WO2011030512A1 - 時分割通信装置およびその受信妨害防止方法 - Google Patents

時分割通信装置およびその受信妨害防止方法 Download PDF

Info

Publication number
WO2011030512A1
WO2011030512A1 PCT/JP2010/005251 JP2010005251W WO2011030512A1 WO 2011030512 A1 WO2011030512 A1 WO 2011030512A1 JP 2010005251 W JP2010005251 W JP 2010005251W WO 2011030512 A1 WO2011030512 A1 WO 2011030512A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reception
interrupt
received
time division
Prior art date
Application number
PCT/JP2010/005251
Other languages
English (en)
French (fr)
Inventor
順二 渡部
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/392,984 priority Critical patent/US8824344B2/en
Priority to CN201080039310.4A priority patent/CN102484541B/zh
Priority to JP2011530735A priority patent/JP5644766B2/ja
Publication of WO2011030512A1 publication Critical patent/WO2011030512A1/ja
Priority to IN1984CHN2012 priority patent/IN2012CN01984A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3078Circuits generating control signals for digitally modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/109Means associated with receiver for limiting or suppressing noise or interference by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/354Adjacent channel leakage power

Definitions

  • the present invention relates to a time division communication apparatus and a reception interference prevention method thereof, and more particularly to a time division transmission apparatus and an reception interference prevention method thereof for preventing an analog / digital converter from overflowing due to a reception interference wave.
  • FIG. 9 is a block diagram of an example of a time division transmitting / receiving apparatus related to the present invention.
  • an example of a time division transmission / reception apparatus related to the present invention includes a receiver 201, a transmitter 202, and a switch 203.
  • the receiver 201 includes a low noise amplifier (hereinafter referred to as LNA: Low Noise Amplifier) 305, a down converter 306, a variable attenuator 307, a digital down converter (hereinafter referred to as DDC) module 308, It includes an FPGA 312 and a CPU (Central Processing Unit) 313.
  • LNA Low Noise Amplifier
  • DDC digital down converter
  • the DDC module 308 includes an A / D (Analog-to-Digital) converter 309, a DDC unit 310, and an interrupt factor register 311.
  • the FPGA 312 includes the buffer 23.
  • the transmitter 202 includes a power amplifying unit (hereinafter referred to as PA: Power Amplifier) 303, an up-converter 302, and a D / A (Digital Analog) converter 301.
  • PA Power Amplifier
  • up-converter 302 Up-converter
  • D / A (Digital Analog) converter 301 D / A (Digital Analog) converter
  • the FPGA 312 receives an interrupt signal from the interrupt factor register 311 in the DDC module 308 and transmits it to the CPU 313. Upon receiving this interrupt signal, the CPU 313 controls the variable attenuator 307 based on the interrupt signal to adjust the gain.
  • FIG. 10 is a timing chart showing an example of operation of a time division transmitting / receiving apparatus related to the present invention.
  • the interrupt factor register 311 an interruption due to a reception interference wave at the reception time (see (D) in the figure), and an interrupt at the time of reception power measurement completion at the reception time (see (B) in the figure)
  • the interference wave determination window 59 is set so that the entire time zone is determined.
  • the CPU 313 wants to detect only the interruption caused by the reception interference wave at the reception time (see (D) in the figure). This is because the CPU 313 controls the variable attenuator 307 and adjusts the gain based on the interruption caused by the reception interference wave at the reception time. On the other hand, in this case, the CPU 313 detects an interrupt at the time of completion of reception power measurement at the reception time (see (B) in the figure) and an interrupt due to power leaked into the reception system at the transmission time (see (C) in the same figure). Therefore, these are false detections.
  • Patent Document 2 an invention related to automatic gain control in a communication system using orthogonal frequency division or time division is disclosed (for example, refer to Patent Document 2).
  • the power leaked into the reception system during the transmission time is
  • the overflow bit of the A / D converter may be operated, which may hinder the detection of the overflow bit due to a received interference wave that is originally desired to be detected.
  • the transmission / reception switching timing is passed as the timing.
  • the external timing is often used only for reception power measurement, and the input power overflow interrupt can always be generated regardless of the transmission / reception time zone.
  • the overflow bit detection is a transmission time or a reception time.
  • One of the merits of time-division communication is that transmission and reception are separated in terms of time, so there is less isolation from each other, but this results in the loss of the merits. Even if it is attempted to detect an excessive input due to an interference wave triggered by the received power measurement result, the power measurement is performed with the overflowed data when the A / D converter in the preceding stage of the power measuring unit overflows. It cannot be detected.
  • off-the-shelf DDC devices use only one type of interrupt notification to the outside of the device to simplify the interface.
  • the DDC device needs to determine the cause of the interrupt by checking the state of the register inside the device for details of the interrupt.
  • the reception time interrupt is notified not only when an overflow is detected but also when reception power measurement is completed. Therefore, in the detection method using only the “reception time interrupt”, the DDC device cannot determine the contents until the cause of the interrupt is confirmed.
  • the DDC device has a problem that the next interrupt cannot be issued unless the cause of the interrupt is confirmed and the register is cleared.
  • Patent Document 1 the invention described in Patent Document 1 is common to the present invention in that it is controlled in response to an interrupt, but is not intended for discrimination of the interrupt, and therefore the above-described problem cannot be solved.
  • Patent Document 2 The invention described in Patent Document 2 is common to the present invention in that the gain of the receiver is controlled according to the information in the time window, but the information in the time window is the number of overflows. Since this information is completely different from the information indicating the generation timing of the received interference wave, the present invention cannot also solve the above problem.
  • the object of the present invention is to distinguish between an interruption due to a reception interference wave at the reception time, an interruption at the completion of reception power measurement at the reception time, and an interruption due to power leaked into the reception system at the transmission time.
  • An object of the present invention is to provide a time division communication apparatus capable of preventing an overflow of an A / D converter by adjusting a gain for a received interference wave and a reception interference prevention method thereof.
  • a time division communication apparatus includes an adjustment unit that adjusts the power of a received signal, an interrupt detection unit that detects an interrupt signal from the received signal, and the interrupt signal is generated by a received interference wave. Determining means for determining whether or not the signal is a thing, and control means for controlling the adjusting means when it is determined that the interrupt signal is due to a received interference wave.
  • the reception interference prevention method adjusts the power of the reception signal, detects an interrupt signal from the reception signal, determines whether the interrupt signal is due to a reception interference wave, and receives the interrupt signal. When it is determined as an interference wave, the power adjustment of the received signal is controlled.
  • a non-transitory computer-readable medium storing a program according to the present invention includes a step of adjusting the power of a received signal, an interrupt detecting step of detecting an interrupt signal from the received signal, and the interrupt signal is a received interference wave. And a program for causing a computer to execute the steps of determining whether the interrupt signal is due to a received interference wave and controlling the adjusting means when the interrupt signal is determined to be due to a received interference wave. .
