5天过程 中所消耗的氧气的总量。
色度: 水的色度是对天然水或处理后的各种水进行颜色定量 测定时的指标。 天然氷经常显示出浅黄、 浅褐或黄绿等不同的颜 色。 产生颜色的原因是由于溶于水的腐殖质、 有机物或无机物质 所造成的。 另外, 当水体受到工业废水的污染时也会呈现不同的 颜色。 这些颜色分为真色与表色。 真色是由于水中溶解性物质引 起的, 也就是除去水中悬浮物后的颜色。 而表色是没有除去水中 悬浮物时产生的颜色。 这些颜色的定量程度就是色度。 工业废水 色度测定采用稀释倍数法,如国标 GB11903- 89所述,将废水样品 用光学纯水稀释至用目视比较与光学纯水相比刚好看不见颜色时 的稀幹倍数作为表达色度的方式,单位为倍,一般倍数越高说明废 水颜色越深。
湿式催化氧化法是八十年代国际上发展起来的一种处理高浓 度难生物降解有机废水的处理技术(US 4699720 , 1987 ) 。 该工 艺是在反应釜中在催化剂的作用下, 于高温高压奈件下用 H202、 03、C 102或氧气氧化剂等氧化剂直接将污水中的有机物氧化成 C02、 H20等无害成分,从而达到净化处理水的目的。 由于高温高压催化 氧化反应器设计复杂、 操作困难、 维护成本高, 很难工业应用, 因此常温常压催化氧化及其固体催化剂成为研究的焦点。 目前, 研究较多的固体催化剂有贵金属催化剂、过渡金属如 Fe、 Cu、 Ni、 Co、 Mn等的氧化物和稀土金属如 La、 Ce等的氧化物。
中国专利 CN1876232A公开了一种用于焦化废水处理的活性 炭负载氧化铜催化剂。 该催化剂在常温常压下和 H202共同作用催 化氧化处理鞍山钢铁厂焦化废水, COD 值从 1190mg/L 降至 48. lmg/L, 去除率为 96%。
中国专利 CN1872730A公开了一种用于焦化废水深度处理的 γ -Α 1203负载氧化铜催化剂。 该催化剂在常温常压下和 H202共同 作用催化氧化处理焦化废水, COD去除率高达 98%。
中国专利 CN1919452A公开了一种用于含酚废水和焦化废水 处理的活性炭负载氧化铁催化剂。 该催化剂在常温常压和不加 H202条件下催化氧化处理焦化废水, COD去除率为 95. 7°/。。
以上这些催化剂均为活性炭或 γ -氧化铝等载体单一负载 Fe、 Cu、 Zn、 Ni、 Co或 Mn等金属氧化物形成的催化剂, 其主要 活性组分只有一种金属氧化物, 催化剂的催化活性和催化选择性 受到限制, 在常温常压下, 即使和 H202共同作用催化氧化焦化废 水, COD去除率最高也只能达到 98%。 另外, 单一主要活性组分的 催化剂由于不存在复合化合物(Ca talys i s l 2323 Communi cat ions 7 (2006) 478 - 483, Appl ied Catalys i s B: Environmenta l 72 (2007) 205-211) , 在使用过程中容易出现金属离子溶出, 从而导 致催化剂的催化活性容易失效和催化剂的稳定性差, 大大限制了_ 工业应用。 发明概述
一方面, 本发明涉及一种用于在常温常压下对工业废水进行 催化氧化的催化剂,其包含负载在活性炭上的 Fe- Cu- Zn三元复合 金属氧化物。
另一方面, 本发明涉及一种用于在常温常压下对废水进行催 化氧化的催化剂的制备方法, 包括以下步骤:
a. 用包括洗涤、干燥和热处理在内的步骤对活性炭进行预 处理;
b. 配制包含可溶性铁盐或亚铁盐、可溶性铜盐和可溶性锌 盐的水溶液;
c 加热所述水溶液, 并向其中加入预处理后的活性炭,搅 拌均匀后自然冷却至室温;
d. 向水溶液中加入能使铁离子或亚铁离子、铜离子和锌离 子沉淀的沉淀剂, 得到负载在活性炭上的活性組分前体; e. 熟化所述负载在活性炭上的活性组分前体; 然后 f . 干燥并煅烧所述负载在活性炭上的活性组分前体,得到 所述催化剂。
发明详述
本发明的催化剂由载体和负载在载体上的活性组分组成。 其 中载体为活性炭, 优选比表面积为 800- 900m2/g的活性炭; 而活 性组分为 Fe- Cu- Zn三元复合金属氧化物。
在一个实施方案中, 活性炭质量占催化剂总质量的 90-99%, 和以 Fe203、 Cu0、 ZnO计的三元复合金属氧化物质量占催化剂总质 量的 1-10 其中以 Fe203、 Cu0、 ZnO 计的三种氧化物的质量比 Fe203: CuO: ZnO = 1-8: 0· 1-1: 0. 1-1。
在优选的实施方案中, 活性炭质量占催化剂总质量的 90-97%, 以 Fe203、 CuO , ZnO计的三元复合金属氧化物质量占催化 剂总质量的 3-10%, 其中以 Fe203、 CuO, ZnO计的三种氧化物的质 量比 Fe203: CuO: ZnO = 2. 4-8: 0. 3-1 : 0. 3-1。
本发明的催化剂主要通过沉淀浸渍法来制备。
在本发明的方法的步骤 a中, 用包括洗涤、 千燥和热处理在 内的步骤对活性炭进行预处理。 在一个实施方案中, 用去离子水 对活性炭进行洗涤,在 110-120 'C下对洗涤后的活性炭进行干燥, 然后在 150- 200 °C下对干燥后的活性炭热处理 2-5小时。
