WO2011032326A1 - 陶壳与蜡模脱离的方法及装置 - Google Patents

陶壳与蜡模脱离的方法及装置 Download PDF

Info

Publication number
WO2011032326A1
WO2011032326A1 PCT/CN2009/074714 CN2009074714W WO2011032326A1 WO 2011032326 A1 WO2011032326 A1 WO 2011032326A1 CN 2009074714 W CN2009074714 W CN 2009074714W WO 2011032326 A1 WO2011032326 A1 WO 2011032326A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic shell
wax mold
compressor
condenser
sealed cavity
Prior art date
Application number
PCT/CN2009/074714
Other languages
English (en)
French (fr)
Inventor
蔡欲期
Original Assignee
Tsai Yuchi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsai Yuchi filed Critical Tsai Yuchi
Publication of WO2011032326A1 publication Critical patent/WO2011032326A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/043Removing the consumable pattern

Definitions

  • the present invention relates to a precision casting process, and more particularly to a method and apparatus for detaching a ceramic shell from a wax mold.
  • Precision casting is a casting method relative to conventional casting processes that achieves relatively accurate shape and high casting accuracy. The process of precision casting is as follows: First, a wax mold is produced which conforms to the size and shape of the product to be cast, and then a ceramic shell is formed on the surface of the produced wax mold, and then the ceramic shell is dewaxed. Processing (melting the internal wax mold after melting), finally, pouring the metal material into the decarburized ceramic shell, and after the metal material is cooled and solidified, the ceramic shell is broken and removed, and the obtained casting is required. product.
  • the ceramic shell with the wax mold is directly placed in a high temperature furnace for heating, so that the wax mold is melted and flows out from the ceramic shell, thereby achieving the purpose of dewaxing.
  • the above dewaxing method has the following two disadvantages: First, the thickness of each part of the ceramic shell is generally uneven, the wax mold melts faster in a thinner place, and the wax mold melts more slowly in a thicker place, and the melted wax is hindered.
  • the present invention provides a method and apparatus for detaching a ceramic shell from a wax mold, which can separate the ceramic shell from the wax mold, thereby ensuring that the ceramic shell is not cracked during dewaxing, and at the same time avoiding dewaxing. phenomenon.
  • a method for separating a ceramic shell from a wax mold comprising: placing a ceramic shell with a wax mold into a sealed cavity;
  • Vacuuming the sealed cavity cooling the sealed cavity after the vacuuming to reduce the volume of the wax mold, thereby separating the ceramic shell from the wax mold.
  • the vacuum degree of the sealed cavity after the vacuuming is less than 280 mm mercury column.
  • the temperature at which the temperature drop reaches is 5 to 5 degrees.
  • a device for detaching a ceramic shell from a wax mold comprising: a sealing cavity for placing a ceramic shell with a wax mold; a vacuuming device for vacuuming the sealed cavity; and a cooling device for The vacuum-tight sealed cavity is cooled to reduce the volume of the wax mold, thereby separating the ceramic shell from the wax mold.
  • the vacuuming device is a vacuum pump, and the vacuum pump is connected to the sealed cavity.
  • the cooling device includes a compressor, a condenser, an evaporator, a low pressure regulating valve and an expansion valve, and the compressor, the condenser, the low pressure regulating valve and the expansion valve are all located in the sealing cavity Externally, the evaporator is located inside the sealed cavity, wherein an outlet of the compressor is connected to an inlet of the condenser; an outlet of the condenser is through the expansion valve and the evaporator The inlet is connected; the outlet of the evaporator is connected to the inlet of the compressor via the low pressure regulating valve.
  • a vapor-liquid separator is connected between the compressor and the low-pressure regulating valve.
  • an oil separator is connected between the compressor and the condenser, and an oil outlet of the oil separator is connected to the compressor.
  • a drying filter is connected between the condenser and the expansion valve.
  • a water cooler is connected between the condenser and the drying filter.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for separating a ceramic shell from a wax mold according to the present invention
  • FIG. 2 is a schematic structural view of an embodiment of a device for separating a ceramic shell from a wax mold according to the present invention
  • FIG. 3 is a schematic structural view of a cooling device in the embodiment of the apparatus shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention provides a method and apparatus for separating the ceramic shell from the wax mold. The invention will now be described in detail in conjunction with the drawings.
  • the invention provides a method for detaching a ceramic shell from a wax mold, as shown in Fig. 1, which comprises:
  • Step S1 Putting a ceramic shell with a wax mold into the sealing cavity; the sealing cavity is preferably made of a metal material.
  • Step S2 vacuuming the sealed cavity; in this step, the sealing cavity may be evacuated by using a vacuum pump or the like.
  • Step S3 cooling the vacuum-tight sealed cavity to reduce the volume of the wax mold, thereby separating the ceramic shell from the wax mold.
  • the cooling in this step can be carried out by various cooling methods, such as cooling the sealed chamber casing, or using a condensing device to cool the air in the sealed chamber, both of which can achieve the cooling of the wax mold and reduce the volume. the goal of. In practical applications, the method of the present invention is employed prior to the dewaxing process of heating the ceramic shell.
  • the method of the present invention enables a void to be created between the ceramic shell and the wax mold, and the two are separated, but at this time the wax mold is still in the ceramic shell and is not removed from the ceramic shell.
  • the sealing cavity is subjected to a temperature lowering treatment, the wax mold is contracted by thermal expansion and contraction, and a gap is formed between the ceramic shell and the wax mold, and the two are separated.
  • the invention also performs a vacuum on the sealed cavity. Empty, when vacuuming, the gas in the ceramic shell will also be extracted. If there is moisture on the ceramic shell, the moisture on the ceramic shell will be taken out, thus ensuring that the ceramic shell is in a dry state.
