WO2011024631A1 - 記憶装置の振動センサ取り付け構造 - Google Patents
記憶装置の振動センサ取り付け構造 Download PDFInfo
- Publication number
- WO2011024631A1 WO2011024631A1 PCT/JP2010/063468 JP2010063468W WO2011024631A1 WO 2011024631 A1 WO2011024631 A1 WO 2011024631A1 JP 2010063468 W JP2010063468 W JP 2010063468W WO 2011024631 A1 WO2011024631 A1 WO 2011024631A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration sensor
- storage device
- vibration
- mounting structure
- recording medium
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B33/00—Constructional parts, details or accessories not provided for in the other groups of this subclass
- G11B33/02—Cabinets; Cases; Stands; Disposition of apparatus therein or thereon
- G11B33/08—Insulation or absorption of undesired vibrations or sounds
Definitions
- the present invention relates to a vibration sensor mounting structure of a storage device for detecting mechanical vibration of the storage device and vibration and impact applied to the storage device from the outside. More specifically, the present invention relates to a vibration sensor mounting structure for a storage device that can realize high detection performance and high detection accuracy of a vibration sensor.
- a storage device such as a hard disk drive (HDD) or a magneto-optical storage device, a cooling fan, and a piezoelectric backlight power source.
- a storage device for a personal computer includes a magnetic recording medium, a magnetic head, a slider, a head arm, a voice coil motor, and the like.
- Such storage devices are increasing in density and capacity. Since the storage device handles valuable information data such as image data, moving image data, or analysis data, high reliability is required. However, since such a storage device has many mechanical parts and mechanical parts, it easily breaks down due to disturbances such as impact and vibration. Furthermore, the mechanical components and mechanical parts of the storage device may cause abnormal vibration due to deterioration due to long-term use during long-term use. Therefore, a sensor for detecting disturbances received by the storage device and vibrations generated by the storage device itself, specifically, a vibration sensor for detecting acceleration, speed, and displacement is mounted on the storage device.
- the detection performance of the vibration sensor differs depending on which direction the vibration of the storage device is detected. In addition to the performance of the vibration sensor itself, the detection accuracy varies depending on the position and method of attaching the vibration sensor. Since abnormalities in the storage device appear in the operation of the recording medium and the head arm, it is desirable that the attachment position of the vibration sensor is mainly in the in-plane direction of the recording medium and the direction perpendicular to the surface. As described above, the detection performance of the occurrence of abnormality in the storage device is enhanced by detecting the vibration in the two directions of the recording medium. As a conventional technique for detecting vibrations in two different directions, an acceleration detection device has been proposed that can independently detect accelerations in two perpendicular directions using two acceleration sensors (see Patent Document 1).
- FIG. 10 is a perspective view showing the acceleration detecting device.
- the acceleration detection device 101 includes an acceleration sensor 103 and an acceleration sensor 104.
- the acceleration sensor 103 and the acceleration sensor 104 are mounted on the sensor mounting plane 102 so as to be reversed by 180 ° within the sensor mounting plane 102.
- the maximum sensitivity axis direction P A with respect to the sensor mounting plane 102 of the acceleration sensor 103 and the maximum sensitivity axis direction P B with respect to the sensor mounting plane 102 of the acceleration sensor 104 are inclined with respect to the sensor mounting plane 102 by an angle ⁇ .
- the acceleration detection apparatus 101 includes a calculation unit that calculates the sum (SA + SB) of the outputs SA and SB of the two acceleration sensors 103 and 104, and a calculation unit that calculates the difference between the outputs SA and SB (SA ⁇ SB). And are provided.
- the acceleration detection device 101 independently detects acceleration in a direction perpendicular to the sensor mounting plane 102 from this sum (SA + SB) and acceleration in a direction parallel to the sensor mounting plane 102 from the difference (SA ⁇ SB). Yes. As a result, accelerations in two perpendicular directions can be detected independently. In addition, since two identical acceleration sensors are used, the manufacturing cost of the acceleration sensor can be reduced, and the product can be made thinner.
- the attachment position of the vibration sensor is one of the control circuit board of the storage device, the inside of the storage device, and the exterior portion of the storage device. Since the acceleration sensor is a surface-mounted chip component, it is attached to the control circuit board of the storage device or inside the storage device by solder bonding.
- a storage device that reduces noise by suppressing vibration by a vibration sensor has been proposed (see page 7, etc. of Patent Document 2).
