WO2011032346A1 - 用于制冷设备的恒压衡功制冷系统 - Google Patents

用于制冷设备的恒压衡功制冷系统 Download PDF

Info

Publication number
WO2011032346A1
WO2011032346A1 PCT/CN2010/000738 CN2010000738W WO2011032346A1 WO 2011032346 A1 WO2011032346 A1 WO 2011032346A1 CN 2010000738 W CN2010000738 W CN 2010000738W WO 2011032346 A1 WO2011032346 A1 WO 2011032346A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
refrigerant
compressor
metal conductive
valve
Prior art date
Application number
PCT/CN2010/000738
Other languages
English (en)
French (fr)
Inventor
倪军
Original Assignee
Ni Jun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ni Jun filed Critical Ni Jun
Publication of WO2011032346A1 publication Critical patent/WO2011032346A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Definitions

  • the present invention relates to a refrigeration system apparatus, and more particularly to a compression evaporation type refrigeration system apparatus. Background technique
  • the cooling throttling device is still in a very low-automatic position.
  • the throttling capillary or the temperature-sensing throttle valve is commonly used.
  • the throttling capillary is actually a thin tube several times smaller than the main flow tube, and the refrigerant evaporates in the evaporator after being throttled by the capillary.
  • the throttling of the capillary is constant and non-adjustable and is commonly used in domestic refrigerators and small refrigerators.
  • the temperature-sensing throttle valve has been improved compared with the capillary tube.
  • Capillary throttling can only be performed in a constant manner. Since it is not adjustable, the output power of the compressor will not change due to the cooling output power. As long as the compressor is started, the output power will be a fixed value.
  • the temperature-sensing throttle valve can only sense the temperature of the refrigerant return air pipe and adjust the degree of throttling. The scope of the change is too limited, and the user cannot adjust it at will, and will not follow the demand of the evaporator. Change.
  • the coil Due to its small evaporation space and poor heat transfer, the coil has a serious influence on the evaporation rate of its internal refrigerant.
  • the compressor output power is too high, the liquid refrigerant overflows excessively due to its internal evaporation. .
  • the refrigerant in the air conditioner also works with the compressor oil during the operation of the air conditioner. In the evaporator, the refrigerant evaporates, but the compressor oil does not evaporate, and it accumulates in a large amount in the lower portion of the cross tube. Curved section, etc., forming oil plug ct 201
  • the direct cooling coil is easy to contact with food and other foods in the refrigerator.
  • the coil material is very likely to contaminate the frozen or refrigerated food, and the frozen material is deteriorated.
  • the frozen articles are also highly susceptible to contamination of the coils, causing the coils to corrode and severely perforating the refrigerant to cause leakage of the refrigerant.
  • the new compressor unit can fully realize the variable frequency shifting, from the prior art, the frequency conversion technology is only embodied in the starting and closing, due to the limitation of the evaporator structure, in the refrigeration system.
  • the internal power demand is not much related to it. Its main function is the same as that of the fixed speed compressor. When the temperature reaches the set temperature, it stops its operation. When the temperature is higher than the set temperature, the compressor is started.
  • the frequency conversion technology can achieve low speed start and low speed stop. Therefore, in essence, it is not much different from the previous technology, or from another point of view, the frequency conversion technology of the frequency conversion press is not fully applied. Summary of the invention
  • the refrigeration equipment can control the frequency conversion of the compressor drive motor according to the internal power demand, thereby achieving constant voltage and power consumption of the refrigeration system.
  • the constant pressure and power balance refrigeration system device used in the refrigeration device of the present scheme is the same as the prior art, and includes an inverter compressor, a heat dissipation fan, a condensation radiator, an evaporator, The cold air blower, the throttle and the electric controller; the compressor pressurizes the refrigerant, sends it to the condensing radiator through the pipeline for liquefaction, and then is throttled by the throttle device and sent to the evaporator, and the refrigerant is vaporized and returned to the compressor.
  • the evaporator comprises at least one stretch-formed, flat rectangular cross-section metal conductive seat and a plurality of vertical fins disposed on the surface of the metal conductive seat and parallel to each other;
  • the metal conductive seat a plurality of mutually parallel pipes are arranged, the inner wall of the pipe is provided with fins uniformly distributed along the circumference; and, at both ends of the pipe, the plugs are respectively blocked;
  • the upper and lower sides of the metal conductive seat are respectively processed a blind hole in the flow channel perpendicular to the pipe, one of which is a refrigerant inlet passage and the other is a refrigerant discharge passage;
  • a central channel with a uniform thin liquid nozzle is provided with a plurality of small through holes on the nozzle wall was uniform;
  • the throttle device is an electronically controlled throttle valve; the valve comprises a valve body, a valve cover, a valve needle mounted on the core of the valve body and a stepping motor; the throttle body of the valve body is evenly distributed The inlet of the liquid pipe is connected, the other interface is connected with the input pipe of the refrigerant, and the wide needle is controlled by the stepping motor to increase or decrease the size of the flow;
  • An air pressure sensor is further disposed between the refrigerant discharge port of the evaporator and the compressor;
  • the electrical controller includes a CPU, and an input interface of the CPU is connected to the operation panel; an input and output interface thereof is respectively connected with the evaporator temperature sensor, the evaporator air outlet temperature sensor, the room temperature sensor and the evaporator
  • the air pressure sensor is connected; the other input and output interface is respectively connected with the electronically controlled throttle valve, the electronically controlled throttle valve controller, the chiller controller connected to the chiller motor, the compressor controller connected to the compressor, and the heat sink
  • the cooling fan controller connected to the fan is connected.
  • a refrigerant drying filter bottle may be disposed in the space of the outdoor unit, the dry filter bottle is provided with a desiccant, and the upper end thereof is provided with an observation window with a transparent cover, the inlet thereof and the output port of the compressor In connection, the outlet is connected to a throttle valve in the evaporator.
