WO2011027615A1 - 移動方向制御装置及びコンピュータプログラム - Google Patents

移動方向制御装置及びコンピュータプログラム Download PDF

Info

Publication number
WO2011027615A1
WO2011027615A1 PCT/JP2010/061509 JP2010061509W WO2011027615A1 WO 2011027615 A1 WO2011027615 A1 WO 2011027615A1 JP 2010061509 W JP2010061509 W JP 2010061509W WO 2011027615 A1 WO2011027615 A1 WO 2011027615A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
yaw
friction torque
angle
yaw direction
Prior art date
Application number
PCT/JP2010/061509
Other languages
English (en)
French (fr)
Inventor
滋 辻
茂樹 福永
光弘 名村
康治 河合
賢一 白土
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011529845A priority Critical patent/JP5240365B2/ja
Publication of WO2011027615A1 publication Critical patent/WO2011027615A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K1/00Unicycles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles

Definitions

  • the present invention relates to a moving direction control device and a computer program that can freely change the direction in the yaw direction even in a unicycle.
  • the main body swings in a rotation direction (hereinafter referred to as roll direction) whose axis is approximately the front-rear direction and in a rotation direction (hereinafter referred to as pitch direction) whose axis is approximately the left-right direction.
  • roll direction a rotation direction
  • pitch direction a rotation direction whose axis is approximately the left-right direction.
  • the direction cannot be easily changed by changing the angle of the front wheels as in a two-wheel vehicle.
  • the substantially vertical direction is used as an axis.
  • the direction is often changed by rotating in the rotation direction (hereinafter referred to as the yaw direction). That is, as disclosed in Non-Patent Document 1, a sine wave input is applied in the roll direction and the pitch direction, and the phase of both sine wave inputs is varied to vary the yaw angle change amount in a desired direction.
  • the wheel yaw angle is feedback controlled to change direction.
  • Non-Patent Document 1 the inclination with respect to the direction of gravity (vertical direction) is detected by the acceleration sensor and corrected to the balanced state.
  • the balance state may not be correctly corrected due to a deviation between the inertia rotor mounting position and the roll center and / or pitch center of the main body.
  • the direction can be changed by controlling the operation of an actuator that steers the front wheel that can be steered provided at the front of the main body.
  • the steering wheel and the drive wheel coincide with each other, and there is a problem that it is difficult to change the direction unless torque in the yaw direction is generated by separately providing an inertia rotor.
  • the present invention has been made in view of such circumstances, and accurately controls the direction of movement of a unicycle by the torque generated by the inclination of the pitch direction of the main body without separately providing an inertia rotor for generating torque in the yaw direction. It is an object of the present invention to provide a moving direction control device and a computer program.
  • a moving direction control device includes a wheel that rotates and moves in the front-rear direction, and is connected to a rotating shaft of the wheel and swings in a pitch direction and a roll direction above the wheel.
  • the main body includes an inertia rotor having a rotation center axis in a substantially longitudinal direction of the main body, and a motor that rotates the inertia rotor.
  • the main body has a pitch angle that is a predetermined inclination angle in the pitch direction.
  • the rotation angle of the main body in the yaw direction is controlled by the torque in the yaw direction generated by the rotation of the inertia rotor.
  • the movement direction control device is the first aspect of the present invention, wherein the first aspect includes a yaw angle designation receiving unit that receives designation of the yaw angle of the wheel that is the target of the movement direction, and friction that includes the magnitude and direction of the friction torque.
  • Friction torque information acquisition unit for acquiring information on torque
  • yaw direction angular acceleration calculation unit for calculating rotational angular acceleration in the yaw direction based on the specified yaw angle, and based on the calculated rotational angular acceleration in the yaw direction
  • a yaw direction torque calculation unit that calculates a torque in the yaw direction
  • a yaw direction required torque calculation unit that calculates a necessary torque in the yaw direction based on the calculated yaw direction torque and information on the acquired friction torque
  • a motor rotation command generation unit configured to generate a rotation command of the motor that generates the necessary torque in the calculated yaw direction according to the pitch angle.
  • the movement direction control device is characterized in that, in the second invention, the friction torque information acquiring unit includes a friction torque receiving unit that receives designation of the magnitude and direction of the friction torque.
  • the friction torque information acquisition unit includes a yaw rotation angle detection unit that detects a rotation angle of the wheel in the yaw direction, and a rotation angle in the yaw direction.
  • a fluctuation torque detector that detects a torque in the yaw direction at a time when the fluctuation starts, and a static friction torque calculator that calculates a static friction torque based on the detected torque in the yaw direction, the calculated static friction torque being the friction torque It is characterized by being acquired as.
  • the friction torque information acquisition unit includes a yaw rotation angle detection unit that detects a rotation angle of the wheel in the yaw direction, and a rotation angle in the yaw direction.
  • a convergence torque detection unit that detects torque in the yaw direction at the time of convergence and a dynamic friction torque calculation unit that calculates dynamic friction torque based on the detected torque in the yaw direction, and obtains the calculated dynamic friction torque as the friction torque It is made to do so.
  • a computer program includes a wheel that rotates and moves in the front-rear direction, and is connected to the rotation shaft of the wheel in the pitch direction and the roll direction above the wheel. It is composed of a swinging main body, and is mounted on a moving direction control device including an inertia rotor having a rotation center axis in a substantially longitudinal direction of the main body and a motor for rotating the inertia rotor.
  • a computer program that can be executed by a computer that controls the rotation angle of the main body in the yaw direction by the torque in the yaw direction caused by the rotation of the inertia rotor, which is generated according to a pitch angle that is a predetermined inclination angle of the direction.
  • a yaw angle designation accepting means for accepting designation of a yaw angle of the wheel as a target of the moving direction, a friction torque including the magnitude and direction of the friction torque
  • Friction torque information acquisition means for acquiring information related to the yaw direction
  • yaw direction angular acceleration calculation means for calculating the rotational angular acceleration in the yaw direction based on the received yaw angle, based on the calculated rotational angular acceleration in the yaw direction
  • Yaw direction torque calculating means for calculating the torque in the yaw direction
  • yaw direction required torque calculating means for calculating the necessary torque in the yaw direction based on the calculated yaw direction torque and the acquired information on the friction torque
  • the motor rotation command generating means for generating the motor rotation command for generating the required torque in the direction according to the pitch angle is made to function.
  • the computer program according to a seventh aspect of the invention is characterized in that, in the sixth aspect, the friction torque information acquiring means functions as a friction torque receiving means for receiving designation of the magnitude and direction of the friction torque.
  • the computer program according to an eighth aspect of the present invention is the computer program according to the sixth aspect, wherein the friction torque information acquisition means is a yaw rotation angle detection means for detecting a rotation angle of the wheel in the yaw direction, and the rotation angle in the yaw direction starts to fluctuate. Fluctuating torque detection means for detecting the torque in the yaw direction at the time to be performed, and static friction torque calculation means for calculating the static friction torque based on the detected torque in the yaw direction as the friction torque.
  • the friction torque information acquisition means includes a yaw rotation angle detection means for detecting a rotation angle in the yaw direction of the wheel, and a time at which the rotation angle in the yaw direction converges.
  • a convergence torque detecting means for detecting the torque in the yaw direction and a dynamic friction torque calculating means for calculating the dynamic friction torque based on the detected torque in the yaw direction as the friction torque.
  • the vehicle is constituted by a wheel that rotates and moves in the front-rear direction, and a main body that is connected to the rotation shaft of the wheel and swings in the pitch direction and the roll direction above the wheel.
  • the main body includes an inertia rotor having a rotation center axis in a substantially front-rear direction of the main body and a motor for rotating the inertia rotor.
  • the rotation angle in the yaw direction of the main body is controlled by the torque in the yaw direction caused by the rotation of the inertia rotor, which occurs according to the pitch angle that is a predetermined inclination angle in the pitch direction.
  • the inertial rotor which can only be used for controlling the tilt angle in the roll direction when not tilted in the pitch direction, can generate torque in the yaw direction by tilting in the pitch direction.
  • the direction can be changed without providing an inertial rotor for controlling the direction.
  • designation of the yaw angle of the target wheel in the moving direction is accepted.
  • Information on the friction torque including the magnitude and direction of the friction torque is acquired, and the rotational angular acceleration in the yaw direction is calculated based on the yaw angle that has been designated.
  • the yaw direction torque is calculated, and the necessary torque in the yaw direction is calculated based on the calculated yaw direction torque and the acquired information on the friction torque.
  • Inertia rotor required to rotate the specified yaw angle by generating a motor rotation command that generates the necessary torque in the yaw direction according to the pitch angle that is a predetermined tilt angle in the pitch direction
  • the number of rotations can be varied according to the pitch angle, and the direction can be reliably changed to a desired direction.
  • the number of rotations and the direction of rotation of the inertia rotor can be calculated with higher accuracy in consideration of the friction torque caused by the contact between the wheels and the road surface. It becomes possible to do.
  • the yaw direction rotation angle of the wheel is detected, and the yaw direction torque at the time when the yaw direction rotation angle starts to change is detected.
  • a static friction torque is calculated based on the detected torque in the yaw direction, and the calculated static friction torque is acquired as the friction torque. Accordingly, it is possible to calculate the rotation speed and rotation direction of the inertia rotor with higher accuracy in consideration of a relatively large static friction torque at the start of the direction change.
  • the rotation angle in the yaw direction of the wheel is detected, and the torque in the yaw direction at the time when the rotation angle in the yaw direction converges is detected.
  • a dynamic friction torque is calculated based on the detected torque in the yaw direction, and the calculated dynamic friction torque is acquired as the friction torque.
  • the rotational speed and direction of the inertial rotor can be calculated in consideration of the dynamic friction torque generated at the time of turning, and the main body can be turned to a desired direction with high accuracy.
  • the direction can be changed without separately providing an inertia rotor for controlling the yaw direction. That is, by generating a rotation command of the motor that generates the necessary torque in the calculated yaw direction according to the pitch angle, the number of rotations of the inertia rotor required to rotate the specified yaw angle is determined by the pitch angle. Therefore, the direction can be reliably changed to a desired direction.
  • FIG. 1 is a front view and a side view schematically showing a configuration of a unicycle robot to which a moving direction control device according to an embodiment of the present invention is applied.
  • 1A is a front view
  • FIG. 1B is a right side view.
  • the movement direction control device according to the present embodiment controls the direction change in the yaw direction while preventing the unicycle robot body from falling in the pitch direction and the roll direction.
  • the unicycle robot 1 includes a wheel 2 that rotates and moves in the front-rear direction, and a pitch direction and a roll direction that are connected to the rotation shaft of the wheel 2 and above the wheel 2. And a main body 3 which swings.
  • the unicycle robot 1 is a humanoid robot, but is not limited thereto.
  • FIG. 2 is a schematic diagram illustrating the pitch direction, the roll direction, and the yaw direction.
  • the rotation direction around the y axis is the pitch direction. It is.
  • the main body 3 tilts in the (+) direction of the x axis and rotates clockwise in the (+) direction of the y axis when it rotates counterclockwise in the (+) direction of the y axis
  • the main body 3 is inclined in the ( ⁇ ) direction of the x axis.
  • the rotation direction around the x axis is the roll direction, and is the rotation direction when the main body 3 swings in the left-right direction. Furthermore, the rotation direction around the z-axis is the yaw direction, and is the rotation direction when the direction of the wheel 2 is changed from the x-axis direction.
  • the main body 3 includes a pitch gyro sensor (pitch angular velocity sensor) 31 that detects a pitch angular velocity that is an angular velocity of an inclination angle in the pitch direction, and rotation of the wheels 2.
  • a pitch motor 32 that interlocks and rotates the wheel 2 and a pitch encoder (pitch rotation sensor) 33 that detects the rotational position or rotational speed of the pitch motor 32 are provided.
  • the pitch gyro sensor 31 is attached to the main body 3 with a detection shaft (not shown) for detecting the pitch angular velocity directed substantially in the left-right direction.
  • the substantially left-right direction means that there may be a slight angle shift with respect to the strict left-right direction.
  • the main body 3 and the wheel 2 are connected by a frame 4 that rotatably supports the wheel 2, and the rotation of the pitch motor 32 is transmitted to the wheel 2 via the bevel gear 5 and the belt 6 provided in the main body 3.
  • the frame 4 is a part of the main body 3, and in the example of FIGS. 1A and 1B, the frame 4 is a foot of a humanoid robot that is the unicycle robot 1.
  • the pitch angular velocity sensor 31 is not limited to a gyro sensor as long as it can detect the pitch angular velocity.
