WO2019233497A1 - 一种d型管环绕式蒸发器及上藏下冻直冷微霜冰箱 - Google Patents

一种d型管环绕式蒸发器及上藏下冻直冷微霜冰箱 Download PDF

Info

Publication number
WO2019233497A1
WO2019233497A1 PCT/CN2019/096153 CN2019096153W WO2019233497A1 WO 2019233497 A1 WO2019233497 A1 WO 2019233497A1 CN 2019096153 W CN2019096153 W CN 2019096153W WO 2019233497 A1 WO2019233497 A1 WO 2019233497A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
freezing
evaporation
evaporation tube
refrigerator
Prior art date
Application number
PCT/CN2019/096153
Other languages
English (en)
French (fr)
Inventor
刘涌
王晓锋
王晓阳
盛锐
高飞
李万鹏
Original Assignee
长虹美菱股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长虹美菱股份有限公司 filed Critical 长虹美菱股份有限公司
Priority to JP2019548973A priority Critical patent/JP6869366B2/ja
Publication of WO2019233497A1 publication Critical patent/WO2019233497A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • the present application relates to the technical field of refrigeration equipment, and in particular, to a D-tube surround evaporator and a deep-frozen and directly-cooled micro-frost refrigerator.
  • Refrigerators as a type of refrigeration equipment, are of various types and are generally divided into: full-fridge refrigerators, full-freeze refrigerators, and top-frozen direct-cooling refrigerators.
  • the top-frozen-frozen direct-cooling refrigerator refers to the refrigerating compartment located on the upper part of the refrigerator.
  • the freezer is located in the refrigerator under the refrigerator.
  • the freezing chamber is provided with a freezing liner, and a freezing evaporator is installed in cooperation with the freezing liner.
  • the freezing evaporator is a main heat exchange device of a refrigeration system.
  • the low-temperature and low-pressure refrigerant liquid evaporates (boils) into steam in it, absorbs the heat of the material being cooled, reduces the temperature of the material, and achieves the purpose of freezing and refrigerating food.
  • the freezing evaporators are concentrated inside the freezing liner. On the one hand, it occupies part of the volume of the freezing compartment of the refrigeration appliance, so that the available freezing space is small. On the other hand, As a result, the temperature of the freezing chamber is uneven, and it is easy to form a thick frost in the freezing container of the refrigerating appliance, which is difficult to clean, affects the cooling efficiency, and has a poor user experience.
  • the present application provides a D-tube wrap-around evaporator and an upper and lower freezing and direct cooling micro-frost refrigerator, so as to solve the problem that the freezing evaporator in the prior art is centrally disposed on one side of a freezing inner liner, resulting in an available freezing space.
  • the technical problem is very small, the temperature of the freezer is uneven and frost is easy.
  • a top-frozen, direct-cooling and low-frost refrigerator which includes: a refrigerator casing, a refrigerating compartment 7 located at an upper part of the refrigerator, and a freezing compartment 8 located at a lower part of the refrigerator; the freezing compartment 8 is provided with a refrigerating appliance freezing liner 1 inside, the outer surface of the refrigerating appliance freezing liner 1 is spirally installed with an evaporation tube 2, the cross section of the evaporation tube 2 is D-shaped, and the evaporation tube 2 passes through an aluminum foil tape 6
  • the tube clamp 3 is fixed on the outer surface of the freezing container 1 of the refrigerating appliance.
  • the shape of the tube clamp 3 is a strip.
  • One surface of the tube clamp 3 is provided with the evaporation tube 2 along the spiral direction of the evaporation tube 2.
  • the grooves 31 having the same pitch are spirally arranged, and the arc surface of the arc tube wall of the evaporation tube 2 is the same as the arc of the groove 31;
  • a through-hole 32 interposed with the groove 31 is formed on one surface of the pipe clamp 3, and a T-shaped connecting member 4 is installed in the through-hole 32.
  • the refrigerator casing is composed of a bottom plate, a back plate 9 and a box shell 10; the back plate 9 is provided with a magnetic sensitive switch 11 for controlling a compensation heater, and the compensation heater It is arranged on the outer surface of the refrigerating liner.
  • the refrigerating liner is located in the refrigerating compartment 7.
  • a condenser is provided on the inside of the casing 10.
  • the magnetic switch 11 is located away from the condenser.
  • the arrangement density of the evaporation tube 2 is divided into three stages, wherein a part of the arrangement density is used near the refrigerator door, and a middle arrangement of the refrigerating appliance freezing tank 1 is used.
  • the refrigeration The inner part of the appliance freezing liner 1 adopts a three-stage arrangement density, the first-stage arrangement density is greater than the second-stage arrangement density, and the second-stage arrangement density is greater than the third-stage arrangement density.
  • the first-stage arrangement density is set to a spiral arrangement interval of the evaporation tube 2 to 25 mm
  • the second-stage arrangement density is set to a spiral arrangement interval of the evaporation tube 2 to 30 mm
  • the third-stage arrangement The cloth density is set to 35 mm for the spiral arrangement pitch of the evaporation tubes 2.
  • the evaporation tube 2 includes a curved tube wall and a planar tube wall.
  • the curved tube wall and the planar tube wall intersect to form a first intersection line and a second intersection line.
  • a first extension is extended outward from the intersection line as a starting line
  • a second extension is extended outward from the plane pipe wall with the second intersection as a start line.
  • first extension portion and the second extension portion are adhered to the outer surface of the refrigerating appliance freezer liner 1 through an aluminum foil tape 6.
  • the T-shaped connecting piece 4 includes a connecting rod 41 that is in clearance fit with the through-hole 32, one end of the connecting rod 41 is provided with a thread, and the other end of the connecting rod 41 is welded with a flat sheet-like aluminum sheet 42, A threaded hole 421 is formed on one surface of the flat sheet-like aluminum sheet 42.
  • the flat sheet-like aluminum sheet 42 is connected to the outer surface of the freezing container 1 of the refrigerating appliance by a bolt or a thermally conductive adhesive.
  • the thickness of the aluminum tube of the evaporation tube 2 is 0.5 to 1 mm, and the outer diameter is 5 to 10 mm.
  • a layer of aluminum foil glue 6 is attached on the evaporation tube 2 to spirally surround and adhere to the outer surface of the freezing container 1 of the refrigerating appliance.
  • a D-tube surround evaporator which includes an evaporation tube 2 spirally mounted on the outer surface of a refrigerating container 1 of a refrigerating appliance.
  • the cross section of the evaporation tube 2 is D-shaped.
  • the evaporation tube 2 is fixed to the outer surface of the freezing container 1 of the refrigerating appliance through an aluminum foil tape 6 and a tube fixture 3.
  • the shape of the tube fixture 3 is a strip.
  • One surface of the tube fixture 3 is along the evaporation tube 2.
  • Grooves 31 are provided in the spiral direction at the same distance as the spiral arrangement of the evaporation tube 2.
  • the arc surface of the evaporation tube 2 has the same arc as the arc of the groove 31;
  • a through-hole 32 interposed with the groove 31 is formed on one surface of the pipe clamp 3, and a T-shaped connecting member 4 is installed in the through-hole 32.
  • the T-shaped connecting piece 4 includes a connecting rod 41 that is in clearance fit with the through-hole 32, one end of the connecting rod 41 is provided with a thread, and the other end of the connecting rod 41 is welded with a flat sheet-like aluminum sheet 42, A threaded hole 421 is formed on one surface of the flat sheet-like aluminum sheet 42.
  • the flat sheet-like aluminum sheet 42 is connected to the outer surface of the freezing container 1 of the refrigerating appliance by a bolt or a thermally conductive adhesive.
  • the thickness of the aluminum tube of the evaporation tube 2 is 0.5 to 1 mm, and the outer diameter is 5 to 10 mm.
  • a layer of aluminum foil glue 6 is attached on the evaporation tube 2 to spirally surround and adhere to the outer surface of the freezing container 1 of the refrigerating appliance.
  • the arrangement density of the evaporation tube 2 is divided into three stages, wherein a part of the arrangement density is used near the refrigerator door, and a middle arrangement of the refrigerating appliance freezing tank 1 is used.
  • the refrigeration The inner part of the appliance freezing liner 1 adopts a three-stage arrangement density, the first-stage arrangement density is greater than the second-stage arrangement density, and the second-stage arrangement density is greater than the third-stage arrangement density.
  • the first-stage arrangement density is set to a spiral arrangement interval of the evaporation tube 2 to 25 mm
  • the second-stage arrangement density is set to a spiral arrangement interval of the evaporation tube 2 to 30 mm
  • the third-stage arrangement The cloth density is set to 35 mm for the spiral arrangement pitch of the evaporation tubes 2.
  • the evaporation tube 2 includes a curved tube wall and a planar tube wall.
  • the curved tube wall and the planar tube wall intersect to form a first intersection line and a second intersection line.
  • a first extension is extended outward from the intersection line as a starting line