  • the constant pressure and power work refrigeration system device used in the refrigeration device of the present solution is different from the above technical solution only in that: the evaporator includes at least one tension and compression molding. a rectangular conductive section of the metal conductive seat and a plurality of fins disposed vertically on the surface of the metal conductive seat and parallel to each other; the metal conductive seat is provided with at least one rectangular pipe, and the plurality of pipes are distributed in the pipe Parallel evaporating fins; a blind hole of a flow channel perpendicular to the evaporating fin is respectively formed on the upper and lower sides of the metal conducting seat, one of which is a refrigerant inlet passage and the other is a refrigerant discharge passage; The center of the liquid passage is provided with a thin liquid-collecting nozzle, and a plurality of small through-holes are arranged in the wall of the liquid-repellent nozzle; both ends of the recorded pipe are sealed by a cover plate.
  • the refrigeration system unit When the refrigeration system unit is in use (see Figure 13), start the power supply first, and then set the total control temperature and the evaporator outlet temperature respectively.
  • the total temperature sensor senses the current actual temperature of the cooling device (ie, the temperature of the object to be cooled, such as room temperature or the temperature inside the refrigerator).
  • the inverter compressor and the electronic control are respectively activated.
  • Throttle valve at this time, the electronically controlled throttle valve is mainly used with the compressor to start).
  • the evaporator return air pressure sensor senses the return air pressure and corrects the speed of the inverter compressor to keep the return air pressure within a constant pressure range. This pressure range chamber is based on the most suitable rapid evaporation of the refrigerant. .
  • the evaporator temperature sensor senses the temperature of the evaporator body (and can also sense the temperature of the air outlet). When the body temperature is too high, the large throttle valve is opened, and the refrigerant entering the evaporator is greatly increased. At this time, the pressure of the return pipe is increased. Increased, the return air pressure sensor controls the compressor to increase the speed, increase the displacement of the gas, and maintain the return air pressure. When the temperature of the body is appropriate, the electric control throttle is small, the refrigerant entering the evaporator is also reduced, and the pressure of the return pipe is also reduced. The pressure sensor controls the speed of the compressor to decrease, and the pressure is kept constant.
  • the electronically controlled throttle valve When the outlet temperature or the evaporator temperature is equal to the set outlet temperature, the electronically controlled throttle valve is closed, and the return air pressure sensor controls the inverter compressor speed to a minimum or stops.
  • the above program is cycled, that is, when the set total control temperature is reached, the cooling is stopped; the set total control temperature is exceeded.
  • the temperature (the total temperature controlled at this time is set for the object to be cooled), and the cooling is started.
  • the constant pressure referred to here is to maintain the pressure in the evaporator return pipe at a constant pressure range which is based on the complete evaporation of the refrigerant before it exits the evaporator.
  • the said balance function means that the temperature of the evaporator rises, and high power is required to cool it down, which will open the throttle valve, increase the refrigerant input, and increase the displacement of the compressor. Air channel constant pressure. When the evaporator temperature drops to or near the set temperature, the throttle valve closes and reduces the refrigerant input, which also reduces the compressor displacement. The practical meaning is to measure the power output power consumption.
  • the one-time tension-molding evaporator has simple manufacturing process and mature metal hot-drawing technology.
  • the molded evaporator has high mechanical strength and fast heat transfer speed, especially the fins formed in the pipeline can be used for internal evaporation surface.
  • the area is extended to an ideal value.
  • the evaporator pipe can be easily expanded, and can be rectangular, square or circular, and is designed mainly for the design power of the refrigeration equipment and the efficiency of heat transfer.
  • the electronically controlled throttle valve can open the throttle to the positive and negative limit, and can open up to the maximum power of the design.
  • the intermediate value is not limited, and the minimum can be completely closed.
  • the return air pressure is converted by the compressor to achieve a stable air pressure, so that the evaporation rate of the refrigerant in the evaporator reaches an optimal state.
  • the application of the new evaporator makes it possible to rapidly evaporate the refrigerant.
  • the refrigerant is evaporated by means of concentrated flow, and the evaporation speed and evaporation space are very limited.
  • the refrigerant is ejected through the small holes of the homogenizing nozzle, the liquid refrigerant is no longer concentrated, and the evaporating surface after the ejecting is also very large, and the fins of the evaporating tube formed by the thick wall have excellent thermal conductivity.
  • the particles of the refrigerant after the discharge can quickly obtain heat and evaporate quickly, and are not easy to concentrate.
  • the refrigerant oil that does not evaporate will quickly return to the bottom return air passage under the action of gravity and air pressure, and will not be formed into oil. Blocking.
  • the combination of the new evaporator and the hooking nozzle makes it possible to convert the variable power cooling output.
  • the input size of the evaporator and the refrigerant is fixed, and it cannot be too large or too small. Excessively, the refrigerant overflows, and if it is too small, uneven cooling will occur.
  • the new type of evaporator and the homogenizing nozzle are used together. Because of the uniform liquid nozzle, the tube is constant and low pressure, and the refrigerant will explode from each small hole regardless of the number of refrigerants.
  • the cooling range is not a point, but a line, and the refrigerant is sprayed in the liquid inlet channel of the evaporator, and quickly obtains heat on the evaporation tube fin and evaporates at a low pressure.
  • This structure is most conducive to variable input refrigerants, meeting the needs of variable input.
  • Figure 1 is a schematic view showing the structure of an embodiment of the present invention.
  • Figure 2 is a schematic illustration of one of the evaporator configurations of Figure 1.
  • Figure 3 is a schematic view showing the rotation of the A-A section of Figure 2;
  • Figure 3a is a partially enlarged schematic view of the portion B of Figure 3.
  • Figure 4 is a schematic view of the second structure of the evaporator of Figure 1;
  • Figure 4a is a schematic cross-sectional view of the B-B of Figure 4.
  • Figure 5a is a schematic illustration of one of the states in which the two evaporators of Figure 2 or Figure 4 are combined;