  • the pitch angle is calculated based on the torques of the pitch gyro sensor (pitch angular velocity sensor) 31 and the pitch motor 32.
  • the main body 3 includes a roll gyro sensor (roll angular velocity sensor) 61 that detects a roll angular velocity that is an angular velocity of a tilt angle in the roll direction, an inertia rotor 64 that rotates in the roll direction, and a roll that rotates the inertia rotor 64.
  • a roll encoder (roll rotation sensor) 63 that detects the rotation position or rotation speed of the motor 62 and the roll motor 62 is provided.
  • the roll gyro sensor 61 is attached to the main body 3 with a detection shaft (not shown) for detecting the roll angular velocity directed substantially in the front-rear direction.
  • the substantially front-rear direction means that there may be a slight angle deviation with respect to the strict front-rear direction.
  • the roll angular velocity sensor 61 only needs to be able to detect the roll angular velocity, and is not limited to a gyro sensor.
  • a portion corresponding to the back of the main body 3 is equipped with a control board 35 and a battery 36 for controlling the rotation of the pitch motor 32 and the roll motor 62.
  • the control board 35 is mounted with a driver, an A / D converter, a D / A converter, a counter, a controller, and the like that rotationally drive the pitch motor 32 and the roll motor 62.
  • the controller is a microprocessor, CPU, LSI or the like.
  • FIG. 3 is a control block diagram showing an example of control of the direction changing operation in the yaw direction of the unicycle robot 1 to which the moving direction control device according to the embodiment of the present invention is applied.
  • the target yaw angle designation receiving unit 301 receives the designation of the target yaw angle ⁇ t with the yaw angle of the wheel 2 that is the target in the moving direction as the target yaw angle ⁇ t . That is, the target yaw angle theta t means the angle of deviation from the traveling direction currently wheel 2 is oriented.
  • the method for accepting the designation of the target yaw angle ⁇ t is not particularly limited, and the target yaw angle ⁇ t to be designated from the outside may be received via wireless communication such as Bluetooth (registered trademark). and a built-in memory to the controller of the control board 35 in advance may be stored a target yaw angle theta t in the memory.
  • each time may be read the target yaw angle theta t by inserting.
  • the arrival time t until the yaw angle is a rotation angle in the yaw direction theta reaches the target yaw angle theta t be accepted also specify that to reach for example, one second preferred.
  • the yaw angular acceleration ⁇ ′ which is the rotational angular acceleration in the yaw direction, is a constant value obtained by reversing the positive and negative values in the middle of the arrival time t, the changes in the yaw angular velocity ⁇ and yaw angle ⁇ are approximately calculated. This is because it becomes easier.
  • Yaw angular acceleration calculation unit 302 yaw by the target yaw angle theta t and the yaw angle theta accepts the specification on the basis of the arrival time t to reach the target yaw angle theta t, differentiating the yaw angle theta Time
  • the yaw angular acceleration ⁇ ′ is calculated by calculating the angular velocity ⁇ and differentiating the calculated yaw angular velocity ⁇ with respect to time.
  • the yaw angular velocity ⁇ is a constant value obtained by reversing the yaw angular acceleration ⁇ ′ between positive and negative in the middle of the arrival time t, the half of the arrival time t until the target yaw angle ⁇ t is reached. Until the target yaw angle ⁇ t is reached, and after a half of the arrival time t until the target yaw angle ⁇ t is reached, it decreases monotonously at a constant rate.
  • the yaw angular acceleration omega ' until up to one half of the reaching time t to reach the target yaw angle theta t elapses as a positive constant value, reaches the target yaw angle theta t Can be calculated as a negative constant value after half of the arrival time t has elapsed.
  • the reaction torque calculation unit (yaw direction torque calculation unit) 303 the rotation necessary for rotating the main body 3 to the target yaw angle ⁇ t based on the yaw angular acceleration ⁇ ′ calculated by the yaw angular acceleration calculation unit 302. Torque T2 is calculated.
  • the yaw angle ⁇ of the main body 3 is controlled by adding the same torque as the calculated rotational torque T2 as a reaction torque generated by the rotation of the inertia rotor 64 inclined in the pitch direction.
  • the friction torque accepting unit 304 accepts designation of the magnitude and direction of the friction torque according to the friction coefficient between the wheel 2 and the road surface as the friction torque Tr.
  • the reception of designation of the friction torque Tr includes at least designation of the magnitude and direction of the friction torque Tr.
  • the method for accepting designation of the friction torque Tr is not particularly limited, and the magnitude and direction of the friction torque Tr may be received from the outside via wireless communication such as Bluetooth (registered trademark).
  • the controller of the control board 35 may calculate the magnitude and direction of the friction torque Tr, or as a constant in the memory of the controller of the control board 35. It may be remembered. Further, a slot into which a memory card or the like can be inserted is provided, and a memory card or the like in which the magnitude and direction of the friction torque Tr are stored may be read each time it is inserted.
  • the inertial rotor angular acceleration calculation unit 305 calculates the angular acceleration ⁇ R ′ of the inertial rotor 64 according to (Expression 2) using the rotational torque T1 calculated according to (Expression 1). That is, when the inertia moment of the inertia rotor 64 is J1, since the main body 3 is tilted forward, the rotation center axis of the inertia rotor 64 is tilted, and is generated by the rotation of the inertia rotor 64 at the same rotation speed. Since the torque decreases by the amount of inclination, in order to generate the necessary torque, it is necessary to increase the angular acceleration ⁇ R ′ of the inertia rotor 64 required for the decrease.
  • the inertia rotor angle calculation unit 306 calculates the rotation angle ⁇ R of the inertia rotor 64 as a rotation command in the yaw direction by integrating the angular acceleration ⁇ R ′ of the inertia rotor 64 calculated by (Equation 2) twice.
  • the calculated rotation angle ⁇ R is input to the roll direction feedback control loop.
  • FIG. 4 is a control block diagram illustrating an example of control for preventing the roll-down of the unicycle robot 1 to which the moving direction control device according to the embodiment of the present invention is applied.
  • the roll counter unit 401 counts the number of output pulses of the roll encoder 63.
  • the roll rotation speed calculation unit 402 converts the number of pulses counted by the roll counter unit 401 into a rotation angle, and then differentiates to obtain the rotation speed of the roll motor 62. You may equip LPF (low-pass filter) for noise removal.
  • LPF low-pass filter
  • the target roll angle calculation unit 403 when the rotation of the roll motor 62 is counterclockwise when viewed from the front of the unicycle robot 1, the target roll angle is set to the right when viewed from the front of the unicycle robot 1.
  • the rotation speed of the roll motor 62 is multiplied by a proportional coefficient so that the target roll angle is left when viewed from the front of the unicycle robot 1. . It is preferable to add an integrator so that steady rotation does not remain in the inertia rotor 64.
  • the roll AD converter 404 acquires the roll angular velocity of the roll gyro sensor 61 by A / D conversion.
  • the roll angular velocity calculation unit 405 calculates a roll angular velocity ⁇ 1r by multiplying the acquired roll angular velocity by a conversion coefficient.
  • the inclination angle direction in the motion system including the main body 3 (part other than the inertia rotor 64) and the inertia rotor 64 is determined from the roll angular velocity ⁇ 1r and a roll torque command ⁇ 2r described later.
  • An estimated value of the roll inclination angle represented by (Expression 22) described later, which is derived based on the equation of motion of (roll direction), is calculated. Further, an estimated value of the roll inclination angle is calculated by adding a first-order lag element for stabilizing the loop with an appropriate estimated speed in series.
  • 1 / (0.1S + 1) is added in series as a first-order lag element to the calculated value calculated using (Equation 22), but the present invention is not limited to this, and appropriate estimation is performed. Arbitrary delay factors can be added that result in speed.
  • the roll direction external torque estimation unit 411 calculates an estimated value of the roll direction external torque acting on the main body 3 by multiplying the estimated value of the roll inclination angle by a conversion coefficient, and corrects the roll correction torque (the roll direction external torque). Equivalent to the estimated value) ⁇ 3r is estimated.
  • the target roll angular velocity calculation unit 407 adds the rotation angle ⁇ R as a rotation command in the yaw direction to the roll angle deviation obtained by subtracting the estimated value of the roll tilt angle from the target roll angle.
  • the target roll angular velocity ⁇ 2r is calculated by multiplying the added value by the proportional gain.
  • the roll torque command generation unit (motor rotation command generation unit) 408 generates a roll torque command ⁇ 0r by PI control, for example, with respect to the deviation between the target roll angular velocity ⁇ 2r and the roll angular velocity ⁇ 1r .
  • the roll motor torque command voltage calculation unit 409 calculates a command voltage by multiplying the roll torque command ⁇ 2r obtained by adding the roll torque command ⁇ 0r and the roll correction torque ⁇ 3r by a conversion coefficient.
  • the roll DA converter unit 410 outputs a command voltage to the driver and controls the rotation of the roll motor 62.
  • the designation of the target yaw angle ⁇ t is accepted with the main body 3 tilted in the pitch direction by a predetermined forward tilt angle ⁇ 1 . That is, if the forward tilt angle ⁇ 1 does not exist, torque that rotates the main body 3 in the yaw direction by rotation of the inertia rotor 64 is not generated, and the direction cannot be changed.
  • FIG. 5 is a schematic view of the unicycle robot 1 as viewed from the side.
  • the torque T yaw1 in the yaw direction generated in the main body 3 by the generated horizontal force F yaw1 can be calculated by (Expression 4) when the radius of the inertia rotor 64 is R.
  • T R is the torque generated by the rotation of the inertia rotor 64
  • the torque T yaw1 generated in the main body 3 from (Equation 4) is 0.207 ⁇ T R Can be obtained.
  • the direction in which the unicycle robot 1 rotates in the yaw direction is opposite to the torque T yaw1 in the yaw direction because the calculated torque T yaw1 in the yaw direction rotates as a reaction torque.
  • the inertial rotor 64 rotates clockwise as viewed from the front of the unicycle robot 1, the unicycle robot 1 rotates clockwise as viewed from above.
  • FIG. 6 is a graph for explaining a method for specifying the friction torque Tr to be designated.
  • FIG. 6A is a graph showing an actual time change of the yaw angle ⁇ (rad) after the inertial rotor 64 starts rotating
  • FIG. 6B is a graph showing that the inertial rotor 64 starts rotating. It is a graph which shows the time change of yaw direction torque (tau) (N * m) after.
  • the yaw direction torque ⁇ increases at a constant rate after the inertia rotor 64 starts rotating, whereas as shown in FIG.
  • the yaw angle ⁇ does not change until a time t1 that is a fixed time after the inertia rotor 64 starts rotating. This is because rotation does not start until the torque generated by the rotation of the inertia rotor 64 exceeds the static friction torque on the ground contact surface, and the main body 3 rotates in the yaw direction from the time when it exceeds the static friction torque on the ground contact surface, that is, from time t1. It is because it starts.
  • the rotational torque corresponding to the yaw direction torque ⁇ 1 (N ⁇ m) at time t1 can be specified as the friction torque Tr to be designated. Therefore, when the friction torque receiving unit 304 receives the specification of the rotational torque corresponding to the yaw direction torque ⁇ 1 (N ⁇ m) as the friction torque Tr, the friction torque receiving unit 304 accurately changes the direction to the target yaw angle ⁇ t that has received the specification. Can be controlled.
  • FIG. 7 is a functional block diagram of the friction torque information acquisition unit 304a of the unicycle robot 1 to which the movement direction control device according to the embodiment of the present invention is applied.
  • the friction torque information acquisition unit 304a includes a yaw rotation angle detection unit 701, a fluctuation torque detection unit 702, and a static friction torque calculation unit 703.
  • the yaw rotation angle detection unit 701 detects the rotation angle of the wheel 2 in the yaw direction.
  • the fluctuation torque detection unit 702 monitors the rotation angle in the yaw direction detected by the yaw rotation angle detection unit 701, and when the start of fluctuation of the rotation angle in the yaw direction is detected, that is, the rotation angle in the yaw direction starts to fluctuate. Torque in the yaw direction at time (time t1 in FIG. 6) is detected.
  • the static friction torque calculation unit 703 calculates the static friction torque based on the detected torque in the yaw direction as the friction torque Tr that accepts designation.
  • the friction torque receiving unit 304 receives the designation of the static friction torque based on the yaw direction torque ⁇ 1 (N ⁇ m) as the friction torque Tr, the applied rotational torque tends to be excessive. Therefore, the designation may be accepted as the dynamic friction torque Tr in a state where the main body 3 rotates in the yaw direction as the friction torque Tr.
  • the inertia rotor 64 starts to rotate, after a lapse of intermediate time tm of arrival time t, converge at time t2, the target yaw angle theta t. This is because the dynamic friction torque is balanced with the rotational torque due to the rotation of the inertia rotor 64. Therefore, as shown in FIG. 6B, the rotational torque corresponding to the yaw direction torque ⁇ 2 (N ⁇ m) at time t2 can be specified as the friction torque Tr to be designated.
  • the friction torque receiving unit 304 when the friction torque receiving unit 304 receives the specification of the rotational torque corresponding to the yaw direction torque ⁇ 2 (N ⁇ m) as the friction torque Tr, the friction torque receiving unit 304 changes the direction to the target yaw angle ⁇ t that has received the specification. It can be controlled with high accuracy.
  • FIG. 8 is a functional block diagram of the friction torque information acquisition unit 304b of the unicycle robot 1 to which the movement direction control device according to the embodiment of the present invention is applied.
  • the friction torque information acquisition unit 304b includes a yaw rotation angle detection unit 801, a convergence torque detection unit 802, and a dynamic friction torque calculation unit 803.
  • the yaw rotation angle detection unit 801 detects the rotation angle of the wheel 2 in the yaw direction.
