WO2011024287A1 - 情報処理装置、情報処理システム、情報処理方法及び情報処理方法を実行するためのコンピュータプログラム - Google Patents

情報処理装置、情報処理システム、情報処理方法及び情報処理方法を実行するためのコンピュータプログラム Download PDF

Info

Publication number
WO2011024287A1
WO2011024287A1 PCT/JP2009/065040 JP2009065040W WO2011024287A1 WO 2011024287 A1 WO2011024287 A1 WO 2011024287A1 JP 2009065040 W JP2009065040 W JP 2009065040W WO 2011024287 A1 WO2011024287 A1 WO 2011024287A1
Authority
WO
WIPO (PCT)
Prior art keywords
acquisition
information processing
pixel
image
unique
Prior art date
Application number
PCT/JP2009/065040
Other languages
English (en)
French (fr)
Inventor
裕行 近江
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to PCT/JP2009/065040 priority Critical patent/WO2011024287A1/ja
Priority to JP2011528566A priority patent/JP5539365B2/ja
Priority to US12/870,155 priority patent/US8797430B2/en
Publication of WO2011024287A1 publication Critical patent/WO2011024287A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Definitions

  • the present invention relates to an information processing apparatus, an information processing system, an information processing method, and a computer program for executing the information processing method, for displaying the position of a unique pixel generated in an image captured by an imaging device.
  • the image captured by the imaging device is composed of a plurality of pixels, and an image is formed as a whole by the color and density represented by the pixels.
  • a pixel called a unique pixel.
  • a singular pixel is a defective pixel showing an output out of a predetermined output range with respect to a predetermined input due to an abnormality of a circuit or an element in an imaging device, or a pixel showing another abnormal or defective value. It is. Since these unique pixels affect the image quality of the photographed image, they are corrected by a method such as replacement using the average pixel value of the peripheral pixels, etc., and an image in which the unique pixels are corrected is provided to the user.
  • Patent Document 1 discloses a technique for correcting the position of the unique pixel which changes depending on the imaging method of the imaging device.
  • Patent Document 2 discloses a technique for extracting and correcting different unique pixels according to the gain of a circuit system.
  • Patent Document 3 discloses a technique for displaying the positions of specific pixels present in a region selected by the user in a radiation image.
  • the position of the specific pixel changes depending on the acquisition method of the specific pixel.
  • the techniques described in the above-mentioned Patent Document 1 and Patent Document 2 take into consideration the difference in acquisition method, they relate to a correction process for making a specific pixel invisible, which is contrary to the display of a specific pixel.
  • the present invention has been made to solve the above problem, and is an information processing apparatus for displaying a unique pixel of an image, wherein acquisition means for acquiring a unique pixel for each of a plurality of acquisition methods for acquiring the unique pixel. And display control means for associating and displaying at least one acquisition method among the plurality of acquisition methods and a unique pixel obtained by the at least one acquisition method.
  • the unique pixel and the acquisition method thereof can be displayed in association with each other, it can be confirmed while comparing how the unique pixel appears when using which acquisition method.
  • a singular pixel is a pixel which is abnormal or has an output defect, and is a pixel which is largely deviated from the pixel value of the surrounding pixels.
  • a defective pixel generated due to an abnormality in an element, a circuit or the like will be described as an example of the unique pixel.
  • Example 1 The first embodiment will be described below with reference to FIGS. 1 to 4.
  • the present invention is applied to an information processing apparatus that displays the position of a defective pixel acquired from an image captured by an imaging device.
  • the information processing apparatus performs display control to display the positions of defective pixels acquired by each of a plurality of acquisition methods for acquiring defective pixels in different display formats for each acquisition method.
  • FIG. 1 is a view showing the configuration of an information processing apparatus according to the present invention
  • FIG. 2 is a view showing the configuration of a defective pixel acquisition apparatus for acquiring position information of defective pixels.
  • FIG. 3 is a flowchart showing a flow of processing performed by the defective pixel acquisition device and the information processing.
  • FIG. 4 is a view showing an example of a screen displayed on the display unit by the information processing apparatus.
  • the acquisition method of the defective pixel in the present embodiment includes both of the imaging methods when the imaging device acquires an image to be a target of extraction of the defective pixel. It is a concept.
