WO2011027434A1 - 通信システム,分散スロープ付与器および通信方法 - Google Patents

通信システム,分散スロープ付与器および通信方法 Download PDF

Info

Publication number
WO2011027434A1
WO2011027434A1 PCT/JP2009/065339 JP2009065339W WO2011027434A1 WO 2011027434 A1 WO2011027434 A1 WO 2011027434A1 JP 2009065339 W JP2009065339 W JP 2009065339W WO 2011027434 A1 WO2011027434 A1 WO 2011027434A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
slope
wavelength
characteristic
optical signal
Prior art date
Application number
PCT/JP2009/065339
Other languages
English (en)
French (fr)
Inventor
洋 中元
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN200980161129.8A priority Critical patent/CN102484532B/zh
Priority to EP09848965.1A priority patent/EP2475112A4/en
Priority to JP2011529725A priority patent/JP5316643B2/ja
Priority to PCT/JP2009/065339 priority patent/WO2011027434A1/ja
Publication of WO2011027434A1 publication Critical patent/WO2011027434A1/ja
Priority to US13/363,773 priority patent/US9002211B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/252Distortion or dispersion compensation after the transmission line, i.e. post-compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/254Distortion or dispersion compensation before the transmission line, i.e. pre-compensation

Definitions

  • the disclosed technology relates to a communication system and a communication method, and is used, for example, in a system that performs long-distance transmission of wavelength multiplexed optical signals.
  • waveform distortion occurs in an optical signal due to wavelength dispersion of an optical fiber that is an element of an optical transmission line.
  • a good signal quality is ensured by compensating the accumulated chromatic dispersion caused by the transmission of the optical signal on the optical transmission line.
  • the transmission distance of the optical signal is increased, the influence of wavelength dependency (dispersion slope) of chromatic dispersion cannot be ignored. That is, in order to suppress waveform distortion, the amount of chromatic dispersion to be compensated differs between the short wavelength channel and the long wavelength channel.
  • an optical transmission line can be configured including a transmission fiber such as NZ-DSF (Non-Zero-Dispersion-Shifted Fiber) and DCF (Dispersion-Compensating Fiber).
  • NZ-DSF Non-Zero-Dispersion-Shifted Fiber
  • DCF Dispersion-Compensating Fiber
  • Patent Document 1 describes a dispersion compensation device.
  • One of the purposes of this project is to provide dispersion compensation technology that improves the transmission quality in comparison with the conventional technology.
  • the present invention is not limited to the above-mentioned object, and is an effect derived from each configuration or operation shown in the best mode for carrying out the invention to be described later, and has an effect that cannot be obtained by a conventional technique. It can be positioned as a purpose.
  • a dispersion slope applicator for imparting different dispersion characteristics and dispersion slope characteristics depending on the wavelength band in the optical signal is provided on the transmission side and reception side of the transmission path.
  • a communication system is used in which the transmission side and the reception side have different characteristics for the dispersion characteristic and the dispersion slope characteristic provided by the dispersion slope applicator.
  • the dispersion slope applicator of (1) above is used.
  • the transmission side and the reception side of the transmission path are provided with different dispersion characteristics and dispersion slope characteristics depending on the wavelength band in the optical signal, and the transmission Different communication methods are used for the dispersion characteristic and the dispersion slope characteristic imparted by the reception side and the reception side.
  • transmission quality can be improved in comparison with the conventional technology.
  • FIG. 1 It is a figure which shows the structural example of the transmission line of a submarine system. It is a figure which shows an example of the dispersion
  • An example of a terminal configuration on the transmitting side when adjusting the dispersion compensation amount for each channel is shown.
  • a terminal side configuration example on the receiving side when adjusting the dispersion compensation amount for each channel is shown.
  • (A) is a figure which shows the structural example of a fiber grating
  • (b) is a figure which shows the delay characteristic
  • (c) is a figure which shows the chromatic dispersion characteristic.
  • (A) is a figure which shows the wavelength dispersion characteristic of a dispersion slope compensator
  • (b) is a figure which shows the delay characteristic of a slope compensator.
  • FIG. 1 shows an example of the system transmission path configuration.
  • the optical repeater 3 can be appropriately provided after the NZ-DSF or after the DCF.
  • FIG. 1 An example of the distribution map of this transmission line is shown in FIG. In this case, there is a maximum compensation amount deviation of 8,000 ps / nm between the shortest wavelength channel and the longest wavelength channel. Thus, it may be necessary to adjust the dispersion compensation amount for each channel.
  • 3 and 4 show terminal station configuration examples on the transmission side and the reception side when adjusting the dispersion compensation amount for each channel.
  • 4-i i: 1 to 20
  • 5-i is a TDC (Tunable Dispersion Compensator)
  • 6-j j: 1 to 5
  • 7 is a MUX (Multiplexer)
  • 8 is a DCF
  • 9 is an optical amplifier.
  • Each signal light source 4-i outputs an optical signal of each wavelength which is an element of wavelength multiplexing.
  • a long wavelength optical signal can be output as the value of “i” in the figure increases.
  • the TDC 5-i performs dispersion compensation with a variable amount on the optical signal from the signal light source 4-i.
  • the MUX 6-j bundles (wavelength multiplexes) the optical signal from the TDC 5-i in units of four adjacent channels.
  • a fixed dispersion compensation amount (+1000 ps / nm or -1000 ps / nm) of DCFs 8 is inserted in a different number for each wavelength band on the propagation path of the optical signal output from the MUX 6-j.
  • the amount of dispersion compensation corresponding to is given. That is, the DCF 8 provides compensation amounts of +2000 ps / nm, +1000 ps / nm, 0 ps / nm, ⁇ 1000 ps / nm, and ⁇ 2000 ps / nm from the short wavelength band side to the long wavelength band side.
  • the MUX 7 bundles (wavelength multiplexes) optical signals that have been subjected to dispersion compensation in the DCF 8.
  • the optical amplifier 9 is appropriately interposed on the propagation path of the optical signal output from the MUXs 6-j and 7.
  • the dispersion compensation amount for each channel that is, the wavelength multiplexed optical signal is transmitted through the transmission path by the dispersion compensation amount by the DCF 8 and the dispersion compensation amount for the adjustment corresponding to each wavelength by the TDC 5-i.
  • the amount of pre-dispersion compensation in the previous stage that propagates the signal is adjusted.
  • 14-i is a receiving unit that receives the optical signal of each channel corresponding to the signal light source 4-i shown in FIG.
  • 16-j and 17 are DEMUXs (Demultiplexers) for demultiplexing (wavelength separation) the optical signals of the respective channels corresponding to the MUXs 6-j and 7 shown in FIG.
  • Reference numerals 15-i, 18, and 19 denote TDC, DCF, and optical amplifiers having the same arrangement as that shown in FIG. 3 (see reference numerals 5-i, 8, and 9), respectively.
  • the dispersion compensation amount for each channel is transmitted through the transmission path by the dispersion compensation amount by the DCF 18 and the dispersion compensation amount for the adjustment corresponding to each wavelength by the TDC 15-i. Is adjusted after dispersion.
  • the examples illustrated in FIGS. 3 and 4 described above a large number of DCFs, optical amplifiers, and tunable dispersion compensators are required, and it can be assumed that the price and the implementation will increase.
  • Fig. 4 shows the configuration of a general fiber grating dispersion compensator that does not compensate for dispersion slope.
  • the grating is formed so that the position where the light is reflected differs depending on the wavelength and the delay time changes.
  • the delay time is linearly reduced with respect to the wavelength.
  • the chromatic dispersion is obtained by differentiating the delay time by the wavelength.
  • the chromatic dispersion for the delay characteristic of FIG. 5A is as shown in FIG. 5B and is ⁇ 2000 ps / nm.
  • the chromatic dispersion value is uniform regardless of the wavelength, and the dispersion slope that is the wavelength dependence of chromatic dispersion is zero. Therefore, the dispersion compensator having the above characteristics does not compensate for the dispersion slope.
  • Figure 6 shows an example of fiber grating characteristics that can compensate for the slope.
  • the compensation characteristic as illustrated in FIG. 6A in which the chromatic dispersion changes linearly with the wavelength, has the delay characteristic of the quadratic function shown in FIG. 6B, which is obtained by integrating this linear function. This can be realized by using a fiber grating.
  • FIG. 6 shows an example of the transmitting terminal station 10A using the slope compensator 11
  • FIG. 8 shows an example of the receiving terminal station 20A using the slope compensator 21.