  • the present invention it is possible to distinguish between an interruption due to a reception interference wave at the reception time, an interruption at the completion of reception power measurement at the reception time, and an interruption due to power leaked into the reception system at the transmission time.
  • An overflow of the A / D converter can be prevented by adjusting the gain with respect to the interference wave.
  • FIG. 1 is a block diagram for explaining the operating principle of a time division transmitting / receiving apparatus according to the present invention.
  • the time division communication apparatus according to the present invention includes a receiver 101, a transmitter 102, and a switch 4 for switching the receiver 101 and the transmitter 102 in a time division manner.
  • the receiver 101 also includes a variable attenuator 7 that adjusts the gain of the received signal, an interrupt factor detector 11 that detects the occurrence of an interrupt based on an output signal from the variable attenuator 7, and an interrupt factor notification from the interrupt factor detector 11.
  • a reception timing determination unit 21 that determines whether or not the interruption is due to a reception interference wave using a temporal window for reception and reception interference wave determination, and the reception timing determination unit 21 determines that the interruption is due to a reception interference wave
  • An interference wave determination unit 31 that controls the variable attenuator 7 when it is determined is included. Note that the variable attenuator 7 adjusting the gain of the reception signal adjusts the power of the reception signal input to the interrupt factor detection unit 11.
  • the reception timing determination unit 21 has a temporal window for detecting only interruptions due to reception interference waves. Accordingly, it is possible to prevent erroneous detection of an interruption due to an interruption at the time of completion of reception power measurement or an electric power leaked into the reception system during a transmission time, and thus it is possible to adjust a gain for a reception interference wave.
  • FIG. 2 is a configuration diagram of the first embodiment of the time division communication apparatus according to the present invention.
  • an example of a time division communication apparatus according to the present invention includes a receiver 101, a transmitter 102, and a switch 4.
  • the receiver 101 includes a low noise amplifier (hereinafter referred to as LNA: “Low” Noise “Amplifier”) 5, a down converter 6, a variable attenuator 7, a digital down converter (hereinafter referred to as DDC) module 8, An FPGA 12, a CPU 13, a main control unit 14, and a program storage unit 15 are included.
  • LNA low noise amplifier
  • DDC digital down converter
  • the DDC module 8 includes an A / D converter 9, a DDC unit 10, and an interrupt factor register 11.
  • the FPGA 12 includes an overflow interrupt register 22 and a reception timing determination unit 21.
  • the CPU 13 includes an interference wave determination unit 31 and a processing unit 32 for DDC.
  • the transmitter 102 includes a power amplification unit (hereinafter referred to as PA: PowerPAAmplifier) 3, an up-converter 2, and a D / A (Digital (Analog) converter 1.
  • PA PowerPAAmplifier
  • up-converter 2 Up-converter
  • D / A Digital (Analog) converter 1.
  • FIG. 3 is a timing chart showing the operation of the first embodiment of the time division communication apparatus according to the present invention.
  • the transmitter 102 includes a D / A converter 1, an up-converter 2, and a high output power amplifier (hereinafter referred to as PA) 3.
  • the receiver 101 includes an LNA 5, a down converter 6, a variable ATT 7 that adjusts a gain, and a DDC module 8.
  • the DDC module 8 includes an A / D converter 9 that converts an analog signal into a digital signal, a DDC unit 10 that cuts out a signal digitized by the A / D converter 9 for each carrier using a digital filter, and an interrupt generated by each unit And the interrupt factor register 11 for notifying the CPU 13 of the above.
  • the FPGA 12 When the value of the interrupt factor register 11 is updated, it is transmitted to the FPGA 12 on the control side.
  • the FPGA 12 first determines the timing at which the interrupt occurs (reception timing determination unit 21). When it is the reception timing, the reception timing determination unit 21 notifies the CPU 13 of the occurrence of an interrupt, determines at the same time whether the interrupt is an interrupt due to overflow, and stores the result in the overflow interrupt register 14.
  • the determination of overflow is performed for an interrupt that occurs at a reception timing and at a timing other than a reception overflow interrupt by the interference wave determination window 18 as shown in FIG.
  • the CPU 13 checks the overflow interrupt register 14 in the FPGA 12 in response to the occurrence of an interrupt from the FPGA 12 and determines whether an overflow due to an interference wave has occurred.
  • the CPU 13 controls the variable ATT 7 to clear the contents of the interrupt factor register 11 if the interrupt is caused by an interference wave.
  • the CPU 13 checks the value of the interrupt factor register 11 if it is not an interrupt due to an interference wave, performs measurement processing if the received power is measured, and then clears the contents of the interrupt factor register.
  • Fig. 3 shows the timing for interrupt factors occurring in one frame.
  • the reception timing determination unit 21 accurately detects a target overflow by providing a window 18 for each interrupt generated in one frame.
  • TS # 4 to # 6 and TS # 0 are transmission timings.
  • the interruption of the DDC module 8 (see FIG. 5C) that occurs at this timing is caused by leakage power due to insufficient isolation between the transmitter and the receiver. Since it has occurred, it is ignored in window 18.
  • TS # 1 to TS3 are reception timings, but an interrupt generated at this timing is an overflow interrupt generated when an overflow (saturation) exceeds the conversion capability of the A / D converter 9 due to an interference wave ((D) in the figure).
  • There are two types of interrupts (see FIG. 5B) for notifying that reception power (RSSI) measurement has been completed and reporting to a higher-level device is possible.
  • the window 18 needs to be set to the width of TS # 1. This is because TS # 2 and TS # 3 are time slots that can be used for either transmission or reception depending on communication settings, but TS # 1 is a timing used only for the received signal.
  • reception power measurement interrupt generation timing is after the power measurement is completed, it becomes the head of the next time slot after the last reception time slot, and by providing a window that can detect only the interrupt generated at the timing of TS # 1, overflow due to interference wave It is possible to distinguish between an interrupt caused by the occurrence of an interrupt and an interrupt caused by the completion of reception power measurement.
  • FIG. 4 is a flowchart showing the operation of the first embodiment of the time division communication apparatus according to the present invention
  • FIGS. 5 to 7 are schematic diagrams showing an example of the power relationship of the interference wave with respect to the desired reception wave
  • FIG. It is a timing chart which shows operation
  • the A / D converter 9 can be 14 bits as shown in FIG. Since there is no sensitivity deterioration due to a shortage of required C / N due to interference waves, there is often no problem with a dynamic range of 14 bits in a normal wireless system.
  • the interference wave is input at the maximum level specified by 3GPP (Third Generation Partnership Project), etc.
  • the desired wave sensitivity at the time of interference wave input is usually as long as the resolution of the A / D converter 9 is 16 bits or more as shown in FIG. Even the lowest level of reception sensitivity can be satisfied.
  • the 16-bit A / D converter is expensive and has few options, consider the case of using an inexpensive 14-bit product.
  • the A / D converter 9 When an interference wave is input to the adjacent channel of the receiver, the A / D converter 9 overflows, and an interrupt is notified to the CPU 13 via the FPGA 12 when triggered.