  • the convergence torque detection unit 802 monitors the rotation angle in the yaw direction detected by the yaw rotation angle detection unit 801, and detects the torque in the yaw direction at the time when the rotation angle in the yaw direction converges, that is, at time t2 in FIG. .
  • the dynamic friction torque calculating unit 803 calculates a dynamic friction torque based on the detected torque in the yaw direction as a friction torque Tr that accepts designation.
  • FIG. 9 is a flowchart showing the procedure of the direction changing process by the controller of the control board 35 of the movement direction control device according to the embodiment of the present invention.
  • Controller of the control board 35 receives designation of the target yaw angle theta t (step S901).
  • the method for accepting the designation of the target yaw angle ⁇ t is not particularly limited, and the target yaw angle ⁇ t to be designated from the outside may be received via wireless communication such as Bluetooth (registered trademark). and a built-in memory to the controller of the control board 35 in advance may be stored a target yaw angle theta t in the memory.
  • the memory card of target yaw angle theta t is stored each time may be read the target yaw angle theta t by inserting.
  • the arrival time t until the yaw angle is a rotation angle in the yaw direction theta reaches the target yaw angle theta t to accepting the designation of the target yaw angle theta t may accept at the same time, pre-as a predetermined time Alternatively, it may be stored in the memory of the controller.
  • the controller based on the arrival time t to the target yaw angle theta t and the yaw angle theta accepts the designation reaches the target yaw angle theta t, yaw angular acceleration ⁇ by the yaw angle theta differentiating twice the time ' Is calculated (step S902).
  • the yaw angular velocity ⁇ is a constant value obtained by reversing the yaw angular acceleration ⁇ ′ between positive and negative in the middle of the arrival time t, the half of the arrival time t until the target yaw angle ⁇ t is reached.
  • the target yaw angle ⁇ t is reached, and after a half of the arrival time t until the target yaw angle ⁇ t is reached, it decreases monotonously at a constant rate.
  • the yaw angular acceleration omega ' until up to one half of the reaching time t to reach the target yaw angle theta t elapses as a positive constant value, reaches the target yaw angle theta t Can be calculated as a negative constant value after half of the arrival time t has elapsed.
  • the controller calculates the rotational torque T2 required for rotating the main body 3 to the target yaw angle theta t (step S903).
  • the controller accepts designation of static friction torque corresponding to the viscous friction coefficient ⁇ between the wheel 2 and the road surface as the friction torque Tr (step S904).
  • the controller adds the calculated rotational torque T2 and the specified friction torque Tr, and calculates the rotational torque T1 to be applied by the inertia rotor 64 (step S905).
  • the controller acquires the forward tilt angle ⁇ 1 of the main body 3 (step S906).
  • the acquisition method may be provided with an inclination angle sensor for detecting the inclination angle, and is not particularly limited.
  • the angle formed by the vertical direction and the direction perpendicular to the rotation center axis of the inertia rotor 64 may be derived using a trigonometric method or the like.
  • the controller calculates the angular acceleration ⁇ R ′ of the inertia rotor 64 by correcting the rotational torque T1 with the forward tilt angle ⁇ 1 of the main body 3 based on (Equation 2) (step S907).
  • the controller integrates the calculated angular acceleration ⁇ R ′ of the inertia rotor 64 twice to calculate the rotation speed (rotation angle) and rotation direction of the inertia rotor 64 (step S908), and calculates the calculated rotation speed (rotation).
  • the rotation command of the roll motor 62 is generated so that the roll motor 62 rotates in the angle and rotation directions (step S909).
  • the rotation speed (rotation angle) and rotation direction of the inertia rotor 64 are calculated by multiplying T1 calculated in step S905 by the conversion coefficient, and the calculated rotation speed (rotation angle).
  • a rotation command for the roll motor 62 may be generated so that the roll motor 62 rotates in the rotation direction.
  • the controller multiplies the generated rotation command of the roll motor 62 by a conversion coefficient to calculate a command voltage, and outputs the command voltage to the driver (step S910).
  • the controller determines whether or not the arrival time t has elapsed (step S911). If the controller determines that the arrival time t has not elapsed (step S911: NO), the controller enters a state of waiting for progress. . Controller, if it is determined that the arrival time t has elapsed (step S911: YES), the controller obtains the current yaw angle (step S912), calculates the difference angle between the target yaw angle theta t (step S913 ).
  • the controller determines whether or not the calculated difference angle is smaller than a predetermined value (step S914).
  • step S914 NO
  • the controller calculates set difference angle to a new target yaw angle theta t (step S915), processing returns to step S902 to repeat the processing described above.
  • step S914 YES
  • the controller determines that the direction change is completed and ends the process.
  • FIG. 10 is a schematic view of the unicycle robot 1 viewed from the front. In FIG. 10, only the main body 3 and the inertia rotor 64 attached to the main body 3 are schematically shown.
  • an equation of motion is derived from the Lagrangian equation.
  • the total kinetic energy T and potential energy U of the main body 3 (part other than the inertia rotor 64) and the inertia rotor 64 are expressed by the following (Expression 5) and (Expression 6).
  • the roll tilt angle can be obtained by integrating the roll angular velocity ⁇ 1r output from the roll gyro sensor 61, but the deviation becomes inaccurate and needs to be obtained by another method. Accordingly, the roll inclination angle is estimated from the roll angular velocity ⁇ 1r output from the roll gyro sensor 61 and the roll torque command ⁇ 2r using the equation of motion derived from FIG. When the equation of motion (Equation 18) is modified, (Equation 19) is obtained.
  • the ⁇ 1r dot which is a differential value of the roll angular velocity output from the roll gyro sensor 61, is expressed by (Expression 20).
  • the deviation angle (roll inclination angle) of the current roll direction inclination angle ⁇ 1r with respect to the apparent balance inclination angle ⁇ 0r is expressed by (Expression 22) from the above (Expression 19), (Expression 20), and (Expression 21). It can be estimated by deriving and calculating. However, in order to stabilize the loop with an appropriate estimated speed, it is better to add a first-order lag element in series.
  • (Formula 22) is an example of a calculation formula for estimating the roll tilt angle, and the calculation formula for estimating the roll tilt angle may be different depending on the motion system to be estimated.
  • the main body 3 moves in the roll direction with respect to the balanced state.
  • the roll tilt angle which is the tilted angle
  • the roll tilt angle can be estimated with high accuracy in the same manner as the pitch tilt angle.
  • the roll angular velocity ⁇ 1r output from the roll gyro sensor 61 is not integrated, there is no calculation error of the target roll angle due to accumulation of noise, offset, etc., and the reaction torque generated by the rotation of the inertia rotor 64 Can be used to accurately correct the inclination in the roll direction from the balanced state and prevent the roll from falling down.
  • Equation 24 the equation of motion (Equation 18) becomes (Equation 25), so the external torque in the roll direction can be compensated.
  • Equation 22 By estimating the roll inclination angle, which is the angle at which the main body 3 is inclined in the roll direction, from the balanced state (Equation 22), it is possible to estimate the roll direction external torque generated by the inclination angle in the roll direction from the balanced state. Therefore, it is possible to calculate a correction torque that cancels the estimated roll direction external torque. Accordingly, since the rotation of the roll motor 62 can be controlled more appropriately in consideration of the influence of the external torque in the roll direction, the roll direction tilt from the balanced state can be corrected more accurately to prevent the roll direction from falling. can do. In particular, even when the response frequency of the tilt angle loop and the tilt angular velocity loop is low, by compensating the roll direction external torque with feedforward control, it is possible to normally execute a control routine that prevents the roll direction from falling. Stable control is possible.
  • FIG. 11 is a flowchart showing a roll direction overturn prevention processing procedure by the controller of the control board 35 of the unicycle robot 1 to which the moving direction control device according to the embodiment of the present invention is applied.
  • the controller of the control board 35 counts the number of pulses of the output pulse (pulse signal) of the roll encoder 63 that detects the rotation speed of the roll motor 62 (step S1101).
  • the controller calculates the rotational speed in the roll direction from the counted number of pulses (step S1102). Specifically, after converting the counted number of pulses into a rotation angle, the rotation speed is calculated by differentiating.
  • the controller calculates a target roll angle, which is a target tilt angle in the roll direction, based on the rotational speed in the roll direction (step S1103).
  • the controller calculates a roll angle deviation by subtracting a roll inclination angle estimated in step S1111 described later from the calculated target roll angle (step S1104), and multiplies the calculated roll angle deviation by a proportional gain to obtain a target roll angular velocity ⁇ 2r. Is calculated (step S1105).
  • the controller calculates a roll angular velocity deviation between a target roll angular velocity ⁇ 2r and a roll angular velocity ⁇ 1r calculated in step S1110 described later (step S1106), and a roll torque command by PI control or the like for the calculated roll angular velocity deviation.
  • ⁇ 0r is generated (step S1107).
  • the controller corrects the generated roll torque command ⁇ 0r with a roll direction external torque ⁇ 3r estimated in step S1112 described later, and generates a roll torque command ⁇ 2r (step S1108).
  • the controller acquires the roll angular velocity output from the roll gyro sensor 61 by A / D conversion (step S1109).
  • the controller multiplies the acquired roll angular velocity by the conversion coefficient to calculate the roll angular velocity ⁇ 1r (step S1110).
  • the controller uses the calculated roll angular acceleration ⁇ 1r dot and the roll torque command ⁇ 2r generated in step S1108 described above to tilt the main body 3 in the roll direction relative to the balanced state.
  • the roll inclination angle that is the angle at which the rotation is performed is estimated (step S1111).
  • the controller estimates a roll direction external torque that causes the main body 3 to tilt in the roll direction (step S1112).
  • the controller determines whether or not a roll torque command ⁇ 2r has been generated in step S1108 (step S1113).
  • step S1113 When the controller determines that the roll torque command ⁇ 2r has been generated (step S1113: YES), the controller multiplies the generated roll torque command ⁇ 2r by a conversion coefficient to calculate a command voltage (step S1114). . The controller performs D / A conversion on the calculated command voltage, and outputs it to the driver that rotationally drives the roll motor 62 (step S1115). The controller returns the process to step S1101 and step S1109, and repeats the above-described process.
  • step S1113 NO
  • the controller determines that the roll torque command ⁇ 2r is not generated (step S1113: NO)
  • the main body 3 is in a balanced state, and the controller ends the process.
  • the unicycle robot 1 changes its direction while maintaining the balance in the roll direction by the roll direction control. It becomes possible to do.
  • FIG. 12 is a flowchart showing the procedure of the static friction torque calculation process by the controller of the control board 35 of the unicycle robot 1 to which the moving direction control apparatus according to the embodiment of the present invention is applied.
  • the controller of the control board 35 detects the rotation angle of the wheel 2 in the yaw direction after executing the process of step S903 of FIG. 9 (step S1201).
  • the controller determines whether or not the yaw direction rotation angle has started to change (step S1202), and if the controller determines that the yaw direction rotation angle has not started to change (step S1202: NO), The controller waits for detection of the start of fluctuation of the rotation angle in the yaw direction.
  • step S1202 When the controller determines that the rotation angle in the yaw direction has started to change (step S1202: YES), the controller detects the start of change in the rotation angle in the yaw direction, that is, the rotation angle in the yaw direction starts to change.
  • the torque in the yaw direction at the time (time t1 in FIG. 6) is detected (step S1203), and the static friction torque based on the detected yaw direction torque is calculated as the friction torque Tr that accepts the designation (step S1204).
  • FIG. 13 is a flowchart showing the procedure of the calculation process of the dynamic friction torque by the controller of the control board 35 of the unicycle robot 1 to which the moving direction control apparatus according to the embodiment of the present invention is applied.
  • the controller of the control board 35 detects the rotation angle of the wheel 2 in the yaw direction after executing the process of step S903 of FIG. 9 (step S1301).
  • the controller determines whether or not the rotation angle in the yaw direction has converged (step S1302), and when the controller determines that the rotation angle in the yaw direction has not converged (step S1302: NO), the controller It becomes the detection waiting state of the convergence of the rotation angle of the direction.
  • step S1302 determines that the rotation angle in the yaw direction has converged (step S1302: YES)
  • the controller detects the torque in the yaw direction at the time when the rotation angle in the yaw direction has converged, that is, at time t2 in FIG. Step S1303).
  • the controller calculates a dynamic friction torque based on the detected torque in the yaw direction as the friction torque Tr that accepts the designation (step S1304).
  • the inertia rotor 64 which can be used only for the tilt angle control in the roll direction when not tilted in the pitch direction, is tilted in the pitch direction so as to be adjusted in the yaw direction. Torque can be generated, and the direction can be changed without separately providing an inertia rotor for controlling the yaw direction. That is, by generating a rotation command of the motor that generates the necessary torque in the calculated yaw direction according to the pitch angle, the number of rotations of the inertia rotor 64 required to generate the specified yaw angle can be expressed as the pitch. It can be changed according to the angle, and the direction can be reliably changed to a desired direction.
  • the friction torque Tr is not limited to accepting designation of the static friction torque and the dynamic friction torque based on the viscous friction coefficient ⁇ .
  • the static friction torque is displayed until the time t1 shown in FIG.
  • the friction torque Tr that receives the designation may be variable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