  • the same reference numerals as those described above indicate substantially similar parts.
  • slope compensators 11 and 21 are interposed on the propagation paths of the wavelength multiplexed optical signals, respectively.
  • the transmitting terminal station 10A shown in FIG. 7 and the receiving terminal station 20A shown in FIG. 8 are connected via an optical transmission line.
  • the accumulated dispersion amount of the optical transmission line has the characteristics as shown in FIG. 9 according to the wavelength band, the dispersion (or dispersion slope) in each wavelength band is obtained by cooperating in the slope compensators 11 and 21 described above. Can be compensated.
  • the chromatic dispersion in each wavelength band is set to 0 by performing dispersion compensation with a compensation amount corresponding to the wavelength as illustrated in A of FIG. 10 as the sum of the slope compensators 11 and 21. Will be able to.
  • the dispersion compensation characteristic illustrated in FIG. 10A is distributed at 50:50 in the slope compensators 11 and 21, the slope compensators 11 and 21 correspond to the wavelengths shown in FIG. 10B. Dispersion compensation is performed with the compensation amount.
  • Equation (1) represents the non-linear magnitude ⁇ given according to the transmission path parameter.
  • is a signal wavelength
  • n 2 is a non-linear refractive index
  • a eff is a fiber effective area
  • L SPAN is a span length. length
  • is a fiber loss
  • P is a fiber input power.
  • the setting of the ratio of the pre-compensation amount at the transmitting terminal station 10A to the compensating amount at the receiving terminal station 20A is nonlinear if the expected signal quality is secured at the receiving terminal station 20A. It fluctuates as illustrated in FIG. 11 according to the size. That is, with the nonlinear magnitude ⁇ determined by the fiber parameter of the optical transmission line, the ratio of the dispersion compensation amount at the transmitting / receiving terminal stations 10A and 20A is changed from the above 50:50, so that the desired received signal quality is obtained. Can be secured.
  • FIG. 12 is a diagram showing an example in which the ratio of the dispersion compensation amount in the transmission / reception terminal stations 10A and 20A is changed from the above 50:50.
  • the solid line A1A2 connected by the round plot points is the dispersion compensation characteristic by the slope compensator 11 of the transmitting terminal station 10A
  • the dotted lines B1 and B2 connected by the triangular plot points are the points of the receiving terminal station 20A. This is a dispersion compensation characteristic by the slope compensator 21.
  • the slope compensators 11 and 21 use two slope compensators having different characteristics near the wavelength of 1556 nm, respectively.
  • the dispersion compensation amount at the transmitting / receiving terminal stations 10A and 20A can be set as follows.
  • the cumulative chromatic dispersion characteristic of the optical transmission line is obtained for each wavelength.
  • the characteristic obtained by inverting the polarity is derived by halving the obtained cumulative chromatic dispersion characteristic. That is, by performing dispersion compensation with the derived characteristics, it is possible to perform dispersion compensation including the dispersion slope of the transmission path.
  • the cumulative chromatic dispersion characteristic has linear characteristics having values of about ⁇ 6000 ps / nm, 0 ps / nm, and +6000 ps / nm at wavelengths of 1540 nm, 1550 nm, and 1560 nm, respectively
  • FIG. The characteristic of the straight line C is derived.
  • the dispersion value is 0 ps / nm near the wavelength of 1550 nm, as illustrated in FIG.
  • the characteristics of the straight line C have values of about +3000 ps / nm, 0 ps / nm, and ⁇ 3000 ps / nm at wavelengths near 1540 nm, 1550 nm, and 1560 nm, respectively.
  • the characteristics of the straight line C described above lead to the optimum point of the ratio of the dispersion compensation amount at each of the transmission / reception terminal stations 10A and 20A while the dispersion compensation amount when the transmission / reception terminal stations 10A and 20A are added together.
  • the optimum point ratio may be derived from the calculated value of the nonlinear magnitude described above, or the compensation ratio that provides the optimum received signal quality may be measured. For example, it can be simply estimated from the nonlinear phase shift amount obtained from the characteristic parameter of the optical fiber exemplified in Expression (1) and the optical power per wave. Furthermore, if the system is already installed, the optimum dispersion compensation amount can be actually measured through the optical signal.
  • the two characteristic lines are obtained by translating the characteristic of the straight line C in accordance with the ratio of the dispersion compensation amount derived at the transmitting terminal station 10A and the receiving terminal station 20A derived as described above.
  • the straight lines are a and b. That is, pre-dispersion compensation at the transmitting terminal station 10A is performed according to the characteristic of the straight line a (A1) on the short wavelength side, and at the receiving terminal station 20A, it is performed according to the characteristic of the straight line b (B1) on the short wavelength side.
  • the absolute value of the amount of pre-dispersion compensation increases.
  • waveform distortion due to the dispersion compensation itself increases in the previous stage of transmission on the optical transmission line. If this waveform distortion becomes large, the reception sensitivity tends to deteriorate, and it tends to hinder the achievement of the reception signal quality that is the original purpose.
  • pre-dispersion compensation in the transmitting terminal station 10A of the present embodiment for example, at a wavelength (near 1556 nm) on the line a that is the same as the value of the longest wave of the line b (1560 nm in this figure). , Move to line b (A2). That is, in the wavelength band from around 1556 nm to a long wavelength, the transmitting terminal station 10A performs pre-dispersion compensation with the characteristic of the straight line A2.
  • the dispersion compensation amount of the receiving terminal station 20A moves on the line b (B1) as the wavelength increases from the short wavelength side (eg, around 1540 nm in FIG. 12) opposite to the transmitting side, and the transmitting side changes to the line a. From the moved wavelength (near 1556 nm), the longer wavelength side moves on the line a (B2).
  • the slope compensators 11 and 21 are examples of dispersion slope applicators that impart different dispersion characteristics and dispersion slope characteristics depending on the wavelength band in the optical signal.
  • the dispersion characteristics provided by the dispersion slope applicators 11 and 21 The dispersion slope characteristic is given different characteristics on the transmission side (symbol 11) and on the reception side (symbol 21).
  • FIG. 13 shows a configuration example of the slope compensators 11 and 21 that realize the above-described dispersion compensation characteristics.
  • the slope compensators 11 and 21 include a DEMUX 31, first and second slope compensators 32-1 and 32-2, and a MUX 33.
  • the DEMUX (Demultiplexer) 31 is an optical signal having a wavelength shorter than 1556 nm or shorter than 1556 nm (short wavelength side optical signal) and an optical signal longer than 1556 or longer than 1556 nm (long wavelength). Side light signal). That is, the DEMUX 31 is an example of a demultiplexing unit that demultiplexes an input optical signal into a plurality (in this case, two).
  • the first slope compensation unit 32-1 performs dispersion compensation on the short wavelength side optical signal demultiplexed by the DEMUX 31 with the set dispersion compensation characteristic.
  • dispersion compensation is performed according to the characteristics of A1 shown in FIG.
  • dispersion compensation is performed according to the characteristic of B1 shown in FIG.
  • the second slope compensator 32-2 performs dispersion compensation with the set dispersion compensation characteristic for the long wavelength side optical signal demultiplexed by the DEMUX 31.
  • dispersion compensation is performed according to the characteristic of A2 shown in FIG.
  • dispersion compensation is performed according to the characteristic of B2 shown in FIG.
  • dispersion characteristic and dispersion slope characteristic indicated by the straight line A shown in FIG. 10 are added together.
  • This straight line A corresponds to the reverse characteristic of the dispersion characteristic and dispersion slope characteristic (see FIG. 9) of the transmission line. Accordingly, it can be said that the dispersion slope compensators 11 and 21 on the transmission side and the reception side are added with dispersion characteristics and dispersion slope characteristics that are added together to compensate for the dispersion characteristics and dispersion slope characteristics of the transmission path.
  • the dispersion characteristic and dispersion slope characteristic A1 given in the short wavelength band of the wavelength-multiplexed optical signal are distributed in the long wavelength band of the wavelength-multiplexed optical signal.
