WO2011024999A1 - 浸潤性大腸腫瘍検出用の検体 - Google Patents

浸潤性大腸腫瘍検出用の検体 Download PDF

Info

Publication number
WO2011024999A1
WO2011024999A1 PCT/JP2010/064715 JP2010064715W WO2011024999A1 WO 2011024999 A1 WO2011024999 A1 WO 2011024999A1 JP 2010064715 W JP2010064715 W JP 2010064715W WO 2011024999 A1 WO2011024999 A1 WO 2011024999A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
methylated dna
gene
promoter region
large intestine
Prior art date
Application number
PCT/JP2010/064715
Other languages
English (en)
French (fr)
Inventor
豊田実
山本英一郎
神前正幸
鈴木拓
山野泰穂
Original Assignee
北海道公立大学法人札幌医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北海道公立大学法人札幌医科大学 filed Critical 北海道公立大学法人札幌医科大学
Priority to EP10812045.2A priority Critical patent/EP2472257A4/en
Priority to JP2011528892A priority patent/JPWO2011024999A1/ja
Publication of WO2011024999A1 publication Critical patent/WO2011024999A1/ja
Priority to US13/407,645 priority patent/US20120264120A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57488Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present invention relates to a specimen for detecting an invasive colorectal tumor obtained by noninvasively peeling a large intestine mucus layer, a kit for noninvasively peeling the large intestine mucus layer, and noninvasively peeling the large intestine mucus layer.
  • the present invention relates to a method for obtaining an index for detecting an invasive colorectal tumor and a method for obtaining an index for evaluating a therapeutic effect of a drug and / or a therapeutic method by non-invasively peeling a mucus layer of the large intestine.
  • the present invention uses the methylated DNA as a molecular marker for the detection of invasive colorectal tumor, a kit, a method for obtaining an index for detecting invasive colorectal tumor, and the evaluation of therapeutic effects It is related with the method of obtaining the index.
  • colorectal cancer accounts for the top cancer mortality.
  • Colorectal cancer is the third most common cancer type for both men and women, according to forecasts in the US statistical data for FY2006, and its incidence rate increases by 1.8% every year from 1998 to 2002.
  • Japan the number of patients with colorectal cancer has increased rapidly in recent years. This is thought to be caused by the fact that the Japanese diet is centered on Western-style meat eating. There are reports that about 100,000 people are affected every year and about 41,000 people die in the country. The number of deaths by organ is the third largest after gastric cancer and lung cancer, and further increases are expected in the future.
  • colorectal cancer in women ranks first among all malignant tumors, both in the number of affected and dead.
  • colorectal cancer can be cured almost 100% by surgery if it is early cancer, unlike other cancers. For this reason, colorectal cancer has been the subject of early cancer screening, and numerous testing methods have been developed.
  • endoscopic surgery such as endoscopic mucosal resection and endoscopic submucosal dissection is very effective, while for invasive tumors, laparotomy and chemotherapy are used.
  • Therapies such as combined with radiation therapy are generally performed. Therefore, development of a diagnostic method that can evaluate the invasiveness or depth of cancer or tumor in advance noninvasively is awaited.
  • the large intestine has a five-layer structure of mucous membrane, submucosa, proper muscle layer, serosa lower layer and serosa in order from the lumen side, and the lower rectum has a three-layer structure lacking serosa and serosa lower layer.
  • Colorectal tumors originate from the mucosa and invade deep into the tumor as the tumor progresses. Among these, those in which tumor infiltration stays in the submucosa is called early cancer.
  • testing methods are aimed at finding early cancers, measuring therapeutic effects, providing materials for determining recurrence / metastasis, or making a definitive diagnosis. Regardless of which method is used, the degree of cancer or tumor invasion can be determined. It is not possible to obtain an index for diagnosis.
  • the fecal occult blood test is a method for predicting the occurrence of colorectal tumors indirectly by examining the presence or amount of bleeding in the stool using a monoclonal antibody that reacts with the peroxidase activity of human hemoglobin or human hemoglobin. Yes, it is a simple, inexpensive and noninvasive test. However, the effectiveness of the occult blood test is impaired by intermittent bleeding from the colorectal tumor, increasing the false negative rate. For example, about 50% of patients diagnosed with colorectal tumors are negatively tested on the fecal occult blood test.
  • the amount of bleeding per day from a small colorectal tumor less than 20 mm in diameter is as small as 1-2 ml, so it is not always detected by occult blood tests.
  • gingivitis, hemorrhoids, ulcers, intestinal bleeding due to the use of aspirin, etc. can be caused by bleeding due to causes other than many colorectal tumors. Only 3 to 5% of the tumors are colorectal tumors, and many false positives are included in subjects who are positive by fecal occult blood tests.
  • the fecal occult blood test cannot be said to be a specific detection method for tumors such as colorectal tumors, and is not necessarily sufficient as a preliminary diagnosis method for colorectal tumors. Furthermore, the degree of invasion of colorectal tumor cannot be diagnosed by fecal occult blood test.
  • the intrarectal palpation it is possible to detect a tumor at the far end of the large intestine / rectum by finger examination, but it is not possible to find a more internal tumor.
  • the degree of invasion of colorectal tumor cannot be diagnosed by palpation in the rectum.
  • the blood test is a diagnostic method for diagnosing a colon tumor by measuring a tumor marker in a blood sample of interest and determining the amount or concentration of the tumor marker.
  • Tumor markers such as fetal proteins (AFP, CEA, etc.), sugar chain antigens (CA19-9, serial Tn, etc.), ectopic substances (hormones, neoplastic isozymes, etc.) should be detected.
  • AFP fetal proteins
  • CEA sugar chain antigen
  • ectopic substances hormones, neoplastic isozymes, etc.
  • tumor mutations for diagnosing colorectal cancer, oncogenes (ras, erbB, etc.), tumor suppressor genes (p53, etc.), gene rearrangements (BCR-ABL, etc.)
  • tumor markers in the blood may be positive even when there is no colorectal cancer, and may not be positive unless colorectal cancer has progressed to a certain extent, and conversely, it may not be positive even in advanced colorectal cancer
  • tumor markers for colorectal cancer are not effective enough to lead to early detection and definitive diagnosis, and are currently used as one of the criteria for determining the effectiveness of auxiliary diagnosis and treatment and for detecting recurrence and metastasis.
  • the invasion degree of a colorectal tumor cannot be diagnosed by the concentration of a tumor marker in blood.
  • Enema inspection is a method in which barium is injected into the large intestine, adhered to the mucosal surface of the large intestine, and the surface irregularities are examined by X-rays.
  • the enema examination has a problem that it is expensive and has a heavy burden on the subject and involves a risk of complications.
  • the pretreatment to remove the contents of the large intestine by the administration of laxatives (salt laxatives and contact laxatives) after ingesting a low-fat, low-residence enema meal the day before the test is the subject.
  • laxatives salt laxatives and contact laxatives
  • enema examination involves the risk of X-ray exposure and bowel obstruction.
  • the enema examination is an examination that examines only the form of irregularities in the lumen of the intestine, the infiltration degree of the colorectal tumor cannot be diagnosed by the enema examination.
  • PET examination is a method in which a drug labeled with a positron emitting nuclide is administered to a subject to check at which site the drug is largely consumed.
  • a drug labeled with a positron emitting nuclide is administered to a subject to check at which site the drug is largely consumed.
  • 18F-labeled fluorodeoxyglucose a type of sugar that accumulates in tumors
  • gamma rays are observed from outside the body, so that the distribution of the labeled substance in the body can be determined. It will be visualized, its pharmacokinetics will be confirmed, and the location and size of the lesion will be examined.
  • ⁇ PET inspection generally requires a cyclotron, and the equipment requires a high cost of over 1 billion yen.
  • radiation exposure is inevitable when PET inspection is performed.
  • the approximate size of a tumor can be measured by a PET test, the degree of invasion of a colorectal tumor cannot be diagnosed.
  • Endoscopic examination is a method of examining the inside of the large intestine directly with an endoscope.
  • Endoscopy has high sensitivity and specificity for the detection of colorectal tumors.
  • endoscopy has the advantage of removing early or premalignant polyps.
  • endoscopy has the advantage that diagnostic tissue can be collected by biopsy (tissue biopsy).
  • biopsy tissue biopsy
  • tissue biopsy by endoscopy can only evaluate a tissue with “points”, and there are physical limitations in expanding this to “surfaces”. Since tissue biopsy by endoscopy evaluates only part of the lesion, the large intestine may vary depending on where the biopsy is taken or depending on where the specimen was cut out even if the lesion was removed endoscopically. It is not possible to make a definitive diagnosis of cancer. Moreover, it is not possible to accurately diagnose the depth of tumor using tissue biopsy by endoscopy.
  • a histopathological diagnosis using a biopsy material is performed for a definitive diagnosis of colorectal cancer, but in order to make a definitive diagnosis of a colorectal tumor, a histopathological tissue sample based on detailed endoscopic observation is used. Production is essential. However, since the preparation of such a pathological tissue specimen requires extremely skillful techniques, it is difficult for all endoscopic doctors to perform.
  • biopsy makes the pathological image after surgery uncertain. Based on only the pit diagnosis by, determination of endoscopic resection or laparotomy has been made.
  • Capsule endoscopy is a method of inspecting the digestive tract that swallows a capsule with a built-in micro camera from the mouth and wirelessly transfers image information taken automatically by the capsule while passing through the digestive tract. .
  • Capsule endoscopy has lower image accuracy than normal endoscopes, and because it is an automatic image, it cannot fully observe the depths of the eyelids to be examined, and biopsy and polypectomy cannot be performed. At present, it is used exclusively for examination of the small intestine, which is difficult to observe with a normal endoscope.
  • capsule endoscopy also observes the surface of the intestine from the lumen side, the degree of invasion of a colorectal tumor cannot be diagnosed by endoscopy.
  • Genetic diagnosis using stool or biopsy tissue is a method of diagnosing colorectal cancer by examining genes of tumor cells detached in stool or tumor cells in biopsy tissue. Once the gene mutation or DNA hypermethylation that has occurred in the tumor cells is fixed information in the sense that it is difficult to return to a normal state, genetic diagnosis is a reliable diagnostic method if the specimen is appropriate. is there.
  • Non-Patent Documents 1 and 2 describe that a method for diagnosing a colon tumor using DNA in stool showed certain results. However, these methods have problems in diagnostic possibility and diagnostic accuracy, and remain far from being practical.
  • Changes in genes targeted for genetic diagnosis of colorectal tumors include mutations in oncogenes such as ras and erbB, mutations in tumor suppressor genes such as p53, and gene rearrangements such as BCR-ABL, as well as cancer suppressor genes There are epigenetic modifications such as hypermethylation of CpG islands in the promoter region.
  • a CpG island in the promoter region of a tumor suppressor gene When a CpG island in the promoter region of a tumor suppressor gene is methylated, transcription of the tumor suppressor gene is inactivated, so that cell growth control is not effective, and cell proliferative diseases such as cancer progress.
  • SFRP1, SFRP2, DKK2, hsa-mir-34b / c, p16INK4A, E-cadherin, hMLH1, 14-3-3 sigma BH3 Only family genes BNIP3, ubiquitin ligase CHFR, Genomic genes such as CIITA, a transcriptional coupling factor of MHC class II molecule, BRAF negative regulatory genes IGFBP7, Histone ⁇ H3K27 in colon cancer, HRK, CACNA1G, COX2, DFNA5, RASSF2 which is a regulatory gene of Ras It has been reported that its expression is suppressed by hypermethylation of CpG island in the promoter region of, and is useful for
  • Hypermethylation can be detected from minute amounts of DNA, and once it occurs, it is fixed information in the sense that it does not naturally return to normal, and it is considered useful as an index for genetic diagnosis. ing. However, genetic diagnosis of stool or biopsy tissue can diagnose the presence of a tumor, but cannot diagnose the degree of tumor invasion.
  • the present invention does not have the above-mentioned drawbacks, and a specimen for detecting an invasive colorectal tumor obtained by noninvasively removing a colonic mucus layer, a kit for noninvasively peeling a colonic mucus layer , A method for obtaining an index for detecting an invasive colorectal tumor by noninvasively peeling the colonic mucus layer, and an index for evaluating the therapeutic effect of the drug and / or treatment method by noninvasively peeling the colonic mucus layer It aims at providing the method of obtaining.
  • the present inventors have conducted intensive research to solve the above problems, and surprisingly, the cleaning liquid is sprayed on the target large intestine mucus layer to release the mucus from the mucus layer, and the peeled mucus is washed with the cleaning liquid. It was found that a specimen capable of detecting an invasive colorectal tumor can be obtained by collecting the two together, and the present invention has been completed.
  • the present invention relates to the following specimens, kits, or methods.
  • a specimen for detecting invasive colorectal cancer comprising the washing liquid obtained by spraying a washing liquid on the mucus layer of the colon to peel the mucus from the colon and recovering it with the peeled mucus from the colon.
  • the specimen according to [1] wherein the large intestine mucus layer is a large intestine mucus layer including a tumor site.
  • the washing solution is a physiological isotonic solution.
  • the specimen according to [3], wherein the physiological isotonic solution is physiological saline.
  • Methylated DNA is detected by SFRP1, SFRP2, DKK2, hsa-mir-34b / c, p16INK4A, E-cadherin, hMLH1, 14-3-3 sigma, BNIP3, CHFR, CIITA, IGFBP7, Histone H3K27, HRK
  • the specimen according to any one of [1] to [7], which is detection of methylated DNA in the promoter region of a gene selected from the group consisting of CACNA1G, COX2, DFNA5, and RASSF2.
  • a kit for detecting invasive colorectal cancer comprising a cleaning liquid spraying device for spraying a cleaning liquid on the mucus layer of the large intestine to peel the mucus from the large intestine, and the cleaning liquid.
  • a method for obtaining an index for detecting invasive colorectal tumor A process of peeling the large intestine mucus by spraying a cleaning liquid on the large intestine mucus layer, A step of recovering the cleaning solution together with the peeled large intestine mucus, Determining the amount of tumor marker in the collected washings; and Obtaining an indicator for determining the presence of an invasive colorectal tumor based on the amount of tumor marker; Said method.
  • Tumor markers are SFRP1, SFRP2, DKK2, hsa-mir-34b / c, p16INK4A, E-cadherin, hMLH1, 14-3-3 sigma, BNIP3, CHFR, CIITA, IGFBP7, Histone H3K27, HRK, CACNA1G, The method according to any one of [14] to [19], which is methylated DNA of a promoter region of a gene selected from the group consisting of COX2, DFNA5, and RASSF2.
  • the tumor marker is methylated DNA of a promoter region of a gene selected from the group consisting of SFRP1, SFRP2, DKK2, and hsa-mir-34b / c.
  • the index is when the methylated DNA in the promoter region of the SFRP1 gene exceeds 45%.
  • the index is when the methylated DNA in the promoter region of the SFRP1 gene exceeds 51%.
  • the index is that the tumor diameter observed from the luminal side of the large intestine is 20 mm or more, the methylated DNA of the promoter region of the mir-34b / c gene is 15% or less, and the promoter region of the DKK2 gene The method according to any one of [14] to [21], wherein the amount of methylated DNA exceeds 10%.
  • the index is that the tumor diameter observed from the lumen side of the large intestine is 20 mm or more, the methylated DNA in the promoter region of the SFRP1 gene exceeds 51%, and the methylated DNA in the promoter region of the SFRP2 gene The method according to any one of [14] to [21], wherein the DNA exceeds 10%.
  • the method according to any one of [14] to [32], wherein the index is an index used for evaluating the therapeutic effect of a drug and / or treatment method.
  • the specimen, kit, and method of the present invention use a large intestine mucus layer peeling solution obtained by washing the large intestine mucus layer adhering to the mucosa of the lesion of the large intestine of the subject. This is fundamentally different from previous methods using.
  • the specimen, kit, and method of the present invention using the colon mucus layer peeling solution unlike the conventional methods using the colon mucosa biopsy tissue, the more the cancer or tumor infiltrate, the more tumor cells. Can be recovered from the mucus layer of the large intestine.
  • the higher the cancer or tumor infiltration degree the more methylated DNA derived from tumor cells can be recovered from the colonic mucus layer. Therefore, the specimens, kits, and methods of the present invention are useful as specimens, kits, and methods for obtaining an index for diagnosing the degree of cancer or tumor invasion, and various methods that could not be achieved by the conventional methods. The beneficial effect is obtained.
  • the specimen, kit, and method of the present invention enable evaluation on the “surface” simply by washing the entire mucosal surface of the lesion, and do not create a wound on the tissue as in biopsy.