  • the ceramic shell When the cooling process is subsequently carried out, the ceramic shell will not freeze, so that the ceramic shell will not crack and the quality of the ceramic shell is guaranteed.
  • the high temperature air enters the gap between the ceramic shell and the wax mold, so that the wax mold melts faster, on the one hand, saving Energy (in the prior art, the heat required for wax mold melting is conducted through the ceramic shell, the wax mold melts slowly, and the energy consumption is high).
  • the melted wax can smoothly pass from the ceramic shell and the wax mold. The gap between the water flows out, the ceramic shell will not be cracked, and the dewaxing will be more complete.
  • the vacuum degree of the sealed cavity after vacuuming in the above step S2 is preferably less than 280 mm. Mercury column.
  • the lower the temperature reached by the temperature reduction in the present invention the faster the volume of the wax mold shrinks, and the more complete the dewaxing of the ceramic shell. Therefore, in order to dewax the ceramic shell more completely, the temperature drop in the above step S3 is reached.
  • the temperature is preferably a lower temperature, preferably 5 to - 5 degrees.
  • the present invention also provides a device for detaching the ceramic shell from the wax mold, as shown in Fig. 2, comprising: a sealing chamber 1 for placing a wax mold Ceramic shell
  • the vacuuming device 3 is used for vacuuming the sealed cavity 1; the cooling device 2 is configured to cool the sealed cavity 1 after vacuuming, so that the wax mold is reduced in volume, thereby separating the ceramic shell from the wax mold.
  • the ceramic shell with the wax mold is first placed in the sealing cavity 1, and then the sealing chamber 1 is evacuated by the vacuuming device 3, and finally the vacuuming device 2 is used for vacuuming.
  • the sealing chamber 1 is cooled to reduce the volume of the wax mold, thereby separating the ceramic shell from the wax mold.
  • the sealing chamber 1 since the sealing chamber 1 is subjected to a temperature lowering treatment, the wax mold is contracted by thermal expansion and contraction, and a gap is formed between the ceramic shell and the wax mold, and the two are separated.
  • the invention also applies a vacuum to the sealed cavity 1.
  • the vacuum is applied, the gas in the ceramic shell is also extracted. If the ceramic shell is also provided with moisture, the moisture on the ceramic shell will be taken. Therefore, it is ensured that the ceramic shell is in a dry state, and in the subsequent cooling treatment, the ceramic shell will not freeze, so that the ceramic shell does not crack and the quality of the ceramic shell is ensured.
  • the ceramic shell since the ceramic shell is separated from the wax mold, when the ceramic shell is dewaxed, the high temperature air enters between the ceramic shell and the wax mold.
  • the voids allow the wax mold to melt faster, on the one hand, energy is saved, on the other hand, the melted wax can smoothly flow out from the gap between the ceramic shell and the wax mold, and the ceramic shell is not cracked. Dewaxing will also be more complete.
  • the vacuuming device 3 is preferably connected to the sealed cavity 1 by using a vacuum pump commonly used in the prior art, thereby achieving vacuuming of the sealed cavity 1.
  • the cooling device 2 preferably lowers the air in the sealed cavity 1 to achieve the purpose of reducing the volume of the wax mold. Specifically, the cooling device 2 can adopt the following scheme:
  • the temperature lowering device 2 includes a compressor 21, a condenser 22, an evaporator 23, a low pressure regulating valve 24, and an expansion valve 25.
  • the compressor 21, the condenser 22, the low pressure regulating valve 24, and the expansion valve 25 are all located in a sealed state.
  • the outside of the cavity 1, the evaporator 23 is located inside the sealed cavity 1, wherein
  • the outlet of the compressor 21 is connected to the inlet of the condenser 22; the outlet of the condenser 22 is connected to the inlet of the evaporator 23 via an expansion valve 25;
  • the outlet of the evaporator 23 is connected to the inlet of the compressor 21 via a low pressure regulating valve (KVL) 24.
  • KVL low pressure regulating valve
  • the compressor 21 first compresses the vaporous refrigerant by high pressure and then delivers it to the condenser 22, which cools the vaporous refrigerant to a liquid state, and delivers the cooled high-pressure liquid refrigerant to the evaporator 23 via the expansion valve 25.
  • the refrigerant absorbs the heat in the sealed chamber 1 to condense the moisture in the sealed chamber 1, and the refrigerant in the evaporator 23 changes from a high-pressure liquid to a low-pressure vapor, and then flows through the low-pressure regulating valve 24.
  • the next cycle is performed.
  • a vapor-liquid separator 26 may be connected between the compressor 21 and the low-pressure regulating valve 24. For separating the liquid in the refrigerant, only the vaporous refrigerant is returned to the compressor 21 for the next cycle, and the separated liquid refrigerant can be again sent to the evaporator 23 for use.
  • an oily substance for dissolving the refrigerant may be present in the circulation duct of the cooling device 2, and in order to recycle the oily substance, an oil separator 27 and an oil of the oil separator 27 may be connected between the compressor 21 and the condenser 22. The outlet is connected to the compressor 21. Further, in order to filter impurities in the refrigerant and improve the efficiency of cooling and condensation, a drying filter 28 may be connected between the condenser 22 and the expansion valve 25 for filtering the refrigerant.
  • a water cooler 29 may be connected between the condenser 22 and the drying filter 28 to perform secondary cooling of the refrigerant to improve the cooling and condensation effect of the entire temperature reducing device 2.
  • the cooling device 2 can also adopt other implementations in the prior art, which are not described herein. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; the invention is modified or equivalently substituted without departing from the spirit and scope of the invention. Within the scope of protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Drying Of Solid Materials (AREA)

