WO2021051758A1 - 空调系统的控制方法及空调系统 - Google Patents

空调系统的控制方法及空调系统 Download PDF

Info

Publication number
WO2021051758A1
WO2021051758A1 PCT/CN2020/078946 CN2020078946W WO2021051758A1 WO 2021051758 A1 WO2021051758 A1 WO 2021051758A1 CN 2020078946 W CN2020078946 W CN 2020078946W WO 2021051758 A1 WO2021051758 A1 WO 2021051758A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
temperature
conditioning system
air conditioning
evaporation temperature
Prior art date
Application number
PCT/CN2020/078946
Other languages
English (en)
French (fr)
Inventor
荣丹
刘江彬
宋强
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021051758A1 publication Critical patent/WO2021051758A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present invention relates to the technical field of air conditioning, in particular to a control method of an air conditioning system and an air conditioning system.
  • the air-conditioning refrigeration system is used to reduce the indoor temperature to meet people's normal demand for temperature.
  • An existing air-conditioning refrigeration system includes a complete machine evaporator, a condenser, a compressor, a terminal evaporator, and a fan;
  • the complete machine evaporator includes a refrigerant coil and a chilled water coil, one of the refrigerant coil and the chilled water coil
  • the two ends of the refrigerant coil are connected to the compressor and the condenser, and the compressor is connected to the condenser; the two ends of the chilled water coil are respectively connected to the water inlet and the water outlet of the end evaporator, and the end A fan is installed on the evaporator.
  • the refrigerant in the refrigerant coil evaporates and absorbs heat to reduce the temperature of the water in the chilled water coil.
  • the chilled water after the lowered temperature enters the end evaporator to evaporate and absorb heat, so that the temperature of the nearby air is reduced, and the low-temperature air is sent through the fan indoor.
  • the existing air-conditioning and refrigeration system the heat exchange process in the evaporator of the whole machine is not effectively controlled, resulting in low heat exchange efficiency between the refrigerant and the chilled water; in addition, the existing air-conditioning and refrigeration system also has the possibility of chilling water.
  • the problem of icing affects the cooling performance of the air conditioner and the user experience.
  • the present invention provides a control method of an air conditioning system and an air conditioning system.
  • the present invention provides a control method of an air conditioning system, the control method comprising: obtaining the actual evaporation temperature of the evaporator of the air conditioning system; comparing the actual evaporation temperature with a preset temperature; based on the comparison As a result, the evaporation temperature of the complete evaporator is adjusted.
  • the step of adjusting the evaporation temperature of the complete machine evaporator based on the result of the comparison includes: if the actual evaporation temperature is greater than the preset If the temperature is set, the energy of the compressor of the air conditioning system is increased, so that the evaporation temperature of the evaporator of the whole machine is reduced to the preset temperature; and/or, if the actual evaporation temperature is less than the preset temperature Temperature, the energy of the compressor of the air conditioning system is reduced, and the evaporation temperature of the evaporator of the whole machine is increased to the preset temperature.
  • the step of adjusting the evaporation temperature of the complete machine evaporator based on the result of the comparison includes: if the actual evaporation temperature is greater than the preset If the temperature is set, the opening degree of the throttle valve of the air conditioning system is reduced, so that the evaporation temperature of the evaporator of the whole machine is reduced to the preset temperature; and/or, if the actual evaporation temperature is less than the The preset temperature increases the opening degree of the throttle valve of the air conditioning system to increase the evaporation temperature of the evaporator of the complete machine to the preset temperature.
  • the preset temperature ranges from -7.5°C to -6°C; or, the preset temperature is -7°C.
  • control method further includes: obtaining the actual flow rate of chilled water in the air conditioning system; comparing the actual flow rate with a preset flow threshold; The result of comparing the actual flow rate with the preset flow threshold value controls the flow rate of the chilled water so that the flow rate of the chilled water is not less than the preset flow threshold value.
  • the step of controlling the flow of the chilled water based on the result of comparing the actual flow with the preset flow threshold includes: if the actual flow is If the flow rate is less than the preset flow threshold value, the flow rate of the chilled water in the chilled water coil is increased to not less than the preset flow threshold value.
  • the present invention also provides an air conditioning system, including a complete machine evaporator, a condenser, a compressor, and a terminal evaporator;
  • the complete machine evaporator includes a refrigerant coil and a chilled water coil, the refrigerant coil and the The chilled water coils exchange heat;
  • the two ends of the refrigerant coils are respectively connected with a compressor and a condenser, and the compressor is connected to the condenser; both ends of the chilled water coils Respectively connected with the water inlet and the water outlet of the terminal evaporator
  • the air conditioning system further includes: a temperature sensor and a control system; the temperature sensor is arranged on the evaporator of the whole machine to monitor the The evaporation temperature of the evaporator of the whole machine; the control system is in communication connection with the temperature sensor and the compressor.
  • the air-conditioning system further includes a throttle valve arranged between the refrigerant coil and the condenser; and the throttle valve The flow valve is in communication connection with the control system.
  • the air-conditioning system further includes a water pump and a flow controller; the water inlet end of the water pump is connected with the water outlet end of the terminal evaporator; The water outlet is connected to the chilled water coil through the flow controller; the flow controller is in communication connection with the control system.
  • the air-conditioning system further includes a flow detection device; the flow detection device is arranged between the water inlet end of the terminal evaporator and the chilled water coil. And/or, further comprising a first valve, the first valve is provided between the refrigerant coil and the compressor.
  • the present invention provides a control method of an air-conditioning system and an air-conditioning system.
  • the evaporation temperature of the evaporator of the whole machine is compared based on the result of the comparison. Adjust so that the evaporation temperature of the evaporator of the whole machine is maintained within a certain preset temperature range to ensure that the evaporation efficiency of the evaporator of the whole machine is at a higher level, and to avoid freezing water due to the low evaporation temperature. problem. Therefore, the present invention ensures the evaporation efficiency of the complete evaporator by controlling the evaporation temperature of the complete evaporator, and can prevent freezing water in the air conditioning system, thereby improving the user experience.
  • the present invention also compares the acquired actual flow of chilled water in the air conditioning system with a preset flow threshold, and controls the flow of chilled water based on the result of the comparison, so that the flow of chilled water is not less than the preset Flow threshold, thereby avoiding the problem that the flow of chilled water is too low and the chilled water is easy to freeze.
  • FIG. 1 is a schematic flow chart of the control method of the air conditioning system of this embodiment
  • Figure 2 is a schematic structural diagram of the air conditioning system of this embodiment
  • FIG. 3 is a schematic diagram of the relationship between the outlet temperature of the chilled water and the evaporation temperature of the embodiment
  • FIG. 4 is a schematic diagram of the relationship between the increase ratio of the pressure difference between the inlet and outlet of the chilled water and the evaporation temperature in this embodiment.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense.
  • they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the inventor of the present application separately analyzed the temperature of the chilled water coil under different chilled water flow conditions.
  • the relationship with the change of evaporating temperature and the relationship between the growth rate of the pressure difference between the inlet and outlet of the chilled water coil and the evaporating temperature under different chilled water flow conditions have been experimentally studied.
  • Table 1 is the data table of the relationship between the frozen water parameters under the condition of 0.4m 3 /h and the evaporation temperature
  • Table 2 is the freezing under the condition of 0.6m 3 /h