  • drugs that affect hemostasis and wound healing such as antiplatelet drugs and anticoagulants. This advantage is extremely significant because there are a relatively large number of elderly people who need endoscopy, and thus a large proportion of those who regularly use such drugs.
  • the specimen, kit, and method of the present invention cytodiagnosis and DNA diagnosis can be performed without damaging the tumor before surgery. Therefore, the specimen, kit, and method of the present invention dramatically improve the accuracy of tumor characteristics and infiltration degree prediction. In addition, the specimen, kit, and method of the present invention make it possible to diagnose the genetic profile of colorectal tumors before surgery.
  • the specimen, kit and method of the present invention it is possible to detect genetic or epigenetic abnormalities of genomic DNA by using the specimen, kit and method of the present invention. Furthermore, the sensitivity of various drugs including anticancer drugs can be examined using a sample collected by the method according to the present invention. Furthermore, it is possible to evaluate the therapeutic effect of the drug and / or treatment method by using the specimen or method of the present invention. By using the specimen or method of the present invention, it is possible to obtain an index for predicting recurrence.
  • Method 2 is a spray of the saline solution on the mucus layer of the colon. The photographs of the cells obtained by peeling the mucus from the layer are shown as they are. The cells were stained by hematoxylin and eosin staining. It is the figure which compared the ratio of the methylated DNA in the large intestine of an invasive tumor, a non-invasive tumor, or a non-cancer patient about each of a biopsy tissue and a large intestine mucus layer peeling liquid. In the figure, each point represents each case.
  • the vertical axis shows the ratio of methylated DNA of CpG island in the promoter region of each gene of miR-34b / c, SFRP1, SFRP2, and DKK2.
  • Biopsy samples indicates biopsy tissue
  • “Washing fluids” indicates colonic mucus delamination solution.
  • IC indicates an invasive tumor
  • NI indicates a non-invasive tumor
  • Normal indicates a non-cancer patient.
  • “NS” indicates that there is no significant difference
  • the numerical value after “P ⁇ ” indicates the level of significant difference. For example, “P ⁇ 0.0001” indicates that there is a statistically significant difference at a significance level of 0.01%.
  • the horizontal line in a figure shows an average value. It is a figure which shows a ROC curve (it is also called a receiving operation characteristic curve or Receiver
  • a ROC curve it is also called a receiving operation characteristic curve or Receiver
  • invasive tumors and non-invasive tumors are classified according to the ratio of methylated DNA of each gene in the specimen (method 2) collected by spraying physiological saline as a washing solution.
  • the most suitable threshold can be determined to distinguish.
  • mir-34b / c, SFRP1, SFRP2, and DKK2 represent gene names, respectively. “Sensitivity” on the vertical axis indicates “sensitivity”, and “1-specificity” on the horizontal axis indicates “1-specificity”.
  • “AUC” indicates the area under the ROC curve.
  • “Best cut-off” indicates a “best cut-off value” that is a threshold most suitable for distinguishing invasive tumors from non-invasive tumors.
  • the numerical value shown on the right side of “sensitivity” indicates the sensitivity at the “best cutoff value”
  • the numerical value shown on the right side of “specificity” indicates the specificity at the “best cutoff value”. It is a figure which shows the ROC curve of the ratio of methylated DNA when the magnitude
  • the figure on the left shows the ROC curve of the ratio of methylated DNA of each gene of mir-34b / c and SFRP1 when the tumor is less than 20 mm in diameter
  • the figure on the right shows the tumor size.
  • the ROC curve of the ratio of methylated DNA of each gene of mir-34b / c and DKK2 is shown.
  • “Sensitivity” on the vertical axis indicates “sensitivity”
  • “1-specificity” on the horizontal axis indicates “1-specificity”. It is a figure which shows the judgment process in the case of diagnosing the presence or absence of an invasive tumor using the ratio of the methylated DNA of a some gene as a parameter
  • index is a figure which shows the judgment process in the case of diagnosing the presence or absence of an invasive tumor using the ratio of the methylated DNA of a some gene as a parameter
  • index is a parameter
  • Tumor size 20mm ⁇ indicates a criterion for determining that the diameter of the tumor is 20 mm or more.
  • MiR34b / c 15% ⁇ indicates a criterion for determining that the percentage of methylated DNA of the miR34b / c gene is more than 15%.
  • SFRP1 51% ⁇ indicates a criterion for determining that the percentage of methylated DNA of the SFRP1 gene is over 51%.
  • DKK2 10% ⁇ indicates a criterion for determining that the percentage of methylated DNA of the DKK2 gene exceeds 10%.
  • SFRP2 10% ⁇ indicates a criterion for determining that the percentage of methylated DNA of the SFRP2 gene is more than 10%. “Yes” located between the bars indicates a case where the determination criterion on the left side is satisfied. Similarly, “No” positioned between the bar lines indicates a case where the criterion on the left side is not satisfied. “Invasive Cancer” indicates a diagnosis result that it is an invasive tumor. “Non-invasive tumor” indicates a diagnosis result of non-invasive tumor.
  • the denominator of the numerical value on the right side of “Yes” in the frame indicates the number of cases that satisfy the determination criterion in the frame
  • the numerator indicates the number of cases that are invasive tumors among the cases that satisfy the determination criterion in the frame.
  • the denominator on the right side of “No” in the frame is the number of cases that do not meet the criteria in the frame
  • the numerator of the number on the right side of “No” in the frame is the number of cases that do not meet the criteria in the frame.
  • the number of cases that are invasive tumors is shown as a deviation.
  • the numbers after “P ⁇ ” indicate the level of significant difference.
  • “Wash” on the vertical axis indicates “ratio of methylated DNA in the colonic mucus layer exfoliation solution obtained by spraying physiological saline on the tumor”, and “biopsy” on the horizontal axis indicates “methylation in biopsy tissue” "Percentage of DNA”.
  • the solid line in the figure shows the regression line by the covariance analysis method, and the dotted lines located above and below the solid line indicate the confidence limit at 95% reliability.
  • the present invention relates to a specimen for detecting an invasive colorectal tumor obtained by noninvasively peeling a large intestine mucus layer, a kit for noninvasively peeling the large intestine mucus layer, and noninvasively peeling the large intestine mucus layer.
  • the present invention relates to a method for obtaining an index for detecting an invasive colorectal tumor and a method for obtaining an index for evaluating a therapeutic effect of a drug and / or a therapeutic method by non-invasively peeling a mucus layer of the large intestine.
  • the washing liquid used in the present invention is preferably a liquid that can peel the mucus layer of the large intestine without damaging the mucous membrane of the large intestine, more preferably an isotonic liquid, and even more preferably physiological saline.
  • the cleaning liquid used in the present invention is a liquid that can peel the mucous layer of the large intestine without damaging the mucous membrane of the large intestine, a dye, an antibiotic, a neutral buffering composition, a chelating agent, an additive for storage, etc.
  • Optional additives may be included.
  • the washing liquid is sprayed on the large intestine mucus layer at a speed that can peel the large intestine mucus layer without damaging the large intestinal mucosa, preferably at a rate of 2 to 10 ml per second, more preferably at a rate of 3 to 8 ml per second. More preferably, it is sprayed on the mucous layer of the large intestine at a rate of 4 to 6 ml per second.
  • the recovery method of the cleaning liquid is not particularly limited, but when using the endoscope apparatus, for example, in the operation section, the connector section, the suction tank, the suction device or the like in the suction pipeline, Mention may be made of a method of connecting at least one sealable specimen collection container.
  • the sample collection container is preferably attached between the connector portion and the suction tank. Further, from the viewpoints of operability and ease of cleaning, it is preferable that the sample collection container is detachably attached.
  • the suction tube connecting the connector and the suction tank is removed on the suction tank side, and this is connected to the inflow side connection provided on the sample collection container, and the outflow side connection provided on the sample collection container Connect to the suction tank.
  • the endoscope apparatus preferably includes a member that holds the sample collection container. Only one specimen collection container may be connected, or a plurality of specimen collection containers may be connected in series or in parallel.
  • any tumor marker can be used as long as it is a tumor marker capable of detecting tumor cells using a colonic mucus layer peeling solution.
  • a method of histologically diagnosing cells stained with a marker such as hematoxylin / eosin staining can be used.
  • fetal protein AFP, CEA, etc.
  • sugar chain antigen CA19-9, serial Tn
  • ectopic production substances hormonees, neoplastic isozymes, etc.
  • oncogenes or tumor suppressor genes examples include APC, K-RAS, H-RAS, N-RAS, erbB, p53, P16, BCR-ABL, CHFR, RASSF family, SFRP family, MINT family, MGMT, RUNX family , SMAD family, PRDM family and other cancer related genes, EBV and its related genes, CMV and its related genes, etc. Genes or tumor suppressor genes can be used.
  • the tumor marker used in the present invention is still more preferably detection of methylated DNA of a tumor-related gene, most preferably SFRP1, SFRP2, DKK2, hsa-mir-34b / c, p16INK4A, E-cadherin, hMLH1, Detection of methylated DNA in the promoter region of a gene selected from the group consisting of 14-3-3Fsigma, BNIP3, CHFR, CIITA, IGFBP7, Histone H3K27, HRK, CACNA1G, COX2, DFNA5, and RASSF2.
  • the present invention further relates to a method for detecting a tumor marker, comprising the step of extracting a nucleic acid from the specimen of the present invention.
  • any known method can be used for extracting a tumor marker from a specimen.
  • the specimen is centrifuged, and the resulting pellet is resuspended in an appropriate medium, such as PBS or physiological saline, and then digested with a protein solubilizer such as proteinase K.
  • Nucleic acid can be extracted by deproteinization with an organic solvent and precipitation of the nucleic acid with ethanol or the like.
  • various documents on genetic engineering for example, Chomczynski, P., Sacchi, N .: Anal. Biochem., 162: 156-159, 1987, Masaaki Muramatsu, Masaru Yamamoto, New Genetic Engineering Handbook , Rev. 4th edition, Yodosha, October 2003, pp. 20-29, etc.
  • the specimen is preferably subjected to an extraction process immediately after collection, but can be stored for a certain period of time until the extraction process, for example, about 12 hours, or even about 24 hours.
  • the preferred storage temperature is preferably ⁇ 80 ° C. to 20 ° C., more preferably ⁇ 80 ° C. to 10 ° C., and particularly preferably ⁇ 80 ° C. to 4 ° C. from the viewpoint of protecting the tumor marker.
  • the extracted nucleic acid is then subjected to various detection methods corresponding to the target disease marker, such as PCR method, NASBA (Nucleic Acid Sequence-Based Amplification) method, TMA (Transcription Medium Amplification) method, LCR (Ligase Chain Reaction) method , SDA (Strand displacement amplification) method, LAMP (Loop-mediated isothermal amplification) method, ICAN (Isothermal and chimeric primer-initiated amplification of nucleic acids) method, branched DNA method, Southern blot method, Northern blot method , RNase protection assay, microarray method, dot blot or slot blot method.
  • the marker is epigenetic methylated DNA
  • spectrophotometric methods for measuring absorbance at an absorption maximum wavelength of about 260 nm and various reagents for staining nucleic acids such as ethidium bromide, DAPI (4,6-diamidine-2-phenylindole) , Acridine orange, Mupid (registered trademark) -STAIN eye (advanced), diphenylamine reagent, Hoechst 33258 (H33258), Quant-iT PicoGreen dsDNA Reagent (Invitrogen), Quant-iT RiboGreen (registered trademark) RNA Reagent (Invitrogen) Any known method can be used, including a method using Gel, Indicator, RNA, Staining, Solution (Funakoshi Co., Ltd.), SYBR (registered trademark) Green or II, SYBR (registered trademark) Gold, GelRed, or the like.
  • the large intestine mucus layer peeling liquid can be obtained by spraying the cleaning liquid on the large intestine mucus layer without pre-cleaning, and preferably by directly spraying the cleaning liquid on the site where cancer or tumor infiltration is suspected. Can do.
  • the washing solution used in the present invention is preferably 10 to 100 ml, more preferably 15 to 50 ml, still more preferably 17 to 30 ml, and most preferably 20 ml.
  • a specimen for detecting invasive colorectal tumor containing at least 10 ⁇ g or more of DNA can be obtained, preferably a specimen for detecting invasive colorectal tumor containing 12 ⁇ g or more of DNA can be obtained, Preferably, a specimen for detecting an invasive colorectal tumor containing 15 ⁇ g or more of DNA can be obtained.
  • the kit of the present invention may include the above-described preferable cleaning liquid and a cleaning liquid spraying device that can peel the mucous layer of the large intestine without damaging the mucous membrane of the large intestine.
  • the method for obtaining an index for detecting an invasive colorectal tumor of the present invention is to collect a specimen containing the peeled mucus in the washing liquid by spraying the washing liquid on the mucus layer of the colon and peeling the mucus from the mucus layer.
  • an invasive colorectal tumor exists using the methylated DNA of the SFRP1 gene as an index, preferably, when the methylated DNA in the promoter region of the SFRP1 gene exceeds 45% It can be determined that an invasive colorectal tumor is present, and more preferably, it can be determined that an invasive colorectal tumor is present when the methylated DNA in the promoter region of the SFRP1 gene exceeds 51%.
  • an invasive colorectal tumor exists using the methylated DNA of the SFRP2 gene as an index, preferably, when the methylated DNA of the promoter region of the SFRP2 gene exceeds 10% It can be determined that an invasive colorectal tumor is present, and more preferably, it can be determined that an invasive colorectal tumor is present when the methylated DNA in the promoter region of the SFRP2 gene exceeds 33%.
  • an invasive colorectal tumor exists using the methylated DNA of the DKK2 gene as an index, preferably, when the methylated DNA of the promoter region of the DKK2 gene exceeds 10% It can be determined that an invasive colorectal tumor is present, and more preferably, it can be determined that an invasive colorectal tumor is present when the methylated DNA in the promoter region of the DKK2 gene exceeds 11%.
  • the methylated DNA of the promoter region of the mir-34b / c gene is It can be determined that an invasive colorectal tumor exists when it exceeds 15%, and more preferably, when the methylated DNA in the promoter region of the mir-34b / c gene exceeds 18% It can be determined that a tumor is present.
  • the presence of an invasive colorectal tumor can be diagnosed with higher accuracy using the size of a tumor observed from the lumen side of the large intestine and methylated DNA of a plurality of genes as indices.
  • the size of the tumor it can be determined that an invasive colorectal tumor exists when the diameter of the tumor observed from the lumen side of the large intestine is 20 mm or more. Further, for example, when the diameter of a tumor observed from the lumen side of the large intestine is 20 mm or more and the methylated DNA in the promoter region of the hsa-mir-34b / c gene exceeds 15%, the invasive colorectal tumor is It can be determined that it exists.
  • the diameter of the tumor observed from the lumen side of the large intestine is 20 mm or more, the methylated DNA in the promoter region of the hsa-mir-34b / c gene is 15% or less, and the DKK2 gene When the methylated DNA in the promoter region exceeds 10%, it can be determined that an invasive colorectal tumor is present. Furthermore, as another aspect, the diameter of the tumor observed from the lumen side of the large intestine is 20 mm or more, the methylated DNA of the promoter region of the SFRP1 gene exceeds 51%, and the promoter region of the SFRP2 gene When methylated DNA exceeds 10%, it can be determined that an invasive colorectal tumor is present.
  • the method for obtaining an index for detecting an invasive colorectal tumor of the present invention can also be used as a method for evaluating the therapeutic effect of a drug and / or treatment method.
  • a pre-treatment marker level with a post-treatment marker level For example, by comparing a pre-treatment marker level with a post-treatment marker level, or comparing a marker level at one point during treatment with a marker level at another point in treatment after that point, If the progression of the target disease is slowed or stopped, or if the target disease has disappeared, it can be evaluated as having a therapeutic effect, or if it does not affect the progression of the target disease, it can be evaluated as having no therapeutic effect.
  • the method of the present invention can also be used to monitor the presence or absence of disease recurrence after the end of treatment.
  • a sample is periodically collected from the subject, and the presence or absence of the disease is examined by the same method as described above based on the marker level.
  • case in the present invention refers to a subject that is a human patient.
