WO2011029269A1 - 利用冶金焙烧和高炉对铬渣进行无害化处理的方法 - Google Patents

利用冶金焙烧和高炉对铬渣进行无害化处理的方法 Download PDF

Info

Publication number
WO2011029269A1
WO2011029269A1 PCT/CN2010/001358 CN2010001358W WO2011029269A1 WO 2011029269 A1 WO2011029269 A1 WO 2011029269A1 CN 2010001358 W CN2010001358 W CN 2010001358W WO 2011029269 A1 WO2011029269 A1 WO 2011029269A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
sintering
chromium
chromium slag
metallurgical
Prior art date
Application number
PCT/CN2010/001358
Other languages
English (en)
French (fr)
Inventor
李秉正
邓勇
Original Assignee
重庆瑞帆再生资源开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2009102538658A external-priority patent/CN101705317B/zh
Priority claimed from CN201010273143.1A external-priority patent/CN101942571B/zh
Application filed by 重庆瑞帆再生资源开发有限公司 filed Critical 重庆瑞帆再生资源开发有限公司
Priority to RU2012108937/02A priority Critical patent/RU2551729C2/ru
Publication of WO2011029269A1 publication Critical patent/WO2011029269A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2200/00Recycling of non-gaseous waste material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to the field of environmentally friendly treatment of metallurgical ironmaking and chromium slag. Background technique
  • the melting method is a process in which a toxic substance is detoxified by hexavalent chromium by adding an auxiliary agent at a high temperature.
  • the incineration treatment technology of chromium slag mainly includes carbon reduction method, sinter method, dry reduction method and cyclone furnace sintering method.
  • the sinter method is one step after the blast furnace method, so it is the most thorough method for detoxification.
  • this method is an existing method in the metallurgical enterprise, the method that is carried out in the normal production process, it is also the most economical method.
  • the valuable elements in the chromium slag can be fully utilized, such as the transfer of the value of chromium, iron, calcium and magnesium to the production of sintering and iron making.
  • dolomite containing CaO and MgO In the blast furnace ironmaking, in order to discharge the impurities Si0 2 and A1 2 0 3 in the iron ore and coke from the blast furnace in molten form, dolomite containing CaO and MgO must be added as a flux, and the melting point with Si0 2 and A1 2 0 is formed. Lower eutectic to achieve liquid discharge.
  • the content of CaO and MgO in the chromium slag is equivalent to the content of both in the dolomite.
  • the solid chrome slag can be used as a flux for sintering iron.
  • the sinter method of the incineration treatment of chromium slag is to reduce the hexavalent chromium in the sintered high-temperature reducing chromium slag to trivalent chromium (half-way reduction- or high-price detoxification reduction), and in the blast furnace ironmaking
  • the trivalent chromium is reduced to a single mass (full reduction - or low-cost reduction) to achieve the harmless treatment of the chromium residue.
  • the technology mainly consists of two processes:
  • chromium slag is used as an alkaline flux and a chromium-containing raw material, and is mixed with iron-containing raw materials and fuel (coal) such as iron ore powder, and sintered to form a sinter containing bismuth;
  • the second is to use the sinter as the main raw material, and smelt it in a blast furnace to produce chrome-containing pig iron (2.5-4%) or pig iron for steelmaking.
  • the chromium slag used in the production of self-fluxing sinter is sintered with chromium slag as an alkaline flux instead of conventionally used lime mixed with iron-containing raw materials and fuel, and is sintered at the same time as manufacturing.
  • the strong reducing atmosphere makes the residual hexavalent chromium of the chromium residue and the reducing agent C and CO fully act, and is converted into trivalent chromium (in the form of Cr 2 0 3 ) by half-reduction, thereby achieving the purpose of reduction and detoxification.
  • the hexavalent chromium in the chromium slag is reduced to trivalent chromium by C, CO, etc. during the sintering process, and the reduction rate can reach over 96%.
  • the hexavalent chromium reduction rate is above 99.5%
  • the remaining trivalent chromium enters the blast furnace slag in the form of Cr 2 0 3
  • the liquid blast furnace slag is subjected to water quenching and cold granulation treatment. It can be used as a raw material for cement production.
  • the conventional sintering process is required to ensure sintering under an oxidizing atmosphere to ensure the quality index of the sinter (good strength, good reductibility; low FeO content). Therefore, the sintering process for producing self-fluxing sintered ore from chromium slag already used in China has the following disadvantages:
  • this method needs to change the sintering process conditions to achieve the treatment of chromium slag, which is unrealistic in the metallurgical industry of large-scale production. It can be seen that the pretreatment and thorough treatment of chromium slag by using the sintering machine and blast furnace of metallurgical enterprises is an effective safe and economical method. However, the hexavalent chromium, a toxic substance in the chromium slag, must be effectively and thoroughly treated under high temperature and reducing atmosphere.
  • the blast furnace is a high-temperature reducing atmosphere, and the sintering is a high-temperature oxidizing atmosphere.
  • the dust removal ash in metallurgical iron-containing scrap is a waste that can be reused.
  • the dust removal load has many adverse effects on the sintering process.
  • blast furnace gravity dust removal ash because the carbon content is relatively low, and it is quite unstable, it cannot be included in the sintering fuel use plan, and it cannot be used, resulting in waste. Therefore, it is difficult to use the dust ash ball in the metallurgical iron-containing scrap.
  • bentonite or humic acid as a binder is not ideal. Unless it is used in over-metering, it will reduce the iron content of raw materials. This is an indisputable reality in the metallurgical industry.
  • the object of the present invention is to provide a new method for harmless treatment of chromium slag by metallurgical roasting and blast furnace in view of the deficiencies of the prior art, without changing the oxidizing atmosphere of metallurgical sintering.
  • the conventional process of metallurgical sintering and blast furnace is changed to achieve detoxification treatment of chromium slag.
  • a method for treating chromium slag using metallurgical roasting and blast furnace production processes comprising the following steps -
  • the core is made of the raw material of the sintered ore or the dust and ash in the metallurgical iron-containing waste, and the composite ball of the sinter or the metallurgical iron-containing waste is used as the spherical shell.
  • the dust-removing ash in the iron-containing waste is a composite ball of a spherical shell, and enters the pelletizing furnace to form a pellet.
  • the detoxification of the chromium residue is realized by using a small atmosphere of a small spherical core in a reducing atmosphere. deal with;
  • the sintered ore or pellet is fed to the blast furnace and used as a blast furnace raw material for ironmaking. Thoroughly detoxify the chromium residue.
  • the weight percentages of the chromium slag and the pulverized coal and/or the coke powder which are made of the core are respectively determined by the total amount of the core material of the core. 38-88% and 10-60%, when the gravity dust is used as the reducing agent, the weight percentage of both the chromium residue and the gravity dust is 3-5-90% and 8-93%, respectively, and the weight percentage of the binder Both are 1-2%; the diameter of the core is 2-9 faces;
  • the amount of the core is 5%-100% of the amount of the dust in the sinter raw material or the pellet raw material or the metallurgical iron-containing waste, and the weight percentage of the adhesive is 1-2. %.
  • the composite pellets produced have a diameter of 3-16 mm.
  • the core can also replace the dolomite in the flux used in the production of sinter by 1-100%.
  • the binder is selected from bentonite and humic acid.
  • the present invention particularly provides a binder comprising syrup, which comprises industrial syrup, civil syrup, such as: high fructose syrup, fructose pulp, starch syrup, and the like. As long as the national syrup standard is met.
  • humic acid, ferrous oxide, or further borax may be further added to the syrup to form a binder, and the weight ratio thereof is 70-80% of syrup, 10-20% of humic acid, and 5-10 of ferrous oxide. %, borax 5-10%, which can improve the hydrophilicity and activity of the dust-removing ash in the metallurgical iron-containing waste.
  • the adhesive is poured into water, and after heating to 50 ⁇ - 160 Torr in a closed pressure vessel, the raw material is sprayed and mixed, so that Can solve this problem well.
  • the steps (1) and (2) for the preparation of the core and the composite pellet are as follows: 1 is to mix the chromium residue, the coal powder and/or the coke powder or the gravity dust, the adhesive and the adhesive. , enter the granulator, independently make the core production outside the sintering line; then enter the nucleus with the sinter raw material or the dust ash and binder in the metallurgical iron-containing scrap into the sintering mixer or into the pellet The granulator of the production line forms a composite pellet, which is then sintered by a sintering machine or a pelletizing furnace to form a sintered ore or pellet, and finally enters the blast furnace;
  • the chromium slag, pulverized coal and/or coke powder or gravity dust ash, and the binder are mixed and mixed, and then sent to the sintering feed bin, and the chromium slag feed bin in the sintering batching chamber.
  • the granulator is installed at the discharge port to directly form the core, and then the core is put into a mixer, a second mixer, or directly into the ball.
  • Into the second mixer mixed with the sinter raw materials or the dust and ash in the metallurgical iron-containing scrap to form a composite pellet;
  • the chromium slag, pulverized coal and/or coke powder or gravity dust ash, and the binder are mixed and mixed, and then sent to the sintering feed bin, and the chromium slag feed bin in the sintering batching chamber.
  • the discharge port is equipped with a mist spray pipe to directly form the core, and then enter a mixer, a second mixer, or directly into the second mixer, and the dust or ash in the raw material of the sinter or the metallurgical iron-containing waste.
  • the binders are mixed together to form a composite pellet.
  • the chromium slag raw material is crushed and dried before use, and the water content requirement is 3-7.5%, and the particle size requirement is -200 mesh up to 70% or more. Since the treatment of chromium slag cannot be directly processed in the sintering production line of the oxidizing atmosphere, the original production process of the sintering production line should not be changed for the treatment of the chromium slag. Therefore, the present invention uses the method of secondary spheronization to form the chromium slag required for processing.
  • the mechanism for detoxification of chromium residue by the method of the present invention is as follows:
  • the hexavalent chromium in the chromium residue is mainly in the form of sodium chromate and calcium chromate, so sodium chromate is taken as an example.
  • sodium chromate is taken as an example.
  • the reduction reaction of Na 2 Cr0 4 is:
  • C, CO, Si and Fe can reduce Cr0 3 to Cr 2 0 3 , and C and Si can further reduce Cr 2 0 3 to CrO and metallic chromium.
  • Sinter ore is an artificial rich ore produced by high-temperature sintering, which is one of the main iron-containing raw materials for blast furnace iron making.
  • sintering that is, a variety of powdery iron-containing raw materials, with an appropriate amount of alkaline flux and fuel (coke powder, anthracite powder), mixed and placed on the sintering equipment for combustion, a series of materials in the high temperature process
  • alkaline flux and fuel coke powder, anthracite powder
  • the physicochemical reaction produces a part of the fusible substance in the mixture and softens and melts to form a certain amount of liquid phase, wets and sticks the surrounding unmelted solid particles, solidifies after cooling, and bonds the original bulk material into a block shape.
  • the chromium slag in order to satisfy the reducing atmosphere requirement for the chromium slag treatment without changing the oxidizing atmosphere of the sintering machine, the chromium slag is made into a core together with a reducing agent such as pulverized coal or coke powder, together with the sintering raw material.
  • the second ball is formed by sintering the raw material wrapped around the core to form a spherical shell.
  • the core of the reducing agent is at a higher temperature, and the reducing agent pulverized coal or coke powder is inside the spherical shell.
  • a small environment with a reducing atmosphere is formed (the nucleus forms a reducing atmosphere, and the oxidizing atmosphere at the periphery of the spherical shell), so that the chromium can be smoothly reduced, and the reduction rate can reach 96% or more.
  • the conventional sinter is entered into the blast furnace, and after smelting in the blast furnace, the hexavalent chromium reduction rate can reach 99.5% or more from the sinter to the blast furnace slag.
  • the invention can also comprehensively utilize metallurgical iron-containing waste (dust-removing ash):
  • the dust-removing ash in the metallurgical iron-containing waste is in the flue gas collected by the steel enterprise in the production process (including sintering, iron making, steel making) dust removal.