  • Figure 5b is a schematic illustration of the second of the two evaporators of Figure 2 or Figure 4.
  • Figure 6 is an enlarged schematic view showing the structure of a homogenizing nozzle installed in an evaporator.
  • Fig. 7 is an enlarged schematic cross-sectional view showing the structure of the electronically controlled throttle valve.
  • Fig. 8 is an enlarged schematic view showing the structure of the air pressure sensor.
  • Figure 9 is a schematic view showing the structure of a dry filter bottle.
  • Fig. 10 is a view showing the overall configuration of the refrigeration system unit when it is used in an air conditioner.
  • Fig. 11 is a schematic view showing the overall structure of the refrigeration system unit when it is used in a refrigerator.
  • Figure 12 is a block diagram showing electrical control in the refrigeration system apparatus.
  • Figure 13 is a schematic view showing the operation of the refrigeration system apparatus.
  • Figure 14 is a schematic view showing the structure of an evaporator in the prior art; and Figure 14a is an enlarged schematic view of a portion C of Figure 14.
  • Embodiment 1 Referring first to Figure 1.
  • the constant pressure and power work refrigeration system device of the embodiment includes an inverter compressor 21, a heat dissipation fan 22, a condensing radiator 23, an evaporator 9, a cold air fan (not shown), an electronically controlled throttle valve 901, and an electrical controller. 300 (see FIG. 12); the inverter compressor 21 pressurizes the refrigerant, sends it to the condensing radiator 23 through the pipeline, liquefies, and then is throttled by the electronically controlled throttle valve 901 and sent to the evaporator 9, the refrigerant vaporizing gas. After returning, it returns to the compressor 21. among them,
  • the evaporator 9 (see FIGS. 2 and 3) includes at least one stretch-formed, flat rectangular cross-section metal conductive seat 903 and a plurality of vertical fins 901 disposed on the surface of the metal conductive seat 903 and parallel to each other;
  • the metal conductive seat 903 is provided with a plurality of mutually parallel pipes 907, and the inner wall of the pipe 907 is provided with circumferentially even fins 904; and, at both ends of the pipe 907, the plugs 906 and 909 are respectively blocked.
  • a blind hole of a flow passage perpendicular to the pipe is respectively formed on the upper and lower sides of the metal conductive seat 903, one of which is a refrigerant inlet passage 905, and the other is a refrigerant discharge passage 902; at the refrigerant inlet passage 905
  • the center is provided with a thinner uniform liquid nozzle 910 (see Fig. 6).
  • the pipe wall of the homogenizing nozzle 910 is provided with a plurality of small through holes 9101, and a pipe joint 911 is fixedly connected to the outer end thereof for convenient Pipe connection.
  • the above-mentioned evaporator 9 can also be designed to include two metal conductive seats 903, the fins 901 on the surface of the two metal conductive seats are integrally connected (see Fig. 5a), or designed as two metal conductive 903 seats back to back connection Integral, each metal conductive seat has its own heat sink 901 (see Figure 5b), which increases the efficiency of the evaporator.
  • the electronically controlled throttle valve 901 includes a valve body 90104, a valve cover 90109, a valve needle 90105 mounted to the core of the valve body, and a stepper motor.
  • the stepping motor includes a motor rotor 90107, a rotor magnet 9010701, a drive coil 90108, and an extraction cable 90101.
  • the drive coil 90108 is mounted in the valve cover 90109, and the motor rotor 90107 is threadedly coupled to the valve needle 90105.
  • the throttle port 901010 of the valve body 90104 is connected to the inlet pipe joint of the homogenizing nozzle 910 through a pipe, the other interface 90106 is connected to the input pipe of the refrigerant, and the valve needle 90105 is controlled by the stepping motor to advance and retreat or throttle. the size of.
  • An air pressure sensor 902 (see Fig. 1) is also disposed between the refrigerant discharge port of the evaporator 9 and the compressor 21.
  • the electrical controller 300 includes a CPU, and an input interface of the CPU is connected to the operation panel; an input and output interface thereof is respectively connected with the evaporator temperature sensor, the evaporator air outlet temperature sensor, and the room temperature sensor (ie, The total temperature sensor of the refrigeration equipment is connected with the return air pressure sensor of the evaporator; the other control input and output interface is respectively connected with the electronically controlled throttle valve of the electronically controlled throttle valve, and the cold air blower controller connected with the cooling fan motor, A compressor controller connected to the compressor and a cooling fan controller connected to the cooling fan are connected.
  • a refrigerant drying filter bottle 25 may be added to the pipeline between the electronically controlled throttle valve 901 and the liquid outlet of the condensing radiator 23, and the dry filter bottle 25 is installed.
  • a desiccant 2506 the upper end of which is provided with a viewing window 2502 with a transparent cover, the inlet 2503 is connected with the output port of the condensing radiator 23, and the outlet 2504 is connected with the electronically controlled throttle valve 901, which is also shown in FIG.
  • the evaporator 09 includes at least one stretch-formed, flat rectangular cross-section metal conductive seat 0903 and a plurality of vertical fins 0901 disposed on the surface of the metal conductive seat and parallel to each other; the metal conductive seat 0903 is provided There is at least one rectangular pipe 09031, and a plurality of mutually parallel evaporating fins 0904 are evenly distributed in the pipe 09031; a blind hole of a flow channel perpendicular to the evaporating fin is respectively formed on the upper and lower sides of the metal conducting seat 0903, one of which is The refrigerant inlet passage 0905 and the other is the refrigerant discharge passage 0902; a finer uniform liquid nozzle 0910 is installed in the center of the refrigerant inlet passage 0905, and the wall of the homogenizing nozzle 0910 is placed A plurality of
  • Fig. 10 is a view showing the overall configuration of the present refrigeration system apparatus when it is used in the air conditioner 100.
  • the electronically controlled throttle valve 901 in the figure is directly mounted on the inlet of the evaporator 9, and the air pressure sensor 902 is directly mounted on the discharge port of the evaporator 9.
  • the cold air blower 6 is disposed below the evaporator 9.
  • Fig. 11 is a view showing the overall configuration of the present refrigeration system apparatus when it is used in the refrigerator 200.
  • the evaporator 09 and the cold air fan 06 are disposed in the rear passage of the electric water tank 200.
  • the heat dissipation fan 022 and the condensation radiator 023 are disposed outside the back plate of the refrigerator 200, and the inverter compressor 021 is disposed behind the refrigerator 200. Below the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Description