  • the characteristics and the dispersion slope characteristics A2 are as follows. That is, the characteristic A1 is a characteristic in which the value of the dispersion slope corresponding to the slope of FIG. 12 is substantially the same, but the wavelength at which zero dispersion is set is shorter than A2. Also, in the dispersion slope adder 21 on the receiving side, the dispersion characteristic and dispersion slope characteristic B1 given in the short wavelength band of the wavelength-multiplexed optical signal are given in the long wavelength band of the wavelength-multiplexed optical signal.
  • the characteristic B1 is a characteristic in which the dispersion slope value corresponding to the slope of FIG. 12 is substantially the same, but the wavelength at which zero dispersion is located is on the longer wavelength side than B2.
  • the first and second slope compensators 32-1 and 32-2 give the dispersion characteristics and dispersion slope characteristics corresponding to the respective wavelength bands to the optical signals demultiplexed by the demultiplexing section 31. It is a slope giving device.
  • the first and second slope compensators 32-1 and 32-2 of the slope compensators 11 and 21 can be realized by fiber gratings or the like in which slope compensation amounts corresponding to the above characteristics are set. it can.
  • the MUX 33 multiplexes the optical signals in the respective wavelength bands for which dispersion compensation has been performed by the first and second slope compensators 32-1 and 32-2.
  • the optical signal combined by the MUX 33 is transmitted through the optical transmission path.
  • the optical signal multiplexed by the MUX 33 is demultiplexed and received for each WDM channel.
  • the slope compensators 11 and 21 may have a configuration other than that shown in FIG. For example, it can be realized by fiber gratings having different slope characteristics in the short wavelength band and the long wavelength band. Examples of fiber grating characteristics having different slope characteristics in the wavelength band are shown in FIGS.
  • the slope compensator 21 includes a compensation characteristic indicated by a straight line A1 from 1553 nm to the short wavelength side, and a compensation characteristic indicated by a straight line B1 (different from the straight line A1) from 1553 nm to the long wavelength side. Can be used.
  • FIG. 15 is a diagram showing delay characteristics A2 and B2 corresponding to A1 and B1, respectively, obtained by integrating the straight lines A1 and B1 with respect to the dispersion compensation characteristics shown in FIG.
  • FIG. 16 shows a delay characteristic in which the two delay characteristics A2 and B2 are continuously connected at 1553 nm, which is the wavelength at which the slope changes. Dispersion compensation having different slope characteristics according to the wavelength band can be realized by using the fiber grating created to have the characteristics shown in FIG.
  • each of the transmission side and reception side slope applicators 11 and 21 is an example of a slope application device that imparts different dispersion characteristics and dispersion slope characteristics to the input optical signal in a plurality of wavelength bands. It can be configured with a fiber grating.
  • the transmission quality can be improved in comparison with the conventional technique.
  • FIG. 17 is a diagram illustrating a dispersion compensation scheme according to another embodiment.
  • a modulation scheme different from the modulation scheme in a channel other than the wavelength may be used near the zero dispersion wavelength of an optical fiber forming an optical transmission line such as NZ-DSF.
  • a phase modulation method such as DPSK (Differential Phase Shift Keying) is used for other than the zero dispersion wavelength
  • an intensity modulation method such as RZ-OOK (Return to Zero-On Off Keying) is used near the zero dispersion wavelength. is there.
  • FIG. 17 shows an example in which different slope compensation amounts are applied to the above-described three wavelength bands at the transmitting terminal station 10A and the receiving terminal station 20A.
  • the dispersion compensation scheme shown in FIG. 17 assigns dispersion compensation amounts in accordance with the case of FIG. 12 in which the wavelength band is divided into two bands and different dispersion compensation amounts and slope compensation amounts are given on the transmitting side and the receiving side, respectively. It is.
  • the compensation amount at the transmitting terminal station 10A is set to a ratio smaller than the compensation amount at the receiving terminal station 20A.
  • the slope compensator 11 forming the transmitting terminal station 10A performs dispersion compensation with the characteristic indicated by A1 in FIG. 17, and the slope compensator 21 forming the receiving terminal station 20A has the characteristic indicated by B1 in FIG. Dispersion compensation is performed.
  • an equivalent slope compensation amount corresponding to the characteristic of the straight line C shown in FIG. 12 is given to both the transmitting and receiving terminal stations 10A and 20A. That is, the slope compensators 11 and 21 perform dispersion compensation with the characteristic of the straight line C in the zero dispersion wavelength band.
  • the compensation amount at the transmitting terminal station 10A is set to a ratio that is larger than the compensation amount at the receiving terminal station 20A.
  • the slope compensator 11 forming the transmitting terminal station 10A performs dispersion compensation with the characteristic indicated by A2 in FIG. 17, and the slope compensator 21 forming the receiving terminal station 20A has the characteristic indicated by B2 in FIG. Dispersion compensation is performed.
  • the dispersion characteristic and dispersion slope characteristic A1 given in the short wavelength band of the wavelength-multiplexed optical signal are given in the long wavelength band of the wavelength-multiplexed optical signal.
  • the value of the dispersion slope corresponding to the slope in the illustrated wavelength-dispersion compensation amount characteristic is almost the same, but the value corresponding to the intercept is A1 smaller than A2 and becomes zero dispersion.
  • the wavelength is arranged on the short wavelength side.
  • the dispersion characteristic and dispersion slope characteristic B1 given in the short wavelength band of the wavelength-multiplexed optical signal are given in the long wavelength band of the wavelength-multiplexed optical signal.
  • the value of the dispersion slope corresponding to the slope in the illustrated wavelength-dispersion compensation amount characteristic itself is substantially the same, but the value corresponding to the intercept is larger in B1 than in B2, and the wavelength for zero dispersion is longer. Arranged on the wavelength side.
  • FIG. 18 shows a configuration example of the slope compensators 11 and 21 that realize the above-described dispersion compensation characteristics.
  • the slope compensators 11 and 21 include a DEMUX 31, first to third slope compensators 32-1 to 32-3, and a MUX 33.
  • a DEMUX (Demultiplexer) 31 demultiplexes an input optical signal into optical signals in the three wavelength bands, the short wavelength band, the zero dispersion wavelength band, and the long wavelength band described above.
  • the first slope compensation unit 32-1 performs dispersion compensation on the short wavelength band optical signal demultiplexed by the DEMUX 31 with the set dispersion compensation characteristic.
  • dispersion compensation is performed according to the characteristics of A1 shown in FIG. 17, and the slope compensator provided in the receiving terminal station 20A.
  • dispersion compensation is performed according to the characteristic of B1 shown in FIG.
  • the second slope compensator 32-2 performs dispersion compensation with the set dispersion compensation characteristic for the long wavelength side optical signal demultiplexed by the DEMUX 31.
  • dispersion compensation is performed in accordance with the characteristics of A2 shown in FIG. 17, and the slope compensator provided in the receiving terminal station 20A.
  • the second slope compensator 32-2 forming 21 performs dispersion compensation in accordance with, for example, the characteristic B2 shown in FIG.
  • the third slope compensator 32-3 that forms the slope compensators 11 and 21 both of the above-described medium wavelength band optical signals demultiplexed by the DEMUX 31 (for example, including the zero dispersion wavelength of the optical transmission line fiber).
  • first to third slope compensators 32-1 to 32-3 of the slope compensators 11 and 21 can also be realized by fiber gratings or the like in which slope compensation amounts corresponding to the above characteristics are set. Can do.
  • the MUX 33 multiplexes the optical signals in the respective wavelength bands for which dispersion compensation has been performed by the first to third slope compensators 32-1 to 32-3.
  • the optical signal combined by the MUX 33 is transmitted through the optical transmission path.
  • the optical signal multiplexed by the MUX 33 is demultiplexed and received for each WDM channel.
  • slope compensation can be performed with the amount of compensation allocated in each, and there is an advantage that transmission quality can be improved in light of the prior art.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】伝送品質を従来技術に照らし向上させる。 【解決手段】光信号の通信を行なう伝送路を有する通信システムにおいて、前記光信号における波長帯に応じて異なる分散特性および分散スロープ特性を付与する分散スロープ付与器を、前記伝送路の送信側および受信側にそなえ、かつ、該分散スロープ付与器で付与する前記分散特性および分散スロープ特性は、該送信側と該受信側とで異なる特性を付与する。