  • the CPU 13 When the CPU 13 recognizes the interrupt, it checks the interrupt factor register 11. If the interrupt factor is the occurrence of an interrupt due to overflow, the CPU 13 can prevent the A / D converter 9 from overflowing by increasing the attenuation amount of the variable ATT 7 by a certain amount.
  • variable ATT 7 After the state where the attenuation amount of the variable ATT 7 is increased for a certain period of time, the variable ATT 7 is returned to the original value again, and if an overflow has occurred, the attenuation amount of the variable ATT 7 is increased again.
  • the reception sensitivity is maintained by determining that the jamming wave has disappeared or the jamming wave level has sufficiently decreased and returning the variable ATT 7 to the original value.
  • transmission and reception are divided in time, so that the normal isolation between the transmitter and the receiver is not so great. Accordingly, since the leakage power of the signal output at the transmission timing goes around the A / D converter 9, the variable ATT 7 is always increased by a certain amount at the reception timing, and the reception sensitivity is not sufficient. There is a problem.
  • the DDC module 8 it is difficult for the DDC module 8 to manage timings other than the transmission / reception switching timing, and the processing for this interrupt is performed by checking the interrupt factor register 11 and processing for the interrupt factor within one frame time after the CPU 13 receives the interrupt notification. As a result, a delay of a maximum of one frame time occurs even for an interrupt caused by an overflow caused by an interference wave.
  • An interference wave determination window 58 is provided so as to enable only the interrupt generated at the reception time according to the transmission / reception switching timing (FIG. 8). This prevents erroneous detection of overflow due to leakage power at the transmission timing.
  • the receiver normally measures the received power, and an interrupt occurs to perform this power measurement somewhere during the reception timing.
  • the CPU 13 needs to check the interrupt factor register 11 because it is not possible to determine whether the interrupt is a reception power measurement interrupt or an overflow occurrence interrupt only by this interrupt notification. As a result, in the case of an interrupt due to overflow, a processing delay occurs as described above, and overflow occurs for a maximum of one frame.
  • step S5 If the interrupt factor register 11 is cleared (if “Yes” in step S5), the process returns to step S1, and if the interrupt factor register 11 is not cleared (“No” in step S5). The process waits at step S5.
  • the FPGA 12 When the FPGA 12 is notified of the occurrence of an interrupt from the interrupt factor register 11 (step S6), it first determines the timing at which the interrupt has occurred (reception timing determination unit 21) (step S7).
  • step S7 If it is the reception timing (in the case of “Yes” in step S7), the CPU 13 is notified of the occurrence of the interrupt, and at the same time, it is determined whether the interrupt is an overflow interrupt and the result is stored in the overflow interrupt register 14. (See steps S8 and S9). On the other hand, if it is not the reception timing (in the case of “No” in step S7), the process jumps to step S9.
  • the determination of overflow is performed for an interrupt that has occurred at a reception timing and at a timing other than a reception overflow interrupt by the interference wave determination window 18 as shown in FIG. This timing is time slot # 1 (TS # 1).
  • the CPU 13 In response to an interrupt from the FPGA 12 (see step S10), the CPU 13 first checks the overflow interrupt register 14 of the FPGA 12 (see step S11) to determine whether the interrupt is an overflow due to an interference wave or other factors ( In step S12), the overflow of the A / D converter 9 is prevented by controlling the variable ATT 7 only in the case of an overflow due to an interference wave (in the case of “Yes” in step S12) (see step S13).
  • step S12 the interrupt factor register 11 is checked (see step S15), and if the received power measurement, the process is performed. If it is an overflow, it is ignored because it is an overflow of the transmission time zone (see step S16), and the contents of the interrupt factor register 11 are cleared when the confirmation is completed (see step S14).
  • Fig. 3 shows the timing for interrupt factors occurring in one frame.
  • TS # 4 to # 6 and TS # 0 are transmission timings, and the interruption of the DDC module 8 occurring at this timing is caused by leakage power due to insufficient isolation between the transmitter 102 and the receiver 101, so that the interference wave Ignore in the judgment window 18.
  • TS # 1 to # 3 are reception timings, but for the interrupts that occur at this timing, measurement of overflow interrupts and received power (RSSI: ReceiveReSignal Strength Indicator) that occur when the A / D converter 9 overflows due to jamming waves is completed.
  • RSSI ReceiveReSignal Strength Indicator
  • the interference wave determination window 18 needs to be set to the width of TS # 1. This is because TS # 2 and TS # 3 are time slots that can be used for either transmission or reception depending on communication settings, but TS # 1 is a timing used only for the received signal.
  • reception power measurement interrupt generation timing is after the power measurement is completed, it becomes the head of the next time slot after the last reception time slot, and by providing an interference wave determination window 18 that can detect only the interrupt generated at the timing of TS # 1, It is possible to distinguish between an interrupt caused by an overflow due to an interference wave and an interrupt caused by completion of reception power measurement.
  • the first effect is that a dynamic range can be secured with a low-bit A / D converter.
  • a dynamic range equivalent to 16 bits can be secured with a 14-bit A / D converter.
  • the second effect is that an inexpensive off-the-shelf digital down converter (DDC) can be used. This is expected to reduce costs, design costs and delivery times.
  • DDC digital down converter
  • the third effect is that, in time-division communication, there is no need to worry about the overflow of the A / D converter due to transmission output leakage during the transmission time, and there is no need for extremely high isolation.
  • a receiver can be realized with a low-cost configuration without requiring a strong shield for securing isolation, a switch with high isolation, or the like.
  • the receiver 101 of the present invention includes the main control unit 14 and the program storage unit 15 (see FIG. 2).
  • the program storage unit 15 stores a program for the reception interference prevention method shown in the flowchart of FIG.
  • the main control unit 14 (“computer”) is configured to control each unit of the DDC module 8, the FPGA 12, and the CPU 13.
  • the main control unit 14 reads out the program of the reception interference prevention method from the program storage unit 15, and controls each unit of the DDC module 8, the FPGA 12, and the CPU 13 according to the program. Since the contents of the control have already been described, description thereof is omitted here.
  • the interruption due to the reception interference wave at the reception time the interruption when the reception power measurement is completed at the reception time, and the power leaked into the reception system at the transmission time Therefore, it is possible to distinguish the interruption due to the reception interference, and thus it is possible to obtain a reception interference prevention method program capable of preventing the overflow of the A / D converter by adjusting the gain with respect to the reception interference wave.
  • the present invention has been described as a hardware configuration, but the present invention is not limited to this.
  • the present invention can also realize the processing of FIG. 4 by causing a CPU (Central Processing Unit) to execute a computer program. )
  • a CPU Central Processing Unit
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Noise Elimination (AREA)
  • Transceivers (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 受信時間における受信妨害波による割り込み、受信電力測定完了時の割り込み、送信時間に受信系に漏れこんだ電力による割り込みを区別することが可能な時分割通信装置の提供を目的とする。時分割通信装置は、受信信号のパワーを調整する可変アッテネータ7と、受信信号から割り込み信号を検出する割り込み要因検出部11と、割り込み信号が受信妨害波によるものか否かを判定する受信タイミング判定部21と、割り込み信号が受信妨害波によるものと判定された場合に、可変アッテネータ7を制御する妨害波判定部31と、を備える。