  • the name of a protein is expressed by adding a protein after the alphabet (or alphabet and number) of the gene name, and the gene encoding the protein is the gene name described above. It shall be written only in alphabets (or alphabets and numbers), or “gene” will be added after the alphabets (or alphabets and numbers) of gene names.
  • the above-mentioned “gene” means any one of a genomic gene, messenger RNA, and cDNA, and when any one is specified, it is specified and described.
  • the “subject” means any living individual having a large intestine, preferably an animal, more preferably a mammal, such as a companion animal such as a human, a non-human primate, a dog or a cat, a cow, Industrial animals such as horses, goats, sheep, pigs and the like, and particularly preferably humans.
  • the subject may be healthy, afflicted with some disease, or during or after treatment of the disease.
  • tumor refers to a state in which cells grow abnormally, and malignant tumor among tumors is referred to as “cancer”.
  • depth of penetration means the degree of cancer that colon cancer has infiltrated from the lumen side into the deep layer, and is synonymous with “degree of penetration”.
  • invasion colorectal tumor detection refers to an index for detecting whether or not an invasive colorectal tumor is present. How to get.
  • epigenetic has a normal meaning in the technical field to which the present invention belongs, and for example, gene expression is controlled by an acquired modification to chromatin without any change in DNA sequence. Can be illustrated.
  • the acquired modification to chromatin include chemical modification such as methylation of a histone, acetylation, phosphorylation, etc. in addition to methylation of a DNA base.
  • “amount of tumor marker” refers to a histological evaluation score, a concentration of fetal protein, sugar chain antigen, or ectopic product in a body fluid such as blood, a mutated cancer contained in a specimen The amount of gene or tumor suppressor gene, and the amount of methylated DNA of tumor-related genes contained in a sample.
  • DNA methylation means that cytosine in the CpG island of the promoter region of an arbitrary genomic gene is methylated.
  • DNA hypermethylation or “hypermethylation” refers to a state in which the CpG island in the promoter region of an arbitrary genomic gene is excessively methylated compared to normal cells.
  • methylation of CpG island refers to DNA methylation in a CpG island present in the promoter region of an arbitrary genomic gene.
  • methylated DNA refers to methylated cytosine in the CpG island of the promoter region of an arbitrary genomic gene, and “ratio of methylated DNA” occupies cytosine in all CpG islands in the region. The percentage of “methylated DNA”.
  • “amount of methylated DNA” refers to the amount of methylated cytosine in the CpG island of the promoter region of an arbitrary genomic gene. “Amount of methylated DNA” can also be expressed as “ratio of methylated DNA”.
  • invasive tumor refers to a cancer that has invaded deeper than the submucosa beyond the mucosa.
  • non-invasive tumor refers to cancer that remains in the mucosa.
  • non-cancer refers to a sample collected from a subject not suffering from colon cancer or a subject not suffering from colon cancer.
  • the “specimen for detecting invasive colorectal tumor” refers to an invasive property comprising a peeled mucus obtained by spraying a washing solution on the mucus layer of the colon and peeling the mucus from the mucus layer. A sample for obtaining an index for detecting whether or not a colorectal tumor is present.
  • colon mucus layer refers to a mucus layer in the surface layer of the mucous membrane of the colon lumen.
  • the “colon mucus layer peeling solution” refers to a liquid obtained by spraying a cleaning liquid on the mucus layer of the colon and peeling the mucus from the mucus layer.
  • physiological isotonic solution refers to an isotonic solution having a pH near neutral, which does not contain components that irritate the colonic mucosa.
  • hsa-mir-34b / c and “mir-34b / c” both mean genomic genes common to microRNA 34b and microRNA 34c.
  • the usual term “mir-34b / c” may refer to a transcribed microRNA, so the term “hsa-mir-34b / c” is used to emphasize that it refers to a genomic gene. Is used.
  • the base represented by “Y” means thymine (T) when cytosine in an unmethylated CpG island is detected. In the case of detecting methylated cytosine in a methylated CpG island, it means cytosine (C).
  • the base represented by “R” in the primer sequence used for detection of methylated DNA means adenine (A) or guanine (G), and “R” is adenine (A).
  • a primer and a primer whose “R” is guanine (G) are mixed and used.
  • the “ROC curve” refers to a reception operation characteristic curve or a Receiver Operating Characteristic Curve.
  • the ROC curve is used to determine the threshold for determining whether a specific disease is positive or negative based on the test results expressed in consecutive numbers. it can.
  • sensitivity indicates the percentage of samples that should be judged positive as being positive correctly, and “specificity” is that the samples that should be judged as negative are correctly negative Indicates the percentage to do.
  • a sample that should be judged positive is defined as “true positive” when it is correctly judged as positive, and a sample that is judged positive as false is defined as “false negative” when it is incorrectly judged as negative.
  • a sample that should be determined as “negative” is defined as “true negative”, and a sample that is determined as negative is incorrectly defined as “false positive”.
  • the “sensitivity” can be obtained by dividing the number of true positives by the sum of the number of true positives and the number of false negatives.
  • the “specificity” can be obtained by dividing the number of true negatives by the sum of the number of false positives and the number of true negatives.
  • AUC indicates the area under the ROC curve. “AUC” is a value between 0.5 and 1.0, and the closer to 1.0, the better the inspection method.
  • Example 1 Examination of specimen collection method Specimens were collected at the Gastroenterological Endoscopy Center of Akita Red Cross Hospital between November 2008 and June 2009. Samples were collected from patients who had colon adenoma for many years who underwent colonoscopy for follow-up purposes, who underwent colonoscopy for preoperative examination of colorectal cancer, and in health examinations Since the fecal occult blood test was positive, subjects who underwent colonoscopy for the purpose of detailed examination were biopsy specimens, including 52 invasive tumors, 98 non-invasive tumors, and 187 normal mucosa specimens. The mucus detachment solution was used for 34 invasive tumor samples, 36 non-invasive tumor samples, and 6 normal mucosa samples.
  • Table 1 shows the characteristics of the subjects from which the samples were collected. “Hyperplastic polyp”, “adenoma”, “early cancer”, and “advanced cancer” were all determined by histopathological diagnosis. The classification of the raised type, flat type, recessed type, Bormann type 1, Bormann type 2, Bormann type 3 and Bormann type 4 was in accordance with the colon cancer treatment regulations. The degree of dysplasia and the degree of differentiation were determined by histopathological diagnosis. Tumor size was measured in pathological specimens. The clinical stage was determined according to the colorectal cancer handling regulations and TNM classification.
  • the obtained specimen was centrifuged at a speed of 1500 rpm for 10 minutes to precipitate the cells. After discarding the supernatant, a part of the specimen was fixed with formalin and then stained with hematoxylin and eosin to observe the morphology of the cells. .
  • Cytodiagnosis (21 advanced cancer cases, 5 early cancer cases, 15 adenoma cases) of colon colon mucus layer stripper was performed, and pathological diagnosis of colon tumor and cytology of colon mucus layer stripper were compared. The results of biopsy and cytology matched in 10 advanced cancer cases (match rate 47.6%), 0 early cancer cases (match rate 0%), and 4 adenoma cases (match rate 26.6%).
  • Method 1 A photograph of the cells in the specimen collected by Method 1 or Method 2 is shown in FIG.
  • Method 1 has few cells and strong cell degeneration.
  • degeneration was weakened, and we were able to diagnose adenocarcinoma by cytology.
  • cytodiagnosis was performed in some cases, an image having a small number of cells and a large amount of degeneration in Method 1 and a large number of cells and a small amount of degeneration were obtained in Method 2. From the above, it was considered that the tumor cells in the mucus layer could be efficiently recovered by Method 2 and that abnormal methylation of the tumor cells could be analyzed.
  • DNA was extracted from the above-mentioned centrifuged sample, and the amount of the obtained DNA was compared. As shown in Table 2, there was no significant difference in DNA content between the sample obtained using Method 1 and the sample obtained using Method 2.
  • the amount of DNA of the specimen collected by Method 1 was 15.00 ⁇ 11.12 ⁇ g in the large intestine mucus layer peeling solution and 21.28 ⁇ 15.52 ⁇ g in the biopsy tissue.
  • the amount of DNA of the specimen collected by Method 2 was 16.53 ⁇ 16.88 ⁇ g for the large intestine mucus layer peeling solution and 17.08 ⁇ 13.00 ⁇ g for the biopsy tissue.
  • There was no difference in the amount of DNA obtained using either method 1 or method 2 and there was no difference in the amount of DNA obtained from the large intestine mucus layer stripper and the amount of DNA obtained from the tissue.
  • DNA was extracted as follows. After centrifugation of the specimen, the supernatant was removed and the pellet was resuspended in 4.5 ml SEDTA. To this, 0.5 ml of 10% SDS and 50 ml of 20 mg / ml proteinase K (Takara Bio Inc., Code No. 9033) were added and incubated at 55 ° C. for 1 hour. 5 ml of phenol (UltraPure Buffer-Saturated Phenol, Invitrogen life technologies) was added, mixed by inversion, centrifuged at 2700 rpm, 4 ° C for 15 minutes, and the supernatant was transferred to a new tube.
  • the amount of DNA was determined by spectrophotometric measurement of the amount of DNA contained in the specimen.
  • the spectrophotometry was performed using a NanoDrop ND-1000 spectrophotometer (Asahi Techno Glass Co., Ltd.) according to the manufacturer's manual.
  • methylated DNA was measured for all cases.
  • a washing solution is sprayed from a position close to the tumor using a tube (NT tube, manufactured by Olympus) for spraying octanonin.
  • the mucus on the surface of the large intestine lumen was peeled off.
  • the washing solution was sprayed on the mucous layer of the large intestine at a rate of about 5 ml per second.
  • the background normal mucous membrane of the tumor, adenoma, and surrounding area (within 1 cm) of the tumor was collected by biopsy, and treatment such as EMR and marking was performed. .
  • the collected specimens were stored in end fresh, and after freezing, DNA was extracted by the phenol chloroform method.
  • the collected biopsy and colonic mucus layer stripper were extracted from DNA, respectively, and QIAGEN's Epitect bisulfite kit was used, and its instruction manual “EpiTect (registered trademark) Bisulfite protocol and troubleshooting” and Sodium bisulfite treatment was performed according to the protocol described in “EpiTect (registered trademark) Bisulfite Handbook”, and PCR was performed using 1 ⁇ l of the bisulfite DNA. All primers used were primers for detecting methylated DNA of SFRP1, SFRP2, DKK2, and microRNA34b / c, which have been reported to be methylated in colorectal cancer.
  • the DNA of SEQ ID NO: 1 was used as the forward primer
  • the DNA of SEQ ID NO: 2 was used as the reverse primer
  • the DNA of SEQ ID NO: 3 was used as the pyrosequence primer.
  • the DNA of SEQ ID NO: 4 was used as a forward primer
  • the DNA of SEQ ID NO: 5 was used as a reverse primer
  • the DNA of SEQ ID NO: 6 or 7 was used as a pyrosequence primer.
  • the DNA of SEQ ID NO: 8 was used as the forward primer
  • the DNA of SEQ ID NO: 9 was used as the reverse primer
  • the DNA of SEQ ID NO: 10 was used as the pyrosequence primer.
  • the DNA of SEQ ID NO: 11 was used as a forward primer
  • the DNA of SEQ ID NO: 12 was used as a reverse primer
  • the DNA of SEQ ID NO: 13 or 14 was used as a pyrosequence primer.
  • PCR assays 50 cycles of denaturation step 95 ° C 30 seconds followed by annealing step 60 ° C 30 seconds extension step 72 ° C 30 seconds were performed. Thereafter, methylated DNA was quantitatively measured using a pyrosequencer, and a value obtained by averaging the respective methylation values of CpG sites upstream of the primer was adopted.
  • codon 12 and codon 13 were measured using the pyrosequencing method. Measurement of mutations in the K-RAS gene was performed using PyroMark KRAS v2.0 (4 x 24) (Catalog No. 970452), a KIA detection kit from QIAGEN. The measurement was performed according to the protocol described in “v2.0 Handbook”.
  • methylation of SFRP1, SFRP2, DKK2, and mir34b / c tended to increase gradually in the non-cancerous part, adenoma, and cancerous part, but no significant difference was observed.
  • SFRP1 methylated DNA was 52.5% in cancerous areas and 11.0% in noncancerous areas, and P ⁇ 0.001 significant in advanced cancer and noncancerous areas. Significant differences were observed in the levels.
  • the methylated DNA of SFRP1 was 33.39% in depth of m
  • the presence or absence of mutations in the K-RAS gene was examined using some of the specimens derived from the same lesion obtained in Table 3, and the results are shown in Table 4. It can be seen that 77.7% of the specimens were able to detect the infiltrating tumor even when the biopsy tissue was used or the mucus stripping solution collected by Method 2 was used. The total number of specimens does not match because there are cases in which the K-RAS gene mutation cannot be detected in the mucus stripper even though the K-RAS gene mutation can be detected by biopsy. Such cases were particularly frequent in non-invasive tumors.
  • Endoscope classification The type of tumor in a colonoscope is hyperplastic polyp, adenoma, early cancer is protruded type (0-I), flat type (IIa, LST), depressed type (IIc, IIa + IIc). Early cancer was defined as cancer invasion reaching the submucosal layer. Venous infiltration and lymphatic vessel invasion are not important. Advaced cancer was adapted to the borrmann classification. All colorectal tumor surgery and EMR specimens are clinically diagnosed according to the WHO classification at the Department of Pathology, Akita Red Cross Hospital.
  • Example 4 Cytodiagnosis For cytology of colonic mucus layer stripping solution, colonic mucus layer stripping solution collected at the Gastroenterological Center of Akita Red Cross Hospital, ThinPrep (registered trademark) PreservCyt Solution Vials (20 ml. prefilled / Box of 50 vials, order number 0234005), centrifuged and fixed in formalin, stained with hematoxylin and eosin, and then subjected to cytology.
  • ThinPrep registered trademark
  • Example 5 Statistical analysis All statistics and graphs were performed using the PRISM version 5 for windows Japanese version set. Regarding methylation, the average of the methylation at each CpG site was taken as the methylation of the specimen, and the clinical diagnosis and depth of penetration were summarized. For significant differences, each group was tested by means of positional variance analysis. In correlation, t-test was performed.
  • ROC curve An ROC curve was prepared in order to determine a threshold for detecting invasive colorectal cancer using methylated DNA of each gene of mir34b / c, SFRP1, SFRP2, and DKK2 as an index ( FIG. 4).
  • the mir34b / c, SFRP1, SFRP2, DKK2, and best cutoff values were 17.8%, 45%, 33%, and 11%, respectively.
  • an ROC curve was created using methylated DNA of the mir-34b / c gene and the SFRP1 gene as an index (left in FIG. 5).
  • an ROC curve was created using methylated DNA of the mir-34b / c gene and DKK2 gene as an index (right in FIG. 5).
  • a field using miR34b / c or SFRP gene methylated DNA as an index is preferable for distinguishing an invasive tumor from a non-invasive tumor when the tumor diameter is 20 mm or less, and the tumor diameter is 20 mm or more. It can be seen that a field using miR34b / c or DKK2 gene methylated DNA as an index is preferable for distinguishing invasive tumors from non-invasive tumors.
  • Example 8 Diagnosis flow chart combining tumor size and methylated DNA Combining the diameter of the tumor measured from the luminal side of the large intestine and the measurement of methylated DNA, the most accurate diagnosis of the presence of an invasive tumor is made A flow diagram was created for this purpose (FIG. 6). Using this flow chart, start from the judgment in the leftmost frame when the tumor diameter is 20 mm or more (Yes) and when the tumor diameter is not 20 mm or more (No), By proceeding to the next frame according to the above criteria, diagnosis of either invasive tumor or non-invasive tumor is made.
  • Example 9 Correlation between methylated DNA of colon mucus delamination solution and methylated DNA of biopsy tissue
  • the genes of mir34b / c, SFRP1, SFRP2, and DKK2 are We examined whether the percentage of DNA correlated between the large intestine mucus layer stripper and the biopsy tissue.
  • the ratio of methylated DNA of each gene of mir34b / c, SFRP1, and SFRP2 in invasive tumors was significantly correlated with a risk factor of 3% or less between colonic mucus delamination fluid and biopsy tissue. It was.
  • the ratio of methylated DNA of each gene of mir34b / c, SFRP1, SFRP2, and DKK2 was significantly correlated with a risk rate of 5% or less in the total of invasive tumor and non-invasive tumor.
  • the specimen, kit, and method of the present invention are a non-invasive method for colon cancer or non-invasive treatment by spraying a cleaning liquid on a subject's colonic mucus layer, peeling the mucus from the mucus layer, and collecting the peeled mucus together with the cleaning liquid.
  • This is an epoch-making invention that provides a method for obtaining an index for diagnosing the invasion or depth of penetration of a colorectal tumor.
  • sensitivity to various drugs including anticancer drugs can be examined in advance.
  • the specimen, kit, and method of the present invention can provide an index for predicting recurrence. Therefore, the specimen, kit, and method of the present invention have industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は、非侵襲的に大腸腫瘍の浸潤性または深達度を診断するための指標を得る方法を提供することを目的とする。 本発明は、対象の大腸粘液層に洗浄液を散布して該粘液層から粘液を剥離し、剥離された粘液を洗浄液とともに回収することにより、浸潤性大腸腫瘍を検出しうる検体を得ることを特徴とする。

