WO2011030738A1 - プラズマトーチおよびプラズマアーク溶接方法 - Google Patents
プラズマトーチおよびプラズマアーク溶接方法 Download PDFInfo
- Publication number
- WO2011030738A1 WO2011030738A1 PCT/JP2010/065264 JP2010065264W WO2011030738A1 WO 2011030738 A1 WO2011030738 A1 WO 2011030738A1 JP 2010065264 W JP2010065264 W JP 2010065264W WO 2011030738 A1 WO2011030738 A1 WO 2011030738A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- electrode
- plasma
- arc
- plasma torch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/341—Arrangements for providing coaxial protecting fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/02—Plasma welding
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3457—Nozzle protection devices
Definitions
- the present invention relates to a plasma torch and a plasma arc welding method. Specifically, the present invention relates to a plasma torch and a plasma arc welding method used for plasma arc welding.
- the welding plasma torch includes, for example, a rod-shaped electrode, a first nozzle that surrounds the electrode and ejects plasma gas, and a second nozzle that surrounds the first nozzle and ejects shield gas. (See Patent Document 1).
- an arc is generated by applying a voltage between the electrode and the non-weld material while ejecting plasma gas from the first nozzle. At this time, shield gas is blown out from the second nozzle so as to surround the arc, and nitrogen and oxygen in the atmosphere are prevented from flowing into the weld.
- tailored blank materials are formed by butt welding two types of plate materials having different thicknesses.
- the above-described welding plasma torch is used, an undercut in which the base material is recessed along both ends of the weld bead occurs.
- the thickness of the portion where the undercut occurs is considerably reduced. Therefore, there is a possibility that the strength of the tailored blank material cannot be secured.
- One or more embodiments of the present invention provide a plasma torch and a plasma arc welding method capable of ensuring the strength of a workpiece after welding when welding workpieces having different thicknesses.
- a plasma torch (for example, plasma torch 1 described later) used for plasma arc welding is provided so as to surround a rod-shaped electrode (for example, electrode 10 described later) and the electrode. And a cylindrical first nozzle (for example, a first nozzle 11 described later) that ejects plasma gas and a cylindrical second nozzle (for example, described later) that surrounds the first nozzle and ejects a shielding gas.
- a jet nozzle (for example, a second jet nozzle 121 described later) of the second nozzle faces a direction substantially parallel to the axial direction of the electrode or a direction away from the electrode.
- a plurality of groove portions (for example, a groove portion 141 described later) inclined with respect to the axial direction of the electrode are formed.
- the shield gas is surrounded from the second nozzle to surround the arc. Erupts.
- a plurality of grooves that are inclined with respect to the axial direction of the electrode are formed on the outer peripheral surface of the first nozzle or the inner peripheral surface of the second nozzle. Therefore, the shield gas ejected from the second nozzle flows spirally and is sprayed on the surface of the molten pool in a direction rotating around the arc as a rotation center.
- the molten pool extends toward the rear of the plasma arc in plan view. Then, the molten metal on the rear side in the traveling direction of the plasma arc is pushed and moved by the shielding gas to be blown. Therefore, when welding workpieces with different thicknesses, the molten metal is moved by moving the molten metal on the back side of the plasma arc in the traveling direction toward the thinner workpiece by spraying shield gas onto the surface of the molten pool.
- the recessed portion of the base material of the thinner workpiece can be filled with metal. As a result, the plate thickness of the thinner workpiece can be prevented from being reduced by undercut, and the strength of the workpiece after welding can be ensured.
- the jet nozzle of the second nozzle is directed in a direction substantially parallel to the axial direction of the electrode or in a direction away from the electrode.
- the ejection port of the second nozzle is directed in the direction away from the electrode, when the shielding gas is ejected from the second nozzle, the injected shielding gas spreads in the direction away from the arc. Therefore, since the shielding gas does not directly hit the arc, it is possible to prevent the arc from being disturbed and to stabilize the welding.