用干制冷设备的恒压衡功制冷系统
技术领域
本发明涉及一种制冷系统装置, 尤其是一种压缩蒸发型的制冷系统装置。 背景技术
长久以来, 制冷技术经过许多年的发展, 经过几代人的总结, 最终压缩蒸发型的 制冷系统以其制冷效率高, 制冷功率大而在人们的使用中占了主导地位。 经过了几十年 的发展, 压缩机由活塞式的老式机组发展成为现在的蜗轮式, 螺杆式等高效机组, 动力 上也由以前的定速式电机发展成为现在的变频式变速电机, 压缩的新技术发展了, 但是 冷系统却依然还在原来的^ ft¾上停止不前。
首先, 制冷的节流装置还处在一个自动化非常低的位置, 目前人们常用到的通常为 节流毛细管或温感节流阀。 所说的节流毛细管其实就是比主流管小若干倍的细管, 制冷 剂通过毛细管节流后在蒸发器内蒸发。 毛细管的节流是恒定的、 不可调的, 常用在家用 的冰箱及小型的制冷机上。 所说的温感节流阀比起毛细管来说已经有了进步, 它是通过 感温包感应制冷剂回气管的温度, 感温包内的气体降温后压力减少, 通过皱纹管带动阀 内的针阀改变节流的大小。 这两种节流方式依然存在以下的问题:
1、 毛细管节流只能以恒定不变的方式, 由于其不可调整, 以至于压缩机的输出功 率不会因为制冷输出功率而改变, 只要压缩机启动, 那么输出的功率就会是固定值。
2、 温感节流阀只能感应制冷剂回气管的温度而调节节流的程度, 而其改变的范围 局限性太大, 使用者不可以随意调整, 而且不会因蒸发器的需求而随之改变。
3、 这两种节流方式都会产生过溢现象。 即液态制冷剂过多的进入到蒸发器, 没有 蒸发完全就到了回气管, 严重的还会流回压缩机, 造成压缩机油爆沸, 并被压缩机大量 吸入, 严重时压缩机会出现液击, 死机及严重的损毁。 其次, 就是制冷用蒸发器的结构过于陈旧。 迄今, 各种蒸发器(见图 14和图 14a ) 都是以盘管 c t 203和盘管外的散热片 c t 202的结构形式为主。 该蒸发器以结构简单, 成 本低而被人们作为常用蒸发器使用。 但这种蒸发器存在以下的缺陷:
1、 盘管由于其蒸发空间小, 传热性差, 至使其内部的制冷剂的蒸发速度受到严重 的影响, 当压缩机输出功率过多时, 由于其内部蒸发不及时, 液态制冷剂极多溢出。 其 次, 空调机中的制冷剂在空调运行时也带着压缩机油一起工作, 在蒸发器中, 制冷剂蒸 发,但是压缩机油却不会蒸发, 它会大量的聚在横管的下部, 弯道等部,形成油堵 c t 201
(见图 14a ), 影响制冷剂的流动, 同时, 油的热传导性也对制冷剂的蒸发传热造成一定 影响。
2、 盘管的外部传热条件差, 虽然有些制冷设备也会将盘管增加一些外部传热片一 类的东西, 但和内部热传导需求还是差得很远。
3、 盘管的机械强度差, 容易因外力而变形, 破损而使制冷剂流失, 以造成制冷失 效。
4、 对于直冷式的设备来说, ,尤其是冰箱设备, 直冷盘管极易接触冰箱内的食物等 物品, 盘管材料极易污染被冷冻或冷藏的食品, 使被冻物变质。 而被冷冻物品也极易污 染盘管, 使盘管腐蚀, 严重的会直接穿孔, 使制冷剂泄漏。
5、 由于现有技术的蒸发器对输入的制冷剂流量基本是固定的, 过多的输入会使制 冷剂过多而无法完全蒸发而从回气管流回, 过少又会出现制冷不均匀。
再者, 就是压缩机组的问题, 虽然, 新的压缩机组可以完全实现变频变速, 但是, 从现有技术上来说, 变频技术只体现在启动和关闭上, 由于蒸发器结构的限制, 在制冷 系统内部的功率需求却和它没有太大的关系, 其主要作用和定速压缩机一样, 温度达到 设定的温度时停止其运行, 温度高于设定温度时启动压缩机。 所不同的仅仅是, 变频技 术可以实现低速启动, 低速停止。 因而, 从本质上来说, 与先前的技术区别不大, 或者 从另一个角度来说, 变频压机的变频技术没有得到充分的应用。 发明内容
本发明的目的是提供一种结构先进的用于制冷设备中的制冷系统装置, 其蒸发器和 冷凝散热器的效率高, 采用能够用 CPU来控制其节流大小的电控节流阀, 使制冷设备可 以根据内部功率的需求来控制压缩机驱动电机的变频,从而实现制冷系统的恒压和衡功 率消耗。
为了实现上述的目的, 可以采用以下的技术方案: 本方案的用于制冷设备中的恒 压衡功制冷系统装置与现有技术一样, 包括变频压缩机、 散热风机、 冷凝散热器、 蒸发 器、 冷风风机、 节流器和电气控制器; 压缩机将制冷剂加压, 通过管道送往冷凝散热器 中液化, 再经过节流器节流后送往蒸发器, 制冷剂蒸发气化后返回压缩机; 其改进是: 所述的蒸发器包括至少一个拉压成型的、扁矩形截面的金属传导座和竖直的设置在 金属传导座的表面上且相互平行的多个散热片; 金属传导座中设有多个相互平行的管 道, 该管道的内壁上设置有沿圓周均布的翅片; 并且, 在上述管道的两端分别用堵头封 堵; 在上述金属传导座的上下两边分别加工出一个与管道垂直的流道盲孔, 其中一个为 制冷剂进液通道, 另一个为制冷剂排出通道; 在制冷剂进液通道的中心装有一个较细的 匀液喷管, 匀液喷管的管壁上设有多个小通孔;
所述的节流器是一个电控节流阀; 该阀包括一阀体, 一阀盖, 一装在阀体芯部的阀 针和一步进电机; 该阀体的节流口与匀液管的入口相接, 另一接口与制冷剂的输入管相 接, 阔针由步进电机控制其进退即节流的大小;
在蒸发器的制冷剂排出口和压缩机之间还装有一个气压传感器;