 ヨー方向のトルクを発生させる慣性ロータを別途設けることなく、本体のピッチ方向の傾斜によって発生するトルクにより一輪車の移動方向を精度良く制御することができる移動方向制御装置及びコンピュータプログラムを提供する。 前後方向に回転して移動する車輪と、該車輪の回転軸に連結されて該車輪の上方でピッチ方向及びロール方向に揺動する本体とで構成される。本体の略前後方向を回転中心軸とした慣性ロータと、該慣性ロータを回転させるモータとを備える。ピッチ方向の所定の傾斜角度であるピッチ角に応じて生じる、慣性ロータの回転によるヨー方向のトルクにより本体のヨー方向の回転角を制御する。

Description

移動方向制御装置及びコンピュータプログラム
 本発明は、一輪車であってもヨー方向へ自在に方向転換することができる移動方向制御装置及びコンピュータプログラムに関する。
 一輪車を移動させる場合、本体が略前後方向を軸とする回転方向(以下、ロール方向)及び略左右方向を軸とする回転方向(以下、ピッチ方向)に揺動することから、ロール方向及びピッチ方向の釣合いを制御することにより、本体が転倒することなく移動又は停止するよう動作を制御する必要がある。ロール方向及びピッチ方向の釣合いを制御するためには本体の傾きを正しく検出する必要があり、例えば角速度センサを用いて角速度を検出し、検出した角速度を積分することによって傾きを推定する方法等が採用されている(特許文献1参照)。
 また、一輪車の場合、二輪車のように前輪の角度を変更することで容易に方向転換することができず、例えば本体をロール方向及びピッチ方向に揺動させることにより、略鉛直方向を軸とする回転方向(以下、ヨー方向)に回転させて、方向転換することが多い。すなわち、非特許文献1に開示しているように、ロール方向及びピッチ方向に正弦波入力を付与し、両正弦波入力の位相を変動させることによりヨー角変化量を変動させ、所望の方向へ方向転換するように車輪のヨー角をフィードバック制御する。
国際公開2007/063665号
笠井崇史著、「一輪車の姿勢制御」、筑波大学大学院博士課程システム情報工学研究科修士論文、2005年1月、p.1-37
 しかし、非特許文献1に開示されている一輪車では、加速度センサによって重力方向(鉛直方向)に対する傾きを検出して釣合い状態に補正しているが、本体部分の傾斜による慣性ロータ回転軸の傾斜、慣性ロータ取り付け位置と本体のロール中心及び/又はピッチ中心とのズレ等により、釣合い状態に正しく補正することができない場合も生じるという問題点があった。
 また、二輪車の場合には、本体の前部に設けてある操舵することが可能な前輪を操舵するアクチュエータの動作を制御することで方向転換することができる。しかし、一輪車では、操舵輪と駆動輪とが一致しており、慣性ロータを別途設けること等によりヨー方向のトルクを発生させなければ、方向転換することが困難であるという問題点があった。
 本発明は斯かる事情に鑑みてなされたものであり、ヨー方向のトルクを発生させる慣性ロータを別途設けることなく、本体のピッチ方向の傾斜によって発生するトルクにより一輪車の移動方向を精度良く制御することができる移動方向制御装置及びコンピュータプログラムを提供することを目的とする。
 上記目的を達成するために第1発明に係る移動方向制御装置は、前後方向に回転して移動する車輪と、該車輪の回転軸に連結されて該車輪の上方でピッチ方向及びロール方向に揺動する本体とで構成され、該本体に、本体の略前後方向を回転中心軸とした慣性ロータと、該慣性ロータを回転させるモータとを備え、ピッチ方向の所定の傾斜角度であるピッチ角に応じて生じる、前記慣性ロータの回転によるヨー方向のトルクにより前記本体のヨー方向の回転角を制御することを特徴とする。
 また、第2発明に係る移動方向制御装置は、第1発明において、移動方向の目標とする前記車輪のヨー角の指定を受け付けるヨー角指定受付部と、摩擦トルクの大きさ及び方向を含む摩擦トルクに関する情報を取得する摩擦トルク情報取得部と、指定を受け付けたヨー角に基づいて、ヨー方向の回転角加速度を算出するヨー方向角加速度算出部と、算出したヨー方向の回転角加速度に基づいて、ヨー方向のトルクを算出するヨー方向トルク算出部と、算出したヨー方向のトルクと取得した摩擦トルクに関する情報とに基づいて、ヨー方向の必要トルクを算出するヨー方向必要トルク算出部と、算出したヨー方向の必要トルクを生じさせる前記モータの回転指令を、前記ピッチ角に応じて生成するモータ回転指令生成部とを備えることを特徴とする。
 また、第3発明に係る移動方向制御装置は、第2発明において、前記摩擦トルク情報取得部は、摩擦トルクの大きさ及び方向の指定を受け付ける摩擦トルク受付部を備えることを特徴とする。
 また、第4発明に係る移動方向制御装置は、第2発明において、前記摩擦トルク情報取得部は、前記車輪のヨー方向の回転角を検出するヨー回転角検出部と、ヨー方向の回転角が変動を開始する時刻におけるヨー方向のトルクを検出する変動トルク検出部と、検出したヨー方向のトルクに基づいて、静摩擦トルクを算出する静摩擦トルク算出部とを備え、算出した静摩擦トルクを前記摩擦トルクとして取得するようにしてあることを特徴とする。
 また、第5発明に係る移動方向制御装置は、第2発明において、前記摩擦トルク情報取得部は、前記車輪のヨー方向の回転角を検出するヨー回転角検出部と、ヨー方向の回転角が収束する時刻におけるヨー方向のトルクを検出する収束トルク検出部と、検出したヨー方向のトルクに基づいて、動摩擦トルクを算出する動摩擦トルク算出部とを備え、算出した動摩擦トルクを前記摩擦トルクとして取得するようにしてあることを特徴とする。
 次に、上記目的を達成するために第6発明に係るコンピュータプログラムは、前後方向に回転して移動する車輪と、該車輪の回転軸に連結されて該車輪の上方でピッチ方向及びロール方向に揺動する本体とで構成され、該本体に、本体の略前後方向を回転中心軸とした慣性ロータと、該慣性ロータを回転させるモータとを備えた移動方向制御装置に搭載してあり、ピッチ方向の所定の傾斜角度であるピッチ角に応じて生じる、前記慣性ロータの回転によるヨー方向のトルクにより前記本体のヨー方向の回転角を制御するコンピュータで実行することが可能なコンピュータプログラムであって、前記コンピュータを、移動方向の目標とする前記車輪のヨー角の指定を受け付けるヨー角指定受付手段、摩擦トルクの大きさ及び方向を含む摩擦トルクに関する情報を取得する摩擦トルク情報取得手段、指定を受け付けたヨー角に基づいて、ヨー方向の回転角加速度を算出するヨー方向角加速度算出手段、算出したヨー方向の回転角加速度に基づいて、ヨー方向のトルクを算出するヨー方向トルク算出手段、算出したヨー方向のトルクと取得した摩擦トルクに関する情報とに基づいて、ヨー方向の必要トルクを算出するヨー方向必要トルク算出手段、及び算出したヨー方向の必要トルクを生じさせる前記モータの回転指令を、前記ピッチ角に応じて生成するモータ回転指令生成手段として機能させることを特徴とする。
 また、第7発明に係るコンピュータプログラムは、第6発明において、前記摩擦トルク情報取得手段を、摩擦トルクの大きさ及び方向の指定を受け付ける摩擦トルク受付手段として機能させることを特徴とする。
 また、第8発明に係るコンピュータプログラムは、第6発明において、前記摩擦トルク情報取得手段を、前記車輪のヨー方向の回転角を検出するヨー回転角検出手段、ヨー方向の回転角が変動を開始する時刻におけるヨー方向のトルクを検出する変動トルク検出手段、及び検出したヨー方向のトルクに基づく静摩擦トルクを、前記摩擦トルクとして算出する静摩擦トルク算出手段として機能させることを特徴とする。
 また、第9発明に係るコンピュータプログラムは、第6発明において、前記摩擦トルク情報取得手段を、前記車輪のヨー方向の回転角を検出するヨー回転角検出手段、ヨー方向の回転角が収束する時刻におけるヨー方向のトルクを検出する収束トルク検出手段、及び検出したヨー方向のトルクに基づく動摩擦トルクを、前記摩擦トルクとして算出する動摩擦トルク算出手段として機能させることを特徴とする。
 第1発明では、前後方向に回転して移動する車輪と、該車輪の回転軸に連結されて該車輪の上方でピッチ方向及びロール方向に揺動する本体とで構成してある。本体に、本体の略前後方向を回転中心軸とした慣性ロータと、該慣性ロータを回転させるモータとを備えている。ピッチ方向の所定の傾斜角度であるピッチ角に応じて生じる、慣性ロータの回転によるヨー方向のトルクにより本体のヨー方向の回転角を制御する。これにより、ピッチ方向に傾斜していない場合にはロール方向の傾斜角制御にしか用いることができない慣性ロータを、ピッチ方向に傾斜させることによりヨー方向のトルクを発生させることができ、別個にヨー方向制御用の慣性ロータを設けることなく方向転換することが可能となる。
 第2発明及び第6発明では、移動方向の目標とする車輪のヨー角の指定を受け付ける。摩擦トルクの大きさ及び方向を含む摩擦トルクに関する情報を取得しておき、指定を受け付けたヨー角に基づいて、ヨー方向の回転角加速度を算出する。算出したヨー方向の回転角加速度に基づいて、ヨー方向のトルクを算出し、算出したヨー方向のトルクと取得した摩擦トルクに関する情報とに基づいて、ヨー方向の必要トルクを算出する。算出したヨー方向の必要トルクを生じさせるモータの回転指令を、ピッチ方向の所定の傾斜角度であるピッチ角に応じて生成することにより、指定を受け付けたヨー角だけ回転させるために必要な慣性ロータの回転数を、ピッチ角に応じて変動させることができ、確実に所望の方向へ方向転換することが可能となる。
 第3発明及び第7発明では、摩擦トルクの大きさ及び方向の指定を受け付けることにより、車輪と路面との接触による摩擦トルクを考慮に入れて慣性ロータの回転数及び回転方向をより精度良く算出することが可能となる。
 第4発明及び第8発明では、車輪のヨー方向の回転角を検出し、ヨー方向の回転角が変動を開始する時刻におけるヨー方向のトルクを検出する。検出したヨー方向のトルクに基づいて、静摩擦トルクを算出し、算出した静摩擦トルクを摩擦トルクとして取得する。これにより、方向転換の開始時に比較的大きい静摩擦トルクを考慮に入れて慣性ロータの回転数及び回転方向をより精度良く算出することが可能となる。
 第5発明及び第9発明では、車輪のヨー方向の回転角を検出し、ヨー方向の回転角が収束する時刻におけるヨー方向のトルクを検出する。検出したヨー方向のトルクに基づいて、動摩擦トルクを算出し、算出した動摩擦トルクを摩擦トルクとして取得する。これにより、方向転換時に生じる動摩擦トルクを考慮に入れて慣性ロータの回転数及び回転方向を算出することができ、本体を所望の方向へと精度良く方向転換させることが可能となる。
 上記構成によれば、ピッチ方向に傾斜していない場合にはロール方向の傾斜角制御にしか用いることができない慣性ロータを、ピッチ方向に傾斜させることによりヨー方向のトルクを発生させることができ、別個にヨー方向制御用の慣性ロータを設けることなく方向転換させることが可能となる。すなわち、算出したヨー方向の必要トルクを生じさせるモータの回転指令を、ピッチ角に応じて生成することにより、指定を受け付けたヨー角だけ回転させるために必要な慣性ロータの回転数を、ピッチ角に応じて変動させることができ、確実に所望の方向へ方向転換することが可能となる。
本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボットの構成を模式的に示す正面図及び側面図である。 ピッチ方向、ロール方向及びヨー方向を説明する模式図である。 本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボットのヨー方向の方向転換動作の制御の一例を示す制御ブロック図である。 本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボットのロール方向の転倒を防止する制御の一例を示す制御ブロック図である。 一輪車ロボットを側面から見た模式図である。 指定するべき摩擦トルクを特定する方法を説明するグラフである。 本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボットの摩擦トルク情報取得部の機能ブロック図である。 本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボットの摩擦トルク情報取得部の機能ブロック図である。 本発明の実施の形態に係る移動方向制御装置の制御基板のコントローラによる方向転換処理の手順を示すフローチャートである。 一輪車ロボットを正面から見た模式図である。 本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボットの制御基板のコントローラによるロール方向の転倒防止処理手順を示すフローチャートである。 本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボットの制御基板のコントローラによる静摩擦トルクの算出処理の手順を示すフローチャートである。 本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボットの制御基板のコントローラによる動摩擦トルクの算出処理の手順を示すフローチャートである。