- the outlet of the second nozzle is directed in a direction substantially parallel to the axial direction of the electrode, a negative pressure is applied to the outside of the outlet of the second nozzle even if the shield gas is ejected from the second nozzle. Therefore, the sprayed shielding gas spreads away from the arc. Therefore, since the shielding gas does not directly hit the arc, it is possible to prevent the arc from being disturbed and to stabilize the welding.
- Japanese Patent No. 3205540 discloses a plasma torch for cutting.
- this plasma torch for cutting since the shield gas hits the arc, the arc is disturbed and the welding may not be stable.
- the groove portion may extend to the outlet of the second nozzle.
- the jet nozzle of the second nozzle may be located closer to the base end side in the axial direction of the electrode than the jet nozzle of the first nozzle.
- the shield gas injected from the second nozzle easily hits the arc directly, There is a problem of being disturbed.
- the shield gas is prevented from directly hitting the arc and the arc is prevented from being disturbed. it can.
- the plasma arc welding method includes spraying a shield gas so as to flow spirally along the arc surface and spraying it on the surface of the molten pool. It consists of a step of moving the molten metal in the molten pool in a predetermined direction.
- the molten metal in the molten pool is moved in a predetermined direction by the sprayed shield gas. Therefore, when welding workpieces having different thicknesses, the molten metal is moved toward the thinner workpiece, so that the depressed portion of the base material of the thinner workpiece is filled with the moved molten metal. As a result, the plate thickness of the thinner workpiece can be prevented from being reduced by undercut, and the strength of the workpiece after welding can be ensured. Further, since the shielding gas is ejected so as to flow spirally along the surface of the arc, since the shielding gas does not directly hit the arc, the arc is prevented from being disturbed and welding is stabilized.
- the shielding gas is sprayed on the surface of the molten pool and the molten metal in the molten pool is moved in a predetermined direction, the rise of the molten pool can be leveled before the molten portion solidifies. Moreover, compared with the case where the molten metal in a molten pool is moved with a wire, flow volume can be increased. Further, compared to the case where the molten metal in the molten pool is moved by a magnetic field, the equipment can be downsized, and even if the advance angle is set for the arc, it is possible to prevent the arc from being bent and heat reduced.
- the shielding gas may be ejected so that the flow behind the arc in the molten pool is directed toward the thinner workpiece.
- FIG. 1 is a cross-sectional view of a plasma torch according to an exemplary embodiment of the present invention. It is a perspective view of the 1st nozzle of the plasma torch concerning the embodiment. It is a perspective view for demonstrating operation
- 5 (a) and 5 (b) are diagrams showing experimental results of the comparative example, and FIG. 5 (c) is a diagram showing experimental results of the example of the present invention.
- FIG. 1 is a cross-sectional view of a plasma torch 1 according to an exemplary embodiment.
- the plasma torch 1 is provided with a rod-shaped electrode 10, a cylindrical first nozzle 11 that surrounds the electrode 10 and ejects plasma gas, and is disposed around the first nozzle 11 to eject shield gas.
- a second nozzle 12 having a cylindrical shape.
- a circular first ejection port 111 is formed at the tip of the first nozzle 11, and plasma gas is ejected through the first ejection port 111.
- the first nozzle 11 includes a cylindrical inner cylinder portion 13 and an outer cylinder portion 14 provided so as to surround the inner cylinder portion 13.
- FIG. 2 is a perspective view of the outer cylinder portion 14 of the first nozzle 11.
- the distal end portion of the outer cylindrical portion 14 has a substantially conical shape that becomes thinner toward the distal end.
- a plurality of groove portions 141 that are inclined with respect to the axial direction of the electrode 10 are formed on the outer peripheral surface of the distal end portion of the outer cylindrical portion 14. It is formed.
- the groove part 141 extends to the tip of the outer cylinder part 14.
- an annular second ejection port 121 is formed at the tip of the second nozzle 12, and the shielding gas is ejected through the second ejection port 121.
- the jet nozzle 121 of the second nozzle 12 is directed away from the electrode 10 toward the tip.
- the ejection port 121 of the second nozzle 12 is located closer to the proximal end side in the axial direction of the electrode 10 than the ejection port 111 of the first nozzle 11.