Description

時分割通信装置およびその受信妨害防止方法
 本発明は、時分割通信装置およびその受信妨害防止方法に関し、特に受信妨害波によりアナログ/デジタル変換器がオーバーフローするのを防止する時分割送通信装置およびその受信妨害防止方法に関する。
 受信機と、送信機と、受信機および送信機を時分割で切り替えるスイッチとを含む時分割送受信装置は公知である。図9は本発明に関連する時分割送受信装置の一例の構成図である。同図を参照すると、本発明に関連する時分割送受信装置の一例は、受信機201と、送信機202と、スイッチ203とを含んでいる。
 また、受信機201は低雑音増幅器(以下、LNA: Low Noise Amplifier と表示する)305と、ダウンコンバータ306と、可変アッテネータ307と、デジタル・ダウンコンバータ(以下、DDCと表示する)モジュール308と、FPGA312と、CPU(Central Processing Unit )313とを含んで構成される。
 また、DDCモジュール308は、A/D(Analog to Digital) コンバータ309と、DDC部310と、割り込み要因レジスタ311とを含んで構成される。また、FPGA312はバッファ23を含んで構成される。
 また、送信機202は電力増幅部(以下、PA:Power Amplifierと表示する)303と、アップコンバータ302と、D/A(Digital to Analog )コンバータ301とを含んで構成される。
 この時分割送受信装置において、FPGA312はDDCモジュール308内の割り込み要因レジスタ311からの割り込み信号を入力して、CPU313へ送信する。この割り込み信号を受信したCPU313はその割り込み信号に基づいて可変アッテネータ307を制御し、利得を調整する。
 図10は本発明に関連する時分割送受信装置の一例の動作を示すタイミングチャートである。同図を参照すると、割り込み要因レジスタ311にて、受信時間における受信妨害波による割り込みと(同図(D)参照)、受信時間における受信電力測定完了時の割り込みと(同図(B)参照)、送信時間に受信系に漏れこんだ電力による割り込みと(同図(C)参照)が検出された場合を示している。この場合、妨害波判定ウインドウ59は全時間帯が判定対象となるよう設定されている。
 しかし、CPU313が検出したいのは、受信時間における受信妨害波による割り込み(同図(D)参照)だけである。これは、CPU313は受信時間における受信妨害波による割り込みに基づき可変アッテネータ307を制御し、利得を調整するためである。一方、この場合、CPU313では受信時間における受信電力測定完了時の割り込みと(同図(B)参照)、送信時間に受信系に漏れこんだ電力による割り込み(同図(C)参照)も検出されるため、これらは誤検出となる。
 また、本発明の関連技術の一例として、受信電界強度が弱いときに、CPUのクロック周波数を低減させて受信ノイズの発生を防止する無線端末装置が知られている(たとえば、特許文献1参照)。
 これは、受信スロット開始割り込みに応答してクロック周波数の制御を行い、受信スロット終了割り込みに応答してクロック周波数の復帰を行うものであり、受信レベルの大小に応じてクロック周波数を制御するものである。
 また、本発明の関連技術の他の一例として、直交周波数分割あるいは時間分割を用いた通信システムにおける自動利得制御に関する発明が開示されている(たとえば、特許文献2参照)。
 これは、ある時間窓中に生成されたオーバーフロー(ADC受信機中の飽和)の数およびイコライザー化の重みのような態様の制御に基づき、その結果、時間窓内のオーバーフローの数がある閾値より大きな場合、受信機における利得が低下される、というものである。
特開平11-112442号公報 特表2004-529577号公報
 本発明に関連する時分割(TDD:Time Division Duplex)装置における受信妨害波対策でA/Dコンバータがオーバーフローしたことを示すオーバーフローbitを使用する際、送信時間に受信系に漏れこんだ電力がこのA/Dコンバータのオーバーフローbitを動作させてしまい、本来検出したい受信妨害波によるオーバーフローbit検出の妨げになることがある。
 送受の切り替えは常に行っているので、既製品のデジタル・ダウンコンバータ(DDC)デバイスを使用する場合はタイミングとしてはその送受切り替えタイミングを渡す。DDCデバイス内部では簡素化のためこの外部からのタイミングを使用するのは受信電力測定のみである場合が多く、入力電力オーバーフロー割り込みは送受時間帯にかかわらず常に発生し得ることになる。
 従って、オーバーフローbit検出が送信時間なのか受信時間なのかの判定ができない。時分割通信のメリットの一つは送信と受信が時間的に区切られているので互いのアイソレーションが少なくてもよいことにあるが、そのメリットを損なうという結果になってしまう。なお、受信電力測定結果を契機に妨害波による過入力を検出しようとしても、この電力測定部の前段にあるA/Dコンバータがオーバーフローしている状態では電力測定もオーバーフローしたデータにて行われるため検出できない。
 また既製品のDDCデバイスは、インターフェースの簡略化のため、デバイス外部への割り込み通知を1 種類のみ用いる。DDCデバイスは、割り込みの詳細はデバイス内部のレジスタの状態を確認して割り込み要因を判断する必要がある。受信時間の割り込みはオーバーフロー検出時だけでなく受信電力測定完了時にも通知される。そのため、「受信時間の割り込み」だけの検出方法では、DDCデバイスは、割り込み要因を確認するまで内容を判断できない。DDCデバイスは、割り込み要因を確認してそのレジスタをクリアしないと次の割り込みが発せられないので、本来欲しい割り込みを逃してしまうという問題を抱えていた。
 すなわち、本発明に関連する時分割装置では、(1)受信時間における受信妨害波による割り込みであるか、(2)受信時間における受信電力測定完了時の割り込みであるか、もしくは(3)送信時間に受信系に漏れこんだ電力による割り込みであるかを区別できないという課題がある。
 一方、特許文献1に記載の発明は、割り込みに応答して制御する点で本発明と共通するものの、割り込みの判別を目的としておらず、したがって上記課題を解決することはできない。
 また、特許文献2に記載の発明は、時間窓内の情報に応じて受信機の利得を制御する点で本発明と共通するものの、時間窓内の情報はオーバーフローの数であり、本発明のような受信妨害波の発生タイミングを示す情報とは全く異なるため、この発明もまた上記課題を解決することはできない。
 そこで本発明の目的は、受信時間における受信妨害波による割り込みと、受信時間における受信電力測定完了時の割り込みと、送信時間に受信系に漏れこんだ電力による割り込みとを区別することができ、よって受信妨害波に対して利得調整によりA/Dコンバータのオーバーフローを防止することが可能な時分割通信装置およびその受信妨害防止方法を提供することにある。
 前記課題を解決するために、本発明による時分割通信装置は、受信信号のパワーを調整する調整手段と、前記受信信号から割り込み信号を検出する割り込み検出手段と、前記割り込み信号が受信妨害波によるものか否かを判定する判定手段と、前記割り込み信号が受信妨害波によるものと判定された場合に、前記調整手段を制御する制御手段と、を備えるものである。
 また、本発明による受信妨害防止方法は、受信信号のパワーを調整し、前記受信信号から割り込み信号を検出し、前記割り込み信号が受信妨害波によるものか否かを判定し、前記割り込み信号が受信妨害波と判定された場合に、前記受信信号のパワー調整を制御する、ものである。
 また、本発明によるプログラムが格納された非一時的なコンピュータ可読媒体は、受信信号のパワーを調整するステップと、前記受信信号から割り込み信号を検出する割り込み検出ステップと、前記割り込み信号が受信妨害波によるものか否かを判定するステップと、前記割り込み信号が受信妨害波によるものと判定された場合に、前記調整手段を制御するステップとを、コンピュータに実行させるためのプログラムを格納したものである。
 本発明によれば、受信時間における受信妨害波による割り込みと、受信時間における受信電力測定完了時の割り込みと、送信時間に受信系に漏れこんだ電力による割り込みとを区別することができ、よって受信妨害波に対して利得調整によりA/Dコンバータのオーバーフローを防止することが可能となる。
本発明に係る時分割通信装置の動作原理を説明するための構成図である。 本発明に係る時分割通信装置の第1の実施の形態の構成図である。 本発明に係る時分割通信装置の第1の実施の形態の動作を示すタイミングチャートである。 本発明に係る時分割通信装置の第1の実施の形態の動作を示すフローチャートである。 受信希望波に対する妨害波の電力関係の一例を示す模式図である。 受信希望波に対する妨害波の電力関係の一例を示す模式図である。 受信希望波に対する妨害波の電力関係の一例を示す模式図である。 関連技術における時分割送受信装置の一例の動作を示すタイミングチャートである。 本発明に関連する時分割通信装置の一例の構成図である。 本発明に関連する時分割通信装置の一例の動作を示すタイミングチャートである。
 まず、実施の形態の説明に入る前に、本発明の動作原理について説明する。図1は本発明に係る時分割送受信装置の動作原理を説明するための構成図である。同図を参照すると、本発明に係る時分割通信装置は、受信機101と、送信機102と、受信機101および送信機102を時分割で切り替えるスイッチ4とを含んで構成される。