  • Table 3 shows the data table of the relationship between the freezing water parameters and the evaporation temperature under the condition of water flow at 0.8m 3 /h
  • Table 4 shows the water flow
  • Table 1 The relationship between the frozen water parameters and the evaporation temperature under the condition of a water flow of 0.4m 3 /h
  • Table 2 The relationship between the frozen water parameters and the evaporation temperature under the condition of a water flow of 0.6m 3 /h
  • Table 3 The relationship between the frozen water parameters and the evaporation temperature under the condition of a water flow of 0.8m 3 /h
  • Table 4 The relationship between the frozen water parameters and the evaporation temperature under the condition of a water flow of 1m 3 /h
  • the outlet temperature of the chilled water coil decreases first and then increases; when the evaporation temperature is greater than -7°C, the outlet temperature of the chilled water coil decreases as the evaporation temperature decreases. It shows that the heat absorption effect of the evaporator of the whole machine is also rising; when the evaporation temperature is less than -7°C, the water outlet temperature of the chilled water coil increases with the decrease of the evaporation temperature, indicating that the heat absorption effect of the evaporator of the whole machine is also Decrease; when the evaporating temperature is -7°C, the outlet water temperature of the chilled water coil is the smallest, indicating that the heat absorption efficiency of the whole evaporator is the highest under this temperature condition.
  • the increasing ratio of the pressure difference between the inlet and outlet of the chilled water coil gradually increases.
  • the increase ratio of the pressure difference can reflect the degree of icing of the chilled water coil to a certain extent.
  • the larger the increase ratio of the pressure difference indicates the freezing The greater the degree of freezing of the water.
  • the pressure difference increase ratio reached 1.3 as the reference value for icing.
  • the evaporation temperature at which the pressure difference increase ratio reaches 1.3 is -5°C; when the water flow rate is 0.6m 3 /h, the evaporation temperature at which the pressure difference increase ratio reaches 1.3 is -7°C; Under the condition of a water flow of 0.8m 3 /h, the evaporation temperature at which the pressure difference increase ratio reaches 1.3 is -7.5°C. That is, the larger the water flow rate, the lower the evaporation temperature at which the pressure difference increase ratio reaches 1.3, and the less likely it is to freeze.
  • the flow rate of chilled water should be controlled above 0.8m 3 /h, so that on the basis of ensuring the evaporation efficiency of the evaporator, Can prevent freezing water from freezing more effectively.
  • the water flow rate of 0.8m 3 /h is the reference value of the water flow rate of the air conditioner in this experiment. For air conditioners of different specifications, those skilled in the art can focus on specific The situation is adjusted.
  • the air conditioning system includes a complete evaporator 1, a condenser 2, a compressor 3, and a terminal evaporator. 4;
  • the whole machine evaporator 1 includes a refrigerant coil (not shown in the figure) and a chilled water coil (not shown in the figure), the refrigerant coil and the chilled water coil are exchanged for heat; two of the refrigerant coil
  • the compressor 3 and the condenser 2 are respectively connected to the ends, and the compressor 3 is connected to the condenser 2; the two ends of the chilled water coil are connected to the water inlet and the water outlet of the terminal evaporator 4, respectively.
  • the control method of the air conditioning system includes:
  • the evaporation temperature in this embodiment refers to the boiling point of the refrigerant under a certain working pressure.
  • the evaporating temperature of the refrigerant has a wide range, and the evaporating temperature of the refrigerant will increase as the pressure increases.
  • the pressure of the refrigerant at the outlet of the evaporator 1 of the complete machine can be directly measured, and the pressure can be approximated to the evaporation pressure, and then the evaporation temperature can be calculated; or, the temperature of the refrigerant vapor at the outlet of the evaporator 1 of the complete machine can be directly measured.
  • the preset temperature threshold is a temperature value that can fully utilize the evaporation capacity of the evaporator.
  • the purpose of adjusting the evaporation temperature of the evaporator 1 of the whole machine is to make the evaporation temperature as far as possible to the preset temperature threshold to avoid the difference between the evaporation temperature and the preset temperature threshold. If it is too large, the evaporation efficiency of the complete evaporator 1 is low. In addition, it can also avoid the problem of easy freezing of frozen water due to too low evaporation temperature.
  • the control method of the air-conditioning system compares the obtained actual evaporation temperature of the whole machine evaporator 1 of the air-conditioning system with a preset temperature, and compares the evaporation temperature of the whole machine evaporator 1 based on the result of the comparison. Adjust so that the evaporation temperature of the evaporator 1 of the whole machine is maintained within a certain preset temperature range to ensure that the evaporation efficiency of the evaporator 1 of the whole machine is at a higher level, and to avoid freezing water due to the low evaporation temperature.
  • the problem of ice Therefore, the present embodiment ensures the evaporation efficiency of the complete evaporator by controlling the evaporation temperature of the complete evaporator, and can prevent freezing water in the air conditioning system from freezing, thereby improving the user experience.
  • the step of adjusting the evaporation temperature of the complete evaporator 1 based on the result of the comparison includes: if the actual evaporation temperature is greater than the preset temperature, then Increase the energy of the compressor 3 of the air-conditioning system to reduce the evaporation temperature of the evaporator 1 of the whole machine to the preset temperature; and/or, if the actual evaporation temperature is less than the preset temperature, reduce the compressor 3 of the air-conditioning system Energy to increase the evaporation temperature of the complete evaporator 1 to the preset temperature.
  • the evaporation temperature there is a corresponding relationship between the evaporation temperature and the evaporation pressure of the refrigerant.
  • the outlet of the refrigerant coil of the complete evaporator 1 is generally connected to a compressor 3, and the compressor 3 absorbs refrigerant vapor from the outlet of the refrigerant coil of the complete evaporator 1.
  • the energy of the compressor 3 is increased, and the suction capacity of the compressor 3 is correspondingly increased, so that the evaporation pressure of the refrigerant in the evaporator 1 of the whole machine is reduced, and the evaporation temperature will also decrease accordingly.
  • the suction capacity of the compressor 3 is proportional to the speed.
  • the energy adjustment of the compressor 3 can be achieved by changing the speed of the motor of the compressor 3, such as: changing the number of poles of the motor, changing the frequency of the power supply, and changing the speed. Slip rate adjustment and so on. The most ideal one is to use a frequency converter to change the input voltage of the motor to achieve stepless speed regulation.
  • step S300 the step of adjusting the evaporation temperature of the complete evaporator 1 based on the result of the comparison includes: if the actual evaporation temperature is greater than the preset temperature, then Reduce the opening of the throttle valve 7 of the air conditioning system to reduce the evaporation temperature of the evaporator 1 to the preset temperature; and/or, if the actual evaporation temperature is lower than the preset temperature, increase the throttle of the air conditioning system The opening of the valve 7 increases the evaporation temperature of the evaporator 1 of the complete machine to the preset temperature.
  • the evaporating temperature can also be changed by adjusting the throttle valve 7 at the inlet of the refrigerant coil of the complete evaporator 1.
  • the throttle valve 7 usually adopts electronic control valves such as electronic expansion valves and solenoid valves.
  • electronic control valves such as electronic expansion valves and solenoid valves.
  • the opening degree of the throttle valve 7 increases, the low pressure will rise, and the evaporation temperature will increase; when the opening degree of the throttle valve 7 decreases, the low pressure will decrease, and the evaporation temperature will drop.
  • the adjustment of the evaporation temperature of the complete evaporator 1 in the above-mentioned embodiment is achieved by adjusting the energy of the compressor 3 or the opening of the throttle valve 7.
  • the scope of protection of the present invention is not limited to the content disclosed in the above-mentioned embodiments.
  • those skilled in the art can Various adjustments and combinations of the setting modes are carried out so that the present invention can be applied to more specific application scenarios.