- the groove 141 of the first nozzle 11 described above extends to the ejection port 121 of the second nozzle 12.
- the work W 1 that is a thin plate material and the work W 2 that is a plate material that is thicker than the work W 1 are butt-welded to form a tailored blank material.
- an arc A is generated by being applied between the electrode 10 and the workpieces W 1 and W 2 while plasma gas is ejected from the first ejection port 111 of the first nozzle 11. Further, a shielding gas is ejected from the second ejection port 121 of the second nozzle 12 so as to surround the arc A.
- the shield gas flows in the direction of the white arrow in FIG. 3 along the plurality of grooves 141 and is ejected from the second ejection port 121.
- the jetted shield gas flows in a spiral manner along the surface of the arc A while spreading in a direction away from the arc A, and rotates in the direction of the arc A with respect to the surface of the molten pool P, that is, FIG. Sprayed in the direction of the middle black arrow.
- shield gas is sprayed on eight locations of the workpieces W 1 and W 2 , and the direction in which the shield gas flows at each location is indicated by black arrows in FIG. 4.
- Comparative Example 1 plate materials W 1 and W 2 having different thicknesses were butt welded using a conventional plasma torch. In Comparative Example 1, the welding speed was 1 m / min. In Comparative Example 2, plate materials W 1 and W 2 having different thicknesses were butt-welded using a conventional plasma torch. In Comparative Example 2, the welding speed was 1.5 m / min. In the examples, plate materials W 1 and W 2 having different thicknesses were butt welded using the plasma torch of the present invention. In this example, the welding speed was 1.5 m / min.
- FIG. 5 (a) shows the experimental results of Comparative Example 1
- FIG. 5 (b) shows the experimental results of Comparative Example 2
- FIG. 5 (c) shows the experimental results of the Example. From these experimental results, when the conventional plasma torch is used, if the welding speed is slowed down to 1 m / min, the undercut of the thinner workpiece W 1 is relatively small, but the welding speed is increased to 1. When 5m, it can be seen that the thinner of the undercut of the workpiece W 1 is increased. In contrast, in the case of using the plasma torch of the present invention, even if the welding speed as a min rate 1.5 m, it can be seen that can reduce the thinner undercut the workpiece W 1 of.
- the plasma gas is ejected from the first nozzle 11, it is applied between the electrode 10 and the workpieces W 1 and W 2 to generate an arc, and the second nozzle 12 surrounds the periphery of the arc. Shield gas is spouted out. At this time, a plurality of grooves 141 inclined with respect to the axial direction of the electrode 10 are formed on the outer peripheral surface of the first nozzle 11. Therefore, the shield gas ejected from the second nozzle 12 flows spirally and is blown against the surface of the molten pool P in a direction rotating around the arc A as the rotation center.
- the molten pool P extends toward the rear of the arc A in a plan view. Accordingly, the molten metal on the rear side in the traveling direction of the arc A is pushed and moved in a predetermined direction by the shield gas to be blown. Therefore, when welding the workpieces W 1 and W 2 having different thicknesses, the shield gas is sprayed on the surface of the molten pool P, and the molten metal on the rear side in the arc traveling direction is moved toward the thinner workpiece W 1 . It is, it is possible to fill the recessed portion of the base material of the work W 1 of the thinner the molten metal and the movement. As a result, the plate thickness of the thinner workpiece can be suppressed from being reduced by undercut, and the strength of the workpiece after welding can be ensured.