 また、受信機101は受信信号の利得を調整する可変アッテネータ7と、可変アッテネータ7からの出力信号に基づき割り込み発生を検出する割り込み要因検出部11と、割り込み要因検出部11から割り込み発生の通知を受け取り、受信妨害波判定用の時間的なウインドウを用いて割り込みが受信妨害波によるものか否かを判定する受信タイミング判定部21と、受信タイミング判定部21にて割り込みが受信妨害波によるものと判定された場合に可変アッテネータ7を制御する妨害波判定部31とを含んでいる。なお、可変アッテネータ7が受信信号の利得を調整することは、割り込み要因検出部11に入力される受信信号のパワー(電力)を調整していることになる。
 次に、この時分割通信装置の動作について説明する。受信タイミング判定部21は受信妨害波による割り込みのみを検出する時間的なウインドウを有している。したがって、受信電力測定完了時の割り込みあるいは送信時間に受信系に漏れこんだ電力による割り込みの誤検出を防止することができ、よって受信妨害波に対する利得調整が可能となる。
 次に、本発明の特徴を説明する。本発明は、時分割システムの受信機において、タイミング管理を行うFPGA(Field Programmable Gate Array )に対してデジタル・ダウンコンバータ(DDC:Digital Down Converter )から入力される割り込み要因が複数あるにもかかわらず割り込み通知は1種類しかない場合に、この割り込みを受信するFPGAにて時間的なウィンドウを設けて、処理すべき割り込みを区別する機能を特徴としている。
 複数の割り込み要因があっても割り込み発生を通知する信号は1 種類の場合、単なる受信時間と送信時間を区別するためだけのウィンドウではなく、受信電力測定といった他の受信関係の割り込みを誤認識しないよう"確実に受信信号が存在する時間"と"受信電力測定割り込みが発生しえない時間"との両方の条件を満たすタイムスロット1にウィンドウを設けることを特徴としている。
 これにより、受信妨害波に対して利得調整によりオーバーフローを防止する制御において送受信のアイソレーション不足からくる送信時間帯のオーバーフロー誤検出を防止し確実に受信希望波と同時に入力される妨害波のみを捕らえることが可能になる。その結果高レベルの妨害波に対して利得調整により見かけ上のA/Dコンバータのダイナミックレンジを拡大することができ、低bit数のA/Dコンバータを使用した安価なシステムが実現できるようになる。
 以下、本発明の実施の形態について添付図面を参照しながら説明する。まず、第1の実施の形態について説明する。図2は本発明に係る時分割通信装置の第1の実施の形態の構成図である。同図を参照すると、本発明に係る時分割通信装置の一例は受信機101と、送信機102と、スイッチ4とを含んでいる。
 また、受信機101は低雑音増幅器(以下、LNA: Low Noise Amplifier と表示する)5と、ダウンコンバータ6と、可変アッテネータ7と、デジタル・ダウンコンバータ(以下、DDCと表示する)モジュール8と、FPGA12と、CPU13と、主制御部14と、プログラム格納部15とを含んで構成される。
 また、DDCモジュール8は、A/Dコンバータ9と、DDC部10と、割り込み要因レジスタ11とを含んで構成される。また、FPGA12はオーバーフロー(Overflow)割り込みレジスタ22と、受信タイミング判定部21とを含んで構成される。また、CPU13は妨害波判定部31と、DDCへの処理部32とを含んで構成される。
 また、送信機102は電力増幅部(以下、PA:Power Amplifierと表示する)3と、アップコンバータ2と、D/A(Digital to Analog )コンバータ1とを含んで構成される。なお、主制御部14およびプログラム格納部15の構成および動作については後述する。
 次に、本発明に係る時分割通信装置の第1の実施の形態の構成について図面を参照して詳細に説明する。図3は本発明に係る時分割通信装置の第1の実施の形態の動作を示すタイミングチャートである。送信機102はD/Aコンバータ1と、アップコンバータ2と、高出力電力増幅器(以下、PAと表示する)3とを含んで構成される。受信機101はLNA5と、ダウンコンバータ6と、利得を調整する可変ATT7と、DDCモジュール8とを含んで構成される。
 このDDCモジュール8は、アナログ信号をデジタル信号に変換するA/Dコンバータ9と、A/Dコンバータ9でデジタル化された信号をデジタルフィルタでキャリアごとに切り出すDDC部10と、各部で発生した割り込みをCPU13に通知する割り込み要因レジスタ11とを含んで構成されるものとする。
 割り込み要因レジスタ11の値が更新されると制御側のFPGA12に伝達される。FPGA12は割り込み要因レジスタ11から割り込み発生を通知されると、まずその割り込みが発生したタイミングを判定する(受信タイミング判定部21)。受信タイミング判定部21は受信タイミングである場合はCPU13に対して割り込み発生を通知すると同時にその割り込みがオーバーフローによる割り込みなのかを判定してオーバーフロー割り込みレジスタ14にその結果を格納する。
 オーバーフローの判定は図3のような妨害波判定ウィンドウ18により受信タイミングで且つ受信オーバーフローの割り込み以外は発生し得ないタイミングに発生した割り込みに対して行われる。CPU13はFPGA12からの割り込み発生に対してFPGA12内のオーバーフロー割り込みレジスタ14を確認し、妨害波によるオーバーフローが発生したかを判定する。CPU13は、妨害波による割り込みであれば可変ATT7を制御し割り込み要因レジスタ11の内容をクリアする。CPU13は、妨害波による割り込みでない場合は割り込み要因レジスタ11の値を確認し、受信電力測定であれば測定処理を行いその後割り込み要因レジスタの内容をクリアする。
 図3は1フレームの中で発生する割り込み要因に対するタイミングを図示したものである。受信タイミング判定部21は、1フレームの中で発生する各割り込みに対してウィンドウ18を設けることで目的のオーバーフローを的確に検出する。
 TS#4~#6及びTS#0は送信タイミングで、このタイミングに発生するDDCモジュール8の割り込み(同図(C)参照)は送信機と受信機間のアイソレーション不足による漏れ電力が原因で発生したものなのでウィンドウ18にて無視する。
 TS#1~#3は受信タイミングだが、このタイミングで発生する割り込みには妨害波によりA/Dコンバータ9の変換能力を超えてオーバーフロー(飽和)した時に発生するオーバーフロー割り込みと(同図(D)参照)、受信電力(RSSI)の測定が完了して上位装置に報告することが可能になったことを通知するための割り込み(同図(B)参照)の2種類が存在する。
 この2種類の割り込みを区別するためにウィンドウ18はTS#1の幅に設定される必要がある。なぜなら、TS#2とTS#3は通信設定により送信あるいは受信のどちらにも使用できるタイムスロットだが、TS#1は受信信号のみで使用されるタイミングだからである。
 受信電力測定割り込み発生タイミングは電力測定を終えた後なので受信最後のタイムスロットの次タイムスロット先頭になり、TS#1のタイミングに発生した割り込みのみを検出できるウィンドウを設けることで、妨害波によるオーバーフローに起因する割り込みと受信電力測定完了に起因する割り込みを区別することが可能になる。
 以下、本発明に係る時分割通信装置の第1の実施の形態の動作について図2~3および図4~6を参照しながら説明する。図4は本発明に係る時分割通信装置の第1の実施の形態の動作を示すフローチャート、図5~図7は受信希望波に対する妨害波の電力関係の一例を示す模式図、図8は関連技術における時分割通信装置の一例の動作を示すタイミングチャートである。
 妨害波がなく希望波のみの場合は図5のようにA/Dコンバータ9は14bitでも問題ない。妨害波による所要C/N不足からくる感度劣化がないため、通常の無線システムであれば14bit分のダイナミックレンジで問題ないことが多い。妨害波が3GPP(Third Generation Partnership Project)などで規定される最大レベル入力された場合、通常は図6 のようにA/Dコンバータ9の分解能は16bit以上であれば妨害波入力時の希望波感度も最低レベルの受信感度も満足させられる。ただ16bitのA/Dコンバータは高価で選択肢も少ないので、安価な14bit品を使う場合を考える。
 図7(a)のように14bitのA/Dコンバータ9ではオーバーフローしてしまうような妨害波が入力された場合、A/Dコンバータ9がオーバーフローしたことを検出して可変ATT7の減衰量を大きくすることでA/Dコンバータ9のオーバーフローを防止させることが可能になる。その結果図7(b)のように希望波の感度を確保できる。妨害波が消えれば可変ATT7を戻すことで最低レベルでの受信感度も確保できる。まず関連技術にてこの動作を実現する場合を説明する。
 受信機の隣接チャネルに妨害波が入力されたときにA/Dコンバータ9がオーバーフローし、それを契機にFPGA12を経由してCPU13に割り込みが通知される。CPU13は割り込みを認識すると割り込み要因レジスタ11を確認する。割り込み要因が、オーバーフローによる割り込み発生であればCPU13は、可変ATT7の減衰量をある一定量増やすことでA/Dコンバータ9のオーバーフローを防止することができる。