在本发明的方法的步骤 b中,配制包含可溶性铁盐或亚铁盐、 可溶性铜盐和可溶性锌盐的水溶液。 其中所述可溶性铁盐包括无 机酸的铁盐如氯化铁、 硝酸铁或硫酸铁等, 或有机酸的铁盐, 如 乙酸铁、 草酸铁等, 优选使用无机酸的铁盐。 所述可溶性亚铁盐 包括无机酸的亚铁盐如氯化亚铁、 硝酸亚铁或硫酸亚铁等, 或有 机酸的亚铁盐, 如乙酸亚铁、 草酸亚铁等, 优选使用无机酸的亚 铁盐; 所述可溶性铜盐包括无机酸的铜盐如氯化铜、 硝酸铜或硫 酸铜等, 或有机酸的铜盐如乙酸铜、 草酸亚铜等; 所述可溶性锌 盐包括无机酸的锌盐如氯化锌、 硝酸锌或硫酸锌等, 或有机酸的 锌盐如乙酸锌、 草酸锌等。 铁盐或亚铁盐、 铜盐和锌盐可以先单 独配成溶液后再混合在一起, 也可以直接配成混合溶液。 在实施 方案中, 可溶性铁盐或亚铁盐、 可溶性铜盐和可溶性锌盐的比例 足以使最终的催化剂中以 Fe203、 CuO、 ZnO计的三种氧化物的盾量 比 Fe203: CuO: ZnO = 1-8: 0. 1-1: 0. 1- 1。 在优选的实施方案中, 可溶性铁盐或亚铁盐、 可溶性铜盐和可溶性锌盐的比例足以使最 终的催化剂中以 Fe203、 Cu0、 ZnO计的三种氧化物的质量比 Fe203: CuO: Zn0 = 2. 4-8: 0. 3-1: 0. 3 - 1。 由于可控制沉淀剂的加入量以使 得下文步骤 d中发生的沉淀是完全沉淀, 且下文步骤 f 的煅烧过 程发生的分解也是完全分解, 沉淀反应和分解反应均按化学计量 比发生, 故本领域技术人员很容易根据上述最终催化剂中的 Fe203: CuO: ZnO质量比来计算在本步驟中加入的可溶性铁盐或亚 铁盐、 可溶性铜盐和可溶性锌盐的具体量。
在本发明的方法的步驟 c中, 加热所述水溶液, 并向其中加 入预处理后的活性炭, 搅拌均勾后冷却至室温。 在一个实施方案 中, 将所述水溶液加热至 60- 70 °C, 和所迷搅拌持续 3-5小时。 所述冷却可以是自然冷却。
在本发明的方法的步骤 d中, 向水溶液中加入能使铁离子或 亚铁离子、 铜离子和锌离子沉淀的沉淀剂, 得到负载在活性炭上 的活性组分前体。 其中沉淀剂选自可溶性的金属氢氧化物、 可溶 性的金属碳酸盐、 碳酸氢盐或氨水或它们的混合物, 例如 Na0H、 Na2C03或 NaHC03等。 沉淀剂的量应该足以使得各金属离子完全沉 淀到活性炭上, 以便控制最终催化剂中的以 Fe203、 CuO, ZnO计的 三种氧化物的质量比。 加入沉淀剂后, 铁离子或亚铁离子、 铜离 子和辞离子以氢氧化物沉淀、 碳酸盐沉淀或碳酸氢盐沉淀或它们 的混合物的形式(这些沉淀物亦可称为活性組分前体) 沉淀在活 性炭的微孔内, 从而将活性組分前体负载在活性炭上。 选择加入 的沉淀剂的量和溶液的 pH值以使得这些金属离子基本上完全以 沉淀物的形式沉淀到活性炭上。
在本发明的方法的步骤 e中, 熟化所述负载在活性炭上的活 性組分前体。 所述熟化可以以两种方式进行: 第一种是不对步骤 d 的产物进行固液分离, 使所述负载在活性炭上的活性組分前体 在溶液中在室温下静置 24小时来原位进行熟化;第二种先固液分 离得到负载在活性炭上的活性组分前体, 然后使该前体在室温下 静置 24小时来进行熟化。其中固液分离可以是本领域常规的固液 分离手段, 如过滤、 离心分离等。 熟化的作用是使活性組分前体 充分均匀、 稳定地分散于活性炭表面。
在本发明的方法的步骤 f 中, 干燥并煅烧所述负载在活性炭 上的活性組分前体,得到所述催化剂。其中所述干燥在 120- 150°C 下进行, 干燥时间为 2-5 小时。 而所述煅烧在马弗炉中在 270- 300 'C和有氧气存在的气氛下进行, 煅烧时间 8- 10小时。 所 述有氧气存在的气氛优选为空气气氛。 经过煅烧后, 活性组分前 体, 例如金属碳酸盐或氢氧化物, 会分解生成金属氧化物。 一般 认为, 在本文所述的有氧气存在的气氛下 (优选在空气气氛下) 进行的长时间煅烧过程中, 所生成的金属氧化物通常是这些金属 的最高价态的稳定的氧化物, 即 Fe203、 Cu0、 ZnO, 故当在本发明 中提到这些活性组分的含量及彼此间质量比时, 均采用折算成 Fe203、 CuO、 ZnO的各金属氧化物的质量, 由于步骤 d中的沉淀为 完全沉淀且步骤 f 中的煅烧分解反应也是完全反应, 故本发明中 根据起始溶液中的可溶性铁盐或亚铁盐、 可溶性铜盐和可溶性锌 盐的量来按沉淀反应和分解反应的化学计量比推算分解生成的金 属氧化物的量。 而且, 据信这些金属氧化物并非以互不相干的方 式独立存在, 而是形成了金属氧化物的复合物, 这种交互作用使 得它们与各自独立存在时的金属氧化物相比, 在废水处理条件下 更不容易造成金属流失。 这将在以下实施例中得以体现。
本发明的催化剂的催化作用通过以下废水处理实验来检验。 废水有两种: 一种是煤气化废水原液, 废水的成分复杂、 毒 性大, COD为 2 0000mg/L以上。 另一种是煤气化废水原液经预处 理 -UASB- CASS (预处理 -上流式厌氧污泥床反应器一循环活性污泥 法反应池)工艺, 最后经过膜生物反应器(MBR )的出水, 该废水 的可生化性极差, 很难生物降解, 色度高, COD为 200- 300mg/L。
采用固定床反应器测试了催化剂的催化活性和稳定性:
1.反应器: 反应器为固定床反应器。 反应器的材料为有机玻 璃, 其尺寸为 Φ 65 * 5Ι Ι, 高度为 11 00-1150mm, 反应器的底部分 别设有排污口和曝气口, 距底部 1- 2cm处和距顶部 5- 6 cm处的侧 面分别设有进水口和排水口, 距底部 3- 4 cm处固定有布气板。 反 应器共分五层, 层与层间设有法兰, 用螺丝和密封圈密封固定。
2.催化剂的装填:首先在反应器底部的布气板上铺设 18 目聚 乙烯网片,然后将 8 00- 900g本发明制备的催化剂分层装填于反应 器中,每层催化剂的装填质量为 17 0- 180g和装填高度为 16-18 cm。 每层催化剂颗粒的上平面分别铺设一层 18 目聚乙烯网片和一个 布气板, 并将其固定, 然后加入 1-4 目的石英砂颗粒至相邻催化 剂层底部的布气板位置。
3.实验条件: 常温常压, 废水的 PH值大约为 5. 0-5. 5 , 水力 停留时间是 1. 0-2. 0 小时, 每批处理进样废水的体积为 850-860ml , 采用连续曝气和连续进样的方式。 实施例
举出以下实施例以说明本发明, 但不对本发明进行限制。 实施例 1