  • refrigerant coils when there are multiple sets of refrigerant coils connected in parallel in the evaporator, it can also be realized by opening or closing some of the refrigerant coils.
  • the flow of the refrigerant is constant, the more the number of openings of the refrigerant coil, the larger the volume of the refrigerant coil, and the lower the evaporation pressure and temperature of the refrigerant under the premise of the same refrigerant flow.
  • the preset temperature ranges from -7.5°C to -6°C; alternatively, the preset temperature is -7°C.
  • the evaporation temperature is controlled between -7.5°C and -6°C, where the best evaporation temperature value is -7°C, which can ensure the evaporation efficiency of the evaporator and prevent freezing water from freezing .
  • control method further includes: obtaining the actual flow of chilled water in the air conditioning system; comparing the actual flow with a preset flow threshold; based on the actual flow and the preset flow threshold The result of the comparison controls the flow of the chilled water so that the flow of the chilled water is not less than the preset flow threshold.
  • the main factors affecting the freezing of the chilled water include the evaporation temperature of the evaporator 1 of the whole machine and the flow rate of the chilled water.
  • the evaporation temperature of the evaporator 1 of the whole machine On the basis of ensuring the evaporation efficiency of the complete evaporator 1 by controlling the evaporation temperature of the refrigerant, in order to more effectively prevent freezing water from freezing. It is also possible to set a preset flow threshold so that the chilled water flow is always greater than or equal to the preset flow threshold to prevent the chilled water from freezing.
  • the flow of chilled water can be adjusted adaptively according to the evaporation temperature of the evaporator 1 of the complete machine.
  • the flow rate of the chilled water can be increased accordingly to ensure that the chilled water will not freeze.
  • the step of controlling the flow of chilled water based on the result of comparing the actual flow with a preset flow threshold includes: if the actual flow is less than the preset flow threshold, increasing The flow of chilled water in the chilled water coil is not less than the preset flow threshold.
  • a water pump 8 and a flow controller 9 may be provided at the chilled water inlet of the complete evaporator 1 to control the chilled water flow rate, so as to prevent the chilled water flow rate from being too small to cause freezing.
  • control method of the air conditioning system can be stored as a program in a computer readable storage medium.
  • the storage medium includes a number of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute some steps of the methods in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • this embodiment also provides an air conditioning system.
  • the air conditioning system is preferably a water chiller, which includes a complete evaporator 1, a condenser 2, a compressor 3, and a terminal evaporator 4;
  • the evaporator 1 of the whole machine includes a refrigerant coil (not shown in the figure) and a chilled water coil (not shown in the figure).
  • the refrigerant coil and the chilled water coil perform heat exchange; the two ends of the refrigerant coil are respectively The compressor 3 and the condenser 2 are connected, and the compressor 3 is connected with the condenser 2; the two ends of the chilled water coil are respectively connected with the water inlet and the water outlet of the end evaporator 4.
  • the air conditioning system also includes: temperature The sensor 6 and the control system (not shown in the figure); the temperature sensor 6 is set on the evaporator 1 of the whole machine to monitor the evaporation temperature of the evaporator 1 of the whole machine; the control system is connected to the temperature sensor 6 and the compressor 3 in communication.
  • the working process of the air conditioning system is that the compressor 3 compresses a low-pressure gaseous refrigerant into a high-temperature and high-pressure gaseous refrigerant, and then sends it to the condenser 2 in the outdoor unit to dissipate heat and become a normal temperature and high-pressure liquid refrigerant. , So hot air blows out from the outdoor unit.
  • the liquid refrigerant enters the evaporator 1 through the capillary tube or the throttle valve 7.
  • the refrigerant space suddenly increases, which reduces the pressure of the refrigerant.
  • the liquid refrigerant will vaporize and become a gaseous low-temperature refrigerant, thereby absorbing the chilled water.
  • the large amount of heat in the coil causes the temperature of the chilled water to drop.
  • the low-temperature chilled water terminal evaporator 4 absorbs heat and then flows into the chilled water coil of the complete evaporator 1 to realize the circulating cooling of the chilled water.
  • a fan 5 is installed on the terminal evaporator 4 to form an indoor unit and cool the indoor air.
  • the condenser 2 includes two coils, the condenser 2 can be air-cooled or water-cooled, and one coil in the condenser 2 can be connected to a cooling tower.
  • the temperature sensor 6 can be arranged at the outlet end of the refrigerant of the complete evaporator 1, and can be used as a reference value of the evaporation temperature or accurately calculated by detecting the temperature of the outlet end of the refrigerant.
  • control system may be a control system specifically used to execute the control method of the air conditioning system of this embodiment, or may be a functional module or functional unit of a general control system.
  • the temperature sensor 6 may also be arranged on the refrigerant coil to directly detect the temperature of the refrigerant coil as a reference value of the evaporation temperature.
  • a pressure sensor used to monitor the evaporation pressure of the complete evaporator 1 can also be provided on the complete evaporator 1, and the evaporation temperature can be calculated by using the evaporation pressure and the Antoine equation.
  • the control system controls the energy of the compressor 3 by comparing the temperature monitored by the temperature sensor 6 with the preset temperature, so that the evaporation temperature of the evaporator 1 of the whole machine is maintained at a certain level. Within the preset temperature range, it is ensured that the evaporation efficiency of the complete evaporator 1 is at a relatively high level. And through the control of the evaporation temperature, the problem of freezing water caused by too low evaporation temperature is avoided.
  • the air-conditioning system further includes a throttle valve 7, which is arranged between the refrigerant coil and the condenser 2; and the throttle The valve 7 is in communication connection with a control system (not shown in the figure).
  • control system controls the opening of the throttle valve 7 by comparing the temperature monitored by the temperature sensor 6 with the preset temperature, so that the evaporation temperature of the evaporator 1 of the whole machine is maintained at a certain preset temperature Within the range, it is ensured that the evaporation efficiency of the complete evaporator 1 is at a relatively high level. And through the control of the evaporation temperature, the problem of freezing water caused by too low evaporation temperature is avoided.
  • the air-conditioning system further includes a water pump 8 and a flow controller 9; the water inlet end of the water pump 8 is connected with the water outlet end of the terminal evaporator 4; The water outlet of the water pump 8 is connected to the chilled water coil through a flow controller 9; the flow controller 9 is in communication connection with the control system.
  • the flow rate of chilled water can be increased by increasing the water pressure of the chilled water.
  • the control system realizes the adjustment of the flow rate of the chilled water by controlling the flow controller 9, thereby avoiding freezing of the chilled water due to the low flow rate under the condition of the simultaneous evaporation temperature. problem.
  • the evaporation efficiency of the evaporator 1 and the cooling efficiency of the air conditioning system can be improved as a whole, and it is beneficial to Improve the utilization rate of the air-conditioning system and save energy.
  • the air-conditioning system further includes a terminal flow detection device 10; the terminal flow detection device 10 is arranged at the water inlet end of the terminal evaporator 4 and the chilled water Between the coils; and/or, further comprising a first valve 11, which is arranged between the refrigerant coil and the compressor 3.
  • each end evaporator 4 corresponds to one indoor unit.
  • the terminal flow detection device 10 can be located on the side of the indoor unit, and the user can monitor and actively control the flow of chilled water in the terminal evaporator 4 according to the chilled water terminal flow detection device 10 indoors, and then adjust the indoor cooling temperature .
  • a first valve 11 may also be provided between the evaporator 1 and the compressor 3 to adjust the flow rate of the refrigerant gas and control the cooling capacity of the compressor 3 at the same time.
  • a second valve 12 can also be provided between the throttle valve 7 and the condenser 2 to adjust the flow rate of the high-pressure refrigerant liquid to realize the control of the heat absorption of the evaporator 1 of the whole machine.