Description

浸潤性大腸腫瘍検出用の検体
 本発明は、大腸粘液層を非侵襲的に剥離して得られる浸潤性大腸腫瘍検出用の検体、大腸粘液層を非侵襲的に剥離するためのキット、大腸粘液層を非侵襲的に剥離して浸潤性大腸腫瘍を検出する指標を得る方法、大腸粘液層を非侵襲的に剥離して薬剤および/または治療方法の治療効果を評価するための指標を得る方法に関する。より具体的には、本発明は、メチル化DNAを分子マーカーとする、前記の浸潤性大腸腫瘍検出用の検体、キット、浸潤性大腸腫瘍を検出する指標を得る方法、治療効果を評価するための指標を得る方法に関する。
 欧米では、大腸癌が癌死亡率の上位を占めている。大腸癌は、米国の統計資料の2006年度の予測によれば、男女共に3番目に多い癌種であり、その発生率は1998年から2002年にかけては毎年1.8%づつ増加している。日本でも大腸癌の患者数は近年急激に増加している。これは日本人の食生活が欧米型の肉食が中心となったことに原因があると考えられている。国内では毎年約10万人が罹患し、約4万1千人が死亡しているという報告がある。臓器別の死亡数でも、胃癌、肺癌に続く3番目の多さであり、今後のさらなる増加も予想されている。特に、女性における大腸癌は、罹患者数および死亡者数ともに全悪性腫瘍の中で第1位である。男性で肺癌、肝癌に次ぐ3位になることが推定されている。大腸癌は遺伝的素因よりも食生活、特に動物性脂肪および蛋白質の過剰摂取に起因することが疫学的に推察され、大腸部位としては、S状結腸と直腸に発症しやすい。
 しかしながら、大腸癌は他の癌と異なり、早期癌であれば手術により、100%近く治せることが知られている。そのため、大腸癌は早期癌検診の対象となり、数多くの検査法が開発されてきた。
 また、早期癌については、内視鏡的粘膜切除術や内視鏡的粘膜下層剥離術といった内視鏡を用いた手術が非常に有効である一方で、浸潤腫瘍では、開腹手術と化学療法剤や放射線療法を併用する等の治療法が一般に行われている。したがって、非侵襲的に癌または腫瘍の浸潤性または深達度を事前に評価しうる診断方法の開発が待たれている。
 大腸は、内腔側から順に粘膜、粘膜下層、固有筋層、漿膜下層および漿膜の5層構造を形成しており、下部直腸では漿膜および漿膜下層を欠いた3層構造を形成している。大腸腫瘍は粘膜から発生し、腫瘍の進行とともに深層へ浸潤する。このうち、腫瘍の浸潤が粘膜下層までにとどまるものを早期癌と呼ぶ。
 一般に、消化器癌、特に、大腸癌、直腸癌等の一般的な検査法として、(i)便潜血検査、(ii)直腸内触診、(iii)血液検査、(iv)注腸検査、(v)PET検査(ポジトロン断層撮影法)、(vi)内視鏡検査、(vii)カプセル内視鏡検査、(viii)糞便または生検組織を用いる遺伝子診断がある。
 しかし、これらの検査方法は、早期癌の発見、治療効果の測定、再発・転移の判断材料の提供、または確定診断を目的としており、いずれの方法を用いても、癌または腫瘍の浸潤度を診断するための指標を得ることはできない。
 便潜血検査は、ヒトヘモグロビンのペルオキシダーゼ活性またはヒトヘモグロビンに反応するモノクローナル抗体を利用して、便中への出血の有無及び出血量等を検査し、間接的に大腸腫瘍の発生を予測する方法であり、簡便・安価で非侵襲的検査である。しかし、潜血反応検査の有効性は、大腸腫瘍からの出血が間欠的であることにより損なわれ、偽陰性の判定の割合を高めている。例えば、結腸直腸腫瘍と診断された患者の約50%が便潜血検査で陰性の判定を受けている。また、直径20mm未満の小さな結腸直腸腫瘍からの、1日当たりの出血量は1~2mlと非常に小さいため、潜血試験によって常に検出されるわけではない。さらに、例えば、歯肉炎、痔、潰瘍、アスピリンの使用による腸管出血など、多くの大腸腫瘍以外の原因による出血によっても陽性の判定を引き起こし得るため、便潜血検査による陽性判定被験者の中で実際に大腸腫瘍であるのは3~5%に過ぎず、便潜血検査による陽性判定被験者の中には多くの偽陽性を含まれている。このように、便潜血検査は、大腸腫瘍等の腫瘍の特異的検出法とは言えず、大腸腫瘍等の予備診断方法としても必ずしも十分ではない。まして、便潜血検査によって、大腸腫瘍の浸潤度を診断することはできない。
 直腸内触診によれば、指診により大腸/直腸の遠端における腫瘍を検出することが可能であるが、より内部の腫瘍を発見することはできない。また、直腸内触診によって、大腸腫瘍の浸潤度を診断することはできない。
 血液検査は、対象の血液試料中の腫瘍マーカーを測定して、腫瘍マーカーの量または濃度によって大腸腫瘍を診断する診断方法である。
 腫瘍マーカーとしては、胎児性蛋白質(AFP、CEA等)、糖鎖抗原(CA19-9、シリアルTn等)、異所産生物質(ホルモンや腫瘍性アイソザイム等)のように、その物質を検出することによって大腸癌と診断する腫瘍マーカーと、癌遺伝子(ras、erbB等)、癌抑制遺伝子(p53等)、遺伝子再構成(BCR-ABL等)のように遺伝子の変異や組換えを検出することによって情報が得られる腫瘍マーカーとがある。
 しかし、血液中の腫瘍マーカーは、大腸癌がない場合にも陽性となることがあり、また、ある程度まで大腸癌が進行しなければ陽性とならないことがあり、逆に進行大腸癌でも陽性にならないこともあるなどの欠点がある。そのため、大腸癌の腫瘍マーカーは早期発見や確定診断につながるほどの効果はなく、現状としては補助診断や治療の効果の測定、再発・転移の発見の判断材料の1つとして用いられている。また、血液中の腫瘍マーカーの濃度によって、大腸腫瘍の浸潤度を診断することはできない。
 注腸検査とは、バリウムを大腸内に注入し、大腸の粘膜面に付着させ、その表面の凹凸をX線により調べる方法である。しかしながら、注腸検査は、コストが高い上に被験者への負担が大きく、合併症のリスクを伴うという問題がある。例えば、注腸検査では、検査の前日に低脂肪・低残渣よりなる注腸検査食を摂取させた後、下剤(塩類下剤及び接触性下剤)の投与により大腸内容物を除去する前処置が被験者に施される。また、注腸検査には、X線被爆や腸閉塞の危険性がある。また、注腸検査は腸の内腔の凹凸の形態のみを調べる検査であるため、注腸検査によって、大腸腫瘍の浸潤度を診断することはできない。
 PET検査(ポジトロン断層撮影法)とは、陽電子放出核種で標識した薬剤を被検体に投与して、薬剤がどの部位で多く消費されているかを調べる方法である。例えば、糖の一種で腫瘍に集積する性質を持つ18Fで標識したフルオロデオキシグルコースをPET用薬剤として被検者に投与して、ガンマ線を体外から観測することによって、ラベルされた物質の体内分布を映像化し、その体内動態を確認し、病巣の位置や大きさ等を検査するものである。
 PET検査は一般にサイクロトロンを必要とし,設備に10億円以上の高額な費用が必要である。また、PET検査を行なうと放射線被ばくは避けられない。また、PET検査によって、およその腫瘍の大きさは測定できても、大腸腫瘍の浸潤度を診断することはできない。
 内視鏡検査は大腸の中を直接内視鏡で調べる方法である。内視鏡検査は大腸腫瘍の発見に対して、高い感度と特異性を有している。加えて、内視鏡検査では早期癌や前癌状態のポリープを切除できる利点も有している。さらに、内視鏡検査ではバイオプシー(組織生検)により診断用の組織を採取できる利点も有している。しかし、内視鏡検査は、腸の表面を内腔側から観察するものであるため、内視鏡検査によって、大腸癌の浸潤度を診断することはできない。実際、大腸の内視鏡検査で発見される腫瘍の中には、小さな病変であっても、大腸粘膜下組織への浸潤を認める腫瘍が多数報告されている。
 また、内視鏡検査による組織生検では、組織を「点」で評価できるにすぎず、これを「面」に広げていくには物理的限界がある。内視鏡検査による組織生検では、病変の一部のみの評価であるため、生検の採取部位によって、または内視鏡的粘膜切除された病変であっても標本の切り出し部位によっては、大腸癌であることを確定診断することはできない。まして、内視鏡検査による組織生検を用いて、腫瘍の深達度を正確に診断することできない。
 一般的に、大腸癌の確定診断には、生検材料を用いた病理組織診断が行なわれているが、大腸腫瘍を確定診断するためには詳細な内視鏡観察にもとづいた病理組織標本の作製が必須である。しかし、そのような病理組織標本の作製には、極めて熟練した技術が必要であるので、全ての内視鏡医師が行なうことは困難である。
 また、微小な腫瘍や大腸粘膜切除前の腫瘍に関しては、生検することによって、手術後の病理像が不確かになる、などの理由から、内視鏡による大きさ、形態観察や拡大内視鏡によるピット診断のみに基づいて、内視鏡切除か、開腹手術かの判断がなされてきた。
 カプセル内視鏡検査とは、超小型カメラを内蔵したカプセルを口から飲み込み、消化管を通過しながらカプセルが自動的に撮影した画像情報を無線により体外に転送する、消化管の検査方法である。カプセル内視鏡検査は、通常の内視鏡に比べて画像の精度が低く、自動撮影であるため精査したい襞の奥などを十分に観察できず、生検やポリープ切除ができないなどの欠点があり、現状では、もっぱら、通常の内視鏡で観察することの困難な小腸の検査に用いられている。また、カプセル内視鏡検査も、腸の表面を内腔側から観察するものであるため、内視鏡検査によって、大腸腫瘍の浸潤度を診断することはできない。
 糞便または生検組織を用いる遺伝子診断は、糞便中に剥離した腫瘍細胞または生検組織中の腫瘍細胞の遺伝子を調べることにより、大腸癌の診断を行なう方法である。一旦、腫瘍細胞に生じた遺伝子変異やDNAの過剰メチル化は、正常な状態に戻りにくいという意味で固定的情報であるので、検体が適正であれば、遺伝子診断は信頼性の高い診断方法である。
 しかし、糞便を用いて遺伝子診断を行なった場合には、糞便中には様々な細菌や正常細胞由来の核酸が存在しているため、糞便から回収される腫瘍細胞由来の遺伝子の割合が相対的に微量(約0.05%)になってしまい、正確な診断が困難になることが問題となる。例えば、非特許文献1および2には、糞便中のDNAを用いて大腸腫瘍を診断する方法が一定の成果を示したことが記載されている。しかし、これらの方法は、診断可能性や診断精度に問題があり、実用化にはほど遠い水準にとどまっている。
 一方、生検組織を用いて遺伝子診断を行なった場合には、採取部位による結果のばらつきが問題になる。また、微小な腫瘍や大腸粘膜切除前の腫瘍に関しては、生検することにより線維化、熱凝固変性などが生じ、術後の病理像が不確かになるという問題点がある。
 大腸腫瘍の遺伝子診断の対象となる遺伝子の変化は、ras、erbB等の発癌遺伝子の変異、p53等の癌抑制遺伝子の変異、BCR-ABL等の遺伝子再構成を検出するものの他、癌抑制遺伝子のプロモーター領域のCpGアイランドの過剰メチル化などのエピジェネティックな修飾がある。
 癌抑制遺伝子のプロモーター領域に存在するCpGアイランドがメチル化されると、当該癌抑制遺伝子の転写が不活性化されるため、細胞増殖の制御が効かなくなり、癌などの細胞増殖性疾患が進行する。例えば、癌細胞においては、SFRP1、SFRP2、DKK2、hsa-mir-34b/c 、p16INK4A、Eカドヘリン、hMLH1、14-3-3 sigma、BH3 Onlyファミリー遺伝子の一つであるBNIP3、ユビキチンリガーゼCHFR、MHC class II分子の転写共役因子であるCIITA、大腸癌におけるBRAFの負の制御遺伝子IGFBP7、Histone H3K27、アポトーシス関連遺伝子であるHRK、CACNA1G、COX2、DFNA5、Rasの制御遺伝子であるRASSF2等のゲノム遺伝子のプロモーター領域のCpGアイランドの過剰メチル化により発現が抑制されており、大腸腫瘍の診断に有用であると報告されている。
 過剰メチル化は微量なDNAから検出が可能であり、一旦生じた過剰メチル化は自然には正常に戻りにくいという意味で固定的情報であり、遺伝子診断のための指標として有用であると考えられている。しかし、糞便または生検組織の遺伝子診断では腫瘍の存在診断は可能であるが、腫瘍の浸潤度の診断はできない。
 近年、内視鏡技術の進歩により、手術せずに内視鏡により大腸腫瘍が治療されることが多くなってきた。しかし、事前に生検すると内視鏡治療が困難になったり、切除標本の正確な病理診断が困難となるなどの問題がある。一部の内視鏡専門施設では、生検をせずに極めて詳細な拡大内視鏡観察、切除標本の顕微鏡観察により確実な診断がなされているが、限られた施設でのみ実施可能であるのが現状である。
 このように、生検をせずに、大腸腫瘍細胞の遺伝的性質を精度よく決定する方法は、これまで知られていない。特に、大腸粘液層剥離液を用いて、大腸腫瘍細胞のDNAメチル化を解析する方法はこれまでに知られていない。
Ahlquist DA et al., Gastroenterology. 2000 Nov;119(5):1219-27 Osborn NK et al., Gastroenterology. 2005 Jan;128(1):192-206
 したがって、本発明は、上記のような欠点を有しない、大腸粘液層を非侵襲的に剥離して得られる浸潤性大腸腫瘍検出用の検体、大腸粘液層を非侵襲的に剥離するためのキット、大腸粘液層を非侵襲的に剥離して浸潤性大腸腫瘍を検出する指標を得る方法、大腸粘液層を非侵襲的に剥離して薬剤および/または治療方法の治療効果を評価するための指標を得る方法の提供を目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を行ったところ、意外にも、対象の大腸粘液層に洗浄液を散布して該粘液層から粘液を剥離し、剥離された粘液を洗浄液とともに回収することにより、浸潤性大腸腫瘍を検出しうる検体を得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の検体、キット、または方法に関する。
[1] 浸潤性大腸癌検出のための検体であって、大腸粘液層に洗浄液を散布して大腸粘液を剥離し、剥離した大腸粘液とともに回収して得られる前記洗浄液を含む、前記検体。
[2] 大腸粘液層が、腫瘍部位を含む大腸粘液層である、[1]に記載の検体。
[3] 洗浄液が、生理的な等張液である、[1または[2]に記載の検体。
[4] 生理的な等張液が、生理食塩水である、[3]に記載の検体。
[5] 散布が、毎秒2ml~10mlの速度で行なわれる、[1]~[4]のいずれか一項に記載の検体。
[6] 検出が、腫瘍マーカーの検出である、[1]~[5]のいずれか一項に記載の検体。
[7] 腫瘍マーカーの検出が、メチル化DNAの検出である、[1]~[6]のいずれか一項に記載の検体。
[8] メチル化DNAの検出が、SFRP1、SFRP2、DKK2、hsa-mir-34b/c 、p16INK4A、Eカドヘリン、hMLH1、14-3-3 sigma、BNIP3、CHFR、CIITA、IGFBP7、Histone H3K27、HRK、CACNA1G、COX2、DFNA5、RASSF2からなる群より選択される遺伝子のプロモーター領域のメチル化DNAの検出である、[1]~[7]のいずれか一項に記載の検体。
[9] メチル化DNAの検出が、SFRP1、SFRP2、DKK2、hsa-mir-34b/cからなる群より選択される遺伝子のプロモーター領域のメチル化DNAの検出である、[8]に記載の検体。
[10] 洗浄液が、前洗浄なしで散布される、[1]~[9]のいずれか一項に記載の検体。
[11] 腫瘍部位が、腫瘍の浸潤が疑われる腫瘍部位である、[2]に記載の検体。
[12] 検体が、10μg以上のDNAを含む、[1]~[11]のいずれか一項に記載の検体。
[13] 浸潤性大腸癌検出のためのキットであって、大腸粘液層に洗浄液を散布して大腸粘液を剥離するための洗浄液散布用器具および洗浄液を含む、前記キット。
[14] 浸潤性大腸腫瘍を検出する指標を得る方法であって、
大腸粘液層に洗浄液を散布して大腸粘液を剥離する工程、
剥離した大腸粘液とともに洗浄液を回収する工程、
回収した洗浄液中の腫瘍マーカーの量を決定する工程、および、
腫瘍マーカーの量に基づいて浸潤性大腸腫瘍が存在すると決定するための指標を得る工程、
を含む、前記方法。
[15] 大腸粘液層が、腫瘍部位を含む大腸粘液層である、[14]に記載の方法。
[16] 洗浄液が生理的な等張液である、[14または[15]に記載の方法。
[17] 生理的な等張液が、生理食塩水である、[16]に記載の方法。
[18] 散布が、毎秒2ml~10mlの速度で行なわれる、[14]~[17]のいずれか一項に記載の方法。
[19] 腫瘍マーカーが、メチル化DNAである、[14]~[18]のいずれか一項に記載の方法。
[20] 腫瘍マーカーが、SFRP1、SFRP2、DKK2、hsa-mir-34b/c 、p16INK4A、Eカドヘリン、hMLH1、14-3-3 sigma、BNIP3、CHFR、CIITA、IGFBP7、Histone H3K27、HRK、CACNA1G、COX2、DFNA5、RASSF2からなる群より選択される遺伝子のプロモーター領域のメチル化DNAである、[14]~[19]のいずれか一項に記載の方法。