  • a second extension is extended outward from the plane pipe wall with the second intersection as a start line.
  • first extension portion and the second extension portion are adhered to the outer surface of the refrigerating appliance freezer liner 1 through an aluminum foil tape 6.
  • the D-tube wrap-around evaporator provided by the present application and the upper and lower freezing and direct-cooling micro-frost refrigerators are spirally installed around the evaporator tube 2 on the outer surface of the freezing container 1 of the refrigerating appliance.
  • the available space of the freezer compartment is increased
  • the evaporation tube 2 is spirally wound around the outer surface of the freezing container 1 of the refrigerating appliance, so that the temperature of the freezing chamber is more uniform, so that it is not easy to form very thick frost, and there are only some slight frosts.
  • the evaporation tube 2 is a D-shaped tube, which greatly increases the contact area between the evaporation tube 2 and the refrigerating container 1 of the refrigerating appliance, thereby improving the heat exchange efficiency.
  • this application uses the tube clamp 3
  • the D-type evaporation tube 2 is fixed on the outer surface of the freezing container 1 of the refrigerating appliance.
  • the flat tube wall of the evaporation tube 2 can closely fit the outer surface of the freezing container 1 of the refrigerating appliance.
  • the arc surface of the evaporation tube 2 The pipe wall is limited by the engagement of the groove 31 of the pipe clamp 3, and no displacement occurs, thereby ensuring the uniformity of the temperature of the freezing chamber.
  • FIG. 1 is a schematic diagram of a state where a D-tube surround evaporator is installed on a freezing liner of a refrigeration appliance disclosed in an embodiment of the present application;
  • FIG. 2 is a schematic diagram of the installation of the evaporator tube, the tube clamp, the T-shaped connector and the refrigerating container of the refrigerating appliance from the perspective of B in FIG. 1;
  • FIG. 3 is a schematic structural diagram of an evaporation tube of a D-tube surround evaporator disclosed in an embodiment of the present application;
  • FIG. 4 is a cross-sectional view of an evaporation tube of a D-tube surround evaporator disclosed in an embodiment of the present application;
  • FIG. 5 is a right side view of FIG. 2;
  • Figure 6 is an isometric view of Figure 2;
  • FIG. 7 is a partially enlarged view of the position A in FIG. 1;
  • FIG. 8 is a schematic structural diagram of a pipe clamp
  • Figure 9 is a right side view of Figure 8.
  • FIG. 10 is a schematic structural diagram of a T-shaped connector
  • FIG. 11 is a schematic structural diagram of a nut
  • FIG. 12 is a partially enlarged view at a position B in FIG. 3; FIG.
  • FIG. 13 is a schematic structural diagram of an upper-hiding and lower-frozen direct-cooling micro-frost refrigerator disclosed in an embodiment of the present application;
  • FIG. 14 is a schematic structural diagram of a top-frozen, direct-cooled and slightly-frosted refrigerator housing disclosed in an embodiment of the present application.
  • the first embodiment provided by the present application discloses a D-tube surround evaporator, as shown in FIG. 1 and FIG. 2, which includes an evaporation tube 2 spirally mounted on the outer surface of a refrigerating inner shell 1 of the refrigerating appliance.
  • the cross section of the tube 2 is D-shaped, and the evaporation tube 2 is fixed to the outer surface of the freezing container 1 of the refrigerating appliance by an aluminum foil tape 6 and a tube clip 3, and the shape of the tube clip 3 is a strip.
  • One surface of the fixture 3 is provided along the spiral direction of the evaporation tube 2 with grooves 31 arranged at the same distance as the spiral arrangement of the evaporation tube 2.
  • the arc surface of the evaporation tube 2 has the same arc as the arc of the groove 31;
  • One surface of the tool 3 is provided with a through-hole 32 interposed with the groove 31, and a T-shaped connecting member 4 is installed in the through-hole 32.
  • the refrigerating appliance includes a freezer compartment.
  • a refrigerating appliance is provided with a refrigerating liner 1 in the refrigerating compartment, and a refrigerating appliance is provided with a refrigerating evaporator.
  • the traditional refrigerating evaporator is concentrated in the refrigerating liner 1. On the one hand, it is equivalent to occupying Part of the volume of the freezing compartment of the refrigeration appliance, on the other hand, causes the temperature of the freezing compartment to be uneven, and it is easy to form a thick frost in the freezing liner 1 of the refrigeration appliance, which is difficult to clean.
  • the evaporation tube 2 of the refrigerating evaporator is spirally installed on the outer surface of the freezing container 1 of the refrigerating appliance.
  • the available space of the freezing chamber is increased; on the other hand, the evaporation tube is arranged according to a preset arrangement density. 2 spirals surround the outer surface of the freezing container 1 of the refrigerating appliance, making the temperature of the freezing chamber more uniform, so that it is not easy to form very thick frost, and there is only some slight frost or even no frost.
  • the freezing inner container 1 described in this application refers to an inner wall portion surrounding a freezing chamber.
  • the two main factors that affect the working efficiency of the evaporation tube 2 are: first, the contact area between the evaporation tube 2 and the refrigerating appliance freezing liner 1; second, the evaporation tube 2 and the refrigerating appliance freezing liner 1 Whether the connection is firm.
  • the existing evaporation tubes use circular evaporation tubes.
  • the circular evaporation tube means that its radial cross-section is circular.
  • the contact surface between the circular evaporation tube and the freezing container 1 of the refrigeration appliance is a line.
  • this application proposes a D-tube surround evaporator, that is, the radial cross section of the evaporation tube 2 proposed by this application is D As shown in Fig. 3 and Fig. 4, it includes curved pipe wall and plane pipe wall. During the installation, the plane pipe wall is in contact with the freezing container 1 of the refrigerating appliance, and the contact surface is a plane, so the evaporation is greatly improved.
  • the contact area between the tube 2 and the freezing container 1 of the refrigerating appliance improves the heat exchange efficiency.
  • D-tube surround evaporator also has the following advantages: 1.
  • the D-tube has less stress, which reduces the tube warping phenomenon of the evaporation tube and improves production efficiency; 2.
  • the height H of the D-tube is relatively round
  • the diameter of the shaped evaporation tube becomes smaller, which is equivalent to increasing the thickness of the running layer of the cabinet and improving the thermal insulation effect of the freezer; 3.
  • the flat tube wall of the D-type tube is easy to fit with the freezing liner 1 of the refrigeration appliance; 4.D type
  • the official cavity volume of the tube is smaller than that of the circular evaporation tube, which increases the flow rate of the refrigerant in the tube, improves the heat exchange efficiency of the D-type tube, and increases the heat exchange heat inside and outside the tube.
  • the outer surface of the biliary tube 1 is shaped as a strip, and one surface of the tube clamp 3 is arranged along the spiral direction of the evaporation tube 2 in a spiral arrangement with the evaporation tube 2.
  • the grooves 31 with uniform spacing, the arc surface of the arc tube wall of the evaporation tube 2 is the same as the arc of the groove 31, and one surface of the pipe clamp 3 is provided with a through hole 32 interposed with the groove 31.
  • a T-shaped connector 4 is installed in the hole 32.
  • the T-shaped connecting member 4 includes a connecting rod 41 that is in clearance fit with the through hole 32, one end of the connecting rod 41 is provided with a thread, and the other end of the connecting rod 41 is welded with a
  • the flat sheet-like aluminum sheet 42 is provided with a screw hole 421 on one surface thereof.
  • the connecting rod 41 After the connecting rod 41 passes through the through-hole 32, the connecting rod 41 is provided with a threaded end and a screw cap 5 to screw the evaporation tube 2 tightly, and the flat sheet-like aluminum sheet 42 passes through the outer surface of the refrigeration container 1 of the refrigeration appliance.
  • the bolts are connected or the thermally conductive glue is connected.
  • the bolts are fitted with the threaded holes 421 in a clearance and locked to the plane tube wall and the outer surface of the freezing container 1 of the refrigeration appliance.
  • the arc-shaped tube wall of the evaporation tube 2 can just fit in the groove 31 of the tube fixture 3.
  • the groove 31 plays a role of limiting the evaporation tube 2. No matter how it vibrates, the The distances are all limited by the grooves 31 of the pipe clamp 3, and no displacement occurs.
  • the evaporation tube 2 can be fixed on the outer surface of the freezing container 1 of the refrigerating appliance through an aluminum foil tape 6 first, wherein the flat tube wall of the evaporation tube 2 and the outer surface of the freezing container 1 of the refrigerating appliance are bonded together, and then Each groove 31 is engaged with the arc-shaped tube wall of the corresponding evaporation tube 2.