- the shield gas directly hits the arc. Can prevent the arc from being disturbed.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mechanical Engineering (AREA)
- Plasma Technology (AREA)
- Arc Welding In General (AREA)
Abstract
Description
(1)第1ノズル11からプラズマガスを噴出させつつ、電極10とワークW1、W2との間に印加してアークを発生させるとともに、第2ノズル12から、アークの周囲を囲むようにシールドガスを噴出させる。このとき、第1ノズル11の外周面に、電極10の軸方向に対して傾斜した複数の溝部141を形成しておく。よって、第2ノズル12から噴出したシールドガスは、螺旋状に流れて、溶融池Pの表面に対して、アークAを回転中心として回転する方向に吹き付けられる。この状態で、溶接方向にアークAを移動させると、溶融池Pは、平面視でアークAの後方に向かって延びることになる。したがって、吹き付けるシールドガスにより、アークAの進行方向後側の溶融金属が所定方向に押されて移動する。よって、厚みの異なるワークW1、W2を溶接する場合、シールドガスを溶融池Pの表面に吹き付けて、アークの進行方向後側の溶融金属を、薄い方のワークW1に向かって移動させることで、この移動した溶融金属により薄い方のワークW1の母材の凹んだ部分を埋めることができる。その結果、薄い方のワークの板厚がアンダカットにより薄くなるのを抑制して、溶接後のワークの強度を確保できる。
10 電極
11 第1ノズル
12 第2ノズル
111 第1噴出口
121 第2噴出口
141 溝部
P 溶融池
W1、W2 ワーク
Claims (5)
- プラズマアーク溶接に用いられるプラズマトーチであって、
棒状の電極と、
前記電極を囲んで設けられてプラズマガスを噴出する円筒形状の第1ノズルと、
前記第1ノズルを囲んで設けられてシールドガスを噴出する円筒形状の第2ノズルと、
を具備し、
前記第2ノズルの噴出口は、前記電極の軸方向に対して略平行な方向または当該電極から離れる方向に拡がっており、
前記第1ノズルの外周面または前記第2ノズルの内周面には、前記電極の軸方向に対して傾斜した複数の溝部が形成される、
プラズマトーチ。 - 前記溝部は前記第2ノズルの噴出口まで延びている、請求項1に記載のプラズマトーチ。
- 前記第2ノズルの噴出口は、前記第1ノズルの噴出口よりも、前記電極の軸方向の基端側に位置している、
請求項1または2に記載のプラズマトーチ。 - シールドガスをアーク表面に沿って螺旋状に流れるように噴出させて溶融池の表面に吹き付け、
吹き付けられたシールドガスにより前記溶融池内の溶融金属を所定方向に移動させる、
プラズマアーク溶接方法。 - 前記溶融池内の前記アークの進行方向後側の溶融金属が薄い方のワークに向かうように前記シールドガスを噴出させ、厚みの異なるワークを突き合わせ溶接する、
請求項4に記載のプラズマアーク溶接方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2773063A CA2773063A1 (en) | 2009-09-10 | 2010-09-06 | Plasma torch and plasma-arc welding method |
CN201080040198.6A CN102481657B (zh) | 2009-09-10 | 2010-09-06 | 等离子焊炬和等离子弧焊接方法 |
US13/391,403 US8525068B2 (en) | 2009-09-10 | 2010-09-06 | Plasma torch with swirl-inducing nozzle and method of using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-208980 | 2009-09-10 | ||
JP2009208980A JP5364517B2 (ja) | 2009-09-10 | 2009-09-10 | プラズマトーチおよびプラズマアーク溶接方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011030738A1 true WO2011030738A1 (ja) | 2011-03-17 |
Family
ID=43732410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/065264 WO2011030738A1 (ja) | 2009-09-10 | 2010-09-06 | プラズマトーチおよびプラズマアーク溶接方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8525068B2 (ja) |
JP (1) | JP5364517B2 (ja) |
CN (1) | CN102481657B (ja) |
CA (1) | CA2773063A1 (ja) |
WO (1) | WO2011030738A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013051064A (ja) * | 2011-08-30 | 2013-03-14 | Nippon Steel & Sumikin Welding Co Ltd | プラズマトーチ |
JP7509727B2 (ja) | 2021-08-06 | 2024-07-02 | 株式会社神戸製鋼所 | シールド治具及びガスシールドアーク溶接装置 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008032509A1 (de) * | 2008-07-10 | 2010-01-14 | Epcos Ag | Heizungsvorrichtung und Verfahren zur Herstellung der Heizungsvorrichtung |