- This storage device has a configuration in which a vibration sensor is fixed to the surface of the top cover of the storage device with an adhesive. This storage device feeds back the output of the vibration sensor to an actuator attached to the top cover, thereby suppressing vibrations transmitted from the head assembly to the top cover and realizing low noise.
- the acceleration detection device disclosed in Patent Document 1 has some problems.
- the first problem is that since the acceleration sensor cannot be provided at the maximum vibration location in both the in-plane direction and the direction perpendicular to the surface of the recording medium, the detection performance is low.
- this acceleration sensor is a surface-mounted chip, so the mounting position is limited to the control circuit board of the storage device or inside the storage device.
- either the in-plane direction or the direction perpendicular to the surface This is because the detection performance of either one is high, but the detection performance of either one is low.
- it is necessary to open the storage device when replacing the acceleration sensor so that there is a problem that maintenance management is not easy.
- the second problem is that when the vibration sensor is fixed with an adhesive, the output value of the vibration sensor fluctuates, and as a result, the detection accuracy is lowered. This is because the contact state between the storage device and the vibration sensor fluctuates. For example, during the operation of the storage device, the temperature inside and outside the storage device rises, and as a result, the adhesive strength when the vibration sensor is fixed by an adhesive becomes unstable.
- the present invention has been made to solve the above-described problems, and has high detection performance and high detection accuracy when a vibration sensor detects mechanical vibration of a storage device and vibration and impact applied to the storage device from the outside. It is an object of the present invention to provide a vibration sensor mounting structure for a storage device that can realize the above.
- a vibration sensor mounting structure of a storage device having a recording or reproducing head for recording or reproducing with respect to the storage medium of the present invention is provided on a first outer surface of a base of the storage device and is in a direction perpendicular to the surface of the recording medium.
- a first vibration sensor that detects vibration a second vibration sensor that is provided on a second outer surface orthogonal to the first outer surface of the base and detects vibration in an in-plane direction of the recording medium; and
- a biasing portion having a first end portion that contacts the upper surface of the first vibration sensor, a second end portion that contacts the upper surface of the second vibration sensor, and having a substantially L shape; And a damping member attached to the urging portion.
- the urging portion may be fixed to one or both of the first outer surface and the second outer surface by fastening, welding, or bonding.
- the urging portion may have two or more bent portions. It is good also as providing the protection part integrated with the said urging
- the vibration sensor can be attached to each of the maximum vibration location in the vertical direction and the maximum vibration location in the in-plane direction on the surface of the storage medium. Can be increased. Therefore, vibration and impact detection performance can be improved. Further, since the attachment strength of the vibration sensors in the storage device is constant, there is no possibility that the output values of these vibration sensors fluctuate, and as a result, the detection accuracy can be improved.
- FIG. 2 is a side view as seen from the line AA in FIG. 1. It is a figure which shows a time-dependent change of the maximum acceleration value of the surface perpendicular direction of a hard disk drive (HDD). It is a figure which shows the time-dependent change of the maximum acceleration value of the in-plane direction of a hard disk drive (HDD). It is a figure which shows the acceleration value data at the time of allocating the pressing force to the vibration sensor by a metal spring. It is sectional drawing which shows the vibration sensor attachment structure of the memory
- FIG. 7 is a side view seen from the line BB in FIG. 6. It is sectional drawing which shows the vibration sensor attachment structure of the memory
- FIG. 1 is a cross-sectional view showing a vibration sensor mounting structure of a storage device according to a first embodiment of the present invention.
- FIG. 2 is a side view as seen from the line AA in FIG.
- a storage device 1 includes a recording medium (data recording medium) 2 and a magnetic head (not shown) for reading data from the recording medium 2 and writing data to the recording medium 2.
- a recording medium data recording medium
- a magnetic head not shown
- the top cover upper surface (first outer surface) 1 a of the base of the storage device 1 is the maximum vibration location in the direction perpendicular to the surface of the storage device 1.
- the side surface (second outer surface) 1b of the base of the storage device 1 is the maximum vibration location in the in-plane direction of the storage device 1, and is adjacent to and orthogonal to the top cover upper surface 1a.
- the vibration sensor mounting structure of the storage device 1 includes a vibration sensor (first vibration sensor) 3, a vibration sensor (second vibration sensor) 4, and a metal spring (biasing portion) 5.