[21] 腫瘍マーカーが、SFRP1、SFRP2、DKK2、hsa-mir-34b/cからなる群より選択される遺伝子のプロモーター領域のメチル化DNAである、[20]に記載の方法。
[22] 指標が、SFRP1遺伝子のプロモーター領域のメチル化DNAが45%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[23] 指標が、SFRP1遺伝子のプロモーター領域のメチル化DNAが51%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[24] 指標が、SFRP2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[25] 指標が、SFRP2遺伝子のプロモーター領域のメチル化DNAが33%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[26] 指標が、DKK2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[27] 指標が、DKK2遺伝子のプロモーター領域のメチル化DNAが11%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[28] 指標が、mir-34b/c遺伝子のプロモーター領域のメチル化DNAが15%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[29] 指標が、mir-34b/c遺伝子のプロモーター領域のメチル化DNAが18%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[30] 指標が、大腸の内腔側から観察した腫瘍の直径が20mm以上であり、かつ、mir-34b/c遺伝子のプロモーター領域のメチル化DNAが15%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[31] 指標が、大腸の内腔側から観察した腫瘍の直径が20mm以上であり、mir-34b/c遺伝子のプロモーター領域のメチル化DNAが15%以下であり、かつ、DKK2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[32] 指標が、大腸の内腔側から観察した腫瘍の直径が20mm以上であり、SFRP1遺伝子のプロモーター領域のメチル化DNAが51%を越えていて、かつ、SFRP2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合である、[14]~[21]のいずれか一項に記載の方法。
[33] 指標が、薬剤および/または治療方法の治療効果を評価するために用いる指標である、[14]~[32]のいずれか一項に記載の方法。
 本発明の検体、キット、および方法は、対象の大腸の病変部の粘膜に付着している大腸粘液層を洗浄することにより得られる大腸粘液層剥離液を用いるものであり、大腸粘膜生検組織を用いるこれまでの方法とは根本的に異なるものである。
 大腸粘液層剥離液を用いる本発明の検体、キット、および方法によれば、大腸粘膜生検組織を用いるこれまでの方法とは異なり、癌または腫瘍の浸潤度が高くなる程、多くの腫瘍細胞を大腸粘液層から回収することができる。また、本発明の検体、キット、および方法によれば、癌または腫瘍の浸潤度が高くなる程、多くの腫瘍細胞由来のメチル化DNAを大腸粘液層から回収することができる。したがって、本発明の検体、キット、および方法は、癌または腫瘍の浸潤度を診断する指標を得るための検体、キット、および方法として、有用であり、これまでの方法では達成できなかった、種々の有益な効果が得られる。
 すなわち、本発明の検体、キット、および方法は、今まで廃棄してきた洗浄液を材料とするために、内視鏡を利用した他の検査方法によって生じ得る様々なリスク(出血の危険性(生検法)、アレルギー、検査時間の延長(拡大内視鏡)、高価な設備(拡大内視鏡、NBI))が新たに発生することもなく、検体の採取が簡便なため、内視鏡施行医、介助看護師にほとんど負担をかけることがない。さらに、本発明の検体、キット、および方法においては、市販の内視鏡装置がそのまま利用できるため、新たな設備投資が不要である。
 また、本発明の検体、キット、および方法により、病変部の粘膜面全体を洗浄するだけで「面」での評価が可能となり、しかも生検のように組織に傷を作らないため、止血機能や創傷治癒能力などが減退している対象においても、また、抗血小板薬、抗凝固薬等の止血や創傷治癒に影響する薬剤を内服したままでも検査を行うことができる。内視鏡検査を必要とする対象に高齢者が比較的多く、したがってかかる薬剤を常用する者の割合も多いため、かかる利点の意義は極めて大きい。
 本発明の検体、キット、および方法によれば、手術前に腫瘍を傷つけることなく、細胞診、DNA診断を行なうことが可能である。したがって、本発明の検体、キット、および方法により、腫瘍の性質、浸潤度予測の精度が飛躍的に向上する。また、本発明の検体、キット、および方法により、手術前に大腸腫瘍の遺伝的プロファイルを診断することが可能となる。
 また、本発明の検体、キット、および方法により、ゲノムDNAのジェネティックまたはエピジェネティックな異常の検出をすることが可能である。さらに、本発明による方法で採取した検体を用い、抗癌剤を包含する様々な薬剤の感受性を検討することもできる。さらにまた、本発明の検体や方法により、薬剤および/または治療方法の治療効果を評価することが可能となる。本発明の検体や方法により、再発の予測をするための指標を得ることが可能となる。
 本発明の検体、キット、および方法を用いた大腸粘液層剥離液を用いた過剰メチル化の解析によれば、非侵襲的な方法でどの施設でも簡便に浸潤性大腸腫瘍の正確な診断が可能になる。したがって、本発明の検体、キット、および方法は極めて有用である。
洗浄液を大腸粘膜に散布して該粘液層から粘液を剥離する過程を示す写真である。Aは洗浄液を散布する前の腫瘍部分を、Bは洗浄液を腫瘍部分に散布している様子を、Cは洗浄液を散布した後の腫瘍部分を、それぞれ、示す。 洗浄液を大腸粘液層に散布して該粘液層から粘液を剥離することにより得られた細胞の写真である。「方法1」は水を大腸粘液層に散布して該粘液層から粘液を剥離することにより得られた細胞の写真を、「方法2」は生理食塩水を大腸粘液層に散布して該粘液層から粘液を剥離することにより得られた細胞の写真を、それずれ示す。細胞の染色は、ヘマトキシリン・エオジン染色により行なった。 浸潤腫瘍、非浸潤腫瘍、または非癌患者の大腸におけるメチル化されたDNAの割合を、生検組織と大腸粘液層剥離液のそれぞれについて比較した図である。図中、各点は各症例を示す。縦軸は、miR-34b/c、SFRP1、SFRP2、DKK2の各遺伝子のプロモーター領域におけるCpGアイランドのメチル化されたDNAの割合を示す。「Biopsy samples」は生検組織を、「Washing fluids」は大腸粘液層剥離液を示す。「IC」は浸潤腫瘍を、「NI」は非浸潤腫瘍を、「Normal」は非癌患者をそれぞれ示す。「N=」の後に記した数値は症例数を示す。「NS」は有意差がないことを、「P<」と記した後の数値は有意差の水準を示す。例えば、「P<0.0001」と記されていれば、0.01%の有意水準で統計的な有意差があることを示す。なお、図中の水平線は平均値を示す。 ROC曲線(受信操作特性曲線またはReceiver Operating Characteristic Curveともいう)を示す図である。ROC曲線を作成してベストカットオフ値を決定することにより、洗浄液として生理食塩水を散布して回収した検体(方法2)の各遺伝子のメチル化DNAの割合によって、浸潤腫瘍と非浸潤腫瘍を区別するために最も適した閾値を決定することができる。mir-34b/c 、SFRP1、SFRP2、DKK2、は、それぞれ、遺伝子名を示す。縦軸の「sensitivity」は「感度」を示し、横軸の「1-specificity」は「1-特異度」を示す。「AUC」はROC曲線の下側の面積を示す。「Best cut-off」は、浸潤腫瘍と非浸潤腫瘍を区別するために最も適した閾値である「ベストカットオフ値」を示す。図中において、「sensitivity」の右側に示した数値は「ベストカットオフ値」における感度を、「specificity」の右側に示した数値は「ベストカットオフ値」における特異度をそれぞれ示す。 腫瘍の大きさを、直径20mm未満の場合(左側の図)と、直径20mm以上の場合(右側の図)に分けた場合のメチル化DNAの割合のROC曲線を示す図である。左側の図は、腫瘍の大きさが直径20mm未満である場合において、mir-34b/c とSFRP1の各遺伝子のメチル化DNAの割合のROC曲線を示し、右側の図は、腫瘍の大きさが直径20mm以上である場合において、mir-34b/c とDKK2の各遺伝子のメチル化DNAの割合のROC曲線を示す。縦軸の「sensitivity」は「感度」を示し、横軸の「1-specificity」は「1-特異度」を示す。 複数の遺伝子のメチル化DNAの割合を指標として浸潤腫瘍の有無を診断する場合の判断過程を示す図である。図中、「Tumor size 20mm <」は腫瘍の直径が20mm以上であるという判断基準を示す。「miR34b/c 15% <」はmiR34b/c遺伝子のメチル化されたDNAの割合が15%超であるという判断基準を示す。「SFRP1 51% <」はSFRP1遺伝子のメチル化されたDNAの割合が51%超であるという判断基準を示す。「DKK2 10% <」はDKK2遺伝子のメチル化されたDNAの割合が10%超であるという判断基準を示す。「SFRP2 10% <」はSFRP2遺伝子のメチル化されたDNAの割合が10%超であるという判断基準を示す。棒線の間に位置する「Yes」はその左側の判断基準を満たす場合を示す。同様に、棒線の間に位置する「No」はその左側の判断基準を満たさない場合を示す。「Invasive Cancer」は浸潤腫瘍であるという診断結果を示す。「Non-invasive tumor」は非浸潤腫瘍であるという診断結果を示す。枠内の「Yes」の右側の数値の分母は枠内の判断基準を満たす症例数を、分子は枠内の判断基準を満たす症例のうちで浸潤腫瘍である症例数を、それずれ示す。枠内の「No」の右側の数値の分母は枠内の判断基準を満たさない症例数を、枠内の「No」の右側の数値の分子は枠内の判断基準を満たさない症例のうちで浸潤腫瘍である症例数を、それずれ示す。「P<」と記した後の数値は有意差の水準を示す。例えば、「P<0.001」と記されていれば、0.1%の有意水準で統計的な有意差があることを示す。 洗浄液として生理食塩水を散布して回収した検体(方法2)の各遺伝子のメチル化DNAの割合と生検組織中の各遺伝子のメチル化DNAの割合の相関を検討した図である。図中、各点は各症例を示す。mir-34b/c 、SFRP1、SFRP2、DKK2、は、それぞれ、遺伝子名を示す。縦軸の「wash」は「生理食塩水を腫瘍に散布して得た大腸粘液層剥離液中のメチル化DNAの割合」を示し、横軸の「biopsy」は「生検組織中のメチル化DNAの割合」を示す。図中の実線は共分散分析法による回帰直線をしめし、当該実線の上下に位置する点線は信頼性95%での信頼限界を示す。「R=」の右側の数値はPearsonの相関係数を、「P=」の右側の数値は危険率を示す。
 以下、本発明の好適な態様について詳細に説明する。
 本発明は、大腸粘液層を非侵襲的に剥離して得られる浸潤性大腸腫瘍検出用の検体、大腸粘液層を非侵襲的に剥離するためのキット、大腸粘液層を非侵襲的に剥離して浸潤性大腸腫瘍を検出する指標を得る方法、大腸粘液層を非侵襲的に剥離して薬剤および/または治療方法の治療効果を評価するための指標を得る方法に関する。
 本発明に用いる洗浄液は、大腸の粘膜を傷つけることなく大腸粘液層を剥離しうる液体が好ましく、より好ましくは等張液であり、さらに好ましくは生理食塩水である。また、本発明に用いる洗浄液は、大腸の粘膜を傷つけることなく大腸粘液層を剥離しうる液体であるかぎり、色素、抗生物質、中性の緩衝性組成物、キレート剤、保存用の添加物等の任意の添加物を含んでいてもよい。
 本発明において、洗浄液は、大腸の粘膜を傷つけることなく大腸粘液層を剥離しうる速度で大腸粘液層に散布され、好ましくは毎秒2ml~10mlの速度で、より好ましくは毎秒3ml~8mlの速度で、さらに好ましくは毎秒4ml~6mlの速度で、大腸粘液層に散布される。
 本発明において洗浄液の回収方法は特に限定されないが、内視鏡装置を利用する場合は、例えば、吸引管路中の操作部、コネクタ部、吸引タンク、吸引器またはこれらの間の部分等に、少なくとも1個の密封可能な検体採取容器を接続する方法を挙げることができる。洗浄・滅菌の簡便性、コンタミネーションのリスクなどを考慮すると、検体採取容器はコネクタ部と吸引タンクとの間に取り付けるのが好ましい。また、操作性や洗浄の簡便性などの観点から、検体採取容器は脱着可能に取り付けることが好ましい。典型的には、例えば、コネクタと吸引タンクとをつなぐ吸引チューブを、吸引タンク側で取り外し、これを検体採取容器に設けた流入側接続部に接続し、検体採取容器に設けた流出側接続部を吸引タンクに接続する。内視鏡装置は、検体採取容器を保持する部材を備えていることが好ましい。上記検体採取容器は、1個のみを接続してもよいし、複数個を直列または並列に接続してもよい。
 本発明において用いる腫瘍マーカーは、大腸粘液層剥離液を用いて腫瘍細胞を検出しうる腫瘍マーカーであるかぎり、任意の腫瘍マーカーを用いることができる。例えば、ヘマトキシリン・エオジン染色等のマーカーにより染色した細胞を組織学的に診断する方法を用いることができ、好ましくは、胎児性蛋白質(AFP、CEA等)、糖鎖抗原(CA19-9、シリアルTn等)、異所産生物質(ホルモンや腫瘍性アイソザイム等)のように、その物質を検出することによって大腸腫瘍と診断しうる腫瘍マーカーであり、より好ましくは、癌遺伝子または癌抑制遺伝子である。癌遺伝子または癌抑制遺伝子の例としては、APC、K-RAS、H-RAS、N-RAS、erbB、p53、P16、BCR-ABL、CHFR、RASSFファミリー、SFRPファミリー、MINTファミリー、MGMT、RUNXファミリー、SMADファミリー、PRDMファミリーなど癌関連遺伝子、EBVおよびその関連遺伝子、CMVおよびその関連遺伝子等が挙げられるが、これらに限定されず、現在は知られていないが、将来において発見される様々な癌遺伝子または癌抑制遺伝子を用いることができる。本発明において用いる腫瘍マーカーは、よりさらに好ましくは、腫瘍関連遺伝子のメチル化DNAの検出であり、最も好ましくは、SFRP1、SFRP2、DKK2、hsa-mir-34b/c 、p16INK4A、Eカドヘリン、hMLH1、14-3-3 sigma、BNIP3、CHFR、CIITA、IGFBP7、Histone H3K27、HRK、CACNA1G、COX2、DFNA5、RASSF2からなる群より選択される遺伝子のプロモーター領域のメチル化DNAの検出である。
 本発明はさらに、本発明の検体から核酸を抽出する工程を含む、腫瘍マーカーを検出する方法に関する。
 本発明の方法において、検体からの腫瘍マーカーの抽出には公知の任意の方法を用いることができる。典型的には検体を遠心分離し、得られたペレットを適切な媒体、例えばPBSや生理食塩水などに再懸濁してから、プロテイナーゼKなどのタンパク溶解剤等で消化し、フェノール、クロロホルム等の有機溶媒で除蛋白し、エタノール等で核酸を沈殿することにより、核酸を抽出することができる。具体的なプロトコルに関しては、遺伝子工学に関する種々の文献(例えば、Chomczynski,P., Sacchi, N.:Anal. Biochem., 162: 156-159, 1987、村松正實、山本雅編、新遺伝子工学ハンドブック、改訂第4版、羊土社、2003年10月、20~29頁等)に記載されているので、ここに詳細は記載しない。
 検体は採取後直ちに抽出処理に供することが好ましいが、抽出処理まで一定時間、例えば12時間程度、さらには24時間程度にわたって保存することができる。好ましい保存温度は、腫瘍マーカー保護の観点から、好ましくは-80℃~20℃、より好ましくは-80℃~10℃、特に好ましくは-80℃~4℃である。検体を保存する場合は、遠心分離後、上記適切な媒体中に再懸濁した状態で保存することが好ましい。