  • a kind of iron-containing dust, the total amount of dust removal ash in the three links accounts for 10-12% of the steel output.
  • Sintering dust ash Among them, organic head dust ash, tail dust ash, ring cold dust ash, finished dust ash and pellet dust ash, these dust ash do not contain carbon, can only be made when the ball is double 2.
  • Iron dust removal ash Among them, gravity dust ash, washing dust ash, these dust ash have high carbon content, can be used as a reducing agent for the core of the second ball, but the washing dust ash contains zinc. Higher, zinc can not be used as a reducing agent for the core of the second ball before being sorted; 3.
  • Steel dust removal ash one of the dust removal ash, the secondary dust removal ash, the wet dust removal sludge, these dust removal Ash does not contain carbon, and can only be used for ball shells when it is double-rounded.
  • the project improves the iron grade, quality and output of the sinter, saving a lot of energy.
  • the invention treats the dust-removing ash using metallurgical iron-containing waste material and uses it as a reducing agent, and improves the hydrophilicity and activity by using a special binder, so that it can effectively form a ball and achieve all effective for dust removal ash.
  • Use improve the sintering gas permeability, improve the iron content, quality and yield of the sintered ore, and also interpret the chromium residue. Compared with the original processing method, it has the following advantages:
  • the sintering gas permeability is improved.
  • the invention processes the metallurgical iron-containing scrap (dust-removing ash) secondary ball metallurgy pellet, has good ore-forming performance, can fully fuse with the mixture, and has no deposition, thereby improving the gas permeability of the sintering, and the quality of the sintered ore is greatly improved. The effect is good.
  • the invention adopts the technique of secondary spheronization.
  • the reducing atmosphere is automatically generated inside the core, and the iron can be reduced to remove the oxygen to improve the grade of the sinter iron.
  • the increase in iron grade is generally around 13%.
  • the coke ratio is lowered, thereby increasing the metallization rate of the metallic iron and the grade of the sinter.
  • the full utilization page of the dust improves the metal recovery rate, saves resources and reduces costs.
  • the present invention utilizes it as a reducing agent to improve the iron grade, quality and quality of the sinter. Production, saving a lot of energy and reducing carbon dioxide emissions.
  • the amount of gravity dust ash is about 2% of iron production, and its carbon content is about 40%. According to the output of 1 million tons of iron, there is 20,000 tons of gravity dust ash and 9251 kilograms of standard coal.
  • the invention adopts secondary ball formation, uses metallurgical iron-containing scrap (dust removal ash) to treat chromium slag, breaks through the environmental protection technology problem of chromium slag treatment, and is a new social benefit, environmental benefit and economic benefit.
  • Technology with simple process, strong maneuverability, thorough detoxification, no secondary pollution, small investment, high level of resource recycling, effective management and environmental benefits Out, social benefits and other advantages.
  • it can also reduce a large amount of carbon dioxide. Taking 120,000 tons of chromium slag per year as an example, it can reduce carbon dioxide emissions by 131,700 tons per year.
  • the method of the invention directly utilizes the metallurgical sintering and the conventional production process of the blast furnace, and can effectively treat the chromium slag without changing the oxidizing atmosphere of the whole sintering, which is economical and environmentally friendly, and is easy to implement.
  • the ball-making raw material of the present invention can all adopt metallurgical iron-containing scrap, and the problem of bonding of the ball is well solved. Therefore, the technology of the present invention exhibits remarkable advantages in resource utilization, energy saving and environmental protection.
  • Treatment of chromium slag Next to the chromium slag dumping site of the chromium salt production plant, build a chromium slag ball production line; crush and dry the chromium slag (water content less than 4%, ball milled to -200 mesh up to 30-70%) Calculated by taking a total of 10 tons of core material, taking 7.8 tons of chromium slag, 2 tons of pulverized coal (-200 mesh), using syrup 70%, humic acid 20% and ferrous oxide 10% by weight.
  • the adhesive is 0.2 tons, the adhesive is dissolved in water, heated to 120 ⁇ in a closed pressure vessel, and then injected into the raw material, mixed into the disc granulator by a mixer, and the diameter is 2-5 legs.
  • the core of the ball, the semi-finished product after the vibrating screen, the special transporter that enters the seal is sent to the batching room of the sintering plant, the chromium slag ball core is placed in the sealed silo, and enters the sintering production line, and the whole process does not go down; the above 10 tons of chromium residue
  • the core of the sphere that is, the dolomite in the same amount of flux is replaced by a chromium slag core
  • the dolomite in the flux is reduced by 7.8 tons according to the original weight, because the core is replaced by the chromium residue core.
  • a spherical shell is formed outside the core of the chromium slag core to form a composite pellet having a diameter of 5-10 mm, and then sintered into a sintering machine to carry out the slag Reduction pretreatment; After high temperature sintering above 120CTC, the sintered ore is discharged, cooled, crushed, sieved, and finished into the next process - blast furnace ironmaking, and the chromium residue is completely detoxified.
  • the above sintering production process refers to the conventional production process of sinter, and the equipment and process conditions do not need to be changed.
  • the chromium slag core of the above manner is independently produced outside the sintering line.
  • the chromium slag core can also be made together in the sintering line by mixing the chromium slag, pulverized coal and/or coke powder or gravity dust ash and binder, and then feeding it into the sintering feed.
  • warehouse in the slag feed bin outlet of the sintering batching chamber, add a mist spray pipe and / or granulator, directly form the core, then enter a mixer, two mixers, or directly into the two mixing
  • the machine forms a spherical shell from the raw material of the sintered ore to form a composite pellet.
  • the above-mentioned reducing agent used in the production of the chromium slag core may be gravity dedusting ash.
  • the core material of the core is 50% chromium slag, 48% of iron blast furnace gravity dust removal ash, and the binder is 2% (made by 70% syrup, 20% humic acid and 10% ferrous oxide). 1 kg, made of a core diameter of 5 mm.
  • the spherical shell material adopts 97% of sintered dust ash, 55% of iron grade; 3% of binder (using syrup); a spherical shell is formed outside the core, the weight of the spherical shell is 2 kg, and the diameter of the spherical shell is 8 mm; The total weight is 3 kg.
  • the binder is heated to 50 ° C, and then atomized and sprayed onto the raw material for mixing.
  • the calcination test is carried out in the test furnace; the test atmosphere is an oxidizing atmosphere; the liquefied gas is used as the fuel, and the green ball is placed in the furnace for firing; (the whole process simulates the sintering machine thermal system)
  • the product is taken out for each test;
  • the chrome is 1. 5%; the total chromium of the sinter is 0. 45; the hexavalent chromium is 0. 0002% (less than the national emission standard 5mg / k g is 0. 0005%).
  • Detoxification pretreatment Purpose is carried out in the test furnace; the test atmosphere is an oxidizing atmosphere; the liquefied gas is used as the fuel, and the green ball is placed in the furnace for firing; (the whole process simulates the sintering machine thermal system)
  • the product is taken out for each test;
  • the chrome is 1. 5%; the total chromium of the sinter is 0. 45; the hexavalent chromium is 0. 0002% (less than
  • the falling strength of the raw balls reached 8 times/average each; the compressive strength reached 10N/average each; and all other indicators reached the national standard.
  • the core material of the core is 78.5% of chromium residue and 20% of coal powder; the binder is made of (70% by weight of syrup, 20% of humic acid and 10% by weight of ferrous oxide) 1.5%, and the weight of the core is 1 kg. Made into a core (diameter 5 earned);
  • the spherical shell material uses 98% iron ore powder and 55% iron content; the binder is humic acid (2%); the spherical shell is formed outside the core, the weight of the spherical shell is 2 kg, and the diameter of the secondary sphere is 10 mm. The total weight of the ball is 3 kg.
  • the smelting test is carried out in a test furnace; the test atmosphere is an oxidizing atmosphere; the liquefied gas is used as a fuel, and the raw material is placed in a furnace for calcination; 0001% (less than the national emission standard 5mg / kg or 0. 0005%).
  • the total chromium content of the sinter is 0. 3; To achieve the purpose of detoxification pretreatment.
  • the falling strength of the raw balls reached 8 times/average each; the compressive strength reached 10N/average each; and all other indicators reached the national standard.
  • the core material of the sphere is made of chromium slag 18.5%, gravity dust ash 80% (gravity dust ash contains 35% of coke powder); binder 1.5% (80% syrup, 15% humic acid and 5% ferrous oxide) The weight ratio is obtained); the weight of the core is 1 kg; the core is made (diameter 5 mm);
  • the shell material is made of iron ore powder (98%); the iron grade is 63%; the (carbon-free) binder is bentonite (2%); the spherical shell is formed outside the core; the shell weight is 1 kg; Ball diameter 8 mm; total weight 2 kg; roasting test in a self-made test furnace; test atmosphere is oxidizing atmosphere; liquefied gas is used as fuel, raw ball is placed in the furnace for roasting;
  • the total collateral of the sulphide is 1.5%; the total chromium of the sinter is 0. 45; the hexavalent chromium is 0. 0002% (less than the national emission standard 5mg/kg or 0. 0005°/ .).
  • Example 5 Preparation of raw materials: Drying chromium slag (water content less than 4%), crushing (ball milling to -200 mesh up to 70%); drying gravity dust ash (water less than 4%), crushing (ball milling to - 200 mesh reaches more than 70%); the total amount of nuclear material is 80 tons, and 40 tons of chromium slag, 38.4 tons of gravity dust ash, 80% syrup, 10% humic acid and 10% ferrous oxide. 1.6 tons. The total amount of spherical shell raw materials is calculated according to 120 tons.
  • the steelmaking sludge ie, steelmaking wet dust removal ash
  • TFe 55%) syrup is 75%
  • humic acid is 10%
  • ferrous oxide is 10%
  • the binder made of 5% by weight of borax is 2.4 tons.
  • the two silos are filled with iron gravity gravity dust ash and chrome crucible, and the feed speed is controlled by a disc feeder, and the uniform speed is distributed on the belt conveyor.
  • the belt conveyor feeds the raw material into the grinding machine (or powerful mixer), then grinds it (or stirs), then sends it to the disc pelletizer through a belt conveyor, and uses a water-soluble binder to heat it in a closed pressure vessel. 160 V, and then sprayed into the raw material to form a core.
  • the core After the core is formed, it passes through the belt conveyor and the vibrating screen and then enters the next process (the spherical shell becomes a ball); the fine material under the vibrating screen is returned to the grinding machine for grinding.
  • the two silos are filled with the dried steel sludge and core, and the feed speed is controlled by a disc feeder, and the uniform speed is clothed on the belt conveyor.
  • the belt conveyor feeds the raw materials into the disc pelletizer for pelletizing; using a water-soluble binder, heating in a closed pressure vessel to 160 ° C, and then spraying the binder into the disc pelletizer to make it Spherical shell. After the spherical shell is formed, it passes through the belt conveyor and the vibrating screen and then enters the next process (baking); the fine material under the vibrating screen is returned to the ball core production line for grinding in the grinding machine.
  • Pellet roasting process After the second ball is formed by a disc pelletizer, and then passed through the vibrating sieve, the raw ball after the scraping is sent to the distributing machine by the belt conveyor, and the uniform cloth is applied to the drying bed at the top of the shaft furnace. Heated by hot air at 570 °C. The raw ball is gradually dried and preheated on the drying bed, slowly descending, gradually heating up, and takes about 1 hour; the calcination zone in the hot section of the wind wall is heated to 1150 ° C, which takes about 1.5 hours. It gradually enters the cooling zone and is slowly discharged after being air-cooled twice. The temperature at the time of tapping is about 20 CTC, and the whole process takes about 6 hours.
  • the ball After the tapping, the ball is slowly transported away on the chain belt machine and further cooled. It is sent to the vibrating screen. After the crushing of the scraped material, the ball can enter the finished product yard, or directly enter the next process - blast furnace Iron making. 00015% (less than the national emission standard 5mg / the total chromium in the raw material chromium slag is 5. 3%; hexavalent chromium is 1. 3%; Kg is 0. 0005%). The purpose of detoxification pretreatment is achieved. The next step is to enter the blast furnace for complete reduction treatment, and the slag is used very well. The falling strength of the raw balls reached 10 times / average each; the compressive strength reached 10N / average each; and all other indicators reached the national standard.