 この可変ATT7の減衰量を増加させた状態を一定時間継続後、再度可変ATT7を元の値に戻しオーバーフローが発生していれば再び可変ATT7の減衰量を増加させ、オーバーフローが発生していなければ妨害波がなくなった又は妨害波レベルが十分低下したときと判断して可変ATT7を元の値に戻すことで受信感度は保たれる。ところが、時分割システムの装置の場合は送信と受信は時間的に分割されているので、通常送信機と受信機のアイソレーションはそれほど大きくない。従って、送信タイミングに出力している信号の漏れ電力がA/Dコンバータ9に周り込むため、受信タイミングになったときには常に可変ATT7がある一定量増えた状態になってしまい受信感度が十分でなくなるという問題がある。
 また、DDCモジュール8が送受切り替えタイミング以外のタイミングを管理することは難しくこの割り込みに対する処理は、CPU13が割り込み通知を受けた後1フレーム時間以内に割り込み要因レジスタ11の確認と割り込み要因に対する処理を行うことを前提としており、妨害波によるオーバーフロー起因での割り込みに対しても最大1フレーム時間の遅延が発生する。
 また、時分割システムなので、送信と受信を切り替えるタイミングは常に管理されている。そこでこのタイミングを使って送信タイミングの漏れ電力によるオーバーフロー誤判定を防止する対策を考える。送受切り替えタイミングにより受信時間に発生した割り込みだけを有効にするような妨害波判定ウィンドウ58を設ける(図8)。これにより前記送信タイミングの漏れ電力によるオーバーフロー誤検出は防止できる。
 ところが、通常受信機は受信電力の測定を行っており、受信タイミング中のどこかでこの電力測定を行うよう割り込みが発生する。この割り込み通知だけでは受信電力測定の割り込みなのかオーバーフロー発生起因の割り込みなのか判別できないので、CPU13は割り込み要因レジスタ11の確認を行う必要がある。これによりオーバーフロー起因の割り込みの場合前述のように処理遅延が発生し、最大1フレーム間オーバーフローしてしまう。
 これらの問題を解決するための本発明の方法を説明する。DDCモジュール8にて割り込み要因レジスタ11の値が更新されると(図4のステップS1~S3)、A/Dコンバータ9のオーバーフローと受信電力測定に共通した割り込み通知が制御側のFPGA12に伝達される(ステップS4およびS6)。
 また、割り込み要因レジスタ11がクリアされていれば(ステップS5にて"Yes"の場合)、ステップS1に戻り、割り込み要因レジスタ11がクリアされていなければ(ステップS5にて"No"の場合)、ステップS5で待機する。
 FPGA12は割り込み要因レジスタ11から割り込み発生を通知されると(ステップS6)、まずその割り込みが発生したタイミングを判定する(受信タイミング判定部21)(ステップS7)。
 受信タイミングである場合は(ステップS7にて"Yes"の場合)、CPU13に対して割り込み発生を通知すると同時にその割り込みがオーバーフローによる割り込みなのかを判定してオーバーフロー割り込みレジスタ14にその結果を格納する(ステップS8およびS9参照)。一方、受信タイミングではない場合は(ステップS7にて"No"の場合)、ステップS9へジャンプする。
 オーバーフローの判定は図3のような妨害波判定ウィンドウ18により受信タイミングで且つ受信オーバーフローの割り込み以外は発生し得ないタイミングに発生した割り込みに対して行う。このタイミングがタイムスロット#1である(TS#1)。
 CPU13はFPGA12からの割り込みを契機に(ステップS10参照)、まずFPGA12のオーバーフロー割り込みレジスタ14を確認して(ステップS11参照)、その割り込みが妨害波によるオーバーフローなのかそれ以外の要因なのか判別し(ステップS12参照)、妨害波によるオーバーフローである場合(ステップS12にて"Yes"の場合)のみ可変ATT7を制御してA/Dコンバータ9のオーバーフローを防ぐ(ステップS13参照)。
 一方、オーバーフロー割り込みレジスタ14がオーバーフローを示していない場合は(ステップS12にて"No"の場合)、割り込み要因レジスタ11の確認を行い(ステップS15参照)、受信電力測定であれば処理をし、オーバーフローであれば送信時間帯のオーバーフローなので無視し(ステップS16参照)、確認が終了した時点で割り込み要因レジスタ11の内容をクリアする(ステップS14参照)。
 図3は1フレームの中で発生する割り込み要因に対するタイミングを図示したものである。1フレームの中で発生する各割り込みに対して妨害波判定ウィンドウ18を設けることで目的のオーバーフローを的確に検出する。
 TS#4~#6及びTS#0は送信タイミングで、このタイミングに発生するDDCモジュール8の割り込みは送信機102と受信機101間のアイソレーション不足による漏れ電力が原因で発生したものなので妨害波判定ウィンドウ18にて無視する。
 TS#1~#3は受信タイミングだが、このタイミングで発生する割り込みには妨害波によりA/Dコンバータ9がオーバーフローした時に発生するオーバーフロー割り込みと受信電力(RSSI:Receive Signal Strength Indicator)の測定が完了して上位装置に報告することが可能になったことを通知するための割り込みの2種類が存在する。
 この2種類の割り込みを区別するために妨害波判定ウィンドウ18はTS#1の幅に設定する必要がある。なぜなら、TS#2とTS#3は通信設定により送信あるいは受信のどちらにも使用できるタイムスロットだが、TS#1は受信信号のみで使用されるタイミングだからである。
 受信電力測定割り込み発生タイミングは電力測定を終えた後なので受信最後のタイムスロットの次タイムスロット先頭になり、TS#1のタイミングに発生した割り込みのみを検出できる妨害波判定ウィンドウ18を設けることで、妨害波によるオーバーフローに起因する割り込みと受信電力測定完了に起因する割り込みを区別することが可能になる。
 以上説明したように、本発明の第1の実施の形態によれば、以下に示す効果が得られる。
 第1の効果は、低bit数のA/Dコンバータでダイナミックレンジが確保できるということである。例えば14bitのA/Dコンバータで16bit相当のダイナミックレンジ確保が可能になる。
 第2の効果は、安価な既製品デジタル・ダウンコンバータ(DDC)が使用可能になるという点である。これにより原価低減、設計費用低減や納期短縮が見込まれる。
 第3の効果は、時分割通信において、送信時間の送信出力リークによるA/Dコンバータのオーバーフローを気にする必要がなく、極端に高アイソレーションにする必要がなくなる点である。アイソレーションを確保するための強固なシールドや高アイソレーションのスイッチ等を必要とせず安価な構成により受信機が実現可能になる。
 次に、第2の実施形態について説明する。第2の実施形態は受信妨害防止方法のプログラムに関するものである。前述のとおり本発明の受信機101は主制御部14およびプログラム格納部15を含んでいる(図2参照)。プログラム格納部15には前述の図4にフローチャートで示す受信妨害防止方法のプログラムが格納されている。主制御部14("コンピュータ")はDDCモジュール8、FPGA12およびCPU13の各部を制御するよう構成されている。
 主制御部14はプログラム格納部15から受信妨害防止方法のプログラムを読み出し、そのプログラムにしたがってDDCモジュール8、FPGA12およびCPU13の各部を制御する。その制御の内容については既に述べたので、ここでの説明は省略する。
 以上説明したように、本発明の第2の実施形態によれば、受信時間における受信妨害波による割り込みと、受信時間における受信電力測定完了時の割り込みと、送信時間に受信系に漏れこんだ電力による割り込みとを区別することができ、よって受信妨害波に対して利得調整によりA/Dコンバータのオーバーフローを防止することが可能な受信妨害防止方法のプログラムが得られる。
 上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、図4の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。)
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2009年9月9日に出願された日本出願特願2009-207606を基礎とする優先権を主張し、その開示の全てをここに取り込む。
   1 D/Aコンバータ
   2 アップコンバータ
   3 電力増幅部(PA:Power Amplifier)
   4 スイッチ
   5 低雑音増幅器(LNA)
   6 ダウンコンバータ
   7 可変アッテネータ
   8 デジタル・ダウンコンバータ(DDC)モジュール
   9 A/Dコンバータ
  10 DDC部
  11 割り込み要因検出部(割り込み要因レジスタ)
  12 FPGA
  13 CPU
  14 主制御部
  15 プログラム格納部
  18 妨害波判定ウィンドウ
  21 受信タイミング判定部
  22 オーバーフロー(Overflow)割り込みレジスタ
  31 妨害波判定部
  32 DDCへの処理部
 101 受信機
 102 送信機