Description

陶壳与蜡模脱离的方法及装置 技术领域 本发明涉及精密铸造工艺, 特别涉及一种陶壳与蜡模脱离的方法及装置。 背景技术 精密铸造是相对于传统铸造工艺而言的一种铸造方法, 它能够获得相对准确的形 状和较高的铸造精度。 精密铸造的工艺过程为: 首先, 制作蜡模, 该蜡模与所需铸造 的产品大小形状相一致, 然后, 在所制作的蜡模表面形成陶壳, 随后, 对所述陶壳进 行脱蜡处理(将其内部的蜡模熔化后去除), 最后, 向脱蜡处理后的陶壳内浇注金属材 料, 待金属材料冷却凝固后, 破碎去除所述陶壳, 得到的铸件即为所需的产品。
现有技术中, 在对陶壳进行脱蜡处理时, 是直接将带有蜡模的陶壳放入高温炉中 进行加热, 使蜡模熔化并从陶壳中流出, 从而达到脱蜡的目的。 上述脱蜡方式存在如下两个缺点: 一是陶壳各部分厚度一般不均匀, 厚度较薄的 地方蜡模熔化较快, 而厚度较厚的地方蜡模熔化较慢, 熔化后的蜡受到阻碍无法及时 流出, 并且由于受热膨胀, 从而可能会撑裂陶壳, 造成陶壳的损坏, 进而影响铸件的 质量; 二是由于蜡模与陶壳接触紧密, 可能会发生脱蜡不完全的现象, 从而也会影响 铸件的质量。 发明内容 本发明提供一种陶壳与蜡模脱离的方法及装置, 它能够使陶壳与蜡模相脱离, 从 而保证在脱蜡时陶壳不会被撑裂, 同时避免脱蜡不完全的现象。
为达到上述目的, 本发明采用如下技术方案: 一种陶壳与蜡模脱离的方法, 包括: 将带有蜡模的陶壳放入密封腔体中;
对所述密封腔体进行抽真空; 对所述抽真空后的密封腔体进行降温, 使所述蜡模缩小体积, 从而使所述陶壳与 蜡模相脱离。 作为对上述技术方案的优化, 所述抽真空后的密封腔体的真空度小于 280毫米水 银柱。 作为对上述技术方案的优化, 所述降温到达的温度为 5〜- 5度。
一种陶壳与蜡模脱离的装置, 包括: 密封腔体, 用于放置带有蜡模的陶壳; 抽真空装置, 用于对所述密封腔体进行抽真空; 降温装置, 用于对所述抽真空后的密封腔体进行降温, 使所述蜡模缩小体积, 从 而使所述陶壳与蜡模相脱离。 作为对上述技术方案的优化, 所述抽真空装置为真空泵, 所述真空泵与所述密封 腔体相连接。 作为对上述技术方案的优化, 所述降温装置包括压缩机、 冷凝器、 蒸发器、 低压 调节阀和膨胀阀, 所述压缩机、 冷凝器、 低压调节阀和膨胀阀均位于所述密封腔体的 外部, 所述蒸发器位于所述密封腔体的内部, 其中, 所述压缩机的出口与所述冷凝器的入口相连; 所述冷凝器的出口经所述膨胀阀与所述蒸发器的入口相连; 所述蒸发器的出口经所述低压调节阀与所述压缩机的入口相连。 作为对上述技术方案的优化, 所述压缩机与低压调节阀之间连接有汽液分离器。 作为对上述技术方案的优化, 所述压缩机与冷凝器之间连接有油分离器, 所述油 分离器的油出口连接至所述压缩机。 作为对上述技术方案的优化, 所述冷凝器与膨胀阀之间连接有干燥过滤器。 作为对上述技术方案的优化, 所述冷凝器与干燥过滤器之间连接有水冷却器。 本发明中, 由于对密封腔体进行了降温处理, 蜡模会因热胀冷缩而产生收缩, 从 而陶壳与蜡模之间会产生空隙, 两者相脱离。 同时, 本发明还对密封腔体进行了抽真 空, 抽真空时, 陶壳中的气体也会被抽出, 如果陶壳上还带有湿气的话, 陶壳上的湿 气就会被带出, 这样, 确保了陶壳处于干燥状态, 在后续进行降温处理时, 陶壳上就 不会结冰, 从而陶壳不会发生冰裂现象, 保证了陶壳的质量。 本发明中, 由于陶壳与 蜡模相脱离,所以在对陶壳进行脱蜡处理时, 高温空气会进入陶壳与蜡模之间的空隙, 使蜡模较快的熔化, 一方面, 节约了能源, 另一方面, 熔化后的蜡也能顺利地从陶壳 与蜡模之间的空隙中流出, 陶壳不会被撑裂, 脱蜡也会比较完全。 附图说明 图 1为本发明陶壳与蜡模脱离的方法实施例的流程示意图;