  • Example 6 Preparation of raw materials: Drying chromium slag (water content less than 4%), crushing (ball milling to -200 mesh up to 30%); drying gravity dust ash (water less than 4%), crushing (ball milling to - 200 mesh up to 30% or more); the total amount of nuclear material is 100 tons, taking 70 tons of chromium slag, 29 tons of pulverized coal, 80% syrup, 10% humic acid and 10% ferrous oxide. Tons of adhesive. The total amount of raw material of the spherical shell is calculated as 200 tons, and 3 tons of binder is prepared by taking 197 tons of pellet dust (TFe 55%), 80% of syrup, 10% of humic acid and 10% of ferrous oxide.
  • Secondary ball formation (1) Ball core ball formation process
  • the two silos are filled with pulverized coal, chromium slag, and the feed rate is controlled by a disc feeder, and the uniform speed is distributed on the belt conveyor.
  • the belt conveyor feeds the raw material into the grinding machine (or powerful mixer), then grinds it (or stirs), then sends it to the disc pelletizer through a belt conveyor, dissolves the binder with water, and heats it in a closed pressure vessel. At 160 ° C, the raw material was sprayed in a spray to form a core.
  • the core After the core is formed, it passes through the belt conveyor and the vibrating screen and then enters the next process (the spherical shell becomes a ball); The fine material under the sieve is returned to the grinding machine for grinding.
  • the two silos are filled with the pellet dust and the core, and the feed speed is controlled by the disc feeder, and the cloth is evenly distributed on the belt conveyor.
  • the belt conveyor feeds the raw material into the disc pelletizer to make the ball; the water is dissolved in the adhesive, heated to 160 ° C in a closed pressure vessel, and then sprayed, and the binder is sprayed into the disc pelletizer to make Good spherical shell. After the spherical shell is formed, it passes through the belt conveyor and the vibrating screen and then enters the next process (baking); the fine material under the vibrating screen is returned to the ball core production line for grinding in the grinding machine.
  • Pellet roasting process After the second ball is formed by a disc pelletizer, and then passed through the vibrating sieve, the raw ball after the scraping is sent to the distributing machine by the belt conveyor, and the uniform cloth is applied to the drying bed at the top of the shaft furnace. Heated by hot air at 570 °C.
  • the raw ball is gradually dried and preheated on the drying bed, slowly descending, gradually heating up, and takes about 1 hour; the calcination zone in the soaking section of the wind wall is heated to 115 CTC, which takes about 1.5 hours, gradually After entering the cooling zone, it is slowly discharged after being air-cooled twice.
  • the temperature at the time of tapping is about 20 CTC, and the whole process takes about 6 hours.
  • the ball After the tapping, the ball is slowly transported away on the chain belt machine and further cooled. It is sent to the vibrating screen. After the crushing of the scraped material, the ball can enter the finished product yard, or directly enter the next process - blast furnace Iron making. 00018% (less than the national emission standard 5mg / the total chromium in the raw material chromium slag is 5. 05%; hexavalent chromium is 1. 6%; the total chromium of the sinter is 0. 3; hexavalent chromium is 0. 00018% (less than the national emission standard 5mg / Kg is 0. 0005%). The purpose of detoxification pretreatment is achieved. The next step is to enter the blast furnace for complete reduction treatment, and the chromium residue is well utilized. The falling strength of the raw balls reached 8 times/average each; the compressive strength reached 10N/average; and all other indicators reached the national standard.
  • Tons In the binder and fuel, enter a mixer, two mixers, two times of water and secondary mixing, (or directly into the two mixers), forming a spherical shell outside the core of the chromium slag, forming a diameter of 5 - 10 mm composite pellets, then sintered into a sintering machine, and subjected to reduction pretreatment of chromium slag; after sintering at a high temperature of 1200 ° C or higher, the sinter is discharged, cooled, crushed, sieved, and finished into the next process - Ironmaking in blast furnace, complete detoxification of chromium residue .
  • the above sintering production process refers to the conventional production process of sinter, and the equipment and process conditions do not need to be changed. It is only necessary to replace the amount of dolomite in some or all of the flux with a chromium slag core, that is, adjust the amount of flux. can.
  • the total chromium in the raw material chromium slag is 4.9%; the hexavalent chromium is 1. 3%; the total chromium of the sinter is 0. 31; the hexavalent chromium is 0. 00011% (less than the national emission standard 5mg / Kg is 0. 0005%). Achieve the purpose of detoxification pretreatment.
  • the next step is to enter the blast furnace for complete reduction treatment, and the chromium residue is well utilized.
  • the falling strength of the raw balls reached 8 times/average each; the compressive strength reached 10N/average, and all other indicators reached the national standard.
  • Treatment of chromium slag in the chromium slag ball production line; crushing and drying the chromium slag (water content less than 4%, ball milling to -200 mesh up to 50%), taking 158 tons of total nuclear material Chromium slag, 400 tons of iron gravity dust ash, adhesive 20 tons (70% syrup, 20% humic acid and 10% ferrous oxide weight ratio); Machine, make a 2-5 mm diameter core, the semi-finished product after the vibrating screen, enter the sealed special transport vehicle and send it to the batching room of the sintering plant, put the chromium residue core into the sealed silo, and enter the sintering production line.
  • the above sintering production process refers to the conventional production process of sinter, and the equipment and process conditions do not need to be changed. It is only necessary to replace the amount of dolomite in some or all of the flux with a chromium slag core, that is, adjust the amount of flux. can.
  • the total chromium content of the slag is 1. 8%; the total sinter of the sinter is 0. 28; the hexavalent chromium is 0. 00014% (less than the national emission standard 5mg / Kg is 0. 0005%).
  • the purpose of detoxification pretreatment is achieved.
  • the next step is to enter the blast furnace for thorough reduction, and the chromium residue is used very well.
  • Example 9 Preparation of raw materials: drying the slag (water content less than 4%), crushing (ball milling to -200 mesh up to 40%); drying the gravity dust ash (water less than 4%), crushing (ball milling to - 200 mesh reaches more than 60%); the total amount of nuclear material is 500 tons, taking 300 tons of chromium residue, 190 tons of gravity dust, and 10 tons of adhesive using syrup.
  • the total amount of raw materials of the spherical shell is calculated according to 1000 tons, and 980 tons (TFe 55%) of dust removal ash is used for one time, and 80°/ syrup is used. 20% by weight of humic acid 10% and ferrous oxide 10% by weight.
  • the two silos are filled with gravity dust ash and chromium slag, and the feed speed is controlled by a disc feeder, and the uniform speed is clothed on the belt conveyor.
  • the belt conveyor feeds the raw material into the grinding machine (or powerful mixer), then grinds it (or stirs), then sends it to the disc pelletizer through a belt conveyor, dissolves the binder with water, and heats it in a closed pressure vessel. To At 150 ° C, the raw material was sprayed in a spray to form a core.
  • the core After the core is formed, it passes through the belt conveyor and the vibrating screen and then enters the next process (the spherical shell becomes a ball); the fine material under the vibrating screen is returned to the grinding machine for grinding.
  • the two silos are filled with steel dust and nucleus, and the feed rate is controlled by a disc feeder.
  • the uniform speed is distributed on the belt conveyor.
  • the belt conveyor feeds the raw material into a disc pelletizer for pelletizing; the water is dissolved in the binder, heated to 150 ° C in a high pressure sealed container, and then sprayed, and the binder is sprayed into the disc pelletizer. Make a good shell. After the spherical shell is formed, it passes through the belt conveyor and the vibrating screen and then enters the next process (baking); the fine material under the vibrating screen is returned to the ball core production line for grinding in the grinding machine.
  • Pellet roasting process after the second ball is formed by the disc pelletizer, and then the raw ball after the vibrating sieve is scraped, the belt is sent to the distributing machine by the belt conveyor, and the uniform cloth is applied to the drying bed at the top of the shaft furnace. Heated by hot air at 570 °C.
  • the raw ball is gradually dried and preheated on the drying bed, slowly descending, gradually heating up, and takes about 1 hour; the calcination zone in the hot section of the wind wall is heated to 1150 ° C, which takes about 1.5 hours. It gradually enters the cooling zone and is slowly discharged after being air-cooled twice.
  • the temperature at the time of tapping is about 200 °C, and the whole process takes about 6 hours.
  • the ball After the tapping, the ball is slowly transported away on the chain belt machine and further cooled. It is sent to the vibrating screen. After the crushing of the scraped material, the ball can enter the finished product yard, or directly enter the next process - blast furnace Iron making. 00019% (less than the national emission standard 5mg / the total chromium in the raw material chromium slag is 5. 36%; hexavalent chromium is 1. 9%; the total chromium of the sinter is 0. 34; hexavalent chromium is 0. 00019% (less than the national emission standard 5mg / Kg is 0. 0005%). To achieve the purpose of detoxification pretreatment.
  • Example 10 Preparation of raw materials: Drying of chromium residue (less than 4% moisture), crushing (ball milling to -200 mesh up to 60%) Above); Gravity dust ash drying (moisture less than 4%), crushing (ball milling to -200 mesh up to 60% or more); total nuclear material of the ball is calculated according to 1000 tons, taking 760 tons of chromium slag, 220 pulverized coal ton, A binder of 20 tons was prepared using a weight percentage of syrup 80%, humic acid 10%, and ferrous oxide 10%. The total amount of spherical shell raw materials is calculated according to 2000 tons, taking 1950 tons of iron ore fines (TFe 63%) and using bentonite 50 tons.
  • the two silos are filled with pulverized coal, chromium slag, and the feed rate is controlled by a disc feeder, and the uniform speed is distributed on the belt conveyor.
  • the belt conveyor feeds the raw material into the grinding machine (or powerful mixer), then grinds it (or stirs), then sends it to the disc pelletizer through a belt conveyor, and uses a water-soluble binder to heat it in a closed pressure vessel.
  • the material was sprayed at 160 ° C and sprayed to form a core.
  • the core After the core is formed, it passes through the belt conveyor and the vibrating screen and then enters the next process (the spherical shell becomes a ball); the fine material under the vibrating screen is returned to the grinding machine for grinding.
  • the two silos are filled with steel dust and nucleus, and the feed rate is controlled by a disc feeder.
  • the uniform speed is distributed on the belt conveyor.
  • the belt conveyor feeds the raw materials into the disc pelletizer to make the ball; the tap water is used to make the spherical shell. After the spherical shell is formed, it passes through the belt conveyor and the vibrating screen and then enters the next process (baking); the fine material under the vibrating screen is returned to the ball core production line for grinding in the grinding machine.
  • Pellet roasting process after the second ball is formed by the disc pelletizer, and then the raw ball after the vibrating sieve is scraped, the belt is sent to the distributing machine by the belt conveyor, and the uniform cloth is applied to the drying bed at the top of the shaft furnace. Heated by hot air at 570 °C.
  • the raw ball is gradually dried and preheated on the drying bed, slowly descending, gradually heating up, and takes about 1 hour; the calcination zone in the hot section of the wind wall is heated to 1150 ° C, which takes about 1.5 hours. It gradually enters the cooling zone and is slowly discharged after being air-cooled twice.
  • the temperature at the time of tapping is about 200 °C, and the whole process takes about 6 hours.
  • the ball after the release is slowly transported away on the chain machine and further cooled, it is sent to vibrate Screening, sifting the ball into the finished product yard, or directly into the next process - blast furnace ironmaking.
  • 00017% (less than the national emission standard 5mg / the total chromium in the raw material chromium slag is 5. 15%; hexavalent chromium is 2. 1%; the total chromium of the sinter is 0. 3; hexavalent chromium is 0. 00017% (less than the national emission standard 5mg / Kg is 0. 0005%).
  • the next step is to enter the blast furnace for thorough reduction treatment, and the chromium residue is well utilized.