US20130119040A1 (en) * | 2011-11-11 | 2013-05-16 | Lincoln Global, Inc. | System and method for adaptive fill welding using image capture |
CN104227242B (zh) * | 2014-09-10 | 2016-03-02 | 北京工业大学 | 中心负压等离子弧激光同轴复合焊接装置及方法 |
CN107000107B (zh) * | 2015-01-28 | 2019-05-10 | 本田技研工业株式会社 | 电弧焊接装置以及方法 |
DE102015121252A1 (de) * | 2015-12-07 | 2017-06-08 | Plasmatreat Gmbh | Vorrichtung zur Erzeugung eines atmosphärischen Plasmastrahls und Verfahren zur Behandlung der Oberfläche eines Werkstücks |
CN105792497B (zh) * | 2016-01-27 | 2017-12-26 | 西安交通大学 | 一种等离子体喷射触发高压开关用抗烧蚀旋转电弧电极 |
TWI674041B (zh) * | 2017-12-21 | 2019-10-01 | 雷立強光電科技股份有限公司 | 一種大氣電漿產生裝置 |
CN109551089A (zh) * | 2018-11-21 | 2019-04-02 | 湖州锐舰机械科技有限公司 | 一种带有防护功能的电焊装置 |
JP7260451B2 (ja) * | 2019-10-11 | 2023-04-18 | 日鉄溶接工業株式会社 | インサートチップ、インサートキャップ、プラズマ溶接トーチ及びプラズマ溶接装置 |
US20230133547A1 (en) * | 2019-11-26 | 2023-05-04 | Lubbe Steven | Devices, systems, and methods for 3d printing |
CN111673246B (zh) * | 2019-11-29 | 2021-08-31 | 山东大学 | 一种紧凑型大熔深等离子弧焊枪 |
JP7376859B1 (ja) * | 2023-04-21 | 2023-11-09 | 太郎 神野 | トーチノズル |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6228084A (ja) * | 1985-07-30 | 1987-02-06 | Akira Kanekawa | プラズマ・ジエツト・ト−チ |
JPS6356977U (ja) * | 1986-10-03 | 1988-04-16 | ||
JPH04206399A (ja) * | 1990-11-30 | 1992-07-28 | Ishikawajima Harima Heavy Ind Co Ltd | プラズマトーチ |
JPH07241682A (ja) * | 1994-03-07 | 1995-09-19 | Mitsubishi Materials Corp | 溶接トーチおよび肉盛溶接装置 |
JP2005138151A (ja) * | 2003-11-07 | 2005-06-02 | Mitsubishi Heavy Ind Ltd | 溶接方法及び溶接システム |
JP2005279653A (ja) * | 2004-03-26 | 2005-10-13 | Nissan Motor Co Ltd | 溶接状態の検査方法と検査装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3205540B2 (ja) | 1998-12-25 | 2001-09-04 | 株式会社田中製作所 | プラズマトーチ用ノズル |
AU2001253059B2 (en) * | 2000-03-31 | 2006-06-08 | Thermal Dynamics Corporation | Plasma arc torch and method for longer life of plasma arc torch consumable parts |
KR20080005946A (ko) * | 2005-05-11 | 2008-01-15 | 하이퍼썸, 인크. | 플라즈마 아크 토치 애플리케이션에서의 개별 가스 젯의생성 |
US8097828B2 (en) * | 2006-05-11 | 2012-01-17 | Hypertherm, Inc. | Dielectric devices for a plasma arc torch |
EP2022299B1 (en) * | 2007-02-16 | 2014-04-30 | Hypertherm, Inc | Gas-cooled plasma arc cutting torch |
JP2008284580A (ja) | 2007-05-16 | 2008-11-27 | Fuji Heavy Ind Ltd | プラズマトーチ |
-
2009
- 2009-09-10 JP JP2009208980A patent/JP5364517B2/ja not_active Expired - Fee Related
-
2010
- 2010-09-06 WO PCT/JP2010/065264 patent/WO2011030738A1/ja active Application Filing
- 2010-09-06 CN CN201080040198.6A patent/CN102481657B/zh not_active Expired - Fee Related
- 2010-09-06 CA CA2773063A patent/CA2773063A1/en not_active Abandoned