 以下、本発明の実施の形態に係る移動方向制御装置について、一輪車の上方に搭載してある本体が揺動しつつ車輪の回転により転倒することなく前後に移動する一輪車ロボットに適用した例を図面に基づいて具体的に説明する。
 図1は、本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボットの構成を模式的に示す正面図及び側面図である。図1(a)は正面図、図1(b)は右側面図を示している。本実施の形態に係る移動方向制御装置は、一輪車ロボット本体のピッチ方向及びロール方向への転倒を防止しつつ、ヨー方向の方向転換を制御する。
 図1(a)、(b)に示すように、一輪車ロボット1は、前後方向に回転して移動する車輪2と、車輪2の回転軸に連結されて車輪2の上方でピッチ方向及びロール方向に揺動する本体3とで構成されている。図1(a)、(b)の例では、一輪車ロボット1を人型ロボットとしているが、これに限定されるものではない。
 ここで、ピッチ方向、ロール方向及びヨー方向を明確にしておく。図2は、ピッチ方向、ロール方向及びヨー方向を説明する模式図である。図2に示すように、一輪車ロボット1がxy面上をx軸の(+)方向へ前進又はx軸の(-)方向へ後退するように移動する場合、y軸周りの回転方向がピッチ方向である。y軸の(+)方向を向いて反時計回りに回転した場合には本体3がx軸の(+)方向へ傾斜し、y軸の(+)方向を向いて時計回りに回転した場合には本体3がx軸の(-)方向へ傾斜する。また、x軸周りの回転方向がロール方向であり、本体3が左右方向へ揺動する場合の回転方向である。さらに、z軸周りの回転方向がヨー方向であり、車輪2の向きをx軸方向から変更する場合の回転方向である。
 図1(a)、(b)に示すように、本体3には、ピッチ方向の傾斜角度の角速度であるピッチ角速度を検出するピッチ用ジャイロセンサ(ピッチ用角速度センサ)31、車輪2の回転と連動し、車輪2を回転させるピッチ用モータ32、及びピッチ用モータ32の回転位置又は回転速度を検出するピッチ用エンコーダ(ピッチ用回転センサ)33を備える。ピッチ用ジャイロセンサ31は、ピッチ角速度を検出する図示しない検出軸を略左右方向に向けて本体3に取り付けられている。ここで、略左右方向とは、厳密な左右方向に対して若干の角度ずれがあっても良いことを意味する。本体3と車輪2とは、車輪2を回転自在に支持するフレーム4で連結され、ピッチ用モータ32の回転が、本体3に備えたかさ歯車5とベルト6とを介して車輪2へ伝わる。フレーム4は、本体3の一部分であり、図1(a)、(b)の例では、フレーム4は一輪車ロボット1である人型ロボットの足になっている。なお、ピッチ用角速度センサ31は、ピッチ角速度を検出することができれば良く、ジャイロセンサに限定されるものではない。ピッチ用ジャイロセンサ(ピッチ用角速度センサ)31、及びピッチ用モータ32のトルクに基づいて、ピッチ角を計算する。
 また、本体3には、ロール方向の傾斜角度の角速度であるロール角速度を検出するロール用ジャイロセンサ(ロール用角速度センサ)61、ロール方向に回転する慣性ロータ64、慣性ロータ64を回転させるロール用モータ62、及びロール用モータ62の回転位置又は回転速度を検出するロール用エンコーダ(ロール用回転センサ)63を備える。ロール用ジャイロセンサ61は、ロール角速度を検出する図示しない検出軸を略前後方向に向けて本体3に取り付けられている。ここで、略前後方向とは、厳密な前後方向に対して若干の角度ずれがあっても良いことを意味する。なお、ロール用角速度センサ61は、ロール角速度を検出することができれば良く、ジャイロセンサに限定されるものではない。
 さらに本体3の背中に相当する部分には、ピッチ用モータ32、ロール用モータ62の回転を制御する制御基板35及び電池36が装備されている。制御基板35には、ピッチ用モータ32及びロール用モータ62を回転駆動するドライバ、A/Dコンバータ、D/Aコンバータ、カウンタ、コントローラ等が搭載されている。コントローラは、具体的にはマイクロプロセッサ、CPU、LSI等である。
 ここまでの構成は、従来のヨー方向のトルクを発生させる慣性ロータを設けていない一輪車の構成と同様である。本発明では、ピッチ方向に前傾角度θだけ傾斜している場合に慣性ロータ64を回転させたとき、ロール方向の傾斜角を変動させるだけではなく、ヨー方向の回転角であるヨー角を変動させるヨー方向のトルクが生じることに着目し、車輪2の方向転換に利用している。図3は、本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボット1のヨー方向への方向転換動作の制御の一例を示す制御ブロック図である。
 図3に示すように、目標ヨー角指定受付部301は、移動方向の目標とする車輪2のヨー角を目標ヨー角θとして、目標ヨー角θの指定を受け付ける。すなわち、目標ヨー角θとは、現在車輪2が向いている進行方向からの偏差角を意味する。目標ヨー角θの指定の受付方法は特に限定されるものではなく、ブルートゥース(Bluetooth)(登録商標)等の無線通信を介して外部から指定するべき目標ヨー角θを受信しても良いし、制御基板35のコントローラにメモリを内蔵し、該メモリ内に事前に目標ヨー角θを記憶させておいても良い。また、メモリカード等を挿入することが可能なスロットを設けておき、目標ヨー角θが記憶されているメモリカード等を、都度挿入することで目標ヨー角θを読み込ませても良い。なお、ヨー方向の回転角であるヨー角θが目標ヨー角θに到達するまでの到達時間t、例えば1秒で到達する旨の指定も受け付けることが好ましい。ヨー方向の回転角加速度であるヨー角加速度ω’を到達時間tの中間で正負反転させた一定値であると仮定している場合、ヨー角速度ω及びヨー角θの変化を近似的に算出しやすくなるからである。
 ヨー用角加速度算出部302は、指定を受け付けた目標ヨー角θ及びヨー角θが目標ヨー角θに到達するまでの到達時間tに基づいて、ヨー角θを時間微分することによりヨー角速度ωを算出し、算出したヨー角速度ωを時間微分することにより、ヨー角加速度ω’を算出する。ヨー角速度ωは、ヨー角加速度ω’を到達時間tの中間で正負反転させた一定値であると仮定している場合、目標ヨー角θに到達するまでの到達時間tの2分の1が経過するまでは一定の割合で単調増加し、目標ヨー角θに到達するまでの到達時間tの2分の1が経過した後は一定の割合で単調減少する。
 上述の例では、ヨー角加速度ω’は、目標ヨー角θに到達するまでの到達時間tの2分の1が経過するまでは正の一定値として、目標ヨー角θに到達するまでの到達時間tの2分の1が経過した後は負の一定値として、それぞれ算出することができる。
 反動トルク算出部(ヨー方向トルク算出部)303では、ヨー用角加速度算出部302で算出されたヨー角加速度ω’に基づいて、本体3を目標ヨー角θまで回転させるために必要な回転トルクT2を算出する。本実施の形態では、算出した回転トルクT2と同一のトルクを、ピッチ方向に傾斜させた慣性ロータ64の回転により生じる反動トルクとして加えることで、本体3のヨー角θを制御する。
 摩擦トルク受付部304は、摩擦トルクTrとして車輪2と路面との摩擦係数に応じた摩擦トルクの大きさ及び方向の指定を受け付ける。摩擦トルクTrの指定の受付は、少なくとも摩擦トルクTrの大きさ及び方向の指定を含む。また、摩擦トルクTrの指定の受付方法は特に限定されるものではなく、ブルートゥース(Bluetooth)(登録商標)等の無線通信を介して外部から摩擦トルクTrの大きさ及び方向を受信しても良い。また、摩擦トルク受付部304の代わりに摩擦トルク情報取得部として、制御基板35のコントローラにて摩擦トルクTrの大きさ及び方向を算出しても良いし、定数として制御基板35のコントローラのメモリに記憶させておいても良い。また、メモリカード等を挿入することが可能なスロットを設けておき、摩擦トルクTrの大きさ及び方向が記憶されているメモリカード等を、都度挿入することで読み込ませても良い。
 ここで、摩擦トルクTr分だけ余分に反動トルクを加えなければ、本体3は指定を受け付けた目標ヨー角θまで回転することができない。したがって、図示しないヨー方向必要トルク算出部では、慣性ロータ64により加えるべき回転トルク(必要トルク)T1を、(式1)にて求める。
 T1=T2+Tr ・・・ (式1)
 慣性ロータ角加速度算出部305は、(式1)により算出した回転トルクT1を用いて、(式2)により慣性ロータ64の角加速度ω’を算出する。すなわち慣性ロータ64の慣性モーメントをJ1とした場合、本体3が前傾していることから、慣性ロータ64の回転中心軸が傾いており、同じ回転数であれば慣性ロータ64の回転により発生するトルクが傾いている分だけ減少するので、必要なトルクを発生させるためには、減少する分だけ必要とされる慣性ロータ64の角加速度ω’を大きくしておく必要がある。
 ω’=T1/J1/sinθ ・・・ (式2)
   ただし、θは本体3の前傾角度
 慣性ロータ角度算出部306は、(式2)により算出した慣性ロータ64の角加速度ω’を2回積分することにより、慣性ロータ64の回転角度Θをヨー方向の回転指令として算出して、算出した回転角度Θをロール方向のフィードバック制御ループへ入力する。
 図4は、本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボット1のロール方向の転倒を防止する制御の一例を示す制御ブロック図である。図4に示すように、ロール用カウンタ部401では、ロール用エンコーダ63の出力パルスのパルス数が計数される。ロール用回転速度算出部402では、ロール用カウンタ部401で計数されたパルス数を回転角度に変換したあと、微分してロール用モータ62の回転速度を求める。ノイズ除去のためのLPF(ローパスフィルタ)を装備しても良い。
 目標ロール角算出部403では、ロール用モータ62の回転が一輪車ロボット1の正面から見て左回転の場合は、目標ロール角を一輪車ロボット1の正面から見て右方向に、ロール用モータ62の回転が一輪車ロボット1の正面から見て右回転の場合は、目標ロール角を一輪車ロボット1の正面から見て左方向になるように、ロール用モータ62の回転速度に比例係数を乗算して求める。なお、積分器を追加して、慣性ロータ64に定常回転が残留しないようにすることが好ましい。
 一方、ロール用ADコンバータ部404では、ロール用ジャイロセンサ61のロール角速度をA/D変換して取得する。ロール角速度算出部405では、取得したロール角速度に変換係数を乗算して、ロール角速度ω1rを算出する。
 ロール傾斜角推定部406では、ロール角速度ω1rと、後述のロール用トルク指令τ2rとから、本体3(慣性ロータ64以外の部分)と慣性ロータ64とを含んだ運動系での傾斜角方向(ロール方向)の運動方程式に基づき導出された、後述の(式22)で表されるロール傾斜角の推定値を算出する。さらに適切な推定速度を持たせてループを安定化させるための一次遅れ要素を直列に加えて、ロール傾斜角の推定値を算出している。具体的には、(式22)を用いて算出した計算値に、一次遅れ要素として例えば1/(0.1S+1)を直列に加えることになるが、これらに限られるものではなく、適切な推定速度となるような任意の遅れ要素を加えることができる。
 ロール方向外部トルク推定部411では、ロール傾斜角の推定値に変換係数を乗算して、本体3に働いているロール方向外部トルクの推定値を算出し、ロール用補正トルク(ロール方向外部トルクの推定値に相当)τ3rを推定する。
 目標ロール角速度算出部407では、目標ロール角からロール傾斜角の推定値を減じたロール角度偏差に回転角度Θをヨー方向の回転指令として加算する。加算した値に比例ゲインを乗算して、目標ロール角速度ω2rを算出する。ロール用トルク指令生成部(モータ回転指令生成部)408では、目標ロール角速度ω2rとロール角速度ω1rとの偏差に対して、例えばPI制御によりロール用トルク指令τ0rを生成する。