Description

通信システム,分散スロープ付与器および通信方法
 開示の技術は、通信システムおよび通信方法に関し、例えば、波長多重光信号の長距離伝送を行なうシステムに用いられる。
 光通信システムでは、光伝送路の要素である光ファイバの波長分散等によって、光信号に波形ひずみが生じる。受信側においては、光伝送路上を光信号が伝送することによる累積した波長分散を補償して、良好な信号品質を確保することが行なわれている。
 また、光信号の伝送距離が長距離化すると、波長分散の波長依存性(分散スロープ)の影響を無視できなくなる。即ち、波形ひずみを抑制するために、短波長側のチャネルと長波長側のチャネルでは補償する波長分散の量が異なってくる。
 たとえば、NZ-DSF(Non Zero-Dispersion Shifted Fiber)等の伝送ファイバとDCF(Dispersion Compensating Fiber)とを含んで光伝送路を構成することができる。このとき、波長分散の波長依存性(分散スロープ)を、0.1ps/nm/km/nmとし、光伝送路の伝送路長を10000km、光波長が1545nm~1555nmの範囲にある場合には、光伝送路の波長分散は、10000*0.1*10=10000ps/nmの幅で変動する。
 すなわち、光波長1550nmでの分散が+0ps/nm/kmであるとしても、1545nm~1555nmの範囲にある光においては10000ps/nmの幅で波長分散が変動することになる。
 なお、下記の特許文献1には分散補償デバイスについて記載されている。
国際公開第01/006682号
 本案件の目的の一つは、伝送品質を従来技術に照らし向上させる分散補償技術を提供することにある。
 尚、前記目的に限らず、後述する発明を実施するための最良の形態に示す各構成又は作用により導かれる効果であって、従来の技術によっては得られない効果を奏することも本案件の他の目的として位置づけることができる。
 たとえば、下記の技術を提案する。
 (1)光信号の通信を行なう伝送路を有する通信システムにおいて、前記光信号における波長帯に応じて異なる分散特性および分散スロープ特性を付与する分散スロープ付与器を、前記伝送路の送信側および受信側にそなえ、かつ、該分散スロープ付与器で付与する前記分散特性および分散スロープ特性は、該送信側と該受信側とで異なる特性を付与する通信システムを用いる。
 (2)また、上記(1)の分散スロープ付与器を用いる。
 (3)伝送路を通じて光信号の通信を行なう通信方法において、前記伝送路の送信側および受信側において、前記光信号における波長帯に応じて異なる分散特性および分散スロープ特性を付与するとともに、該送信側と該受信側とで付与する分散特性および分散スロープ特性は異なる通信方法を用いる。
 開示の技術によれば、伝送品質を従来技術に照らし向上させることができる。
海底システムの伝送路の構成例を示す図である。 伝送路の分散マップの一例を示す図である。 チャネルごとの分散補償量の調整を行なう場合の送信側の端局構成例を示す。 チャネルごとの分散補償量の調整を行なう場合の受信側の端局構成例を示す。 (a)はファイバーグレーティングの構成例を示す図、(b)はその遅延特性を示す図、(c)はその波長分散特性を示す図である。 (a)は分散スロープ補償器の波長分散特性を示す図、(b)はスロープ補償器の遅延特性を示す図である。 分散スロープ補償器を用いた送信端局の一例を示す図である。 分散スロープ補償器を用いた受信端局の一例を示す図である。 伝送路の波長分散特性を示す図である。 分散スロープ補償を含む波長分散補償の一例を示す図である。 伝送路中の非線形劣化の生じる大きさに応じた送信端局と受信端局の分散補償量に対する送信端局での前置補償量の最適な割合の設定例を示す図である。 送受信端局での分散補償量の割合を50:50から変動させた一例を示す図である。 スロープ補償器の構成例を示す図である。 スロープ補償器の波長分散特性の一例を示す図である。 スロープ補償器の遅延量特性の一例を説明するための図である。 スロープ補償器の遅延量特性の一例を説明するための図である。 送受信端局での分散補償量の割合を50:50から変動させた他の例を示す図である。 スロープ補償器の構成例を示す図である。
・分散補償技術について
 図1にシステムの伝送路の構成例を示す。50kmの長さのNZ-DSF1を5スパンとともに80kmの長さのDCF2を含む伝送路構成単位Taを20回繰り返す。即ち、20個の上記伝送路構成単位Taを直列接続する。尚、NZ-DSFの後段、あるいはDCFの後段に光中継器3を適宜そなえることができる。
 この伝送路の分散マップの一例を図2に示す。この場合は最短波長と最長波長のチャネル間で最大8,000ps/nmの補償量の偏差がある。このように、チャネルごとに分散補償量を調整する必要が生じる場合がある。
 図3,図4には、このようなチャネルごとの分散補償量の調整を行なう場合の送信側と受信側の端局構成例を示す。図3に例示する送信端局10において、4-i(i:1~20)は信号光源、5-iはTDC(Tunable Dispersion Compensator、可変分散補償器)、6-j(j:1~5),7はMUX(Multiplexer)、8はDCF、9は光アンプである。
 各信号光源4-iは、波長多重の要素となる各波長の光信号をそれぞれ出力する。尚、図中「i」の値が増大するに伴い長波長の光信号を出力するものとすることができる。TDC5-iは、信号光源4-iからの光信号について可変量で分散補償を行なう。そして、MUX6-jは、TDC5-iからの光信号について、隣接4チャネル単位に束ねる(波長多重する)。尚、図中「j」の値が増大するに伴い長波長帯の光信号を束ねるものとすることができる。
 そして、MUX6-jから出力される光信号の伝搬経路上には、固定分散補償量(+1000ps/nm又は-1000ps/nm)のDCF8が、波長帯ごとに異なる個数で介装されて、波長帯に応じた分散補償量が与えられる。即ち、DCF8により、短波長帯側から長波長帯側にわたり、+2000ps/nm,+1000ps/nm,0ps/nm,-1000ps/nm,-2000ps/nmの補償量が与えられる。
 なお、MUX7は、DCF8で分散補償が行なわれた光信号について束ねる(波長多重する)。又、光アンプ9は、MUX6-j,7から出力される光信号の伝搬経路上に適宜介装される。例示した送信端局10においては、DCF8による分散補償量と、TDC5-iによる各波長対応の調整分の分散補償量と、により、チャネルごとの分散補償量、即ち、波長多重光信号が伝送路を伝搬する前段においての前置分散補償量を調整している。
 また、図4に例示する受信端局20において、14-iは図3に示す信号光源4-iに対応して各チャネルの光信号を受信する受信部である。更に、16-j,17は図3に示すMUX6-j,7にそれぞれ対応して各チャネルの光信号を分波(波長分離)するDEMUX(Demultiplexer)である。又、15-i,18,19は、それぞれ、図3に示すもの(符号5-i,8,9参照)と同様の配置構成を有するTDC,DCF,光アンプである。
 例示した受信端局20においても、DCF18による分散補償量と、TDC15-iによる各波長対応の調整分の分散補償量と、により、チャネルごとの分散補償量、即ち、波長多重光信号が伝送路を伝搬した後においての分散補償量を調整している。但し、上述の図3,図4に例示するにおいては、DCF、光アンプ、可変分散補償器が多数必要になり、価格と実装が大きくなることが想定できる。
 上述の価格と実装の増大を抑制するために、分散スロープを補償する通信システムがある。これはファイバーグレーティング(FBG:Fiber Bragg Gratings)の遅延時間に波長依存性を持たせたものである。
 分散スロープを補償しない、一般的なファイバーグレーティングの分散補償器の構成を図4に示す。波長によって光が反射する位置が異なり、遅延時間が変化するようにグレーティングが形成されている。
 一例として、図5(a)に示すように、波長に対し遅延時間が線形に小さくなるようにするものがある。波長分散は遅延時間を波長で微分したものである。この図5(a)の遅延特性についての波長分散は図5(b)のようになり、-2000ps/nmである。但し、この場合は、波長分散値は波長によらず一様であり、波長分散の波長依存性である分散スロープはゼロである。従って、上記特性の分散補償器においては分散スロープについてまでは補償しない。
 スロープを補償できるファイバーグレーティングの特性例を図6に示す。波長によって波長分散が線形に変化する、図6(a)に例示するような補償特性は、この1次関数を積分して得られる、図6(b)に示す2次関数の遅延特性をもつファイバーグレーティングを用いることで実現できる。
・分散スロープについても補償する技術について
 図6に例示するようなスロープ補償器は、送信端局および受信端局に適用することができる。図7にスロープ補償器11を用いた送信端局10Aの一例を示し、図8にスロープ補償器21を用いた受信端局20Aの一例を示す。既述の符号と同一符号は、ほぼ同様の部分を示す。図7に例示する送信端局10Aおよび図8に例示する受信端局20Aにおいては、それぞれ、スロープ補償器11,21が波長多重光信号の伝搬経路上に介装される。
 例示の送信端局10A,受信端局20Aを図3,図4に示すもの(符号10,20)と対比すると、波長帯ごとにそなえられたDCF8,18、光アンプ9,19、可変分散補償器5-i,15-iが不要とさせるかまたは個数を減少させることが可能になる。従って、価格と実装規模を低減できる。
 図7に示す送信端局10Aおよび図8に示す受信端局20A間が光伝送路を介して接続される場合を想定する。この光伝送路の累積分散量が波長帯に応じて図9に示すような特性を有する場合、上述のスロープ補償器11,21において協働することで各波長帯での分散(又は分散スロープ)を補償できる。
 この場合には、スロープ補償器11,21の合計として、図10のAに例示するような波長に応じた補償量での分散補償を行なうことで、各波長帯での波長分散を0とすることができるようになる。例えば、図10のAに例示する分散補償特性を、スロープ補償器11,21において50:50で配分する場合は、各スロープ補償器11,21においては図10のBに示すような波長に応じた補償量での分散補償を行なう。
 ところで、光伝送路において生じる非線形効果は、当該光伝送路が有する伝送路パラメータとともに、光パワーに応じて異なる。式(1)は、伝送路パラメータに応じて与えられる非線形の大きさΦを表す。尚、式(1)中、λは信号波長、n2は光ファイバ非線形屈折率(non-linear refractive index)、Aeffは光ファイバ有効断面積(Fiber effective area)、LSPANはスパン長(Span length)、αはファイバロス(Fiber loss)、Pはファイバ入力パワー(Fiber input power)である。
Figure JPOXMLDOC01-appb-M000001
 