图 2为本发明陶壳与蜡模脱离的装置实施例的结构示意图; 图 3为图 2所示的装置实施例中降温装置的结构示意图。 具体实施方式 为解决现有技术中脱蜡时陶壳易被撑裂并且脱蜡不完全的问题, 本发明提供一种 陶壳与蜡模脱离的方法及装置。 下面结合附图对本发明作详细说明。 本发明提供一种陶壳与蜡模脱离的方法, 如图 1所示, 它包括:
步骤 S1 : 将带有蜡模的陶壳放入密封腔体中; 该密封腔体优选采用金属材料制成。
步骤 S2 : 对所述密封腔体进行抽真空; 本步骤中, 可以采用真空泵等抽真空设备对密封腔体进行抽真空。 步骤 S3 : 对所述抽真空后的密封腔体进行降温, 使所述蜡模缩小体积, 从而使所 述陶壳与蜡模相脱离。 本步骤中的降温可以采用多种降温方式, 例如对密封腔体外壳进行降温, 或者, 使用冷凝设备对密封腔体内的空气进行降温, 该两种方式均能达到使蜡模受冷而缩小 体积的目的。 实际应用时, 是在对陶壳加热进行脱蜡工艺之前, 采用本发明的方法。 本发明的 方法能够使陶壳与蜡模之间产生空隙, 两者相脱离, 但此时蜡模仍然位于陶壳中, 并 未从陶壳中去除。 本发明中, 由于对密封腔体进行了降温处理, 蜡模会因热胀冷缩而产生收缩, 从 而陶壳与蜡模之间会产生空隙, 两者相脱离。 同时, 本发明还对密封腔体进行了抽真 空, 抽真空时, 陶壳中的气体也会被抽出, 如果陶壳上还带有湿气的话, 陶壳上的湿 气就会被带出, 这样, 确保了陶壳处于干燥状态, 在后续进行降温处理时, 陶壳上就 不会结冰, 从而陶壳不会发生冰裂现象, 保证了陶壳的质量。 本发明中, 由于陶壳与 蜡模相脱离,所以在对陶壳进行脱蜡处理时, 高温空气会进入陶壳与蜡模之间的空隙, 使蜡模较快的熔化, 一方面, 节约了能源 (现有技术中, 蜡模熔化所需要的热量通过 陶壳传导, 蜡模熔化较慢, 能源消耗较多), 另一方面, 熔化后的蜡也能顺利地从陶壳 与蜡模之间的空隙中流出, 陶壳不会被撑裂, 脱蜡也会比较完全。 同时, 为了使陶壳上的湿气能充分扩散到密封腔体中, 确保陶壳处于干燥状态, 保证陶壳的质量,上述步骤 S2中抽真空后的密封腔体的真空度优选小于 280毫米水银 柱。 另外, 本发明中降温达到的温度越低, 蜡模体积收缩的速度就会越快, 陶壳脱蜡 就会越完全, 因此, 为了使陶壳脱蜡更完全, 上述步骤 S3中降温到达的温度最好采用 较低的温度, 优选可以为 5〜- 5度。 与上述陶壳与蜡模脱离的方法相对应,本发明还提供一种陶壳与蜡模脱离的装置, 如图 2所示, 它包括: 密封腔体 1, 用于放置带有蜡模的陶壳;