 本実施の形態では、目標ヨー角θの指定を受け付けた場合、比較的短時間の慣性ロータ64の回転により、摩擦トルクTrを考慮した反動トルクを算出する。したがって、実際にはロール方向の傾斜に対しては、慣性ロータ64の回転によるトルクがほとんど影響することがなく、ロール方向の転倒を防止する制御ルーチンに対してロール方向に傾ける過大なトルクが入力される等の異常入力が発生することがない。よって、ロール方向の転倒を防止する制御ルーチンを正常に続行することができる。
 ロール用モータトルク指令電圧算出部409では、ロール用トルク指令τ0rとロール用補正トルクτ3rとを加えたロール用トルク指令τ2rに対して、変換係数を乗算して、指令電圧を算出する。最後に、ロール用DAコンバータ部410では、ドライバに指令電圧を出力し、ロール用モータ62の回転を制御する。
 本実施の形態では、本体3を所定の前傾角度θだけピッチ方向に傾いた状態で目標ヨー角θの指定を受け付ける。すなわち、前傾角度θが存在しなければ、慣性ロータ64の回転により本体3をヨー方向へ回転させるトルクが発生せず、方向転換することができないからである。図5は、一輪車ロボット1を側面から見た模式図である。
 図5に示すように、本体3が前傾角度θだけピッチ方向に傾くことにより、慣性ロータ64の回転中心軸も前傾角度θだけ傾斜する。したがって、慣性ロータ64の回転により生じる力FR
は、慣性ロータ64の回転中心から前傾角度θと平行な方向に生じる。
 したがって、慣性ロータ64の回転により生じる水平方向の力Fyaw1は、(式3)にて求めることができる。
 Fyaw1=F・sinθ  ・・・ (式3)
 生じた水平方向の力Fyaw1により、本体3に生じるヨー方向のトルクTyaw1は、慣性ロータ64の半径をRとした場合、(式4)にて算出することができる。
 Tyaw1=F・R・sinθ
    =T・sinθ    ・・・ (式4)
      ただし、Tは、慣性ロータ64の回転により生じるトルク
 本体3の前傾角度θが12(deg)であった場合、sinθは0.207であるので、(式4)から本体3に生じるヨー方向のトルクTyaw1は0.207×Tで求めることができる。また、一輪車ロボット1がヨー方向に回転する方向は、算出したヨー方向のトルクTyaw1を反動トルクとして回転するのでヨー方向のトルクTyaw1とは反対方向になる。例えば慣性ロータ64が一輪車ロボット1の正面から見て時計回りに回転した場合には、一輪車ロボット1は、上から見て時計回りに回転することになる。
 なお、実際には車輪2と路面との接地面での粘性摩擦係数μに基づく静摩擦トルクは無視することができる大きさではなく、摩擦トルクTrとして静摩擦分だけ余分に回転トルクを加えなければ、本体3は指定を受け付けた目標ヨー角θまで回転することはできない。したがって、慣性ロータ64により加えるべき回転トルクT1は、(式1)に示すようにT1=T2+Tr=Tyaw1+Trとなる。
 摩擦トルクTrは、車輪2と路面とが接触する接地面における粘性摩擦係数μにより大きさが変動する。図6は、指定するべき摩擦トルクTrを特定する方法を説明するグラフである。図6(a)は、慣性ロータ64が回転を開始してからのヨー角θ(rad)の実際の時間変化を示すグラフであり、図6(b)は、慣性ロータ64が回転を開始してからのヨー方向トルクτ(N・m)の時間変化を示すグラフである。
 図6(b)に示すように、ヨー方向トルクτ(N・m)は慣性ロータ64が回転を開始してから一定の割合で増加するのに対し、図6(a)に示すように、ヨー角θは慣性ロータ64が回転を開始してから一定時間後である時刻t1までは変化しない。これは、慣性ロータ64の回転により生じるトルクが接地面での静摩擦トルクを超えるまでは回転を開始せず、接地面での静摩擦トルクを超えた時点、すなわち時刻t1から本体3がヨー方向の回転を開始するからである。
 したがって、時刻t1でのヨー方向トルクτ1(N・m)に対応する回転トルクを指定するべき摩擦トルクTrと特定することができる。よって、摩擦トルク受付部304において、摩擦トルクTrとしてヨー方向トルクτ1(N・m)に対応する回転トルクの指定を受け付けた場合、指定を受け付けた目標ヨー角θへ方向転換するよう精度良く制御することができる。
 摩擦トルクTrとして静摩擦トルクの指定を受け付ける場合、摩擦トルク受付部304は、図7に示す摩擦トルク情報取得部として機能する。図7は、本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボット1の摩擦トルク情報取得部304aの機能ブロック図である。摩擦トルク情報取得部304aは、ヨー回転角検出部701、変動トルク検出部702、及び静摩擦トルク算出部703を備えている。
 ヨー回転角検出部701は、車輪2のヨー方向の回転角を検出する。変動トルク検出部702は、ヨー回転角検出部701で検出されるヨー方向の回転角を監視し、ヨー方向の回転角の変動開始を検知した時点、すなわちヨー方向の回転角が変動を開始した時刻(図6の時刻t1)におけるヨー方向のトルクを検出する。静摩擦トルク算出部703は、検出したヨー方向のトルクに基づく静摩擦トルクを、指定を受け付ける摩擦トルクTrとして算出する。
 一方、一旦本体3がヨー方向に回転を開始した場合には、粘性摩擦係数μは大きく減少する。したがって、摩擦トルク受付部304において、摩擦トルクTrとしてヨー方向トルクτ1(N・m)に基づく静摩擦トルクの指定を受け付けた場合、加える回転トルクが過大となる傾向が生じやすい。したがって、本体3がヨー方向に回転している状態での動摩擦トルクを摩擦トルクTrとして指定を受け付けても良い。
 この場合、図6(a)に示すように、慣性ロータ64が回転を開始して、到達時間tの中間時刻tmを経過した後、時刻t2では目標ヨー角θに収束する。これは、動摩擦トルクが、慣性ロータ64の回転による回転トルクと釣り合ったからである。したがって、図6(b)に示すように、時刻t2におけるヨー方向トルクτ2(N・m)に対応する回転トルクを指定するべき摩擦トルクTrと特定することができる。よって、摩擦トルク受付部304において、摩擦トルクTrとしてヨー方向トルクτ2(N・m)に対応する回転トルクの指定を受け付けた場合、指定を受け付けた目標ヨー角θへ方向転換するよう、より精度良く制御することができる。
 摩擦トルクTrとして動摩擦トルクの指定を受け付ける場合、摩擦トルク受付部304は、図8に示す摩擦トルク情報取得部として機能する。図8は、本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボット1の摩擦トルク情報取得部304bの機能ブロック図である。摩擦トルク情報取得部304bは、ヨー回転角検出部801、収束トルク検出部802、及び動摩擦トルク算出部803を備えている。
 ヨー回転角検出部801は、車輪2のヨー方向の回転角を検出する。収束トルク検出部802は、ヨー回転角検出部801で検出されるヨー方向の回転角を監視し、ヨー方向の回転角が収束する時刻、すなわち図6の時刻t2におけるヨー方向のトルクを検出する。動摩擦トルク算出部803は、検出したヨー方向のトルクに基づく動摩擦トルクを、指定を受け付ける摩擦トルクTrとして算出する。
 図9は、本発明の実施の形態に係る移動方向制御装置の制御基板35のコントローラによる方向転換処理の手順を示すフローチャートである。制御基板35のコントローラは、目標ヨー角θの指定を受け付ける(ステップS901)。目標ヨー角θの指定の受付方法は特に限定されるものではなく、ブルートゥース(Bluetooth)(登録商標)等の無線通信を介して外部から指定するべき目標ヨー角θを受信しても良いし、制御基板35のコントローラにメモリを内蔵し、該メモリ内に事前に目標ヨー角θを記憶させておいても良い。また、メモリカード等を挿入することが可能なスロットを設けておき、目標ヨー角θが記憶されているメモリカード等を、都度挿入することで目標ヨー角θを読み込ませても良い。なお、ヨー方向の回転角であるヨー角θが目標ヨー角θに到達するまでの到達時間tについては、目標ヨー角θの指定を受け付けると同時に受け付けても良いし、一定時間として事前にコントローラのメモリに記憶しておいても良い。
 コントローラは、指定を受け付けた目標ヨー角θ及びヨー角θが目標ヨー角θに到達するまでの到達時間tに基づいて、ヨー角θを2回時間微分することによりヨー角加速度ω’を算出する(ステップS902)。ヨー角速度ωは、ヨー角加速度ω’を到達時間tの中間で正負反転させた一定値であると仮定している場合、目標ヨー角θに到達するまでの到達時間tの2分の1が経過するまでは一定の割合で単調増加し、目標ヨー角θに到達するまでの到達時間tの2分の1が経過した後は一定の割合で単調減少する。
 上述の例では、ヨー角加速度ω’は、目標ヨー角θに到達するまでの到達時間tの2分の1が経過するまでは正の一定値として、目標ヨー角θに到達するまでの到達時間tの2分の1が経過した後は負の一定値として、それぞれ算出することができる。
 コントローラは、算出されたヨー角加速度ω’に基づいて、本体3を目標ヨー角θまで回転させるために必要な回転トルクT2を算出する(ステップS903)。コントローラは、摩擦トルクTrとして車輪2と路面との粘性摩擦係数μに応じた静摩擦トルクの指定を受け付ける(ステップS904)。コントローラは、算出した回転トルクT2と指定を受け付けた摩擦トルクTrとを加算して、慣性ロータ64により加えるべき回転トルクT1を算出する(ステップS905)。
 コントローラは、本体3の前傾角度θを取得する(ステップS906)。取得する方法は、傾斜角を検出する傾斜角センサを設けても良いし、特に限定されるものではない。例えば簡便な方法として、鉛直方向と慣性ロータ64の回転中心軸に直交する方向とのなす角度を、三角法等を用いて導出すれば良い。コントローラは、(式2)に基づいて、本体3の前傾角度θで回転トルクT1を補正することにより、慣性ロータ64の角加速度ω’を算出する(ステップS907)。すなわち本体3が前傾しているので、慣性ロータ64の回転中心軸が傾いており、同じ回転数であれば慣性ロータ64の回転により発生するトルクが傾いている分だけ減少する。したがって、必要なトルクを発生させるためには、減少する分だけ必要とされる慣性ロータ64の角加速度ω’を大きく算出する必要がある。
 コントローラは、算出した慣性ロータ64の角加速度ω’を2回積分することにより、慣性ロータ64の回転数(回転角)及び回転方向を算出して(ステップS908)、算出した回転数(回転角)及び回転方向にてロール用モータ62が回転するようにロール用モータ62の回転指令を生成する(ステップS909)。なお、ステップS907乃至ステップS909は、ステップS905にて算出したT1に変換係数を乗算することにより、慣性ロータ64の回転数(回転角)及び回転方向を算出して、算出した回転数(回転角)及び回転方向にてロール用モータ62が回転するようにロール用モータ62の回転指令を生成するようにしても良い。コントローラは、生成したロール用モータ62の回転指令に対して、変換係数を乗算して、指令電圧を算出して、ドライバに指令電圧を出力する(ステップS910)。
 コントローラは、到達時間tが経過したか否かを判断し(ステップS911)、コントローラが、到達時間tが経過していないと判断した場合(ステップS911:NO)、コントローラは、経過待ち状態となる。コントローラが、到達時間tが経過したと判断した場合(ステップS911:YES)、コントローラは、現在のヨー角を取得し(ステップS912)、目標ヨー角θとの差分角を算出する(ステップS913)。
 コントローラは、算出した差分角が所定値より小さいか否かを判断し(ステップS914)、コントローラが、差分角が所定値以上であると判断した場合(ステップS914:NO)、コントローラは、算出した差分角を新たな目標ヨー角θに設定し(ステップS915)、処理をステップS902に戻して上述した処理を繰り返す。コントローラが、算出した差分角が所定値より小さいと判断した場合(ステップS914:YES)、コントローラは、方向転換が完了したと判断して処理を終了する。