  • One end of the T-shaped connector 4 passes through the through hole 32 to be fixedly connected to the tube fixture 3.
  • the other end of the T-shaped connector 4 is connected to the refrigerating appliance freezer liner. 1 fixed connection. Therefore, the flat tube wall of the evaporation tube 2 can be closely attached to the outer surface of the freezing container 1 of the refrigerating appliance.
  • the arc-shaped tube wall of the evaporation tube 2 is limited by the engagement of the groove 31, so that no displacement occurs, and further, Ensures the uniformity of the temperature of the freezer.
  • a plurality of tube clamps 3 may be provided according to the peripheral circumference of the outer periphery of the refrigerating container 1.
  • the number of the tube clamps 3 is not limited in the present application.
  • the refrigerating appliances are arranged in a ring-shaped space.
  • the D-tube wrap-around evaporator provided in this application spirally mounts the evaporation tube 2 on the outer surface of the freezing container 1 of the refrigeration appliance.
  • the available space of the freezer compartment is increased.
  • the arrangement density is set, and the evaporation tube 2 spirally surrounds the outer surface of the freezing container 1 of the refrigerating appliance, so that the temperature of the freezing chamber is more uniform, so that it is not easy to form very thick frost.
  • the evaporation tube 2 adopts a D-shaped tube, which greatly increases the contact area between the evaporation tube 2 and the freezing container 1 of the refrigerating appliance, thereby improving the heat exchange efficiency.
  • the present application fixes the D-shaped evaporation tube 2 through the tube clamp 3
  • the flat tube wall of the evaporation tube 2 can closely fit the outer surface of the freezing container 1 of the refrigerating appliance, and at the same time, the arc-shaped tube wall of the evaporation tube 2 passes through the tube clamp 3
  • the engagement of the groove 31 is limited, and no displacement occurs, thereby ensuring the uniformity of the temperature of the freezer compartment.
  • the present application divides the arrangement density of the evaporation tube 2 into three levels, wherein the part near the bile mouth adopts a level one arrangement density, and the refrigerating appliance freezing inner liner 1 uses a two-level arrangement density. Density, the inner part of the refrigerating appliance freezer liner 1 adopts a three-stage arrangement density, the first-stage arrangement density is greater than the second-stage arrangement density, and the second-stage arrangement density is greater than the third-stage arrangement density density.
  • the arrangement density of the evaporation tube 2 By dividing the arrangement density of the evaporation tube 2 into three levels, it is equivalent to based on the middle part of the refrigerating appliance freezing liner 1, and the temperature is higher near the side of the bile mouth. The temperature of the inner part of 1 is lower, reducing the arrangement density. A reasonable arrangement density reduces the temperature difference between the parts of the refrigerating container 1 and improves the cooling efficiency.
  • the first-stage arrangement density is preferably set to 25 mm, and the second-stage arrangement density is preferably set to 30 mm,
  • the three-stage arrangement density is preferably a spiral arrangement pitch of the evaporation tubes 2 set to 35 mm.
  • the above-mentioned spiral arrangement interval of the evaporation tubes 2 refers to the distance between two adjacent tubes of the evaporation tubes 2. The smaller the spiral arrangement interval of the evaporation tubes 2 is, the larger the arrangement density is.
  • the evaporation tube 2 includes a curved tube wall and a planar tube wall.
  • the curved tube wall and the planar tube wall intersect to form a first intersection line and a second intersection line.
  • a first extension is extended outward from the intersection line as a starting line
  • a second extension is extended outward from the plane pipe wall with the second intersection as a start line.
  • the first extension portion and the second extension portion extending from the plane tube wall can be used as a connection portion.
  • the first extension portion and the second extension portion are connected to the outer surface of the refrigerating appliance freezing liner 1 through an aluminum foil tape 6 Fitting, that is to say, part of the aluminum foil tape 6 is attached to the first extension or the second extension, and the other is attached to the freezing container 1 of the refrigerating appliance, so that the flat tube wall of the evaporation tube 2 is attached to the refrigerating appliance freezing.
  • the first and second extensions of the outer surface of the bladder 1 are more convenient for the operation of applying the aluminum foil tape 6, and it is easier to stick flat and fast.
  • the flat sheet-shaped aluminum sheet 42 of the T-shaped connecting member 4 can be crimped to the outside of the first extension portion and the second extension portion, so as to further connect the flat sheet-shaped aluminum sheet 42 to the outside of the freezing container 1 of the refrigeration appliance.
  • the first extension portion and the second extension portion can be firmly fixed between the flat sheet-like aluminum sheet 42 and the refrigerating appliance freezer liner 1, thereby ensuring the flat tube wall of the evaporation tube 2 and the refrigerating appliance freezer.
  • the outer surface of the bile 1 is in close contact.
  • the evaporation tube 2 of the present application is made of aluminum.
  • the thickness of the aluminum tube of the evaporation tube 2 is 0.5 to 1 mm, and the outer diameter is 5 to 10 mm.
  • the aluminum evaporation tube 2 has good thermal conductivity, faster cooling speed and better cooling effect.
  • a layer of aluminum foil tape 6 adhered to the outer surface of the freezing container 1 of the refrigerating appliance is spirally pasted on the evaporation tube 2 in a spiral.
  • the aluminum foil tape 6 can be used to fix the evaporation tube 2 on the one hand, and can be wound on the evaporation tube 2 on the other hand to prevent the foaming material from corroding the evaporation tube 2.
  • a direct-cooling and low-frost refrigerator includes a refrigerator casing, a refrigerating compartment 7 located on the upper part of the refrigerator, and a freezer compartment 8 located on the lower part of the refrigerator.
  • the freezer compartment 8 is provided with a refrigeration appliance freezing liner 1
  • the outer surface of the refrigerating appliance freezer liner 1 is spirally installed with an evaporation tube 2 which is D-shaped in cross section.
  • the evaporating tube 2 is fixed to the refrigerating appliance freezing by an aluminum foil tape 6 and a tube clamp 3.
  • the shape of the tube clamp 3 is strip-shaped, and one surface of the tube clamp 3 is provided with grooves 31 in the spiral direction of the evaporation tube 2 in accordance with the spiral arrangement of the evaporation tube 2.
  • the arc surface of the evaporation tube 2 has the same arc as the arc of the groove 31; one surface of the pipe clamp 3 is provided with a through hole 32 interposed with the groove 31, and a T-shaped connection is installed in the through hole 32 Piece 4.
  • the refrigerating compartment 7 is provided with a refrigerating liner
  • the freezing compartment 8 is provided with a refrigerating appliance freezing liner 1
  • the refrigerating liner is provided with a refrigerating evaporator
  • the refrigerating appliance freezing liner 1 is provided with a refrigerating evaporator.
  • the refrigerated evaporator adopts the D-tube surround evaporator in the first embodiment of the present application. For details, refer to the description of the first embodiment, and details are not described herein again.
  • the refrigerator shell is generally composed of a bottom plate, a back plate 9 and a box shell 10.
  • the box shell 10 is composed of two side plates and a top plate, and the two side plates and the top plate are generally combined in an integrated manner. .
  • a compensation heater is applied on the outer surface of the refrigerating container, and a magnetic sensitive switch 11 is provided in cooperation with the compensation heater.
  • the compensation heater is controlled by the magnetic sensitive switch 11.
  • the switch 11 controls a compensating heater applied to the refrigerating container, and the compensating heater compensates the temperature of the refrigerating compartment 7, thereby increasing the compressor startup time and improving the cooling effect.
  • the condenser is usually disposed inside one of the side plates of the casing 10, in order to avoid the heat dissipation of the condenser and affect the sensitivity of the magnetic switch 11 to the ambient temperature.
  • the magnetic sensitive switch 11 It is requested to arrange the magnetic sensitive switch 11 on the back plate 9 and to be located away from the condenser. In this way, the heat dissipation of the condenser will not affect the sensitivity of the magnetic sensitive switch 11 to ambient temperature sensing, so the magnetic sensitive switch 11 can accurately sense the ambient temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种D型管环绕式蒸发器及上藏下冻直冷微霜冰箱。该冰箱包括:冰箱外壳、位于冰箱上部的冷藏室(7)和位于冰箱下部的冷冻室(8);在冷冻内胆(1)外表面螺旋环绕安装有蒸发管(2),蒸发管(2)的横截面为D形,蒸发管(2)通过铝箔胶带(6)和管卡具(3)固定于冷冻内胆(1)的外表面。管卡具(3)的形状为条状,其一个表面上开设有与蒸发管(2)螺旋布置间距一致的沟槽(31),沟槽(31)的弧度与蒸发管(2)的弧面管壁弧度相同,管卡具(3)上还设有与沟槽(31)相间的贯穿孔(32),贯穿孔(32)中安装T型连接件(4)。通过将蒸发管(2)螺旋环绕安装在冷冻内胆(1)外表面,增加了冷冻室(8)的可利用空间,并使得冷冻室(8)的温度更加均匀,不易结霜。