在活性炭上负载 3%Fe- Cu_Zn三元复合金属氧化物的催化剂。 该催化剂的組分和含量为: 活性炭载体的盾量百分比含量为 97% , 主要活性组分为 Fe- Cu- Zn三元复合金属氧化物, 以 Fe203、 CuO、 ZnO计的三元复合金属氧化物的质量百分比含量为 3%,其中 以 Fe203、 CuO、 ZnO计, Fe203、 CuO和 ZnO的质量百分比含量分别 为 2. 4% , 0. 3%和 0. 3%。
该催化剂的制备方法, 包括以下步骤:
a.取 545 g 活性炭用去离子水洗涤千净, 经 下干燥和 150 °C下热处理 2h完成预处理备用;
b.称取 36. 6g FeC h · 6H20、 7. 7g CuCU · 3H20和 6. Og ZnC l2 三种金属盐, 分别用去离子水配制成溶液, 然后混合均匀, 混合 溶液的体积为 654mL;
c.混合溶液加热至 70 °C后加入预处理后的活性炭颗粒, 均匀 搅拌 4个小时后冷却至室温;
d.向溶液中加入 23. 3g NaOH沉淀剂, 得到沉淀物;
e.不进行固液分离, 在原位进行熟化 24小时;
f.过滤出固体, 用去离子水洗涤固体至无金属离子析出, 在 120 °C下干燥 2h, 然后在马弗炉中在空气气氛下在 270 °C下煅烧 8h,制得在活性炭上负载 3%Fe- Cu-Zn三元复合金属氧化物的催化 剂。
采用固定床反应器测试了该催化剂的催化活性和稳定性: 1.反应器: 反应器的材料为有机玻璃, 其尺寸为 Φ 65 * 5匪, 高度为 1 1 30mm, 反应器的底部分别设有排污口和曝气口, 距底部 2cm处和距顶部 6cm处的侧面分别设有进水口和排水口, 距底部 3cm 处固定有布气板。 反应器共分五层, 层与层间设有法兰, 采 用螺丝和密封圏密封固定。
2.催化剂的装填:首先在反应器底部的布气板上铺设 18目聚 乙浠网片,然后将 860g本实施例 1的催化剂分层装填于反应器中, 每层催化剂的装填质量为 172g和装填高度为 17. Ocm。 每层催化 剂紧密装填后,上部分别铺设一层 18 目聚乙烯网片和布气板并固 定, 然后加入 1-4 目的石英砂颗粒至相邻一层催化剂底部布气板 的位置。
3.在常温常压下, 用硫酸将废水的 PH值调至 5. 32 , 用蠕动 泵将待处理废水緩慢泵入固定床五层的催化氧化反应器中, 水力 停留时间是 1. 0-1. 5小时, 采用连续曝气和连续进样的方式。 试 验结果发现, 在常温常压下和空气作为氧化剂条件下, 催化氧化 处理 COD为 20300mg/L的煤气化废水原液 lh后, COD降至 215mg/L , COD去除率达到 98. 9%; 催化氧化经预处理- UASB- CASS- MBR处理 工艺 COD为 212-220mg/L的煤气化废水出水, 连续处理 4个月以 上, 最后出水 PH为 7-8, COD为 70-80mg/L , 废水色度从处理前 的 300-400倍降低到处理后的 30倍, B0D5 为 20rag/L , 氨氮为 4-6mg/L , 悬浮物为 20mg/L 和其它各项指标均能满足 GB8978— 1996《污水综令排放标准》 中的一级标准。
实施例 2
在活性炭上负载 5%Fe- Cu-Zn三元复合金属氧化物的催化剂。 该催化剂的组分和含量为: 活性炭载体的质量百分比含量为 95% , 主要活性组分为 Fe-Cu-Zn三元复合金属氧化物, 以 Fe203、 Cu0、 ZnO计的三元复合金属氧化物的质量百分比含量为 5%, 其中 以 Fe203、 Cu0、 ZnO计, Fe203> CuO和 ZnO的质量百分比含量分别 为 4%, 0.5¾和 0.5%0
该催化剂的制备方法, 包括以下步骤:
a. 取 540g活性炭用去离子水洗涤干净, 经 120°C下干燥和 150°C下热处理 2h完成预处理备用;
b.称取 60.9g FeCl3 ' 6H20、 12.8g CuCl2 · 3H20和 10. Og ZnCl2 三种金属盐, 分别用去离子水配制成溶液, 然后混合均勾, 混合 溶液的体积为 650ml;
c.向溶液中加入活性炭, 在 65°C下搅拌 4小时后冷却; d.向溶液中加入 38.9g NaOH沉淀剂, 得到沉淀物;
e.不进行固液分离, 在原位进行熟化 24小时;
f. 过滤出固体,用去离子水洗涤固体至无金属离子析出,在 110°C下干燥 2h, 然后在马弗炉中在空气气氛下在 270°C下煅烧 8h,制得在活性炭上负载 5%Fe-Cu- Zn三元复合金属氧化物的催化 剂。
采用固定床反应器测试了该催化剂的催化活性和稳定性:
1.反应器: 反应器为固定床五层的有机玻璃反应器, 其尺寸 为 Φ65*5Ι Ι, 高度为 lllOmni, 反应器的底部分别设有排污口和曝 气口, 上下侧面分别设有进水口和排水口。
2.催化剂的装填:将 850g本实施例的催化剂分五层装填于反 应器中, 每层催化剂的装填质量为 170g和装填高度为 16.7cra。
3.在常温常压下, 用硫酸将废氷的 PH值调至 5.20, 用蠕动 泵将待处理废水緩慢泵入固定床五层的催化氧化反应器中, 水力 停留时间是 1.0-1.5小时。 在常温常压下和空气作为氧化剂条件 下, 催化氧化处理 COD为 20200mg/L的煤气化废水原液, COD降 至 205mg/L, COD 去除率达到 99. 0% ; 连续处理经预处理 -UASB-CASS-MBR工艺的煤气化废水出水 4个月以上,最后出水 PH 为 7-8 , COD为 70-80mg/L, 废水色度从处理前的 300- 400倍降低 到处理后的 30倍, B0D5为 20mg/L, 氨氮为 4- 6mg/L和其它各项 指标均能满足 GB8978— 1996《污水综合排放标准》中的一级标准。
实施例 3
在活性炭上负载 10%Fe- Cu- Zn 三元复合金属氧化物的催化 剂。
