WO2011026286A1 - 触控面板及触控面板的检测方法 - Google Patents

触控面板及触控面板的检测方法 Download PDF

Info

Publication number
WO2011026286A1
WO2011026286A1 PCT/CN2009/075756 CN2009075756W WO2011026286A1 WO 2011026286 A1 WO2011026286 A1 WO 2011026286A1 CN 2009075756 W CN2009075756 W CN 2009075756W WO 2011026286 A1 WO2011026286 A1 WO 2011026286A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
touch panel
detection
detecting
area
Prior art date
Application number
PCT/CN2009/075756
Other languages
English (en)
French (fr)
Inventor
张龙泉
余鸿志
Original Assignee
深超光电(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深超光电(深圳)有限公司 filed Critical 深超光电(深圳)有限公司
Priority to US12/869,713 priority Critical patent/US20110057905A1/en
Publication of WO2011026286A1 publication Critical patent/WO2011026286A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present invention relates to a touch panel and a detection method thereof, and more particularly to a touch panel and a touch panel detection method capable of independently detecting a sensing axis.
  • a capacitive touch panel is designed to form a plurality of sensing axes on a surface of a substrate.
  • the capacitance value on the sensing axis changes correspondingly.
  • the capacitive touch panel utilizes such a change in capacitance value to sense and calculate the touch position. It can be seen that the sensing accuracy of the capacitive touch panel is mainly determined by the electrical characteristics of the sensing axes. Therefore, if there is an open circuit, a short circuit or a non-uniform capacitive effect in the sensing axis, the correctness of the touch sensing will be affected. Therefore, the detection of the sensing axis becomes quite important.
  • a method of detecting in a touch panel semi-finished product is disclosed in Chinese Patent Publication No. CN101408825.
  • the detection method of this patent requires an additional configuration of the test line in the semi-finished product, resulting in a decrease in substrate utilization.
  • the detection method of this patent detects the sensing axis together with the corresponding transmission line, and cannot independently detect the electrical characteristics of the sensing axis.
  • Chinese Patent Publication No. CN100498483 discloses a method of detecting at a terminal portion of an active device array substrate.
  • the detection method of this patent is applied to a capacitive touch panel in which the sensing axis cannot be independently detected.
  • none of the above patents can accurately detect the defects of the sensing axis, which is susceptible to the high-resistance RC effect of the transmission line, and affects the actual in-plane capacitance measurement. Due to the large deviation of the measurement, it is easy to generate defects in the subsequent detection application. Therefore, how to effectively detect the sensing axis in the capacitive touch panel to maintain the quality of the capacitive touch panel is still an important issue in the field.
  • the present invention provides a touch panel having an end portion of the sensing axis having a detection area exposed by an insulating layer to facilitate detection.
  • the invention provides a method for detecting a touch panel, which can accurately detect a capacitance value of a sensing axis and a resistance value.
  • the invention provides a detection method capable of correctly detecting the resistance value of a transmission line.
  • the invention provides a touch panel, comprising a substrate, a plurality of first sensing axes, a plurality of first transmission lines corresponding thereto, a plurality of second sensing axes, a plurality of second transmission lines corresponding thereto, and a second transmission line Insulation.
  • the first sensing axis is disposed on the substrate. Each of the first sensing axes extends along a first direction, and at least one end of each of the first sensing axes has a first detection zone.
  • the second sensing axis is disposed on the substrate. At least one end of each of the second sensing axes has a second detecting area, and each of the second sensing axes extends in a second direction, and the first direction is not parallel to the second direction.
  • the insulating layer covers the first sensing axis and the second sensing axis, and exposes the first detecting area and the second detecting area.
  • the insulating layer is provided with a plurality of openings, and the openings correspondingly expose the first detecting area and the second detecting area.
  • each of the first sensing axes and each of the second sensing axes are respectively composed of a sensing pad and a bridge.
  • the sensing pad includes a plurality of center sensing pads and an edge sensing pad.
  • the center sensing pads are connected in series and located between the edge sensing pads, and the first detection zone or the second detection zone is located in the edge sensing pads.
  • the substrate has a display area and a non-display area, and each of the edge sensing pads includes an outer side portion and an inner side portion.
  • the outer side portion is located in the non-display area and the inner side portion and the center sensing pad are located in the display area, and further, the first detecting area or the second detecting area is located on the outer side portion.
  • the substrate has a first sensing region and a second sensing region.
  • a portion of the first sensing axis and a portion of the second sensing axis are located in the first sensing region, and other first sensing axes and other second sensing axes are located in the second sensing region.
  • a second sensing axis located in the first sensing region is aligned with a second sensing axis of the second sensing region.
  • the first sensing axis is disposed on a first side of the substrate and the second sensing axis is disposed on a second side of the substrate, and the first side is opposite to the second side.
  • each of the first sensing axes and each of the second sensing axes are respectively composed of a sensing strip.
  • the touch panel further includes a plurality of dummy pads disposed on the first side of the first substrate between the first sensing axes.
  • the insulating layer includes a first insulating layer and a second insulating layer.
  • the first insulating layer covers the first sensing axis and exposes the first detecting area
  • the second insulating layer covers the second sensing axis and exposes the second detecting area.
  • the first insulating layer has, for example, a plurality of first openings to expose the first detection region
  • the second insulating layer has, for example, a plurality of second openings to expose the second detection region.
  • the touch panel further includes a plurality of first transmission lines and a plurality of second transmission lines.
  • a first connection end of each of the first transmission lines is connected to one of the first sensing axes, and a second connection end of each of the second transmission lines is connected to one of the second sensing axes.
  • the insulating layer further covers the first transmission line and the second transmission line.
  • the insulating layer further exposes a first signal end of each of the first transmission lines and a second signal end of each of the second transmission lines.
  • the invention further provides a method for detecting a touch panel, comprising providing a touch panel as described above and detecting through both of the first detection area and the second detection area.
  • the method of detecting includes detecting by one of the first detection zones and one of the second detection zones.
  • each of the two sensing axes has a first detecting area
  • the detecting method comprises detecting by the first detecting area at both ends of the same first sensing axis.
  • each of the two sensing axes has a second detecting area
  • the detecting method comprises detecting through a second detecting area at both ends of the same second sensing axis.
  • the invention further provides a method for detecting a touch panel, comprising providing a touch panel as described above. Then, the first detection area and the corresponding one of the first signal ends are detected or passed the second inspection. The measurement area and the corresponding one of the second signal ends are detected.
  • the present invention provides a detection area at the end of the sensing axis of the touch panel, and the insulating layer exposes the detection area. Therefore, in the touch panel of the present invention, the sensing axis can be independently detected, and the sensing axis can be more correctly determined whether the defect is generated without being disturbed by the high-resistance RC effect of the transmission line, thereby affecting the actual in-plane capacitance measurement. . Further, in the touch panel of the present invention, the transmission line can also be independently detected so that the defect of the touch panel is correctly detected. With the structural design of the above touch panel,
  • FIG. 1 is a top plan view of a touch panel according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view of a region I of FIG. 1.
  • Figure 3 is a cross-sectional view taken along line A-A' of Figure 2 .
  • FIG. 4 is a top plan view of a touch panel according to a second embodiment of the present invention.
  • Fig. 5 is a schematic view of a region II of Fig. 4.
  • Fig. 6 is a schematic cross-sectional view taken along line BB' of Fig. 5.
  • FIG. 7 is a schematic top plan view of a touch panel according to a third embodiment of the present invention.
  • FIG. 8 is a schematic top plan view of a touch panel according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic top plan view of a touch panel according to a fifth embodiment of the present invention.
  • FIG. 10 is a top plan view of the first side of the touch panel of FIG. 9.
  • FIG. 11 is a top plan view of the second side of the touch panel of FIG. 9.
  • FIG. 12 is a first method of detecting a touch panel according to an embodiment of the invention.
  • FIG. 13 is a second method for detecting a touch panel according to an embodiment of the invention.
  • FIG. 14 is a third method of detecting a touch panel according to an embodiment of the invention.
  • FIG. 1 is a top plan view of a touch panel according to a first embodiment of the present invention.
  • the touch panel 100 includes a substrate 110 , a plurality of first sensing axes 120 , a plurality of second sensing axes 130 , and an insulating layer 140 .
  • the first sensing axis 120 and the second sensing axis 130 are both disposed on the substrate 110 .
  • Each of the first sensing axes 120 extends along a first direction D1
  • each of the second sensing axes 130 extends along a second direction D2, and the first direction D1 and the second direction D2 are not parallel.
  • the first sensing axis 120 can be perpendicular to the second sensing axis 130.
  • at least one end of each of the first sensing axes 120 has a first detecting area 150
  • at least one end of the second sensing axis 130 has a second detecting area 160.
  • the insulating layer 140 covers the first sensing axis 120 and the second sensing axis 130 and exposes the first detecting area 150 and the second detecting area 160.
  • the first sensing axis 120 of the embodiment has a first detecting area 150 at each end, and the two ends of the second sensing axis 130 also have a second detecting area 160, respectively.
  • the first sensing axis 120 may have a first detection zone 150 at only one end and a second detection zone 160 at only one end of the second sensing axis 130.
  • the insulating layer 140 of the present embodiment is provided with a plurality of openings 142, which may be circular, elliptical, rectangular or various closed patterns composed of various polygons or arcs. Each opening 142 exposes a first detection zone 150 or a second detection zone 160.
  • the touch panel 100 further includes a plurality of first transmission lines S1 and a plurality of second transmission lines S2.
  • a first connection end S1a of each of the first transmission lines S1 is connected to one of the first sensing axes 120, and a second connection end S2a of each of the second transmission lines S2 is connected to one of the second sensing axes 130.
  • the other end of each of the first transmission lines S1 is the first signal terminal Slb, and the other end of each of the second transmission lines S2 is the second signal terminal S2b.
  • the above transmission lines are integrated on one side of the non-display area of the substrate by the collapsed arrangement, and the signal ends of all the transmission lines are connected to the drive chip (not shown).
  • the insulating layer 140 further covers the first transmission line S1 and the second transmission line S2. In addition, the insulating layer 140 further exposes the first signal terminals Sib and the second signal terminals S2b. That is, a portion of the opening 142 of the insulating layer 140 is located at the first signal end Sib. And the second signal terminal S2b to expose it.
  • the sensing axes 120, 130 and the transmission lines Sl, S2 can be separately detected. That is, when the sensing axes 120, 130 are detected, the result of the detection is not affected by the defects of the transmission lines Sl, S2. Similarly, when the transmission lines Sl, S2 are detected, the detection results are not affected by the defects of the sensing axes 120, 130. Therefore, the embodiment can more effectively detect defects of different components in the touch panel 100 and improve the quality of the touch panel 100.
  • each of the first sensing axes 120 and the second sensing axes 130 of the embodiment are respectively composed of a plurality of sensing pads 170 and a plurality of bridges (not labeled in FIG. 1).
  • the sensing pad 170 includes a plurality of center sensing pads 172 and two edge sensing pads 174.
  • the center sensing pads 172 are connected in series and between the two edge sensing pads 174, and the first detection zone 150 or the second detection zone 160 is located in the two edge sensing pads 174. That is, a portion of each of the first sensing axis 120 and each of the second sensing axes 130 is formed by the edge sensing pad 174.
  • the area of the first detection zone 120 and the area of the second detection zone 130 may be determined by the design of the edge sensing pad 174.
  • the edge sensing pad 174 needs to have a certain area, so the alignment process when the touch panel 100 is detected is relatively easy. That is to say, the detection of the touch panel 100 does not require a high-precision alignment device to help simplify and speed up the detection method.
  • Fig. 2 is a schematic view of a region I of Fig. 1
  • Fig. 3 is a schematic cross-sectional view taken along line A-A' of Fig. 2.
  • adjacent center sensing pads 172 may be connected in series by a bridge portion 176.
  • the center sensing pad 172 and the edge sensing pad 174 can also be connected together by the bridge 176.
  • the edge sensing pad 174 and the center sensing pad 172 can be further connected in series by the bridge portion 176.
  • the edge sensing pad 174 of the second sensing axis 130 and the center sensing pad 172 may be connected in series, or only a plurality of central sensing pads 172 may be connected in series.
  • the first sensing axis 120 and the second sensing axis 130 must maintain independent electrical characteristics, so the bridge portion 176 of the first sensing axis 120 and the second sensing axis An insulating member 190 is disposed between the bridge portions 176 of the wire 130.
  • the insulating layer 140 of this embodiment exposes the first detecting area 150, the second detecting area 160, the first signal end Sib, and the second signal end S2b. Therefore, the touch panel 100 can detect the electrical characteristics through the regions exposed by the insulating layer 140. As such, the sensing axes 120, 130 and the transmission lines Sl, S2 can be detected separately. In addition, the detection method of the touch panel 100 is relatively simple, and can be repaired in real time once defects are detected. Therefore, the touch panel 100 has a good electrical quality.
  • FIG. 4 is a top plan view of a touch panel 400 according to a second embodiment of the present invention.
  • Fig. 5 is a schematic view of a region II of Fig. 4
  • Fig. 6 is a schematic cross-sectional view taken along line B-B of Fig. 5.
  • the touch panel 400 is similar to the touch panel 100 of the first embodiment.
  • the touch panel 400 also includes a substrate 110 , a plurality of first sensing axes 120 , and multiple strips.
  • the second sensing axis 130 and an insulating layer 140 However, in the touch panel 400, the substrate 110 has a display area 112 and a non-display area 114.
  • the edge sensing pad 474 includes an outer portion 474A and an inner portion 474B, and the outer portion 474A is located in the non-display area 114, and the inner side portion 474B and the center sensing pad 172 are all located in the display area 112. Further, the first detection area 150 or the second detection area 160 is located on the outer side portion 474A.
  • the center sensing pad 172 and the edge sensing pad 474 are made of a transparent conductive material to provide good light penetration of the touch panel 400.
  • the operator contacts the first detection area 150 or the second detection area 160 to be detected using a probe.
  • the movement and contact of the probe may cause damage to the transparent conductive material to affect the surface flatness of the first detection area 150 or the second detection area 160. Therefore, in the embodiment, the first detecting area 150 and the second detecting area 160 are disposed in the peripheral area 114 to prevent the light transmittance of the display area 112 from being adversely affected. That is, the touch panel 400 has a relatively good light penetration in addition to good electrical characteristics.
  • FIG. 7 is a top plan view of a touch panel according to a third embodiment of the present invention.
  • the touch panel 700 is designed to change the insulating layer 140 in the touch panel 400 to form a ring.
  • the annular opening 442 exposes all of the first detection zone 150 and all of the second detection zone 160. That is, the annular opening 442 is designed to penetrate the plurality of openings 142 in the second embodiment.
  • the opening 142 of the insulating layer 140 may be penetrated such that each of the through openings simultaneously exposes a plurality of first detection regions 150 or a plurality of second detection regions 160.
  • the first detecting area 150 and the second detecting area 160 of the embodiment are exposed, and the defects in the first sensing axis 120 and the second sensing axis 130 can be correctly judged when the touch panel 700 is detected. Therefore, the touch panel 700 has good quality.
  • FIG. 8 is a schematic top plan view of a touch panel according to a fourth embodiment of the present invention.
  • the touch panel 800 also includes a substrate 1 10, a plurality of first sensing axes 120, a plurality of second sensing axes 130, and an insulating layer 140.
  • the substrate 1 10 has a first sensing area 116 and a second sensing area 118, and a portion of the first sensing axis 120 and a portion of the second sensing axis 130 are located in the first sensing area. 1 16 , while the other first sensing axis 120 and the other second sensing axis 130 are located in the second sensing region 118 .
  • the second sensing axis 130 located in the first sensing region 116 is aligned with the second sensing axis 130 of the second sensing region 186. That is, one of the second sensing axes 130 of the first sensing region 116 is aligned with one of the second sensing axes 130 of the second sensing region 1 18 .
  • the design of the embodiment aligns the two second sensing axes 130 to avoid false sensing during the sensing of the touch panel 800, such as a ghost pomt phenomenon.
  • the design of the edge sensing pad 874A is the same as that of the edge sensing pad 474 of the second embodiment, which is composed of the outer side portion 474A and the inner side portion 474B.
  • the edge sensing pad 874B is formed, for example, by a triangular pattern. It is worth mentioning that only one end of the second sensing series 130 of the embodiment is provided with the second detecting area 160, and the adjacent one of the two second sensing series 130 of the same line is not There are any detection zones. That is, the edge sensing pad 874B is not provided with a detection area.
  • This design helps to improve the light penetration properties of the touch panel 800.
  • the sensing axes 120 and 130 can independently detect the capacitance value, and the touch panel is made. 800 can maintain good quality.
  • the touch panel 900 includes a substrate 910, a plurality of first sensing axes 920, a plurality of second sensing axes 930, a first insulating layer 945, and a second insulating layer 947.
  • the first sensing axis 920 and the second sensing axis 930 are both disposed on the substrate 910.
  • the first sensing axis 920 is disposed on a first side 912 of the substrate 910
  • the second sensing axis 930 is disposed on a second side 914 of the substrate 910
  • the first side 912 is opposite to the second side 914 .
  • each first sensing axis 920 extends along the first direction D1
  • each second sensing axis 930 extends along the second direction D2
  • the first direction D1 and the second direction Direction D2 is not parallel.
  • each of the two sensing axes 920 has a first detecting area 950 at each end, and a second detecting area 960 is respectively disposed at two ends of the second sensing axis 930.
  • the first insulating layer 945 covers the first sensing axis 920 and exposes the first detecting region 950.
  • the second insulating layer 947 covers the second sensing axis 930 and exposes the second detecting region 960.
  • each of the first sensing axes 920 and each of the second sensing axes 930 are respectively composed of a sensing bar. That is, each of the first sensing axis 920 and each of the second sensing axes 930 is formed by a strip-shaped conductor pattern, such as a transparent conductive material.
  • the touch panel 900 further includes a plurality of dummy pads 922 disposed on the first side 912 of the substrate 910 and located between the first sensing axes 920.
  • the first insulating layer 945 has a plurality of first openings 945A to expose the first detection region 950
  • the second insulating layer 947 has a plurality of second openings 947A to expose the second detection region 960.
  • the second opening 947A is disposed outside the display area 1 12 .
  • the first openings 945A on the same side may penetrate each other, and the second openings 947A on the same side may also penetrate each other.
  • First opening 945A and second opening 947A exposes the corresponding first detection zone 950 and second detection zone 960, so the first sensing axis 920 and the second sensing axis 930 can be sensed independently. Therefore, the touch panel 900 can be correctly detected if there is a defect, thereby helping to maintain the quality of the touch panel 900.
  • both ends of the first sensing axis 920 are provided with a first detecting area 950, and both ends of the second sensing axis 930 are also provided with a second detecting area 960.
  • the first sensing axis 920 may have a first detection zone 950 at only one end and a second detection zone 960 at only one end of the second sensing axis.
  • FIG. 12 is a first method of detecting a touch panel according to an embodiment of the present invention. Referring to FIG. 12, step 10 is first performed to provide a touch panel.
  • the touch panel is, for example, one of the touch panels 100, 400, 700, 800, and 900 described above or each of the touch panels 100, 400, 700, 800, and 900.
  • the axis has only one end with a detection zone design.
  • step 20 is performed to detect through a first detection area of one of the first sensing axes of the touch panel and a second detection area of one of the second sensing axes.
  • the step of detecting 'J' is, for example, a first detection zone in which one of the first sensing axes and a second detection zone of one of the second sensing axes are respectively contacted by a set of probes. Also, measure the capacitance between the sets of probes. A defect of whether the first sensing axis and the second sensing axis are short-circuited or broken is determined based on the measured capacitance value.
  • the pattern of the first sensing axis or the pattern of the second sensing axis is inconsistent due to a process error, for example, the difference in the area of the pattern is too large or the spacing of the patterns is inconsistent, which may result in the first sensing axis and the second sense.
  • the capacitive coupling effect of the measured axis at different locations changes. As such, the touch panel will have inaccurate sensing conditions.
  • This embodiment is based on the capacitance values between different sensing axes. The change can determine whether the pattern of the sensing axis is defective, so as to further improve the sensing accuracy of the touch panel for the defect portion.
  • the detection method of the present embodiment can directly detect the capacitance values between the different sensing side axes.
  • Such a detection method is not directly affected by the transmission line to more directly check whether the sensing axis is defective. That is, defects in the sensing axis can be detected correctly and efficiently.
  • FIG. 13 is a second method for detecting a touch panel according to an embodiment of the invention.
  • the touch panel detecting method of this embodiment is, for example, performing step 10 to provide a touch panel.
  • the touch panel is, for example, one of the aforementioned touch panels 100, 400, 700, 800, and 900. It is worth mentioning that in the touch panel which is detected by the detecting method of the embodiment, the detecting areas are respectively disposed at both ends of all sensing axes.
  • step 30 is performed to detect through the detection areas at both ends of the same sensing axis.
  • the resistance values of the same sensing axis can be detected through the detection areas at both ends of the same sensing axis to confirm whether each sensing axis has a short circuit or an open circuit defect. Moreover, if the transmission impedance of the sensing axis is excessively large, it can be detected by step 30.
  • the probe when the method is applied to the touch panel 100, the probe can simultaneously contact the first detection area 150 at both ends of the same first sensing axis 120 for detection.
  • the probe can also simultaneously contact the second detection zone 160 at both ends of the same second sensing axis 130 for detection.
  • a detection process if the resistance value of one of the sensing axes is abnormal, it can be correctly judged and the corresponding repair work is performed. Therefore, such a detection method helps to improve the quality of the touch panel.
  • FIG. 14 is a third method of detecting a touch panel according to an embodiment of the invention.
  • the detection method firstly performs step 10 to provide a touch panel.
  • the touch panel can be One of the touch panels 100, 400, 700, 800, and 900 as described above. It is worth mentioning that in the touch panel to which the method is applied, the insulating layer exposes the signal end of the transmission line. In addition, only one end of each sensing axis that is connected to the signal line is provided with a detection area.
  • step 40 is performed, and detection is performed by one of the detection areas and one of the corresponding signal terminals.
  • the step 40 is performed by, for example, contacting one probe with one of the first detecting area 150 or the second detecting area 160 while contacting another probe.
  • the first signal end S ib or the corresponding second signal end S2b are detected by the two probes to repair the defective first transmission line S1 or the second transmission line S2.
  • a detection step can also be applied to the touch panels 400, 700, 800, and 900 to improve the quality of the touch panels 400, 700, 800, and 900.
  • the present invention provides a detection zone at the end of each sensing axis, and the insulating layer exposes the detection zone. Therefore, the present invention can directly detect whether or not the sensing axis is defective, and the transmission line and the sensing axis can be separately detected. The detection method of the touch panel is thus more efficient. When a defect in the touch panel is detected, the defect portion can be further repaired. As such, the touch panel of the present invention can have good quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Position Input By Displaying (AREA)

Description

触控面板及触控面板的检测方法
【技术领域】
本发明涉及一种触控面板及检测方法,且特別是涉及一种可独立检测 感测轴线的触控面板及触控面板的检测方法。
【背景技术】
随着技术的日新月异, 无论是笔记本电脑、手机或是可携式多媒体播 放器等电子装置,皆逐渐利用触控面板来取代传统键盘以作为新一代输入 界面。 常见的触控面板大致可分为电容式触控面板以及电阻式触控面板。 电容式触控面板因为具有多点触控的特性而备受瞩目。
一般来说, 电容式触控面板的设计是在基板表面形成多条感测轴线。 当用户以手指或是导电物体接近或触碰电容式触控面板的表面时,感测轴 线上的电容值会发生对应的变化。电容式触控面板利用这样的电容值变化 来进行触控位置的感测以及计算。 由此可知, 电容式触控面板的感测正确 性主要依赖各感测轴线的电特性而决定。 所以, 感测轴线中若有断路、 短 路或是电容效应不均勾的情形发生都会影响触控感测的正确性。 因此, 感 测轴线的检测变得相当重要。
中国专利公开案 CN101408825 中揭露了一种在触控面板半成品中进 行检测的方法。 然而, 此专利的检测方法在半成品中需要额外配置检测用 的线路而造成基板利用率下降。 并且, 此专利的检测方法将感测轴线与对 应的传输线一并进行检测, 而无法独立地检测感测轴线的电特性。 中国专 利公开案 CN100498483揭露了一种在主动组件阵列基板的端子部分进行 检测的方法。 然而, 此专利的检测方法应用于电容式触控面板中无法独立 地检测感测轴线。 筒言之, 上述专利皆无法有效精确检测出感测轴线的缺 陷, 因易受传输线高电阻 RC效应干扰, 而影响实际面内电容量测, 并会 因量测偏差值大, 在往后的检测应用时, 易产生 ^^性缺陷。 所以, 如何有 效检测电容式触控面板中感测轴线以维持电容式触控面板的质量,仍为本 领域中一项重要的课题。
【发明内容】
本发明提供一种触控面板,其感测轴线的端部具有一被绝缘层暴露出来的 检测区, 以利于检测。
本发明提供一种触控面板的检测方法, 可以精确检测感测轴线的电容值以 及电阻值。
本发明提供一种检测方法, 可以正确检测传输线的电阻值。
本发明提出一种触控面板, 包括一基板、 多条第一感测轴线, 多条与之对 应的第一传输线、 多条第二感测轴线, 多条与之对应的第二传输线以及一绝缘 层。 第一感测轴线配置于基板上。 各第一感测轴线沿一第一方向延伸, 且各第 一感测轴线的至少一端具有一第一检测区。 第二感测轴线配置于基板上。 各第 二感测轴线的至少一端具有一第二检测区,且各第二感测轴线沿一第二方向延 伸, 而第一方向不平行于第二方向。 绝缘层覆盖第一感测轴线以及第二感测轴 线, 且暴露出第一检测区以及第二检测区。
在本发明的一实施例中,上述绝缘层设置有多个开口,且开口对应暴露出 第一检测区以及第二检测区。
在本发明的一实施例中,上述各第一感测轴线以及各第二感测轴线分别由 一感测垫和一桥接部组成。 该感测垫包括多个中心感测垫以及边缘感测垫。 中 心感测垫串接在一起并位于边缘感测垫之间,且第一检测区或第二检测区位于 边缘感测垫中。 基板具有一显示区以及一非显示区, 且各边缘感测垫包括一外 侧部以及一内侧部。外侧部位于非显示区中而内侧部以及中心感测垫位于显示 区中, 此外, 第一检测区或第二检测区位于外侧部上。
在本发明的一实施例中, 上述基板具有一第一感测区以及一第二感测区。 部分第一感测轴线以及部分第二感测轴线位于第一感测区, 而其他的第一感测 轴线以及其他的第二感测轴线位该第二感测区。位于第一感测区的第二感测轴 线对齐于第二感测区的第二感测轴线。
在本发明的一实施例中,上述第一感测轴线配置于基板的一第一侧而第二 感测轴线配置于基板的一第二侧, 且第一侧与该第二侧相对。 在一实施例中, 各第一感测轴线以及各第二感测轴线分别由一感测条所组成。 另外, 触控面板 进一步包括多个虚拟垫, 其配置于第一基板的第一侧上, 位于第一感测轴线之 间。 具体而言, 绝缘层包括一第一绝缘层以及一第二绝缘层。 第一绝缘层覆盖 第一感测轴线, 并暴露出第一检测区, 而第二绝缘层覆盖第二感测轴线, 并暴 露出第二检测区。 第一绝缘层例如具有多个第一开口, 以暴露出第一检测区, 而第二绝缘层例如具有多个第二开口, 以暴露出第二检测区。
在本发明的一实施例中,上述触控面板进一步包括多条第一传输线以及多 条第二传输线。 各第一传输线的一第一连接端连接至其中一条第一感测轴线, 而各第二传输线的一第二连接端连接至其中一条第二感测轴线。 绝缘层进一步 覆盖第一传输线以及第二传输线。 此外, 绝缘层进一步暴露出各第一传输线的 一第一信号端以及各第二传输线的一第二信号端。
本发明另提出一种触控面板的检测方法, 包括提供一前述的触控面板以及 通过第一检测区以及第二检测区的其中两者进行检测。
在本发明的一实施例中,上述进行检测的方法包括通过其中一个第一检测 区以及其中一个第二检测区进行检测。
在本发明的一实施例中 ,上述各第一感测轴线的两端分别具有第一检测区 , 且进行检测的方法包括通过同一第一感测轴线两端的第一检测区进行检测。
在本发明的一实施例中,上述各第二感测轴线的两端分别具有第二检测区, 且进行检测的方法包括通过同一第二感测轴线两端的第二检测区进行检测。
本发明又提出一种触控面板的检测方法, 包括提供一前述的触控面板。 接 着,通过第一检测区以及对应的其中一个第一信号端进行检测或是通过第二检 测区与对应的其中一个第二信号端进行检测。
基于上述, 本发明在触控面板的感测轴线端部设置检测区, 且绝缘层将检 测区暴露出来。 因此, 本发明的触控面板中, 感测轴线可以独立地被检测, 而 可以更正确地判断感测轴线是否发生缺陷,而不被传输线高电阻 RC效应干扰, 而影响实际面内电容量测。 另外, 本发明的触控面板中, 传输线也可以独立地 被检测而使触控面板的缺陷正确地被检验出来。搭配上述触控面板的结构设计,
【附图说明】
图 1为本发明第一实施例的触控面板的俯视示意图。
图 2为图 1的区域 I的示意图。
图 3为沿图 2的 A-A'剖线的剖面示意图。
图 4为本发明第二实施例的触控面板的俯视示意图。
图 5为图 4的区域 II的示意图。
图 6为沿图 5的剖线 B-B'的剖面示意图。
图 7为本发明第三实施例的触控面板的俯视示意图。
图 8为本发明第四实施例的触控面板的俯视示意图。
图 9为本发明第五实施例的触控面板的俯视示意图。
图 10为图 9的触控面板的第一侧的俯视示意图。
图 11为图 9的触控面板的第二侧的俯视示意图。
图 12为本发明一实施例的触控面板的第一种检测方法。
图 13为本发明一实施例的触控面板的第二种检测方法。
图 14为本发明一实施例的触控面板的第三种检测方法。
【具体实施方式】
为让本发明上述特征和优点能更明显易懂, 下文特举实施例, 并配合附图 作详细说明。 图 1为本发明第一实施例的触控面板的俯视示意图。 请参照图 1 , 触 控面板 100包括一基板 110、 多条第一感测轴线 120、 多条第二感测轴线 130以及一绝缘层 140。 第一感测轴线 120以及第二感测轴线 130皆配置 于基板 110上。 各第一感测轴线 120沿一第一方向 D1延伸, 而各第二感 测轴线 130沿一第二方向 D2延伸, 且第一方向 D1 与第二方向 D2不平 行。 第一感测轴线 120可以垂直于第二感测轴线 130。 此外, 各第一感测 轴线 120的至少一端具有一第一检测区 150 , 而第二感测轴线 130的至少 一端具有一第二检测区 160。 绝缘层 140则覆盖第一感测轴线 120以及第 二感测轴线 130, 且暴露出第一检测区 150以及第二检测区 160。
本实施例的第一感测轴线 120两端分别具有第一检测区 150 , 而第二 感测轴线 130的两端也分别具有第二检测区 160。 在其他的实施例中, 第 一感测轴线 120可以仅有一端具有第一检测区 150, 而第二感测轴线 130 也可以仅有一端具有第二检测区 160。 另外, 本实施例的绝缘层 140设置 有多个开口 142 , 该开口的形状可为圓形、 椭圓形、 矩形或者各种多边形 或弧线构成的各种封闭图形。各开口 142暴露出一个第一检测区 150或是 一个第二检测区 160。
进一步而言, 触控面板 100进一步包括多条第一传输线 S1 以及多条 第二传输线 S2。各第一传输线 S1的一第一连接端 Sla连接至其中一条第 一感测轴线 120 , 而各第二传输线 S2的一第二连接端 S2a连接至其中一 条第二感测轴线 130。 各第一传输线 S1 的另一端则为第一信号端 Slb, 而各第二传输线 S2的另一端则为第二信号端 S2b。 上述的传输线会通过 收拢的布置整合在基板的非显示区的一侧,所有传输线的信号端则是用以 连接至驱动芯片(未图示)。
在本实施例中, 绝缘层 140进一步覆盖第一传输线 S1以及第二传输 线 S2。 此外, 绝缘层 140进一步暴露出各第一信号端 Sib以及各第二信 号端 S2b。 也就是说, 绝缘层 140的部分开口 142位于第一信号端 Sib以 及第二信号端 S2b上以将其暴露出来。
在这样的设计之下, 检测触控面板 100时, 感测轴线 120、 130以及 传输线 Sl、 S2可以分别地进行检测。 也就是说, 检测感测轴线 120、 130 时, 检测的结果不会受到传输线 Sl、 S2的缺陷影响。 同样地, 检测传输 线 Sl、 S2 时, 检测结果也不会受到感测轴线 120、 130 的缺陷所影响。 因此, 本实施例可以更有效率地检测出触控面板 100中不同组件的缺陷, 而提升触控面板 100的质量。
具体而言, 本实施例的各第一感测轴线 120以及各第二感测轴线 130 分别由多个感测垫 170和多个桥接部(图 1未标示)所组成。 感测垫 170包 括多个中心感测垫 172以及两个边缘感测垫 174。 中心感测垫 172 串接在 一起并位于两个边缘感测垫 174之间, 且第一检测区 150 或第二检测区 160位于两个边缘感测垫 174中。 也就是说, 各第一感测轴线 120以及各 第二感测轴线 130中, 两端的部分由边缘感测垫 174所构成。
在本实施例中,第一检测区 120的面积与第二检测区 130的面积可以 由边缘感测垫 174的设计而决定。 一般而言, 边缘感测垫 174需具有一定 的面积, 所以检测触控面板 100时的对位流程较为容易。 也就是说, 触控 面板 100的检测不需要高精度的对位设备而有助于简化并加快检测方法。
图 2为图 1 的区域 I的示意图 , 而图 3为沿图 2的 A-A'剖线的剖面 示意图。 请同时参照图 2与图 3 , 在本实施例中, 相邻的中心感测垫 172 可以通过一桥接部 176 串接在一起。 当然, 中心感测垫 172与边缘感测垫 174也可以通过桥接部 176 串接在一起。
另外, 由图 3可知, 边缘感测垫 174与中心感测垫 172进一步可以通 过桥接部 176 串接在一起。 不过, 根据不同的需求, 可以仅串接第二感测 轴线 130的边缘感测垫 174与中心感测垫 172 , 或是仅串接多个中心感测 垫 172。 值得一提的是, 第一感测轴线 120与第二感测轴线 130必需保持 需保持独立的电特性,因此第一感测轴线 120的桥接部 176与第二感测轴 线 130的桥接部 176之间配置有绝缘构件 190。
本实施例的绝缘层 140暴露出第一检测区 150、 第二检测区 160、 第 一信号端 Sib 以及第二信号端 S2b。 所以, 触控面板 100可通过绝缘层 140所暴露出来的这些区域来进行电特性的检测。如此一来,感测轴线 120、 130以及传输线 Sl、 S2可以分别地被检测。 此外, 触控面板 100的检测 方法相当简单, 且一旦检测出缺陷可以实时地进行修复。 因此, 触控面板 100具有良好的电性质量。
图 4为本发明第二实施例的触控面板 400的俯视示意图。 图 5为图 4 的区域 II的示意图, 而图 6为沿图 5中剖线 B-B,的剖面示意图。 请同时 参照图 4、 图 5以及图 6 , 触控面板 400与第一实施例的触控面板 100相 似, 其中触控面板 400也包括有一基板 110、 多条第一感测轴线 120、 多 条第二感测轴线 130以及一绝缘层 140。不过,触控面板 400中,基板 110 具有一显示区 112和一非显示区 114。 此外, 边缘感测垫 474包括一外侧 部 474A以及一内侧部 474B , 且外侧部 474A位于非显示区 114中, 而内 侧部 474B以及中心感测垫 172皆位于显示区 112中。 此外, 第一检测区 150或第二检测区 160位于外侧部 474A上。
一般来说,中心感测垫 172以及边缘感测垫 474会以透明导电材质加 以制作, 以使触控面板 400 提供良好的光线穿透性。 检测触控面板 400 时,操作者会使用一探针接触欲检测的第一检测区 150或第二检测区 160。 不过,探针的移动与接触可能造成透明导电材质的损伤而影响第一检测区 150或第二检测区 160的表面平坦性。 所以, 本实施例将第一检测区 150 以及第二检测区 160设置于周边区 114中可以避免显示区 112的光线穿透 性受到不良的影响。 即, 触控面板 400除了具有良好的电特性外, 更具有 相当不错的光线穿透性。
图 7为本发明第三实施例的触控面板的俯视示意图。 请参照图 7 , 触 控面板 700的设计是改变触控面板 400中的绝缘层 140, 以形成具有一环 形开口 442。 环形开口 442暴露出所有的第一检测区 150以及所有的第二 检测区 160。 也就是说, 环形开口 442的设计是将第二实施例中的多个开 口 142贯通。
不过,在其他的实施例中,可以仅将绝缘层 140的部分开口 142贯通, 而使各贯通的开口同时暴露出数个第一检测区 150 或是数个第二检测区 160。 本实施例的第一检测区 150以及第二检测区 160被暴露出来, 检测 触控面板 700 时可以正确地将第一感测轴线 120 以及第二感测轴线 130 中的缺陷判断出来。 因此, 触控面板 700具有良好的质量。
图 8为本发明第四实施例的触控面板的俯视示意图。 请参照图 8, 触 控面板 800也包括有一基板 1 10、 多条第一感测轴线 120、 多条第二感测 轴线 130以及一绝缘层 140。 不过, 本实施例中, 基板 1 10具有一第一感 测区 1 16以及一第二感测区 1 18, 部分第一感测轴线 120以及部分第二感 测轴线 130位于第一感测区 1 16 , 而其他的第一感测轴线 120以及其他的 第二感测轴线 130位于第二感测区 1 18。 此外, 位于第一感测区 1 16的第 二感测轴线 130对齐于第二感测区 1 18的第二感测轴线 130。 也就是说, 第一感测区 1 16的其中一条第二感测轴线 130与第二感测区 1 18的其中一 条第二感测轴线 130排列成一直线。
本实施例的设计使两条第二感测轴线 130对齐可以避免触控面板 800 进行感测时发生误感测, 例如鬼点(ghost pomt)的现象。 此外, 边缘感测 垫 874A的设计同第二实施例的边缘感测垫 474—样是由外侧部 474A以 及内侧部 474B所构成。 边缘感测垫 874B则例如由三角形图案所构成。 值得一提的是,本实施例的第二感测串列 130中都只有一端设有第二检测 区 160, 而同一条线上的两条第二感测串列 130中相邻的一端未设有任何 的检测区。 也就是说, 边缘感测垫 874B未设有检测区。 如此设计有助于 提升触控面板 800 的光线穿透性质。 相似地, 本实施例的触控面板 800 中, 感测轴线 120、 130可以独立地进行电容值的检测, 而使得触控面板 800可维持良好的质量。
图 9为本发明第五实施例的触控面板的俯视示意图, 图 10为图 9的 触控面板的第一侧的俯视示意图, 而图 1 1为图 9的触控面板的第二侧的 俯视示意图。 请参照图 9 , 触控面板 900包括一基板 910、 多条第一感测 轴线 920、 多条第二感测轴线 930、 一第一绝缘层 945以及一第二绝缘层 947。 第一感测轴线 920以及第二感测轴线 930皆配置于基板 910上。 具 体而言, 第一感测轴线 920配置于基板 910的一第一侧 912 , 而第二感测 轴线 930配置于基板 910的一第二侧 914 , 且第一侧 912与第二侧 914相 对。
请同时参照图 9、 图 10以及图 1 1 , 各第一感测轴线 920沿第一方向 D1延伸, 而各第二感测轴线 930沿第二方向 D2延伸, 且第一方向 D1与 第二方向 D2不平行。 此外, 各第一感测轴线 920的两端分别具有一第一 检测区 950 , 而第二感测轴线 930的两端分别具有一第二检测区 960。 第 一绝缘层 945覆盖第一感测轴线 920且暴露出第一检测区 950。 第二绝缘 层 947则覆盖第二感测轴线 930且暴露出第二检测区 960。
具体而言,各第一感测轴线 920以及各第二感测轴线 930分别由一感 测条 (sensing bar)所组成。 也就是说, 各第一感测轴线 920以及各第二感 测轴线 930由一条状导体图案所构成,其材质例如为透明导电材质。此外, 为了增进触控面板 900的亮度的均勾性,触控面板 900进一步包括多个虚 拟垫 922, 其配置于基板 910的第一侧 912上, 并位于第一感测轴线 920 之间。
在本实施例中, 第一绝缘层 945具有多个第一开口 945A, 以暴露出 第一检测区 950, 而第二绝缘层 947具有多个第二开口 947A, 以暴露出 第二检测区 960。 尤其是, 第二开口 947A都设置在显示区 1 12之外。 在 其他的实施例中, 位于同一侧的第一开口 945A可以彼此贯通, 而位于同 一侧的第二开口 947A 也可以彼此贯通。 第一开口 945A 以及第二开口 947A将对应的第一检测区 950以及第二检测区 960暴露出来, 所以第一 感测轴线 920与第二感测轴线 930可以独立地进行感测。 因此, 触控面板 900若有缺陷可以正确地被检测出来,而有助于维持触控面板 900的质量。
另夕卜,本实施例中,第一感测轴线 920的两端都设有第一检测区 950 , 而第二感测轴线 930的两端也都设有第二检测区 960。 不过, 根据不同的 检测需求及布局设计, 第一感测轴线 920 可以仅有一端设有第一检测区 950 , 而第二感测轴线也可以仅有一端设有第二检测区 960。
以上实施例所描述的触控面板 100、 400、 700、 800以及 900都分别 在各感测轴线的端部设置检测区。 并且, 这些检测区被绝缘层暴露出来。 因此, 触控面板 100、 400、 700、 800以及 900可以采用简易的检测方式 来分别检视各感测轴线或是各传输线是否有缺陷产生。 具体地说, 触控面 板 100、 400、 700、 800以及 900可以釆用的检测方法如下。 图 12为本发 明一实施例的触控面板的第一种检测方法。请参照图 12 ,先进行步骤 10 , 提供一触控面板。在本实施例的检测方法中, 触控面板例如是前述的触控 面板 100、 400、 700、 800以及 900 中其中一者或是触控面板 100、 400、 700、 800以及 900中各感测轴线仅有一端设有检测区的设计。
接着, 进行步骤 20 , 通过触控面板中其中一条第一感测轴线的第一 检测区以及其中一条第二感测轴线的第二检测区进行检测。 具体来说,检 > 'J的步骤例如是利用一组探针分别地接触其中一条第一感测轴线的第一 检测区以及其中一条第二感测轴线的第二检测区。 并且, 测量这组探针之 间的电容值。根据所测得的电容值来判断第一感测轴线与第二感测轴线是 否有短路或是断路的缺陷。
另外,因工艺误差而使第一感测轴线的图案或是第二感测轴线的图案 不一致, 例如图案的面积差异过大或是图案的间距不一致,会导致第一感 测轴线与第二感测轴线在不同位置上的电容耦合效应随之变化。如此, 触 控面板将会有感测不准确的情况。本实施例根据不同感测轴线间的电容值 变化可判断出感测轴线的图案是否有缺陷,以进一步针对缺陷部分进修 卜 而提升触控面板的感测准确性。
本实施例的检测方法搭配触控面板 100、 400、 700、 800以及 900的 布局设计可以直接地检测不同感侧轴线之间的电容值。这样的检测方法不 会受到传输线的影响而更直接地检验出感测轴线是否有缺陷。 也就是说, 感测轴线中的缺陷可以正确且有效率地被检测出来。
图 13为本发明一实施例的触控面板的第二种检测方法。请参照图 13 , 本实施例的触控面板检测方法例如是进行步骤 10 , 提供一触控面板。 在 此, 触控面板例如是前述的触控面板 100、 400、 700、 800以及 900中其 中一者。值得一提的是,采用本实施例的检测方法进行检测的触控面板中 , 所有感测轴线两端都分别地设有检测区。
接着, 进行步骤 30, 通过同一感测轴线两端的检测区进行检测。 通 过同一感测轴线两端的检测区可以检测同一条感测轴线的电阻值,以确认 每一感测轴线是否有短路或是断路的缺陷。 并且,感测轴线的传输阻抗若 有过大的差异也可以通过步骤 30检测出来。
举例来说, 当本方法应用于触控面板 100时,探针可以同时接触同一 条第一感测轴线 120两端的第一检测区 150以进行检测。 当然,探针也可 以同时接触同一条第二感测轴线 130两端的第二检测区 160以进行检测。 在这样的检测过程中,若有其中一条感测轴线的电阻值发生异常可以很正 确地被判断出来并进行对应的修补工作。 因此, 这样的检测方法有助于提 升触控面板的质量。
前述两种检测方法可以有效地检测出感测轴线内的缺陷,不过触控面 测。 因此, 本实施例提出以下的检测方法, 其针对触控面板中的传输线进 行检测。 图 14为本发明一实施例的触控面板的第三种检测方法。 请参照 图 14, 本检测方法首先是进行步骤 10提供一触控面板。 触控面板可以是 如前述的触控面板 100、 400、 700、 800以及 900中其中一者。 值得一提 的是,应用本方法的触控面板中,绝缘层会暴露出传输线的信号端。另外, 各感测轴线中可以仅有连接信号线的一端设有检测区。
接着, 进行步骤 40 , 通过其中一个检测区以及对应的其中一个信号 端进行检测。 举例来说, 本检测方法应用于触控面板 100时, 步骤 40的 进行方式例如是将一探针接触第一检测区 150或第二检测区 160其中一者, 同时将另一探针接触对应的第一信号端 S ib或对应的第二信号端 S2b。如 此, 通过两探针检测第一传输线 S 1 或是第二传输线 S2 的电特性, 以针 对有缺陷的第一传输线 S1 或是第二传输线 S2进行修补。 当然, 这样的 检测步骤也可以应用于触控面板 400、 700、 800以及 900 , 以提升触控面 板 400、 700、 800以及 900的质量。
整体而言, 本发明在各感测轴线的端部设置检测区,且绝缘层将检测 区暴露出来。 因此, 本发明可以直接检测感测轴线是否有缺陷产生, 并且 传输线与感测轴线可以分别地进行检测。触控面板的检测方法因而更有效 率。 当触控面板中有缺陷被检测出来后, 可以进一步针对缺陷部分进行修 补。 如此, 本发明触控面板可以具有良好质量。
虽然本发明已以实施例揭露如上, 然其并非用以限定本发明,任何本 领域技术人员, 在不脱离本发明的精神和范围的情况下, 可对本发明进行 各种修改, 故本发明的保护范围当以权利要求为准。