Description

一种D型管环绕式蒸发器及上藏下冻直冷微霜冰箱
本申请要求于2018年07月24日提交中国国知局,申请号为201821174380.0,实用新型名称为“一种D型管环绕式蒸发器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及制冷设备技术领域,尤其涉及一种D型管环绕式蒸发器及上藏下冻直冷微霜冰箱。
背景技术
冰箱作为一种制冷设备,其种类多样,一般分为:全藏式冰箱、全冻式冰箱、上藏下冻直冷冰箱,其中,上藏下冻直冷冰箱是指冷藏室位于冰箱上部,冷冻室位于冰箱下部的冰箱。
冷冻室内设有冷冻内胆,配合冷冻内胆安装有冷冻蒸发器,冷冻蒸发器是制冷系统的主要换热装置。低温低压制冷剂液体在其内蒸发(沸腾)变为蒸汽,吸收被冷却物质的热量,使物质温度下降,达到冷冻、冷藏食品的目的。
但是,目前市场上的上藏下冻直冷冰箱,冷冻蒸发器集中设置在冷冻内胆内部,一方面,占用制冷器具冷冻室的部分容积,从而可利用的冷冻空间很小,另一方面,导致冷冻室温度不均匀,容易在制冷器具冷冻内胆内结很厚的霜,很难清理,影响制冷效率,用户体验较差。
发明内容
本申请提供一种D型管环绕式蒸发器及上藏下冻直冷微霜冰箱,以解决现有技术中的冷冻蒸发器集中设置在冷冻内胆内的一侧,导致可利用的冷冻空间很小、冷冻室温度不均匀易结霜的技术问题。
在本申请的第一方面,公开一种上藏下冻直冷微霜冰箱,包括:冰箱外壳、位于所述冰箱上部的冷藏室7和位于所述冰箱下部的冷冻室8;所述冷冻室8内设置有制冷器具冷冻内胆1,所述制冷器具冷冻内胆1外表面螺旋环绕安装有蒸发管2,所述蒸发管2的横截面呈D形,所述蒸发管2通过铝箔胶带6和管卡具3固定于制冷器具冷冻内胆1的外表面,所述管卡具3的形状呈条状,所述管卡具3的一表面沿蒸发管2螺旋方向开设有与蒸发管2螺旋布置间距一致的沟槽31,所述蒸发管2的弧面管壁弧度与沟槽31的弧度相同;
所述管卡具3一表面上开设有与沟槽31相间的贯穿孔32,所述贯穿孔32中安装有T型连接件4。
进一步地,所述冰箱外壳由底板、背板9和箱壳10组成;所述背板9上设有磁敏开关11,所述磁敏开关11用于控制补偿加热器,所述补偿加热器设置于冷藏内胆外表面,所述冷藏内胆位于所述冷藏室7内,所述箱壳10内侧设有冷凝器,所述磁敏开关11位于远离所述冷凝器的位置。
进一步地,所述蒸发管2的排布密度分为三级,其中,靠近冰箱门部分采用一级排布密度,所述制冷器具冷冻内胆1中间部分采用二级排布密度,所述制冷器具冷冻内胆1里侧部分采用三级排布密度,所述一级排布密度大于所述二级排布密度,所述二级排布密度大于所述三级排布密度。
进一步地,所述一级排布密度为将所述蒸发管2螺旋布置间距设为25mm,所述二级排布密度为将所述蒸发管2螺旋布置间距设为30mm,所述三级排布密度为将所述蒸发管2螺旋布置间距设为35mm。
进一步地,所述蒸发管2包括弧面管壁和平面管壁,所述弧面管壁和平面管壁相交形成第一相交线和第二相交线,所述平面管壁以所述第一相交线为起始线向外延伸有第一延伸部,所述平面管壁以所述第二相交线为起始线向外延伸有第二延伸部。
进一步地,所述第一延伸部和第二延伸部通过铝箔胶带6与所述制冷器具冷冻内胆1的外表面贴合。
进一步地,所述T型连接件4包括与贯穿孔32间隙配合的连接杆41,所述连接杆41的一端设置有螺纹,所述连接杆41的另一端焊接有一扁平片状铝片42,所述扁平片状铝片42一表面开设有螺纹孔421。
进一步地,所述扁平片状铝片42与制冷器具冷冻内胆1的外表面之间通过螺栓或者导热胶进行连接。
进一步地,所述蒸发管2的铝管壁厚0.5~1mm,外圆直径为5~10mm。
进一步地,所述蒸发管2上螺旋环绕压贴有一层与制冷器具冷冻内胆1的外表面相贴合的铝箔胶6。
在本申请的第二方面,公开一种D型管环绕式蒸发器,包括螺旋环绕安装于制冷器具冷冻内胆1外表面的蒸发管2,所述蒸发管2的横截面呈D形,所述蒸发管2通过铝箔胶带6和管卡具3固定于制冷器具冷冻内胆1的外表面,所述管卡具3的形状呈条状,所述管卡具3的一表面沿蒸发管2螺旋方向开设有与蒸发管2螺旋布置间距一致的沟槽31,所述蒸发管2的弧面管壁弧度与沟槽31的弧度相同;
所述管卡具3一表面上开设有与沟槽31相间的贯穿孔32,所述贯穿孔32中安装有T型连接件4。
进一步地,所述T型连接件4包括与贯穿孔32间隙配合的连接杆41,所述连接 杆41的一端设置有螺纹,所述连接杆41的另一端焊接有一扁平片状铝片42,所述扁平片状铝片42一表面开设有螺纹孔421。
进一步地,所述扁平片状铝片42与制冷器具冷冻内胆1的外表面之间通过螺栓或者导热胶进行连接。
进一步地,所述蒸发管2的铝管壁厚0.5~1mm,外圆直径为5~10mm。
进一步地,所述蒸发管2上螺旋环绕压贴有一层与制冷器具冷冻内胆1的外表面相贴合的铝箔胶6。
进一步地,所述蒸发管2的排布密度分为三级,其中,靠近冰箱门部分采用一级排布密度,所述制冷器具冷冻内胆1中间部分采用二级排布密度,所述制冷器具冷冻内胆1里侧部分采用三级排布密度,所述一级排布密度大于所述二级排布密度,所述二级排布密度大于所述三级排布密度。
进一步地,所述一级排布密度为将所述蒸发管2螺旋布置间距设为25mm,所述二级排布密度为将所述蒸发管2螺旋布置间距设为30mm,所述三级排布密度为将所述蒸发管2螺旋布置间距设为35mm。
进一步地,所述蒸发管2包括弧面管壁和平面管壁,所述弧面管壁和平面管壁相交形成第一相交线和第二相交线,所述平面管壁以所述第一相交线为起始线向外延伸有第一延伸部,所述平面管壁以所述第二相交线为起始线向外延伸有第二延伸部。
进一步地,所述第一延伸部和第二延伸部通过铝箔胶带6与所述制冷器具冷冻内胆1的外表面贴合。