Abstract

本发明涉及空调技术领域,具体涉及一种空调系统的控制方法及空调系统。本发明旨在解决现有的空调制冷系统存在的冷媒与冷冻水的换热效率较低和冷冻水容易结冰的问题,为此目的,本发明提供了一种空调系统的控制方法及空调系统,通过将获取的空调系统的整机蒸发器的实际蒸发温度与预设温度进行比较,并基于比较的结果对整机蒸发器的蒸发温度进行调节,从而使整机蒸发器的蒸发温度维持一定预设温度范围内时,以保证整机蒸发器的蒸发效率处于较高的水平,且可以避免冷冻水由于蒸发温度过低而结冰的问题。所以,本发明通过对整机蒸发器的蒸发温度的控制保证了整机蒸发器的蒸发效率,且可以防止空调系统中冷冻水结冰,从而提高了用户的使用体验。

Description

空调系统的控制方法及空调系统 技术领域
本发明涉及空调技术领域,具体涉及一种空调系统的控制方法及空调系统。
背景技术
空调制冷系统用于降低室内的温度,以满足人们对温度的正常需求。
现有的一种空调制冷系统,包括整机蒸发器、冷凝器、压缩机、末端蒸发器和风机;整机蒸发器包括冷媒盘管和冷冻水盘管,冷媒盘管与冷冻水盘管之间进行热量交换;冷媒盘管的两端分别连接有压缩机和冷凝器,且压缩机与冷凝器连接;冷冻水盘管的两端分别与末端蒸发器的进水端和出水端连接,末端蒸发器上安装有风机。冷媒盘管中的冷媒蒸发吸热使冷冻水盘管中水的温度降低,温度降低后的冷冻水进入末端蒸发器中蒸发吸热,使附近空气的温度降低,并通过风机将低温空气送入室内。
但是,现有的空调制冷系统中由于没有对整机蒸发器中的换热过程进行有效控制,造成冷媒与冷冻水的换热效率较低;另外,现有的空调制冷系统还存在冷冻水容易结冰的问题,从而影响了空调的制冷性能以用户的使用体验。
相应地,本领域需要一种新的空调系统的控制方法及空调系统来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的空调制冷系统存在的冷媒与冷冻水的换热效率较低、冷冻水容易结冰,从而影响空调的制冷性能以用户的使用体验的问题,本发明提供了一种空调系统的控制方法及空调系统。
本发明提供的一种空调系统的控制方法,所述控制方法包括: 获取所述空调系统的整机蒸发器的实际蒸发温度;将所述实际蒸发温度与预设温度进行比较;基于所述比较的结果对所述整机蒸发器的蒸发温度进行调节。
作为本技术方案提供的上述控制方法的一种优选实施方式,所述基于所述比较的结果对所述整机蒸发器的蒸发温度进行调节的步骤包括:若所述实际蒸发温度大于所述预设温度,则增大所述空调系统的压缩机的能量,使所述整机蒸发器的蒸发温度减小至所述预设温度;并且/或者,若所述实际蒸发温度小于所述预设温度,则减小所述空调系统的压缩机的能量,使所述整机蒸发器的蒸发温度增大至所述预设温度。
作为本技术方案提供的上述控制方法的一种优选实施方式,所述基于所述比较的结果对所述整机蒸发器的蒸发温度进行调节的步骤包括:若所述实际蒸发温度大于所述预设温度,则减小所述空调系统的节流阀的开度,使所述整机蒸发器的蒸发温度减小至所述预设温度;并且/或者,若所述实际蒸发温度小于所述预设温度,则增大所述空调系统的节流阀的开度,使所述整机蒸发器的蒸发温度增大至所述预设温度。
作为本技术方案提供的上述控制方法的一种优选实施方式,所述预设温度的范围为-7.5℃至-6℃;或者,所述预设温度为-7℃。
作为本技术方案提供的上述控制方法的一种优选实施方式,所述控制方法还包括:获取所述空调系统中冷冻水的实际流量;将所述实际流量与预设流量阈值进行比较;基于所述实际流量与所述预设流量阈值比较的结果对所述冷冻水的流量进行控制,以使所述冷冻水的流量不小于所述预设流量阈值。
作为本技术方案提供的上述控制方法的一种优选实施方式,所述基于所述实际流量与所述预设流量阈值比较的结果对所述冷冻水的流量进行控制的步骤包括:若所述实际流量小于所述预设流量阈值,则增大所述冷冻水盘管中冷冻水的流量至不小于所述预设流量阈值。
此外,本发明还提供了一种空调系统,包括整机蒸发器、冷凝器、压缩机和末端蒸发器;所述整机蒸发器包括冷媒盘管和冷冻水盘管,所述冷媒盘管与所述冷冻水盘管之间进行热量交换;所述冷媒盘管的两端分别连接有压缩机和冷凝器,且所述压缩机与所述冷凝器连接;所述冷冻水盘管的两端分别与所述末端蒸发器的进水端和出水端连接, 所述空调系统还包括:还包括温度传感器和控制系统;所述温度传感器设置于所述整机蒸发器上,用来监测所述整机蒸发器的蒸发温度;所述控制系统与所述温度传感器和所述压缩机通信连接。
作为本技术方案提供的上述空调系统的一种优选实施方式,所述空调系统还包括节流阀,所述节流阀设置于所述冷媒盘管与所述冷凝器之间;且所述节流阀与所述控制系统通信连接。
作为本技术方案提供的上述空调系统的一种优选实施方式,所述空调系统还包括水泵和流量控制器;所述水泵的进水端与所述末端蒸发器的出水端连接;所述水泵的出水端通过所述流量控制器与所述冷冻水盘管连接;所述流量控制器与所述控制系统通信连接。
作为本技术方案提供的上述空调系统的一种优选实施方式,所述空调系统还包括流量检测装置;所述流量检测装置设置于所述末端蒸发器的进水端和所述冷冻水盘管之间;和/或,还包括第一阀门,所述第一阀门设置于所述冷媒盘管和所述压缩机之间。
本发明提供了一种空调系统的控制方法及空调系统,通过将获取的空调系统的整机蒸发器的实际蒸发温度与预设温度进行比较,并基于比较的结果对整机蒸发器的蒸发温度进行调节,从而使整机蒸发器的蒸发温度维持一定预设温度范围内时,以保证整机蒸发器的蒸发效率处于较高的水平,且可以避免冷冻水由于蒸发温度过低而结冰的问题。所以,本发明通过对整机蒸发器的蒸发温度的控制保证了整机蒸发器的蒸发效率,且可以防止空调系统中冷冻水结冰,从而提高了用户的使用体验。
进一步的,本发明还通过将获取的空调系统中冷冻水的实际流量与预设流量阈值进行比较,并基于该比较的结果对冷冻水的流量进行控制,以使冷冻水的流量不小于预设流量阈值,从而避免了冷冻水的流量过低而导致冷冻水容易结冰的问题。
附图说明
下面参照附图来描述本发明的空调系统的控制方法及空调系统。附图中:
图1为本实施例的空调系统的控制方法的流程示意图;
图2为本实施例的空调系统的结构示意图;
图3为本实施例的冷冻水的出水温度随蒸发温度的变化关系的示意图;
图4为本实施例的冷冻水的进出水压差增长比例随蒸发温度的变化关系的示意图。
附图标记列表