该催化剂的組分和含量为: 活性炭载体的质量百分比含量为 90% 主要活性组分为 Fe-Cu-Zn三元复合金属氧化物, 以 Fe203、 CuO、 ZnO计的三元复合金属氧化物的质量百分比含量为 10%, 其 中以 Fe203、 CuO、 ZnO计, Fe203、 CuO和 ZnO的质量百分比含量分 别为 8. 0%, 1. 0%和 1. 0%。
该催化剂的制备方法, 包括以下步骤:
a. 取 550g活性炭用去离子水洗涤干净, 经 120°C下干燥和 150 °C下热处理 2h完成预处理备用;
b.称取 121. 9g FeCl3 · 6Η20、 25. 7g CuCl2 · 3H20和 20. lg ZnCl2 三种金属盐, 分别用去离子水配制成溶液, 然后混合均匀, 混合 溶液的体积为 660ml ;
c.向溶液中加入活性炭,在 70 °C下浸渍 4小时后冷却到室温; (1.向溶液中加入 77. 9g NaOH沉淀剂, 得到沉淀物;
e.不进行固液分离, 在原位进行熟化 24小时;
f.过滤出固体, 用去离子水洗涤固体至无金属离子析出, 在 110°C下干燥 2h, 然后在马弗炉中在空气气氛下在 270°C下煅烧 8h, 制得活性炭负载 10%的三元复合过渡金属氧化物。
采用固定床反应器测试了该催化剂的催化活性和稳定性: 1.反应器: 反应器为固定床五层的有机玻璃反应器, 其尺寸 为 Φ65*5ΙΜΙ, 高度为 1120mm。
2.催化剂的装填:将 855g本实施例的催化剂分五层装填于反 应器中, 每层催化剂的装填质量为 171g和装填高度为 16.8cm。
3.在常温常压下, 用硫酸将废水的 PH值调至 5.10, 待处理 废水被緩慢泵入固定床催化氧化反应器中, 水力停留时间是 1.0-1.5 小时。 在常温常压下和空气作为氧化剂条件下, 催化氧 化处理 COD为 20230mg/L的煤气化废水原液, COD降至 210mg/L, COD去除率达到 99.0%; 连续处理经预处理 -UASB-CASS-MBR处理 工艺的煤气化废水出水 4个月以上, 最后出水 PH为 7-8, COD为 70-80mg/L, 废水色度从处理前的 300- 400倍降低到处理后的 30 倍, B0D5为 20mg/L, 氨氮为 4- 6mg/L和其它各项指标均能满足 GB8978— 1996 《污水综合排放标准》 中的一级标准。
实施例 4
在活性炭上负载 l%Fe- Cu- Zn三元复合金属氧化物的催化剂 该催化剂的组分和含量为: 活性炭载体的质量百分比含量为 99%, 主要活性组分为 Fe- Cu- Zn三元复合金属氧化物, 以 Fe203、 CuO、 ZnO计的三元复合金属氧化物的质量百分比含量为 1%,其中 以 Fe203、 CuO、 ZnO计, Fe203、 CuO和 ZnO的盾量百分比含量分别 为 0.83%, 0.083%和 0.083%。
该催化剂的制备方法, 包括以下步骤:
a.取 540g 活性炭用去离子水洗涤干净, 经 120°C下干燥和 150°C下热处理 2h完成预处理备用;
b.称取 15.30g FeCl3 · 6H20、 0.98g CuCl2 · 2H20和 0.76g ZnCl2 三种金属盐, 分别用去离子水配制成溶液, 然后混合均勾, 混合 溶液的体积为 648mL; c.混合溶液加热至 70 °C后加入预处理后的活性炭颗粒, 均匀 搅拌 4个小时后冷却至室温;
d.向溶液中加入 7. 71 g NaOH沉淀剂, 得到沉淀物;
e.不进行固液分离, 在原位进行熟化 24小时;
f .过滤出固体, 用去离子水洗涤固体至无金属离子析出, 在 120 °C下干燥 2h , 然后在马弗炉中在空气气氛下在 270 °C下煅烧 8h ,制得在活性炭上负载 l%Fe- Cu- Zn三元复合金属氧化物的催化 剂。
采用固定床反应器测试了该催化剂的催化活性和稳定性:
1.反应器: 反应器的材料为有机玻璃, 其尺寸为 Φ 65 * 5腿, 高度为 11 30mm, 反应器的底部分别设有排污口和曝气口, 距底部 2cm处和距顶部 6cm处的侧面分别设有进水口和排水口, 距底部 3cm 处固定有布气板。 反应器共分五层, 层与层间设有法兰, 釆 用螺丝和密封圏密封固定。
2.催化剂的装填:首先在反应器底部的布气板上铺设 18 目聚 乙烯网片, 然后将 860g本实施例的催化剂分层装填于反应器中, 每层催化剂的装填质量为 172g和装填高度为 17. 0cm。 每层催化 剂紧密装填后,上部分别铺设一层 18目聚乙烯网片和布气板并固 定, 然后加入 1-4 目的石英砂颗粒至相邻一层催化剂底部布气板 的位置。
3.在常温常压下, 用硫酸将废水的 PH值调至 5. 40 , 用蠕动 泵将待处理废水緩慢泵入固定床五层的催化氧化反应器中, 水力 停留时间是 1. 0-1. 5小时, 采用连续曝气和连续进样的方式。 试 验结果发现, 在常温常压下和空气作为氧化剂条件下, 催化氧化 处理 COD为 20000mg/L的煤气化废水原液 lh后, COD降至 260mg/L , COD去除率达到 98. 7%; 催化氧化经预处理- UASB-CASS-MBR处理 工艺 COD为 200-215mg/L的煤气化废水出水, 连续处理 3. 5个月 以上, 最后出水 PH为 7-8 , COD为 70- 80mg/L, 废氷色度从处理 前的 300- 400倍降低到处理后的 30倍, B0D5为 20mg/L, 氨氮为 4-6mg/L , 悬浮物为 20mg/L 和其它各项指标均能满足 GB8978— 1996《污水综合排放标准》 中的一级标准。
实施例 5
在活性炭上负载 6%Fe- Cu-Zn三元复合金属氧化物的催化剂。 该催化剂的組分和含量为: 活性炭载体的质量百分比含量为 94% , 主要活性組分为 Fe-Cu-Zn三元复合金属氧化物, 以 Fe203、 CuO、 ZnO计的三元复合金属氧化物的质量百分比含量为 6% ,其中 以 Fe203、 Cu0、 ZnO计, Fe203、 CuO和 ZnO的质量百分比含量分别 为 4. 8% , 0. 6%和 0. 6%。