本申请提供的D型管环绕式蒸发器及上藏下冻直冷微霜冰箱,将蒸发管2螺旋环绕安装在制冷器具冷冻内胆1外表面,一方面,增加了冷冻室的可利用空间,另一方面,根据预设的排布密度,将蒸发管2螺旋环绕在制冷器具冷冻内胆1外表面,使得冷冻室的温度更加均匀,从而不易结很厚的霜,只存在一些微霜甚至没有结霜的现象;其中,蒸发管2采用D型管,大大提高了蒸发管2与制冷器具冷冻内胆1的接触面积,从而提高了换热效率,另外,本申请通过管卡具3将D型蒸发管2固定在制冷器具冷冻内胆1外表面,其中,蒸发管2的平面管壁能够与制冷器具冷冻内胆1的外表面紧紧贴合,同时,蒸发管2的弧面管壁通过管卡具3的沟槽31的卡合限定,不会发生位移,进而保证了冷冻室温度的均匀性。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例公开的一种D型管环绕式蒸发器安装于制冷器具冷冻内胆上的状态示意图;
图2为图1中B视角下的蒸发管、管卡具、T型连接件与制冷器具冷冻内胆安装示意图;
图3为本申请实施例公开的一种D型管环绕式蒸发器的蒸发管的结构示意图;
图4为本申请实施例公开的一种D型管环绕式蒸发器的蒸发管的截面图;
图5为图2的右视图;
图6为图2的等轴测视图;
图7为图1中A位置的局部放大图;
图8为管卡具的结构示意图;
图9为图8的右视图;
图10为T型连接件的结构示意图;
图11为螺帽的结构示意图;
图12为图3中B位置处局部放大图;
图13为本申请实施例公开的一种上藏下冻直冷微霜冰箱的结构示意图;
图14为本申请实施例公开的一种上藏下冻直冷微霜冰箱外壳的结构示意图。
附图标记说明
1-制冷器具冷冻内胆,2-蒸发管,3-管卡具,4-T型连接件,5-螺帽,6-铝箔胶带,7-冷藏室,8-冷冻室,9-背板,10-箱壳,11-磁敏开关,12-冷凝器,31-沟槽,32-贯穿孔,41-连接杆,42-扁平片状铝片,421-螺纹孔。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请提供的第一个实施例公开一种D型管环绕式蒸发器,如图1和图2所示,包括螺旋环绕安装于制冷器具冷冻内胆1外表面的蒸发管2,所述蒸发管2的横截面呈D形,所述蒸发管2通过铝箔胶带6和管卡具3固定于制冷器具冷冻内胆1的外表面,所述管卡具3的形状呈条状,所述管卡具3的一表面沿蒸发管2螺旋方向开设有与蒸发管2螺旋布置间距一致的沟槽31,所述蒸发管2的弧面管壁弧度与沟槽31的弧度相同;所述管卡具3一表面上开设有与沟槽31相间的贯穿孔32,所述贯穿孔32 中安装有T型连接件4。
制冷器具包括冷冻室,冷冻室内设有制冷器具冷冻内胆1,配合制冷器具冷冻内胆1设有冷冻蒸发器,传统的冷冻蒸发器集中设置在冷冻内胆1内部,一方面,相当于占用制冷器具冷冻室的部分容积,另一方面,导致冷冻室温度不均匀,容易在制冷器具冷冻内胆1内结很厚的霜,很难清理。本申请将冷冻蒸发器的蒸发管2螺旋环绕安装在制冷器具冷冻内胆1外表面,一方面,增加了冷冻室的可利用空间,另一方面,根据预设的排布密度,将蒸发管2螺旋环绕在制冷器具冷冻内胆1外表面,使得冷冻室的温度更加均匀,从而不易结很厚的霜,只存在一些微霜甚至没有结霜的现象。
需要说明的是,本申请所述的冷冻内胆1是指围成冷冻室的内壁部分。
申请人经过认真研究发现,影响蒸发管2工作效率的两个主要因素是:其一,蒸发管2与制冷器具冷冻内胆1的接触面积,其二,蒸发管2与制冷器具冷冻内胆1连接的是否牢固。
现有的蒸发管均采用圆形蒸发管,圆形蒸发管是指其径向横截面为圆形,圆形蒸发管与制冷器具冷冻内胆1的接触面是一条线,针对第一个影响因素,为了增大蒸发管2与制冷器具冷冻内胆1的接触面积,本申请提出一种D型管环绕式蒸发器,也就是说,本申请提出的蒸发管2的径向横截面为D型,如图3和图4所示,其包括弧面管壁和平面管壁,在安装时,平面管壁与制冷器具冷冻内胆1接触,其接触面是一个平面,因此大大提高了蒸发管2与制冷器具冷冻内胆1的接触面积,从而提高了换热效率。
另外,采用D型管环绕式蒸发器还具有以下优点:1.D型管的应力较小,减小了蒸发管的管翘现象,提高生产效率;2.D型管的高度H,较圆形蒸发管直径变小,相当于增加了箱体的跑层厚度,提高了冷冻室的保温效果;3.D型管的平面管壁容易与制冷器具冷冻内胆1贴合;4.D型管的官腔容积比圆形蒸发管小,增大了管内制冷剂的流动速度,提高了D型管的换热效率,提高了管内外的换热热量。
针对第二个影响因素,制冷器具在工作状态下,由于压缩机等部件的运转,会产生很大的震动,如果蒸发管2与制冷器具冷冻内胆1连接不牢固,那么震动时,蒸发管2与制冷器具冷冻内胆1之间会产生位移,从而影响温度的均匀性,因此,如图1所示,本申请将蒸发管2通过铝箔胶带6和管卡具3固定于制冷器具冷冻内胆1的外表面,如图5至图9所示,所述管卡具3的形状呈条状,所述管卡具3的一表面沿蒸发管2螺旋方向开设有与蒸发管2螺旋布置间距一致的沟槽31,所述蒸发管2的弧面管壁弧度与沟槽31的弧度相同,所述管卡具3一表面上开设有与沟槽31相间的贯穿孔32,所述贯穿孔32中安装有T型连接件4。
优选的,如图10至图12所示,T型连接件4包括与贯穿孔32间隙配合的连接杆41,所述连接杆41的一端设置有螺纹,所述连接杆41的另一端焊接有一扁平片状铝 片42,所述扁平片状铝片42一表面开设有螺纹孔421。
连接杆41穿过贯穿孔32后,连接杆41设有螺纹端与螺帽5螺纹连接对蒸发管2进行压紧,扁平片状铝片42与制冷器具冷冻内胆1的外表面之间通过螺栓进行连接或导热胶进行连接,螺栓与螺纹孔421间隙配合并锁紧于平面管壁与制冷器具冷冻内胆1的外表面。
蒸发管2的弧面管壁刚好能够卡合在管卡具3的沟槽31内,沟槽31起到了对蒸发管2限位的作用,无论怎样震动,相邻的两根管之间的距离都由管卡具3的沟槽31限定着,不会发生位移的现象。
在安装时,可以先通过铝箔胶带6将蒸发管2固定在制冷器具冷冻内胆1的外表面,其中,蒸发管2的平面管壁与制冷器具冷冻内胆1的外表面贴合,再将各个沟槽31与对应的蒸发管2的弧面管壁卡合,T型连接件4一端穿过贯穿孔32与管卡具3固定连接,T型连接件4另一端与制冷器具冷冻内胆1固定连接。故而,蒸发管2的平面管壁能够与制冷器具冷冻内胆1的外表面紧紧贴合,同时,蒸发管2的弧面管壁通过沟槽31的卡合限定,不会发生位移,进而保证了冷冻室温度的均匀性。