  • the information processing apparatus 101 performs display control of acquiring position information of a defective pixel from the defective pixel acquisition apparatus 102 and causing the display unit 105 to display the position information.
  • the acquisition unit 103 of the information processing apparatus 101 acquires the position of the defective pixel acquired by the defective pixel acquisition apparatus 102.
  • the position of the defective pixel is obtained by executing each of a plurality of acquisition methods.
  • the acquisition unit 103 acquires the positions of defective pixels corresponding to a plurality of extraction methods.
  • the display control unit 104 of the information processing apparatus 101 performs display control for displaying the position of the defective pixel in the image, and displays the acquired positional information of the defective pixel in a different display format for each acquisition method. Create display data.
  • the display data is sent to the display unit 105, and the defective pixel and its acquisition method are displayed in association with each other.
  • the configuration of the defective pixel acquisition device 102 for acquiring the defective pixel shown in FIG. 2 will be described.
  • the defective pixel acquisition device 102 acquires images captured by the imaging device 205 according to a plurality of imaging methods, acquires defective pixels, and classifies and stores the defective pixels.
  • the method storage unit 201 stores a plurality of methods for acquiring defective pixels.
  • Data stored as an acquisition method is an imaging method of image data to be a target of defect pixel acquisition, an extraction method of extracting a defect pixel from an image, or the like. Also, for example, a plurality of acquisition methods may be stored for the same moving image.
  • the scheme selection unit 202 acquires a plurality of acquisition schemes from the scheme storage unit 201, selects one by one, and sends it to the defective pixel acquisition unit 203. Note that without using the method storage unit 201, a configuration may be used in which a defect pixel acquisition method is appropriately acquired and executed according to user input.
  • the image acquisition unit 204 of the defective pixel acquisition unit 203 acquires, from the imaging device 205, an image to be an extraction target of the defective pixel based on the information on the selected acquisition method.
  • the defective pixel extraction unit 206 extracts a defective pixel from the image.
  • the method of extracting a defective pixel uses, for example, a method in which a pixel which is eight times or more the standard deviation value away from the pixel average value in a predetermined area is regarded as a defective pixel using a definition example of a specific pixel.
  • the pixels extracted in this manner may also include singular pixels other than defective pixels. In this respect, it is apparent that the present embodiment can be applied not only to defective pixels but also to specific pixels.
  • the classification unit 207 classifies defective pixels extracted by the defective pixel extraction unit 206.
  • the classification unit 207 associates the acquired position of the defective pixel with the acquisition method of the defective pixel selected by the method selection unit 202, and stores the position in the defective pixel storage unit 208.
  • the display control unit 104 creates display data based on the position of the defective pixel and causes the display unit 105 to display the defective pixel. This screen display will be described later.
  • the acquisition method is divided into an image pickup method of an image and an extraction method of extracting a defective pixel from an image obtained by the method.
  • an imaging method there are a still image, a moving image and the like. Further, there are a method of capturing a moving image by performing pixel addition readout (binning) and a method of capturing a moving image without performing pixel addition readout. Further, there are a method of capturing a moving image in which the frame rate is prioritized over the image quality and a method of capturing the moving image in which the image quality is prioritized over the frame rate.
  • an extraction method there is a method in which a plurality of images are acquired, and among the images of a predetermined number or more, pixels determined as output or more are regarded as defective pixels. For example, four images are acquired, and a pixel determined to be output abnormal in two or more of the four images is set as a defective pixel.
  • a method of determining an output abnormality a method of dividing an image into a plurality of regions, calculating an average value of pixel values for each region, and setting a pixel indicating a value outside a predetermined range including the average value as a defective pixel There is. For example, when the pixel value is several times or more the standard deviation value away from the average value, the output abnormality is made.
  • determining defective pixels to be extracted is also included in the method of acquiring defective pixels. Furthermore, it is included in the acquisition method whether to extract a defective pixel from an image that has been picked up but not corrected known as offset correction or gain correction, or to extract a defective pixel from an image on which image processing has been completed.
  • the target image from which defective pixels are extracted has a predetermined test pattern even if it is an image called a white image obtained by irradiating substantially uniform light on the sensor surface of the imaging device without passing through the object. It may be a captured image.
  • position information of a defective pixel and an acquisition method corresponding to the defective pixel are acquired from a device that executes a plurality of defective pixel acquisition methods, and defective pixels are displayed in different display formats for each acquisition method. .