 また、送信端局10Aでの前置補償量の受信端局20Aでの補償量に対する割合の設定は、受信端局20Aにおいて所期の信号品質が確保されることを指標に置くと、非線形の大きさに応じて図11に例示するように変動する。即ち、光伝送路のファイバパラメータによって定められる非線形の大きさΦに伴い、送受信端局10A,20Aでの分散補償量の割合を上述の50:50から変動させることで、所期の受信信号品質を確保できるようになる。
 図12は、送受信端局10A,20Aでの分散補償量の割合を上述の50:50から変動させた一例を示す図である。この図12において、丸のプロット点で結ばれた実線A1A2は送信端局10Aのスロープ補償器11による分散補償特性であり、三角のプロット点で結ばれた点線B1,B2は受信端局20Aのスロープ補償器21による分散補償特性である。
 例示の分散補償量の設定においては、波長1556nm付近で特性の異なった2つのスロープ補償部をスロープ補償器11,21でそれぞれ用いている。送受信端局10A,20Aでの分散補償量については、次のように設定することができる。
 すなわち、光伝送路の累積波長分散の特性を波長ごとに求める。求めた累積波長分散の特性を半分にして、極性を反転した特性を導出する。即ち、導出した特性で分散補償を行なうことで、伝送路の分散スロープまで含めて分散補償することができる。
 一例として、累積波長分散の特性が、波長1540nm,1550nmおよび1560nm付近では、それぞれ、-6000ps/nm,0ps/nm,+6000ps/nm程度の値を有する直線状の特性を有する場合は、図12の直線Cの特性が導出される。光伝送路としてはNZ-DSFを用いる場合には、この図12に例示するように、波長1550nm付近では分散の値は0ps/nmである。
 ここで、直線Cの特性においては、波長1540nm,1550nmおよび1560nm付近では、それぞれ、+3000ps/nm,0ps/nm,-3000ps/nm程度の値を有している。そして、上述の直線Cの特性が、送受信端局10A,20A双方で合算したときの分散補償量としつつ、各送受信端局10A,20Aでの分散補償量の割合の最適点を導く。
 この最適点割合については、前述の非線形の大きさの計算値から導出してもよいし、最適な受信信号品質となる補償割合を実測してもよい。例えば、式(1)において例示した光ファイバの特性パラメータと、一波あたりの光パワーと、から求められる非線形位相シフト量から簡易に推定することができる。更に、既に敷設してあるシステムであれば、実際に光信号を通して、最適な分散補償量を測定できる。
 上述のごとく導出した送信端局10Aおよび受信端局20Aでの分散補償量の割合にしたがって、直線Cの特性を平行移動した配置の2つの特性直線を得る。図12に例示する場合には直線a,bである。即ち、送信端局10Aでの前置分散補償は、短波長側においては直線a(A1)の特性に従って行ない、受信端局20Aでは、短波長側においては直線b(B1)の特性に従って行なう。
 ただし、送信端局10Aでは、直線aの特性に従って長波長側の分散補償を行なう場合には、前置分散補償量の絶対値が大きくなる。前置分散補償量の絶対値が大きくなると、光伝送路での伝送の前段において、分散補償自体による波形歪が大きくなる。この波形歪が大きくなると、受信感度が劣化しやすくなり、本来の目的である受信信号品質の達成に支障となりやすい。
 そこで、本実施形態の送信端局10Aでの前置分散補償の特性としては、例えば、線bの最長波(この図では1560nm)の値と同じになる線a上の波長(1556nm付近)において、線b(A2)に移動する。即ち、波長1556nm付近から長波長の波長帯においては、送信端局10Aでは直線A2の特性で前置分散補償を行なう。
 これにより、伝送路ファイバの零分散波長(例えば1550nm)より長波長側で、送信側の分散補償量の絶対値が大きくならない様に、補償すべき分散スロープを設定することにより、感度を改善できる。又、受信端局20Aの分散補償量は、送信側と反対に短波長側(図12では例えば1540nm付近)から波長が長くなるに従い、線b(B1)上を移動し、送信側が線aに移動した波長(1556nm付近)から長波長側は、線a(B2)上を移動する。
 したがって、スロープ補償器11,21は、光信号における波長帯に応じて異なる分散特性および分散スロープ特性を付与する分散スロープ付与器の一例であり、分散スロープ付与器11,21で付与する分散特性および分散スロープ特性は、送信側(符号11)と受信側(符号21)とで異なる特性を付与している。
 上述の分散補償特性を実現するスロープ補償器11,21の構成例を図13に示す。スロープ補償器11,21においては、DEMUX31,第1,第2スロープ補償部32-1,32-2およびMUX33をそなえる。
 DEMUX(Demultiplexer)31は、入力される光信号について、1556nmよりも短い又は1556nm以下の波長の光信号(短波長側光信号)と、1556以上の又は1556nmよりも長い波長の光信号(長波長側光信号)と、に分波する。即ち、DEMUX31は、入力される光信号を複数(この場合は2つ)に分波する分波部の一例である。
 第1スロープ補償部32-1は、DEMUX31で分波された短波長側光信号について、設定された分散補償特性で分散補償を行なう。送信端局10Aにそなえられたスロープ補償器11における第1スロープ補償部32-1においては、例えば、図12に示すA1の特性に従って分散補償を行なう。又、受信端局20Aにそなえられたスロープ補償器21における第1スロープ補償部32-1においては、例えば、図12に示すB1の特性に従って分散補償を行なう。
 同様に、第2スロープ補償部32-2は、DEMUX31で分波された長波長側光信号について、設定された分散補償特性で分散補償を行なう。送信端局10Aにそなえられたスロープ補償器11における第2スロープ補償部32-2においては、例えば、図12に示すA2の特性に従って分散補償を行なう。又、受信端局20Aにそなえられたスロープ補償器21における第2スロープ補償部32-2においては、例えば、図12に示すB2の特性に従って分散補償を行なう。
 また、送信側および受信側の分散スロープ補償器11,21においては、合算して図10に示す直線Aに示す分散特性および分散スロープ特性を付与している。この直線Aは伝送路の分散特性および分散スロープ特性(図9参照)の逆特性にあたる。従って、送信側および受信側の分散スロープ補償器11,21においては、合算して伝送路の分散特性および分散スロープ特性を補償する分散特性および分散スロープ特性を付与しているということができる。
 また、送信側の分散スロープ付与器11において、波長多重された光信号の短波長帯で付与される分散特性および分散スロープ特性A1は、波長多重された光信号の長波長帯で付与される分散特性および分散スロープ特性A2と比べると次のようになる。即ち、特性A1は、図12の傾きに相当する分散スロープの値自体はほぼ同等であるがゼロ分散となる波長がA2よりも短波長側に配置される特性である。
 また、受信側の分散スロープ付与器21において、波長多重された光信号の短波長帯で付与される分散特性および分散スロープ特性B1は、波長多重された前記光信号の長波長帯で付与される分散特性および分散スロープ特性B2と比べると次のようになる。即ち、特性B1は、図12の傾きに相当する分散スロープの値自体はほぼ同等であるがゼロ分散となる波長はB2よりも長波長側に配置される特性である。