 抽出された核酸は、その後、標的疾患マーカーに対応した種々の検出方法、例えば、PCR法、NASBA(Nucleic Acid Sequence-Based Amplification)法、TMA(Transcription Mediated Amplification)法、LCR(Ligase Chain Reaction)法、SDA(Strand displacement amplification)法、LAMP(Loop-mediated isothermal amplification)法、ICAN(Isothermal and chimeric primer-initiated amplification of nucleic acids)法、branched DNA法などの各種核酸増幅法、サザンブロット法、ノザンブロット法、RNaseプロテクションアッセイ、マイクロアレイ法、ドットブロットまたはスロットブロット法等により検出することができる。
 特に、マーカーがエピジェネティックなメチル化DNAである場合は、例えばbisulfiteシーケンス法、メチル化特異的PCR(MS-PCR)、Combined bisulfite restriction assay(COBRA)、MS-SNuPE、bisulfite-SSCP、DMH(differential methylation hybridization)法、MethyLight法、Pyrosequencing法等の手法で検出することができる。
 また、核酸の定量には、260nm前後の吸収極大波長における吸光度を測定する分光光度法や、核酸を染色する種々の試薬、例えば、エチジウムブロマイド、DAPI(4,6-ジアミジン-2-フェニールインドール)、アクリジンオレンジ、Mupid(登録商標)-STAIN eye(株式会社アドバンス)、ジフェニルアミン試薬、ヘキスト33258(H33258)、Quant-iT PicoGreen dsDNA Reagent(Invitrogen)、Quant-iT RiboGreen(登録商標)RNA Reagent(Invitrogen)、Gel Indicator RNA Staining Solution(フナコシ株式会社)、SYBR(登録商標)Green IまたはII、SYBR(登録商標)Gold、GelRed等を用いた方法を含む、任意の既知の方法を利用することができる。
 本発明において、大腸粘液層剥離液は、前洗浄なしで洗浄液を大腸粘液層に散布して得ることができ、好ましくは、癌または腫瘍の浸潤が疑われる部位に直接洗浄液を散布して得ることができる。
 本発明に用いる洗浄液は、10~100mlであることが好ましく、より好ましくは15~50ml、さらに好ましくは17~30ml、もっとも好ましくは20mlである。本発明によれば、少なくとも10μg以上のDNAを含む浸潤性大腸腫瘍検出用の検体を得ることができ、好ましくは12μg以上のDNAを含む浸潤性大腸腫瘍検出用の検体を得ることができ、さらに好ましくは15μg以上のDNAを含む浸潤性大腸腫瘍検出用の検体を得ることができる。
 本発明のキットは、前記の好ましい洗浄液と、大腸の粘膜を傷つけることなく大腸粘液層を剥離しうる洗浄液散布用器具を含むことができる。
 本発明の浸潤性大腸腫瘍を検出する指標を得る方法は、洗浄液を大腸粘液層に散布して該粘液層から粘液を剥離することにより、剥離された粘液を前記洗浄液中に含む検体を採取する工程と、前記検体中の核酸を抽出する工程と、前記核酸中の腫瘍マーカーの存在又は不在を決定する工程を含むことができる。
 本発明において、SFRP1遺伝子のメチル化DNAを指標として浸潤性大腸腫瘍が存在すると判断するための判断基準としては、好ましくは、SFRP1遺伝子のプロモーター領域のメチル化DNAが45%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができ、より好ましくは、SFRP1遺伝子のプロモーター領域のメチル化DNAが51%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができる。
 本発明において、SFRP2遺伝子のメチル化DNAを指標として浸潤性大腸腫瘍が存在すると判断するための判断基準としては、好ましくは、SFRP2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができ、より好ましくは、SFRP2遺伝子のプロモーター領域のメチル化DNAが33%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができる。
 本発明において、DKK2遺伝子のメチル化DNAを指標として浸潤性大腸腫瘍が存在すると判断するための判断基準としては、好ましくは、DKK2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができ、より好ましくは、DKK2遺伝子のプロモーター領域のメチル化DNAが11%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができる。
 本発明において、mir-34b/c遺伝子のメチル化DNAを指標として浸潤性大腸腫瘍が存在すると判断するための判断基準としては、好ましくは、mir-34b/c遺伝子のプロモーター領域のメチル化DNAが15%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができ、より好ましくは、mir-34b/c遺伝子のプロモーター領域のメチル化DNAが18%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができる。
 本発明においては、大腸の内腔側から観察した腫瘍の大きさと、複数の遺伝子のメチル化DNAを指標として、より精度よく、浸潤性大腸腫瘍の存在を診断することができる。例えば、腫瘍の大きさとしては、大腸の内腔側から観察した腫瘍の直径が20mm以上である場合に、浸潤性大腸腫瘍が存在すると判断することができる。また、例えば、大腸の内腔側から観察した腫瘍の直径が20mm以上であり、hsa-mir-34b/c遺伝子のプロモーター領域のメチル化DNAが15%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができる。他の態様としては、大腸の内腔側から観察した腫瘍の直径が20mm以上であり、hsa-mir-34b/c遺伝子のプロモーター領域のメチル化DNAが15%以下であり、かつ、DKK2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができる。さらに、他の態様としては、大腸の内腔側から観察した腫瘍の直径が20mm以上であり、SFRP1遺伝子のプロモーター領域のメチル化DNAが51%を越えていて、かつ、SFRP2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合に浸潤性大腸腫瘍が存在すると判断することができる。
 また、本発明の浸潤性大腸腫瘍を検出する指標を得る方法は、薬剤および/または治療方法の治療効果を評価する方法としても用いることができる。
 例えば、治療前のマーカーレベルと治療後のマーカーレベルとの比較、または、治療中のある時点でのマーカーレベルと、その時点より後の治療中の別の時点でのマーカーレベルとの比較により、標的疾患の進行が減速もしくは停止するか、標的疾患が消退していれば、治療効果ありと、あるいは、標的疾患の進行に影響を与えない場合には治療効果なしと評価することができる。
 本発明の方法はまた、治療終了後の疾患再発の有無をモニターすることに利用することができる。この場合、治療終了後に対象から定期的に検体を採取し、マーカーレベルをもとに上記と同様の手法で疾患の存否を検査する。
 本明細書中に別記のない限り、本発明に関して用いられる科学的および技術的用語は、当業者に通常理解されている意味を有するものとする。一般的に、本明細書中に記載された細胞および組織培養、分子生物学、免疫学、微生物学、遺伝子およびタンパク質および核酸化学に関して用いられる用語、およびその技術は、当該技術分野においてよく知られ、通常用いられているものとする。また、別記のない限り、本発明の方法および技術は、当該技術分野においてよく知られた慣用の方法に従って、本明細書中で引用され、議論されている種々の一般的な、およびより専門的な参考文献に記載されたとおりに行われる。かかる文献としては、例えば、Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press(1989)およびSambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Press(2001); Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates(1992,および2000の補遺); Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology - 4th Ed., Wiley & Sons(1999);Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press(1990);およびHarlow andLane, Using Antibodies: A Laboratory Manual, Cold Spring Harbor LaboratoryPress(1999)などが挙げられる。
 本明細書中に記載された分析化学、合成有機化学ならびに医薬品化学および薬化学に関して用いられる用語、ならびにその実験手順および技術は、当該技術分野においてよく知られ、通常用いられているものである。標準的な技術を、化学合成、化学分析、薬剤の製造、製剤および送達、ならびに対象の処置に用いるものとする。
 なお、本発明における用語「症例」は、ヒトの患者である対象をいう。
 本明細書においては、別記のない限り、タンパク質の名称は遺伝子名のアルファベット(もしくはアルファベットと数字)等のあとにタンパクと付して表記し、そのタンパク質をコードする遺伝子は、前記の遺伝子名のアルファベット(もしくはアルファベットと数字)等のみで表記するか、遺伝子名のアルファベット(もしくはアルファベットと数字)等の後に「遺伝子」と付記して表記するものとする。前記の「遺伝子」は、ゲノム遺伝子、メッセンジャーRNAまたはcDNAのいずれかを意味するものとし、いずれかを特定する場合には、特定して表記するものとする。
 本発明において、「対象」とは、大腸を有する任意の生物個体を意味し、好ましくは動物、さらに好ましくは哺乳動物、例えば、ヒト、非ヒト霊長類、イヌ、ネコなどのコンパニオンアニマル、ウシ、ウマ、ヤギ、ヒツジ、ブタなどの産業動物など、そして特に好ましくはヒトである。本発明において、対象は健常であっても、何らかの疾患に罹患していても、また疾患の治療中もしくは治療後であってもよいものとする。
 本発明において、「腫瘍」とは、細胞が異常な増殖をする状態をいい、腫瘍のうちで悪性腫瘍を「癌」という。
 本発明において、「深達度」とは、癌が大腸癌が内腔側から深層へ浸潤した度合いをいい、「浸潤度」と同義である。
 本発明において「浸潤性大腸腫瘍検出」、「浸潤性大腸腫瘍の検出、」または「浸潤性大腸腫瘍の検出方法」とは、浸潤性大腸腫瘍が存在するか否かを検出するための指標を得る方法をいう。
 本明細書において、「エピジェネティック」とは、本発明の属する技術分野における通常の意味を有するものとし、例えば、DNA配列の変化を伴うことなく、クロマチンへの後天的な修飾により遺伝子発現が制御されることを例示することができる。クロマチンへの後天的な修飾の例としては、DNA塩基のメチル化のほか、ヒストンのメチル化、アセチル化、リン酸化などの化学修飾を例示することができる。
 本発明において、「腫瘍マーカーの量」とは、組織学的な評価スコア、血液等の体液中の胎児性蛋白質、糖鎖抗原、または異所産生物質の濃度、検体中に含まれる変異した癌遺伝子または癌抑制遺伝子の量、検体中に含まれる腫瘍関連遺伝子のメチル化DNAの量をいう。
 本発明において「DNAメチル化」とは、任意のゲノム遺伝子のプロモーター領域のCpGアイランドにおけるシトシンがメチル化されることをいう。
 本発明において「DNA過剰メチル化」または「過剰メチル化」とは、任意のゲノム遺伝子のプロモーター領域のCpGアイランドが、正常細胞に比べて過剰にメチル化された状態をいう。
 本発明において「CpGアイランドのメチル化」とは、任意のゲノム遺伝子のプロモーター領域に存在するCpGアイランドにおけるDNAメチル化をいう。
 本発明において「メチル化DNA」とは任意のゲノム遺伝子のプロモーター領域のCpGアイランドにおけるメチル化されたシトシンをいい、「メチル化DNAの割合」とは当該領域における全てのCpGアイランド中のシトシンに占める「メチル化DNA」の割合をいう。
 本発明において「メチル化DNAの量」とは、任意のゲノム遺伝子のプロモーター領域のCpGアイランドにおけるメチル化されたシトシンの量をいう。「メチル化DNAの量」は、「メチル化DNAの割合」として表示することもできる。
 本発明において「浸潤腫瘍」とは粘膜筋板を超え、粘膜下層以深に浸潤した癌をいう。
 本発明において「非浸潤腫瘍」とは粘膜内に留まる癌をいう。
 本発明において「非癌」とは大腸癌に罹患していない対象、または大腸癌に罹患していない対象から採取した検体を指して用いる。
 本発明において「浸潤性大腸腫瘍検出用検体」とは、洗浄液を大腸粘液層に散布して該粘液層から粘液を剥離することにより得られる、剥離された粘液を前記洗浄液中に含む、浸潤性大腸腫瘍が存在するか否かを検出するための指標を得るための検体をいう。
 本発明において「大腸粘液層」とは、大腸内腔の粘膜の表層にある粘液層をいう。
 本発明において「大腸粘液層剥離液」とは、洗浄液を大腸粘液層に散布して該粘液層から粘液を剥離することにより得られる液体をいう。
 本発明において「生理的な等張液」とは、大腸粘膜を刺激する成分を含有しない、中性付近のpHである等張液をいう。
 本発明において「hsa-mir-34b/c」と「mir-34b/c」は、ともにmicro RNA 34bおよびmicro RNA 34cに共通するゲノム遺伝子を意味する。通常の用語として「mir-34b/c」といった場合には、転写されたmicro RNAを指すことがあるため、ゲノム遺伝子を指すことを強調するために「hsa-mir-34b/c」との用語を用いている。
 本発明においてメチル化DNAの検出に用いるプライマーの配列の標記において、「Y」で表記される塩基は、メチル化されていないCpGアイランド中のシトシンを検出する場合にはチミン(T)を意味するものとし、メチル化されているCpGアイランド中のメチル化シトシンを検出する場合にはシトシン(C)を意味するものとする。
 本発明においてメチル化DNAの検出に用いるプライマーの配列の標記において、「R」で表記される塩基は、アデニン(A)またはグアニン(G)を意味し、「R」がアデニン(A)であるプライマーと「R」がグアニン(G)であるプライマーを混合して用いられる。
 本発明において「ROC曲線」とは、受信操作特性曲線またはReceiver Operating Characteristic Curveをいう。
 ROC曲線は、連続する数値で表される検査結果に基づいて、特定の疾患が陽性であるか陰性であるかを判断する場合に、陽性または陰性と判断する閾値を決定するために用いることができる。
 ROC曲線において、「感度(sensitivity)」とは陽性と判定されるべき検体を正しく陽性と判定する割合を示し、「特異度(specificity)」とは陰性と判定されるべき検体を正しく陰性と判定する割合を示す。通常、陽性と判定されるべき検体を正しく陽性と判定した場合を「真陽性」と定義され、陽性と判定されるべき検体を誤って陰性と判定した場合を「偽陰性」と定義され、陰性と判定されるべき検体を正しく陰性と判定した場合を「真陰性」と定義され、陰性と判定されるべき検体を誤って陽性と判定した場合を「偽陽性」と定義される。そして、「感度」は、真陽性の件数を真陽性の件数と偽陰性の件数の和で割ることによることにより求めることができる。また、「特異度」は、真陰性の件数を偽陽性の件数と真陰性の件数の和で割ることにより求めることができる。
 「AUC」はROC曲線の下側の面積を示す。「AUC」は0.5~1.0の値となり、1.0に近づくほど優れた検査方法であることを示す。
 浸潤腫瘍と非浸潤腫瘍を区別するために最も適した閾値である「ベストカットオフ値」は、ROC曲線中の左上のポイントである、「感度」が1で、「1-特異度」が0である点からの距離が最も短いROC曲線上の点として求めることができる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<実施例1> 検体の採取方法の検討
 検体は、2008年11月から2009年6月までの間に、秋田赤十字病院 消化器内視鏡センターで採取した。検体を採取した対象は、長年、大腸腺腫があり経過観察目的に大腸内視鏡検査を受けた患者、大腸癌の手術前検査のために大腸内視鏡検査を受けた患者、および健康診断において便潜血反応が陽性であったために精密検査を目的として大腸内視鏡検査を受けた被験者とし、生検検体は浸潤腫瘍52検体、非浸潤腫瘍98検体、正常粘膜187検体を対象とした。粘液層剥離液は浸潤腫瘍34検体、非浸潤腫瘍36検体、正常粘膜6検体を対象とした。検体を採取した対象の特性を表1に示す。「過形成性ポリープ」、「腺腫」、「早期癌」、「進行癌」は、いずれも病理組織学的診断により判定された。隆起型、平坦型、陥凹型、Bormann 1型、Bormann 2型、Bormann 3型、Bormann 4型の分類は大腸癌取扱い規約に従った。異形成の程度の判定および分化の程度の判定は病理組織学的診断により判定された。腫瘍の大きさは、病理標本を測定した。臨床ステージの判定は大腸癌取扱い規約、TNM分類に従った。
 検体の回収方法を検討するため、大腸癌症例13例で大腸ファイバーより直接50mlサイズの注射筒を用いて腫瘍部位に、毎秒5mlの速度で水道水を散布し、剥離した粘液層を含む10mlの水を回収する方法(方法1)、あるいは、大腸癌症例46症例でピオクタニン散布用のチューブ(NT tube、オリンパス製)より、腫瘍部位に、毎秒5mlの速度で生理食塩水20mlを散布し、剥離した粘液層を含む10mlの水を回収する方法(方法2)のいずれかによって、検体を採取した。方法1によって検体を採取した対象は11症例、方法2によって検体を採取した対象は37症例であった。ピオクタニン散布用のチューブを用いて、腫瘍部位に生理食塩水を散布する前の大腸内腔の写真(図1A)、散布中の大腸内腔の写真(図1B)、および散布中の大腸内腔の写真(図1C)を、図1に示す。
 得られた検体は、1500rpmの速度で10分間遠心して、細胞を沈殿させ、上清を棄てたのち、その一部をホルマリンで固定した後にヘマトキシリン・エオジンで染色して、細胞の形態を観察した。大腸大腸粘液層剥離液の細胞診(進行癌21症例、早期癌5症例、腺腫15症例)を行い、大腸腫瘍の病理診断と大腸粘液層剥離液の細胞診を比較した。進行癌10症例(合致率 47.6%)、早期癌0症例(合致率 0%)、腺腫4症例(合致率 26.6%)において生検と細胞診の結果が合致した。これらの結果より、大腸粘液層剥離液に大腸癌細胞が浮遊しており、特に進行大腸癌の粘膜剥離液に顕著に腫瘍細胞が含まれることが示唆された。方法1または方法2により採取した検体中の細胞の写真を図2に示す。Method 1では細胞が少なく、細胞の変性が強い。Method 2では変性が弱くなり、細胞診によりadenocarcinomaと診断できる症例を認めた。また一部の症例で細胞診を施行したところ、方法1では細胞数が少なく、細胞に変性が多い、方法2では細胞数が多く、変性も少ない像が得られた。以上より方法2で粘液層の腫瘍細胞を効率よく回収でき、腫瘍細胞の異常メチル化を解析することが可能であると考えられた。
 さらに、遠心分離した上記の検体よりDNAを抽出し、得られたDNAの量を比較した。表2に示すように、方法1を用いて得られた検体と方法2を用いてられた検体の間のDNA含有量に大きな差は認められなかった。方法1により採取した検体のDNA量は、大腸粘液層剥離液では15.00±11.12μg、生検組織では21.28±15.52μgであった。一方、方法2により採取した検体のDNA量は、大腸粘液層剥離液では16.53±16.88μg、生検組織では17.08±13.00μgであった。方法1と方法2のいずれを用いても得られるDNA量に差は認められず、また、大腸粘液層剥離液から得られるDNA量と組織からの得られるDNA量に差は認められなかった。
 なお、DNAの抽出は次のようにして行なった。検体の遠心分離後に、上清を除去し、ペレットを4.5mlのSEDTA中に再懸濁した。これに、10%のSDSを0.5mlおよび20mg/mlのプロテイナーゼK(タカラバイオ株式会社、Code No.9033)を50mlそれぞれ加え、55℃で1時間インキュベートした。フェノール(UltraPure Buffer-Saturated Phenol、Invitrogen life technologies)を5ml加え、転倒混和後、2700rpm、4℃で15分遠心分離し、上清を新しいチューブへ移した。この操作をさらに1~2回繰り返し、溶媒を同量のクロロホルム(和光純薬工業株式会社)に変えてさらに1~2回繰り返した。グリコーゲン5ml(Ambion、Cat#9510)および100%エタノール9mlを加え、転倒混和後、4℃にて12時間インキュベートした。その後、検体を2700rpm、4℃で15分遠心分離して上清を捨て、ペレットを70%エタノール10mlに懸濁後、2700rpm、4℃で15分遠心分離し、上清を捨て、精製水200mlに溶解し、DNA分析用試料を得た。
 DNA量は、検体中に含まれるDNAの回収量を、分光光度法により測定した。分光光度法は、NanoDrop ND-1000分光光度計(旭テクノグラス株式会社)を用い、製造者のマニュアルに従って行った。
 同じ対象について病理組織学的検査を行い、粘膜下層以深への浸潤を認める場合に浸潤腫瘍と診断し、非癌または粘膜内に留まる癌である場合に非浸潤腫瘍と診断した。また、方法1を用いて得た検体を用いて、病理組織学的により浸潤腫瘍か非浸潤腫瘍かを診断した。これらの結果を表2にまとめた。方法1を用いて採取した検体では、浸潤腫瘍の12.5%と非浸潤腫瘍の33.3%しか正しく診断できなかった一方で、方法2を用いて採取した検体では、浸潤腫瘍の31.6%と非浸潤腫瘍の61.1%を正しく診断できた。したがって、方法2を用いて採取した検体が、浸潤性大腸癌検出用の検体として、方法1を用いて採取した検体よりも優れていることがわかった。
 さらに、生検組織と方法2により採取した大腸粘液層剥離液とを対比するため、それぞれの、検体を得た症例の特性を表3に示した。生検組織を得た症例と方法2により大腸粘液層剥離液を得た症例の間で、平均年齢、男女数に有意な差は見られなかった。表3中、浸潤腫瘍か非浸潤腫瘍かの判定は、病理組織学的検査により行なった。これらの結果により、性別や年齢による有意差は認められなかった。方法2を用いて採取した大腸剥離液と大腸腫瘍の生検より得られたDNAの量の平均はそれぞれ、12.28±1.24mg(N=87)、15.86±0.633 mg(N=365)であり、大腸内視鏡で得られた大腸粘液層剥離液には解析に十分なDNA量が存在することが明らかとなった。
<実施例2> メチル化DNAの測定およびK-RAS変異の測定
 次に、全症例について、メチル化DNAの測定を行なった。
 まず、大腸内視鏡検査を行い、全大腸内視鏡検査で腫瘍を認めた場合に、ピオクタニン散布用のチューブ(NT tube 、オリンパス製)を用い腫瘍に近接した位置から洗浄液を散布することにより大腸内腔側の表面の粘液を剥離した。その際、洗浄液は、およそ、毎秒5mlの速度で大腸粘液層に散布した。
 その後、拡大内視鏡(CF-260AZI)観察後、腫瘍の癌部、腺腫部、腫瘍周辺(1cm以内)の背景正常粘膜を生検にて採取して、EMRやマーキング等の処置を行なった。採取された検体は、エンドフレッシュにて保管し、冷凍保存後、フェノールクロロホルム法によりDNA抽出を行った。
 採取された生検と大腸粘液層剥離液は、それぞれDNA抽出を行った後、QIAGEN社のEpitect bisulfite kit を用いて、その取扱説明書である「EpiTect(登録商標)Bisulfite プロトコールとトラブルシューティング」および「EpiTect(登録商標)Bisulfite Handbook」に記載のプロトコールに従って亜硫酸水素ナトリウム処理を行い、そのbisulfite DNA 1 μl使い、PCRを行った。
 全てのprimerは、大腸癌でメチル化が報告されている SFRP1、SFRP2、DKK2、microRNA34b/cのメチル化DNAを検出するためのprimerを用いた。
 具体的には、mir-34b/c遺伝子については、フォワードプライマーとして配列番号1のDNA、リバースプライマーとして配列番号2のDNA、パイロシークエンスプライマーとしては配列番号3のDNAを使用した。
 また、SFRP1遺伝子については、フォワードプライマーとして配列番号4のDNA、リバースプライマーとして配列番号5のDNA、パイロシークエンスプライマーとしては配列番号6または7のDNAを使用した。
 また、SFRP2遺伝子については、フォワードプライマーとして配列番号8のDNA、リバースプライマーとして配列番号9のDNA、パイロシークエンスプライマーとしては配列番号10のDNAを使用した。
 同様に、DKK2遺伝子については、フォワードプライマーとして配列番号11のDNA、リバースプライマーとして配列番号12のDNA、パイロシークエンスプライマーとしては配列番号13または14のDNAを使用した。
 全てのPCR assayでは、denaturation step 95℃ 30秒その後annealing step 60℃ 30秒extension step 72℃ 30秒を50サイクルいった。その後、pyrosequencerによりメチル化DNAを定量的に測定し、primerの上流のCpG siteのそれぞれのメチル化の数値を平均した値を採用した。
 K-RAS遺伝子の変異に関しても、パイロシークエンス法を用いて、コドン12およびコドン13を測定した。
 K-RAS遺伝子の変異の測定は、QIAGEN社のKRAS検出キットであるPyroMark KRAS v2.0 (4 x 24)(カタログ番号970452)を用いて、その取扱説明書である「PyroMark(登録商標)KRAS v2.0 Handbook」に記載のプロトコールに従って測定した。
 生検組織ではSFRP1、SFRP2、DKK2、mir34b/cのメチル化は非癌部と腺腫、癌部で徐々に上昇する傾向を認めたが、有意差を認めなかった。一方、粘膜剥離液を用いたメチル化DNAの解析では、進行癌と非癌部において、SFRP1のメチル化DNAは、癌部で 52.5%、 非癌部で 11.0%であり、P<0.001の有意水準で有意差が認められた。microRNA34b/cのメチル化DNAは、癌部 で26.39%、 非癌部で5.33%であり、P=0.0007の有意水準で有位な差を認めた。同様に、早期癌と非癌部で比較すると、SFRP1のメチル化DNAは早期癌で41.2% 、非癌部で 11.0%であり、P=0.0043の有意水準で優位さを認めた。 microRNA34b/cのメチル化DNAは、早期癌 で23.38%、 非癌部で5.33%であり、P=0.0220の有意水準で有意差を認めた。腺腫と非癌部で比較すると、SFRP1のメチル化DNAは、腺腫で 32.6%、 非癌部で11.0%であり、P=0.0089の有意水準で優位さを認めた。 microRNA34b/cのメチル化DNAは、腺腫 で17.17%、 非癌部 で5.33%であり、P=0.0306の有意水準で有意差を認めた。また、癌の深達度とメチル化との関係では、深達度がmまたはmp以深で有意に差があったのは、SFRP1のメチル化DNAは、深達度m で33.39%、 深達度mp で57.17%であり、(P=0.0230の有意水準で有意差を認めた。 microRNA34b/cのメチル化DNAは、深達度m で15.62%、 深達度mpで 29.36%であり、P=0.0477の有意水準で有意差を認めた。 全体の生検と大腸粘液層剥離液の間で相関が見られたのは、micro RNA34b/cのメチル化DNAのみであり、有意水準はP<0.001、相関係数はR値 0.4296±0.1000であった。
 表3で得た同一病変由来の検体中の一部の検体を用いて、K-RAS遺伝子の変異の有無を検討して、その結果を表4に示した。生検組織を用いても、方法2により採取した粘液剥離液を用いても、77.7%の検体で一致して浸潤腫瘍を検出できたことがわかる。尚、検体の合計数が一致しないのは、生検でK-RAS遺伝子の変異を検出できても、粘液剥離液ではK-RAS遺伝子の変異を検出できない症例があるためである。このような症例は特に非浸潤腫瘍に多かった。
<実施例3> 内視鏡分類
 大腸内視鏡での腫瘍の形態をhyperplastic polyp、adenoma、early cancerをprotruded type(0-I)、flat type(IIa、LST) 、depressed type(IIc、IIa+IIc)に分類した。Early cancerは、癌浸潤がsubmucosal layerまでに達するものとした。静脈浸潤、リンパ管浸潤は問わない。Advaced cancer はborrmann分類を適応した。全ての大腸腫瘍の手術やEMR標本は、秋田赤十字病院病理部でWHO分類に従い、臨床診断されている。
<実施例4> 細胞診
 大腸粘液層剥離液の細胞診に関しては、秋田赤十字病院 消化器センターで採取された大腸粘液層剥離液を、CYTYC社のThinPrep(登録商標)PreservCyt Solution Vials(20 ml. prefilled / Box of 50 vials、注文番号 0234005)に保存し、遠心後ホルマリン固定を行い、ヘマトキシリン・エオジン染色後、細胞診を行った。
<実施例5> 統計解析
 全ての統計、グラフについては、PRISM version 5 for windows日本語版セットで行った。メチル化に関しては、それぞれのCpG siteのメチル化の平均をその検体のメチル化として、臨床診断、深達度についてまとめた。 有意差に関しては、それぞれの群で一元は位置分散分析による検定を行った。相関関係では、t検定を行った。
<実施例6> ROC曲線
 mir34b/c 、SFRP1、SFRP2、DKK2の各遺伝子のメチル化DNAを指標として、浸潤性大腸癌の検出を行う際の閾値を決定するために、ROC曲線を作成した(図4)。mir34b/c 、SFRP1、SFRP2、DKK2、ベストカットオフ値は、それぞれに順に、17.8%、45%、33%、11%であった。
<実施例7> 腫瘍の直径が20mm未満または20mm以上である場合のROC曲線
 腫瘍の直径が20mm未満である場合、および腫瘍の直径が20mm以上である場合に分けてROC曲線を作成した(図5)。大腸の内腔側から測定した腫瘍の直径が20mm未満である場合には、mir-34b/c遺伝子およびSFRP1遺伝子のメチル化DNAを指標としたROC曲線を作成した(図5左)。また、大腸の内腔側から測定した腫瘍の直径が20mm以上である場合には、mir-34b/c遺伝子およびDKK2遺伝子のメチル化DNAを指標としたROC曲線を作成した(図5右)。これらの結果から、腫瘍の直径が20mm以下である場合の浸潤腫瘍と非浸潤腫瘍の区別にはmiR34b/cまたはSFRP遺伝子のメチル化DNAを指標とする野が好ましく、腫瘍の直径が20mm以上である場合の浸潤腫瘍と非浸潤腫瘍の区別にはmiR34b/cまたはDKK2遺伝子のメチル化DNAを指標とする野が好ましいことがわかる。
<実施例8> 腫瘍の大きさとメチル化DNAを組合わせた診断フロー図
 大腸の内腔側から測定した腫瘍の直径とメチル化DNAの測定を組合わせて、もっとも精度よく浸潤腫瘍の有無を診断するための、フロー図を作成した(図6)。このフロー図を用いれば、左端の枠内に記載した、腫瘍の直径が20mm以上である場合(Yes)と腫瘍の直径が20mm以上でない場合(No)の判断から開始して、順に右側の枠内の判断基準にしたがって次の枠に進むことにより、浸潤腫瘍か非浸潤腫瘍のいずれかの診断がなされる。
<実施例9> 大腸粘液層剥離液のメチル化DNAと生検組織のメチル化DNAの相関
 浸潤腫瘍と非浸潤腫瘍のそれぞれについて、mir34b/c 、SFRP1、SFRP2、DKK2の各遺伝子のメチル化されたDNAの割合が、大腸粘液層剥離液と生検組織とで相関するか検討した。その結果、浸潤腫瘍における、mir34b/c 、SFRP1、SFRP2の各遺伝子のメチル化されたDNAの割合は、大腸粘液層剥離液と生検組織とで、3%以下の危険率で有意に相関していた。また、浸潤腫瘍と非浸潤腫瘍を合わせた全体において、mir34b/c 、SFRP1、SFRP2、DKK2の各遺伝子のメチル化されたDNAの割合は、5%以下の危険率で有意に相関していた。
 本発明の検体、キット、および方法は、対象の大腸粘液層に洗浄液を散布して該粘液層から粘液を剥離し、剥離された粘液を洗浄液とともに回収することにより、非侵襲的に大腸癌または大腸腫瘍の浸潤性または深達度を診断するための指標を得る方法を提供する画期的な発明である。本発明の検体、キット、および方法を利用することにより、非侵襲的に、しかも高い精度で、大腸癌または大腸腫瘍の浸潤性または深達度を診断しうるので、大腸癌の治療方法の選択に際して有用である。また、本発明の検体、キット、および方法を利用することにより、抗癌剤を包含する様々な薬剤に対する感受性を予め検討することもできる。さらにまた、本発明の検体、キット、および方法により、薬剤および/または治療方法の治療効果を評価することが可能となる。本発明の検体、キット、および方法により、再発の予測をするための指標を得ることが可能となる。したがって、本発明の検体、キット、および方法は、産業上の利用可能性を有する。