1-整机蒸发器;2-冷凝器;3-压缩机;4-末端蒸发器;5-风机;6-温度传感器;7-节流阀;8-水泵;9-流量控制器;10-末端流量检测装置;11-第一阀门;12-第二阀门。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,本实施例中的实验表明防止冷冻水结冰的水流量应控制在0.8m 3/h以上,但是由于不同的空调系统中冷冻水盘管的直径和长短可能存在差异,本领域技术人员可以根据实际需要对冷冻水的预设流量阈值进行调整。
需要说明的是,在本实施例的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。
为了探究现有的空调制冷系统存在的冷媒与冷冻水的换热效率较低、冷冻水容易结冰的原因,本申请的发明人分别对不同的冷冻水流量条件下冷冻水盘管的出水温度随蒸发温度的变化关系,以及不同 的冷冻水流量条件下冷冻水盘管的进出水压差增长比例随蒸发温度的变化关系进行了实验研究。
其中,如表1所示为水流量在0.4m 3/h条件下的冷冻水参数随蒸发温度的变化关系的数据表;如表2所示为水流量在0.6m 3/h条件下的冷冻水参数随蒸发温度的变化关系的数据表;如表3所示为水流量在0.8m 3/h条件下的冷冻水参数随蒸发温度的变化关系的数据表;如表4所示为水流量在1m 3/h条件下的冷冻水参数随蒸发温度的变化关系的数据表。
表1水流量为0.4m 3/h条件下的冷冻水参数随蒸发温度的变化关系
Figure PCTCN2020078946-appb-000001
表2水流量为0.6m 3/h条件下的冷冻水参数随蒸发温度的变化关系
Figure PCTCN2020078946-appb-000002
表3水流量为0.8m 3/h条件下的冷冻水参数随蒸发温度的变化关系
Figure PCTCN2020078946-appb-000003
表4水流量为1m 3/h条件下的冷冻水参数随蒸发温度的变化关系
Figure PCTCN2020078946-appb-000004
根据表1至表4中的数据,并结合图3和图4,可以得到如下的结论:
(1)随着蒸发温度的降低,冷冻水盘管的出水温度先减小后增大;当蒸发温度大于-7℃时,冷冻水盘管的出水温度随着蒸发温度的降低而减小,表明整机蒸发器的吸热效果也在上升;当蒸发温度小于-7℃时,冷冻水盘管的出水温度随着蒸发温度的降低而增大,表明整机蒸发器的吸热效果也在下降;当蒸发温度为-7℃时,冷冻水盘管的出水温度最小,说明该温度条件下整机蒸发器的吸热效率最高。
(2)随着蒸发温度的降低,冷冻水盘管的进出水压差增长比例逐渐上升,压差增长比例可以一定程度上反映冷冻水盘管的结冰程度,压差增长比例越大表明冷冻水的结冰程度越大。本实施例的实验中将压差增长比例达到1.3作为结冰的参考值。可知,水流量为0.4m 3/h的条件下,压差增长比例达到1.3的蒸发温度为-5℃;水流量为0.6m 3/h的条件下,压差增长比例达到1.3的蒸发温度为-7℃;水流量为0.8m 3/h的条件下,压差增长比例达到1.3的蒸发温度为-7.5℃。即,水流量越大,压差增长比例达到1.3的蒸发温度越低,也越不容易结冰。
(3)蒸发器的蒸发效率最高时的蒸发温度与压差增长比例达到1.3的蒸发温度存在一定重合,所以可以将蒸发器的蒸发温度控制在-7.5℃至-6℃之间,其中最佳蒸发温度值为-7℃,以保证蒸发器的蒸发效率并防止冷冻水结冰。
(4)在将蒸发器的蒸发温度控制在-7.5℃至-6℃之间时,冷冻水的流量最好控制在0.8m 3/h以上,这样在保证蒸发器的蒸发效率的基础上,能更有效的防止冷冻水结冰。但是,本领域的技术人员应当理解的是,水流量为0.8m 3/h是本实验中的空调机的水流量的参考值,对于不同规格的空调机,本领域的技术人员可以针对具体的情况作出调整。
在上述实验的基础上,本实施例提供了一种空调系统的控制方法,如图1和图2所示,该空调系统包括整机蒸发器1、冷凝器2、压缩机3和末端蒸发器4;整机蒸发器1包括冷媒盘管(图中未示出)和冷冻水盘管(图中未示出),冷媒盘管与冷冻水盘管之间进行热量交换;冷媒盘管的两端分别连接有压缩机3和冷凝器2,且压缩机3与冷凝器2连接;冷冻水盘管的两端分别与末端蒸发器4的进水端和出水端连接。该空调系统的控制方法包括:
S100、获取空调系统的整机蒸发器1的实际蒸发温度;
S200、将实际蒸发温度与预设温度进行比较;
S300、基于比较的结果对整机蒸发器1的蒸发温度进行调节。
示例性的,本实施例的蒸发温度指的是冷媒在一定工作压力下的沸点。冷媒的蒸发温度有一个很宽的范围,且冷媒的蒸发温度会随压力增大而升高。可以直接测量整机蒸发器1出口的冷媒压力,把这个 压力近似成蒸发压力,然后换算出蒸发温度;或者,可以直接测量整机蒸发器1出口的冷媒蒸汽的温度。
预设温度阈值为可以充分发挥蒸发器的蒸发能力的温度值,对整机蒸发器1的蒸发温度调节的目的是使蒸发温度尽量为预设温度阈值,避免蒸发温度与预设温度阈值的差距太大造成整机蒸发器1的蒸发效率低下。另外,还可以避免由于蒸发温度太低导致冷冻水容易结冰的问题。
本实施例提供的一种空调系统的控制方法,通过将获取的空调系统的整机蒸发器1的实际蒸发温度与预设温度进行比较,并基于比较的结果对整机蒸发器1的蒸发温度进行调节,从而使整机蒸发器1的蒸发温度维持一定预设温度范围内时,以保证整机蒸发器1的蒸发效率处于较高的水平,且可以避免冷冻水由于蒸发温度过低而结冰的问题。所以,本实施例通过对整机蒸发器的蒸发温度的控制保证了整机蒸发器的蒸发效率,且可以防止空调系统中冷冻水结冰,从而提高了用户的使用体验。
作为本实施例提供的上述控制方法的一种优选实施方式,在步骤S300中,基于比较的结果对整机蒸发器1的蒸发温度进行调节的步骤包括:若实际蒸发温度大于预设温度,则增大空调系统的压缩机3的能量,使整机蒸发器1的蒸发温度减小至预设温度;并且/或者,若实际蒸发温度小于预设温度,则减小空调系统的压缩机3的能量,使整机蒸发器1的蒸发温度增大至预设温度。
示例性的,冷媒的蒸发温度与蒸发压力之间是存在着对应关系的,蒸发压力(低压)越低,蒸发温度就越低。所以蒸发温度的调整可通过调整蒸发压力来实现。
整机蒸发器1的冷媒盘管的出口一般会连接有压缩机3,压缩机3吸收整机蒸发器1冷媒盘管的出口的冷媒蒸汽。当冷媒的流量一定时,增大压缩机3的能量,压缩机3的吸气能力就相应增加,使得整机蒸发器1中冷媒的蒸发压力减小,从而时蒸发温度也会随之降低。反之,当冷媒的流量一定时,减小压缩机3的能量,压缩机3的吸气能力就相应减小,使得整机蒸发器1中冷媒的蒸发压力增大,同时,蒸发温度也会随之升高。