该催化剂的制备方法, 包括以下步骤:
a.取 528g 活性炭用去离子水洗涤干净, 经 12 CTC下千燥和 150 °C下热处理 2h完成预处理备用;
b.称取 91. 26g FeC l3 , 6Η20、 7. 24g CuCl2■ 2H20和 5· 66g ZnCl2 三种金属盐, 分别用去离子水配制成溶液, 然后混合均匀, 混合 溶液的体积为 634mL;
c.混合溶液加热至 70 °C后加入预处理后的活性炭颗粒, 均匀 搅拌 4个小时后冷却至室温; .
d.向溶液中加入 47. 2g NaOH沉淀剂, 得到沉淀物;
e.不进行固液分离, 在原位进行熟化 24小时;
f .过滤出固体, 用去离子氷洗涤固体至无金属离子析出, 在 120 °C下干燥 2h, 然后在马弗炉中在空气气氛下在 270 °C下煅烧 8h ,制得在活性炭上负载 6%Fe- Cu-Zn三元复合金属氧化物的催化 剂。
- 14- 采用固定床反应器测试了该催化剂的催化活性和稳定性:
1.反应器: 反应器的材料为有机玻璃, 其尺寸为 Φ 65*5ιηιη, 高度为 1130腿, 反应器的底部分别设有排污口和曝气口, 距底部 2cm处和距顶部 6cm处的侧面分别设有进水口和排水口, 距底部 3cm 处固定有布气板。 反应器共分五层, 层与层间设有法兰, 采 用螺丝和密封圏密封固定。
2.催化剂的装填:首先在反应器底部的布气板上铺设 18 目聚 乙烯网片, 然后将 860g本实施例的催化剂分层装填于反应器中, 每层催化剂的装填质量为 172g和装填高度为 17. Ocm。 每层催化 剂紧密装填后,上部分别铺设一层 18目聚乙烯网片和布气板并固 定, 然后加入 1-4 目的石英砂颗粒至相邻一层催化剂底部布气板 的位置。
3.在常温常压下, 用硫酸将废水的 PH值调至 5. 42 , 用蠕动 泵将待处理废水緩慢泵入固定床五层的催化氧化反应器中, 水力 停留时间是 1. 0-1. 5小时, 采用连续曝气和连续进样的方式。 试 验结果发现, 在常温常压下和空气作为氧化剂条件下, 催化氧化 处理 COD为 20200mg/L的煤气化废水原液 lh后, COD降至 210mg/L, COD去除率达到 99. 0%; 催化氧化经预处理 -UASB-CASS-MBR处理 工艺 COD为 212-225mg/L的煤气化废水出水, 连续处理 4个月以 上, 最后出水 PH为 7-8, COD为 70-80mg/L, 废水色度从处理前 的 300-400倍降低到处理后的 30倍, B0D5 为 20mg/L, 氨氮为 4-6mg/L , 悬浮物为 20mg/L 和其它各项指标均能满足 GB8978— 1996 《污水综合排放标准》 中的一级标准。
实施例 6
在活性炭上负载 9%Fe-Cu-Zn三元复合金属氧化物的催化剂。 该催化剂的组分和含量为: 活性炭载体的质量百分比含量为 91% , 主要活性組分为 Fe-Cu-Zn三元复合金属氧化物, 以 Fe203、 CuO、 ZnO计的三元复合金属氧化物的质量百分比含量为 9%,其中 以 Fe203、 CuO、 ZnO计, Fe203、 CuO和 ZnO的质量百分比舍量分别 为 7. 2% , 0. 9¾和 0. 9%0
该催化剂的制备方法, 包括以下步骤:
a.取 511 g 活性炭用去离子水洗涤干净, 经 120XT下干燥和 150°C下热处理 2h完成预处理备用;
b.称取 1 36. 89g FeC l3 ·6Η2Ο、 10· 86g CuCl2 ·2Η20和 8. 49g ZnCl2 三种金属盐, 分别用去离子水配制成溶液, 然后混合均匀, 混合 溶液的体积为 613mL;
c.混合溶液加热至 70°C后加入预处理后的活性炭颗粒, 均匀 搅拌 4个小时后冷却至室温;
d.向溶液中加入 70. 9g NaOH沉淀剂, 得到沉淀物;
e.不进行固液分离, 在原位进行熟化 24小时;
f .过滤出固体, 用去离子水洗涤固体至无金属离子析出, 在 120 °C下干燥 2h, 然后在马弗炉中在空气气氛下在 270 °C下煅烧 8h,制得在活性炭上负载 9%Fe-Cu-Zn三元复合金属氧化物的催化 剂。
采用固定床反应器测试了该催化剂的催化活性和稳定性:
1.反应器: 反应器的材料为有机玻璃, 其尺寸为 Φ 65 * 5ηιιη, 高度为 1130腿, 反应器的底部分别设有排污口和曝气口, 距底部 2cm处和距顶部 6cm处的侧面分别设有进水口和排水口, 距底部 3cm 处固定有布气板。 反应器共分五层, 层与层间设有法兰, 采 用螺丝和密封圈密封固定。
2.催化剂的装填:首先在反应器底部的布气板上铺设 18 目聚 乙烯网片, 然后将 860g本实施例的催化剂分层装填于反应器中, 每层催化剂的装填质量为 172g和装填高度为 17. Ocm。 每层催化 剂紧密装填后,上部分别铺设一层 18 目聚乙烯网片和布气板并固 定, 然后加入 1-4 目的石英砂颗粒至相邻一层催化剂底部布气板 的位置。
3.在常温常压下, 用硫酸将废水的 PH值调至 5. 50, 用蠕动 泵将待处理废水緩慢泵入固定床五层的催化氧化反应器中, 水力 停留时间是 1. 0-1. 5小时, 采用连续曝气和连续进样的方式。 试 验结果发现, 在常温常压下和空气作为氧化剂条件下, 催化氧化 处理 COD为 204 00mg/L的煤气化废水原液 lh后, COD降至 220mg/L, COD去除率达到 98. 9%; 催化氧化经预处理- UASB-CASS- MBR处理 工艺 C0D为 212-230mg/L的煤气化废水出水, 连续处理 4个月以 上, 最后出水 PH为 7-8, C0D为 70- 80mg/L , 废水色度从处理前 的 300-400倍降低到处理后的 30倍, B0D5 为 2 0mg/L, 氨氮为 4-6mg/L , 悬浮物为 20mg/L 和其它各项指标均能满足 GB8978— 1996 《污水综合排放标准》 中的一级标准。