所述的电气控制器包括一个 CPU,该 CPU的一输入接口与操作面板连接;其一输入输 出接口分别与蒸发器温度感应器、 蒸发器出风口温度感应器、 室温感应器和蒸发器的回 气压力传感器连接; 另一输入输出接口分别与电控节流阀连接的电控节流阀控制器、 与 冷风机电机连接的冷风机控制器、与压缩机连接的压缩机控制器和与散热风机连接的散 热风机控制器连接。 进一步地, 在室外机的空间中还可以设置有一个制冷剂干燥过滤瓶, 该干燥过滤瓶 种装有干燥剂, 其上端设有一个带透明盖的观察窗, 其入口与压缩机的输出口相接, 出 口与蒸发器中的节流阀相接。
为了实现上述的目的, 可以采用以下的第二种技术方案: 本方案的用于制冷设备 中的恒压衡功制冷系统装置与上述技术方案的区别仅在于: 其蒸发器包括至少一个拉压成型的、扁矩形截面的金属传导座和竖直的设置在金属 传导座的表面上且相互平行的多个散热片; 金属传导座中设有至少一个矩形的管道, 管 道内均句分布多个相互平行的蒸发翅片; 在上述金属传导座的上下两边分别加工出一个 与蒸发翅片垂直的流道盲孔, 其中一个为制冷剂进液通道, 另一个为制冷剂排出通道; 在制冷剂进液通道的中心装有一个较细的勾液喷管, 匀液喷管的管壁上设有多个小通 孔; 錄形管道的两端用盖板密封。
本制冷系统装置使用时 (参看图 13 ), 先启动电源, 再分别设定总控制温度和蒸发 器出风口温度。 总温度感应器感应制冷设备当前的实际温度(即被制冷对象的, 如室温 或电冰箱内的温度), 当感应到实际温度超过设定的总控制温度时, 分别启动变频压缩 机和电控节流阀 (此时电控节流阀主要配合压缩机启动)。 压缩机启动后, 蒸发器回气 压力传感器感应回气管压力, 并修正变频压缩机的转速, 使回气压力保持在一个恒定的 压力范围内, 这个压力范围室以最适合制冷剂快速蒸发为准。 蒸发器温度感应器感应蒸 发器本体的温度(也可以感应其出风口的温度), 当本体温度过高时, 开大节流阀, 进 入蒸发器的制冷剂大量增加, 此时回气管的压力升高, 回气压力传感控制压缩机加大转 速, 增大气体的排量, 保持回气压力。 当本体温度合适时, 电控节流岡关小, 此时进入 蒸发器的制冷剂也减少,回气管的压力也随之减低,压力传感器控制压缩机的转速降低, 保持压力恒定。 当出风温度或者是蒸发器温度与设定的出风温度温度相等时, 电控节流 阀关闭, 回气压力传感器控制将变频压缩机转速降到最低, 或者停止。 当温度再次升高 时, 循环以上的程序, 即当到达设定的总控制温度, 停止制冷; 超过设定的总控制温度 温度(这时的总控温度是指对被制冷对象设定的), 再启动制冷。
这里所说的恒压就是让蒸发器回气管内的压力保持在一个恒定的压力范围, 这个压 力范围是以制冷剂在流出蒸发器前就完全蒸发为准。 所说的衡功是指蒸发器温度升高, 需要大功率才能使其降温下来, 就会使节流阀开大, 增大制冷剂输入, 同时也会增大压 缩机的排气量, 使回气通道恒压。 当蒸发器温度降低至或接近设定温度时, 节流阀就会 关小并减少制冷剂的输入量, 同时也会减小压缩机的排气量。 实际意义就是衡量功率输 出功耗。
从以上分析可以看出, 本发明的有益效果是:
1、 一次性拉压成型的蒸发器制作工艺简单, 金属热拉压技术成熟, 成型后的蒸发 器机械强度高, 传热速度快, 尤其是其管道内形成的翅片, 可以将内部蒸发面的面积扩 展到一个理想的值内。 并且其蒸发器管道扩展容易, 可矩形、 方形, 也可以是圓形, 完 全以制冷设备的设计功率、 传热的效率为主来进行设计。
2、 电控节流阀可以将节流开度达正负极限的开关度, 大可以开到最大至设计最大 功率, 中间变动数值不限制, 最小可以将其完全关闭。 用此结构的电控制节流阀装置, 使用者在使用的过程中可以完全设置蒸发器的温度, 而对制冷剂的使用量也可以精确控 制, 从而蒸发器的温度值可以非常的精确。
3、 在回气管路中加入气压传感器后, 回气的压力通过压缩机变频来实现一个稳定 的气压 , 从而使蒸发器内的制冷剂的蒸发速度达到一个最佳的状态。
4、 上述两种装置和电气控制器的结合, 使功耗使用更加合理化, 即: 节流开大时, 蒸发器的回气管内气压自动升高, 压缩机的转速也随之升高, 节流减小时, 回气管内的 气压自动降低, 压缩机的转速也随之降低, 从而实现了电控节流阔间接的控制了压缩机 的转速和消耗的功率。
5、 新型蒸发器的应用, 使制冷剂快速蒸发变为可能, 传统的盘管系统中, 制冷剂 是采用集中流动的方式进行蒸发, 蒸发的速度和蒸发的空间非常有限。 而在新的蒸发器 中, 制冷剂通过匀液喷管的小孔喷出, 液态的制冷剂已经不再集中, 喷出后的蒸发面也 非常大, 而厚壁形成的蒸发管的翅片具有优良的导热性, 喷出后的制冷剂微粒可以快速 得到热量而快速蒸发, 不容易集中, 而不会蒸发的制冷油会在重力和气压的作用下快速 回到底部回气通道内被吸回, 不至于形成油堵。
6、 新型蒸发器和勾液喷管的配合使用, 将变功制冷输出变为可能。 在传统的蒸发 器技术中, 蒸发器和制冷剂的输入大小是固定的, 不能大也不能小, 过大会使制冷剂溢 出, 过小会出现制冷不均匀。 而新型蒸发器和匀液喷管的配合使用, 因为有匀液喷管, 管外又是恒低压, 制冷剂不管多少也都会出现快速膨涨而从每个小孔喷出的现象, 它的 制冷范围就不是一个点, 而是一条线, 并且制冷剂均勾喷散在蒸发器的进液通道内, 并 在低压下快速在蒸发管翅片上获得热量而蒸发。 这种结构最利于多变的输入制冷剂, 满 足变功输入的需要。
为了使本发明便于理解和更加清晰, 下面通过附图和实施例对其作进一步说明。 附图说明
图 1是本发明的实施例的结构示意图。
图 2是图 1中的蒸发器结构之一的示意图。
图 3是图 2的 A- A剖面旋转示意图; 图 3a是图 3的 B部局部放大示意图。
图 4是图 1中的蒸发器结构之二的示意图; 图 4a是图 4的 B- B剖面示意图。