- the vibration sensor 3 is provided on the top cover upper surface 1 a and detects vibration in the direction perpendicular to the surface of the recording medium 2.
- the vibration sensor 4 is provided on the side surface (second outer surface) 1 b and detects vibration in the in-plane direction of the recording medium 2.
- the metal spring 5 has a bent substantially L shape. This bent portion is a bent portion 5 a of the metal spring 5.
- One end (first end) of the substantially L shape of the metal spring 5 is bonded to the upper surface of the vibration sensor 3 via an adhesive.
- the other end (second end) of the substantially L shape of the metal spring 5 is bonded to the upper surface of the vibration sensor 4 via an adhesive.
- Damping members 6 and 7 are attached to at least one or more places around the bent portion 5a of the metal spring 5.
- the damping members 6 and 7 are constituted by elastic rubber plates or the like. In FIG. 1, the damping member 6 is attached to one end of the metal spring 5, and the damping member 7 is attached to the other end of the metal spring 5. These damping members 6 and 7 are provided in order to prevent vibration propagation from one vibration sensor 3 (4) to the other vibration sensor 4 (3) and to reduce vibration of the metal spring 5 itself. .
- the vibration sensors 3 and 4 can be pressed with a uniform and constant force. Therefore, the attachment strength of the vibration sensors 3 and 4 to the storage device 1 is constant, and measurement errors due to disturbances and attachment are unlikely to occur, and highly accurate measurement can be performed.
- the vibration sensor 3 for detecting the vibration in the surface vertical direction of the recording medium 2 on the top cover upper surface 1 a of the base which is the maximum vibration position in the surface vertical direction of the storage device 1, is detected at the maximum vibration position in the in-plane direction.
- a vibration sensor 4 that detects vibration in the in-plane direction of the recording medium 2 is provided on a side surface 1b of a certain base. For this reason, a vibration sensor can be provided independently at the maximum vibration location in each of the perpendicular direction and the in-plane direction of the recording medium 2, and thus high measurement performance can be obtained.
- the vibration sensor mounting structure of the storage device of the present embodiment is applied to a hard disk drive (HDD) which is a storage device mounted on a personal computer or the like.
- the vibration sensors 3 and 4 used for this measurement are piezoelectric vibration sensors having a length of 10 mm, a width of 5 mm, and a height of 5 mm.
- the metal spring 5 is made of phosphor bronze.
- the bending angle ⁇ at the bent portion 5a of the metal spring 5 is 85 °.
- the length from the bending part 5a to the vibration sensor 3 is 30 mm, the width is 15 mm, and the thickness is 0.3 mm.
- the length from the bending part 5a to the vibration sensor 4 is 30 mm, and the width is 10 mm.
- the damping members 6 and 7 are made of a rubber-based material.
- the damping members 6 and 7 have a length of 10 mm, a width of 8 mm, and a thickness of 0.3 mm.
- FIG. 3 shows the change over time of the maximum acceleration value obtained by measuring the vibration in the direction perpendicular to the surface of the hard disk drive (HDD) with the vibration sensor 3.
- FIG. 4 shows the change over time of the maximum acceleration value obtained by measuring the vibration in the in-plane direction of the hard disk drive (HDD) with the vibration sensor 4.
- the pressing force of the metal spring 5 against the vibration sensors 3 and 4 is 0.05N.
- the measurement was performed under the condition where the magnetic head was continuously operated at high speed.
- the vibration damping members 6 and 7 were bonded and fixed using an adhesive instead of sticking as a conventional example, and the measurement was similarly performed for this conventional example.
- a curve A1 indicates a change with time of the maximum acceleration value in an example of the present embodiment.
- a curve A2 represents a change with time of the maximum acceleration value in the conventional example.
- a curve B1 shows a change with time of the maximum acceleration value in an example of the present embodiment.
- a curve B2 shows a change with time of the maximum acceleration value in the conventional example.
- the vibration sensor mounting structure of the present embodiment is perpendicular to the surface and in the plane of the recording medium 2 as compared with the vibration sensor mounting structure that is bonded and fixed using the conventional adhesive. It was found that the measured acceleration value in each direction was large and stable.
- FIG. 5 shows acceleration value data when the pressing force to the vibration sensor 3 by the metal spring 5 is allocated.