Description

利用冶金焙烧和高炉对铬渣进行无害化处理的方法 技术领域 本发明属于冶金炼铁和铬渣环保处理领域。 背景技术
目前, 对铬渣的无害化处理有化学法、 物理 /化学法、 熔烧法和固化 / 稳定法四种方法, 其中熔烧法最为彻底。 熔烧法是将有毒物质在高温下通 过添加助剂对六价铬解毒的过程。 铬渣的熔烧无害化处理技术主要有碳还 原法、 烧结矿法、 干式还原法和旋风炉熔烧法。
烧结矿法因其之后还有一步高炉法, 因此是解毒最彻底的方法。同时, 因为此法是在冶金企业现有的装置, 正常的生产过程中附带进行的方法, 因此它也是最经济的方法。此外,铬渣中的有价元素还能得到充分的利用, 如金属铬、 铁、 钙、 镁的价值部分转移到烧结、 炼铁生产之中。 高炉炼铁时, 为将铁矿石和焦炭中的杂质 Si02、 A1203以熔液形式从 高炉排出, 必须加入含 CaO、 MgO的白云石作熔剂, 与 Si02、 A120生成 熔点较低的共熔物从而达到液态排出的目的。而铬渣中的 CaO、 MgO含量 与白云石中两者的含量相当, 固可用铬渣替代部分白云石作为烧结炼铁的 熔剂。 铬渣的熔烧无害化处理技术的烧结矿法就是利用烧结高温还原铬渣 中的六价铬还原为三价铬 (半程还原-或高价解毒还原), 以及在高炉炼铁时 又将三价铬还原为单质络 (全程还原-或低价利用还原), 从而实现铬渣的 无害化处理。 该技术主要包括两个过程:
一是以铬渣为碱性熔剂及含铬原料, 配入铁矿石粉等含铁原料和燃料 (煤), 经烧结制成含袼的烧结矿;
二是以该烧结矿为主要原料, 经高炉冶炼, 制成含铬生铁 (2.5-4%) 或炼钢用生铁。
1
确 认 本 目前已在使用的铬渣制作自熔性烧结矿的烧结工艺是, 以铬渣为碱性 熔剂,替代常规使用的石灰与含铁原料及燃料混配, 并在烧结造块的同时, 制造较强的还原气氛,使铬渣残留的六价铬与还原剂 C及 CO等充分作用, 半程还原转化为三价铬(以 Cr203的形式存在),兼而达到还原解毒的目的。
在该技术中,铬渣中的六价铬在烧结过程中被 C、 CO等半程还原为三 价铬, 还原率可达 96%以上。 再经高炉冶炼后, 由烧结料到高炉渣, 六价 铬还原率为 99.5%以上,剩余的三价铬以 Cr203的形式进入高炉渣,液态高 炉渣经水淬激冷粒化处理后可作为制水泥的原料。
而常规的烧结工艺的要求是保证在氧化气氛下进行烧结, 以确保烧结 矿的质量指标 (强度、还原性好; FeO含量低)。 因此, 国内已在使用的铬渣 制作自熔性烧结矿的烧结工艺存在以下缺点:
其整体改变了烧结机内的气氛,将原有的强氧化气氛变为了还原气氛, 在还原气氛下, FeO含量将明显增加, 烧结矿的还原性将变差, FeO增加 1个百分点, 进入高炉后, 高炉的焦比将上升 1.5个百分点, 铁水产量将下 降 1.5个百分点; 因此得不偿失, 很难在大高炉、 大烧结推广。
同时,这种方法需要改变烧结工艺条件来实现铬渣的处理,在规模化生 产的冶金行业内, 是不现实的。 可见, 利用冶金企业的烧结机、 高炉对铬渣进行预处理和彻底处理, 是一种行之有效的安全经济的方法。 但是, 铬渣中的有毒物质六价铬, 必 须在高温、 还原气氛下才能被有效彻底的处理。 高炉是高温还原气氛, 烧 结是高温氧化气氛, 要在烧结中处理有毒物质六价铬, 靠改变烧结的整体 气氛来实现是不经济, 也是不适用的。 另外, 冶金含铁废料中的除尘灰本是可以再利用的废料, 现在大多数 钢铁企业是把除尘灰直接添加在烧结混勾料中进行回收利用, 但由于冶金 除尘灰亲水性及活性较差,在烧结台车上温度升高过程中又会生成细粉状, 而使得烧结透气性变差, 部分除尘灰细粉被负压抽风再次进入除尘器, 形 成除尘恶性循环,对除尘器增加除尘负荷,对烧结过程产生很多不利影响。 就高炉重力除尘灰来说, 由于碳含量相对较低, 而且相当不稳定, 无法纳 入烧结燃料使用计划, 不能使用, 因而造成浪费, 因此, 由于全采用冶金含铁废料中的除尘灰制球很困难, 使用膨润土 或腐植酸做粘接剂效果不理想, 除非超大计量使用, 但会降低原料含铁品 位, 这在冶金行业已是不争的现实。 原因是冶金含铁废料均是高温烧制后 的熟料, 其亲水性和活性较差, 成球困难, 成球后强度差, 难以达到冶炼 要求。 因此, 冶金含铁废料中的除尘灰成球, 必须提高其亲水性和活性, 才能达到对其的有效利用。 发明内容 本发明的目的在于针对现有技术存在的不足, 提供一种新的利用冶金 焙烧和高炉对铬渣进行无害化处理的方法, 在不改变冶金烧结的氧化气氛 的状态下, 也不改变冶金烧结和高炉的常规工艺过程, 实现对铬渣的解毒 处理。 本发明的技术方案如下:
一种利用冶金焙烧和高炉的生产过程对铬渣进行处理的方法, 所述方 法包括以下步骤-
( 1 ) 以铬渣为原料、 以煤粉和 /或焦粉或重力除尘灰为还原剂, 另以粘 接剂为添加剂, 制作成球核;
(2) 将所述球核与生产烧结矿的原料或冶金含铁废料中的除尘灰和粘 接剂一起制成以烧结矿原料或冶金含铁废料中的除尘灰为球壳的复合小 球, 进入烧结机进行烧结, 形成烧结矿; 或将所述球核进入球团矿生产线 与球团矿原料或冶金含铁废料中的除尘灰和粘接剂一起制成以为球团矿原 料或冶金含铁废料中的除尘灰为球壳的复合小球, 进入球团培烧炉形成球 团矿; 在焙烧或烧结过程中, 用无数个小球内核的还原气氛小环境来实现 铬渣的解毒处理;
(3 )所述烧结矿或球团矿再送入高炉,作为高炉原料进行炼铁的同时, 对铬渣进行彻底的无害化处理。
所述步骤 (1 ) 中, 以球核总原料量计, 在以煤粉和 /或焦粉为还原剂 时, 制作球核的铬渣与煤粉和 /或焦粉两者的重量百分比分别为 38-88%和 10-60%, 当以重力除尘灰为还原剂时, 铬渣与重力除尘灰两者的重量百分 比分别为 5-90%和 8-93%,粘接剂的重量百分比均为 1-2%;球核直径为 2-9 麵;
所述步骤(2 )中, 所述球核的用量占烧结矿原料或球团矿原料或冶金 含铁废料中的除尘灰用量的 5%-100%, 粘接剂的重量百分比为 1-2%。 制 作的的复合小球的直径为 3-16 mm。 其中球核还可按 1-100%的量替代生产 烧结矿需使用的熔剂中的白云石。
所述粘接剂选用膨润土、 腐植酸。 另外本发明还特别提供了一种粘接 剂, 采用糖浆, 糖浆包括工业糖浆、 民用糖浆, 如: 高果糖浆、 果葡糖桨、 淀粉糖浆等。 只要达到国家糖浆标准的均可。 或者在糖浆中进一步加入腐 植酸、 氧化亚铁, 或进一步再加入硼砂等混合制成粘接剂, 它们的重量比 为糖浆 70-80%、 腐植酸 10-20%和氧化亚铁 5-10%、 硼砂 5-10%, 其可以 在冶金含铁废料中的除尘灰成球时, 提高其亲水性和活性。
进一歩, 如果再在对使用这种粘接剂时的使用工艺上做改进, 即将粘 接剂入水, 在密闭压力容器中加温到 50Ό- 160Ό后, 再喷入原料, 进行混 合, 这样就能很好地解决以上这一难题。
所述步骤 (1 ) 和步骤(2)对球核和复合小球的制作方法具体有: ①是将铬渣、 煤粉和 /或焦粉或重力除尘灰、 粘接剂配好混匀后, 进入造粒 机, 在烧结生产线之外独立制作完成球核制作; 再将球核与生产烧结矿的 原料或冶金含铁废料中的除尘灰和粘接剂一起进入烧结混合机或进入球团 生产线的造粒机形成复合小球, 再经烧结机或球团培烧炉培烧后形成烧结 矿或球团矿, 最后进入高炉;
或者, ②在烧结生产线中, 将铬渣、 煤粉和 /或焦粉或重力除尘灰、 粘 接剂配好混匀后, 送进烧结进料仓, 在烧结配料室的铬渣进料仓出料口加 装造粒机, 直接形成球核, 再将球核进入一混合机、 二混合机, 或直接进 入二混合机, 与烧结矿的原料或冶金含铁废料中的除尘灰和粘接剂一起混 合, 形成复合小球;
或者, ③在烧结生产线中, 将铬渣、 煤粉和 /或焦粉或重力除尘灰、 粘 接剂配好混匀后, 送进烧结进料仓, 在烧结配料室的铬渣进料仓出料口, 加装雾状喷水管, 直接形成球核, 再进入一混合机、 二混合机, 或直接进 入二混合机, 与烧结矿的原料或冶金含铁废料中的除尘灰和粘接剂一起混 合, 形成复合小球。
所述铬渣原料在使用前要进行破碎、 烘干, 含水量要求: 3-7.5%, 粒 度要求: -200目达 70%以上。 由于处理铬渣不能在氧化气氛的烧结生产线上直接处理, 也不应该为 处理铬渣去改变烧结生产线原有的生产工艺, 因此本发明采用了二次成球 的方式来形成处理铬渣所需的还原气氛, 在烧结生产线上用无数个小球内 核的还原气氛小环境来实现铬渣的解毒的处理。 采用本发明方法进行铬渣解毒的机理如下: 铬渣中的六价铬主要以铬 酸钠和铬酸钙形态存在, 因此以铬酸钠为例。 在烧结和炼铁工艺条件下, 炉料中始终存在0、 CO等还原介质。 在(、 CO的作用下, Na2Cr04发生 的还原反应为:
2 Na2Cr04+C+CO=Cr203+2C02+2Na20 该反应的平衡常数 k与反应温度之间的关系式:
In k=-52.720297+1552.715508/T+8.5403 In T+0. 00337862Τ- 191095/T2 由此关系式可知, 随着温度升高, Na2Cr04还原解毒效果提高, 说明 温度升高有利于 Na2Cr04还原。 因此无论在烧结还是高炉炼铁过程中, 单 纯从热力学角度上看, 都可以进行六价铬的还原反应。
利用铬渣在烧结和炼铁的工艺条件下, C、 CO、 Si、 Fe均可使 Cr03 还原成 Cr203, 而且 C、 Si可进一步使 Cr203还原成 CrO和金属铬。 工艺过程分析: 烧结过程的半程还原, (六价铬还原为三价铬)。 烧结 矿是一种釆用高温烧结的方法制成的人造富矿, 是高炉炼铁主要含铁原料 之一。 所谓烧结, 即是将各种粉状含铁原料, 配入适量的碱性熔剂和燃料 (焦粉、无烟煤粉), 混合均匀后置于烧结设备上燃烧, 在高温过程中物料 中发生一系列物理化学反应, 混合料中生成部分易熔物质并软化、 熔化形 成一定数量的液相, 润湿、 粘连周围未熔的固体颗粒, 冷却后凝固, 将原 为散状的物料黏结成块状。 本发明中, 为了在不改变烧结机的氧化气氛下, 又满足对铬渣处理需 要的还原气氛要求, 将铬渣与煤粉或焦粉等还原剂一起制成球核, 在与烧 结原料一起进行二次成球, 是烧结原料包裹于球核外形成球壳, 这样在烧 结过程中, 由于球壳的屏蔽作用, 球核在较高温度时, 还原剂煤粉或焦粉 在球壳内部形成一个具有还原气氛的小环境 (球核形成还原气氛、 球壳外 围氧化气氛), 使铬能够顺利进行还原反应, 还原率可达 96%以上。而形成 烧结矿后, 以常规的烧结矿进入高炉的形式, 再经高炉冶炼后, 由烧结料 到高炉渣, 六价铬还原率就可达到 99.5%以上。
同时, 本发明还能够对冶金含铁废料(除尘灰)进行综合利用: 冶金含铁废料中的除尘灰是钢铁企业在生产过程中(包括烧结、炼铁、 炼钢) 除尘收集的烟气中的一种含铁粉尘, 三个环节的除尘灰总量大概占 钢产量的 10-12%。