Claims (33)

  1. 浸潤性大腸癌検出のための検体であって、大腸粘液層に洗浄液を散布して大腸粘液を剥離し、剥離した大腸粘液とともに回収して得られる前記洗浄液を含む、前記検体。
  2. 大腸粘液層が、腫瘍部位を含む大腸粘液層である、請求項1に記載の検体。
  3. 洗浄液が、生理的な等張液である、請求項1または2に記載の検体。
  4. 生理的な等張液が、生理食塩水である、請求項3に記載の検体。
  5. 散布が、毎秒2ml~10mlの速度で行なわれる、請求項1~4のいずれか一項に記載の検体。
  6. 検出が、腫瘍マーカーの検出である、請求項1~5のいずれか一項に記載の検体。
  7. 腫瘍マーカーの検出が、メチル化DNAの検出である、請求項1~6のいずれか一項に記載の検体。
  8. メチル化DNAの検出が、SFRP1、SFRP2、DKK2、hsa-mir-34b/c 、p16INK4A、Eカドヘリン、hMLH1、14-3-3 sigma、BNIP3、CHFR、CIITA、IGFBP7、Histone H3K27、HRK、CACNA1G、COX2、DFNA5、RASSF2からなる群より選択される遺伝子のプロモーター領域のメチル化DNAの検出である、請求項1~7のいずれか一項に記載の検体。
  9. メチル化DNAの検出が、SFRP1、SFRP2、DKK2、hsa-mir-34b/cからなる群より選択される遺伝子のプロモーター領域のメチル化DNAの検出である、請求項8に記載の検体。
  10. 洗浄液が、前洗浄なしで散布される、請求項1~9のいずれか一項に記載の検体。
  11. 腫瘍部位が、腫瘍の浸潤が疑われる腫瘍部位である、請求項2に記載の検体。
  12. 検体が、10μg以上のDNAを含む、請求項1~11のいずれか一項に記載の検体。
  13. 浸潤性大腸癌検出のためのキットであって、大腸粘液層に洗浄液を散布して大腸粘液を剥離するための洗浄液散布用器具および洗浄液を含む、前記キット。
  14. 浸潤性大腸腫瘍を検出する指標を得る方法であって、
    大腸粘液層に洗浄液を散布して大腸粘液を剥離する工程、
    剥離した大腸粘液とともに洗浄液を回収する工程、
    回収した洗浄液中の腫瘍マーカーの量を決定する工程、および、
    腫瘍マーカーの量に基づいて浸潤性大腸腫瘍が存在すると決定するための指標を得る工程、
    を含む、前記方法。
  15. 大腸粘液層が、腫瘍部位を含む大腸粘液層である、請求項14に記載の方法。
  16. 洗浄液が生理的な等張液である、請求項14または15に記載の方法。
  17. 生理的な等張液が、生理食塩水である、請求項16に記載の方法。
  18. 散布が、毎秒2ml~10mlの速度で行なわれる、請求項14~17のいずれか一項に記載の方法。
  19. 腫瘍マーカーが、メチル化DNAである、請求項14~18のいずれか一項に記載の方法。
  20. 腫瘍マーカーが、SFRP1、SFRP2、DKK2、hsa-mir-34b/c 、p16INK4A、Eカドヘリン、hMLH1、14-3-3 sigma、BNIP3、CHFR、CIITA、IGFBP7、Histone H3K27、HRK、CACNA1G、COX2、DFNA5、RASSF2からなる群より選択される遺伝子のプロモーター領域のメチル化DNAである、請求項14~19のいずれか一項に記載の方法。
  21. 腫瘍マーカーが、SFRP1、SFRP2、DKK2、hsa-mir-34b/cからなる群より選択される遺伝子のプロモーター領域のメチル化DNAである、請求項20に記載の方法。
  22. 指標が、SFRP1遺伝子のプロモーター領域のメチル化DNAが45%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  23. 指標が、SFRP1遺伝子のプロモーター領域のメチル化DNAが51%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  24. 指標が、SFRP2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  25. 指標が、SFRP2遺伝子のプロモーター領域のメチル化DNAが33%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  26. 指標が、DKK2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  27. 指標が、DKK2遺伝子のプロモーター領域のメチル化DNAが11%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  28. 指標が、mir-34b/c遺伝子のプロモーター領域のメチル化DNAが15%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  29. 指標が、mir-34b/c遺伝子のプロモーター領域のメチル化DNAが18%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  30. 指標が、大腸の内腔側から観察した腫瘍の直径が20mm以上であり、かつ、mir-34b/c遺伝子のプロモーター領域のメチル化DNAが15%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  31. 指標が、大腸の内腔側から観察した腫瘍の直径が20mm以上であり、mir-34b/c遺伝子のプロモーター領域のメチル化DNAが15%以下であり、かつ、DKK2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  32. 指標が、大腸の内腔側から観察した腫瘍の直径が20mm以上であり、SFRP1遺伝子のプロモーター領域のメチル化DNAが51%を越えていて、かつ、SFRP2遺伝子のプロモーター領域のメチル化DNAが10%を越えている場合である、請求項14~21のいずれか一項に記載の方法。
  33. 指標が、薬剤および/または治療方法の治療効果を評価するために用いる指標である、請求項14~32のいずれか一項に記載の方法。
PCT/JP2010/064715 2009-08-28 2010-08-30 浸潤性大腸腫瘍検出用の検体 WO2011024999A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10812045.2A EP2472257A4 (en) 2009-08-28 2010-08-30 TEST EQUIPMENT FOR THE RECOGNITION OF LARGE INFILTRATIVE DARM TUMORS
JP2011528892A JPWO2011024999A1 (ja) 2009-08-28 2010-08-30 浸潤性大腸腫瘍検出用の検体
US13/407,645 US20120264120A1 (en) 2009-08-28 2012-02-28 Specimen for detecting infiltrative large intestine tumors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23810609P 2009-08-28 2009-08-28
US61/238,106 2009-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/407,645 Continuation-In-Part US20120264120A1 (en) 2009-08-28 2012-02-28 Specimen for detecting infiltrative large intestine tumors

Publications (1)

Publication Number Publication Date
WO2011024999A1 true WO2011024999A1 (ja) 2011-03-03

Family

ID=43628090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064715 WO2011024999A1 (ja) 2009-08-28 2010-08-30 浸潤性大腸腫瘍検出用の検体

Country Status (4)

Country Link
US (1) US20120264120A1 (ja)
EP (1) EP2472257A4 (ja)
JP (1) JPWO2011024999A1 (ja)
WO (1) WO2011024999A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787174A (zh) * 2012-09-06 2012-11-21 南京大学 胃肠肿瘤发病相关抑癌基因表观突变检测试剂盒及其用途
WO2015029947A1 (ja) * 2013-08-26 2015-03-05 北海道公立大学法人 札幌医科大学 大腸癌を検出する方法
WO2016060278A1 (ja) * 2014-10-17 2016-04-21 国立大学法人東北大学 大腸癌に対する薬物療法の感受性を予測する方法
JP2017164511A (ja) * 2017-04-17 2017-09-21 国立大学法人 筑波大学 大腸癌検出装置、大腸癌検出キット、被験体における大腸癌の可能性を判断するための被験体由来の消化管洗浄液中の鉄イオン濃度の測定方法、及び大腸癌の進行度を予測するためのデータを収集する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467275B2 (ja) * 2015-04-13 2019-02-06 富士フイルム株式会社 内視鏡用光源装置及び内視鏡システム
WO2020178315A1 (en) * 2019-03-04 2020-09-10 Universiteit Antwerpen Methylation status of gasdermin e gene as cancer biomarker
KR102625668B1 (ko) * 2021-07-07 2024-01-18 성신여자대학교 연구 산학협력단 캡슐 내시경 장치 및 병변 진단 지원 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132844A1 (ja) * 2006-05-15 2007-11-22 Sapporo Medical University 胃粘膜洗浄液を利用した疾患関連マーカー検出法
JP2007534404A (ja) * 2004-04-28 2007-11-29 ユーシーエル、バイオメディカ、パブリック、リミテッド、カンパニー 例えば大腸鏡のような内視鏡、及びそれで使用される洗浄方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735751A (en) * 1971-06-08 1973-05-29 S Katz Lavage and cytology instrument
WO2005108621A1 (en) * 2004-04-30 2005-11-17 Yale University Methods and compositions for cancer diagnosis
GB0415277D0 (en) * 2004-07-07 2004-08-11 Colonix Ltd Apparatus and method for sampling mucosal surfaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534404A (ja) * 2004-04-28 2007-11-29 ユーシーエル、バイオメディカ、パブリック、リミテッド、カンパニー 例えば大腸鏡のような内視鏡、及びそれで使用される洗浄方法
WO2007132844A1 (ja) * 2006-05-15 2007-11-22 Sapporo Medical University 胃粘膜洗浄液を利用した疾患関連マーカー検出法

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"New Handbook of Genetic Engineering", October 2003, YODOSHA, pages: 20 - 29
AHLQUIST DA ET AL., GASTROENTEROLOGY, vol. 119, no. 5, November 2000 (2000-11-01), pages 1219 - 27
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1992, GREENE PUBLISHING ASSOCIATES
AUSUBEL ET AL.: "Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology", 1999, WILEY & SONS
CHOMCZYNSKI, P.; SACCHI, N., ANAL. BIOCHEM., vol. 162, 1987, pages 156 - 159
DIGESTIVE ORGANS AND ENDOSCOPY CENTER OF THE AKITA RED CROSS HOSPITAL, November 2008 (2008-11-01)
FUJII ET AL: "Kaiyosei Daichoen ni Okeru DNA Methyl-ka wa Hatsugen no Bunshi Marker to Narieru ka?", G.I. RESEARCH, vol. 17, no. 4, 1 August 2009 (2009-08-01), pages 304 - 311, XP008156493 *
HARLOW; LANE: "Antibodies: A Laboratory Manual", 1990, COLD SPRING HARBOR LABORATORY PRESS
HARLOW; LANE: "Using Antibodies: A Laboratory Manual", 1999, COLD SPRING HARBOR LABORATORY PRESS
ISHIBASHI ET AL.: "Determining the telomerase activity of exfoliated cells in intestinal lavage solution to detect colorectal carcinoma", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 56, no. 5, 1998, pages 117 - 121, XP008154855 *
OSBORN NK ET AL., GASTROENTEROLOGY, vol. 128, no. 1, January 2005 (2005-01-01), pages 192 - 206
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR PRESS
See also references of EP2472257A4 *
SUZUKI ET AL.: "Atarashii Daicho Gan Yokusei Idenshi-SFRP", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 63, no. 4, 2005, pages 707 - 719, XP008154770 *
TOMIKI Y. ET AL: "CANCER CELL EXFOLIATION BY PREOPERATIVE COLONOSCOPIC EXAMINATION", DIGESTIVE ENDOSCOPY, vol. 12, 2000, pages 327 - 330, XP008154766, DOI: doi:10.1046/j.1443-1661.2000.00075.x *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787174A (zh) * 2012-09-06 2012-11-21 南京大学 胃肠肿瘤发病相关抑癌基因表观突变检测试剂盒及其用途
CN102787174B (zh) * 2012-09-06 2013-08-07 南京大学 胃肠肿瘤发病相关抑癌基因表观突变检测试剂盒及其用途
WO2015029947A1 (ja) * 2013-08-26 2015-03-05 北海道公立大学法人 札幌医科大学 大腸癌を検出する方法
WO2016060278A1 (ja) * 2014-10-17 2016-04-21 国立大学法人東北大学 大腸癌に対する薬物療法の感受性を予測する方法
JPWO2016060278A1 (ja) * 2014-10-17 2017-08-31 国立大学法人東北大学 大腸癌に対する薬物療法の感受性を予測する方法
JP2017164511A (ja) * 2017-04-17 2017-09-21 国立大学法人 筑波大学 大腸癌検出装置、大腸癌検出キット、被験体における大腸癌の可能性を判断するための被験体由来の消化管洗浄液中の鉄イオン濃度の測定方法、及び大腸癌の進行度を予測するためのデータを収集する方法

Also Published As

Publication number Publication date
EP2472257A1 (en) 2012-07-04
US20120264120A1 (en) 2012-10-18
JPWO2011024999A1 (ja) 2013-01-31
EP2472257A4 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
WO2011024999A1 (ja) 浸潤性大腸腫瘍検出用の検体
JP6897970B2 (ja) 大腸腫瘍の有無を検査する方法
Leung et al. Detection of hypermethylated DNA or cyclooxygenase-2 messenger RNA in fecal samples of patients with colorectal cancer or polyps
US9493839B2 (en) Non-invasive cancer diagnosis
Harada et al. Analysis of DNA methylation in bowel lavage fluid for detection of colorectal cancer
CN102947468B (zh) 大肠肿瘤的检测方法
JP2017508464A (ja) 定量的pcrによってヒトの糞便試料から大腸癌を診断する方法、プライマー及びキット
ES2510842T3 (es) Gen asociado con cáncer de hígado, y método para la determinación del riesgo de adquirir cáncer de hígado
JP2024514960A (ja) 結腸直腸癌検査用組成物、試薬キット及び応用
JP5562554B2 (ja) 胃粘膜洗浄液を利用した疾患関連マーカー検出法
US20130130256A1 (en) Acf detection method
Steinbach et al. High Detection Rate for Non–Muscle-Invasive Bladder Cancer Using an Approved DNA Methylation Signature Test
WO2015029947A1 (ja) 大腸癌を検出する方法
CN114875155A (zh) 一组基因突变及其在诊断胰胆道癌中的应用
CA2592993C (en) Method for detecting methylation in genes and method for examining neoplasm through detecting methylation in genes
ES2820732T3 (es) Marcadores de metilación de ADN no sesgados que definen un defecto de campo amplio en tejidos de próstata histológicamente normales asociados al cáncer de próstata: nuevos biomarcadores para hombres con cáncer de próstata
US20140287412A1 (en) Acf detection method
Kim et al. SFRP2 promoter methylation analysis in tumor tissue, stool, and plasma DNA of patients with colorectal cancer
WO2024045162A1 (zh) Adhfe1基因的差异性甲基化区域、试剂盒和用途
JP6103866B2 (ja) 大腸ガン検出方法、診断用キット及びdnaチップ
JP6405322B2 (ja) 方法
WO2024176212A1 (en) Assessment of hematuria and other urinary tract symptoms
CN116891899A (zh) 一种基因标志物组合、试剂盒及检测方法
CN114875154A (zh) 标志物组合及其在诊断胰胆道癌中的应用
CN114891892A (zh) 用于诊断胰胆道癌的甲基化标志物组合

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812045

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011528892

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010812045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010812045

Country of ref document: EP