实施例 1 - 6的结果表明,本发明的活性炭负载 1 %、 3%、 5 %、 6 %、 9 %和 1 0 % Fe - Cu - Zn三元复合过渡金属氧化物催化剂均表 现出比现有技术催化剂高的催化活性和稳定性。
本发明的催化剂具有显著的优点:
1. 催化活性高且催化选择性高, 本发明活性炭负载 Fe - Cu - Zn三元复合过渡金属氧化物催化剂 ,克服了单一活性组分催化 剂的催化选择性和催化活性限制。本发明制备的活性炭负载 Fe - Cu - Zn三元复合过渡金属氧化物催化剂, 一方面由于 Fe203、 CuO 和 ZnO具有不同的催化选择性和催化活性, 三种金属氧化物复合 后可以表现出较单一氧化物更好的催化性能。 例如, 在常温常压 下和空气为氧化剂条件下, 本发明催化剂催化氧化 COD 为 20000mg/L以上的煤气化废水原液, COD去除率达到 99. 0%, 较活 性炭负载单一活性组分催化剂的催化活性高。 经预处理 -UASB-CASS- MBR处理工艺的煤气化废水出水, 很难降解, 尤其是 色度很高, 经该催化剂催化氧化, 最后出水的色度为 30倍, COD 可以降至 70-80rag/Lo
2. 稳定性好, 活性组分不易流失, 由于 Fe203、 CuO 和 ZnO 氧化物间形成了复合金属氧化物, 可以尽可能避免催化剂在使用 过程中的金属离子溶出, 提高了催化剂的稳定性。 该催化剂经过 连续 4个月以上的水处理测试, 其催化活性基本没有衰减, 可见 各金属氧化物之间发生了某种相互作用, 使得它们不易流失。 最 后出水各项指标均能满足 GB8978— 1996《污水综合排放标准》中 的一级标准。
3. 制备成本低, 制备工艺简单, 废水处理的综合成本低, 适 用于工业应用。

Claims

权利要求
1. 一种用于在常温常压下对废水进行催化氧化的催化剂, 其 包含负载在活性炭上的 Fe-Cu-Zn三元复合金属氧化物。
2. 根据权利要求 1的催化剂, 其中活性炭质量占催化剂总质 量的 90-99% , 和以 Fe203、 Cu0、 ZnO计的三元复合金属氧化物质 量占催化剂总质量的 1-10%, 其中以 Fe203、 Cu0、 ZnO计的三种氧 化物的质量比 Fe203: CuO: ZnO = 1-8: 0. 1-1: 0. 1-10
3. 根据权利要求 1的催化剂, 其中活性炭质量占催化剂总质 量的 90-97°/», 和以 Fe203、 Cu0、 ZnO计的三元复合金属氧化物质 量占催化剂总质量的 3-10%, 其中以 Fe203、 CuO、 ZnO计的三种氧 化物的质量比 Fe203: CuO: ZnO = 2. 4-8: 0. 3-1: 0. 3-10
4. 根据权利要求 1-3的任一项的催化剂, 其中活性炭的比表 面积为 8 00-9 0 0m7 g o
5. —种用于在常温常压下对废水进行催化氧化的催化剂的 制备方法, 包括以下步骤:
a. 用包括洗涤、干燥和热处理在内的步驟对活性炭进行预 处理;
b. 配制包含可溶性铁盐或亚铁盐、可溶性铜盐和可溶性锌 盐的水溶液;
c. 加热所述水溶液, 并向其中加入预处理后的活性炭,搅 拌均匀后冷却至室温;
d. 向水溶液中加入能使铁离子或亚铁离子、铜离子和锌离 子沉淀的沉淀剂, 得到负载在活性炭上的活性组分前体;
e. 熟化所述负载在活性炭上的活性組分前体; 然后 f . 干燥并煅烧所述负载在活性炭上的活性组分前体,得到 所述催化剂。
6. 权利要求 5的方法, 其.中步骤 a中用去离子水对活性炭进 行洗涤, 在 11 0- 12 Q °C下对洗涤后的活性炭进行干燥, 然后在 150- 20 (TC下对干燥后的活性炭热处理 2-5小时。
7. 权利要求 5的方法, 其中所述可溶性铁盐包括氯化铁、 硝 酸铁和硫酸铁, 所述可溶性亚铁盐包括氯化亚铁、 硝酸亚铁和硫 酸亚铁, 所述可溶性铜盐包括氯化铜、 硝酸铜和硫酸铜, 所述可 溶性锌盐包括氯化辞、 硝酸辞和硫酸辞。
8. 权利要求 5的方法, 其中在步骤 c中将所述水溶液加热至 6 0- 7 0 °C, 和所迷搅拌持续 3-5小时。
9. 权利要求 5的方法, 其中步骤 d中所述沉淀剂选自可溶性 的金属氢氧化物、,可溶性的金属碳酸盐、 碳酸氢盐或氨氷或它们 的混合物。
1 0. 权利要求 5 的方法, 其中所述沉淀剂选自 NaOH、 Na2C03 或 NaHC03
1 1. 权利要求 5的方法, 其中步驟 e 中的熟化通过使所述负 载在活性炭上的活性组分前体在溶液中在室温下静置 24 小时来 原位进行, 或者通过先固液分离得到负载在活性炭上的活性組分 前体, 然后使该前体在室温下静置 24小时来进行。
12. 权利要求 5的方法,其中步驟 f 中所述干燥在 120- 150 °C 下进行, 干燥时间为 2-5 小时, 而所迷煅烧在马弗炉中在 270-300 °C和有氧气存在的气氛下进行, 煅烧时间为 8- 1 0小时。
1 3. 权利要求 5 的方法, 其中加入的沉淀剂的量足以使所有 的金属离子完全沉淀到活性炭上。
14. 权利要求 5的方法, 其中步驟 b中可溶性铁盐或亚铁盐、 可溶性铜盐和可溶性锌盐的比例足以使最终的催化剂中以 Fe203、 CuO、 ZnO 计的三种氧化物的质量比 Fe203: CuO: ZnO = 1-8: 0. 1-1 : 0. 1-1。
15. 权利要求 5的方法, 其中步驟 b中可溶性铁盐或亚铁盐、 可溶性铜盐和可溶性锌盐的比例足以使最终的催化剂中以 Fe203、 CuO 、 ZnO 计的三种氧化物的质量比 Fe203: CuO: ZnO = 2. 4-8: 0. 3-1: 0. 3—1。