需要说明的是,根据制冷器具冷冻内胆1的外周环向周长,可以设置若干个管卡具3,本申请对管卡具3的数量不进行限定,若干个管卡具3在所述制冷器具冷冻内胆1环形间隔设置。
综上,本申请提供的D型管环绕式蒸发器,将蒸发管2螺旋环绕安装在制冷器具冷冻内胆1外表面,一方面,增加了冷冻室的可利用空间,另一方面,根据预设的排布密度,将蒸发管2螺旋环绕在制冷器具冷冻内胆1外表面,使得冷冻室的温度更加均匀,从而不易结很厚的霜,只存在一些微霜甚至没有结霜的现象;其中,蒸发管2采用D型管,大大提高了蒸发管2与制冷器具冷冻内胆1的接触面积,从而提高了换热效率,另外,本申请通过管卡具3将D型蒸发管2固定在制冷器具冷冻内胆1外表面,其中,蒸发管2的平面管壁能够与制冷器具冷冻内胆1的外表面紧紧贴合,同时,蒸发管2的弧面管壁通过管卡具3的沟槽31的卡合限定,不会发生位移,进而保证了冷冻室温度的均匀性。
由于制冷器具冷冻内胆1靠近胆口一侧(即靠近制冷器具设有冰箱门一侧),和制冷器具冷冻内胆1里侧(即远离制冷器具设有冰箱门一侧)存在温度差,如果环绕在制冷器具冷冻内胆1外表面的蒸发管2整体采用相同的排布密度,则会影响制冷效果。为此,本申请将所述蒸发管2的排布密度分为三级,其中,靠近胆口一侧部分采用一级排布密度,所述制冷器具冷冻内胆1中间部分采用二级排布密度,所述制冷器具冷冻内胆1里侧部分采用三级排布密度,所述一级排布密度大于所述二级排布密度,所述二级排布密度大于所述三级排布密度。
通过将蒸发管2的排布密度分为三级,相当于以制冷器具冷冻内胆1中间部分为 基础,在靠近胆口一侧部分温度较高,增加排布密度,在制冷器具冷冻内胆1里侧部分温度较低,减小排布密度,合理的排布密度将制冷器具冷冻内胆1各部分温差减小,提高制冷效率。
经过大量实验及计算,所述一级排布密度为将所述蒸发管2螺旋布置间距优选设为25mm,所述二级排布密度为将所述蒸发管2螺旋布置间距优选设为30mm,所述三级排布密度为将所述蒸发管2螺旋布置间距优选设为35mm。
需要说明的是,上述的蒸发管2螺旋布置间距是指蒸发管2的相邻两个管路之间的距离。蒸发管2螺旋布置间距越小,说明排布密度越大。
还需要说明的是,管卡具3的沟槽31位置需要根据蒸发管2的排布密度不同而对应设置。
优选的,所述蒸发管2包括弧面管壁和平面管壁,所述弧面管壁和平面管壁相交形成第一相交线和第二相交线,所述平面管壁以所述第一相交线为起始线向外延伸有第一延伸部,所述平面管壁以所述第二相交线为起始线向外延伸有第二延伸部。
平面管壁延伸出来的第一延伸部和第二延伸部可以用做连接部,例如,所述第一延伸部和第二延伸部通过铝箔胶带6与所述制冷器具冷冻内胆1的外表面贴合,也就是说,铝箔胶带6一部分贴在第一延伸部或第二延伸部上,另一部分贴在制冷器具冷冻内胆1,从而使蒸发管2的平面管壁贴在制冷器具冷冻内胆1的外表面,延伸出来的第一延伸部和第二延伸部更方便了贴铝箔胶带6的操作,更容易粘贴平整,紧固。
另一优选例子中,T型连接件4的扁平片状铝片42可以压接在第一延伸部和第二延伸部外侧,进而将扁平片状铝片42与制冷器具冷冻内胆1的外表面固定连接后,第一延伸部和第二延伸部可以牢固的固定在扁平片状铝片42与制冷器具冷冻内胆1之间,进而保证了蒸发管2的平面管壁与制冷器具冷冻内胆1的外表面紧密接触。
优选的,本申请蒸发管2采用铝材质,蒸发管2的铝管壁厚0.5~1mm,外圆直径为5~10mm。铝材质蒸发管2具有良好的导热性能,冷却速度更快,制冷效果更好。
优选的,所述蒸发管2上螺旋环绕压贴有一层与制冷器具冷冻内胆1的外表面相贴合的铝箔胶带6。铝箔胶带6一方面可以用于固定蒸发管2,另一方面可以缠绕在蒸发管2上,用于避免发泡料对蒸发管2的腐蚀。
根据本申请提供的第一个实施例D型管环绕式蒸发器,将其应用于上藏下冻直冷微霜冰箱,基于此,本申请提供第二个实施例公开一种上藏下冻直冷微霜冰箱,如图13所示,包括冰箱外壳、位于所述冰箱上部的冷藏室7和位于所述冰箱下部的冷冻室8;所述冷冻室8内设置有制冷器具冷冻内胆1,所述制冷器具冷冻内胆1外表面螺旋环绕安装有蒸发管2,所述蒸发管2的横截面呈D形,所述蒸发管2通过铝箔胶带6和管卡具3固定于制冷器具冷冻内胆1的外表面,所述管卡具3的形状呈条状,所述管卡具3的一表面沿蒸发管2螺旋方向开设有与蒸发管2螺旋布置间距一致的沟槽31, 所述蒸发管2的弧面管壁弧度与沟槽31的弧度相同;所述管卡具3一表面上开设有与沟槽31相间的贯穿孔32,所述贯穿孔32中安装有T型连接件4。
冷藏室7内设有冷藏内胆,冷冻室8内设有制冷器具冷冻内胆1,配合冷藏内胆设有冷藏蒸发器,配合制冷器具冷冻内胆1设有冷冻蒸发器,本实施例中的冷冻蒸发器采用本申请第一个实施例中的D型管环绕式蒸发器,具体参考第一个实施例的描述,此处不再赘述。
其中,冰箱外壳一般由底板、背板9和箱壳10组成,参照图14,箱壳10是由两个侧板和一个顶板组成的,两个侧板和一个顶板一般采用一体成型的方式组合。
为了提高制冷效果,本申请在冷藏内胆外表面贴服有补偿加热器,配合补偿加热器设置有磁敏开关11,补偿加热器由磁敏开关11控制,当环境温度较低时,磁敏开关11控制贴服于冷藏内胆的补偿加热器,补偿加热器对冷藏室7温度进行补偿,从而增加压缩机开机时间,提高制冷效果。但是,在上藏下冻直冷微霜冰箱中,通常将冷凝器设置在箱壳10的其中一个侧板的内侧,为了避免冷凝器散热影响磁敏开关11对环境温度感应的敏感度,本申请将磁敏开关11设置在背板9上,并且位于远离所述冷凝器的位置。这样冷凝器散热就不会影响磁敏开关11对环境温度感应的敏感度,因此磁敏开关11可以准确感知环境温度。
以上结合具体实施方式和范例性实例对本申请进行了详细说明,不过这些说明并不能理解为对本申请的限制。本领域技术人员理解,在不偏离本申请精神和范围的情况下,可以对本申请技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本申请的范围内。本申请的保护范围以所附权利要求为准。