包括以下三类 1、 烧结除尘灰: 其中有机头除尘灰、 机尾除尘灰、 环 冷除尘灰、 成品除尘灰和球团除尘灰, 这些除尘灰不含碳, 二次成球时只 能制作球壳用; 2、 炼铁除尘灰: 其中有重力除尘灰、 洗涤除尘灰, 这些除 尘灰含碳较高, 可作为二次成球时的球核的还原剂用, 但是洗涤除尘灰含 锌较高, 锌未分选之前, 不能作为二次成球时的球核的还原剂用; 3、炼钢 除尘灰: 其中有一次除尘灰、 二次除尘灰、 湿法除尘污泥, 这些除尘灰不 含碳, 二次成球时只能制作球壳用。
而本项目提高烧结矿的铁品位、 质量和产量, 节约了大量的能源。 冶 金含铁废料中的除尘灰成球, 必须
本发明处理利用冶金含铁废料的除尘灰, 把它作为还原剂进行利用, 通过使用特殊的粘接剂, 提高其亲水性和活性, 使其可以有效成球, 达到 对除尘灰的全部有效利用, 提高烧结透气性, 提高烧结矿的含铁品位、 质 量和产量, 通过还对铬渣进行了解读处理。 同原来的处理方式相比, 具有 以下优势:
( 1 )使冶金含铁废料(除尘灰)得到全部有效利用。 由于本发明采用 二次成球的方式处理, 所以除尘灰不会被负压抽走, 达到了冶金含铁废料
(除尘灰) 的全部再生利用, 利用程度高。
(2)提高了烧结透气性。本发明处理冶金含铁废料(除尘灰)二次成 球冶金球团, 成矿性能好, 能充分与混合料熔为一体, 没有沉积, 从而提 高了烧结的透气性, 烧结矿质量大幅提高, 利用效果好。
(3 )提高铁品位和金属化率。本发明采用二次成球技术, 在正常烧结 过程中, 随着温度的升高, 球核内部自动生成还原气氛, 可以还原铁带走 氧从而提高烧结矿铁品位。 铁品位的提高幅度一般在 13%左右。 由于铁品 位提高, 降低了焦比,从而提高了金属铁的金属化率和烧结矿的入炉品位。 同时粉尘的全部利用页提高了金属回收率, 节约了资源, 降低了成本。
(4)节约能源,减排二氧化碳。由于高炉重力除尘灰碳含量相对较低, 而且相当不稳定, 无法纳入烧结燃料使用计划, 不能使用, 因而造成浪费, 而本发明把它作为还原剂进行利用, 提高烧结矿的铁品位、 质量和产量, 节约了大量的能源,减排二氧化碳。重力除尘灰的数量大约占铁产量的 2%, 其碳含量约为 40%, 按 100万吨铁产量计算, 重力除尘灰则有 2万吨, 折 算标煤则有 9251公斤。 可见, 本发明采用二次成球, 利用冶金含铁废料(除尘灰)处理铬渣, 突破了铬渣治理这一环保科技难题, 是一项集社会效益、 环境效益、 经济 效益于一体的新技术, 具有工艺简单、 操作性强、 解毒彻底、 不产生二次 污染、 投资小、 资源再生利用程度高、 管理能得到有效控制和环境效益突 出、 社会效益明显等优势。 同时, 在利用该项目无害化处理铬渣和含铬污 泥的过程中, 还能减排大量的二氧化碳, 以每年处理 12万吨铬渣为例, 每 年可减排二氧化碳 13. 27万吨, 推广到全国每年可减排二氧化碳 100多万 吨。 该项目能够彻底解决铬渣处理难的问题和铬渣排放企业周边环境污染 问题以及铬渣排放企业的生存问题。 可见, 本发明方法直接利用了冶金烧结和高炉常规的生产过程, 在不 改变烧结整体的氧化气氛的前提下,可以有效地处理铬渣, 即经济又环保, 而且易于实施。 并且, 本发明的制球原料可以全部采用冶金含铁废料, 并 很好地解决了成球的粘接性问题, 因此本发明技术在资源利用和节能环保 方面表现出十分显著的优点。 具体实施方式
实施例 1:
铬渣的处理: 在铬盐生产厂的铬渣堆放场的旁边, 建一条铬渣制球生 产线; 将铬渣破碎、 烘干 (水分小于 4%、 球磨到 -200目达 30-70%以上), 以球核原料总量为 10吨算, 取 7. 8吨铬渣、 2吨煤粉(-200目)、 采用糖 浆 70%、 腐植酸 20%和氧化亚铁 10%的重量比制得的粘接剂 0.2吨, 将粘 接剂入水溶解, 在密闭压力容器中加温到 120Ό后, 再喷入原料, 经混合 机混勾后进入圆盘造粒机, 造出直径 2-5 腿球核, 过振动筛后的半成品, 进入密封的专用运输车送到烧结厂的配料室,将铬渣球核放入密封的料仓, 进入烧结生产线, 全程不下地; 将以上 10吨铬渣球核(即用铬渣球核取代 相同量的熔剂中的白云石)混入 190吨烧结的混合矿、 熔剂 (熔剂中的白 云石按原重量减少 7.8吨, 因为被铬渣球核替代了 10吨)、粘接剂膨润土 2 吨和燃料中, 一同进入一混合机、二混合机, 经二次加水和二次混合, (或 直接进入二混合机), 在铬渣球核外形成球壳, 形成直径 5- 10 mm的复合小 球, 再进入烧结机烧结, 对络渣进行还原预处理; 经 120CTC以上的高温烧 结后,烧结矿出炉、冷却、破碎、筛分、成品矿进入下一道工序-高炉炼铁, 再对铬渣进行彻底解毒处理。 以上的烧结生产过程, 是指烧结矿的常规生产过程, 设备和工艺条件 都不需变化, 只需要用铬渣球核替代部分或全部熔剂中的白云石的量, 即 调整一下熔剂的量即可。 经检测: 原料铬渣中的总铬为 5. 1%; 六价铬为 1. 5%; 烧结矿的总铬为 0. 3; 六价铬为 0. 0001% (小于国家排放标准 5mg/kg即 0. 0005%)。 达到解 毒预处理的目的。 下一步进入高炉进行彻底的还原处理, 铬渣即被很好的 资源化利用。
另外, 以上方式的铬渣球核是在烧结生产线之外独立制作完成。 根据 实际情况, 铬渣球核也可以在烧结生产线中一起制作, 其方法是将铬渣、 煤粉和 /或焦粉或重力除尘灰、 粘接剂配好混匀后, 送进烧结进料仓, 在烧 结配料室的铬渣进料仓出料口, 加装雾状喷水管和 /或造粒机, 直接形成球 核, 再进入一混合机、 二混合机, 或直接进入二混合机, 用烧结矿的原料 形成球壳, 形成复合小球。 另外, 上述在制作铬渣球核时, 使用的还原剂也可以采用重力除尘灰。 实施例 2:
球核原料采用铬渣 50%, 炼铁高炉重力除尘灰 48%,粘结剂为 2% (采用 糖浆 70%、腐植酸 20%和氧化亚铁 10%的重量比制得),球核重量 1公斤, 制成球核直径 5 mm。
球壳原料采用烧结除尘灰 97%, 含铁品位 55%; 粘结剂为 3% (采用糖 浆); 在球核外形成球壳, 球壳重量 2公斤, 二次成球后直径 8 mm; 总重 3 公斤。
在以上制球核和复合小球的过程中, 都采用将粘接剂入水加温到 50°C 后, 再雾化喷到原料上, 进行混合。
在试验炉内进行焙烧试验; 试验气氛为氧化气氛; 用液化气作燃料, 生球置于炉内焙烧; (全程模拟烧结机热工制度) 取出产品进行各项检测; 原料铬渣中的总铬为 5. 1%; 六价铬为 1. 5%; 烧结矿的总铬为 0. 45; 六价 铬为 0. 0002% (小于国家排放标准 5mg/kg即 0. 0005%)。达到解毒预处理的 目的。
生球落下强度达到 8次 /平均每个; 抗压强度达到 10N/平均每个; 以 及其它各项指标均达国家标准。
实施例 3 :
球核原料采用铬渣 78. 5%, 煤粉 20%; 粘结剂为(采用糖浆 70%、腐植 酸 20%和氧化亚铁 10%的重量比制得) 1.5%, 球核重量 1公斤; 制成球核 (直径 5 賺);
球壳原料采用铁矿粉 98%, 含铁品位 55%; 粘结剂为腐植酸 (2%); 在球核外形成球壳, 球壳重量 2公斤, 二次成球直径 10 mm, 生球总重 3公 斤。
在试验炉内进行焙烧试验; 试验气氛为氧化气氛; 用液化气作燃料, 生球置于炉内焙烧; 取出产品进行各项检测; 原料铬渣中的总铬为 5. 0%; 六价袼为 1. 1%; 烧结矿的总铬为 0. 3; 六价铬为 0. 0001% (小于国家排放 标准 5mg/kg即 0. 0005%)。 达到解毒预处理的目的。
生球落下强度达到 8次 /平均每个; 抗压强度达到 10N/平均每个; 以 及其它各项指标均达国家标准。
实施例 4:
球核原料采用铬渣 18. 5%, 重力除尘灰 80% (重力除尘灰内含焦粉 35%); 粘结剂 1.5% (采用糖浆 80%、 腐植酸 15%和氧化亚铁 5%的重量 比制得); 球核重量 1公斤; 制成球核 (直径 5 mm) ;
球壳原料采用铁矿粉(98%); 含铁品位 63%; (不含碳)粘结剂为膨润 土 (2%) ; 在球核外形成球壳; 球壳重量 1公斤; 二次成球直径 8 mm; 总 重 2公斤; 在自制试验炉内进行焙烧试验; 试验气氛为氧化气氛; 用液化 气作燃料, 生球置于炉内焙烧; 取出产品进行各项检测; 原料铬渣中的总 络为 5. 5%; 六价铬为 1. 4%; 烧结矿的总铬为 0. 45; 六价铬为 0. 0002% (小 于国家排放标准 5mg/kg即 0. 0005°/。)。 达到解毒预处理的目的。
生球落下强度达到 10次 /平均每个; 抗压强度达到 10N/平均每个; 以 及其它各项指 ¾ ^均达国家标准。 实施例 5: 原料准备: 将铬渣烘干(水分小于 4%)、 破碎(球磨到 -200目达 70% 以上); 将重力除尘灰烘干 (水分小于 4%)、 破碎 (球磨到 -200 目达 70% 以上); 球核原料总量按 80吨计算, 取铬渣 40吨、 重力除尘灰 38.4吨、 采用糖浆 80%、 腐植酸 10%和氧化亚铁 10%的重量百分比制成 1.6吨。 球壳原料总量按 120吨计算, 取炼钢污泥 (即炼钢湿法除尘灰)烘干 117.6吨 (TFe 55%)、 采用糖浆 75%、 腐植酸 10%、 氧化亚铁 10%、 硼砂 5%的重量百分比制成的粘接剂 2.4吨。
二次成球: 〔一〕 球核成球工艺
两个料仓分别装满炼铁重力除尘灰、 铬猹、 用圆盘给料机控制给料速 度, 匀速布料在皮带机上。
皮带机将原料送入润磨机 (或强力搅拌机) 内润磨 (或搅拌), 再经皮 带机送给圆盘造球机造球,采用水溶粘结剂,在密闭压力容器中加温到 160 V , 然后以喷雾方式喷入原料, 制成球核。
球核成型后, 经皮带机、 振动筛后进入下一道工序 (球壳成球); 振动 筛下的细料返回润磨机内润磨。
〔二〕 球壳成球工艺
两个料仓分别装满烘干后的炼钢污泥、球核,用圆盘给料机控制给料速 度, 匀速布料在皮带机上。 皮带机将原料送入圆盘造球机造球;采用水溶粘结剂,在密闭压力容器 中加温到 160 °C、 然后喷雾方式, 将粘结剂喷入圆盘造球机, 造好球壳。 球壳成型后, 经皮带机、 振动筛后进入下一道工序 (焙烧); 振动筛下的细 料返回球核生产线润磨机内润磨。
球团焙烧工艺: 经过圆盘造球机的二次造球,再经过振动筛筛下碎料后 的生球,被皮带机送给布料机,均匀的布料到竖炉顶部的烘干床上,被 570 °C的热风加热。 生球在烘干床上被逐渐烘干、 预热, 缓慢下降, 逐渐升温, 耗时 1小 时左右; 在道风墙均热段的焙烧带被加热到 1150°C, 耗时 1. 5小时左右, 逐渐进入冷却区, 被两次风冷后缓慢出炉, 出炉时的温度为 20CTC左右, 全程共耗时 6小时左右。