PCT/CN2010/001430 2009-09-17 2010-09-17 用于在常温常压下处理工业废水的催化剂及其制备方法 WO2011032362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910177026.2 2009-09-17
CN2009101770262A CN101664683B (zh) 2009-09-17 2009-09-17 用于在常温常压下处理工业废水的催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2011032362A1 true WO2011032362A1 (zh) 2011-03-24

Family

ID=41801555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001430 WO2011032362A1 (zh) 2009-09-17 2010-09-17 用于在常温常压下处理工业废水的催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN101664683B (zh)
WO (1) WO2011032362A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506071A (zh) * 2012-06-19 2014-01-15 中国石油化工股份有限公司 用于吸附天然气尾气中硫化氢和羰基硫的洁净剂及其制备方法
CN110642364A (zh) * 2019-10-25 2020-01-03 哈尔滨工创环保科技有限公司 一种悬浮催化剂催化氧化煤化工废水的装置
CN111233249A (zh) * 2019-04-30 2020-06-05 南京大学环境规划设计研究院股份公司 一种船舶化学品洗舱废水的处理方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664683B (zh) * 2009-09-17 2011-12-28 新奥科技发展有限公司 用于在常温常压下处理工业废水的催化剂及其制备方法
CN102372344B (zh) * 2011-10-18 2013-05-01 中国石油化工集团公司 一种苯胺、硝基苯生化废水的FeCl2/C-Cu催化水解方法
CN102416336B (zh) * 2011-10-18 2013-05-08 中国石油化工集团公司 一种用于苯胺、硝基苯生化废水后处理的FeCl2/C-Cu催化剂制备方法
CN103464174A (zh) * 2012-06-08 2013-12-25 中国石油化工股份有限公司 用于苯胺和硝基苯生化废水后处理的FeSO4催化剂制备方法
CN105565465B (zh) * 2015-12-15 2018-05-29 广东工业大学 一种微波诱导负载型活性炭催化过硫酸盐处理邻苯二甲酸酯废水的方法
CN107345767A (zh) * 2016-05-06 2017-11-14 沈阳铝镁设计研究院有限公司 一种罐式炉高温煅烧焦的余热回收及冷却装置
CN106693967A (zh) * 2016-12-25 2017-05-24 常州亚环环保科技有限公司 一种常温常压下促进氨氮废水降解的催化剂制备方法
CN106799226A (zh) * 2017-01-05 2017-06-06 杭州绿色环保技术开发有限公司 一种臭氧氧化有机物的催化剂及其制备方法
CN107417010B (zh) * 2017-08-24 2019-12-03 中南林业科技大学 一种高浓度含盐有机废水催化氧化处理工艺及系统
CN107824201A (zh) * 2017-11-24 2018-03-23 四川美富特环境治理有限责任公司 用于催化湿式氧化反应的双元催化剂
CN111617753A (zh) * 2020-06-10 2020-09-04 湖北君集水处理有限公司 一种Ce-Cu/γ-Al2O3负载型催化剂催化湿式氧化再生活性炭的方法
CN111744489B (zh) * 2020-07-02 2023-01-31 陕西科技大学 一种铁泥炭负载铁锌铜催化剂、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072608A (en) * 1976-01-13 1978-02-07 Phillips Petroleum Company Polluted water purification
CN1724158A (zh) * 2005-06-24 2006-01-25 北京化工大学 一种高分散铜基复合金属氧化物催化剂及其制备方法
CN1876232A (zh) * 2006-07-04 2006-12-13 北京交通大学 一种活性炭载氧化铜催化剂及其制备方法
CN101664683A (zh) * 2009-09-17 2010-03-10 新奥科技发展有限公司 用于在常温常压下处理工业废水的催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072608A (en) * 1976-01-13 1978-02-07 Phillips Petroleum Company Polluted water purification
CN1724158A (zh) * 2005-06-24 2006-01-25 北京化工大学 一种高分散铜基复合金属氧化物催化剂及其制备方法
CN1876232A (zh) * 2006-07-04 2006-12-13 北京交通大学 一种活性炭载氧化铜催化剂及其制备方法