抽真空装置 3, 用于对密封腔体 1进行抽真空; 降温装置 2, 用于对抽真空后的密封腔体 1进行降温, 使蜡模缩小体积, 从而使 陶壳与蜡模相脱离。 本发明的装置应用时, 是先将带有蜡模的陶壳放入密封腔体 1中, 然后利用抽真 空装置 3对密封腔体 1进行抽真空, 最后利用降温装置 2对抽真空后的密封腔体 1进 行降温, 使蜡模缩小体积, 从而使陶壳与蜡模相脱离。 本发明中, 由于对密封腔体 1进行了降温处理, 蜡模会因热胀冷缩而产生收缩, 从而陶壳与蜡模之间会产生空隙, 两者相脱离。 同时, 本发明还对密封腔体 1进行了 抽真空, 抽真空时, 陶壳中的气体也会被抽出, 如果陶壳上还带有湿气的话, 陶壳上 的湿气就会被带出, 这样, 确保了陶壳处于干燥状态, 在后续进行降温处理时, 陶壳 上就不会结冰, 从而陶壳不会发生冰裂现象, 保证了陶壳的质量。 本发明中, 由于陶 壳与蜡模相脱离, 所以在对陶壳进行脱蜡处理时, 高温空气会进入陶壳与蜡模之间的 空隙, 使蜡模较快的熔化, 一方面, 节约了能源, 另一方面, 熔化后的蜡也能顺利地 从陶壳与蜡模之间的空隙中流出, 陶壳不会被撑裂, 脱蜡也会比较完全。
本发明中, 抽真空装置 3优选采用现有技术中常用的真空泵, 将真空泵与密封腔 体 1相连接, 即可实现对密封腔体 1抽真空。 而降温装置 2优选采用对密封腔体 1内 的空气进行降温, 从而达到使蜡模缩小体积的目的, 具体地, 降温装置 2可以采用如 下方案:
如图 3所示, 降温装置 2包括压缩机 21、 冷凝器 22、 蒸发器 23、 低压调节阀 24 和膨胀阀 25, 压缩机 21、 冷凝器 22、 低压调节阀 24和膨胀阀 25均位于密封腔体 1 的外部, 蒸发器 23位于密封腔体 1的内部, 其中,
压缩机 21的出口与冷凝器 22的入口相连; 冷凝器 22的出口经膨胀阀 25与蒸发器 23的入口相连;
蒸发器 23的出口经低压调节阀 (KVL) 24与压缩机 21的入口相连。 运行时, 压缩机 21首先利用高压将汽态冷媒压缩后输送至冷凝器 22中, 冷凝器 22将汽态冷媒冷却为液态, 并将冷却形成的高压液态冷媒经膨胀阀 25输送至蒸发器 23, 在蒸发器 23中冷媒吸收密封腔体 1中的热量, 使密封腔体 1中的湿气冷凝, 同时 蒸发器 23中的冷媒由高压液态变为低压汽态, 然后经低压调节阀 24流回至压缩机 21 中, 进行下一次循环过程。
在上述实施例中, 冷媒从蒸发器 23中流出后, 可能是汽液共存, 因此, 为了保 护压缩机 21不受损坏, 压缩机 21与低压调节阀 24之间可以连接有汽液分离器 26, 用于将冷媒中的液体分离出来,仅使汽态冷媒流回至压缩机 21中进行下一次循环, 分 离出来的液体冷媒可以再次输送到蒸发器 23中进行使用。
同时, 在降温装置 2的循环管道中会存在用于溶解冷媒的油性物质, 为了回收利 用该油性物质, 压缩机 21与冷凝器 22之间可以连接有油分离器 27, 油分离器 27的 油出口再连接至压缩机 21。 并且, 为了过滤冷媒中杂质, 提高降温冷凝的效率, 冷凝 器 22与膨胀阀 25之间还可以连接有干燥过滤器 28, 用于对冷媒进行过滤。 另外, 为了进一步提高对汽态冷媒的冷却效果, 冷凝器 22与干燥过滤器 28之间 还可以连接有水冷却器 29, 以对冷媒进行二次冷却, 提高整个降温装置 2的降温冷凝 效果。 本发明中, 降温装置 2除了采用上述结构外, 还可以采用现有技术中的其它实现 方式, 此处不一一赘述。 以上所述仅为本发明的较佳实施例, 并非用来限定本发明的实施范围; 如果不脱 离本发明的精神和范围, 对本发明进行修改或者等同替换, 均应涵盖在本发明权利要 求的保护范围当中。