出炉后的成球在链带机上缓慢运走、并被进一步冷却,它被送去过振动 筛, 筛下碎料后的成球即可进入成品堆场, 或直接进入下一道工序——高 炉炼铁。 经检测: 原料铬渣中的总铬为 5. 3%; 六价铬为 1. 3%; 烧结矿的总铬 为 0. 36; 六价铬为 0. 00015% (小于国家排放标准 5mg/kg即 0. 0005%)。 达 到解毒预处理的目的。 下一步进入高炉进行彻底的还原处理, 络渣即被很 好的资源化利用。 生球落下强度达到 10次 /平均每个; 抗压强度达到 10N/ 平均每个; 以及其它各项指标均达国家标准。 实施例 6: 原料准备: 将铬渣烘干(水分小于 4%)、 破碎 (球磨到 -200目达 30% 以上); 将重力除尘灰烘干 (水分小于 4%)、 破碎 (球磨到 -200 目达 30% 以上); 球核原料总量按 100吨计算, 取铬渣 70吨、 煤粉 29吨、采用糖浆 80%、 腐植酸 10%和氧化亚铁 10%的重量百分比制成 1吨粘接剂。 球壳原料总量按 200吨计算, 取球团除尘灰 197吨 (TFe 55%)、 采用 糖浆 80%、 腐植酸 10%和氧化亚铁 10%的重量百分比制成的粘接剂 3吨。 二次成球: (一〕 球核成球工艺
两个料仓分别装满煤粉、 铬渣、 用圆盘给料机控制给料速度, 匀速布 料在皮带机上。
皮带机将原料送入润磨机(或强力搅拌机) 内润磨 (或搅拌), 再经皮 带机送给圆盘造球机造球, 采用水溶解粘结剂, 在密闭压力容器中加温到 160°C, 然后以喷雾方式喷入原料, 制成球核。
球核成型后, 经皮带机、 振动筛后进入下一道工序 (球壳成球); 振动 筛下的细料返回润磨机内润磨。
(二) 球壳成球工艺
两个料仓分别装满球团除尘灰、球核, 用圆盘给料机控制给料速度, 匀 速布料在皮带机上。 皮带机将原料送入圆盘造球机造球;采用水溶解粘结剂,在密闭压力容 器中加温到 160°C、 然后喷雾方式, 将粘结剂喷入圆盘造球机, 造好球壳。 球壳成型后, 经皮带机、振动筛后进入下一道工序(焙烧); 振动筛下的细 料返回球核生产线润磨机内润磨。
球团焙烧工艺: 经过圆盘造球机的二次造球,再经过振动筛筛下碎料后 的生球,被皮带机送给布料机,均匀的布料到竖炉顶部的烘干床上,被 570 °C的热风加热。
生球在烘干床上被逐渐烘干、 预热, 缓慢下降, 逐渐升温, 耗时 1小 时左右; 在道风墙均热段的焙烧带被加热到 115CTC , 耗时 1. 5小时左右, 逐渐进入冷却区, 被两次风冷后缓慢出炉, 出炉时的温度为 20CTC左右, 全程共耗时 6小时左右。
出炉后的成球在链带机上缓慢运走、并被进一步冷却,它被送去过振动 筛, 筛下碎料后的成球即可进入成品堆场, 或直接进入下一道工序——高 炉炼铁。 经检测: 原料铬渣中的总铬为 5. 05%; 六价铬为 1. 6%; 烧结矿的总铬 为 0. 3; 六价铬为 0. 00018% (小于国家排放标准 5mg/kg即 0. 0005%)。 达 到解毒预处理的目的。 下一步进入高炉进行彻底还原处理, 铬渣即被很好 的资源化利用。 生球落下强度达到 8次 /平均每个; 抗压强度达到 10N/平 均每个; 以及其它各项指标均达国家标准。
实施例 7:
铬渣的处理:在铬渣制球生产线上;将铬渣破碎、烘干(水分小于 4%、 球磨到 -200目达 70%以上), 以球核原料总量为 100吨算, 取 48吨铬渣、 50吨炼铁洗涤除尘灰 (-200目) (经浮选除锌后烘干——含碳 40%、 含铁 45%)、 粘接剂 2吨采用糖浆 70%、 腐植酸 20%和氧化亚铁 10%的重量比 制得; 经混合机混匀后进入圆盘造粒机, 造出直径 2-5 mm球核, 过振动筛 后的半成品, 进入密封的专用运输车送到烧结厂的配料室, 将铬渣球核放 入密封的料仓,进入烧结生产线,全程不下地;将以上 100吨铬渣球核(即 用铬渣球核取代相同量的熔剂中的白云石)混入 1900吨烧结的混合矿、熔 剂 (熔剂中的白云石按原重量减少 48吨, 因为被铬渣球核替代了 48吨) 粘接剂和燃料中, 一同进入一混合机、二混合机, 经二次加水和二次混合, (或直接进入二混合机), 在铬渣球核外形成球壳, 形成直径 5- 10 mm的复 合小球, 再进入烧结机烧结, 对铬渣进行还原预处理; 经 1200°C以上的高 温烧结后, 烧结矿出炉、冷却、 破碎、 筛分、 成品矿进入下一道工序 -高炉 炼铁, 再对铬渣进行彻底解毒处理。
以上的烧结生产过程, 是指烧结矿的常规生产过程, 设备和工艺条件 都不需变化, 只需要用铬渣球核替代部分或全部熔剂中的白云石的量, 即 调整一下熔剂的量即可。 经检测: 原料铬渣中的总铬为 4. 9%; 六价铬为 1. 3%; 烧结矿的总铬为 0. 31; 六价铬为 0. 00011% (小于国家排放标准 5mg/kg即 0. 0005%)。 达到 解毒预处理的目的。 下一步进入高炉进行彻底的还原处理, 铬渣即被很好 的资源化利用。 生球落下强度达到 8次 /平均每个; 抗压强度达到 10N/平 均每个, 以及其它各项指标均达国家标准。
实施例 8:
铬渣的处理:在铬渣制球生产线上;将铬渣破碎、烘干(水分小于 4%、 球磨到 -200目达 50%以上),以球核原料总量为 1000吨算,取 580吨铬渣、 400吨炼铁重力除尘灰、粘接剂 20吨(采用糖浆 70%、腐植酸 20%和氧化 亚铁 10%的重量比制得); 经混合机混勾后进入圆盘造粒机, 造出直径 2-5 mm球核, 过振动筛后的半成品, 进入密封的专用运输车送到烧结厂的配料 室, 将铬渣球核放入密封的料仓, 进入烧结生产线, 全程不下地; 将以上 100吨铬渣球核(即用铬渣球核取代相同量的熔剂中的白云石)混入 19000 吨烧结的混合矿、 熔剂 (熔剂中的白云石按原重量减少 580吨, 因为被铬 渣球核替代了 580吨)粘接剂和燃料中, 一同进入一混合机、 二混合机, 经二次加水和二次混合, (或直接进入二混合机),在铬渣球核外形成球壳, 形成直径 5-10腿的复合小球,再进入烧结机烧结,对铬渣进行还原预处理; 经 120CTC以上的高温烧结后, 烧结矿出炉、 冷却、 破碎、 筛分、 成品矿进 入下一道工序 -高炉炼铁, 再对铬渣进行彻底解毒处理。
以上的烧结生产过程, 是指烧结矿的常规生产过程, 设备和工艺条件 都不需变化, 只需要用铬渣球核替代部分或全部熔剂中的白云石的量, 即 调整一下熔剂的量即可。 经检测: 原料铬渣中的总铬为 4. 8%; 六价袼为 1. 2%; 烧结矿的总铬 为 0. 28; 六价铬为 0. 00014% (小于国家排放标准 5mg/kg即 0. 0005%)。 达 到解毒预处理的目的。 下一步进入高炉进行彻底的还原处理, 铬渣即被很 好的资源化利用。 生球落下强度达到 8次 /平均每个; 抗压强度达到 10N/ 平均每个; 以及其它各项指标均达国家标准。 实施例 9: 原料准备: 将络渣烘干(水分小于 4%)、 破碎 (球磨到 -200目达 40% 以上); 将重力除尘灰烘干 (水分小于 4%)、 破碎 (球磨到 -200 目达 60% 以上); 球核原料总量按 500吨计算, 取铬渣 300吨、 重力除尘灰 190吨、 采用糖浆制成 10吨粘接剂。 球壳原料总量按 1000吨计算, 取炼钢一次除 尘灰 980吨 (TFe 55%)、 采用糖浆 80°/。、 腐植酸 10%和氧化亚铁 10%的 重量百分比制成的粘接剂 20吨。
二次成球: 〔一〕 球核成球工艺
两个料仓分别装满重力除尘灰、 铬渣、 用圆盘给料机控制给料速度, 匀速布料在皮带机上。
皮带机将原料送入润磨机 (或强力搅拌机) 内润磨 (或搅拌), 再经皮 带机送给圆盘造球机造球, 采用水溶解粘结剂, 在密闭压力容器中加温到 150°C, 然后以喷雾方式喷入原料, 制成球核。
球核成型后, 经皮带机、 振动筛后进入下一道工序 (球壳成球); 振动 筛下的细料返回润磨机内润磨。
〔二) 球壳成球工艺
两个料仓分别装满炼钢一次除尘灰、球核,用圆盘给料机控制给料速度, 匀速布料在皮带机上。 皮带机将原料送入圆盘造球机造球;采用水溶解粘结剂,在高压密闭的 容器中加温到 150°C、 然后喷雾方式, 将粘结剂喷入圆盘造球机, 造好球 壳。 球壳成型后, 经皮带机、 振动筛后进入下一道工序 (焙烧); 振动筛下 的细料返回球核生产线润磨机内润磨。
球团焙烧工艺:经过圆盘造球机的二次造球,再经过振动筛筛下碎料后 的生球,被皮带机送给布料机,均匀的布料到竖炉顶部的烘干床上,被 570 °C的热风加热。
生球在烘干床上被逐渐烘干、 预热, 缓慢下降, 逐渐升温, 耗时 1小 时左右; 在道风墙均热段的焙烧带被加热到 1150°C, 耗时 1. 5小时左右, 逐渐进入冷却区, 被两次风冷后缓慢出炉, 出炉时的温度为 200°C左右, 全程共耗时 6小时左右。
出炉后的成球在链带机上缓慢运走、并被进一步冷却,它被送去过振动 筛, 筛下碎料后的成球即可进入成品堆场, 或直接进入下一道工序——高 炉炼铁。 经检测: 原料铬渣中的总铬为 5. 36%; 六价铬为 1. 9%; 烧结矿的总铬 为 0. 34; 六价铬为 0. 00019% (小于国家排放标准 5mg/kg即 0. 0005%)。 达 到解毒预处理的目的。 下一步进入高炉进行彻底的还原处理, 铬渣即被很 好的资源化利用。 实施例 10: 原料准备: 将铬渣烘干 (水分小于 4%)、 破碎 (球磨到 -200目达 60% 以上); 将重力除尘灰烘干(水分小于 4%)、 破碎 (球磨到 -200 目达 60% 以上); 球核原料总量按 1000吨计算, 取铬渣 760吨、 220煤粉吨、 采用 糖浆 80%、 腐植酸 10%和氧化亚铁 10%的重量百分比制成粘接剂 20吨。 球壳原料总量按 2000吨计算, 取铁矿粉 1950吨 (TFe 63%)、 采用膨润土 50吨。
二次成球: 〔一〕 球核成球工艺
两个料仓分别装满煤粉、 铬渣、 用圆盘给料机控制给料速度, 匀速布 料在皮带机上。
皮带机将原料送入润磨机 (或强力搅拌机) 内润磨 (或搅拌), 再经皮 带机送给圆盘造球机造球,采用水溶粘结剂,在密闭压力容器中加温到 160 °C 然后以喷雾方式喷入原料, 制成球核。
球核成型后, 经皮带机、 振动筛后进入下一道工序 (球壳成球); 振动 筛下的细料返回润磨机内润磨。
〔二〕 球壳成球工艺
两个料仓分别装满炼钢一次除尘灰、球核,用圆盘给料机控制给料速度, 匀速布料在皮带机上。 皮带机将原料送入圆盘造球机造球;采用自来水喷水造好球壳。球壳成 型后, 经皮带机、振动筛后进入下一道工序(焙烧); 振动筛下的细料返回 球核生产线润磨机内润磨。
球团焙烧工艺:经过圆盘造球机的二次造球,再经过振动筛筛下碎料后 的生球,被皮带机送给布料机,均匀的布料到竖炉顶部的烘干床上,被 570 °C的热风加热。
生球在烘干床上被逐渐烘干、 预热, 缓慢下降, 逐渐升温, 耗时 1小 时左右; 在道风墙均热段的焙烧带被加热到 1150°C, 耗时 1. 5小时左右, 逐渐进入冷却区, 被两次风冷后缓慢出炉, 出炉时的温度为 200°C左右, 全程共耗时 6小时左右。
出炉后的成球在链带机上缓慢运走、并被进一步冷却,它被送去过振动 筛, 筛下碎料后的成球即可进入成品堆场, 或直接进入下一道工序——高 炉炼铁。 经检测: 原料铬渣中的总铬为 5. 15%; 六价铬为 2. 1%; 烧结矿的总铬 为 0. 3; 六价铬为 0. 00017% (小于国家排放标准 5mg/kg即 0. 0005%)。 达 到解毒预处理的目的。 下一步进入高炉进行彻底的还原处理, 铬渣即被很 好的资源化利用。