Claims (14)

  1.  受信信号のパワーを調整する調整手段と、
     前記受信信号から割り込み信号を検出する割り込み検出手段と、
     前記割り込み信号が受信妨害波によるものか否かを判定する判定手段と、
     前記割り込み信号が受信妨害波によるものと判定された場合に、前記調整手段を制御する制御手段と、を備える時分割通信装置。
  2.  前記調整手段は、
     前記受信信号のパワーを調整する可変アッテネータを含む、請求項1記載の時分割通信装置。
  3.  前記受信信号をアナログ信号からデジタル信号に変換する変換手段をさらに備え、
     前記制御手段は、前記変換手段が前記受信妨害波により変換能力を超えて飽和することを防止するように、前記調整手段における前記受信信号の減衰量を制御する、請求項2記載の時分割通信装置。
  4.  前記変換手段は、
     前記可変アッテネータから出力されるアナログ信号をデジタル信号に変換し、前記判定手段へ出力するアナログデジタル変換器である、請求項2又は3記載の時分割通信装置。
  5.  前記判定手段は、
     前記受信妨害波による割り込み信号を検出する時間的なウインドウにおいて前記割り込み信号を検出した場合に、前記割り込み信号が前記受信妨害波によって発生したものと判定する、請求項1乃至4のいずれか1項に記載の時分割通信装置。
  6.  前記時間的なウインドウは、受信専用のタイムスロット幅に設定される、請求項5記載の時分割通信装置。
  7.  送信信号を送信する送信手段と、
     前記調整手段と、前記検出手段と、前記判定手段と、前記制御手段とを含む受信手段と、
     前記送信手段と前記受信手段とを時分割で切替える切替手段と、をさらに備える請求項1乃至6のいずれか1項に記載の時分割通信装置。
  8.  前記受信手段は、前記受信信号を低雑音増幅する低雑音増幅器と、前記低雑音増幅器から出力される受信信号の周波数をより低い周波数に変換し前記可変アッテネータへ出力するダウンコンバータとを含み、
     前記送信手段は、送信信号をデジタル信号からアナログ信号へ変換するデジタルアナログ変換器と、前記デジタルアナログ変換器からの出力信号の周波数をより高い周波数に変換するアップコンバータと、前記アップコンバータからの出力信号を電力増幅する電力増幅器とを含む、請求項7記載の時分割通信装置。
  9.  受信信号のパワーを調整し、
     前記受信信号から割り込み信号を検出し、
     前記割り込み信号が受信妨害波によるものか否かを判定し、
     前記割り込み信号が受信妨害波と判定された場合に、前記受信信号のパワー調整を制御する、時分割通信における受信妨害防止方法。
  10.  前記受信信号のパワーを調整した後に、前記受信信号をアナログ信号からデジタル信号に変換し、
     前記受信信号のパワー調整を制御する際に、前記受信妨害波により前記アナログ信号からデジタル信号への変換能力を超えて飽和することを防止するように、前記受信信号のパワーを調整する、請求項9記載の時分割通信における受信妨害防止方法。
  11.  前記割り込み信号が受信妨害波によるものか否かを判定する際に、
     前記受信妨害波による割り込み信号を検出する時間的なウインドウにおいて前記割り込み信号を検出した場合に、前記割り込み信号が前記受信妨害波によって発生したものと判定する、請求項9又は10記載の時分割通信における受信妨害防止方法。
  12.  前記時間的なウインドウは、受信専用のタイムスロット幅に設定される、請求項11記載の時分割通信における受信妨害防止方法。
  13.  受信信号を受信する際に、
     前記受信信号を低雑音増幅し、
     前記低雑音増幅された受信信号の周波数をより低い周波数に変換し、
     送信信号を送信する際に、
     前記送信信号をデジタル信号からアナログ信号へ変換し、
     前記アナログ信号へ変換された送信信号の周波数をより高い周波数に変換し、
     前記周波数変換された送信信号を電力増幅する、請求項9乃至12のいずれか1項に記載の時分割通信における受信妨害防止方法。
  14.  受信信号のパワーを調整するステップと、
     前記受信信号から割り込み信号を検出する割り込み検出ステップと、
     前記割り込み信号が受信妨害波によるものか否かを判定するステップと、
     前記割り込み信号が受信妨害波によるものと判定された場合に、前記調整手段を制御するステップとを、コンピュータに実行させるためのプログラムが格納された非一時的なコンピュータ可読媒体。
PCT/JP2010/005251 2009-09-09 2010-08-26 時分割通信装置およびその受信妨害防止方法 WO2011030512A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/392,984 US8824344B2 (en) 2009-09-09 2010-08-26 Time division duplex communication apparatus and reception interference preventing method thereof
CN201080039310.4A CN102484541B (zh) 2009-09-09 2010-08-26 时分复用通信装置及其接收干扰防止方法
JP2011530735A JP5644766B2 (ja) 2009-09-09 2010-08-26 時分割通信装置およびその受信妨害防止方法
IN1984CHN2012 IN2012CN01984A (ja) 2009-09-09 2012-03-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009207606 2009-09-09
JP2009-207606 2009-09-09