- the acceleration was measured 60 minutes after the vibration sensor 3 was attached to the storage device 1 with a pressing force for each condition. Further, a relative comparison was made based on the acceleration at a pressing force of 0.05 N.
- “relative acceleration” means relative acceleration based on acceleration at a pressing force of 0.05 N.
- “ ⁇ ” indicates that the relativization speed varies within ⁇ 20%.
- “X” indicates that the relativization rate is a variation of ⁇ 20% or less or + 20% or more. According to FIG. 5, it was found that the acceleration can be stably measured when the pressing force is in the range of 0.01N to 0.3N.
- the vibration sensors 3 and 4 can be mounted at the maximum vibration locations in the vertical direction and the in-plane direction of the recording medium 2, respectively.
- the contact of the vibration sensors 3 and 4 with respect to 1 can also be stabilized. Therefore, measurement performance and measurement accuracy can be significantly improved.
- the storage device 1 that reads data from the recording medium 2 and writes data to the recording medium 2 has been described as an example. However, even if the storage device 1 reads data from the recording medium 2 or writes data to the recording medium 2, the same effect can be obtained.
- a hard disk drive (HDD) has been described as an example of a storage device, but the present invention is not limited to this.
- the storage device may be, for example, an optical drive that uses a laser beam for reading and writing data.
- FIG. 6 is a sectional view showing a vibration sensor mounting structure of the storage device according to the second embodiment of the present invention.
- FIG. 7 is a side view as seen from the line BB in FIG.
- the vibration sensor mounting structure of the storage device of the present embodiment is different from the vibration sensor mounting structure of the storage device of the first embodiment in that the metal spring 5 is replaced with a metal spring 11.
- the metal spring (biasing part) 11 has a shape bent in two stages. These two bent portions of the metal spring 11 are bent portions 11a and 11b.
- One end of the substantially L-shaped metal spring 11 is in contact with the upper surface of the vibration sensor 3.
- the other end of the substantially L shape of the metal spring 11 is in contact with the upper surface of the vibration sensor 4.
- substantially L-shaped fixing portions 12, 12 protruding outward are provided on both side portions of the metal spring 11, substantially L-shaped fixing portions 12, 12 protruding outward are provided.
- the front ends of these fixing portions 12 and 12 are fixed to the side surface 1b of the storage device
- the pressing force to the vibration sensor 3 can be determined by the bending angle ⁇ 1 of the bending portion 11a, and the pressing force to the vibration sensor 4 can be determined by the bending angle ⁇ 2 of the bending portion 11b.
- vibrations occur at the maximum vibration locations in the vertical direction and the in-plane direction of the recording medium 2, as in the vibration sensor mounting structure of the storage device of the first embodiment.
- the sensors 3 and 4 can be attached, and the contact of the vibration sensors 3 and 4 with the storage device 1 can also be stabilized. Therefore, measurement performance and measurement accuracy can be significantly improved.
- the pressing force to the vibration sensor 3 can be adjusted independently by the bending angle ⁇ 1 of the bending portion 11a, and the pressing force to the vibration sensor 4 can be adjusted independently by the bending angle ⁇ 2 of the bending portion 11b.
- the productivity of the structure can be improved.
- FIG. 8 is a sectional view showing a vibration sensor mounting structure of the storage device according to the third embodiment of the present invention.
- FIG. 9 is a side view seen from the CC line side of FIG.
- the vibration sensor mounting structure of the storage device of the present embodiment is different from the vibration sensor mounting structure of the storage device of the second embodiment in that the metal spring 11 and the metal spring 11 are connected to the end of the metal spring 11 on the vibration sensor 4 side.
- the integrated barrier (protective part) 21 is provided.
- the measurement performance and the measurement accuracy can be remarkably improved similarly to the vibration sensor mounting structure of the storage device according to the second embodiment.
- a barrier 21 integrated with the metal spring 11 is provided at the end of the metal spring 11 on the vibration sensor 4 side. With this configuration, even when the vibration sensor 4 is dropped due to an extreme impact, the vibration sensor 4 dropped by the barrier 21 can be held.
- the barrier 21 is provided at the end of the metal spring 11 on the vibration sensor 4 side.
- the barrier 21 may be provided at a portion other than the end on the vibration sensor 4 side.
- the barrier 21 may be provided at the end of the metal spring 11 on the vibration sensor 3 side.
- the present invention can be applied to a vibration sensor mounting structure of a storage device.