压缩机3的吸气能力与转速成正比,可以通过改变压缩机3的电动机的转速来实现压缩机3的能量调节,如:改变电动机的极数调速、 改变供电电源的频率调速、改变转差率的调速等。其中最理想的为,采用变频器改变电动机的输入电压,实现无极调速。
作为本实施例提供的上述控制方法的另一种优选实施方式,步骤S300中,基于比较的结果对整机蒸发器1的蒸发温度进行调节的步骤包括:若实际蒸发温度大于预设温度,则减小空调系统的节流阀7的开度,使整机蒸发器1的蒸发温度减小至预设温度;并且/或者,若实际蒸发温度小于预设温度,则增大空调系统的节流阀7的开度,使整机蒸发器1的蒸发温度增大至预设温度。
示例性的,还可以通过调节整机蒸发器1的冷媒盘管入口的节流阀7来改变蒸发温度。其中,节流阀7通常采用电子膨胀阀、电磁阀等电控阀门。在空调的高压部分,因为冷媒处于很高的压力条件下,所以不会沸腾。但当高温高压的冷媒通过节流阀7,由于冷媒膨胀,压力突然降低,冷媒便开始沸腾吸热。节流阀7的开度增大,低压就会上升,蒸发温度会升高;节流阀7的开度减小,低压就会下降,蒸发温度会下降。
本领域技术人员可以理解的是,上述实施例中对整机蒸发器1的蒸发温度调节是以调节压缩机3的能量或者节流阀7的开度实现的。但本发明的保护范围并不限于上述实施例所公开的内容,在不偏离本发明对通过改变整机蒸发器1的蒸发压力来调整蒸发温度的原理的前提下,本领域技术人员可以对上述设置方式进行多种调整和组合,以便本发明能够适用于更多具体的应用场景。
例如,当需要减小蒸发温度时,通过增大压缩机3的能量来实现;但当需要增大蒸发温度时,通过增大节流阀7的开度来实现。
再如,当蒸发器中冷媒盘管有并联的多组时,也可以通过打开或者关闭其中部分冷媒盘管来实现。当冷媒的流量一定时,冷媒盘管打开的数量越多,冷媒盘管的容积越大,在冷媒流量不变的前提下,冷媒的蒸发压力和蒸发温度越低。
作为本实施例提供的上述控制方法的一种优选实施方式,预设温度的范围为-7.5℃至-6℃;或者,预设温度为-7℃。
示例性的,根据上述实验的结果,将蒸发温度控制在-7.5℃至-6℃之间,其中最佳蒸发温度值为-7℃,可以以保证蒸发器的蒸发效率并防止冷冻水结冰。
作为本实施例提供的上述控制方法的一种优选实施方式,控制方法还包括:获取空调系统中冷冻水的实际流量;将实际流量与预设流量阈值进行比较;基于实际流量与预设流量阈值比较的结果对冷冻水的流量进行控制,以使冷冻水的流量不小于预设流量阈值。
示例性的,由上述实验的结果可知,影响冷冻水结冰的主要因素包括整机蒸发器1的蒸发温度和冷冻水的流量。在通过控制冷媒的蒸发温度来保证整机蒸发器1的蒸发效率的基础上,为了能更有效的防止冷冻水结冰。还可以设置预设流量阈值,使冷冻水流量始终大于或等于该预设流量阈值,以防止冷冻水结冰。
同时,可以根据整机蒸发器1的蒸发温度适应性的调整冷冻水的流量。在整机蒸发器1的蒸发温度较低时,可以相应的增大冷冻水的流量,以保证冷冻水不会结冰。
作为本实施例提供的上述控制方法的一种优选实施方式,基于实际流量与预设流量阈值比较的结果对冷冻水的流量进行控制的步骤包括:若实际流量小于预设流量阈值,则增大冷冻水盘管中冷冻水的流量至不小于预设流量阈值。
示例性的,可以在整机蒸发器1的冷冻水进口处设置水泵8和流量控制器9来实现对冷冻水流量的控制,以防止冷冻水的流量太小导致结冰的问题。
需要说明的是,尽管上文详细描述了本发明的空调系统的控制方法的不同步骤,但是,在不偏离本发明的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本发明的基本构思,因此也落入本发明的保护范围之内。
上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。
本领域的技术人员应当理解的是,可以将本实施例提供的空调系统的控制方法作为程序存储在一个计算机可读取存储介质中。该存储介质中包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,如图2所示,本实施例还提供了一种空调系统,该空调系统优选的为冷水机组,冷水机组包括整机蒸发器1、冷凝器2、压缩机3和末端蒸发器4;整机蒸发器1包括冷媒盘管(图中未示出)和冷冻水盘管(图中未示出),冷媒盘管与冷冻水盘管之间进行热量交换;冷媒盘管的两端分别连接有压缩机3和冷凝器2,且压缩机3与冷凝器2连接;冷冻水盘管的两端分别与末端蒸发器4的进水端和出水端连接,空调系统还包括:还包括温度传感器6和控制系统(图中未示出);温度传感器6设置于整机蒸发器1上,用来监测整机蒸发器1的蒸发温度;控制系统与温度传感器6和压缩机3通信连接。
示例性的,本实施例提供的空调系统的工作过程为,压缩机3将低压的气态冷媒压缩为高温高压的气态冷媒,然后送到室外机中的冷凝器2散热后成为常温高压的液态冷媒,所以室外机吹出来的是热风。液态的冷媒经毛细管或者节流阀7,进入整机蒸发器1,冷媒的空间突然增大,使得冷媒的压力减小,液态的冷媒就会汽化,变成气态低温的冷媒,从而吸收冷冻水盘管中大量的热量,使冷冻水的温度下降,低温的冷冻水末端蒸发器4吸热后再流入整机蒸发器1的冷冻水盘管,以实现对冷冻水的循环制冷。一般在末端蒸发器4上还会安装有风机5以形成室内机,并对室内空气进行制冷。
其中,冷凝器2包括两个盘管,冷凝器2可以风冷也可以水冷,冷凝器2中的一个盘管可连接冷却塔。
温度传感器6可以设置在整机蒸发器1的冷媒出口端,通过检测冷媒出口端的温度来作为蒸发温度的参考值或者进行蒸发温度的精确计算。
其中,控制系统可以是专门用于执行本实施例的空调系统的控制方法的控制系统,也可以是通用控制系统的一个功能模块或功能单元。
本领域技术人员可以理解的是,上述实施例中蒸发温度的获 取方法是以在整机蒸发器1的冷媒出口端设置温度传感器6为例来进行说明的。但本发明的保护范围并不限于上述实施例所公开的内容,在不偏离本发明的获取整机蒸发温度的原理的前提下,本领域技术人员可以对上述设置方式进行多种调整和组合,以便本发明能够适用于更多具体的应用场景。
例如,温度传感器6还可以设置在冷媒盘管上,直接检测冷媒盘管的温度来作为蒸发温度的参考值。
例如,还可以通过在整机蒸发器1上设置用来监测整机蒸发器1的蒸发压力的压力传感器,通过蒸发压力并利用安托因(Antoine)方程来计算蒸发温度。