图 5a是图 2或图 4中的两个蒸发器器组合在一起的状态之一的示意图; 图 5b是图 2或图 4中的两个蒸发器器组合在一起的状态之二的示意图。
图 6是装在蒸发器中的匀液喷管的结构放大示意图。
图 7是电控节流阀的结构剖面放大示意图。
图 8是气压传感器之结构放大示意图。
图 9是干燥过滤瓶的结构示意图。 图 10是本制冷系统装置使用在空调机中时的总体结构示意图。
图 11本制冷系统装置使用在电冰箱中时的总体结构示意图。
图 12是本制冷系统装置中的电气控制方框图。
图 13是本制冷系统装置的工作流程示意图。
图 14是现有技术中的蒸发器的结构示意图; 图 14a是图 14的 C部放大示意图。
具体实施方式
实施例 1 , 先参看图 1。 本实施例的恒压衡功制冷系统装置包括变频压缩机 21、 散 热风机 22、 冷凝散热器 23、 蒸发器 9、 冷风风机(图中未示出)、 电控节流阀 901和电 气控制器 300 (见图 12 ); 变频压缩机 21将制冷剂加压后, 通过管道送往冷凝散热器 23 中液化,再经过电控节流阀 901节流后送往蒸发器 9,制冷剂蒸发气化后返回压缩机 21。 其中,
蒸发器 9 (见图 2和图 3 )包括至少一个拉压成型的、 扁矩形截面的金属传导座 903 和竖直的设置在金属传导座 903的表面上且相互平行的多个散热片 901 ;金属传导座 903 中设有多个相互平行的管道 907 , 该管道 907的内壁上设置有沿圆周均布的翅片 904 ; 并且, 在上述管道 907的两端分别用堵头 906和 909封堵; 在上述金属传导座 903的上 下两边分别加工出一个与管道垂直的流道盲孔, 其中一个为制冷剂进液通道 905, 另一 个为制冷剂排出通道 902; 在制冷剂进液通道 905的中心装有一个较细的匀液喷管 910 (见图 6 ), 匀液喷管 910的管壁上设有多个小通孔 9101 , 其外端固定连接有一个管接 头 911 , 以方便与管路连接。
上述的蒸发器 9也可以设计为包括两个金属传导座 903, 该两个金属传导座表面上 的散热片 901连接成一体(见图 5a ), 或者设计为两个金属传导 903座背靠背的连接成 一体, 每个金属传导座分别带有自己的散热片 901 (见图 5b ),这样可以增加蒸发器的 效率。 电控节流阀 901 (见图 7 ) 包括一阀体 90104 , —阀盖 90109 , —装在阀体芯部的阀 针 90105和一步进电机。 步进电机包括电机转子 90107、 转子磁铁 9010701、 驱动线圈 90108、 和引出电缆 90101。 其中驱动线圈 90108装在阀盖 90109 内, 电机转子 90107 的与阀针 90105用螺纹连接在一起。 该阀体 90104的节流口 901010通过管道与匀液喷 管 910的入口管接头相接, 另一接口 90106与制冷剂的输入管相接, 阀针 90105由步进 电机控制其进退即节流的大小。
在蒸发器 9的制冷剂排出口和压缩机 21之间还装有一个气压传感器 902 (见图 1 )。 电气控制器 300 (见图 12 )包括一个 CPU,该 CPU的一输入接口与操作面板连接; 其 一输入输出接口分别与蒸发器温度感应器、 蒸发器出风口温度感应器、 室温感应器(即 制冷设备总温度感应器)和蒸发器的回气压力传感器连接; 另一输入输出接口分别与电 控节流阀连接的电控节流阀控制器、 与冷风机电机连接的冷风风机控制器、 与压缩机连 接的压缩机控制器和与散热风机连接的散热风机控制器连接。
另外, 在电控节流阀 901和冷凝散热器 23的出液口之间的管道中还可以增接一个 制冷剂干燥过滤瓶 25 (见图 1、 图 9 ), 该干燥过滤瓶 25中装有干燥剂 2506 , 其上端设 有一个带透明盖的观察窗 2502 ,其入口 2503与冷凝散热器 23的输出口相接,出口 2504 与电控节流阀 901相接, 图 8中还示出了瓶体 2501和设置在该瓶内的输气管 2505 , 该 输气管的上端与出口 2504相接。
实施例 2 , 再参看图 2、 图 3、 图 6、 图 4和图 4 a。 本实施例与上述实施例的区别 仅仅是其蒸发器的结构略有不同。 即: 其蒸发器 09 包括至少一个拉压成型的、 扁矩形 截面的金属传导座 0903和竖直的设置在金属传导座的表面上且相互平行的多个散热片 0901 ;金属传导座 0903中设有至少一个矩形的管道 09031 ,管道 09031内均匀分布多个 相互平行的蒸发翅片 0904; 在上述金属传导座 0903的上下两边分别加工出一个与蒸发 翅片垂直的流道盲孔,其中一个为制冷剂进液通道 0905 ,另一个为制冷剂排出通道 0902 ; 在制冷剂进液通道 0905的中心装有一个较细的匀液喷管 0910,匀液喷管 0910的管壁上 设有多个小通孔 9101。 矩形管道的两端用盖板 09032和 09033密封。 矩形的管道 09031 也可以设计为方形、 椭圆形或其它的形状。
图 10是本制冷系统装置使用在空调机 100中时的总体结构示意图。 图中的电控节 流阀 901直接装配在蒸发器 9的入口上, 气压传感器 902直接装配在蒸发器 9的排出口 上。 冷风风机 6设置在蒸发器 9的下方。
图 11是本制冷系统装置使用在电冰箱 200中时的总体结构示意图。 图中的蒸发器 09和冷风风机 06设置在电水箱 200内后部的通道中, 散热风机 022、 冷凝散热器 023 设置在电冰箱 200的背板外, 变频压缩机 021设置在电冰箱 200后部外的下方。
以上仅为本发明之较佳实施例, 但其并不限制本发明的实施范围, 即不偏离本发明 的权利要求所作之等同变化与修饰, 仍应属于本发明之保护范围。