Claims

权 利 要 求
1. 一种陶壳与蜡模脱离的方法, 其特征在于, 包括:
将带有蜡模的陶壳放入密封腔体中;
对所述密封腔体进行抽真空;
对所述抽真空后的密封腔体进行降温, 使所述蜡模缩小体积, 从而使所述陶壳与 蜡模相脱离。
2. 根据权利要求 1所述的方法, 其特征在于, 所述抽真空后的密封腔体的真空 度小于 280毫米水银柱。
3. 根据权利要求 1或 2所述的方法,其特征在于,所述降温到达的温度为 5〜- 5 度。
4. 一种陶壳与蜡模脱离的装置, 其特征在于, 包括:
密封腔体, 用于放置带有蜡模的陶壳;
抽真空装置, 用于对所述密封腔体进行抽真空;
降温装置, 用于对所述抽真空后的密封腔体进行降温, 使所述蜡模缩小体积, 从 而使所述陶壳与蜡模相脱离。
5. 根据权利要求 4所述的装置, 其特征在于, 所述抽真空装置为真空泵, 所述 真空泵与所述密封腔体相连接。
6. 根据权利要求 4或 5所述的装置, 其特征在于, 所述降温装置包括压缩机、 冷凝器、 蒸发器、 低压调节阀和膨胀阀, 所述压缩机、 冷凝器、 低压调节阀和膨胀阀 均位于所述密封腔体的外部, 所述蒸发器位于所述密封腔体的内部, 其中,
所述压缩机的出口与所述冷凝器的入口相连;
所述冷凝器的出口经所述膨胀阀与所述蒸发器的入口相连;
所述蒸发器的出口经所述低压调节阀与所述压缩机的入口相连。
7. 根据权利要求 6所述的装置, 其特征在于, 所述压缩机与低压调节阀之间连 接有汽液分离器。
8. 根据权利要求 7所述的装置, 其特征在于, 所述压缩机与冷凝器之间连接有 油分离器, 所述油分离器的油出口连接至所述压缩机。
9. 根据权利要求 8所述的装置, 其特征在于, 所述冷凝器与膨胀阀之间连接有 干燥过滤器。
10. 根据权利要求 9所述的装置, 其特征在于, 所述冷凝器与干燥过滤器之间连 接有水冷却器。
PCT/CN2009/074714 2009-09-15 2009-10-30 陶壳与蜡模脱离的方法及装置 WO2011032326A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101729889A CN102019352A (zh) 2009-09-15 2009-09-15 陶壳与蜡模脱离的方法及装置
CN200910172988.9 2009-09-15