 また、上述の第1,第2スロープ補償部32-1,32-2は、分波部31で分波された光信号に対し、それぞれの波長帯に応じた分散特性および分散スロープ特性を付与するスロープ付与デバイスである。尚、各スロープ補償器11,21の第1,第2スロープ補償部32-1,32-2は、それぞれ、上述の特性に応じたスロープ補償量が設定されたファイバーグレーティング等で実現することができる。
 MUX33は、第1,第2スロープ補償部32-1,32-2で分散補償が行なわれた各波長帯の光信号を合波する。スロープ補償器11においてはMUX33で合波された光信号は光伝送路を通じて伝送される。一方、スロープ補償器21においてはMUX33で合波された光信号は、WDMのチャネルごとに分波されて受信される。
 スロープ補償器11,21としては、上述の図13に示すもの以外の構成も可能である。例えば、短波長帯域と長波長帯域とでスロープ特性が異なるファイバーグレーティングで実現することが可能である。波長帯でスロープ特性が異なるファイバーグレーティングの特性の一例を図14~図16に示す。
 たとえば、スロープ補償器21として、図14に例示するように、1553nmから短波側の直線A1で示される補償特性とともに、1553nmから長波長側の(直線A1と異なる)直線B1で示される補償特性と、を有するファイバーグレーティングを用いることができる。
 図15は、図14に示す分散補償特性について直線A1,B1を積分することにより得られる、A1,B1それぞれに対応する遅延特性A2,B2を示す図である。そして、この2つの遅延特性A2,B2を、スロープが変化する波長である1553nmで連続的に繋がるようにした遅延特性を示すものが図16である。図16に示すような特性を有するように作成されたファイバーグレーティングを用いることで、波長帯に応じて異なるスロープ特性を有する分散補償を実現することができる。
 すなわち、この場合の送信側および受信側のスロープ付与器11,21は、それぞれ、入力される光信号に対し、複数の波長帯でそれぞれ異なる分散特性および分散スロープ特性を付与するスロープ付与デバイスの一例であるファイバーグレーティングで構成できる。
 このように、開示の技術によれば、伝送品質を従来技術に照らし向上させることができる利点がある。
・他の実施形態について
 図17は他の実施形態にかかる分散補償スキームを示す図である。波長多重通信においては、NZ-DSFなどの光伝送路をなす光ファイバの零分散波長近辺では、当該波長以外でのチャネルでの変調方式とは異なる変調方式を用いる場合がある。例えば、零分散波長以外ではDPSK(Differential Phase Shift Keying)等の位相変調方式を用いる一方、零分散波長近辺では例えばRZ-OOK(Return to Zero-On Off Keying)等の強度変調方式を用いる場合がある。
 この場合は、短波長帯、零分散波長近辺の波長帯、長波長帯の3つの帯域に対して、互いに異なるスロープ補償量が望ましくなる場合がある。図17は上述の3つの波長帯に対して異なるスロープ補償量を送信端局10Aおよび受信端局20Aで適用した場合の一例である。図17に示す分散補償スキームは、波長帯を2つの帯域に分けてそれぞれ異なる分散補償量およびスロープ補償量を送信側および受信側で付与した図12の場合に準じて、分散補償量を割り当てるものである。
 具体的には、図17に例示するように、零分散波長よりも短波長帯においては、送信端局10Aでの補償量を受信端局20Aでの補償量よりも小さくなる割合に設定する。この場合においては、送信端局10Aをなすスロープ補償器11では、図17のA1に示す特性で分散補償を行ない、受信端局20Aをなすスロープ補償器21では、図17のB1に示す特性で分散補償を行なう。
 また、零分散波長近辺の波長帯においては、送受信端局10A,20A双方において、前述の図12に示す直線Cの特性に相当する同等のスロープ補償量を付与する。即ち、スロープ補償器11,21では、零分散波長帯においてはともに直線Cの特性で分散補償を行なう。
 さらに、零分散波長よりも長波長帯においては、送信端局10Aでの補償量を受信端局20Aでの補償量よりも大きくなる割合に設定する。この場合においては、送信端局10Aをなすスロープ補償器11では、図17のA2に示す特性で分散補償を行ない、受信端局20Aをなすスロープ補償器21では、図17のB2に示す特性で分散補償を行なう。
 換言すれば、送信側の分散スロープ付与器11において、波長多重された光信号の短波長帯で付与される分散特性および分散スロープ特性A1は、波長多重された前記光信号の長波長帯で付与されるものA2と比べると、図示の波長-分散補償量特性における傾きに相当する分散スロープの値自体はほぼ同等であるが、切片に相当する値はA2よりもA1が小さく、ゼロ分散となる波長が短波長側に配置される。
 さらに、受信側の分散スロープ付与器21において、波長多重された光信号の短波長帯で付与される分散特性および分散スロープ特性B1は、波長多重された光信号の長波長帯で付与されるものB2と比べると、図示の波長-分散補償量特性における傾きに相当する分散スロープの値自体はほぼ同等であるが、切片に相当する値はB2よりもB1が大きく、ゼロ分散となる波長が長波長側に配置される。
 上述の分散補償特性を実現するスロープ補償器11,21の構成例を図18に示す。スロープ補償器11,21においては、DEMUX31,第1~第3スロープ補償部32-1~32-3およびMUX33をそなえる。DEMUX(Demultiplexer)31は、入力される光信号について、上述の短波長帯、零分散波長帯および長波長帯の3つの波長帯の光信号に分波する。
 第1スロープ補償部32-1は、DEMUX31で分波された短波長帯光信号について、設定された分散補償特性で分散補償を行なう。送信端局10Aにそなえられたスロープ補償器11をなす第1スロープ補償部32-1では、例えば、図17に示すA1の特性に従って分散補償を行ない、受信端局20Aにそなえられたスロープ補償器21をなす第1スロープ補償部32-1においては、例えば、図12に示すB1の特性に従って分散補償を行なう。
 同様に、第2スロープ補償部32-2は、DEMUX31で分波された長波長側光信号について、設定された分散補償特性で分散補償を行なう。送信端局10Aにそなえられたスロープ補償器11をなす第2スロープ補償部32-2では、例えば、図17に示すA2の特性に従って分散補償を行ない、受信端局20Aにそなえられたスロープ補償器21をなす第2スロープ補償部32-2では、例えば、図17に示すB2の特性に従って分散補償を行なう。
 また、スロープ補償器11,21をなす第3スロープ補償器32-3は、ともに、DEMUX31で分波された中波長帯光信号(例えば、光伝送路ファイバの零分散波長を含む)について、前述の図12に示す直線Cの特性に相当する同等のスロープ補償量を付与する。
 なお、各スロープ補償器11,21の第1~第3スロープ補償部32-1~32-3についても、それぞれ、上述の特性に応じたスロープ補償量が設定されたファイバーグレーティング等で実現することができる。
 MUX33は、第1~第3スロープ補償部32-1~32-3で分散補償が行なわれた各波長帯の光信号を合波する。スロープ補償器11においてはMUX33で合波された光信号は光伝送路を通じて伝送される。一方、スロープ補償器21においてはMUX33で合波された光信号は、WDMのチャネルごとに分波されて受信される。
 これにより、送信端局10Aおよび受信端局20Aでは、それぞれにおいて割り当てられた補償量でスロープ補償を行なうことができ、伝送品質を従来技術に照らし向上させることができる利点がある。