Claims

权 利 要 求 书
1、利用冶金焙烧和高炉对铬渣进行无害化处理的方法,所述方法包括 以下步骤:
( 1 ) 以铬渣为原料、 以煤粉和 /或焦粉或重力除尘灰为还原剂, 另以粘 接剂为添加剂, 制作球核;
(2) 将所述球核与生产烧结矿的原料或冶金含铁废料中的除尘灰和粘 接剂一起制成以烧结矿原料或冶金含铁废料中的除尘灰为球壳的复合小 球, 进入烧结机进行烧结, 形成烧结矿; 或将所述球核进入球团矿生产线 与球团矿原料或冶金含铁废料中的除尘灰和粘接剂一起制成以球团矿原料 或冶金含铁废料中的除尘灰为球壳的复合小球, 进入球团培烧炉形成球团 矿; 在焙烧或烧结过程中, 用无数个复合小球内核的还原气氛小环境来实 现对铬渣的解毒处理;
(3 ) 将所述烧结矿或球团矿再送入高炉, 作为高炉原料进行炼铁的同 时, 对铬渣进行彻底的无害化处理。
2、根据权利要求 1所述的利用冶金焙烧和高炉对铬渣进行无害化处理 的方法, 其特征在于:
所述步骤 (1 ) 中, 以球核总原料量计, 采用煤粉和 /或焦粉为还原剂 时, 制作球核的铬渣与煤粉和 /或焦粉两者的重量比分别为 38-88%和 10-60%, 采用重力除尘灰为还原剂时, 铬渣与重力除尘灰两者的重量分别 为 5-90%和 8- 93%, 粘接剂的重量百分比均为 1-2%; 球核直径为 2-9腿; 所述步骤(2 )中, 球核的用量占制作球壳的烧结矿原料或球团矿原料 或冶金含铁废料中的除尘灰用量的 5%-100%, 粘接剂的用量占整个球壳总 原料重量的 1-2%, 制作的复合小球的直径为 3-16 mm。
3、根据权利要求 1或 2所述的利用冶金焙烧和高炉对铬渣进行无害化 处理的方法, 其特征在于: 所述粘接剂选用膨润土、腐植酸, 或选用糖浆, 当选用糖浆作为粘接剂时,加入方式都是将粘接剂入水加温到 50-160°C后, 雾化喷入原料中混合。
4、根据权利要求 3所述的利用冶金焙烧和高炉对铬渣进行无害化处理 的方法, 其特征在于: 选用糖桨做粘接剂时, 还可进一步加入腐植酸、 氧 化亚铁混合制成粘接剂, 它们的重量比为糖浆 70-80%、 腐植酸 10-20%、 氧化亚铁 5-10%, 加入方式都是将粘接剂入水加温到 50-160°C后, 雾化喷 入原料中混合。
5、根据权利要求 4所述的铬渣和冶金废料无害化处理及再生利用的方 法, 其特征在于: 粘接剂中还可进一步加入硼砂, 它们的重量比为糖浆 70-80%、 腐植酸 10-20%、 氧化亚铁 5-10%、 硼砂 5-10%, 加入方式都是 将粘接剂入水加温到 50-160Ό后, 雾化喷入原料中混合。
6、根据权利要求 1-5所述的利用冶金焙烧和高炉对铬渣进行无害化处 理的方法, 其特征在于:
所述步骤 (1 )和步骤 (2)对球核和复合小球的制作方法具体有: ①将铬渣、煤粉和 /或焦粉或重力除尘灰、粘接剂配好混匀后,进入造粒机, 在烧结生产线之外独立制作完成球核制作; 再将球核与生产烧结矿的原料 或冶金含铁废料中的除尘灰和粘接剂一起进入烧结混合机或进入球团生产 线的造粒机形成复合小球;
或者, ②在烧结生产线中, 将铬渣、 煤粉和 /或焦粉或重力除尘灰, 粘 接剂配好混匀后, 送进烧结进料仓, 在烧结配料室的铬渣进料仓出料口加 装造粒机, 直接形成球核, 再将球核进入一混合机、 二混合机, 或直接进 入二混合机, 与烧结矿的原料或冶金含铁废料中的除尘灰和粘接剂一起混 合, 形成复合小球;
或者, ③在烧结生产线中, 将铬渣、 煤粉和 /或焦粉或重力除尘灰、 粘 接剂配好混匀后, 送进烧结进料仓, 在烧结配料室的铬渣进料仓出料口, 加装雾状喷水管, 直接形成球核, 再进入一混合机、 二混合机, 或直接进 入二混合机, 与烧结矿的原料或冶金含铁废料中的除尘灰和粘接剂一起混 合, 形成复合小球。
7、根据权利要求 1-6所述的利用冶金焙烧和高炉对铬渣进行无害化处 理的方法, 其特征在于: 所述铬渣原料在使用前要进行破碎、 烘干, 含水 量要求: 3-7.5%, 粒度要求: -200目达 30-70%以上。
PCT/CN2010/001358 2009-09-14 2010-09-07 利用冶金焙烧和高炉对铬渣进行无害化处理的方法 WO2011029269A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012108937/02A RU2551729C2 (ru) 2009-09-14 2010-09-07 Способ обезвреживания хромового шлака с использованием метода обжига и доменного производства