 ロール方向の傾斜を制御する慣性ロータ64を用いて方向転換することから、ロール方向の釣り合いも維持する必要がある。図10は、一輪車ロボット1を正面から見た模式図である。図10では、本体3及び本体3に取り付けられた慣性ロータ64のみを模式的に示している。ロール方向の傾斜角を求めるために、まずラグランジュ方程式により運動方程式を導出する。本体3(慣性ロータ64以外の部分)と慣性ロータ64とを合わせた、全体の運動エネルギーT及び位置エネルギーUは以下の(式5)及び(式6)のようになる。
Figure JPOXMLDOC01-appb-M000001
 一般化座標と一般化速度による微分量は、以下の(式7)~(式12)のようになる。
Figure JPOXMLDOC01-appb-M000002
 ラグランジュ方程式(式13)、(式14)に(式7)~(式12)を代入する。
Figure JPOXMLDOC01-appb-M000003
 この結果、運動方程式として、次の(式15)、(式16)を得る。
Figure JPOXMLDOC01-appb-M000004
 (式16)を変形すると、(式17)となる。
Figure JPOXMLDOC01-appb-M000005
 (式17)を(式15)に代入して、ロール方向の傾斜角θ1rが微小であると仮定した場合、sinθ1rをθ1rで近似することができ、(式18)を得る。(式18)より、本体3の運動は、慣性ロータ64の角度及び角速度には無関係となる。
Figure JPOXMLDOC01-appb-M000006
-ロール傾斜角の推定-
 ロール傾斜角は、ロール用ジャイロセンサ61が出力するロール角速度ω1rを積分することにより求めることも可能であるが、偏差が累積して不正確になるため、別の方法で求める必要がある。そこで、図10から導いた運動方程式を用いて、ロール用ジャイロセンサ61が出力するロール角速度ω1rと、ロール用トルク指令τ2rとから、ロール傾斜角を推定する。運動方程式(式18)を変形すると、(式19)となる。
Figure JPOXMLDOC01-appb-M000007
 一方、ロール用ジャイロセンサ61が出力するロール角速度の微分値であるω1rドットは、(式20)で表わされる。
Figure JPOXMLDOC01-appb-M000008
 また、ロール方向の外乱トルクτ1rが発生した場合、見かけの釣合い傾斜角θ0rは(式21)となる。
Figure JPOXMLDOC01-appb-M000009
 したがって、見かけの釣合い傾斜角θ0rに対する現在のロール方向の傾斜角θ1rの偏差角(ロール傾斜角)は、上記(式19)、(式20)、(式21)より、(式22)を導出して算出することによって推定することができる。ただし、適切な推定速度を持たせてループを安定化させるために、一次遅れ要素を直列に加えておく方が良い。なお、(式22)はロール傾斜角を推定する計算式の一例であり、推定対象となる運動系によってロール傾斜角を推定する計算式は異なる場合がある。
Figure JPOXMLDOC01-appb-M000010
 ロール用ジャイロセンサ61で出力されたロール角速度ω1rと、目標ロール角に基づいて生成されるロール用モータ62に与えるロール用トルク指令τ2rとから、釣合い状態に対して本体3がロール方向へ傾斜している角度であるロール傾斜角を推定することにより、ピッチ傾斜角と同様に、ロール傾斜角を精度良く推定することができる。また、ロール用ジャイロセンサ61が出力するロール角速度ω1rを積分することがないので、ノイズ、オフセット等の累積による目標ロール角の計算誤差が生じることがなく、慣性ロータ64の回転により生じる反動トルクを利用し、釣合い状態からのロール方向の傾斜を精度良く補正して、ロール方向への転倒を防止することができる。
-ロール方向外部トルクフィードフォワード-
 (式22)で推定された偏差角(ロール傾斜角)によって、ロール方向外部トルクを補償する。
Figure JPOXMLDOC01-appb-M000011
 (式23)のロール方向外部トルクを、トルクに加えておく。
Figure JPOXMLDOC01-appb-M000012
 (式24)とすれば、運動方程式(式18)は、(式25)となるから、ロール方向外部トルクを補償することができる。釣合い状態から本体3がロール方向へ傾斜している角度であるロール傾斜角を推定した(式22)によって、釣合い状態からのロール方向への傾斜角度によって生じるロール方向外部トルクを推定することができるので、推定したロール方向外部トルクを相殺する補正トルクを算出することができる。したがって、ロール方向外部トルクによる影響を加味してロール用モータ62の回転をより適正に制御することができるので、釣合い状態からのロール方向の傾斜をより精度良く補正してロール方向の転倒を防止することができる。特に、傾斜角ループ、傾斜角速度ループの応答周波数が低い場合でも、ロール方向外部トルクをフィードフォワード制御で補償することにより、ロール方向の転倒を防止する制御ルーチンを正常に実行することができるため、安定した制御が可能となる。
Figure JPOXMLDOC01-appb-M000013
 図11は、本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボット1の制御基板35のコントローラによるロール方向の転倒防止処理手順を示すフローチャートである。図11に示すように制御基板35のコントローラは、ロール用モータ62の回転速度を検出したロール用エンコーダ63の出力パルス(パルス信号)のパルス数を計数する(ステップS1101)。
 コントローラは、計数したパルス数からロール方向の回転速度を算出する(ステップS1102)。具体的には、計数したパルス数を回転角度に変換したあと、微分して回転速度を算出する。コントローラは、ロール方向の回転速度に基づいて目標とするロール方向の傾斜角度である目標ロール角を算出する(ステップS1103)。
 コントローラは、算出した目標ロール角から後述するステップS1111で推定したロール傾斜角を減じてロール角度偏差を算出し(ステップS1104)、算出したロール角度偏差に比例ゲインを乗算して目標ロール角速度ω2rを算出する(ステップS1105)。
 コントローラは、目標ロール角速度ω2rと、後述するステップS1110で算出したロール角速度ω1rとのロール角速度偏差を算出し(ステップS1106)、算出したロール角速度偏差に対してPI制御等によりロール用トルク指令τ0rを生成する(ステップS1107)。
 コントローラは、生成したロール用トルク指令τ0rを後述するステップS1112で推定したロール方向外部トルクτ3rで補正し、ロール用トルク指令τ2rを生成する(ステップS1108)。
 コントローラは、ロール用ジャイロセンサ61が出力したロール角速度をA/D変換して取得する(ステップS1109)。コントローラは、取得したロール角速度に変換係数を乗算してロール角速度ω1rを算出する(ステップS1110)。
 コントローラは、(式22)を用いて、算出したロール角加速度ω1rドットと、上述したステップS1108で生成したロール用トルク指令τ2rとから、釣合い状態に対して本体3がロール方向に傾斜している角度であるロール傾斜角を推定する(ステップS1111)。コントローラは、推定したロール傾斜角に基づいて、本体3をロール方向に傾斜させるロール方向外部トルクを推定する(ステップS1112)。
 コントローラは、ステップS1108でロール用トルク指令τ2rを生成したか否かを判断する(ステップS1113)。
 コントローラが、ロール用トルク指令τ2rを生成したと判断した場合(ステップS1113:YES)、コントローラは、生成したロール用トルク指令τ2rに変換係数を乗算して指令電圧を算出する(ステップS1114)。コントローラは、算出した指令電圧をD/A変換し、ロール用モータ62を回転駆動するドライバに出力する(ステップS1115)。コントローラは、処理をステップS1101及びステップS1109に戻し、上述した処理を繰り返す。
 一方、コントローラが、ロール用トルク指令τ2rを生成していないと判断した場合(ステップS1113:NO)、本体3は釣合い状態であり、コントローラは、処理を終了する。
 このようにすることで、ヨー方向の回転制御のためにロール用の慣性ロータ64を回転させた場合であっても、ロール方向制御によりロール方向の釣り合いを維持した状態で一輪車ロボット1は方向転換することが可能となる。
 なお、静摩擦トルクを摩擦トルクTrとして用いる場合、制御基板35のコントローラは、摩擦トルク情報取得部304aとして機能する。図12は、本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボット1の制御基板35のコントローラによる静摩擦トルクの算出処理の手順を示すフローチャートである。
 図12において、制御基板35のコントローラは、図9のステップS903の処理を実行した後、車輪2のヨー方向の回転角を検出する(ステップS1201)。コントローラは、ヨー方向の回転角が変動を開始したか否かを判断し(ステップS1202)、コントローラが、ヨー方向の回転角が変動を開始していないと判断した場合(ステップS1202:NO)、コントローラは、ヨー方向の回転角の変動開始の検知待ち状態となる。
 コントローラが、ヨー方向の回転角が変動を開始したと判断した場合(ステップS1202:YES)、コントローラは、ヨー方向の回転角の変動開始を検知した時点、すなわちヨー方向の回転角が変動を開始した時刻(図6の時刻t1)におけるヨー方向のトルクを検出し(ステップS1203)、検出したヨー方向のトルクに基づく静摩擦トルクを、指定を受け付ける摩擦トルクTrとして算出して(ステップS1204)、処理を図9のステップS905へ進める。
 また、動摩擦トルクを摩擦トルクTrとして用いる場合、制御基板35のコントローラは、摩擦トルク情報取得部304bとして機能する。図13は、本発明の実施の形態に係る移動方向制御装置を適用した一輪車ロボット1の制御基板35のコントローラによる動摩擦トルクの算出処理の手順を示すフローチャートである。
 図13において、制御基板35のコントローラは、図9のステップS903の処理を実行した後、車輪2のヨー方向の回転角を検出する(ステップS1301)。コントローラは、ヨー方向の回転角が収束したか否かを判断し(ステップS1302)、コントローラが、ヨー方向の回転角が収束していないと判断した場合(ステップS1302:NO)、コントローラは、ヨー方向の回転角の収束の検知待ち状態となる。
 コントローラが、ヨー方向の回転角が収束したと判断した場合(ステップS1302:YES)、コントローラは、ヨー方向の回転角が収束した時刻、すなわち図6の時刻t2におけるヨー方向のトルクを検出する(ステップS1303)。コントローラは、検出したヨー方向のトルクに基づく動摩擦トルクを、指定を受け付ける摩擦トルクTrとして算出する(ステップS1304)。
 以上のように、本実施の形態によれば、ピッチ方向に傾斜していない場合にはロール方向の傾斜角制御にしか用いることができない慣性ロータ64を、ピッチ方向に傾斜させることによりヨー方向のトルクを発生させることができ、別個にヨー方向制御用の慣性ロータを設けることなく方向転換することが可能となる。すなわち、算出したヨー方向の必要トルクを生じさせるモータの回転指令を、ピッチ角に応じて生成することにより、指定を受け付けたヨー角を生じさせるために必要な慣性ロータ64の回転数を、ピッチ角に応じて変動させることができ、確実に所望の方向へ方向転換することが可能となる。
 なお、上述した実施の形態は、本発明の趣旨を逸脱しない範囲で変更することができることは言うまでもない。例えば摩擦トルクTrとして、粘性摩擦係数μに基づく静摩擦トルク、動摩擦トルクの指定を受け付けることに限定されるものではなく、例えば図6に示す時刻t1までは静摩擦トルクを、時刻t1経過後は動摩擦トルクを、というように指定を受け付ける摩擦トルクTrを可変としても良い。
 1 一輪車ロボット(移動方向制御装置)
 2 車輪
 3 本体
 35 制御基板
 36 電池
 61 ロール用ジャイロセンサ(ロール用角速度センサ)
 62 ロール用モータ
 63 ロール用エンコーダ(ロール用回転センサ)
 64 慣性ロータ
 O1 、O2  回転中心
 m1  本体質量
 m2  慣性ロータ質量
 I1r O1 まわりの本体の慣性モーメント
 I2r O2 まわりの慣性ロータの慣性モーメント
 θ 垂直軸に対する本体のピッチ方向の傾斜角度
 θ1r 垂直軸に対する本体のロール方向の傾斜角度
 θ2r 本体に対する慣性ロータの回転角度
 lr  O1 からO2 までの距離
 lGr O1 から本体重心位置までの距離
 g 重力加速度