- the vibration sensor mounting structure of the storage device high detection performance and high detection accuracy can be realized when the vibration sensor detects mechanical vibration of the storage device and vibration and impact applied to the storage device from the outside.
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Supporting Of Heads In Record-Carrier Devices (AREA)
Abstract
Description
パーソナルコンピュータ等の電子機器には、ハードディスクドライブ(HDD)や光磁気記憶装置等の記憶装置、冷却ファン、圧電バックライト電源等の機械的な機構を利用した各種の装置が搭載されている。例えば、パーソナルコンピュータ用の記憶装置は、磁気記録媒体、磁気ヘッド、スライダ、ヘッドアーム、ボイスコイルモータ等により構成されている。
さらに、記憶装置の機構部品や機構部位は、長期使用している間に、この長期使用による劣化等に起因した異常振動を発生させる虞がある。
そこで、記憶装置に、この記憶装置が受ける外乱や記憶装置自体が発生する振動を検知するためのセンサ、具体的には、加速度、速度、変位を検知するための振動センサを搭載している。
記憶装置における異常は記録媒体やヘッドアームの動作に現れるので、振動センサの取り付け位置は、主に記録媒体の面内方向と面に垂直な方向とすることが望ましい。このように、記録媒体の2方向の振動を検知することで、記憶装置における異常発生の検知性能が高まる。
異なる2方向の振動を検知する従来技術としては、2つの加速度センサを用いて直角な2方向の加速度を独立して検知することができる加速度検出装置が提案されている(特許文献1参照)。
加速度センサ103のセンサ取付平面102に対する最大感度軸方向PA、及び加速度センサ104のセンサ取付平面102に対する最大感度軸方向PBは、センサ取付平面102に対して角度θだけ傾いている。
これにより、直角な2方向の加速度を独立して検出することができる。また、全く同じ加速度センサを2個用いているため、加速度センサの製造コストを低減することができ、さらに、製品の薄型化が実現できる。
また、振動センサにより振動を抑制することで低騒音化を図った記憶装置も提案されている(特許文献2の第7頁等参照)。
この記憶装置は、記憶装置のトップカバーの表面に接着剤により振動センサを固定した構成である。この記憶装置は、この振動センサの出力をトップカバーに取り付けたアクチュエータにフィードバックすることで、ヘッドアッセンブリからトップカバーに伝達される振動を抑制し、低騒音化を実現している。
第1の問題点は、記録媒体の面内方向および面に垂直方向の双方の最大振動箇所に加速度センサを設けることができないので、検知性能が低いという点である。
その理由は、この加速度センサが表面実装型のチップであることから、取り付け位置は記憶装置の制御回路基板か記憶装置内部に限定されてしまい、その結果、面内方向と面に垂直方向のいずれか一方での検知性能は高いものの、いずれか他方での検知性能が低くなってしまうからである。
また記憶装置の内部に加速度センサを内蔵させた場合、加速度センサの交換時に記憶装置を開封する必要があるために、保守管理が容易ではないという問題点もあった。
例えば、記憶装置の動作時においては、記憶装置内部および外装の温度が上昇してしまい、その結果、接着材により振動センサを固定した場合の接着強度が不安定になってしまう。
前記付勢部は、曲げ部を2つ以上有していることとしてもよい。
前記付勢部の前記第二の端部に、前記付勢部と一体化した防護部を設けてなることとしてもよい。
前記付勢部が前記第一の振動センサ及び前記第二の振動センサに加える押圧力は、0.01N以上かつ0.3N以下であることが好ましい。
また、記憶装置における振動センサの取り付け強度が一定になるので、これらの振動センサの出力値が変動する虞が無くなり、その結果、検知精度を向上させることができる。
この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
図1は本発明の第1の実施の形態の記憶装置の振動センサ取り付け構造を示す断面図である。図2は図1のA-A線側から見た側面図である。
図1に示すように、記憶装置1は、記録媒体(データ記録用の媒体)2と、この記録媒体2からのデータの読み取り及び記録媒体2へのデータの書き込みを行うための磁気ヘッド(図示略)とを備えている。
記憶装置1の振動センサ取り付け構造は、振動センサ(第一の振動センサ)3と、振動センサ(第二の振動センサ)4と、金属ばね(付勢部)5とを有する。
振動センサ3は、トップカバー上面1aに設けられており、記録媒体2の面垂直方向の振動を検知する。
振動センサ4は、側面(第二の外面)1bに設けられており、記録媒体2の面内方向の振動を検知する。
金属ばね5は、折り曲げられた略L型形状を有する。この折り曲げられた部分が、金属ばね5の曲げ部5aである。金属ばね5の略L型形状の一方の端部(第1の端部)が接着剤を介して振動センサ3の上面に接着されている。金属ばね5の略L型形状の他方の端部(第2の端部)が接着剤を介して振動センサ4の上面に接着されている。これにより、振動センサ3、4と金属ばね5とは、機械的に連結した状態になっている。
しかも、記憶装置1の面垂直方向最大振動箇所である基台のトップカバー上面1aに記録媒体2の面垂直方向の振動を検知する振動センサ3を、記憶装置1の面内方向最大振動箇所である基台の側面1bに記録媒体2の面内方向の振動を検知する振動センサ4を、それぞれ設けている。このため、記録媒体2の面垂直方向及び面内方向それぞれの最大振動箇所に振動センサを独立に設けることができ、したがって、高い測定性能を得ることができる。