Publications (1)

Publication Number Publication Date
WO2011030512A1 true WO2011030512A1 (ja) 2011-03-17

Family

ID=43732193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005251 WO2011030512A1 (ja) 2009-09-09 2010-08-26 時分割通信装置およびその受信妨害防止方法

Country Status (5)

Country Link
US (1) US8824344B2 (ja)
JP (1) JP5644766B2 (ja)
CN (1) CN102484541B (ja)
IN (1) IN2012CN01984A (ja)
WO (1) WO2011030512A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114666028A (zh) * 2018-07-22 2022-06-24 迪芬德解决方案反无人机有限公司 时分双工通信中的干扰

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067061A (zh) * 2013-01-17 2013-04-24 深圳市中兴移动通信有限公司 一种收发分离的多天线移动终端系统及用于该系统的方法
KR101825416B1 (ko) * 2014-12-30 2018-03-22 주식회사 쏠리드 간섭 제거 중계 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888582A (ja) * 1994-09-16 1996-04-02 Sanyo Electric Co Ltd 無線通信装置
JPH09261086A (ja) * 1996-03-27 1997-10-03 Mitsubishi Electric Corp 干渉波除去装置及び干渉波除去方法
JPH11112442A (ja) * 1997-10-08 1999-04-23 Nec Corp 無線通信端末
JP2004529577A (ja) * 2001-05-17 2004-09-24 ディセニョ・デ・システマス・エン・シリシオ・ソシエダッド・アノニマ 電気的なネットワークに関するマルチユーザーディジタルofdm送信システム用の自動利得制御システム
JP2008136109A (ja) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 無線通信装置及び基地局管理サーバ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751766A (en) * 1995-04-27 1998-05-12 Applied Signal Technology, Inc. Non-invasive digital communications test system
US6563891B1 (en) * 1998-11-24 2003-05-13 Telefonaktiebolaget L M Ericsson (Publ) Automatic gain control for slotted mode operation
EP1067697B1 (en) * 1999-06-30 2005-05-11 Siemens Aktiengesellschaft Receiver with feed back circuit for the control of the gain
US6804501B1 (en) * 2000-09-25 2004-10-12 Prairiecomm, Inc. Receiver having gain control and narrowband interference detection
US6785523B2 (en) * 2001-05-04 2004-08-31 Atheros Communications, Inc. Self-correlation detection in automatic gain calibration
US7907589B2 (en) * 2003-12-01 2011-03-15 Panasonic Corporation Reception apparatus and reception method
JP4198727B2 (ja) * 2006-05-29 2008-12-17 シャープ株式会社 チューナ、デジタル復調装置、その制御方法、デジタル復調装置用プログラム、デジタル復調装置用プログラムを記録した記録媒体及びデジタル受信装置
CN101277480B (zh) * 2007-03-29 2012-08-29 京信通信系统(中国)有限公司 消除自激干扰的直放站
US8249540B1 (en) * 2008-08-07 2012-08-21 Hypres, Inc. Two stage radio frequency interference cancellation system and method
IT1398155B1 (it) * 2009-06-30 2013-02-14 St Microelectronics Srl Dispositivo elettronico per ricevere un segnale a radio-frequenza

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888582A (ja) * 1994-09-16 1996-04-02 Sanyo Electric Co Ltd 無線通信装置
JPH09261086A (ja) * 1996-03-27 1997-10-03 Mitsubishi Electric Corp 干渉波除去装置及び干渉波除去方法
JPH11112442A (ja) * 1997-10-08 1999-04-23 Nec Corp 無線通信端末
JP2004529577A (ja) * 2001-05-17 2004-09-24 ディセニョ・デ・システマス・エン・シリシオ・ソシエダッド・アノニマ 電気的なネットワークに関するマルチユーザーディジタルofdm送信システム用の自動利得制御システム
JP2008136109A (ja) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd 無線通信装置及び基地局管理サーバ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114666028A (zh) * 2018-07-22 2022-06-24 迪芬德解决方案反无人机有限公司 时分双工通信中的干扰

Also Published As

Publication number Publication date
IN2012CN01984A (ja) 2015-08-21
US8824344B2 (en) 2014-09-02
JP5644766B2 (ja) 2014-12-24
US20120170493A1 (en) 2012-07-05
JPWO2011030512A1 (ja) 2013-02-04
CN102484541A (zh) 2012-05-30
CN102484541B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
JP4531581B2 (ja) 無線通信用送受信装置における制御装置及び無線通信用送受信方法
KR101298590B1 (ko) 무선 통신 시스템에서 중계 장치 및 방법
EP3138204B1 (en) Passive intermodulation detection
JP2007143130A (ja) トランシーバ試験の際にレシーバの過負荷を防止する試験装置及び方法。
US20070222629A1 (en) Load Impedance Defection System for Transmitter
CA2232754A1 (en) Gain control method and receiver
CN110719117B (zh) 具有干扰检测的射频接收器装置和相关方法
US11855678B2 (en) Method for amplifying radio signals between a terminal device and an antenna in a first frequency band and in a second frequency band
KR20130099689A (ko) 안테나 간 상호변조 잡음신호 저감 방법 및 그 방법을 이용한 통신 단말 장치
JP5644766B2 (ja) 時分割通信装置およびその受信妨害防止方法
US10849105B2 (en) Wireless communication device and program for controlling communication mode of the same
US20090318133A1 (en) Error detector, error detecting method and control program thereof
US8693957B2 (en) Signal transceiving module
US20030045250A1 (en) Method and apparatus for detecting power levels of varying envelope signals
US20150230116A1 (en) Wireless transmission device, vswr determination device, and vswr determination method
JP2009239662A (ja) 送信回路及び無線通信装置
JP2014220637A (ja) 無線通信システム、無線基地局装置及び無線基地局装置の障害要因を診断する方法
EP2980601B1 (en) Method of secure rf ranging under strong multipath reflections
KR100682714B1 (ko) 이동통신 무선 중계기의 역방향 노이즈 검출 장치 및 그방법
US20070058706A1 (en) Apparatus and method for detecting asynchronous transmission in a wireless communication system
US20180324709A1 (en) Gain adjustment method for wireless communication
KR100961139B1 (ko) 고감도 신호검출기 및 그 방법과, 그를 이용한 스마트 증폭장치 및 그 방법과, 그를 이용한 무선 중계 시스템
JP2007221297A (ja) マルチキャリア受信機
US8032095B1 (en) Method and apparatus for detecting carrier leakage in a wireless or similar system
KR101350396B1 (ko) 시분할 복신 통신 시스템에서 자동 레벨 제어 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039310.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13392984

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1984/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011530735

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10815113

Country of ref document: EP

Kind code of ref document: A1