Claims (9)

  1.  前後方向に回転して移動する車輪と、該車輪の回転軸に連結されて該車輪の上方でピッチ方向及びロール方向に揺動する本体とで構成され、
     該本体に、
     本体の略前後方向を回転中心軸とした慣性ロータと、
     該慣性ロータを回転させるモータと
     を備え、
     ピッチ方向の所定の傾斜角度であるピッチ角に応じて生じる、前記慣性ロータの回転によるヨー方向のトルクにより前記本体のヨー方向の回転角を制御することを特徴とする移動方向制御装置。
  2.  移動方向の目標とする前記車輪のヨー角の指定を受け付けるヨー角指定受付部と、
     摩擦トルクの大きさ及び方向を含む摩擦トルクに関する情報を取得する摩擦トルク情報取得部と、
     指定を受け付けたヨー角に基づいて、ヨー方向の回転角加速度を算出するヨー方向角加速度算出部と、
     算出したヨー方向の回転角加速度に基づいて、ヨー方向のトルクを算出するヨー方向トルク算出部と、
     算出したヨー方向のトルクと取得した摩擦トルクに関する情報とに基づいて、ヨー方向の必要トルクを算出するヨー方向必要トルク算出部と、
     算出したヨー方向の必要トルクを生じさせる前記モータの回転指令を、前記ピッチ角に応じて生成するモータ回転指令生成部と
     を備えることを特徴とする請求項1記載の移動方向制御装置。
  3.  前記摩擦トルク情報取得部は、
     摩擦トルクの大きさ及び方向の指定を受け付ける摩擦トルク受付部を備えることを特徴とする請求項2記載の移動方向制御装置。
  4.  前記摩擦トルク情報取得部は、
     前記車輪のヨー方向の回転角を検出するヨー回転角検出部と、
     ヨー方向の回転角が変動を開始する時刻におけるヨー方向のトルクを検出する変動トルク検出部と、
     検出したヨー方向のトルクに基づいて、静摩擦トルクを算出する静摩擦トルク算出部と
     を備え、
     算出した静摩擦トルクを前記摩擦トルクとして取得するようにしてあることを特徴とする請求項2記載の移動方向制御装置。
  5.  前記摩擦トルク情報取得部は、
     前記車輪のヨー方向の回転角を検出するヨー回転角検出部と、
     ヨー方向の回転角が収束する時刻におけるヨー方向のトルクを検出する収束トルク検出部と、
     検出したヨー方向のトルクに基づいて、動摩擦トルクを算出する動摩擦トルク算出部と
     を備え、
     算出した動摩擦トルクを前記摩擦トルクとして取得するようにしてあることを特徴とする請求項2記載の移動方向制御装置。
  6.  前後方向に回転して移動する車輪と、該車輪の回転軸に連結されて該車輪の上方でピッチ方向及びロール方向に揺動する本体とで構成され、
     該本体に、
     本体の略前後方向を回転中心軸とした慣性ロータと、
     該慣性ロータを回転させるモータと
     を備えた移動方向制御装置に搭載してあり、
     ピッチ方向の所定の傾斜角度であるピッチ角に応じて生じる、前記慣性ロータの回転によるヨー方向のトルクにより前記本体のヨー方向の回転角を制御するコンピュータで実行することが可能なコンピュータプログラムであって、
     前記コンピュータを、
     移動方向の目標とする前記車輪のヨー角の指定を受け付けるヨー角指定受付手段、
     摩擦トルクの大きさ及び方向を含む摩擦トルクに関する情報を取得する摩擦トルク情報取得手段、
     指定を受け付けたヨー角に基づいて、ヨー方向の回転角加速度を算出するヨー方向角加速度算出手段、
     算出したヨー方向の回転角加速度に基づいて、ヨー方向のトルクを算出するヨー方向トルク算出手段、
     算出したヨー方向のトルクと取得した摩擦トルクに関する情報とに基づいて、ヨー方向の必要トルクを算出するヨー方向必要トルク算出手段、及び
     算出したヨー方向の必要トルクを生じさせる前記モータの回転指令を、前記ピッチ角に応じて生成するモータ回転指令生成手段
     として機能させることを特徴とするコンピュータプログラム。
  7.  前記摩擦トルク情報取得手段を、
     摩擦トルクの大きさ及び方向の指定を受け付ける摩擦トルク受付手段として機能させることを特徴とする請求項6記載のコンピュータプログラム。
  8.  前記摩擦トルク情報取得手段を、
     前記車輪のヨー方向の回転角を検出するヨー回転角検出手段、
     ヨー方向の回転角が変動を開始する時刻におけるヨー方向のトルクを検出する変動トルク検出手段、及び
     検出したヨー方向のトルクに基づく静摩擦トルクを、前記摩擦トルクとして算出する静摩擦トルク算出手段
     として機能させることを特徴とする請求項6記載のコンピュータプログラム。
  9.  前記摩擦トルク情報取得手段を、
     前記車輪のヨー方向の回転角を検出するヨー回転角検出手段、
     ヨー方向の回転角が収束する時刻におけるヨー方向のトルクを検出する収束トルク検出手段、及び
     検出したヨー方向のトルクに基づく動摩擦トルクを、前記摩擦トルクとして算出する動摩擦トルク算出手段
     として機能させることを特徴とする請求項6記載のコンピュータプログラム。
PCT/JP2010/061509 2009-09-04 2010-07-07 移動方向制御装置及びコンピュータプログラム WO2011027615A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011529845A JP5240365B2 (ja) 2009-09-04 2010-07-07 移動方向制御装置及びコンピュータプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009204456 2009-09-04
JP2009-204456 2009-09-04

Publications (1)

Publication Number Publication Date
WO2011027615A1 true WO2011027615A1 (ja) 2011-03-10

Family

ID=43649163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061509 WO2011027615A1 (ja) 2009-09-04 2010-07-07 移動方向制御装置及びコンピュータプログラム

Country Status (2)

Country Link
JP (1) JP5240365B2 (ja)
WO (1) WO2011027615A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201254A (ja) * 2011-03-25 2012-10-22 Osamu Furukawa 2輪車の姿勢制御システム
CN103645735A (zh) * 2013-12-04 2014-03-19 桂林电子科技大学 一种可实现自平衡的独轮车机器人

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435533B2 (ja) 2021-04-21 2024-02-21 株式会社デンソー バルブ装置
CN114248804B (zh) * 2021-12-08 2023-11-10 深圳市优必选科技股份有限公司 步态规划方法、装置、电子设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268904A (ja) * 1997-03-21 1998-10-09 V Uliyanov Sergei 非線形の物理的な制御対象の最適制御のための自己組織化方法及び装置
WO2007063665A1 (ja) * 2005-12-01 2007-06-07 Murata Manufacturing Co., Ltd. 転倒防止制御装置
WO2007086176A1 (ja) * 2006-01-27 2007-08-02 Murata Manufacturing Co., Ltd. 二輪車の転倒防止制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268904A (ja) * 1997-03-21 1998-10-09 V Uliyanov Sergei 非線形の物理的な制御対象の最適制御のための自己組織化方法及び装置
WO2007063665A1 (ja) * 2005-12-01 2007-06-07 Murata Manufacturing Co., Ltd. 転倒防止制御装置
WO2007086176A1 (ja) * 2006-01-27 2007-08-02 Murata Manufacturing Co., Ltd. 二輪車の転倒防止制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201254A (ja) * 2011-03-25 2012-10-22 Osamu Furukawa 2輪車の姿勢制御システム
CN103645735A (zh) * 2013-12-04 2014-03-19 桂林电子科技大学 一种可实现自平衡的独轮车机器人
CN103645735B (zh) * 2013-12-04 2016-01-20 桂林电子科技大学 一种可实现自平衡的独轮车机器人

Also Published As

Publication number Publication date
JP5240365B2 (ja) 2013-07-17
JPWO2011027615A1 (ja) 2013-02-04

Similar Documents

Publication Publication Date Title
JP4743347B2 (ja) 転倒防止制御装置及びコンピュータプログラム
JP5321681B2 (ja) 移動方向制御装置及びコンピュータプログラム
US8050837B2 (en) Mobile unit and control method of mobile unit
JP4605227B2 (ja) 転倒防止制御装置
CN101443628B (zh) 具有倾斜角推定机构的移动体
JP5028488B2 (ja) 倒立二輪型搬送車及びその制御方法
US8831833B2 (en) Vehicle
EP2664528B1 (en) Inverted pendulum type vehicle
US9321498B2 (en) Method of estimating mounting angle error of gyroscopes by using a turning device, and corresponding turning device
JP4968297B2 (ja) 移動体、移動体の制御方法、及びプログラム
JP5240365B2 (ja) 移動方向制御装置及びコンピュータプログラム
JP5907037B2 (ja) 移動体
JP5336955B2 (ja) 倒立振子型移動体及びその制御方法
US8678124B2 (en) Inverted pendulum type vehicle
EP2597022B1 (en) Inverted pendulum type vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529845

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813566

Country of ref document: EP

Kind code of ref document: A1