Claims

权 利 要 求
1、 一种用于制冷设备中的恒压衡功制冷系统装置, 包括变频压缩机、 散热风机、 冷凝散热器、 蒸发器、 冷风风机、 节流器和电气控制器; 压缩机将制冷剂加压后, 通过 管道送往冷凝散热器中液化, 再经过节流器节流后送往蒸发器, 制冷剂蒸发气化后返回 压缩机; 其特征是: 所述的蒸发器包括至少一个拉压成型的、扁矩形截面的金属传导座和竖直的设置在 金属传导座的表面上且相互平行的多个散热片; 金属传导座中设有多个相互平行的管 道, 该管道的内壁上设置有沿圓周均布的翅片; 并且, 在上述管道的两端分别用堵头封 堵; 在上述金属传导座的上下两边分别加工出一个与管道垂直的流道盲孔, 其中一个为 制冷剂进液通道, 另一个为制冷剂排出通道; 在制冷剂进液通道的中心装有一个较细的 匀液喷管, 匀液喷管的管壁上设有多个小通孔;
所述的节流器是一个电控节流阀; 该阀包括一阀体,一阀盖, 一装在阀体芯部的阀 针和一步进电机; 该阀体的节流口与匀液喷管的入口相接, 另一接口与制冷剂的输入管 相接, 阀针由步进电机控制其进退即节流的大小;
在蒸发器的制冷剂排出口和压缩机之间还装有一个气压传感器;
所述的电气控制器包括一个 CPU,该 CPU的一输入接口与操作面板连接;其一输入输 出接口分别与蒸发器温度感应器、 蒸发器出风口温度感应器、 室温感应器和蒸发器的回 气压力传感器连接; 另一输入输出接口分别与电控节流阀连接的电控节流阀控制器、 与 冷风机电机连接的冷风机控制器、与压缩机连接的压缩机控制器和与散热风机连接的散 热风机控制器连接。
2、 根据权利要求 1所述的用于制冷设备中的恒压衡功制冷系统装置, 其特征是: 在电控节流阀和冷凝散热器的出液口之间的管道中还接有一个制冷剂干燥过滤瓶, 该干 燥过滤瓶中装有干燥剂, 其上端设有一个带透明盖的观察窗, 其入口与冷凝散热器的输 出口相接, 出口与电控节流阀相接。
3、 根据权利要求 1或 2所述的用于制冷设备中的恒压衡功制冷系统装置, 其特征 是所述的蒸发器包括两个金属传导座, 该两个金属传导座表面上的散热片连接成一体 , ' 或者该两个金属传导座背靠背的连接成一体, 每个金属传导座分别带有自己的散热片。
4、 一种用于制冷设备中的恒压衡功制冷系统装置, 包括变频压缩机、 散热风机、 冷凝散热器、 蒸发器、 冷风风机、 节流器和电气控制器; 压缩机通过管道将制冷剂加压 液化后送往冷凝散热器, 再经过节流器节流后送往蒸发器, 制冷剂蒸发气化后返回压缩 机; 其特征是: 所述的蒸发器包括至少一个拉压成型的、扁矩形截面的金属传导座和竖直的设置在 金属传导座的表面上且相互平行的多个散热片; 金属传导座中设有至少一个矩形的管 道, 管道内均勾分布多个相互平行的蒸发翅片; 在上述金属传导座的上下两边分别加工 出一个与蒸发翅片垂直的流道盲孔, 其中一个为制冷剂进液通道, 另一个为制冷剂排出 通道; 在制冷剂进液通道的中心装有一个较细的匀液喷管, 勾液喷管的管壁上设有多个 小通孔; 矩形管道的两端用盖板密封;
所述的节流器是一个电控节流阀; 该阀包括一阀体, 一阀盖, 一装在阀体芯部的阔 针和一步进电机; 该阀体的节流口与匀液喷管的入口相接, 另一接口与制冷剂的输入管 相接, 岡针由步进电机控制其进退即节流的大小;
在蒸发器的制冷剂排出口和压缩机之间还装有一个气压传感器;
所述的电气控制器包括一个 CPU,该 CPU的一输入接口与操作面板连接;其一输入输 出接口分别与蒸发器温度感应器、 蒸发器出风口温度感应器、 室温感应器和蒸发器的回 气压力传感器连接; 另一输入输出接口分别与电控节流阀连接的电控节流阀控制器、 与 冷风机电机连接的冷风机控制器、与压缩机连接的压缩机控制器和与散热风机连接的散 热风机控制器连接。
5、 根据权利要求 4所述的用于制冷设备中的恒压衡功制冷系统装置, 其特征是: 在电控节流阀和冷凝散热器的出液口之间的管道中还接有一个制冷剂千燥过滤瓶, 该干燥过滤瓶中装有干燥剂, 其上端设有一个带透明盖的观察窗, 其入口与冷凝散热器 的输出口相接, 出口与电控节流阀相接。
6、 根据权利要求 4或 5所述的用于制冷设备中的恒压衡功制冷系统装置, 其特征 是所述的蒸发器包括两个金属传导座, 该两个金属传导座表面上的散热片连接成一体, 或者该两个金属传导座背靠背的连接成一体, 每个金属传导座分别带有自己的散热片。
PCT/CN2010/000738 2009-09-16 2010-05-25 用于制冷设备的恒压衡功制冷系统 WO2011032346A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009202051197U CN201488380U (zh) 2009-09-16 2009-09-16 用于制冷设备中的恒压衡功制冷系统装置
CN200920205119.7 2009-09-16