- 2010-09-06 US US13/391,403 patent/US8525068B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6228084A (ja) * | 1985-07-30 | 1987-02-06 | Akira Kanekawa | プラズマ・ジエツト・ト−チ |
JPS6356977U (ja) * | 1986-10-03 | 1988-04-16 | ||
JPH04206399A (ja) * | 1990-11-30 | 1992-07-28 | Ishikawajima Harima Heavy Ind Co Ltd | プラズマトーチ |
JPH07241682A (ja) * | 1994-03-07 | 1995-09-19 | Mitsubishi Materials Corp | 溶接トーチおよび肉盛溶接装置 |
JP2005138151A (ja) * | 2003-11-07 | 2005-06-02 | Mitsubishi Heavy Ind Ltd | 溶接方法及び溶接システム |
JP2005279653A (ja) * | 2004-03-26 | 2005-10-13 | Nissan Motor Co Ltd | 溶接状態の検査方法と検査装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013051064A (ja) * | 2011-08-30 | 2013-03-14 | Nippon Steel & Sumikin Welding Co Ltd | プラズマトーチ |
JP7509727B2 (ja) | 2021-08-06 | 2024-07-02 | 株式会社神戸製鋼所 | シールド治具及びガスシールドアーク溶接装置 |
Also Published As
Publication number | Publication date |
---|---|
US8525068B2 (en) | 2013-09-03 |
JP5364517B2 (ja) | 2013-12-11 |
US20120145681A1 (en) | 2012-06-14 |
CN102481657B (zh) | 2015-04-01 |
JP2011056546A (ja) | 2011-03-24 |
CA2773063A1 (en) | 2011-03-17 |
CN102481657A (zh) | 2012-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011030738A1 (ja) | プラズマトーチおよびプラズマアーク溶接方法 | |
JP5826057B2 (ja) | 複合溶接方法及び複合溶接用の溶接トーチ | |
JP5039757B2 (ja) | レーザ加工装置におけるレーザ加工ヘッド | |
JP6373098B2 (ja) | 二重ノズルを備えた溶接装置 | |
JP6495955B2 (ja) | レーザ切断加工方法及びノズル並びにレーザ加工装置 | |
JP2010234373A (ja) | レーザ加工用ノズル及びレーザ加工装置 | |
CN102896408A (zh) | 一种氩弧焊焊枪 | |
US8513564B2 (en) | Plasma welding torch having a nozzle with first and second orifices, and welding method using plasma welding torch having a nozzle with first and second orifices | |
JP5898238B2 (ja) | アーク溶接方法及びプラズマトーチ | |
JP2013052395A (ja) | アーク溶接用トーチ | |
JP2007167879A (ja) | 溶接用コンタクトチップ及び溶接用トーチ | |
JP2007054872A (ja) | ガス被包アーク溶接用溶接トーチ | |
JP2018126745A (ja) | アーク溶接機の先端構造 | |
KR101754919B1 (ko) | 용접 토치용 노즐 | |
JPH1043865A (ja) | プラズマトーチ | |
JP2010284666A (ja) | アーク溶接用トーチ | |
JP7509727B2 (ja) | シールド治具及びガスシールドアーク溶接装置 | |
JP2019181541A (ja) | プラズマ粉体肉盛のインサートチップ、粉体噴出ガイドおよびプラズマ粉体肉盛トーチ | |
KR101937830B1 (ko) | 가스렌즈를 적용한 가스 메탈 아크 용접 토치헤드 | |
JP2011251316A (ja) | アーク溶接方法およびその装置 | |
JP2023073711A (ja) | ノズルカバー、溶接ノズル、カバー付き溶接ノズル | |
JP2010120018A (ja) | プラズマ溶接トーチ | |
KR101759100B1 (ko) | 용접 토치용 노즐 | |
JP2003220472A (ja) | ガスシールドアーク溶接用トーチのノズル | |
JP2017024015A (ja) | レーザ肉盛方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080040198.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10815335 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13391403 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2773063 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10815335 Country of ref document: EP Kind code of ref document: A1 |