この測定に用いられた振動センサ3、4は、長さ10mm、幅5mm、高さ5mmの圧電型振動センサである。
金属ばね5は、りん青銅からなる。金属ばね5の曲げ部5aにおける曲げ角度θは85°である。曲げ部5aから振動センサ3までの長さは30mm、幅は15mm、厚みは0.3mmである。曲げ部5aから振動センサ4までの長さは30mm、幅は10mmである。
制振部材6、7は、ゴム系の材料からなる。制振部材6、7は、長さが10mm、幅が8mm、厚みが0.3mmである。
測定は磁気ヘッドを高速連続動作させた条件下で行った。また、比較のために、制振部材6、7を、貼着ではなく、接着剤を用いて接着固定したものを従来例として作製し、この従来例についても同様に測定を行った。
図3において、曲線A1は、本実施形態の一例における最大加速度値の経時変化を示している。曲線A2は、従来例における最大加速度値の経時変化を示している。図4において、曲線B1は、本実施形態の一例における最大加速度値の経時変化を示している。曲線B2は、従来例における最大加速度値の経時変化を示している。
図3および図4によれば、本実施の形態の振動センサ取り付け構造では、従来例である接着剤を用いて接着固定した振動センサ取り付け構造と比べて、記録媒体2の面垂直方向および面内方向それぞれにおける加速度値の測定値が大きく、しかも安定していることが分かった。
加速度の測定は、記憶装置1に振動センサ3を条件毎の押し付け力で取り付けてから60分後に行った。また、押し付け力0.05Nにおける加速度を基準として相対比較した。
図5において、「相対加速度」とは、押し付け力0.05Nにおける加速度を基準とした相対加速度を意味している。「○」は、相対化速度が±20%以内の変動であることを示している。「×」は、相対化速度が-20%以下または+20%以上の変動であることを示している。
図5によれば、押し付け力が0.01Nから0.3Nの範囲で、加速度を安定的に測定することができることが分かった。
本実施形態においては、記録媒体2からのデータの読み取り及び記録媒体2へのデータの書き込みを行う記憶装置1を例に説明した。しかしながら、記憶装置1が、記録媒体2からのデータの読み取り、記録媒体2へのデータの書き込み、のいずれか一方を行うこととしても、全く同様の効果を奏することができる。
本実施の形態では、記憶装置としてハードディスクドライブ(HDD)を例に取り説明したが、これに限られない。記憶装置は、例えば、データの読み込みや書き込みにレーザー光線を使用する光学ドライブであってもよい。
図6は本発明の第2の実施の形態の記憶装置の振動センサ取り付け構造を示す断面図である。図7は図6のB-B線側から見た側面図である。
本実施の形態の記憶装置の振動センサ取り付け構造と、第1の実施の形態の記憶装置の振動センサ取り付け構造とは、金属ばね5が、金属ばね11に置き換わっている点において異なる。
金属ばね(付勢部)11は、2段階に折り曲げられた形状を有している。金属ばね11のこれらの2箇所の折り曲げられた部分が、曲げ部11a、11bである。金属ばね11の略L型形状の一方の端部が振動センサ3の上面と接触する。金属ばね11の略L型形状の他方の端部が振動センサ4の上面と接触する。この金属ばね11の両側部には、外側に突出する略L字状の固定部12、12が設けられている。これらの固定部12、12の先端部は、ネジ等の締結部13、13を用いて記憶装置1の側面1bに固定されている。
また、曲げ部11aの曲げ角度θ1により振動センサ3への押し付け力を、曲げ部11bの曲げ角度θ2により振動センサ4への押し付け力を、それぞれ独立に調整することができるので、この振動センサ取り付け構造の生産性を向上させることができる。
図8は本発明の第3の実施の形態の記憶装置の振動センサ取り付け構造を示す断面図である。図9は図8のC-C線側から見た側面図である。
本実施の形態の記憶装置の振動センサ取り付け構造が、第2の実施の形態の記憶装置の振動センサ取り付け構造と異なる点は、金属ばね11の振動センサ4側の端部に、金属ばね11と一体化した防壁(防護部)21を設けた点である。
また、金属ばね11の振動センサ4側の端部に、金属ばね11と一体化した防壁21を設けている。この構成により、振動センサ4に極度の衝撃が加わって落下した場合においても、防壁21により落下した振動センサ4を保持することができる。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1a トップカバー上面
1b 側面
2 記録媒体
3 振動センサ(第一の振動センサ)
4 振動センサ(第二の振動センサ)
5 金属ばね
5a 曲げ部
6、7 制振部材
11 金属ばね
11a、11b 曲げ部
12 固定部
13 締結部
21 防壁
θ、θ1、θ2 曲げ角度
Claims (5)
- 記憶媒体に対して記録または再生を行う記録または再生ヘッドを有する記憶装置の振動センサ取り付け構造であって、
前記記憶装置の基台の第一の外面に設けられ前記記録媒体の面垂直方向の振動を検知する第一の振動センサと、
前記基台の前記第一の外面と直交する第二の外面に設けられ前記記録媒体の面内方向の振動を検知する第二の振動センサと、
前記第一の振動センサの上面と接触する第一の端部と、前記第二の振動センサの上面と接触する第二の端部とを有し、略L型形状を有する付勢部と、
前記付勢部に貼着される制振部材と
を備える記憶装置の振動センサ取り付け構造。 - 前記付勢部は、前記第一の外面、前記第二の外面のいずれか一方または双方に、締結、溶接、接着のいずれかにより固定されている請求項1記載の記憶装置の振動センサ取り付け構造。
- 前記付勢部は、曲げ部を2つ以上有している請求項1または2記載の記憶装置の振動センサ取り付け構造。