Publications (1)

Publication Number Publication Date
WO2011032346A1 true WO2011032346A1 (zh) 2011-03-24

Family

ID=42427257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000738 WO2011032346A1 (zh) 2009-09-16 2010-05-25 用于制冷设备的恒压衡功制冷系统

Country Status (2)

Country Link
CN (1) CN201488380U (zh)
WO (1) WO2011032346A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430256A (zh) * 2010-09-29 2012-05-02 哈尔滨迅普科技发展有限公司 冷凝式油雾净化机
CN104596165A (zh) * 2014-12-31 2015-05-06 曙光信息产业(北京)有限公司 空调系统
CN107144039B (zh) * 2017-05-31 2019-07-05 国药集团贵州血液制品有限公司 一种水冷冷凝机及其去水方法
CN109764706B (zh) * 2019-03-12 2024-04-26 山东省科学院能源研究所 一种带有喷管的微通道换热器结构及工作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456854A (zh) * 2003-06-05 2003-11-19 上海交通大学 燃气热泵冷热水机组系统控制装置
US20060059946A1 (en) * 2002-12-10 2006-03-23 Showa Denko K.K. Finned tube for heat exchangers, heat exchanger, apparatus for fabricating heat exchanger finned tube and process for fabricating heat exchanger finned tube
CN1776323A (zh) * 2004-11-02 2006-05-24 东芝开利株式会社 冷冻机
CN2846913Y (zh) * 2005-12-08 2006-12-13 浙江中宝自控元件有限公司 一种电子膨胀阀
WO2008141744A1 (de) * 2007-05-22 2008-11-27 Behr Gmbh & Co. Kg Wärmeübertrager
WO2009011197A1 (ja) * 2007-07-18 2009-01-22 Mitsubishi Electric Corporation 冷凍サイクル装置およびその運転制御方法
CN101384868A (zh) * 2006-02-15 2009-03-11 Gac株式会社 热交换器
CN201363967Y (zh) * 2009-01-07 2009-12-16 倪军 用于制冷设备的热交换器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060059946A1 (en) * 2002-12-10 2006-03-23 Showa Denko K.K. Finned tube for heat exchangers, heat exchanger, apparatus for fabricating heat exchanger finned tube and process for fabricating heat exchanger finned tube
CN1456854A (zh) * 2003-06-05 2003-11-19 上海交通大学 燃气热泵冷热水机组系统控制装置
CN1776323A (zh) * 2004-11-02 2006-05-24 东芝开利株式会社 冷冻机
CN2846913Y (zh) * 2005-12-08 2006-12-13 浙江中宝自控元件有限公司 一种电子膨胀阀
CN101384868A (zh) * 2006-02-15 2009-03-11 Gac株式会社 热交换器
WO2008141744A1 (de) * 2007-05-22 2008-11-27 Behr Gmbh & Co. Kg Wärmeübertrager
WO2009011197A1 (ja) * 2007-07-18 2009-01-22 Mitsubishi Electric Corporation 冷凍サイクル装置およびその運転制御方法
CN201363967Y (zh) * 2009-01-07 2009-12-16 倪军 用于制冷设备的热交换器

Also Published As

Publication number Publication date
CN201488380U (zh) 2010-05-26

Similar Documents

Publication Publication Date Title
WO2021051758A1 (zh) 空调系统的控制方法及空调系统
CN100516674C (zh) 节能空调器
EP3249318A1 (en) Heat-pump drinking water system, control method thereof, and heat-pump drinking water device
WO2020147168A1 (zh) 移动空调及其制冷方法
EP4265979A1 (en) Heat-pump water heater, and control method therefor
CN109210640A (zh) 一种散热装置和使用该散热装置的空调器
WO2011032346A1 (zh) 用于制冷设备的恒压衡功制冷系统
CN208075365U (zh) 一种风冷式冰水机
CN201016498Y (zh) 节能空调器
US20120125036A1 (en) Refrigeration system
CN106403073A (zh) 一种冷却装置
CN107741102B (zh) 一种带热管散热器全年运行的空气源热泵装置
WO2019233497A1 (zh) 一种d型管环绕式蒸发器及上藏下冻直冷微霜冰箱
KR20100120323A (ko) 칠러 시스템
CN217952747U (zh) 用于半导体制冷片的换热系统
JP4486369B2 (ja) 空気調和機の室外ユニットおよびこれを備えた空気調和機
BRPI1104845B1 (pt) sistema de regulação de temperatura com fornecimento e regulação de refrigerante híbrido
CN210014485U (zh) 空调室外机和具有其的空调器
CN209588253U (zh) 一种降温装置
CN115523687A (zh) 变频空调器及其制冷系统
CN207797475U (zh) 设备冷却用节能风冷冷水一体机组
CN202885401U (zh) 一种冰箱用接水盘蒸发管
CN206338891U (zh) 空调
KR20110023392A (ko) 응축 압력 제어 시스템
JP7416991B1 (ja) 冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/07/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10816550

Country of ref document: EP

Kind code of ref document: A1