Claims (11)

  1. 一种上藏下冻直冷微霜冰箱,其特征在于,包括:冰箱外壳、位于所述冰箱上部的冷藏室(7)和位于所述冰箱下部的冷冻室(8);所述冷冻室(8)内设置有制冷器具冷冻内胆(1),所述制冷器具冷冻内胆(1)外表面螺旋环绕安装有蒸发管(2),所述蒸发管(2)的横截面呈D形,所述蒸发管(2)通过铝箔胶带(6)和管卡具(3)固定于制冷器具冷冻内胆(1)的外表面,所述管卡具(3)的形状呈条状,所述管卡具(3)的一表面沿蒸发管(2)螺旋方向开设有与蒸发管(2)螺旋布置间距一致的沟槽(31),所述蒸发管(2)的弧面管壁弧度与沟槽(31)的弧度相同;
    所述管卡具(3)一表面上开设有与沟槽(31)相间的贯穿孔(32),所述贯穿孔(32)中安装有T型连接件(4)。
  2. 根据权利要求1所述的上藏下冻直冷微霜冰箱,其特征在于,所述冰箱外壳由底板、背板(9)和箱壳(10)组成;
    所述背板(9)上设有磁敏开关(11),所述磁敏开关(11)用于控制补偿加热器,所述补偿加热器设置于冷藏内胆外表面,所述冷藏内胆位于所述冷藏室(7)内,所述箱壳(10)内侧设有冷凝器,所述磁敏开关(11)位于远离所述冷凝器的位置。
  3. 根据权利要求1所述的上藏下冻直冷微霜冰箱,其特征在于,所述蒸发管(2)的排布密度分为三级,其中,靠近冰箱门部分采用一级排布密度,所述制冷器具冷冻内胆(1)中间部分采用二级排布密度,所述制冷器具冷冻内胆(1)里侧部分采用三级排布密度,所述一级排布密度大于所述二级排布密度,所述二级排布密度大于所述三级排布密度。
  4. 根据权利要求3所述的上藏下冻直冷微霜冰箱,其特征在于,所述一级排布密度为将所述蒸发管(2)螺旋布置间距设为25mm,所述二级排布密度为将所述蒸发管(2)螺旋布置间距设为30mm,所述三级排布密度为将所述蒸发管(2)螺旋布置间距设为35mm。
  5. 根据权利要求1所述的上藏下冻直冷微霜冰箱,其特征在于,所述蒸发管(2)包括弧面管壁和平面管壁,所述弧面管壁和平面管壁相交形成第一相交线和第二相交线,所述平面管壁以所述第一相交线为起始线向外延伸有第一延伸部,所述平面管壁以所述第二相交线为起始线向外延伸有第二延伸部。
  6. 根据权利要求5所述的上藏下冻直冷微霜冰箱,其特征在于,所述第一延伸部和第二延伸部通过铝箔胶带(6)与所述制冷器具冷冻内胆(1)的外表面贴合。
  7. 一种D型管环绕式蒸发器,其特征在于,包括螺旋环绕安装于制冷器具冷冻内胆(1)外表面的蒸发管(2),所述蒸发管(2)的横截面呈D形,所述蒸发管(2)通过铝箔胶带(6)和管卡具(3)固定于制冷器具冷冻内胆(1)的外表面,所述管卡 具(3)的形状呈条状,所述管卡具(3)的一表面沿蒸发管(2)螺旋方向开设有与蒸发管(2)螺旋布置间距一致的沟槽(31),所述蒸发管(2)的弧面管壁弧度与沟槽(31)的弧度相同;
    所述管卡具(3)一表面上开设有与沟槽(31)相间的贯穿孔(32),所述贯穿孔(32)中安装有T型连接件(4)。
  8. 根据权利要求7所述的一种D型管环绕式蒸发器,其特征在于,所述T型连接件(4)包括与贯穿孔(32)间隙配合的连接杆(41),所述连接杆(41)的一端设置有螺纹,所述连接杆(41)的另一端焊接有一扁平片状铝片(42),所述扁平片状铝片(42)一表面开设有螺纹孔(421)。
  9. 根据权利要求8所述的一种D型管环绕式蒸发器,其特征在于,所述扁平片状铝片(42)与制冷器具冷冻内胆(1)的外表面之间通过螺栓或者导热胶进行连接。
  10. 根据权利要求7所述的一种D型管环绕式蒸发器,其特征在于,所述蒸发管(2)的铝管壁厚0.5~1mm,外圆直径为5~10mm。
  11. 根据权利要求7所述的一种D型管环绕式蒸发器,其特征在于,所述蒸发管(2)上螺旋环绕压贴有一层与制冷器具冷冻内胆(1)的外表面相贴合的铝箔胶(6)。
PCT/CN2019/096153 2018-07-24 2019-07-16 一种d型管环绕式蒸发器及上藏下冻直冷微霜冰箱 WO2019233497A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019548973A JP6869366B2 (ja) 2018-07-24 2019-07-16 D形状管ラップアラウンド式蒸発器及び微量着霜型上部冷蔵/下部冷凍型直冷式の冷蔵庫