CN101664683A (zh) * 2009-09-17 2010-03-10 新奥科技发展有限公司 用于在常温常压下处理工业废水的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAN YAJUN ET AL.: "Stability of Copper Catalyst for the Wet Air Oxidation of the Organic Pollutants", ENVIRONMENTAL SCIENCE, vol. 21, no. 4, July 2000 (2000-07-01), pages 82 - 85 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506071A (zh) * 2012-06-19 2014-01-15 中国石油化工股份有限公司 用于吸附天然气尾气中硫化氢和羰基硫的洁净剂及其制备方法
CN111233249A (zh) * 2019-04-30 2020-06-05 南京大学环境规划设计研究院股份公司 一种船舶化学品洗舱废水的处理方法
CN111233249B (zh) * 2019-04-30 2020-12-15 南京大学环境规划设计研究院股份公司 一种船舶化学品洗舱废水的处理方法
CN110642364A (zh) * 2019-10-25 2020-01-03 哈尔滨工创环保科技有限公司 一种悬浮催化剂催化氧化煤化工废水的装置
CN110642364B (zh) * 2019-10-25 2022-01-07 哈尔滨工创环保科技有限公司 一种悬浮催化剂催化氧化煤化工废水的装置

Also Published As

Publication number Publication date
CN101664683A (zh) 2010-03-10
CN101664683B (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
WO2011032362A1 (zh) 用于在常温常压下处理工业废水的催化剂及其制备方法
WO2011097956A1 (zh) 用于在常温常压下处理工业废水的催化剂及其制备方法
Liu et al. Highly efficient degradation of phenol wastewater by microwave induced H2O2-CuOx/GAC catalytic oxidation process
Lin et al. Catalytic wet air oxidation of phenol by various CeO2 catalysts
CN108970620A (zh) 一种脱除水中有机物与总氮臭氧氧化催化剂的制备方法
CN107744811B (zh) 一种臭氧降解水体cod的高效催化剂及其制备方法
Martins et al. Ceria based solid catalysts for Fenton's depuration of phenolic wastewaters, biodegradability enhancement and toxicity removal
Zhuang et al. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process
CN111821982B (zh) 一种氧化石墨烯-氧化铈-氧化铁复合材料、合成方法及其在催化降解性中的应用
CN109621974B (zh) 一种CuMn2O4/rGO复合材料臭氧催化氧化除污染水处理方法
CN101643266A (zh) 矿化降解有机废水的方法和处理设备
CN105080550B (zh) 处理煤气化废水的臭氧氧化催化剂的制备方法
Li et al. Preparation of the Mn-Fe-Ce/γ-Al2O3 ternary catalyst and its catalytic performance in ozone treatment of dairy farming wastewater
CN102689977A (zh) 一种复合悬浮载体—催化臭氧氧化净化废水方法及反应器
CN114011455B (zh) 一种铜单原子催化剂及其制备方法和应用、铜单原子催化剂催化降解废水中四环素的方法
CN102874914A (zh) 一种利用负载型钌催化剂去除饮用水中污染物的方法
CN111375424A (zh) 一种负载型多金属氧化物催化臭氧氧化催化剂的制备方法及应用
KR100738676B1 (ko) 난분해성 폐수의 습식산화를 위한 세리아-지르코니아계전이금속 촉매
CN106552615A (zh) 凹凸棒石粘土复合催化材料的制备方法
CN109967087B (zh) 一种固载化非均相芬顿催化剂及其制备方法和应用
Jin et al. Role of Al-based coagulants on a hybrid ozonation–coagulation (HOC) process for WWTP effluent organic matter and ibuprofen removal
CN111068641A (zh) 多相芬顿催化剂及含酚废水的芬顿氧化处理方法
CN108046407B (zh) 一种采用nano-CeO2/H2O2/O3体系处理酸性难降解废水的方法
CN109364924A (zh) 一种磁性纳米臭氧催化剂CoFe2O4及其制备方法与应用
CN111889108B (zh) 一种废水中有机物氧化分解催化剂材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816566

Country of ref document: EP

Kind code of ref document: A1