Claims (8)

  1.  光信号の通信を行なう伝送路を有する通信システムにおいて、
     前記光信号における波長帯に応じて異なる分散特性および分散スロープ特性を付与する分散スロープ付与器を、前記伝送路の送信側および受信側にそなえ、
     かつ、該分散スロープ付与器で付与する前記分散特性および分散スロープ特性は、該送信側と該受信側とで異なる特性を付与する、通信システム。
  2.  該送信側および該受信側のスロープ付与器は、それぞれ、
     入力される前記光信号を波長帯に応じて複数に分波する分波部と、
     該分波部で分波された光信号に対し、それぞれの波長帯に応じた分散特性および分散スロープ特性を付与する複数のスロープ付与デバイスと、をそなえた、請求項1記載の通信システム。
  3.  該送信側および該受信側のスロープ付与器は、それぞれ、
     入力される前記光信号に対し、複数の波長帯でそれぞれ異なる分散特性および分散スロープ特性を付与するスロープ付与デバイスをそなえた、請求項1記載の通信システム。
  4.  該スロープ付与デバイスはファイバーグレーティングである、請求項2又は3記載の通信システム。
  5.  該送信側および該受信側の分散スロープ付与器においては、合算して前記伝送路の分散特性および分散スロープ特性を補償する分散特性および分散スロープ特性を付与する、請求項1記載の通信システム。
  6.  該送信側の分散スロープ付与器において、波長多重された前記光信号の短波長帯で付与される分散特性および分散スロープ特性は、波長多重された前記光信号の長波長帯で付与されるものと比べると、分散スロープの値自体はほぼ同等であるがゼロ分散となる波長が短波長側に配置され、
     該受信側の分散スロープ付与器において、波長多重された前記光信号の短波長帯で付与される分散特性および分散スロープ特性は、波長多重された前記光信号の長波長帯で付与されるものと比べると、分散スロープの値自体はほぼ同等であるがゼロ分散となる波長が長波長側に配置される、請求項5記載の通信システム。
  7.  請求項1記載の通信システムにおいて用いられる分散スロープ付与器。
  8.  伝送路を通じて光信号の通信を行なう通信方法において、
     前記伝送路の送信側および受信側において、前記光信号における波長帯に応じて異なる分散特性および分散スロープ特性を付与するとともに、
     該送信側と該受信側とで付与する分散特性および分散スロープ特性は異なる、通信方法。
PCT/JP2009/065339 2009-09-02 2009-09-02 通信システム,分散スロープ付与器および通信方法 WO2011027434A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980161129.8A CN102484532B (zh) 2009-09-02 2009-09-02 通信系统、色散斜率赋予器以及通信方法
EP09848965.1A EP2475112A4 (en) 2009-09-02 2009-09-02 COMMUNICATION SYSTEM, UNIT FOR COMMUNICATION OF DISPERSION TILTING AND COMMUNICATION PROCESS
JP2011529725A JP5316643B2 (ja) 2009-09-02 2009-09-02 通信システム,分散スロープ付与器および通信方法
PCT/JP2009/065339 WO2011027434A1 (ja) 2009-09-02 2009-09-02 通信システム,分散スロープ付与器および通信方法
US13/363,773 US9002211B2 (en) 2009-09-02 2012-02-01 Communication system, dispersion slope imparting section, and method for communicating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065339 WO2011027434A1 (ja) 2009-09-02 2009-09-02 通信システム,分散スロープ付与器および通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/363,773 Continuation US9002211B2 (en) 2009-09-02 2012-02-01 Communication system, dispersion slope imparting section, and method for communicating

Publications (1)