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN200910190855 2009-09-14
CN200910190855.4 2009-09-14
CN2009102538658A CN101705317B (zh) 2009-09-14 2009-12-01 利用冶金烧结和高炉对铬渣进行无害化处理的方法
CN200910253865.8 2009-12-01
CN201010273143.1A CN101942571B (zh) 2010-09-06 2010-09-06 铬渣与冶金废料无害化处理及再生利用的方法
CN201010273143.1 2010-09-06

Publications (1)

Publication Number Publication Date
WO2011029269A1 true WO2011029269A1 (zh) 2011-03-17

Family

ID=43731942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001358 WO2011029269A1 (zh) 2009-09-14 2010-09-07 利用冶金焙烧和高炉对铬渣进行无害化处理的方法

Country Status (2)

Country Link
RU (1) RU2551729C2 (zh)
WO (1) WO2011029269A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232068A (zh) * 2012-05-19 2013-08-07 唐翔 循环再利用处理铬渣及废水工艺
CN103725875A (zh) * 2013-12-30 2014-04-16 吴雪健 一种高性能的球团矿
CN104498707A (zh) * 2013-12-30 2015-04-08 吴雪健 一种生球团的制造方法
CN109402378A (zh) * 2017-08-18 2019-03-01 湖北振华化学股份有限公司 一种含铬物料氧化焙烧提铬的方法
CN109468456A (zh) * 2018-12-28 2019-03-15 安徽工业大学 一种冶金固废回收有价组分的包覆方法
CN112853091A (zh) * 2020-12-31 2021-05-28 中南大学 一种高效协同资源化利用含铬废渣和含碳废料的方法
CN113736989A (zh) * 2021-08-26 2021-12-03 武汉钢铁有限公司 一种利用除尘焦的烧结矿及制备方法
CN114150148A (zh) * 2021-12-10 2022-03-08 四川鑫鼎新材料有限公司 一种铁铬固体尾渣中提取含铬合金制造不锈钢产品的方法
CN114164342A (zh) * 2021-12-06 2022-03-11 昆明理工大学 一种加腐植酸生产褐铁矿球团的方法
CN114164346A (zh) * 2021-12-10 2022-03-11 中南大学 一种协同回收含铬废渣和含碳废料中有价金属的方法
CN115386685A (zh) * 2021-12-27 2022-11-25 王强 转炉生产协同铬渣和电解铝碳渣无害化的处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142704A1 (en) * 2007-05-24 2008-11-27 Tata Steel Limited Process for the production of chromium metal nuggets from chromite ores/concentrates.
CN101613800A (zh) * 2009-07-17 2009-12-30 重庆瑞帆再生资源开发有限公司 采用两次成球方式制作的冶金复合球团、制备方法及应用
CN101705317A (zh) * 2009-09-14 2010-05-12 重庆瑞帆再生资源开发有限公司 利用冶金烧结和高炉对铬渣进行无害化处理的方法
CN101717854A (zh) * 2009-12-25 2010-06-02 重庆瑞帆再生资源开发有限公司 利用冶金焙烧炉生产金属化球团的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU905302A1 (ru) * 1979-07-06 1982-02-15 Институт металлургии им. А.А.Байкова Способ получени окатышей дл выплавки марганцевых ферросплавов
RU2098500C1 (ru) * 1995-08-08 1997-12-10 Общество с ограниченной ответственностью Многопрофильное предприятие "Корунд-5" Способ переработки жидких металлосодержащих отходов
RU2307177C1 (ru) * 2005-12-26 2007-09-27 Общество С Ограниченной Ответственностью "Исследовательско-Технологический Центр "Аусферр" Способ получения окатышей для прямого легирования стали марганцем

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142704A1 (en) * 2007-05-24 2008-11-27 Tata Steel Limited Process for the production of chromium metal nuggets from chromite ores/concentrates.
CN101613800A (zh) * 2009-07-17 2009-12-30 重庆瑞帆再生资源开发有限公司 采用两次成球方式制作的冶金复合球团、制备方法及应用
CN101705317A (zh) * 2009-09-14 2010-05-12 重庆瑞帆再生资源开发有限公司 利用冶金烧结和高炉对铬渣进行无害化处理的方法
CN101717854A (zh) * 2009-12-25 2010-06-02 重庆瑞帆再生资源开发有限公司 利用冶金焙烧炉生产金属化球团的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN JIN ET AL.: "EXPERIMENTAL RESEARCH ON SELF-FLUXING SINTERED PELLETS CONTAINING COAL DUST", IRON AND STEEL, vol. 37, no. 3, March 2002 (2002-03-01), pages 1 - 3 *
FAN JIANJUN ET AL.: "THE STUDY AND DEVELOPMENT OF SEMIMETALLIZED PELLETS", SINTERING AND PELLETIZING, vol. 28, no. 4, July 2003 (2003-07-01), pages 15 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232068A (zh) * 2012-05-19 2013-08-07 唐翔 循环再利用处理铬渣及废水工艺
CN103725875A (zh) * 2013-12-30 2014-04-16 吴雪健 一种高性能的球团矿
CN104498707A (zh) * 2013-12-30 2015-04-08 吴雪健 一种生球团的制造方法
CN109402378A (zh) * 2017-08-18 2019-03-01 湖北振华化学股份有限公司 一种含铬物料氧化焙烧提铬的方法
CN109468456A (zh) * 2018-12-28 2019-03-15 安徽工业大学 一种冶金固废回收有价组分的包覆方法
CN112853091A (zh) * 2020-12-31 2021-05-28 中南大学 一种高效协同资源化利用含铬废渣和含碳废料的方法
CN113736989A (zh) * 2021-08-26 2021-12-03 武汉钢铁有限公司 一种利用除尘焦的烧结矿及制备方法
CN114164342A (zh) * 2021-12-06 2022-03-11 昆明理工大学 一种加腐植酸生产褐铁矿球团的方法
CN114150148A (zh) * 2021-12-10 2022-03-08 四川鑫鼎新材料有限公司 一种铁铬固体尾渣中提取含铬合金制造不锈钢产品的方法
CN114164346A (zh) * 2021-12-10 2022-03-11 中南大学 一种协同回收含铬废渣和含碳废料中有价金属的方法
CN114164346B (zh) * 2021-12-10 2023-04-07 中南大学 一种协同回收含铬废渣和含碳废料中有价金属的方法
CN115386685A (zh) * 2021-12-27 2022-11-25 王强 转炉生产协同铬渣和电解铝碳渣无害化的处理方法

Also Published As

Publication number Publication date
RU2012108937A (ru) 2013-10-27
RU2551729C2 (ru) 2015-05-27

Similar Documents

Publication Publication Date Title
CN101942571B (zh) 铬渣与冶金废料无害化处理及再生利用的方法
WO2011029269A1 (zh) 利用冶金焙烧和高炉对铬渣进行无害化处理的方法
CN101705317B (zh) 利用冶金烧结和高炉对铬渣进行无害化处理的方法
CN101613800B (zh) 采用两次成球方式制作的冶金复合球团、制备方法及应用
CN101717854B (zh) 利用冶金焙烧炉生产金属化球团的方法
CN103114201B (zh) 一种钢铁厂含铁尘泥的造块方法
CN104046773A (zh) 一种炼钢转炉除尘灰生产冷固球团工艺方法
CN101705325A (zh) 利用冶金废料生产海绵铁同时回收有色金属的方法
WO2021244616A1 (zh) 基于气基能源的两步法高磷含铁资源铁磷高效分离的方法
CN111763825B (zh) 一种利用磁铁矿在烧结工序处理失效催化剂的方法
EP1579016B1 (en) Cold briquetting and pelletisation of mineral fines using an iron-bearing hydraulic binder
US6921427B2 (en) Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder
CN111763820B (zh) 熔渣改性还原剂及其制备方法和熔渣余热回收铁的方法
CN111850291B (zh) 一种烧结固体燃料的预处理方法及烧结混合料制备方法
CN110106314B (zh) 一种铬渣无害化处理的方法及其制备的复合材料
CN101638703B (zh) 红土镍矿在隧道窑中直接还原含镍生铁的方法
CN108558244B (zh) 一种利用热态转炉渣制备水泥混合料的装置及制备方法
CN114410962B (zh) 一种不锈钢酸洗污泥制备含硫复合烧结矿的方法
CN104593530A (zh) 一种液态渣高温调质固化方法及其设备系统
CN103589865B (zh) 一种铁精粉碳循环增氧直接还原生产金属化球团的方法
JP5729256B2 (ja) 非焼成溶銑脱りん材および非焼成溶銑脱りん材を用いた溶銑の脱りん方法
CN111996371A (zh) 一种不锈钢固体废弃物资源化利用生产工艺
CN111254279B (zh) 一种含钒钢渣制粒烧结方法
CN116024427B (zh) 基于高磷铁矿金属化产物高温熔分制备低磷铁水的方法
CN114717412B (zh) 一种冷压球团用粘结剂、冷压球团及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10814871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012108937

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 5765/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10814871

Country of ref document: EP

Kind code of ref document: A1