Publications (1)

Publication Number Publication Date
WO2011032326A1 true WO2011032326A1 (zh) 2011-03-24

Family

ID=43758028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074714 WO2011032326A1 (zh) 2009-09-15 2009-10-30 陶壳与蜡模脱离的方法及装置

Country Status (2)

Country Link
CN (1) CN102019352A (zh)
WO (1) WO2011032326A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554126A (zh) * 2012-01-13 2012-07-11 蔡欲期 陶壳脱蜡的方法及装置
CN103372631B (zh) * 2012-04-13 2016-10-19 蔡欲期 陶壳快速干燥方法及装置
CN106392007B (zh) * 2016-06-12 2021-06-29 蔡耀名 陶壳脱蜡的方法及装置
CN108709666A (zh) * 2018-08-29 2018-10-26 中国环境科学研究院 一种基于射流风洞的风速、压力、温度标定系统
CN113059120B (zh) * 2021-03-08 2022-11-18 康硕(江西)智能制造有限公司 蜡模3d打印机及其打印方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583468A (en) * 1969-06-27 1971-06-08 Nalco Chemical Co Precision metal casting molds
US3770044A (en) * 1972-02-07 1973-11-06 Gen Motors Corp Method of dewaxing shell molds
JPH0386354A (ja) * 1989-08-30 1991-04-11 Chuzo Gijutsu Fukiyuu Kyokai ロストワックス鋳造用セラミックシェル鋳型の乾燥方法
JPH06285584A (ja) * 1993-04-06 1994-10-11 Mitsubishi Materials Corp ロストワックス鋳型の作製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583468A (en) * 1969-06-27 1971-06-08 Nalco Chemical Co Precision metal casting molds
US3770044A (en) * 1972-02-07 1973-11-06 Gen Motors Corp Method of dewaxing shell molds
JPH0386354A (ja) * 1989-08-30 1991-04-11 Chuzo Gijutsu Fukiyuu Kyokai ロストワックス鋳造用セラミックシェル鋳型の乾燥方法
JPH06285584A (ja) * 1993-04-06 1994-10-11 Mitsubishi Materials Corp ロストワックス鋳型の作製方法

Also Published As

Publication number Publication date
CN102019352A (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
WO2011032326A1 (zh) 陶壳与蜡模脱离的方法及装置
KR101464838B1 (ko) 세라믹주형 쾌속건조방법과 장치 및 세라믹주형
JPWO2009013807A1 (ja) クライオポンプ
JP2003190892A (ja) マルチ密閉式洗浄,真空乾燥の方法及びその装置
CN106392007B (zh) 陶壳脱蜡的方法及装置
TW201116349A (en) Process and apparatus for releasing a ceramic shell from a wax mold
CN103949599B (zh) 一种棒状硅材料铸造模具及其铸造方法
CN107774920A (zh) 一种解决陶瓷型壳在脱蜡过程中开裂的方法
TWM535607U (zh) 陶殼脫蠟的裝置
TWM535608U (zh) 陶殼快速乾燥裝置
JP2002267362A (ja) エネルギー節約型乾燥液化機
CN102554126A (zh) 陶壳脱蜡的方法及装置
TW201330951A (zh) 陶殼脫蠟的方法及裝置
JPH0386354A (ja) ロストワックス鋳造用セラミックシェル鋳型の乾燥方法
CN115070005B (zh) 一种真空感应熔炼离心铸造设备
RU2273674C1 (ru) Способ вакуумной сепарации губчатого титана и устройство для его осуществления
TW202400950A (zh) 均溫板製法及均溫板
CN220951924U (zh) 一种新型硅钢退火炉底座结构
KR101242705B1 (ko) 마그네슘 응축장치 및 마그네슘 응축장치가 포함된 마그네슘 제조장치
TW201742848A (zh) 陶殼快速乾燥方法及裝置
CN102274952A (zh) 镁合金铸造薄壁结构件工艺方法
CN210434196U (zh) 过滤装置
CN102615245A (zh) 陶壳快速干燥装置
JPH11111705A (ja) 半導体製造装置
CN207674749U (zh) 一种风冷冷水机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849379

Country of ref document: EP

Kind code of ref document: A1