- 前記付勢部の前記第二の端部に、前記付勢部と一体化した防護部を設けられている請求項1ないし3のいずれか1項記載の記憶装置の振動センサ取り付け構造。
- 前記付勢部が前記第一の振動センサ及び前記第二の振動センサに加える押圧力は、0.01N以上かつ0.3N以下である請求項1ないし4のいずれか1項記載の記憶装置の振動センサ取り付け構造。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/390,606 US8794073B2 (en) | 2009-08-25 | 2010-08-09 | Structure for attaching vibration sensor to storage device |
JP2011528731A JP5549673B2 (ja) | 2009-08-25 | 2010-08-09 | 記憶装置の振動センサ取り付け構造 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-194587 | 2009-08-25 | ||
JP2009194587 | 2009-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011024631A1 true WO2011024631A1 (ja) | 2011-03-03 |
Family
ID=43627737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/063468 WO2011024631A1 (ja) | 2009-08-25 | 2010-08-09 | 記憶装置の振動センサ取り付け構造 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8794073B2 (ja) |
JP (1) | JP5549673B2 (ja) |
WO (1) | WO2011024631A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8824090B2 (en) | 2011-11-21 | 2014-09-02 | Seagate Technology Llc | Methods and devices for compensating for off-track motion |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2500693A (en) * | 2012-03-30 | 2013-10-02 | Ibm | Vibration control in data storage devices |
US10083721B2 (en) | 2015-09-30 | 2018-09-25 | Seagate Technology Llc | Method and apparatus for mitigating induced shock and vibration |
US9558789B1 (en) | 2015-09-30 | 2017-01-31 | Dot Hill Systems Corporation | Storage device sled and assembly method thereof |
US9888607B2 (en) | 2015-09-30 | 2018-02-06 | Seagate Technology Llc | Self-biasing storage device sled |
JP2019160357A (ja) | 2018-03-08 | 2019-09-19 | 株式会社東芝 | 磁気ディスク装置 |
US11574649B1 (en) | 2021-11-04 | 2023-02-07 | Western Digital Technologies, Inc. | Vibration sensor feedforward control for magnetic storage device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10199120A (ja) * | 1996-12-27 | 1998-07-31 | Matsushita Electric Ind Co Ltd | 映像音響装置 |
JP2005301862A (ja) * | 2004-04-15 | 2005-10-27 | Olympus Corp | ディスク記録装置、ディスク記録媒体の監視方法およびディスク記録媒体の監視プログラム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU3421593A (en) * | 1991-12-23 | 1993-07-28 | Elf Atochem North America, Inc. | Multi-mode accelerometer |
JP2003228956A (ja) | 2002-01-31 | 2003-08-15 | Toshiba Corp | 低騒音化機構を有するディスク装置 |
JPWO2005052601A1 (ja) | 2003-11-26 | 2007-12-06 | 株式会社村田製作所 | 加速度検出装置 |
US7861593B2 (en) * | 2008-07-03 | 2011-01-04 | Oracle America, Inc. | Rotational vibration measurements in computer systems |
-
2010
- 2010-08-09 WO PCT/JP2010/063468 patent/WO2011024631A1/ja active Application Filing