Publication Number Publication Date
WO2011027434A1 true WO2011027434A1 (ja) 2011-03-10

Family

ID=43648995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065339 WO2011027434A1 (ja) 2009-09-02 2009-09-02 通信システム,分散スロープ付与器および通信方法

Country Status (5)

Country Link
US (1) US9002211B2 (ja)
EP (1) EP2475112A4 (ja)
JP (1) JP5316643B2 (ja)
CN (1) CN102484532B (ja)
WO (1) WO2011027434A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509136A (ja) * 2009-10-27 2013-03-07 エックステラ コミュニケーションズ,インコーポレイテッド コヒーレントチャネル及び非コヒーレントチャネルのための別個の分散補償
JP2013162136A (ja) * 2012-02-01 2013-08-19 Nippon Telegr & Teleph Corp <Ntt> コヒーレント伝送システム及び方法
JP2018011185A (ja) * 2016-07-13 2018-01-18 日本電信電話株式会社 光伝送システム及び光伝送方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015779A1 (en) * 2017-07-21 2019-01-24 Telefonaktiebolaget Lm Ericsson (Publ) CHROMATIC DISPERSION COMPENSATION

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946318A (ja) * 1995-08-01 1997-02-14 Fujitsu Ltd 波長多重光伝送システム及び該伝送システムに用いる光送信装置
JP2000221338A (ja) * 1999-02-03 2000-08-11 Mitsubishi Electric Corp 2次関数型光導波路グレーティング、位相マスクおよび分散スロープ補償回路
JP2000261376A (ja) * 1999-03-05 2000-09-22 Fujitsu Ltd 波長多重光伝送システム
WO2001006682A1 (fr) 1999-07-19 2001-01-25 Sumitomo Electric Industries, Ltd. Systeme de compensation de la dispersion
JP2002057622A (ja) * 2000-08-07 2002-02-22 Fujitsu Ltd 波長分散を補償する方法及びシステム
JP2008532435A (ja) * 2005-02-28 2008-08-14 タイコ テレコミュニケーションズ (ユーエス) インコーポレーテッド 分散勾配補償を有する光伝送システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155181A (ja) * 1997-07-31 1999-02-26 Kokusai Denshin Denwa Co Ltd <Kdd> 波長多重光伝送システム
JPH1188260A (ja) * 1997-09-09 1999-03-30 Fujitsu Ltd 光伝送路の分散補償装置
JPH11103286A (ja) * 1997-09-25 1999-04-13 Nec Corp 波長多重光伝送装置
US6304691B1 (en) * 1998-09-24 2001-10-16 Lucent Technologies,Inc Wavelength division multiplexed optical communication system having reduced short wavelength loss
US6480658B1 (en) * 1999-02-18 2002-11-12 Fujitsu Limited Optical fiber transmission line for wavelength division multiplexing transmission system
US6522455B1 (en) * 2000-02-17 2003-02-18 Ciena Corporation WDM optical communication system having a dispersion slope compensating element
FR2811171B1 (fr) * 2000-06-30 2002-09-20 Cit Alcatel Compensation de dispersion chromatique dans un systeme de transmission optique large bande
US20020159119A1 (en) * 2001-04-27 2002-10-31 Timothy Fries Method and system for providing dispersion and dispersion slope compensation
JP4686370B2 (ja) * 2006-01-30 2011-05-25 株式会社日立製作所 Wdm伝送システム
US8351798B2 (en) * 2007-10-16 2013-01-08 Xtera Communications Ltd. Phase shift keyed high speed signaling
US8606108B2 (en) * 2009-06-25 2013-12-10 Ciena Corporation Dispersion slope compensation and dispersion map management systems and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946318A (ja) * 1995-08-01 1997-02-14 Fujitsu Ltd 波長多重光伝送システム及び該伝送システムに用いる光送信装置
JP2000221338A (ja) * 1999-02-03 2000-08-11 Mitsubishi Electric Corp 2次関数型光導波路グレーティング、位相マスクおよび分散スロープ補償回路
JP2000261376A (ja) * 1999-03-05 2000-09-22 Fujitsu Ltd 波長多重光伝送システム
WO2001006682A1 (fr) 1999-07-19 2001-01-25 Sumitomo Electric Industries, Ltd. Systeme de compensation de la dispersion
JP2002057622A (ja) * 2000-08-07 2002-02-22 Fujitsu Ltd 波長分散を補償する方法及びシステム
JP2008532435A (ja) * 2005-02-28 2008-08-14 タイコ テレコミュニケーションズ (ユーエス) インコーポレーテッド 分散勾配補償を有する光伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2475112A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013509136A (ja) * 2009-10-27 2013-03-07 エックステラ コミュニケーションズ,インコーポレイテッド コヒーレントチャネル及び非コヒーレントチャネルのための別個の分散補償
JP2013162136A (ja) * 2012-02-01 2013-08-19 Nippon Telegr & Teleph Corp <Ntt> コヒーレント伝送システム及び方法
JP2018011185A (ja) * 2016-07-13 2018-01-18 日本電信電話株式会社 光伝送システム及び光伝送方法

Also Published As

Publication number Publication date
JP5316643B2 (ja) 2013-10-16
EP2475112A1 (en) 2012-07-11
CN102484532B (zh) 2015-08-12
US9002211B2 (en) 2015-04-07
JPWO2011027434A1 (ja) 2013-01-31
EP2475112A4 (en) 2015-03-11
US20120128362A1 (en) 2012-05-24
CN102484532A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
Auguste et al. Conception, realization, and characterization of a very high negative chromatic dispersion fiber
US7593608B2 (en) Optical communications system
JP4826462B2 (ja) 分散補償器、光伝送システム及び光伝送方法
JPH0923187A (ja) 光伝送システム
JP5316643B2 (ja) 通信システム,分散スロープ付与器および通信方法
JP2003298516A (ja) 波長分散補償装置
US7187868B2 (en) Wavelength division multiplexing optical transmission system using a spectral inversion device
Chaba et al. Comparison of various dispersion compensation techniques at high bit rates using CSRZ format
US7369778B2 (en) Dispersion compensation method and apparatus
CN1736048B (zh) 光传输方法
GB2395386A (en) Optical WDM system with chromatic dispersion compensation
Cheng et al. A novel fiber nonlinearity suppression method in DWDM optical fiber transmission systems with an all-optical pre-distortion module
US7756423B2 (en) Wavelength division multiplexing optical transmission apparatus, wavelength division multiplexing optical transmission system and wavelength division multiplexing optical transmission method
JP3937141B2 (ja) 波長分割多重光伝送システム、及び光通信方法
Shahi et al. A multi-core or multi-fiber WDM system
Song et al. Tunable dispersion slope compensation for 40-Gb/s WDM systems using broadband nonchannelized third-order chirped fiber Bragg gratings
JP6010000B2 (ja) 光伝送システム及び光伝送方法
Chandra et al. Compensation of chromatic dispersion-induced power fading using optimised chirped fibre Bragg grating for millimetre-wave radio-over-fibre system
Lee Dispersion-managed links for WDM transmission arranged by linearly or nonlinearly incremented residual dispersion per span
EP1282247B1 (en) Wavelength division multiplexing optical transmission system using a spectral inversion device
JP2006014360A (ja) 光伝送システム
Kumar Hybrid dispersion compensation module development using optisystem for advanced optical communication
Zhang et al. A FBG etalon in transmission based tunable dispersion slope compensator
Tang et al. Optimization of dispersion compensation for broad-band transmissions based on optical phase conjugation
Killey Mitigation of transmission impairments in long-haul submarine links using DSP-based electronic predistortion

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161129.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848965

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529725

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009848965

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE