WO2011025020A1 - Paper sheet radiator - Google Patents
Paper sheet radiator Download PDFInfo
- Publication number
- WO2011025020A1 WO2011025020A1 PCT/JP2010/064758 JP2010064758W WO2011025020A1 WO 2011025020 A1 WO2011025020 A1 WO 2011025020A1 JP 2010064758 W JP2010064758 W JP 2010064758W WO 2011025020 A1 WO2011025020 A1 WO 2011025020A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- paper sheet
- fiber
- heat
- fixed
- radiator
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3672—Foil-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3677—Wire-like or pin-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
Definitions
- the radiation fins 101 are fixed to the heat conducting portion 102.
- the heat radiating fin 101 is constituted by a paper sheet 103 of wet papermaking in which a heat conductive powder is added to a fiber. Further, the radiator fixes the cut edge 105 of the paper sheet 103 of the heat radiating fin 101 in a thermally coupled state to the heat conducting portion 102, and the heat radiating fin 101 of the paper sheet self-supports with the cut edge 105 placed on the heat conducting portion 102.
- the shape can be made.
- the above radiator is a paper sheet that has excellent heat conduction characteristics in the surface direction by fixing the cutting edge of the paper sheet in a thermally coupled state to the heat conducting part while easily fixing the heat radiating fin to the heat conducting part. Therefore, the heat of the heat conducting part can be efficiently conducted to the heat radiating fins and radiated.
- the paper sheet radiator fixes the radiating fin 101 to the heat conducting portion 102.
- the radiating fin 101 is composed of a paper sheet 103 made of wet paper by adding a heat conductive powder to a fiber. Further, the radiator has the paper sheet 103 of the radiation fin 101 in a loop shape or a spiral shape, and the outer peripheral surface of the loop or spiral is fixed to the heat conducting unit 102 in a thermally coupled state.
- the above radiator has a wide thermal coupling area between the fixed paper sheet part and the radiation fin, further widens the heat radiation area, and conducts heat quickly from the fixed paper sheet part to the radiation fin. The heat generated in the conductive part can be efficiently radiated.
- the heat radiator of FIG. 1 has a paper sheet 3 bent in a zigzag shape in a cylindrical shape, and the inner bent edge 4 is fixed in a thermally coupled state to the outer side of the cylindrical heat conducting portion 22.
- the heat radiator of FIG. 1 is fixed in a thermally coupled state to an outer periphery of an electronic component such as a light bulb type LED light source having an outer shape that is cylindrical, and radiates heat from the outer peripheral surface.
- the LED light source of the electronic component in the figure has a plurality of LEDs (not shown) fixed to the lower surface, and the heat dissipating fins 1 of the paper sheet 3 are fixed to the outer periphery thereof.
- the heat radiator of FIG. 1 uses the heat conduction part 22 together with the fixing part 10 fixing the LED.
- the paper sheet 3 bent in a zigzag shape is formed into a cylindrical shape, and the outer bent edge 4 is fixed in a thermally coupled state inside the cylindrical heat conducting portion 42.
- the heat conducting portion 42 is a cylindrical paper sheet 11.
- the outer edge 4 of the paper sheet 3 that is bent in a zigzag manner is fixed to the inner surface of the cylindrical paper sheet 11 in a thermally coupled state, and the cylindrical heat conducting portion 42 is thus formed.
- the heat radiating fins 1 are fixed to the inside.
- This radiator is inserted into a gap formed between a plurality of electronic components fixed to a circuit board or the like, for example, and the outer peripheral surface of the cylindrical heat conducting portion 42 is fixed in a thermally coupled state to the surface of the electronic component.
- the structure in which the heat conducting portion 42 is the paper sheet 11 can be easily inserted into various gaps between the plurality of electronic components by simply deforming the outer shape.
- the heat conduction part is not limited to a paper sheet, and a metal plate or a heat conductive plastic sheet can also be used.
- the heat dissipating fins can be variously changed in the arrangement and the number of the high angle protrusions and the low angle protrusions, or can be provided with the angle protrusions whose height changes randomly.
- the radiator shown in FIG. 7 has a plurality of heat conducting portions 32 arranged in a parallel position apart from each other, and a heat radiating fin made of a paper sheet 3 bent in a zigzag manner between the heat conducting portions 32. 1 is arranged, and both bent edges 4 of the paper sheet 3 bent in a zigzag shape are fixed to the plate-like heat conducting portion 32 in a thermally coupled state.
- the heat conduction part 32 is any one of the heat conductive plastic sheet 13, the paper sheet, and the metal plate.
- a heat radiator having the heat conducting portion 32 as a paper sheet or a heat conductive plastic sheet 13 can be lightened.
- a radiator having the heat conducting portion as a metal plate such as aluminum can efficiently dissipate heat by improving the heat conduction of the heat conducting portion. Since this heat radiator is disposed so that the zigzag bent paper sheet 3 is sandwiched between the plurality of heat conducting portions 32, the heat radiation area can be increased while increasing the overall strength.
- a cylindrical reinforcing sheet 8 is arranged inside the cylindrical paper sheet 3, and the bent edge 4 inside the paper sheet 3 is thermally coupled to the outer peripheral surface of the reinforcing sheet 8. It is fixed to.
- the reinforcing sheet 8 can reinforce the radiating fins 1 that are bent in a zigzag shape, for example, as a paper sheet or a plastic sheet while reducing the overall weight. Furthermore, by using a paper sheet or a heat conductive plastic sheet excellent in heat conduction as the reinforcing sheet 8, the heat of the heat conduction part 2 can be efficiently conducted to the radiation fins 1.
- the reinforcing sheet can be provided outside the cylindrical paper sheet, or can be provided both inside and outside the cylindrical paper sheet. However, the reinforcing sheet is not necessarily required, and the bent edge of the cylindrical paper sheet can be fixed to the heat conducting portion in a thermally coupled state without fixing the reinforcing sheet to the cylindrical paper sheet.
- This radiator is disposed so as to sandwich the radiation fin 1 made of the paper sheet 3 bent in a zigzag manner between the plurality of reinforcing sheets 8, and the bent end surface 5 of the radiation fin 1 is planar. Since the heat conduction part 2 is fixed in a thermally coupled state, it is possible to efficiently dissipate heat by increasing the heat radiation area while increasing the overall strength.
- the thermal conductivity is measured by the following method.
- a measurement sample cut to 7 cm ⁇ 9 cm is immersed in glycerin, and the sample that has been degassed under vacuum is allowed to stand in a temperature-controlled room at 25 ° C. until the temperature becomes constant.
- the sample is inserted in a vertical direction with a short piece of sample facing up in a measuring device in a constant temperature room where the temperature is constant.
- Non-beaten fibers include polyester fiber, polyamide fiber, polypropylene fiber, polyimide fiber, polyethylene fiber, acrylic fiber, carbon fiber, PBO fiber, polyvinyl acetate fiber, rayon fiber, polyvinyl alcohol fiber, ethylene vinyl alcohol fiber, poly Arylate fibers, metal fibers, glass fibers, ceramic fibers, fluorine fibers, and the like can be used.
- the flame resistance of the paper sheet can be improved by adding a flame retardant.
- a paper sheet can improve a flame retardance characteristic by impregnating a flame retardant.
- a paper sheet obtained by using guanidine phosphate as a flame retardant and impregnating it at a rate of 10% by weight achieves a flame retardancy effect of about UL94 V-0.
- the radiator shown in the following examples uses a paper sheet having a size of 210 mm ⁇ 50 mm and a thickness of 3 mm as the heat conduction portion, and the paper sheet is zigzag-shaped on one surface of the heat conduction portion.
- the heat dissipating fin provided by bending was fixed in a thermally coupled state.
- the heat radiator fixed the circuit board formed by fixing a plurality of LEDs as a heating element on the other surface of the heat conducting portion, on the opposite side to the surface on which the heat radiating fins were fixed.
- the circuit board had a size of 170 mm ⁇ 50 mm, and was fixed to the central portion excluding both ends of the paper sheet as the heat conducting portion. The temperature of the LED fixed to the circuit board was measured.
- Example 3 Except that the width (W) of one folded curved surface of the radiating fin 1 that is zigzag bent is 30 mm, and the pitch (d) that is zigzag bent is 13.9 mm, the same as in Example 1.
- the heat dissipating fins 1 are provided to fix the bent edges facing the paper sheet as the heat conducting unit 2 in a thermally coupled state.
- Example 4 A strip-shaped paper sheet 3 having a thickness of 0.3 mm and a vertical width (H) of 10 mm is bent into a zigzag shape as shown in FIG. 9, and the width (W) of one folded curved surface is 10 mm. Then, the heat dissipating fin 1 having a pitch (d) of 8 mm for bending in a zigzag shape is manufactured. As shown in FIG. 9, six reinforcing sheets 8 having a vertical width (H) equal to that of the heat radiating fins 1 are arranged apart from each other in a parallel posture, and are zigzag between the opposing reinforcing sheets 8. The heat dissipating fin 1 made of the paper sheet 3 that is bent is disposed.
- the radiating fin 1 fixes both the bent edges 4 of the paper sheet 3 bent in a zigzag shape to the reinforcing sheet 8.
- One bent end face 5 of the radiation fins 1 arranged in five rows between the six reinforcing sheets 8 is fixed to a paper sheet which is the planar heat conducting portion 2 in a thermally coupled state.
- the same circuit board as the used circuit board was fixed.
- the circuit board had a size of 170 mm ⁇ 50 mm, and was fixed to the central part excluding both ends of the plate-like heat conduction part. The temperature of the LED fixed to the circuit board was measured.
- the radiator shown in FIGS. 11 to 26 is configured to bend the paper sheet 103 along the folding line 104 and divide the paper sheet 103 into the radiation fins 101 and the fixed paper sheet portion 106 with the folding line 104 as a boundary.
- the sheet unit 106 is fixed to the heat conducting unit 102 in a thermally coupled state, and the heat of the heat conducting unit 102 is thermally conducted from the fixed paper sheet unit 106 to the radiation fins 101 to be radiated.
- the above radiator can be foldably connected to the fixed paper sheet portion 106 by folding the folding line 104 at the boundary between the heat radiation fin 101 and the fixed paper sheet portion 106 as a folding line 104a. For this reason, the radiator has a feature that the radiator fins 101 can be folded to be compact when transported.
- a long and narrow paper sheet 103 is bent at a right angle so that a horizontal portion 103A and a vertical portion 103B are formed, and the vertical portion 103B is radiating fins 101 and the horizontal portion 103A is fixed paper.
- the sheet portion 106 is used. Since the vertical portion 103B is bent so as to be folded back at the upper end, the two vertical portions 103B are bonded or close to each other without being bonded to constitute the radiation fin 101. In particular, when not bonded, the two vertical portions 3B made of paper sheets do not adhere to each other, and a gap is formed here, and air can pass through the gap to more efficiently dissipate heat. is there.
- the horizontal portion 103A is fixed as a fixed paper sheet portion 106 by being bonded to the heat conducting portion 102.
- the radiation fins 101 are rectangular, but the radiation fins 101 can also be triangular as shown in FIG.
- the heat radiator having this structure is characterized in that the overall height is lowered and heat can be efficiently radiated. Further, this radiator also has a feature that it can be compactly connected when transported by providing a folding line on the radiation fin 101 and folding it so that it can be folded and connected to the fixed paper sheet portion 106.
- the radiator of FIG. 24 has a folding line 104 at a position away from the opposing outer peripheral edge of the square paper sheet 103, and is connected to both ends of the folding line 104 and cut from the folding line 104 to the outer peripheral edge.
- the cut and raised portion 103b and the fixed paper sheet portion 106 are partitioned, and the cut and raised portion 103b is bent at a folding line 104 at a predetermined angle with respect to the fixed paper sheet portion 106, and the cut and raised portion 103b is formed.
- the fixed paper sheet unit 106 is fixed to the heat conducting unit 102 in a thermally coupled state.
- the heat radiation fins 101 are provided on both sides of the paper sheet 103, but the heat radiation fins may be provided on one side.
- the radiator of FIG. 25 cuts out the paper sheet 103 into a specific shape, leaving the folding line 104, and divides the paper sheet 103 into a plurality of cutout portions 103c and a fixed paper sheet portion 106.
- the cut-out part 103c is used as the heat radiation fin 101 by bending along the bending line 104 so as to have a predetermined angle with respect to the part 106.
- the fixed paper sheet unit 106 is fixed to the heat conducting unit 102 in a thermally coupled state.
- the paper sheet 103 having a predetermined width is bent so that a chevron-shaped heat radiation fin 101 is formed between the fixed paper sheet portions 106.
- the chevron-shaped radiating fin 101 is provided with an intermediate bending line 111 and a slit 112 that can be bent at the intermediate bending line 111, and an intermediate bent portion 113 is provided between the slits 112.
- the plurality of intermediate bent portions 113 divided by the slits 112 are alternately bent up and down along the intermediate bent line 111.
- the intermediate bent portion 113 bent upward is bent into a mountain shape in the middle to form the radiation fin 101.
- the intermediate bent portion 113 bent downward is a fixed paper sheet portion 106 that is bent so that the intermediate portion is horizontal and fixed to the surface of the heat conducting portion 102.
- the radiator shown in the figure five intermediate connection portions 113 are provided in parallel between adjacent intermediate bent lines 111, and these intermediate bent portions 113 are provided with two chevron-shaped radiating fins 101, Three fixed paper sheet portions 106 are provided alternately.
- the above radiator adjusts the interval between the fixed paper sheet portions 106 adjacent to each other with the intermediate folding line 111 interposed therebetween, and the protrusion height of the mountain-shaped heat radiation fin 101 and the heat radiation portion 102 of the mountain-shaped heat radiation fin 101. The number is specified.
- the radiator shown in FIGS. 27 to 34 fixes the cutting edge 105 of the paper sheet 103 of the radiating fin 101 in a thermally coupled state to the heat conducting unit 102 and places the cutting edge 105 of the paper sheet 103 on the heat conducting unit 102.
- the shape is self-supporting.
- This radiating fin has a shape that can stand by itself as a plurality of cylindrical shapes, a plurality of conical shapes, a honeycomb shape, a corrugated honeycomb shape, and a grid lattice shape.
- 102 is fixed in a thermally coupled state.
- the paper sheet 103 is formed in a cylindrical shape, and one cutting edge 105 is bonded and fixed to the surface of the heat conducting unit 102.
- cylindrical paper sheets 103 protruding from the heat conduction unit 102 are fixed to the heat conduction unit 102 at predetermined intervals as heat radiation fins 101.
- the radiation fins 101 of the paper sheet 103 are cylindrical, and in the radiator shown in FIG. 28, the radiation fins 101 of the paper sheet 103 are rectangular.
- the radiation fins 101 of the paper sheet 103 are streamlined cylindrical.
- one side surface is an acute bent portion 103d and the opposite side surface is a curved surface 103e.
- the sharp bent portion 103d of the radiating fin 101 is disposed on the leeward side and the curved surface 103e is disposed on the leeward side, so that the plurality of radiating fins 101 can be smoothly blown and radiated.
- a plurality of paper sheets 103 are connected in a grid pattern, and the cutting edge 105 is fixed to the heat conducting unit 102.
- the radiating fin 101 shown in the figure connects the vertical paper sheet 103T and the horizontal paper sheet 103S in a grid pattern.
- the vertical paper sheet 103T and the horizontal paper sheet 103S are provided with slits in half of the vertical width, and the other paper sheet 103 is inserted into one slit and connected in a grid pattern.
- the heat dissipating fin 101 shown in the figure has a plurality of ventilation holes for heat dissipation penetrating the vertical paper sheet 103T.
- the vertical paper sheet 103T in the figure is provided with ventilation holes between the horizontal paper sheets 103S and above and below it.
- the heat dissipating fin 101 having this structure ventilates between the horizontal paper sheets 103S with the ventilation holes, and can radiate heat more efficiently.
- the grid-like radiating fins 101 of this shape are fixed by adhering the cutting edges 105 at the lower ends of the vertical paper sheet 103T and the horizontal paper sheet 103S to the heat conducting portion 102.
- the paper sheet 103 of the radiating fin 101 is formed in a loop shape or a spiral shape, and the outer peripheral surface of the loop or spiral is fixed to the heat conducting portion 102 in a thermally coupled state.
- the heat dissipating fins can be formed into a shape that can be folded by providing a plurality of folding lines on the paper sheet in parallel with the heat conducting portion.
- the heat dissipating fins 101 are formed by fixing the outer peripheral surface of a cylindrical spiral formed by winding a paper sheet 103 in a spiral shape to the heat conducting portion 102.
- the end of the spiral winding end is used as a fixed paper sheet portion 106, and the outer peripheral surface of the fixed paper sheet portion 106 is bonded to the heat conducting portion 102.
- the radiator has a plurality of spirals arranged in parallel with each other and fixed to the heat conducting unit 102.
- a heat conductive powder suspended in a papermaking slurry is bonded to a fiber and made into a sheet to be produced. Since the above paper sheet 103 has excellent bending strength, the bent portion is not damaged even if it is bent in a zigzag shape, and the bent portion is not damaged even in use. It can be used in a preferable state for various applications.
- the paper sheet 103 manufactured through the above steps has a thickness of 0.26 mm, a density of 1.155 g / cm 3 , a basis weight of 294 g / m 3 , a folding strength of about 3000 times, and a thermal conductivity of 54. 2 W / m ⁇ K.
- the folding strength is measured by the method described above in the same manner as the paper sheet used in the radiator of FIGS.
- Non-beaten fibers include polyester fiber, polyamide fiber, polypropylene fiber, polyimide fiber, polyethylene fiber, acrylic fiber, carbon fiber, PBO fiber, polyvinyl acetate fiber, rayon fiber, polyvinyl alcohol fiber, ethylene vinyl alcohol fiber, poly Arylate fibers, metal fibers, glass fibers, ceramic fibers, fluorine fibers, polysulfone fibers, polyphenylene sulfide fibers and the like can be used.
- the paper sheet used for the radiator of FIGS. 11 to 37 can improve the strength in a state where it is formed as a radiation fin by including a synthetic resin of a binder.
- Synthetic resins for this binder include polyacrylic acid ester copolymer resins, polyvinyl acetate resins, polyvinyl alcohol resins, NBR (acrylonitrile butadiene rubber) resins, SBR (styrene butadiene rubber) resins, polyurethane resins, and fluorine resins.
- a thermoplastic resin containing or a thermosetting resin containing any of a phenol resin, an epoxy resin, and a silicon resin can be used.
- the paper sheet used for the radiator of FIGS. 11 to 37 uses silicon carbide having an average particle size of 20 ⁇ m as the heat conductive powder.
- the heat conductive powder replaces silicon carbide or silicon carbide.
- aluminum nitride, magnesia, alumina silicate, silicon, iron, silicon carbide, carbon, boron nitride, alumina, silica, aluminum, copper, silver, gold, zinc oxide, zinc powder, etc. can be used,
- the average particle size can also be 0.1 ⁇ m to 500 ⁇ m.
- the heat conductive powder is optimal in consideration of the type of fiber used, etc., because the ratio of adhering to the fiber in the wet papermaking process decreases and the utilization efficiency deteriorates. Use an average particle size.
- the radiating fin 101 has a height and width of 5 cm
- the fixed paper sheet portion 106 has the same longitudinal dimension as the radiating fin 101 width of 5 cm
- the width is 1 cm
- the fixed paper sheet portion 106 is bonded without any gaps.
- the radiation fins 101 are fixed at 1 cm intervals.
- This corrugated honeycomb radiator is cut to a height of 5 cm, the cutting edge 105 is bonded to the heat conduction part 102, and the parallel paper sheet 103 and the corrugated paper sheet 103 are attached to the heat conduction part 102. In a vertical position.
- an epoxy-based filler filled with an iron oxide filler is used as the adhesive.
- the external shape of the corrugated honeycomb radiator is equal to the external shape of the heat conducting portion 102.
- a vertical paper sheet 103T and a horizontal paper sheet 103S are connected in a grid pattern to form a radiator.
- the vertical paper sheet 103T and the horizontal paper sheet 103S are provided with slits in half of the vertical width, and another paper sheet 103 is inserted into the slit and connected in a grid pattern.
- the vertical paper sheet 103 is provided with circular through holes at the top and bottom.
- the through hole has an inner diameter of 6 mm
- the upper through hole has a distance of 13 mm from the upper end to the center of the through hole
- the lower through hole has a distance of 13 mm from the lower end to the center.
- the interval between the vertical paper sheets 103 is 5 mm
- the interval between the horizontal paper sheets 103 is 1 cm
- the vertical width between the vertical paper sheet 103 and the horizontal paper sheet 103 is 5 cm.
- the lower end edges of the vertical paper sheet 103 and the horizontal paper sheet 103 are bonded to the heat conducting unit 102 via an adhesive, and are fixed in a vertical posture with respect to the heat conducting unit 102.
- the same adhesive as in Example 7 is used.
- Example 11 As shown in FIG. 35, the paper sheet 103 is cut into a 1 cm wide strip, and this is an elliptical loop-shaped heat radiation fin 101 having a major axis in the height direction of 40 mm and a minor axis in the width direction of 15 mm. To do.
- the heat dissipating fins 101 are arranged in five rows in a posture in which the loops are positioned on the same plane, and are adhered to the heat conducting unit 102 while being in contact with each other. Adjacent five rows of radiating fins 101 are bonded so that their bonding positions are shifted in the longitudinal direction, i.e., 7.5 mm in the longitudinal direction, and 14 and 15 loop radiating fins in one row. 101 is bonded.
- the same adhesive as in Example 7 is used.
- the same circuit board as that used in the example was fixed.
- the circuit board had a size of 170 mm ⁇ 50 mm, and was fixed to the central portion excluding both ends of the plate-like heat conducting portion 102.
- the temperature of the LED fixed to the circuit board was measured.
- Table 1 shows the temperatures of the LEDs radiated by the heat radiators of Examples 7 to 11 and Comparative Example 3 described above.
- the radiators of the paper sheets 103 of Examples 7 to 11 of the present invention can reduce the temperature of the LED to 55 ° C. to 63 ° C., which is comparable to the aluminum radiator of Comparative Example 3. It has been demonstrated that it has excellent heat dissipation characteristics.
- the heatsink for paper sheet of the present invention is a mobile phone in addition to the heat radiation of conventionally used lighting devices such as LEDs, computer CPU, electronic components such as transistors and FETs, panels such as liquid crystal, PDP and EL. It can also be used in places where lightness is required, such as heat dissipation from LCDs, heat dissipation from electronic boards and liquid crystals in portable PCs, electronic parts in cars, and heat dissipation from lighting. Useful. Since the paper sheet is used as a heat radiating fin, it can be used in place of a heat radiator that uses a metal such as aluminum as a heat radiating fin at present and contributes to weight reduction of electronic components.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Paper (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
また、本発明の他の大切な目的は、安価に多量生産できる紙シートの放熱器を提供することにある。 The present invention has been developed for the purpose of solving the above drawbacks. An important object of the present invention is to provide a paper sheet radiator that can be extremely lightened while realizing excellent heat dissipation characteristics by increasing the heat dissipation area of the heat dissipation fins.
Another important object of the present invention is to provide a paper sheet radiator that can be mass-produced inexpensively.
この放熱器は、ジグザグ状に折曲加工している紙シートからなる放熱フィンを平面状とするので、平面状の発熱部品に広い伝熱面積で熱結合して、効率よく放熱できる。 The radiator of the paper sheet according to
Since this radiator has a flat surface with fins made of a paper sheet bent in a zigzag shape, it can be efficiently radiated by being thermally coupled to a flat heat generating component with a wide heat transfer area.
本明細書において、折曲端面とは、ジグザグ状に折曲加工された紙シートの端縁を含む面であって、折曲された複数の折曲面の端縁を含む面を意味するものとする。 The paper sheet radiator according to
In the present specification, the bent end surface is a surface including the edge of the paper sheet bent in a zigzag shape, and means a surface including the edges of a plurality of bent curved surfaces. To do.
この紙シートの放熱器は、ジグザグ状に折曲加工している紙シートを円筒状とするので、円柱形状の発熱部品に効率よく熱結合させて放熱できる。 In the paper sheet radiator according to
Since this paper sheet heat sink has a cylindrical paper sheet bent in a zigzag shape, it can efficiently dissipate heat by being thermally coupled to a columnar heat generating component.
この放熱器は、複数の補強シートの間にジグザグ状の紙シートを配置するので、放熱面積を大きくして、効率よく放熱できる特徴がある。また、対向する補強シートの間にジグザグ状の紙シートを挟着するように配置するので、ここに配設される放熱フィンを補強シートで保護できる特徴も実現する。 The paper sheet radiator according to
Since this heat radiator arranges a zigzag paper sheet between a plurality of reinforcing sheets, it has a feature that the heat radiation area can be increased and heat can be efficiently radiated. Moreover, since it arrange | positions so that a zigzag-shaped paper sheet may be pinched | interposed between the opposing reinforcement sheets, the characteristic which can protect the radiation fin arrange | positioned here with a reinforcement sheet is also implement | achieved.
以上の紙シートの放熱器は、放熱フィンに使用する紙シートの耐折曲強度を向上し、折曲加工を簡単にしながら熱伝導率を高くできる、紙シートとして理想的な特性を実現する。また、放熱フィンに使用する紙シートの振動に対する強度を向上できる特徴も実現する。以上の紙シートは、耐折強度を4829回と極めて強くでき、また、熱伝導率も38.15W/m・Kとして、放熱フィンのすぐれた放熱特性を実現できる。 The paper sheet radiator according to claim 9 of the present invention is a beaten pulp formed by beating the fibers of the
The above paper sheet radiator improves the folding strength of the paper sheet used for the radiation fin, and realizes ideal characteristics as a paper sheet that can increase the thermal conductivity while simplifying the bending process. Moreover, the characteristic which can improve the intensity | strength with respect to the vibration of the paper sheet used for a radiation fin is also implement | achieved. The above paper sheet can have an extremely strong folding strength of 4829 times, and the thermal conductivity is 38.15 W / m · K, thereby realizing excellent heat dissipation characteristics of the heat dissipation fins.
以上の放熱器は、固定紙シート部を広い面積で熱伝導部に熱結合して、熱伝導部の発熱を効率よく固定紙シート部に伝導し、表面方向に優れた熱伝導特性によって固定紙シート部から放熱フィンに速やかに熱伝導して外部に効率よく放熱する。 The paper sheet radiator according to claim 22 of the present invention is formed by bending the
The above radiators thermally couple the fixed paper sheet part to the heat conduction part over a wide area, efficiently conduct the heat generated by the heat conduction part to the fixed paper sheet part, and the fixed paper sheet has excellent heat conduction characteristics in the surface direction. It quickly conducts heat from the seat part to the heat radiating fins and efficiently radiates heat to the outside.
以上の放熱器は、一枚の紙シートで複数の放熱フィンを固定紙シート部に連結する構造が実現できると共に、固定紙シート部を広い面積にできる。このため、熱伝導部の発熱を、広い面積で熱結合状態にある固定紙シート部に効率よく熱伝導し、さらに表面方向に優れた熱伝導率によって、固定紙シート部から複数の放熱フィンにも効率よく熱伝導して、熱伝導部の発熱を効率よく放熱できる。 According to a twenty-third aspect of the present invention, there is provided a paper sheet radiator, wherein the
The above radiator can realize a structure in which a plurality of radiating fins are connected to the fixed paper sheet portion with a single paper sheet, and the fixed paper sheet portion can have a wide area. For this reason, the heat generated in the heat conduction part is efficiently conducted to the fixed paper sheet part that is in a thermally coupled state over a large area, and further, the heat conductivity from the surface to the heat dissipation fins is improved by the excellent thermal conductivity in the surface direction. Can also conduct heat efficiently, and can efficiently dissipate the heat generated in the heat conduction part.
以上の放熱器も、一枚の紙シートで複数の放熱フィンを固定紙シート部に連結する構造が実現できると共に、固定紙シート部を広い面積にできる。このため、熱伝導部の発熱を、広い面積で熱結合状態にある固定紙シート部に効率よく熱伝導し、さらに表面方向に優れた熱伝導率によって、固定紙シート部から複数の放熱フィンにも効率よく熱伝導して、熱伝導部の発熱を効率よく放熱できる。 According to a twenty-fourth aspect of the present invention, in the paper sheet radiator, the
The above heat radiator can also realize a structure in which a plurality of heat radiation fins are connected to the fixed paper sheet portion with a single paper sheet, and the fixed paper sheet portion can have a wide area. For this reason, the heat generated in the heat conduction part is efficiently conducted to the fixed paper sheet part that is in a thermally coupled state over a large area, and further, the heat conductivity from the surface to the heat dissipation fins is improved by the excellent thermal conductivity in the surface direction. Can also conduct heat efficiently, and can efficiently dissipate the heat generated in the heat conduction part.
以上の放熱器は、簡単かつ容易に、しかも好ましい状態で固定紙シート部を熱伝導部に熱結合状態に固定でき、熱伝導部の発熱を速やかに固定紙シート部に伝導して、固定紙シート部から放熱フィンに熱伝導して効率よく放熱できる。この構造は接着剤を使用することなく紙シートを熱伝導部に固定できるので、接着剤を使用しない状態にあっては、全体を軽くできる。 The paper sheet radiator according to claim 25 of the present invention has a fixing
The above radiator can easily and easily fix the fixed paper sheet part to the heat conduction part in a heat coupled state in a preferable state, and quickly conduct the heat generated by the heat conduction part to the fixed paper sheet part. Heat can be efficiently dissipated by conducting heat from the seat portion to the radiation fin. In this structure, the paper sheet can be fixed to the heat conducting portion without using an adhesive, so that the entire structure can be lightened if no adhesive is used.
以上の放熱器は、固定紙シート部を好ましい状態で熱伝導部に固定できると共に、放熱フィンの両側に固定紙シート部を設けて、各々の放熱フィンを理想的な状態で固定紙シート部を介して熱伝導部に熱結合状態に連結できる。このため、熱伝導部の発熱を速やかに固定紙シート部に伝導し、固定紙シート部から放熱フィンに熱伝導して効率よく放熱できる。 The paper sheet radiator according to claim 26 of the present invention has a shape in which the
The above radiator can fix the fixed paper sheet part to the heat conducting part in a preferable state, and also provide the fixed paper sheet part on both sides of the heat radiating fin, The heat conduction part can be connected to the heat conduction part. For this reason, the heat generated in the heat conducting portion is quickly conducted to the fixed paper sheet portion, and heat is conducted from the fixed paper sheet portion to the heat radiating fin for efficient heat dissipation.
以上の放熱器は、放熱フィンを安定して自立できる状態としながら、熱伝導部の発熱を効率よく固定紙シート部から放熱フィンに伝導して、放熱効率をよくできる。また、固定プレート7の貫通孔7Cは、三角形やスリット形状とすることができる。三角形の貫通孔は、垂直断面形状と水平断面形状を三角形とする放熱フィンを突出させる。スリットの貫通孔は、2つ折りした放熱フィンを突出させる。 A paper sheet radiator according to a twenty-seventh aspect of the present invention is a mountain shape in which the through-
The above heat radiator can improve the heat radiation efficiency by efficiently conducting the heat generated in the heat conducting portion from the fixed paper sheet portion to the heat radiating fin while keeping the heat radiating fin in a stable and independent state. Moreover, the through-hole 7C of the fixed
固定プレートを金属プレートとする構造にあっては、固定紙シート部を確実に熱伝導部に密着させて、好ましい熱結合状態を実現し、さらに、金属プレートの固定プレートからも放熱して、放熱特性を改善できる。固定プレートをプラスチック板とする構造にあっては、軽くしながら固定紙シート部を熱伝導部に確実に熱結合状態に固定できる。 In the paper sheet radiator of claim 28 of the present invention, the fixing
In the structure where the fixed plate is a metal plate, the fixed paper sheet part is securely brought into close contact with the heat conducting part to achieve a preferable thermal coupling state, and further, heat is radiated from the fixed plate of the metal plate. The characteristics can be improved. In the structure in which the fixing plate is a plastic plate, the fixed paper sheet portion can be reliably fixed to the heat conducting portion in a thermally coupled state while being light.
以上の放熱器は、折り畳み状態で梱包し、また、運搬することで、この行程で極めてコンパクトにしながら、優れた放熱特性を実現する。さらに、この構造は輸送コストを低減できる。 In the paper sheet radiator according to claim 29 of the present invention, the radiating
The above radiator is packed in a folded state and transported to achieve excellent heat dissipation characteristics while being extremely compact in this process. Furthermore, this structure can reduce transportation costs.
以上の放熱器は、放熱フィンを簡単に熱伝導部に固定しながら、紙シートの切断縁を熱伝導部に熱結合状態に固定して、表面方向に優れた熱伝導特性を示す紙シートでもって、熱伝導部の熱を効率よく放熱フィンに伝導して放熱できる。 In the paper sheet radiator of
The above radiator is a paper sheet that has excellent heat conduction characteristics in the surface direction by fixing the cutting edge of the paper sheet in a thermally coupled state to the heat conducting part while easily fixing the heat radiating fin to the heat conducting part. Therefore, the heat of the heat conducting part can be efficiently conducted to the heat radiating fins and radiated.
以上の放熱器は、放熱フィンの表面積を大きくして、優れた放熱特性を実現する。また、放熱フィンを優れた強度で所定の形状に保持して、長期間にわたって優れた放熱特性を実現する。 The paper sheet radiator according to claim 32 of the present invention has a shape that can be self-supported by placing the cutting edge on the heat conducting portion, and is any of a cylindrical shape, a plate shape, a honeycomb shape, a corrugated honeycomb shape, a grid lattice shape, and a cone shape. To do.
The above radiator increases the surface area of the radiating fin and realizes excellent heat dissipation characteristics. Further, the heat dissipating fins are held in a predetermined shape with excellent strength to achieve excellent heat dissipation characteristics over a long period of time.
以上の放熱器は、固定紙シート部と放熱フィンとの熱結合面積を広くし、さらに放熱面積も広くして、固定紙シート部から放熱フィンに速やかに熱伝導して、放熱フィンでもって熱伝導部の発熱を効率よく放熱できる。 The paper sheet radiator according to a thirty-third aspect of the present invention fixes the radiating
The above radiator has a wide thermal coupling area between the fixed paper sheet part and the radiation fin, further widens the heat radiation area, and conducts heat quickly from the fixed paper sheet part to the radiation fin. The heat generated in the conductive part can be efficiently radiated.
以上の放熱器は、放熱フィンを熱伝導部に挿通して熱結合状態とするので、極めて簡単に放熱フィンを熱伝導部に熱結合状態で連結できる。 In the paper sheet radiator of claim 34 of the present invention, the
Since the above heat radiator inserts a heat radiating fin in a heat conduction part and makes it a thermal coupling state, it can connect a heat radiation fin to a heat conduction part in a heat coupling state very easily.
この放熱器は、放熱フィンを十分な強度としながら、軽くて優れた放熱特性を実現できる。 According to the paper sheet radiator of
This heat radiator can realize light heat and excellent heat radiation characteristics while making the heat radiation fins sufficiently strong.
以上の紙シートの放熱器は、放熱フィンに使用する紙シートの耐折曲強度を向上し、折曲加工を簡単にしながら熱伝導率を高くできる、紙シートとして理想的な特性を実現する。また、放熱フィンに使用する紙シートの振動に対する強度を向上できる特徴も実現する。以上の紙シートは、耐折強度を約3000回と極めて強くでき、また、熱伝導率も54.2W/m・Kとして、放熱フィンのすぐれた放熱特性を実現できる。 The paper sheet radiator according to
The above paper sheet radiator improves the folding strength of the paper sheet used for the radiation fin, and realizes ideal characteristics as a paper sheet that can increase the thermal conductivity while simplifying the bending process. Moreover, the characteristic which can improve the intensity | strength with respect to the vibration of the paper sheet used for a radiation fin is also implement | achieved. The above paper sheet can have an extremely strong folding strength of about 3000 times and a thermal conductivity of 54.2 W / m · K, thereby realizing excellent heat dissipation characteristics of the heat dissipation fins.
炭化珪素(平均粒子径20μm)100重量部、叩解パルプとしてのアクリルパルプ(カナディアンスタンダードフリーネス(CSF)50ml、平均繊維長1.45mm)21重量部、非叩解繊維としてのポリエステル繊維(0.1dtex×3mm)7重量部、バインダー繊維としてのポリエステル繊維からなるバインダー繊維(1.2dtex×5mm)14重量部からなる組成物を水中に混合分散し、固形分1%~5%からなるスラリーを調製する。この後、凝集剤としてカチオン系ポリアクリル酸ソーダを0.001重量部、アニオン系ポリアクリル酸ソーダを0.00002重量部を添加後、25cm角角型シートマシンを用いてスラリーをシート化して抄紙シートとし、この抄紙シートをプレスし、乾燥させた後、このシートを5MPaの圧力で温度180℃、2分間プレスを行う。 The
100 parts by weight of silicon carbide (average particle diameter 20 μm), 21 parts by weight of acrylic pulp (Canadian Standard Freeness (CSF) 50 ml, average fiber length 1.45 mm) as beating pulp, polyester fiber (0.1 dtex ×) as
7cm×9cmに裁断した測定試料をグリセリンに浸漬し、真空状態にして試料を脱気処理したものを、25℃で一定にしてある恒温室で温度が一定になるまで静置する。温度が一定になったら、恒温室内で温度を一定にした測定装置に試料の短片を上にして縦方向に挿入する。 The thermal conductivity is measured by the following method.
A measurement sample cut to 7 cm × 9 cm is immersed in glycerin, and the sample that has been degassed under vacuum is allowed to stand in a temperature-controlled room at 25 ° C. until the temperature becomes constant. When the temperature becomes constant, the sample is inserted in a vertical direction with a short piece of sample facing up in a measuring device in a constant temperature room where the temperature is constant.
熱流φ(ヒーターから派生した)を測定することにより、サンプル温度の時間変化に対する微分値をΔT、サンプルの厚さをHとすると、相対熱伝導率λは、下記の計算式となる。
λ=φ/H・ΔT A schematic diagram of the measuring apparatus is shown in FIG. In this measuring apparatus, a
By measuring the heat flow φ (derived from the heater), if the differential value with respect to the time change of the sample temperature is ΔT and the thickness of the sample is H, the relative thermal conductivity λ is calculated as follows.
λ = φ / H · ΔT
さらにまた、以上の紙シートは、シートマシンを用いてスラリーをシート化して抄紙シートとして製作したが、シートマシンに代わって、モールド抄紙によって抄紙シートとして製作することもできる。 Furthermore, the paper sheet used for the heat radiating fin of the radiator of the present invention can be manufactured using, for example, only beating pulp without necessarily using beating pulp and non-beating fiber.
Furthermore, although the above paper sheet was produced as a papermaking sheet by forming a slurry into a sheet using a sheet machine, it can be produced as a papermaking sheet by mold papermaking instead of the sheet machine.
なお、以下の実施例に示す放熱器は、熱伝導部として、寸法を210mm×50mm、厚さを3mmとする紙シートを使用し、この熱伝導部の一方の面に、紙シートをジグザグ状に折曲加工して設けた放熱フィンを熱結合状態に固定した。さらに、放熱器は、熱伝導部の他方の面であって、放熱フィンを固定した面と反対側の面に、発熱体として複数のLEDを固定してなる回路基板を固定した。回路基板は、寸法を170mm×50mmとして、熱伝導部である紙シートの両端部を除く中央部に固定した。この回路基板に固定されたLEDの温度を測定した。 Using the
In addition, the radiator shown in the following examples uses a paper sheet having a size of 210 mm × 50 mm and a thickness of 3 mm as the heat conduction portion, and the paper sheet is zigzag-shaped on one surface of the heat conduction portion. The heat dissipating fin provided by bending was fixed in a thermally coupled state. Furthermore, the heat radiator fixed the circuit board formed by fixing a plurality of LEDs as a heating element on the other surface of the heat conducting portion, on the opposite side to the surface on which the heat radiating fins were fixed. The circuit board had a size of 170 mm × 50 mm, and was fixed to the central portion excluding both ends of the paper sheet as the heat conducting portion. The temperature of the LED fixed to the circuit board was measured.
厚さ0.3mm、縦幅(H)を50mmとする帯状の紙シート3を、図3に示すように、ジグザグ状に折曲加工して、1枚の折曲面の横幅(W)を10mm、ジグザグ状に折曲加工するピッチ(d)を5mmとする放熱フィン1を設けて、紙シートからなる熱伝導部2に固定する。ジグザグ状に折曲加工している紙シート3からなる放熱フィン1は、全体形状を平面状として、熱伝導部2である紙シートに対向する折曲縁4を、熱伝導部2の紙シートに熱結合状態に固定する。 [Example 1]
A strip-shaped
ジグザグ状に折曲加工する放熱フィン1の1枚の折曲面の横幅(W)を20mm、ジグザグ状に折曲加工するピッチ(d)を8mmとする以外、実施例1と同様にして放熱フィン1を設けて、熱伝導部2である紙シートに対向する折曲縁4を熱結合状態に固定する。 [Example 2]
Except that the width (W) of one folded curved surface of the radiating
ジグザグ状に折曲加工する放熱フィン1の1枚の折曲面の横幅(W)を30mm、ジグザグ状に折曲加工するピッチ(d)を13.9mmとする以外、実施例1と同様にして放熱フィン1を設けて、熱伝導部2である紙シートに対向する折曲縁を熱結合状態に固定する。 [Example 3]
Except that the width (W) of one folded curved surface of the radiating
厚さ0.3mm、縦幅(H)を10mmとする帯状の紙シート3を、図9に示すように、ジグザグ状に折曲加工して、1枚の折曲面の横幅(W)を10mm、ジグザグ状に折曲加工するピッチ(d)を8mmとする放熱フィン1を製作する。図9に示すように、縦幅(H)を放熱フィン1と等しくしてなる6枚の補強シート8を互いに離して平行な姿勢に配設し、対向する補強シート8の間に、ジグザグ状に折曲加工している紙シート3からなる放熱フィン1を配置する。放熱フィン1は、ジグザグ状に折曲加工している紙シート3の両方の折曲縁4を補強シート8に固定する。6枚の補強シート8の間に5列に配置された放熱フィン1の一方の折曲端面5を平面状の熱伝導部2である紙シートに熱結合状態に固定する。 [Example 4]
A strip-shaped
ジグザグ状に折曲加工する放熱フィン1の1枚の折曲面の横幅(W)を10mm、ジグザグ状に折曲加工するピッチ(d)を1.2mmとして、多数の折曲面を積層する構造とする以外、実施例1と同様にして放熱フィン1を設けて、熱伝導部2である紙シートに対向する折曲縁4を熱結合状態に固定する。 [Example 5]
A structure in which a large number of folded curved surfaces are laminated, with the width (W) of one folded curved surface of the radiating
厚さ0.3mm、縦幅(H)を50mmとする帯状の紙シート3を、図5に示すように、ジグザグ状に折曲加工して、高い山形突出部21Aの間に、低い山形突出部21Bを有する放熱フィン21を製作する。この放熱フィン21は、高い山形突出部21Aの横幅(W1)を20mm、低い山形突出部21Bの横幅(W2)を10mm、高い山形突出部21Aのピッチ(D)を8mmとして、この間に6個の低い山形突出部21Bを設けて熱伝導部2である紙シートに対向する折曲縁4を、熱伝導部2の紙シートに熱結合状態に固定する。 [Example 6]
A belt-shaped
比較例1として、アルミニウム製の放熱器を製作する。この放熱器は、厚さを6mm、寸法を210mm×50mmとするプレート状の熱伝導部の一方の面に、複数の放熱フィンを一体成形して設ける。複数の放熱フィンは、縦幅を50mm、横幅を15mm、厚さを2.5mmとして、8mmのピッチで互いに平行な姿勢で一体成形して設けた。さらに、放熱器は、熱伝導部の他方の面であって、放熱フィンを設けた面と反対側の面に、発熱体として複数のLEDを固定してなる回路基板であって、実施例で使用した回路基板と同じ回路基板を固定した。回路基板は、寸法を170mm×50mmとして、プレート状の熱伝導部の両端部を除く中央部に固定した。この回路基板に固定されたLEDの温度を測定した。 [Comparative Example 1]
As Comparative Example 1, an aluminum radiator is manufactured. This heat radiator is provided with a plurality of heat radiation fins integrally formed on one surface of a plate-like heat conducting portion having a thickness of 6 mm and a dimension of 210 mm × 50 mm. The plurality of heat dissipating fins were integrally formed with a vertical width of 50 mm, a horizontal width of 15 mm, and a thickness of 2.5 mm, in an attitude parallel to each other at a pitch of 8 mm. Further, the radiator is a circuit board in which a plurality of LEDs are fixed as a heating element on the other surface of the heat conducting portion, on the opposite side to the surface on which the heat dissipating fins are provided. The same circuit board as the used circuit board was fixed. The circuit board had a size of 170 mm × 50 mm, and was fixed to the central part excluding both ends of the plate-like heat conduction part. The temperature of the LED fixed to the circuit board was measured.
さらに、比較例2として、実施例で使用した回路基板と同じ回路基板を用意し、この回路基板に放熱器を固定することなく、LEDの温度を測定した。 [Comparative Example 2]
Furthermore, as Comparative Example 2, the same circuit board as the circuit board used in the example was prepared, and the temperature of the LED was measured without fixing a radiator to the circuit board.
黒鉛100重量部(平均粒子径100μmのものを50重量部と平均粒径を40μmのものを50重量部を添加)、
叩解パルプとしてのアクリルパルプ(カナディアンスタンダードフリーネス(CSF)50ml、平均繊維長1.45mm)21重量部、
非叩解繊維としてのポリエステル繊維(0.1dtex×3mm)4重量部、
バインダー繊維としてのポリエステル繊維からなるバインダー繊維(1.2dtex×5mm)14重量部、
炭素繊維(直径7μm)2.9重量部からなる組成物を水中に混合分散し、固形分1%~5%からなるスラリーを調製する。このスラリーを、すでに湿式の紙製造機として使用されている短網抄紙機で湿式抄紙して抄紙シート103とし、この抄紙シート103をプレスして乾燥させた後、2本の熱ロール間に通過させる熱圧処理によって高密度化された紙シート103とする。熱圧処理は、表面温度を180℃、外径を250mm、ロール間の圧力を150kg/cmとする金属ロールの間に、5m/minの速度で通過させる。 The
100 parts by weight of graphite (50 parts by weight having an average particle diameter of 100 μm and 50 parts by weight having an average particle diameter of 40 μm),
21 parts by weight of acrylic pulp as beating pulp (Canadian Standard Freeness (CSF) 50 ml, average fiber length 1.45 mm),
4 parts by weight of polyester fiber (0.1 dtex × 3 mm) as non-beaten fiber,
14 parts by weight of binder fiber (1.2 dtex × 5 mm) made of polyester fiber as binder fiber,
A composition comprising 2.9 parts by weight of carbon fiber (
さらにまた、以上の紙シートは、シートマシンを用いてスラリーをシート化して抄紙シートとして製作したが、シートマシンに代わって、モールド抄紙によって抄紙シートとして製作することもできる。 Furthermore, the paper sheet used for the radiator of FIGS. 11 to 37 can be manufactured using, for example, only beating pulp without necessarily using beating pulp and non-beating fiber.
Furthermore, although the above paper sheet was produced as a papermaking sheet by forming a slurry into a sheet using a sheet machine, it can be produced as a papermaking sheet by mold papermaking instead of the sheet machine.
なお、以下の実施例に示す放熱器は、熱伝導部として、寸法を210mm×50mm、厚さを3mmとするアルミニウム板を使用する。この熱伝導部の一方の面に、本発明の以下に記載する実施例と比較例にかかる放熱フィンを熱結合状態に固定する。さらに、放熱器は、熱伝導部の他方の面であって、放熱フィンを固定した面と反対側の面に、発熱体として18個のLEDを固定してなる回路基板を固定した。回路基板は、寸法を170mm×50mmとして、熱伝導部であるアルミニウム板の両端部を除く中央部に固定した。この回路基板は、チップタイプ、1W型のLED18個を表面に固定している。18個のLEDは直列に接続されて、供給電圧68.3V、供給電流を0.3Aとして約20Wの電力が供給される。この回路基板に固定されたLEDの温度を測定した。 Using the
In addition, the heat radiator shown in the following examples uses an aluminum plate having a size of 210 mm × 50 mm and a thickness of 3 mm as the heat conducting portion. On one surface of the heat conducting portion, the heat dissipating fins according to the examples and comparative examples described below of the present invention are fixed in a thermally coupled state. Furthermore, the heat radiator fixed the circuit board which fixes 18 LED as a heat generating body to the other surface of a heat conductive part, and the surface on the opposite side to the surface which fixed the radiation fin. The circuit board had a size of 170 mm × 50 mm, and was fixed to the central portion excluding both ends of the aluminum plate as the heat conducting portion. This circuit board has 18 chip-type and 1W-type LEDs fixed to the surface. Eighteen LEDs are connected in series, and about 20 W of power is supplied with a supply voltage of 68.3 V and a supply current of 0.3 A. The temperature of the LED fixed to the circuit board was measured.
図14に示すように、一枚の細長い紙シート103を、水平部分103Aと垂直部分103Bとができるように直角に折曲加工して、垂直部分103Bを放熱フィン101、水平部分103Aを固定紙シート部106として、固定紙シート部106を熱伝導部102に熱結合状態に接着する。垂直部分103Bは内面を両面接着テープで接着して一枚の放熱フィンとしている。放熱フィン101は、高さと横幅を5cm、固定紙シート部106は長手方向の寸法を放熱フィン101の横幅と同じ5cm、幅を1cm、固定紙シート部106を隙間なく接着して、21枚の放熱フィン101を1cm間隔で固定する。 [Example 7]
As shown in FIG. 14, a sheet of long and
図18と図19に示すように、互いに平行に配設している複数列の固定紙シート部106の間に、山形に突出する放熱フィン101を設ける形状に紙シート103を折曲加工し、軟鋼の固定プレート107で固定紙シート部106を熱伝導部102に挟着して固定する。固定プレート107の軟鋼は、山形の放熱フィン101を突出させる四角形の貫通孔107Cを設けている。紙シート103の横幅は50mm、山形に突出している放熱フィン101の横幅は50mm、上方に突出している傾斜方向の長さを30mmとしている。固定プレート107の外形は熱伝導部102の外形に等しく、貫通孔107Cの内形は11mm×50mmとして、貫通孔107Cの間に設けている固定紙シート部106を熱伝導部102に挟着する挟着部107Bの幅は2mm、周囲にある四角形の枠型部分の横幅を3mmとしている。固定紙シート部106は、接着剤を使用することなく、固定プレート107に挟着されて熱伝導部102に固定している。 [Example 8]
As shown in FIG. 18 and FIG. 19, the
図33に示すように、紙シート103をコルゲートハニカム状として、切断縁105を熱伝導部102に固定する。コルゲートハニカム状の紙シート103は、互いに平行に配設している平行紙シート103Xの間に、コルゲート状に折曲加工しているコルゲート紙シート103Yを挟着するように接着している。コルゲート紙シート103は、高さを3mm、横幅を6mmとするコルゲート状に折曲加工して、平行紙シート103の間に挟着するように接着している。平行紙シート103の間隔は、コルゲート紙シート103の高さとなるので、3mmとしている。このコルゲートハニカム状の放熱器は、高さが5cmとなるように切断されて、切断縁105を熱伝導部102に接着して、平行紙シート103とコルゲート紙シート103を熱伝導部102に対して垂直姿勢に固定している。接着剤にはエポキシ系に酸化鉄系のフィラーを充填したものを使用している。コルゲートハニカム状の放熱器は、その外形を熱伝導部102の外形に等しくしている。 [Example 9]
As shown in FIG. 33, the
図34に示すように、縦紙シート103Tと横紙シート103Sとを碁盤格子状に連結して放熱器としている。縦紙シート103Tと横紙シート103Sは上下幅の半分にスリットを設け、スリットに他の紙シート103を挿入して碁盤格子状に連結している。縦紙シート103は上下に円形の貫通孔を設けている。貫通孔は内径を6mm、上部の貫通孔は上端から貫通孔の中心までの間隔を13mm、下部の貫通孔は下端から中心までの間隔を13mm離した位置に設けている。縦紙シート103の間隔は5mm、横紙シート103の間隔は1cm、縦紙シート103と横紙シート103の上下幅を5cmとしている。縦紙シート103と横紙シート103の下端縁は接着剤を介して熱伝導部102に接着されて、熱伝導部102に対して垂直姿勢に固定される。接着剤は実施例7のものと同じものを使用している。 [Example 10]
As shown in FIG. 34, a
図35に示すように、紙シート103を1cm幅の帯状に裁断し、これを高さ方向となる長径が40mm、幅方向となる短径を15mmとする楕円形のループ状の放熱フィン101とする。放熱フィン101は、ループを同一平面に位置させる姿勢で、5列に並べて、互いに接触する状態で熱伝導部102に接着する。隣接する5列の放熱フィン101は、互いに接着位置が長手方向にずれるように、すなわち、長手方向に7.5mmずれる位置に接着して、1列に14個と15個のループ状の放熱フィン101を接着している。接着剤は実施例7と同じものを使用する。 [Example 11]
As shown in FIG. 35, the
比較例3として、アルミニウム製の放熱器を製作する。この放熱器は、厚さを6mm、寸法を210mm×50mmとするプレート状の熱伝導部102の一方の面に、複数の放熱フィン101を一体成形して設ける。複数の放熱フィン101は、縦幅を50mm、横幅を15mm、厚さを2.5mmとして、8mmのピッチで互いに平行な姿勢で一体成形して設けた。さらに、放熱器は、熱伝導部102の他方の面であって、放熱フィン101を設けた面と反対側の面に、発熱体として複数のLEDを固定してなる回路基板であって、実施例で使用した回路基板と同じ回路基板を固定した。回路基板は、寸法を170mm×50mmとして、プレート状の熱伝導部102の両端部を除く中央部に固定した。この回路基板に固定されたLEDの温度を測定した。 [Comparative Example 3]
As Comparative Example 3, an aluminum radiator is manufactured. In this radiator, a plurality of radiating
2…熱伝導部
3…紙シート
4…折曲縁
5…折曲端面
6…谷部
7…換気孔
8…補強シート
10…固定部
11…紙シート
12…紙シート
13…熱伝導性プラスチックシート
21…放熱フィン 21A…高い山形突出部
21B…低い山形突出部
22…熱伝導部
31…放熱フィン
32…熱伝導部
42…熱伝導部
61…試料
62…ヒートシンク
63…空洞
64…ヒーター
65…差込口
101…放熱フィン
102…熱伝導部 102A…スリット
103…紙シート 103A…水平部分
103B…垂直部分
103C…上下部分
103D…水平部
103T…縦紙シート
103S…横紙シート
103X…平行紙シート
103Y…コルゲート紙シート
103Z…区画紙シート
103a…切り込み
103b…切り起こし部
103c…切り抜き部
103d…折曲部
103e…湾曲面
104…折曲ライン 104a…折り畳みライン
105…切断縁
106…固定紙シート部
107…固定プレート 107A…枠部
107B…挟着部
107C…貫通孔
108…止ネジ
109…挟着具
110…LED電球
111…中間折曲ライン
112…スリット
113…中間折曲部 DESCRIPTION OF
DESCRIPTION OF
Claims (47)
- 折曲加工してなる放熱フィン(1)、(21)、(31)を熱伝導部(2)、(22)、(32)、(42)に固定してなる放熱器において、
前記放熱フィン(1)、(21)、(31)が、繊維に熱伝導粉末を添加してなる湿式抄紙の紙シート(3)で、前記放熱フィン(1)、(21)、(31)がジグザグ状に折曲加工されて熱伝導部(2)、(22)、(32)、(42)に熱結合状態に固定してなることを特徴とする紙シートの放熱器。 In the radiator formed by fixing the radiating fins (1), (21), (31) formed by bending to the heat conducting parts (2), (22), (32), (42),
The heat dissipating fins (1), (21), (31) are paper sheets (3) of wet paper making in which heat conductive powder is added to the fibers, and the heat dissipating fins (1), (21), (31) Is a paper sheet radiator characterized by being bent in a zigzag shape and fixed in a thermally coupled state to the heat conducting portions (2), (22), (32), (42). - ジグザグ状に折曲された前記紙シート(3)の折曲縁(4)を熱伝導部(2)、(22)、(32)、(42)に熱結合状態に固定してなる請求項1に記載される紙シートの放熱器。 The bent edge (4) of the paper sheet (3) bent in a zigzag shape is fixed to the heat conducting section (2), (22), (32), (42) in a thermally coupled state. 1. A paper sheet radiator described in 1.
- 前記放熱フィン(1)、(21)、(31)が、ジグザグ状に折曲加工してなる紙シート(3)を平面状として、折曲加工された紙シート(3)の熱伝導部(2)に対向する折曲縁(4)を熱伝導部(2)に熱結合状態に固定してなる請求項2に記載される紙シートの放熱器。 The heat dissipating fins (1), (21), (31) are formed in a zigzag-shaped paper sheet (3) in a planar shape, and the heat conduction part of the bent paper sheet (3) ( The paper sheet radiator according to claim 2, wherein the bent edge (4) facing 2) is fixed to the heat conducting portion (2) in a thermally coupled state.
- ジグザグ状に折曲された前記紙シート(3)の折曲端面(5)を熱伝導部(2)に熱結合状態に固定してなる請求項1に記載される紙シートの放熱器。 The paper sheet radiator according to claim 1, wherein the bent end face (5) of the paper sheet (3) bent in a zigzag shape is fixed to the heat conducting portion (2) in a thermally coupled state.
- 前記放熱フィン(1)が、ジグザグ状に折曲加工してなる紙シート(3)を円筒状として、折曲加工された紙シート(3)の折曲端面(5)を熱伝導部(2)に熱結合状態に固定してなる請求項4に記載される紙シートの放熱器。 The heat radiating fin (1) has a paper sheet (3) bent in a zigzag shape as a cylindrical shape, and the bent end surface (5) of the bent paper sheet (3) is a heat conducting portion (2 The paper sheet radiator according to claim 4, which is fixed in a thermally coupled state.
- 複数枚の補強シート(8)を互いに平行に配設すると共に、対向する補強シート(8)の間に、紙シート(3)をジグザグ状に折曲加工してなる放熱フィン(1)を配置しており、放熱フィン(1)が、ジグザグ状の紙シート(3)の両方の折曲縁(4)を補強シート(8)に熱結合状態に固定すると共に、ジグザグ状に折曲された前記紙シート(3)の折曲端面(5)を熱伝導部(2)に熱結合状態に固定してなる請求項4に記載される紙シートの放熱器。 A plurality of reinforcing sheets (8) are arranged in parallel with each other, and between the reinforcing sheets (8) facing each other, a heat dissipating fin (1) formed by bending a paper sheet (3) into a zigzag shape is arranged. The heat dissipating fin (1) was bent in a zigzag manner while fixing both bent edges (4) of the zigzag paper sheet (3) to the reinforcing sheet (8) in a thermally coupled state. The paper sheet radiator according to claim 4, wherein the bent end face (5) of the paper sheet (3) is fixed to the heat conducting portion (2) in a thermally coupled state.
- 前記熱伝導部(2)、(22)、(32)が、紙シート(11)、(12)と、金属プレートと、熱伝導性プラスチックシート(13)のいずれかである請求項1ないし6のいずれかに記載される紙シートの放熱器。 7. The heat conducting part (2), (22), (32) is any one of a paper sheet (11), (12), a metal plate, and a heat conductive plastic sheet (13). A paper sheet radiator described in any of the above.
- 前記放熱フィン(1)、(21)、(31)の紙シート(3)の厚さが1mm以下であって、0.05mm以上である請求項1ないし7のいずれかに記載される紙シートの放熱器。 The paper sheet according to any one of claims 1 to 7, wherein a thickness of the paper sheet (3) of the radiation fins (1), (21), (31) is 1 mm or less and 0.05 mm or more. Heatsink.
- 前記紙シート(3)の繊維が、叩解して表面に無数の微細繊維を設けてなる叩解パルプと、叩解されない非叩解繊維とからなり、叩解パルプと非叩解繊維とに熱伝導粉末が添加されてなる湿式抄紙された紙である請求項1ないし8のいずれかに記載される紙シートの放熱器。 The fibers of the paper sheet (3) are beaten pulp formed by beating and providing countless fine fibers on the surface, and non-beaten fibers that are not beaten, and heat conduction powder is added to the beaten pulp and non-beaten fibers. The paper sheet radiator according to any one of claims 1 to 8, wherein the paper sheet is wet-made paper.
- 前記叩解パルプが、合成繊維からなる叩解パルプと天然パルプのいずれかを単独であるいは複数種混合して含む請求項9に記載される紙シートの放熱器。 The paper sheet radiator according to claim 9, wherein the beaten pulp contains beaten pulp made of synthetic fiber and natural pulp alone or in combination.
- 前記合成繊維からなる叩解パルプが、アクリル繊維、ポリアリレート繊維、ポリアミド繊維、ポリエチレン繊維、ポリプロピレン繊維、PBO(ポリパラフェニレンベンズオキサゾール)繊維、レーヨン繊維のいずれかである請求項10に記載される紙シートの放熱器。 The paper according to claim 10, wherein the beaten pulp made of the synthetic fiber is any one of acrylic fiber, polyarylate fiber, polyamide fiber, polyethylene fiber, polypropylene fiber, PBO (polyparaphenylene benzoxazole) fiber, and rayon fiber. Sheet radiator.
- 前記天然パルプが、木材パルプ、非木材パルプのいずれかである請求項10に記載される紙シートの放熱器。 The paper sheet radiator according to claim 10, wherein the natural pulp is wood pulp or non-wood pulp.
- 前記紙シート(3)の非叩解繊維が、ポリエステル繊維、ポリアミド繊維、ポリプロピレン繊維、ポリイミド繊維、ポリエチレン繊維、アクリル繊維、炭素繊維、PBO繊維、ポリ酢酸ビニル繊維、レーヨン繊維、ポリビニルアルコール繊維、エチレンビニルアルコール繊維、ポリアリレート繊維、金属繊維、ガラス繊維、セラミック繊維、フッ素繊維のいずれかである請求項9に記載される紙シートの放熱器。 Non-beaten fiber of the paper sheet (3) is polyester fiber, polyamide fiber, polypropylene fiber, polyimide fiber, polyethylene fiber, acrylic fiber, carbon fiber, PBO fiber, polyvinyl acetate fiber, rayon fiber, polyvinyl alcohol fiber, ethylene vinyl The paper sheet radiator according to claim 9, which is any one of alcohol fiber, polyarylate fiber, metal fiber, glass fiber, ceramic fiber, and fluorine fiber.
- 前記紙シート(3)が、熱で溶融されるバインダー繊維の非叩解繊維を含み、湿式抄紙されたシートが加熱プレスしてバインダー繊維を溶融してシート状に加工されてなる紙である請求項9に記載される紙シートの放熱器。 The paper sheet (3) contains non-beaten fibers of binder fibers that are melted by heat, and the wet-paper-made sheet is paper that is processed into a sheet by melting the binder fibers by hot pressing. 9. A paper sheet radiator described in 9.
- 前記バインダー繊維が、ポリエステル繊維、ポリプロピレン繊維、ポリアミド繊維、ポリエチレン繊維、ポリ酢酸ビニル繊維、ポリビニルアルコール繊維、エチレンビニルアルコール繊維のいずれかである請求項14に記載される紙シートの放熱器。 The paper sheet radiator according to claim 14, wherein the binder fiber is any one of polyester fiber, polypropylene fiber, polyamide fiber, polyethylene fiber, polyvinyl acetate fiber, polyvinyl alcohol fiber, and ethylene vinyl alcohol fiber.
- 前記熱伝導粉末が、窒化ケイ素、窒化アルミニウム、マグネシア、アルミナシリケート、シリコン、鉄、炭化珪素、炭素、窒化硼素、アルミナ、シリカ、アルミニウム、銅、銀、金の粉末のいずれかである請求項1ないし15のいずれかに記載される紙シートの放熱器。 2. The heat conductive powder is any of silicon nitride, aluminum nitride, magnesia, alumina silicate, silicon, iron, silicon carbide, carbon, boron nitride, alumina, silica, aluminum, copper, silver, and gold powder. Thru | or 15 the heatsink of the paper sheet described in any one.
- 前記熱伝導粉末の平均粒径が0.1μmないし500μmである請求項1ないし16のいずれかに記載される紙シートの放熱器。 The paper sheet radiator according to any one of claims 1 to 16, wherein the heat conductive powder has an average particle size of 0.1 µm to 500 µm.
- 前記紙シート(3)が、バインダーの合成樹脂を含む請求項1ないし17のいずれかに記載される紙シートの放熱器。 The paper sheet radiator according to any one of claims 1 to 17, wherein the paper sheet (3) includes a synthetic resin of a binder.
- 前記バインダーの合成樹脂が、ポリアクリル酸エステル共重合体樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、NBR(アクリロニトリルブタジエンゴム)樹脂、SBR(スチレンブタジエンゴム)樹脂、ポリウレタン樹脂のいずれかを含む熱可塑性樹脂、または、フェノール樹脂、エポキシ樹脂のいずれかを含む熟硬化性樹脂のいずれかである請求項18に記載される紙シートの放熱器。 A thermoplastic resin in which the synthetic resin of the binder includes any of a polyacrylic ester copolymer resin, a polyvinyl acetate resin, a polyvinyl alcohol resin, an NBR (acrylonitrile butadiene rubber) resin, an SBR (styrene butadiene rubber) resin, and a polyurethane resin. The paper sheet radiator according to claim 18, which is a resin, or a mature curable resin containing any one of a phenol resin and an epoxy resin.
- 前記放熱フィン(1)、(21)、(31)が、繊維に熱伝導粉末を添加してなるモールド抄紙で湿式抄紙されてなる紙シート(3)である請求項1ないし19のいずれかに記載される紙シートの放熱器。 The heat radiation fin (1), (21), (31) is a paper sheet (3) wet-made with a mold paper made by adding heat conductive powder to a fiber. Paper sheet radiator to be described.
- 放熱フィンを熱伝導部に固定してなる放熱器であって、
前記放熱フィンが、繊維に熱伝導粉末を添加してなる湿式抄紙の紙シートで構成されると共に、
前記紙シートが折曲ラインで折曲されて、折曲ラインを境界として放熱フィンと固定紙シート部とに区画され、固定紙シート部が熱伝導部に熱結合状態に固定されて、熱伝導部の熱を固定紙シート部から放熱フィンに熱伝導して放熱するようにしてなることを特徴とする紙シートの放熱器。 It is a radiator formed by fixing a radiation fin to a heat conduction part,
The heat dissipating fin is composed of a paper sheet of wet paper making obtained by adding a heat conductive powder to a fiber,
The paper sheet is bent at a folding line, and is divided into a heat radiating fin and a fixed paper sheet section with the folding line as a boundary, and the fixed paper sheet section is fixed in a thermally coupled state to the heat conduction section to conduct heat conduction. A heat radiator for a paper sheet, wherein the heat of the portion is thermally conducted from the fixed paper sheet portion to the heat radiating fins to dissipate the heat. - 前記紙シートがL字状に折曲加工されて放熱フィンと固定紙シート部とに区画され、固定紙シート部を熱伝導部に熱結合状態に固定してなる請求項21に記載される紙シートの放熱器。 The paper according to claim 21, wherein the paper sheet is bent into an L shape and partitioned into a heat radiating fin and a fixed paper sheet portion, and the fixed paper sheet portion is fixed to the heat conducting portion in a thermally coupled state. Sheet radiator.
- 前記紙シートが、折曲ラインを残して特定の形状に切り抜かれて、複数の切り抜き部と固定紙シート部とに区画され、切り抜き部が固定紙シート部に対して所定の角度となるように折曲ラインで折曲されて、切り抜き部を放熱フィンとしており、前記固定紙シート部を熱伝導部に熱結合状態に固定してなる請求項21に記載される紙シートの放熱器。 The paper sheet is cut into a specific shape leaving a folding line, and is divided into a plurality of cutout portions and a fixed paper sheet portion, and the cutout portion is at a predetermined angle with respect to the fixed paper sheet portion. The paper sheet radiator according to claim 21, wherein the paper sheet radiator is formed by being bent at a folding line, wherein the cutout portion is a heat radiating fin, and the fixed paper sheet portion is fixed in a thermally coupled state to the heat conducting portion.
- 前記紙シートが、外周縁から離れた位置を折曲ラインとして、この折曲ラインの両端に連結して折曲ラインから外周縁まで裁断されて、切り起こし部と固定紙シート部とに区画され、前記切り起こし部が固定紙シート部に対して所定の角度となる状態に折曲ラインで折曲されて、切り起こし部を放熱フィンとしており、前記固定紙シート部を熱伝導部に熱結合状態に固定してなる請求項21に記載される紙シートの放熱器。 The paper sheet has a folding line at a position away from the outer peripheral edge, and is connected to both ends of the folding line and cut from the folding line to the outer peripheral edge, and is divided into a cut and raised portion and a fixed paper sheet portion. The cut-and-raised part is bent at a folding line at a predetermined angle with respect to the fixed paper sheet part, the cut-and-raised part is used as a heat radiation fin, and the fixed paper sheet part is thermally coupled to the heat conduction part. The paper sheet radiator according to claim 21, which is fixed to a state.
- 前記固定紙シート部を挟着して熱伝導部に固定する固定プレートを有し、この固定プレートと熱伝導部とで固定紙シート部を挟着して、固定紙シート部を熱伝導部に熱結合状態に固定してなる請求項21ないし24のいずれかに記載される紙シートの放熱器。 A fixing plate that sandwiches the fixed paper sheet portion and fixes the fixed paper sheet portion to the heat conducting portion; sandwiches the fixed paper sheet portion between the fixing plate and the heat conducting portion; The paper sheet radiator according to any one of claims 21 to 24, which is fixed in a thermally coupled state.
- 前記紙シートが、互いに平行に配設してなる複数列の固定紙シート部の間に、山形に突出する放熱フィンを有する形状に折曲加工されており、
前記固定プレートは、固定紙シート部を熱伝導部に挟着する挟着部と、山形に突出する放熱フィンを突出させる貫通孔を有し、
前記固定プレートが、前記貫通孔に放熱フィンを挿入して、挟着部を熱伝導部に固定してなる請求項25に記載される紙シートの放熱器。 The paper sheet is bent into a shape having heat radiation fins protruding in a mountain shape between a plurality of rows of fixed paper sheets arranged in parallel with each other,
The fixing plate has a sandwiching portion for sandwiching the fixed paper sheet portion to the heat conducting portion, and a through hole for projecting the radiating fin projecting in a mountain shape,
26. The paper sheet radiator according to claim 25, wherein the fixing plate includes a heat radiating fin inserted into the through-hole to fix the sandwiched portion to the heat conducting portion. - 前記固定プレートの貫通孔が四角形、三角形、スリットのいずれかで、前記紙シートの放熱フィンが貫通孔から突出している請求項26に記載される紙シートの放熱器。 27. The paper sheet radiator according to claim 26, wherein the through hole of the fixing plate is any one of a square, a triangle, and a slit, and the heat radiation fin of the paper sheet protrudes from the through hole.
- 前記固定プレートが金属プレート、硬質のプラスチック板、フィラーを充填してなる硬質のプラスチック板、繊維強化のプラスチック板のいずれかである請求項25ないし27のいずれかに記載される紙シートの放熱器。 28. The paper sheet radiator according to claim 25, wherein the fixing plate is one of a metal plate, a hard plastic plate, a hard plastic plate filled with a filler, and a fiber-reinforced plastic plate. .
- 前記放熱フィンが、固定紙シート部の表面に平行な折り畳みラインを有し、この折り畳みラインを折曲して放熱フィンを折り畳み自在に固定紙シート部に連結してなる請求項21ないし26のいずれかに記載される紙シートの放熱器。 27. The heat radiating fin has a fold line parallel to the surface of the fixed paper sheet portion, and the fold fin is folded to connect the heat radiating fin to the fixed paper sheet portion. A paper sheet radiator described in the above.
- 前記折り畳みラインが折曲ラインである請求項29に記載される紙シートの放熱器。 The paper sheet radiator according to claim 29, wherein the folding line is a folding line.
- 放熱フィンを熱伝導部に固定してなる放熱器であって、
前記放熱フィンが、繊維に熱伝導粉末を添加してなる湿式抄紙の紙シートで構成され、かつ、
前記放熱フィンの紙シートの切断縁が熱伝導部に熱結合状態に固定されると共に、紙シートの放熱フィンが切断縁を熱伝導部に載せて自立できる形状としてなることを特徴とする紙シートの放熱器。 It is a radiator formed by fixing a radiation fin to a heat conduction part,
The heat dissipating fin is composed of a paper sheet of a wet papermaking obtained by adding a heat conductive powder to a fiber, and
The paper sheet is characterized in that the cutting edge of the paper sheet of the heat dissipating fin is fixed in a thermally coupled state to the heat conducting part, and the heat dissipating fin of the paper sheet has a shape that can stand on its own by placing the cutting edge on the heat conducting part. Heatsink. - 前記切断縁を熱伝導部に載せて自立できる形状が、筒状、板状、ハニカム状、コルゲートハニカム状、碁盤格子状、錐状のいずれかである請求項31に記載される紙シートの放熱器。 32. The heat dissipation of a paper sheet according to claim 31, wherein a shape capable of being self-supported by placing the cutting edge on the heat conducting portion is any of a cylindrical shape, a plate shape, a honeycomb shape, a corrugated honeycomb shape, a grid lattice shape, and a cone shape. vessel.
- 放熱フィンを熱伝導部に固定してなる放熱器であって、
前記放熱フィンが、繊維に熱伝導粉末を添加してなる湿式抄紙の紙シートで構成され、かつ、
前記放熱フィンの紙シートがループ状又はスパイラル状で、ループ又はスパイラルの外周面を熱伝導部に熱結合状態で固定してなることを特徴とする紙シートの放熱器。 It is a radiator formed by fixing a radiation fin to a heat conduction part,
The heat dissipating fin is composed of a paper sheet of a wet papermaking obtained by adding a heat conductive powder to a fiber, and
A paper sheet radiator, wherein the paper sheet of the radiating fin is in a loop shape or a spiral shape, and an outer peripheral surface of the loop or spiral is fixed in a thermally coupled state to a heat conducting portion. - 放熱フィンを熱伝導部に固定してなる放熱器であって、
前記放熱フィンが、繊維に熱伝導粉末を添加してなる湿式抄紙の紙シートで構成され、かつ、
前記放熱フィンの紙シートが熱伝導部に挿通されて熱結合状態で固定してなることを特徴とする紙シートの放熱器。 It is a radiator formed by fixing a radiation fin to a heat conduction part,
The heat dissipating fin is composed of a paper sheet of a wet papermaking obtained by adding a heat conductive powder to a fiber, and
A paper sheet radiator, wherein the paper sheet of the heat radiating fin is inserted into a heat conducting portion and fixed in a thermally coupled state. - 前記放熱フィンの紙シートの厚さが1mm以下であって、0.05mm以上である請求項21ないし34のいずれかに記載される紙シートの放熱器。 The paper sheet radiator according to any one of claims 21 to 34, wherein a thickness of the paper sheet of the heat radiation fin is 1 mm or less and 0.05 mm or more.
- 前記紙シートの繊維が、叩解して表面に無数の微細繊維を設けてなる叩解パルプと、叩解されない非叩解繊維とからなり、叩解パルプと非叩解繊維とに熱伝導粉末が添加されてなる湿式抄紙された紙である請求項21ないし35のいずれかに記載される紙シートの放熱器。 The paper sheet fiber comprises a beating pulp formed by beating and providing innumerable fine fibers on the surface, and a non-beating fiber that is not beaten, and a wet powder in which a heat conductive powder is added to the beating pulp and the non-beating fiber. 36. The paper sheet radiator according to any one of claims 21 to 35, wherein the paper sheet is paper.
- 前記叩解パルプが、合成繊維からなる叩解パルプと天然パルプのいずれかを単独であるいは複数種混合して含む請求項36に記載される紙シートの放熱器。 The paper sheet radiator according to claim 36, wherein the beaten pulp includes beaten pulp made of synthetic fiber and natural pulp, either singly or in combination.
- 前記合成繊維からなる叩解パルプが、アクリル繊維、ポリアリレート繊維、ポリアミド繊維、ポリエチレン繊維、ポリプロピレン繊維、PBO(ポリパラフェニレンベンズオキサゾール)繊維、レーヨン繊維、ポリスルホン系繊維のいずれかである請求項37に記載される紙シートの放熱器。 The beaten pulp comprising the synthetic fiber is any one of acrylic fiber, polyarylate fiber, polyamide fiber, polyethylene fiber, polypropylene fiber, PBO (polyparaphenylene benzoxazole) fiber, rayon fiber, and polysulfone fiber. Paper sheet radiator to be described.
- 前記天然パルプが、木材パルプ、非木材パルプのいずれかである請求項37に記載される紙シートの放熱器。 The paper sheet radiator according to claim 37, wherein the natural pulp is either wood pulp or non-wood pulp.
- 前記紙シートの非叩解繊維が、ポリエステル繊維、ポリアミド繊維、ポリプロピレン繊維、ポリイミド繊維、ポリエチレン繊維、アクリル繊維、炭素繊維、PBO繊維、ポリ酢酸ビニル繊維、レーヨン繊維、ポリビニルアルコール繊維、エチレンビニルアルコール繊維、ポリアリレート繊維、金属繊維、ガラス繊維、セラミック繊維、フッ素繊維、ポリスルホン系繊維、ポリフェニレンサルファイド系繊維のいずれかである請求項36に記載される紙シートの放熱器。 Non-beaten fiber of the paper sheet is polyester fiber, polyamide fiber, polypropylene fiber, polyimide fiber, polyethylene fiber, acrylic fiber, carbon fiber, PBO fiber, polyvinyl acetate fiber, rayon fiber, polyvinyl alcohol fiber, ethylene vinyl alcohol fiber, 37. The paper sheet radiator according to claim 36, wherein the paper sheet radiator is any one of polyarylate fiber, metal fiber, glass fiber, ceramic fiber, fluorine fiber, polysulfone fiber, and polyphenylene sulfide fiber.
- 前記紙シートが、熱で溶融されるバインダー繊維の非叩解繊維を含み、湿式抄紙されたシートが加熱プレスしてバインダー繊維を溶融してシート状に加工されてなる紙である請求項36に記載される紙シートの放熱器。 37. The paper sheet according to claim 36, wherein the paper sheet includes non-beaten fibers of binder fibers that are melted by heat, and the wet-paper-made sheet is paper that is heated and pressed to melt the binder fibers and be processed into a sheet shape. Paper sheet radiator.
- 前記バインダー繊維が、ポリエステル繊維、ポリプロピレン繊維、ポリアミド繊維、ポリエチレン繊維、ポリ酢酸ビニル繊維、ポリビニルアルコール繊維、エチレンビニルアルコール繊維、ポリスルホン系繊維、ポリフェニレンサルファイド系繊維のいずれかである請求項41に記載される紙シートの放熱器。 42. The binder fiber according to claim 41, wherein the binder fiber is any one of a polyester fiber, a polypropylene fiber, a polyamide fiber, a polyethylene fiber, a polyvinyl acetate fiber, a polyvinyl alcohol fiber, an ethylene vinyl alcohol fiber, a polysulfone fiber, and a polyphenylene sulfide fiber. Paper sheet radiator.
- 前記熱伝導粉末が、窒化ケイ素、窒化アルミニウム、マグネシア、アルミナシリケート、シリコン、鉄、炭化珪素、炭素、窒化硼素、アルミナ、シリカ、アルミニウム、銅、銀、金、酸化亜鉛、亜鉛の粉末のいずれかである請求項21ないし42のいずれかに記載される紙シートの放熱器。 The heat conductive powder is any of silicon nitride, aluminum nitride, magnesia, alumina silicate, silicon, iron, silicon carbide, carbon, boron nitride, alumina, silica, aluminum, copper, silver, gold, zinc oxide, zinc powder 43. A paper sheet radiator according to any one of claims 21 to 42.
- 前記熱伝導粉末の平均粒径が0.1μmないし500μmである請求項21ないし43のいずれかに記載される紙シートの放熱器。 The paper sheet radiator according to any one of claims 21 to 43, wherein the heat conductive powder has an average particle size of 0.1 µm to 500 µm.
- 前記紙シートが、バインダーの合成樹脂を含む請求項21ないし44のいずれかに記載される紙シートの放熱器。 The paper sheet radiator according to any one of claims 21 to 44, wherein the paper sheet contains a synthetic resin of a binder.
- 前記バインダーの合成樹脂が、ポリアクリル酸エステル共重合体樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、NBR(アクリロニトリルブタジエンゴム)樹脂、SBR(スチレンブタジエンゴム)樹脂、ポリウレタン樹脂、フッ素系樹脂のいずれかを含む熱可塑性樹脂、または、フェノール樹脂、エポキシ樹脂、シリコン系樹脂のいずれかを含む熱硬化性樹脂のいずれかである請求項45に記載される紙シートの放熱器。 The binder synthetic resin is any one of polyacrylate copolymer resin, polyvinyl acetate resin, polyvinyl alcohol resin, NBR (acrylonitrile butadiene rubber) resin, SBR (styrene butadiene rubber) resin, polyurethane resin, and fluorine resin. 46. The paper sheet radiator according to claim 45, wherein the paper sheet radiator is any one of a thermosetting resin containing any one of a phenolic resin, an epoxy resin, and a silicone resin.
- 前記放熱フィンが、繊維に熱伝導粉末を添加してなるモールド抄紙で湿式抄紙されてなる紙シートである請求項21ないし46のいずれかに記載される紙シートの放熱器。 The paper sheet radiator according to any one of claims 21 to 46, wherein the radiating fin is a paper sheet obtained by wet papermaking with a mold paper made by adding a heat conductive powder to a fiber.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080038512.7A CN102484103B (en) | 2009-08-31 | 2010-08-31 | Paper sheet radiator |
KR1020127007866A KR101437242B1 (en) | 2009-08-31 | 2010-08-31 | Paper sheet radiator |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-200782 | 2009-08-31 | ||
JP2009200782A JP5165655B2 (en) | 2009-08-31 | 2009-08-31 | Paper sheet radiator |
JP2010-191599 | 2010-08-28 | ||
JP2010191599A JP5165738B2 (en) | 2010-08-28 | 2010-08-28 | Paper sheet radiator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011025020A1 true WO2011025020A1 (en) | 2011-03-03 |
Family
ID=43628109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/064758 WO2011025020A1 (en) | 2009-08-31 | 2010-08-31 | Paper sheet radiator |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101437242B1 (en) |
CN (1) | CN102484103B (en) |
TW (1) | TWI523167B (en) |
WO (1) | WO2011025020A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102425771A (en) * | 2011-09-19 | 2012-04-25 | 东莞勤上光电股份有限公司 | LED (Light Emitting Diode) lamp radiator and preparation method thereof |
JP2012256779A (en) * | 2011-06-10 | 2012-12-27 | Ryosan Co Ltd | Heat sink |
WO2014167448A1 (en) * | 2013-04-07 | 2014-10-16 | Koninklijke Philips N.V. | Heat sink, lighting device and heat sink manufacturing method |
CN104898727A (en) * | 2015-04-21 | 2015-09-09 | 黄冈职业技术学院 | Internet of things-based computer control system |
JP2016166734A (en) * | 2016-05-25 | 2016-09-15 | パナソニックIpマネジメント株式会社 | Heat sink and air conditioning device |
US20180047714A1 (en) * | 2015-03-23 | 2018-02-15 | Gd Midea Airconditioning Equipment Co., Ltd. | Intelligent power module and manufacturing method thereof |
EP3108195A4 (en) * | 2014-02-18 | 2018-05-16 | Forced Physics LLC | Assembly and method for cooling |
WO2020022013A1 (en) * | 2018-07-24 | 2020-01-30 | 信越ポリマー株式会社 | Paper sheet and method for manufacturing paper sheet |
CN112635647A (en) * | 2020-12-22 | 2021-04-09 | 杭州大和热磁电子有限公司 | Thermoelectric module capable of well radiating and manufacturing method thereof |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103887252B (en) * | 2012-12-24 | 2017-05-31 | 东莞市楷林裕光能源科技有限公司 | A kind of high-efficiency heat conduction radiator |
KR101646190B1 (en) * | 2014-03-28 | 2016-08-05 | 한국과학기술연구원 | Led light apparatus having heat sink |
KR101652161B1 (en) | 2014-06-25 | 2016-08-29 | 엘지전자 주식회사 | Lighting apparatus |
WO2016062577A1 (en) * | 2014-10-20 | 2016-04-28 | Philips Lighting Holding B.V. | Low weight tube fin heat sink |
FR3028391B1 (en) * | 2014-11-18 | 2017-01-06 | Seb Sa | STEAMING HAIRSTYLE APPARATUS WITH IMPROVED HOUSING |
CN104767417B (en) * | 2015-03-23 | 2018-10-19 | 广东美的制冷设备有限公司 | Control circuit, intelligent power module and its manufacturing method of intelligent power module |
CN104795974A (en) * | 2015-03-23 | 2015-07-22 | 广东美的制冷设备有限公司 | Intelligent power module, control circuit of intelligent power module and manufacturing method of intelligent power module |
CN104795378B (en) * | 2015-03-23 | 2018-05-08 | 广东美的制冷设备有限公司 | Intelligent power module and its manufacture method |
CN104766842B (en) * | 2015-03-23 | 2017-09-08 | 广东美的制冷设备有限公司 | SPM and its manufacture method |
CN105047623B (en) * | 2015-03-23 | 2017-12-15 | 广东美的制冷设备有限公司 | SPM and its manufacture method |
CN104835794B (en) * | 2015-03-23 | 2018-02-02 | 广东美的制冷设备有限公司 | SPM and its manufacture method |
CN104767396B (en) * | 2015-03-23 | 2017-11-14 | 广东美的制冷设备有限公司 | SPM and its manufacture method |
CN104779174B (en) * | 2015-03-23 | 2018-05-01 | 广东美的制冷设备有限公司 | The production method of power module |
CN104752373B (en) * | 2015-03-23 | 2018-10-23 | 广东美的制冷设备有限公司 | intelligent power module and its manufacturing method |
CN104795388B (en) * | 2015-03-23 | 2017-11-14 | 广东美的制冷设备有限公司 | SPM and its manufacture method |
CN104795374B (en) * | 2015-03-23 | 2017-10-13 | 广东美的制冷设备有限公司 | SPM and its manufacture method |
CN104812215B (en) * | 2015-04-01 | 2017-06-27 | 太仓陶氏电气有限公司 | A kind of welding machine radiator |
CN109673131B (en) * | 2018-12-05 | 2020-12-15 | 浙江欧托电气有限公司 | New forms of energy charging device mainboard water-cooling board wing temperature regulating device |
CN109778585B (en) * | 2019-01-09 | 2021-08-24 | 苏州巨峰电气绝缘系统股份有限公司 | Heat-conducting paper and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1092986A (en) * | 1996-08-28 | 1998-04-10 | Hewlett Packard Co <Hp> | Heat sink |
JP2000101004A (en) * | 1998-09-24 | 2000-04-07 | Tomoegawa Paper Co Ltd | Heat radiative sheet |
JP2002033425A (en) * | 2000-07-18 | 2002-01-31 | Matsushita Electric Works Ltd | Heat-radiating structure |
JP2002219566A (en) * | 2001-01-22 | 2002-08-06 | Matsushita Refrig Co Ltd | Heat exchange member |
JP2003068791A (en) * | 2001-06-15 | 2003-03-07 | Ricoh Co Ltd | Semiconductor device, image reading unit and image forming device |
JP2005203385A (en) * | 2003-10-06 | 2005-07-28 | Koji Sakaguchi | Heat sink |
JP2008182132A (en) * | 2007-01-26 | 2008-08-07 | Mitsubishi Paper Mills Ltd | Heat conductive sheet and method of manufacturing same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6762492B2 (en) * | 2001-06-15 | 2004-07-13 | Ricoh Company, Ltd. | Semiconductor device, image scanning unit and image forming apparatus |
US6919504B2 (en) * | 2002-12-19 | 2005-07-19 | 3M Innovative Properties Company | Flexible heat sink |
TWI251320B (en) * | 2003-07-04 | 2006-03-11 | Fuji Polymer Ind | Thermal conductive composition, a heat-dissipating putty sheet and heat-dissipating structure using the same |
JP2009099878A (en) | 2007-10-19 | 2009-05-07 | Hitachi Ltd | Heat sink and its manufacturing method |
-
2010
- 2010-08-31 WO PCT/JP2010/064758 patent/WO2011025020A1/en active Application Filing
- 2010-08-31 TW TW099129329A patent/TWI523167B/en not_active IP Right Cessation
- 2010-08-31 CN CN201080038512.7A patent/CN102484103B/en not_active Expired - Fee Related
- 2010-08-31 KR KR1020127007866A patent/KR101437242B1/en active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1092986A (en) * | 1996-08-28 | 1998-04-10 | Hewlett Packard Co <Hp> | Heat sink |
JP2000101004A (en) * | 1998-09-24 | 2000-04-07 | Tomoegawa Paper Co Ltd | Heat radiative sheet |
JP2002033425A (en) * | 2000-07-18 | 2002-01-31 | Matsushita Electric Works Ltd | Heat-radiating structure |
JP2002219566A (en) * | 2001-01-22 | 2002-08-06 | Matsushita Refrig Co Ltd | Heat exchange member |
JP2003068791A (en) * | 2001-06-15 | 2003-03-07 | Ricoh Co Ltd | Semiconductor device, image reading unit and image forming device |
JP2005203385A (en) * | 2003-10-06 | 2005-07-28 | Koji Sakaguchi | Heat sink |
JP2008182132A (en) * | 2007-01-26 | 2008-08-07 | Mitsubishi Paper Mills Ltd | Heat conductive sheet and method of manufacturing same |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012256779A (en) * | 2011-06-10 | 2012-12-27 | Ryosan Co Ltd | Heat sink |
CN102425771A (en) * | 2011-09-19 | 2012-04-25 | 东莞勤上光电股份有限公司 | LED (Light Emitting Diode) lamp radiator and preparation method thereof |
WO2014167448A1 (en) * | 2013-04-07 | 2014-10-16 | Koninklijke Philips N.V. | Heat sink, lighting device and heat sink manufacturing method |
US10379582B2 (en) | 2014-02-18 | 2019-08-13 | Forced Physics Llc | Assembly and method for cooling |
US11327540B2 (en) | 2014-02-18 | 2022-05-10 | Forced Physics Llc | Assembly and method for cooling |
AU2019202493B2 (en) * | 2014-02-18 | 2019-10-31 | Forced Physics Llc | Assembly and method for cooling |
EP3540351A1 (en) * | 2014-02-18 | 2019-09-18 | Forced Physics LLC | Assembly and method for cooling comprising folded sheet having beveled edges |
EP3108195A4 (en) * | 2014-02-18 | 2018-05-16 | Forced Physics LLC | Assembly and method for cooling |
US10615155B2 (en) * | 2015-03-23 | 2020-04-07 | Gd Midea Airconditioning Equipment Co., Ltd. | Intelligent power module and manufacturing method thereof |
JP2018509780A (en) * | 2015-03-23 | 2018-04-05 | 広東美的制冷設備有限公司Gd Midea Air−Conditioning Equipment Co.,Ltd. | Intelligent power module and manufacturing method thereof |
US20180047714A1 (en) * | 2015-03-23 | 2018-02-15 | Gd Midea Airconditioning Equipment Co., Ltd. | Intelligent power module and manufacturing method thereof |
CN104898727A (en) * | 2015-04-21 | 2015-09-09 | 黄冈职业技术学院 | Internet of things-based computer control system |
JP2016166734A (en) * | 2016-05-25 | 2016-09-15 | パナソニックIpマネジメント株式会社 | Heat sink and air conditioning device |
WO2020022013A1 (en) * | 2018-07-24 | 2020-01-30 | 信越ポリマー株式会社 | Paper sheet and method for manufacturing paper sheet |
CN112635647A (en) * | 2020-12-22 | 2021-04-09 | 杭州大和热磁电子有限公司 | Thermoelectric module capable of well radiating and manufacturing method thereof |
CN112635647B (en) * | 2020-12-22 | 2022-10-25 | 杭州大和热磁电子有限公司 | Thermoelectric module capable of well dissipating heat and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI523167B (en) | 2016-02-21 |
CN102484103B (en) | 2015-03-18 |
KR20120055718A (en) | 2012-05-31 |
CN102484103A (en) | 2012-05-30 |
KR101437242B1 (en) | 2014-09-03 |
TW201128743A (en) | 2011-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011025020A1 (en) | Paper sheet radiator | |
JP5165738B2 (en) | Paper sheet radiator | |
JP2012049407A5 (en) | ||
KR100995164B1 (en) | Heat sink apparatus for exothermic element | |
US20150034976A1 (en) | Led chip-on-board type flexible pcb and flexible heat spreader sheet pad and heat-sink structure using the same | |
CN111816630B (en) | Heat radiation structure and power module | |
JP2010034422A (en) | Method of manufacturing radiator sheet | |
JP5165655B2 (en) | Paper sheet radiator | |
WO2019049781A1 (en) | Circuit block assembly | |
CN216357859U (en) | Heat dissipation module and electronic equipment | |
CN105953191B (en) | Radiating lamp | |
JP2016018617A (en) | Radiator, heat radiation unit for radiator and lighting device with radiator | |
JP2013064224A (en) | Method for producing heat-releasing sheet | |
JP2015056235A (en) | Lighting device and radiator for lighting device | |
AU2017245461A1 (en) | LED lighting apparatus | |
CN114001572A (en) | Heat radiator | |
KR101018163B1 (en) | Heat sink apparatus for exothermic element | |
JP2012169529A (en) | Radiator | |
CN115315130B (en) | Heat dissipation module and electronic equipment | |
CN208387189U (en) | Radiator | |
CN216313682U (en) | Heat dissipation module, base and electronic equipment | |
KR20110010537U (en) | heat sink and LED lighting device comprising the same | |
JP2012256779A (en) | Heat sink | |
CN221598550U (en) | Multilayer pressfitting PCB printed circuit board that can dispel heat fast | |
WO2016110053A1 (en) | Spring-shaped heat sink and radiator with spring-shaped heat sink |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080038512.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10812066 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127007866 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10812066 Country of ref document: EP Kind code of ref document: A1 |