Claims

权 利 要 求
1. 一种触控面板, 其特征在于, 包括:
一基板;
多条第一感测轴线, 配置于该基板上, 各该第一感测轴线沿一第一方 向延伸, 且各该第一感测轴线的至少一端具有一第一检测区;
多条第一传输线,各该第一传输线的一连接端分别连接至各该第一感 测轴线;
多条第二感测轴线, 配置于该基板上, 各该第二感测轴线的至少一端 具有一第二检测区, 且各该第二感测轴线沿一第二方向延伸, 而该第一方 向不平行于该第二方向;
多条第二传输线,各该第二传输线的一连接端分别连接至各该第二感 测轴线, 以及
一绝缘层, 覆盖该多条第一感测轴线以及该多条第二感测轴线, 且暴 露出该多个第一检测区以及该多个第二检测区。
2. 如权利要求 1 所述的触控面板, 其特征在于, 该第一感测轴线垂 直于该第二感测轴线。
3. 如权利要求 1 所述的触控面板, 其特征在于, 该绝缘层暴露处设 置有多个开口, 且该多个开口对应暴露出该多个第一检测区以及该多个第 二检测区。
4. 如权利要求 1 所述的触控面板, 其特征在于, 该绝缘层暴露出该 多个第一检测区以及该多个第二检测区的开口为一环形。
5. 如权利要求 1 所述的触控面板, 其特征在于, 各该第一感测轴线 以及各该第二感测轴线分别由多个感测垫和多个桥接部所组成。
6. 如权利要求 5 所述的触控面板, 其特征在于, 该多个感测垫包括 多个中心感测垫以及两个边缘感测垫, 该多个中心感测垫通过该桥接部串 接在一起并位于该两个边缘感测垫之间, 且该第一检测区或该第二检测区 位于该两个边缘感测垫中。
7. 如权利要求 6 所述的触控面板, 其特征在于, 该基板具有一显示 区和一非显示区, 且各该边缘感测垫包括一外侧部以及一内侧部, 该外侧 部位于该非显示区中,而该内侧部以及该多个中心感测垫位于该显示区中, 且该第一检测区或该第二检测区位于该外侧部上。
8. 如权利要求 1 所述的触控面板, 其特征在于, 该基板具有一第一 感测区以及一第二感测区, 覆盖于该第一感测区以及该第二感测区的该绝 缘层暴露出该多条第一感测轴线的该多个第一检测区以及该多条第二感测 轴线的该多个第二检测区。
9. 如权利要求 1 所述的触控面板, 其特征在于, 该多条第一感测轴 线配置于该基板的一第一侧, 而该多条第二感测轴线配置于该基板的一第 二侧, 且该第一侧与该第二侧相对。
10. 如权利要求 9所述的触控面板, 其特征在于, 该绝缘层包括一第 一绝缘层以及一第二绝缘层, 且该第一绝缘层覆盖该多条第一感测轴线, 并暴露出该多个第一检测区, 该第二绝缘层覆盖该多条第二感测轴线, 并 暴露出该多个第二检测区。
11. 如权利要求 10 所述的触控面板, 其特征在于, 该第一绝缘层暴 露处设置有多个第一开口, 且该多个第一开口对应暴露出该多个第一检测 区, 而该第二绝缘层暴露处设置有多个第二开口, 且该多个第二开口对应 暴露出该多个第二检测区。
12. 如权利要求 1所述的触控面板, 其特征在于, 该绝缘层进一步覆 盖该多条第一传输线以及该多条第二传输线, 并进一步暴露出各该第一传 输线及各该第二传输线的信号端。
13. 一种触控面板的检测方法, 其特征在于, 包括:
提供如权利要求第 1项所述的触控面板; 以及 通过该多个第一检测区以及该多个第二检测区的其中两者进行检测。
14 如权利要求 13所述的触控面板的检测方法, 其特征在于, 各该第 一感测轴线的两端分别具有该第一检测区, 且进行检测的方法包括通过同 一该第一感测轴线两端的该两个第一检测区进行检测。
15. 如权利要求 13 所述的触控面板的检测方法, 其特征在于, 各该 第二感测轴线的两端分别具有该第二检测区, 且进行检测的方法包括通过 同一该第二感测轴线两端的该两个第二检测区进行检测。
16. 一种触控面板的检测方法, 其特征在于, 包括
提供如权利要求 12所述的触控面板; 以及通过其中一该第一检测区以 及与其对应的信号端或是其中一该第二检测区以及与其对应的信号端进行 检测。
PCT/CN2009/075756 2009-09-04 2009-12-21 触控面板及触控面板的检测方法 WO2011026286A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/869,713 US20110057905A1 (en) 2009-09-04 2010-08-26 Touch Panel and Inspection Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101898764A CN101699376B (zh) 2009-09-04 2009-09-04 触控面板及触控面板的检测方法
CN200910189876.4 2009-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/869,713 Continuation US20110057905A1 (en) 2009-09-04 2010-08-26 Touch Panel and Inspection Method Thereof

Publications (1)

Publication Number Publication Date
WO2011026286A1 true WO2011026286A1 (zh) 2011-03-10

Family

ID=42147836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075756 WO2011026286A1 (zh) 2009-09-04 2009-12-21 触控面板及触控面板的检测方法

Country Status (2)

Country Link
CN (1) CN101699376B (zh)
WO (1) WO2011026286A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176631A (zh) * 2011-12-20 2013-06-26 上海天马微电子有限公司 触摸基板、触摸屏及触摸显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375578A (zh) * 2010-08-04 2012-03-14 东莞万士达液晶显示器有限公司 触控面板结构以及具有该触控面板结构的触控显示装置
JP2012238066A (ja) * 2011-05-10 2012-12-06 Japan Display East Co Ltd 静電容量方式のタッチパネル、および表示装置
CN104838342B (zh) * 2012-12-07 2018-03-13 3M创新有限公司 在基板上制作透明导体的方法
KR102086402B1 (ko) 2013-11-06 2020-03-09 엘지디스플레이 주식회사 터치 스크린 패널 및 표시장치
CN106484190A (zh) * 2016-11-18 2017-03-08 业成科技(成都)有限公司 触控模组
CN107863054A (zh) * 2017-11-07 2018-03-30 深圳市华星光电半导体显示技术有限公司 一种修复感测信号线的方法、装置和显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408825A (zh) * 2008-11-12 2009-04-15 友达光电股份有限公司 电容触控面板及其检测方法
CN101470563A (zh) * 2007-12-27 2009-07-01 宸鸿光电科技股份有限公司 触摸板的触控点扫描检测装置及其方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201298221Y (zh) * 2008-10-10 2009-08-26 达虹科技股份有限公司 电容式触控面板的二维感测结构
CN101382860B (zh) * 2008-10-20 2010-11-10 友达光电股份有限公司 电容式触控面板的多个触碰位置的定位方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470563A (zh) * 2007-12-27 2009-07-01 宸鸿光电科技股份有限公司 触摸板的触控点扫描检测装置及其方法
CN101408825A (zh) * 2008-11-12 2009-04-15 友达光电股份有限公司 电容触控面板及其检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176631A (zh) * 2011-12-20 2013-06-26 上海天马微电子有限公司 触摸基板、触摸屏及触摸显示装置

Also Published As

Publication number Publication date
CN101699376A (zh) 2010-04-28
CN101699376B (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
US20110057905A1 (en) Touch Panel and Inspection Method Thereof
WO2011026286A1 (zh) 触控面板及触控面板的检测方法
US10180747B2 (en) Touch display panel having touch electrodes and pressure sensing element and touch display device thereof
TWI539352B (zh) 觸控螢幕面板短路之原位偵測
JP6188953B2 (ja) 液晶ディスプレイ、液晶ディスプレイテスト方法及び電子装置
WO2017202150A1 (zh) 一种触摸屏、其触摸定位方法及显示装置
EP2811376B1 (en) In-cell touch panel and voltage testing method thereof
JP2022516387A (ja) タッチパネル、タッチモジュール及びタッチパネルのクラックの検出方法
TWI406166B (zh) 觸控面板及其多點觸碰偵測方法以及觸控顯示裝置
TWI398808B (zh) 觸控面板及觸控面板的檢測方法
KR20120034492A (ko) 정전용량 방식 터치 스크린 패널
TWI601037B (zh) 應用於觸控裝置之測試系統及測試方法
WO2017024737A1 (zh) 触控基板、显示装置和触控电极图案的检测方法
US9811230B2 (en) Touch panel and production method thereof
TWI457799B (zh) 觸控顯示面板
WO2020107797A1 (zh) 显示面板以及显示面板的裂纹检测方法
KR101292147B1 (ko) 터치패널의 불량검사 방법 및 이를 이용한 터치패널 제조방법
CN207502855U (zh) 液晶显示面板、液晶显示屏及智能设备
JP2007286004A (ja) 基板検査装置及び基板検査方法
TWM484743U (zh) 觸控面板及其母板
TWI554919B (zh) Touch device and its touch electrode module
TWI741721B (zh) 導電性測試結構、薄膜電晶體陣列基板及顯示面板
CN211957065U (zh) 一种显示面板边缘检测电路、显示面板及显示装置
TW201913620A (zh) 檢測方法及顯示面板
TW201635120A (zh) 觸控面板、觸控面板之檢查方法及觸控面板之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848891

Country of ref document: EP

Kind code of ref document: A1