本实施例提供的空调系统中,控制系统通过将温度传感器6监测得到的温度与预设温度进行比较,对压缩机3的能量进行控制,以使得整机蒸发器1的蒸发温度维持在一定的预设温度范围内,从而保证整机蒸发器1的蒸发效率处于较高的水平。且通过对蒸发温度的控制,避免了因蒸发温度过低导致冷冻水结冰的问题。
作为本实施例提供的上述空调系统的一种优选实施方式,如图2所示,空调系统还包括节流阀7,节流阀7设置于冷媒盘管与冷凝器2之间;且节流阀7与控制系统(图中未示出)通信连接。
示例性的,控制系统通过将温度传感器6监测得到温度的与预设温度进行比较,对节流阀7的开度进行控制,以使得整机蒸发器1的蒸发温度维持在一定的预设温度范围内,从而保证整机蒸发器1的蒸发效率处于较高的水平。且通过对蒸发温度的控制,避免了因蒸发温度过低导致冷冻水结冰的问题。
作为本实施例提供的上述空调系统的一种优选实施方式,如图2所示,空调系统还包括水泵8和流量控制器9;水泵8的进水端与末端蒸发器4的出水端连接;水泵8的出水端通过流量控制器9与冷冻水盘管连接;流量控制器9与控制系统通信连接。
示例性的,水泵8将末端蒸发器4中的冷冻水吸出之后,压向整机蒸发器1,可以通过增加冷冻水的水压来提高冷冻水的流量。本实施例提供的空调系统中,控制系统通过对流量控制器9的控制来实现对冷冻水流量的调节,进而可以避免在同时刻的蒸发温度条件下冷冻水由于的 流量过低而结冰的问题。此外,通过对冷冻水流量的控制,使冷冻水的流量与整机蒸发器1的蒸发温度相适应,可以从整体上提高整机蒸发器1的蒸发效率和空调系统的制冷效率,并有利于提高空调系统的利用率和节约能源。
作为本实施例提供的上述空调系统的一种优选实施方式,如图2所示,空调系统还包括末端流量检测装置10;末端流量检测装置10设置于末端蒸发器4的进水端和冷冻水盘管之间;和/或,还包括第一阀门11,第一阀门11设置于冷媒盘管和压缩机3之间。
示例性的,本实施例的末端蒸发器4可以有多个,每个末端蒸发器4对应一个室内机。该末端流量检测装置10可以位于室内机侧,用户可以根据冷冻水的末端流量检测装置10在室内实现对末端蒸发器4中冷冻水流量的监测并主动进行控制,进而对室内的制冷温度进行调节。
如图2所示,本实施例中还可以在整机蒸发器1和压缩机3之间设置第一阀门11,以对冷媒气体的流量进行调节,同时控制压缩机3的制冷量。另外,还可以在节流阀7和冷凝器2之间设置第二阀门12,以对高压冷媒液体流量进行调节,实现对整机蒸发器1的吸热量的控制。通过对冷媒流量的多环节控制,可以保证本实施例的空调系统的制冷效率并实现对制冷量的调节。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调系统的控制方法,其特征在于,所述控制方法包括:
    获取所述空调系统的整机蒸发器的实际蒸发温度;
    将所述实际蒸发温度与预设温度进行比较;
    基于所述比较的结果对所述整机蒸发器的蒸发温度进行调节。
  2. 根据权利要求1所述的控制方法,其特征在于:所述基于所述比较的结果对所述整机蒸发器的蒸发温度进行调节的步骤包括:
    若所述实际蒸发温度大于所述预设温度,则增大所述空调系统的压缩机的能量,使所述整机蒸发器的蒸发温度减小至所述预设温度;并且/或者
    若所述实际蒸发温度小于所述预设温度,则减小所述空调系统的压缩机的能量,使所述整机蒸发器的蒸发温度增大至所述预设温度。
  3. 根据权利要求1或2所述的控制方法,其特征在于:所述基于所述比较的结果对所述整机蒸发器的蒸发温度进行调节的步骤包括:
    若所述实际蒸发温度大于所述预设温度,则减小所述空调系统的节流阀的开度,使所述整机蒸发器的蒸发温度减小至所述预设温度;并且/或者
    若所述实际蒸发温度小于所述预设温度,则增大所述空调系统的节流阀的开度,使所述整机蒸发器的蒸发温度增大至所述预设温度。
  4. 根据权利要求1所述的控制方法,其特征在于:
    所述预设温度的范围为-7.5℃至-6℃;或者
    所述预设温度为-7℃。
  5. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:
    获取所述空调系统中冷冻水的实际流量;
    将所述实际流量与预设流量阈值进行比较;
    基于所述实际流量与所述预设流量阈值比较的结果对所述冷冻水的流量进行控制,以使所述冷冻水的流量不小于所述预设流量阈值。
  6. 根据权利要求5所述的控制方法,其特征在于,所述基于所述实际流量与所述预设流量阈值比较的结果对所述冷冻水的流量进行控制的步 骤包括:
    若所述实际流量小于所述预设流量阈值,则增大所述冷冻水盘管中冷冻水的流量至不小于所述预设流量阈值。
  7. 一种空调系统,包括整机蒸发器、冷凝器、压缩机和末端蒸发器;所述整机蒸发器包括冷媒盘管和冷冻水盘管,所述冷媒盘管与所述冷冻水盘管之间进行热量交换;所述冷媒盘管的两端分别连接有压缩机和冷凝器,且所述压缩机与所述冷凝器连接;所述冷冻水盘管的两端分别与所述末端蒸发器的进水端和出水端连接,其特征在于,所述空调系统还包括:
    还包括温度传感器和控制系统;
    所述温度传感器设置于所述整机蒸发器上,用来监测所述整机蒸发器的蒸发温度;
    所述控制系统与所述温度传感器和所述压缩机通信连接。
  8. 根据权利要求7所述的空调系统,其特征在于:
    还包括节流阀,所述节流阀设置于所述冷媒盘管与所述冷凝器之间;且所述节流阀与所述控制系统通信连接。
  9. 根据权利要求7所述的空调系统,其特征在于:
    还包括水泵和流量控制器;
    所述水泵的进水端与所述末端蒸发器的出水端连接;所述水泵的出水端通过所述流量控制器与所述冷冻水盘管连接;
    所述流量控制器与所述控制系统通信连接。
  10. 根据权利要求7所述的空调系统,其特征在于:
    还包括流量检测装置;所述流量检测装置设置于所述末端蒸发器的进水端和所述冷冻水盘管之间;
    和/或,还包括第一阀门,所述第一阀门设置于所述冷媒盘管和所述压缩机之间。
PCT/CN2020/078946 2019-09-20 2020-03-12 空调系统的控制方法及空调系统 WO2021051758A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910893599.9 2019-09-20
CN201910893599.9A CN110617598A (zh) 2019-09-20 2019-09-20 空调系统的控制方法及空调系统

Publications (1)

Publication Number Publication Date
WO2021051758A1 true WO2021051758A1 (zh) 2021-03-25

Family

ID=68923887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078946 WO2021051758A1 (zh) 2019-09-20 2020-03-12 空调系统的控制方法及空调系统

Country Status (2)

Country Link
CN (1) CN110617598A (zh)
WO (1) WO2021051758A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617598A (zh) * 2019-09-20 2019-12-27 青岛海尔空调电子有限公司 空调系统的控制方法及空调系统
CN111442507B (zh) * 2020-04-07 2022-07-19 广东美的暖通设备有限公司 空调器及其控制方法和装置
CN111609589B (zh) * 2020-04-24 2021-07-06 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN111609586B (zh) * 2020-04-24 2021-07-30 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN111609590B (zh) * 2020-04-24 2021-06-29 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN111609592B (zh) * 2020-04-24 2021-07-13 珠海格力电器股份有限公司 双温空调系统、控制方法和空调器
CN111609593B (zh) * 2020-04-24 2021-06-25 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN111609584B (zh) * 2020-04-24 2021-07-30 珠海格力电器股份有限公司 双温空调系统、控制方法和空调器
CN111609591B (zh) * 2020-04-24 2021-07-30 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN112856714B (zh) * 2021-02-19 2022-07-19 青岛海尔空调器有限总公司 冷媒流量控制方法、装置、电子设备及空调器
CN114992906B (zh) * 2021-03-02 2024-05-07 广东美的暖通设备有限公司 热泵系统的控制方法、热泵系统和可读存储介质
CN113483451B (zh) * 2021-07-12 2022-06-14 珠海格力电器股份有限公司 空调运行的控制方法、模组、空调和计算机存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256767A (zh) * 2012-02-15 2013-08-21 珠海格力电器股份有限公司 控制空调的水侧换热器蒸发温度的方法及空调
CN103733002A (zh) * 2011-08-19 2014-04-16 三菱电机株式会社 空气调节装置
CN203880881U (zh) * 2014-06-09 2014-10-15 深圳市中和国泰节能科技有限公司 空调冷冻水温自适应调节系统
CN105627524A (zh) * 2016-03-14 2016-06-01 广东美的制冷设备有限公司 空调器防冻结控制方法及空调器
CN106288205A (zh) * 2016-08-19 2017-01-04 芜湖美智空调设备有限公司 空调器及其控制方法
CN110160229A (zh) * 2019-05-14 2019-08-23 青岛海尔空调器有限总公司 空调器的控制方法
CN110617598A (zh) * 2019-09-20 2019-12-27 青岛海尔空调电子有限公司 空调系统的控制方法及空调系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816137A (ja) * 1981-07-22 1983-01-29 Hitachi Ltd 空調用冷水冷却設備
CN1979063B (zh) * 2005-12-02 2010-05-12 深圳麦克维尔空调有限公司 一种空调防冻方法
CN204923603U (zh) * 2015-08-25 2015-12-30 北京振兴华龙制冷设备有限责任公司 一种带冷冻水流量调节的制冷系统
CN205481928U (zh) * 2015-12-30 2016-08-17 重庆美的通用制冷设备有限公司 水侧换热器及具有其的冷水机组、热泵机组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733002A (zh) * 2011-08-19 2014-04-16 三菱电机株式会社 空气调节装置
CN103256767A (zh) * 2012-02-15 2013-08-21 珠海格力电器股份有限公司 控制空调的水侧换热器蒸发温度的方法及空调
CN203880881U (zh) * 2014-06-09 2014-10-15 深圳市中和国泰节能科技有限公司 空调冷冻水温自适应调节系统
CN105627524A (zh) * 2016-03-14 2016-06-01 广东美的制冷设备有限公司 空调器防冻结控制方法及空调器
CN106288205A (zh) * 2016-08-19 2017-01-04 芜湖美智空调设备有限公司 空调器及其控制方法
CN110160229A (zh) * 2019-05-14 2019-08-23 青岛海尔空调器有限总公司 空调器的控制方法
CN110617598A (zh) * 2019-09-20 2019-12-27 青岛海尔空调电子有限公司 空调系统的控制方法及空调系统

Also Published As

Publication number Publication date
CN110617598A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2021051758A1 (zh) 空调系统的控制方法及空调系统
CN105371545B (zh) 空调器及其制冷系统的制冷剂循环量调节方法
US20220316780A1 (en) Systems and methods for controlling a refrigeration system
EP3228958B1 (en) Linkage control method and apparatus for indoor and outdoor units of precision air conditioner
WO2021223531A1 (zh) 空调器及其控制方法
CN107514731A (zh) 冷水机组的变频风机控制方法及空调器
CN107238180B (zh) 风冷冷水机组的风量控制方法及系统
WO2019192210A1 (zh) 恒温恒湿内机、恒温恒湿系统及其控制方法
WO2014080496A1 (ja) 空気調和機及びその運転制御方法
CN104006489B (zh) 空调系统及其空调控制装置和制冷方法
KR20140108576A (ko) 열원 시스템 및 그 제어 장치 및 그 제어 방법
CN112283993B (zh) 一种制冷控制方法、装置及制冷设备
CN109237844A (zh) 空调系统、空调系统的制冷控制方法和装置
CN107024013B (zh) 空调器及其控制方法
WO2021103053A1 (zh) 一种二氧化碳复叠式供暖系统及其控制方法
CN106895621B (zh) 空调及其控制方法
CN111964238B (zh) 空调设备的控制方法和装置、空调设备和可读存储介质
JP3668750B2 (ja) 空気調和装置
WO2023185369A1 (zh) 变频空调器及其控制方法和控制装置
KR20100120323A (ko) 칠러 시스템
CN112577172A (zh) 空调系统的制冷控制方法和装置、存储介质、空调系统
CN105783310A (zh) 冷暖型空调器及其控制方法
CN115264654A (zh) 一种空调器及其过负荷控制方法
WO2011032346A1 (zh) 用于制冷设备的恒压衡功制冷系统
CN110186225A (zh) 一种提高氟泵入口过冷度的系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866561

Country of ref document: EP

Kind code of ref document: A1