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821174380.0U CN208704212U (zh) 2018-07-24 2018-07-24 一种d型管环绕式蒸发器
CN201821174380.0 2018-07-24

Publications (1)

Publication Number Publication Date
WO2019233497A1 true WO2019233497A1 (zh) 2019-12-12

Family

ID=65939623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096153 WO2019233497A1 (zh) 2018-07-24 2019-07-16 一种d型管环绕式蒸发器及上藏下冻直冷微霜冰箱

Country Status (3)

Country Link
JP (1) JP6869366B2 (zh)
CN (1) CN208704212U (zh)
WO (1) WO2019233497A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208704212U (zh) * 2018-07-24 2019-04-05 长虹美菱股份有限公司 一种d型管环绕式蒸发器
CN115371295B (zh) * 2021-05-20 2024-02-20 合肥华凌股份有限公司 板管蒸发器及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2752686Y (zh) * 2004-12-06 2006-01-18 陈汉康 小型冰箱管壳式蒸发器
CN201122021Y (zh) * 2007-12-07 2008-09-24 浙江康盛股份有限公司 盘管式蒸发器、冷凝器
CN201476420U (zh) * 2009-07-29 2010-05-19 合肥美的荣事达电冰箱有限公司 D形管冰箱内置冷凝器
CN202420037U (zh) * 2011-12-31 2012-09-05 海信容声(广东)冰箱有限公司 一种绕管式蒸发器
CN203240942U (zh) * 2013-04-08 2013-10-16 镇海石化建安工程有限公司 用于缠绕管式换热器的异形垫条
CN103542691A (zh) * 2013-10-31 2014-01-29 合肥荣事达三洋电器股份有限公司 一种用于电子直冷冰箱的分段式补偿加热装置
CN208704212U (zh) * 2018-07-24 2019-04-05 长虹美菱股份有限公司 一种d型管环绕式蒸发器
CN110044116A (zh) * 2019-04-30 2019-07-23 长虹美菱股份有限公司 一种上藏下冻电控直冷微霜冰箱及其装配方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491104Y1 (zh) * 1968-08-10 1974-01-11
JPS4838734B1 (zh) * 1970-06-05 1973-11-19
JPS5550548Y2 (zh) * 1975-09-17 1980-11-25
JPH0267875U (zh) * 1988-11-11 1990-05-23
JP2005090811A (ja) * 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd 冷蔵庫

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2752686Y (zh) * 2004-12-06 2006-01-18 陈汉康 小型冰箱管壳式蒸发器
CN201122021Y (zh) * 2007-12-07 2008-09-24 浙江康盛股份有限公司 盘管式蒸发器、冷凝器
CN201476420U (zh) * 2009-07-29 2010-05-19 合肥美的荣事达电冰箱有限公司 D形管冰箱内置冷凝器
CN202420037U (zh) * 2011-12-31 2012-09-05 海信容声(广东)冰箱有限公司 一种绕管式蒸发器
CN203240942U (zh) * 2013-04-08 2013-10-16 镇海石化建安工程有限公司 用于缠绕管式换热器的异形垫条
CN103542691A (zh) * 2013-10-31 2014-01-29 合肥荣事达三洋电器股份有限公司 一种用于电子直冷冰箱的分段式补偿加热装置
CN208704212U (zh) * 2018-07-24 2019-04-05 长虹美菱股份有限公司 一种d型管环绕式蒸发器
CN110044116A (zh) * 2019-04-30 2019-07-23 长虹美菱股份有限公司 一种上藏下冻电控直冷微霜冰箱及其装配方法

Also Published As

Publication number Publication date
JP2020525743A (ja) 2020-08-27
JP6869366B2 (ja) 2021-05-12
CN208704212U (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2019233497A1 (zh) 一种d型管环绕式蒸发器及上藏下冻直冷微霜冰箱
WO2023000922A1 (zh) 冰箱
US2637530A (en) Heat exchange structure
CN103115467A (zh) 用于冰箱的双制冷系统
WO2011032346A1 (zh) 用于制冷设备的恒压衡功制冷系统
CN104344641B (zh) 半导体制冷冰箱及其热端换热装置
CN205037626U (zh) 一种冰箱用丝管蒸发器及冰箱
US20190063818A1 (en) Evaporator and refrigerator having same
CN211625842U (zh) 一种新型接水盘用化霜结构
JP2005164231A (ja) 熱交換装置
CN207881316U (zh) 冷藏冷冻双功能疫苗柜
CN204730533U (zh) 一种绕管蒸发器及冰箱
CN106642925B (zh) 一种具有蓄冷功能的冰箱
JP6543811B2 (ja) 冷蔵庫
CN220595559U (zh) 一种分区式冷藏箱
CN1236260C (zh) 电冰箱
EP3435010B1 (en) A refrigerator comprising an evaporator
CN220771470U (zh) 用于冷冻冷藏设备的排水管组件和冷冻冷藏设备
WO2008120892A2 (en) Evaporator with defrosting heater
WO2022143972A1 (zh) 制冰组件及冰箱
CN202048738U (zh) 冰箱软冻室蒸发器
KR200240635Y1 (ko) 김치저장고 야채실의 열전도율이 개선된 증발관 설치구조
JPH10232086A (ja) 断熱箱体
CN206410368U (zh) 一种冰箱及其丝管蒸发器
CN105716456B (zh) 热交换装置及半导体制冷设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019548973

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815633

Country of ref document: EP

Kind code of ref document: A1