- 2010-08-09 US US13/390,606 patent/US8794073B2/en not_active Expired - Fee Related
- 2010-08-09 JP JP2011528731A patent/JP5549673B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10199120A (ja) * | 1996-12-27 | 1998-07-31 | Matsushita Electric Ind Co Ltd | 映像音響装置 |
JP2005301862A (ja) * | 2004-04-15 | 2005-10-27 | Olympus Corp | ディスク記録装置、ディスク記録媒体の監視方法およびディスク記録媒体の監視プログラム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8824090B2 (en) | 2011-11-21 | 2014-09-02 | Seagate Technology Llc | Methods and devices for compensating for off-track motion |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011024631A1 (ja) | 2013-01-31 |
JP5549673B2 (ja) | 2014-07-16 |
US20120137780A1 (en) | 2012-06-07 |
US8794073B2 (en) | 2014-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5549673B2 (ja) | 記憶装置の振動センサ取り付け構造 | |
US8134804B2 (en) | Micro electro mechanical system and head gimbal assembly | |
JP5277119B2 (ja) | ディスク装置用サスペンション | |
JP5138635B2 (ja) | ヘッドサスペンション | |
JP4346091B2 (ja) | ヘッド・サスペンション | |
US7420774B2 (en) | Housing with a rail shaped to reduce impact damage | |
US7889459B2 (en) | HDD and HDD stack assembly with head suspension having multiple combination parts and spacer | |
US7715151B2 (en) | Microactuator, head gimbal assembly and hard disk drive using the same, and method of manufacturing head gimbal assembly | |
US10937454B2 (en) | Actuator assembly having dual sensors for detecting the vibration on magnetic disk device | |
JP2009289346A (ja) | リムーバブル・データ記憶装置 | |
US20010040771A1 (en) | Disk drive and head suspension unit | |
JP6541735B2 (ja) | 熱アシスト磁気記録ヘッド・ジンバル・アセンブリ及び熱アシスト磁気記録ヘッド・ジンバル・アセンブリを使用するハードディスク装置 | |
JP4189355B2 (ja) | マウントパッド付きディスクドライブ | |
JP4062262B2 (ja) | ヘッド支持装置およびそれを用いたディスク装置 | |
US20210201951A1 (en) | Storage apparatus | |
US20070234374A1 (en) | Optical disc drive | |
US8179641B2 (en) | Disk drive apparatus and head assembly using a resin member to accommodate a wire structure | |
US8516511B2 (en) | Optical pickup and disc drive using optical pickup | |
US8332881B2 (en) | Optical disc apparatus with support part configured to reduce vibrations | |
JP2009059423A (ja) | 光ディスク装置 | |
US20240321298A1 (en) | Disk device | |
JP4808176B2 (ja) | 磁気ディスク装置用ランプ | |
US20240312480A1 (en) | Disk device | |
JP4730207B2 (ja) | 情報記憶装置および電子機器 | |
JP2008276866A (ja) | 光ディスク装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10811681 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011528731 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13390606 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10811681 Country of ref document: EP Kind code of ref document: A1 |