  • the method selection unit 202 of the defective pixel acquisition device 102 acquires a plurality of acquisition methods of defective pixels from the method storage unit 201 (step 301).
  • the defective pixel acquisition unit 203 sequentially executes the acquired plurality of defective pixel acquisition methods.
  • the image acquisition unit 204 of the defective pixel acquisition unit 203 acquires an image from the imaging device 205 (step 302). At this time, an image obtained by the imaging method defined in the method of acquiring the selected defective pixel is acquired.
  • Defective pixels are extracted from the white image acquired by the defective pixel extraction unit 206 of the defective pixel acquisition device 102 (step 303).
  • the classification unit 207 acquires the acquired position of the defect pixel from the extraction unit, acquires the acquisition method from the method selection unit 202, associates the acquisition method with the method selection unit 202, and causes the defect pixel storage unit 208 to store (step 304).
  • the method selection unit 202 determines whether all the required acquisition methods have been executed (step 305). This determination may be performed by the scheme selection unit 202 according to the user's input. If there is a defective pixel acquisition method to be executed, the process proceeds to step 301, acquisition of defective pixels is executed, and if acquisition is completed, the process of defective pixel acquisition is ended. Through the above processing, defective pixels obtained by the plurality of defective pixel acquisition methods for the imaging device 205 are stored in the defective pixel storage unit 208 of the defective pixel acquisition device 102.
  • the acquisition unit 103 of the information processing apparatus 101 acquires the position information of the defective pixel stored in step 304 (step 306).
  • the position information of the defective pixel is obtained by executing the plurality of defective pixel acquisition methods by the defective pixel acquisition unit 203 of the defective pixel acquisition device 102 in the above-described steps 302 and 303.
  • the position information includes information on the acquisition method as well as information on the position of the defective pixel.
  • the display control unit 104 of the information processing apparatus 101 changes the display format according to the acquisition method to create display data so as to display defective pixels (step 307), and the display unit 105 performs display (step 308).
  • a filled square mark is attached to the position where the defective pixel is present, and a symbol corresponding to the imaging method is attached.
  • the display format may be such that defective pixels are displayed in different colors.
  • the positions of defective pixels corresponding to a plurality of acquisition methods can be simultaneously confirmed on one screen. Such an effect can not be conceived from the prior art which does not disclose displaying the positions of defective pixels acquired by a plurality of acquisition methods or displaying them in different display formats for each acquisition method.
  • FIG. 4 (b) is another display example.
  • a display corresponding to one acquisition method is displayed on the right side of the screen.
  • One is a method in which a plurality of white images, for example, four images are photographed, and a pixel of which output is determined to be abnormal in one or more of four images is set as a defective pixel.
  • the other is a method in which a pixel determined as an abnormal output in three or more images is regarded as a defective pixel.
  • the former method is a method of extracting a pixel which is determined as unstable even as little as the latter method as a defective pixel, and is used when using correction with a defective pixel more. This method is used, for example, when the reliability of the correction process of the defective pixel is high.
  • the latter method is a method used to limit pixels extracted as defective pixels to particularly unstable ones, as compared to the former method. For example, it is used in the case where image quality can be secured by other correction such as gain correction if the degree of instability is small. As described above, when the extraction method is changed according to the situation, it is possible to confirm the position of the defective pixel which changes depending on each extraction method.
  • FIGS. 5 to 10 A second embodiment will be described using FIGS. 5 to 10.
  • the X-ray imaging system itself picks up an image, and extracts and acquires position information of a defective pixel from the image. Then, according to the user's input specifying at least one of the acquisition methods, the defective pixel acquisition method is selected, and the position information of the defective pixel and the acquisition method are displayed by displaying the defective pixel position corresponding to the selection. Are displayed in association with each other.
  • FIG. 5 is a diagram showing the configuration of an X-ray imaging system which is an information processing system according to the present invention.
  • FIG. 6 is a flowchart showing the flow of processing performed by the information processing system.
  • FIG. 7 to FIG. 10 show examples of display screens of defective pixels by the information processing system.
  • the X-ray generator 510 emits the generated X-rays to the subject, and in synchronization with this, the detector 502 receives the X-rays.
  • the detector 502 converts the received X-rays into electric charge and accumulates it, reads out the electric charge as an electric signal after a predetermined accumulation time, and functions as an imaging unit that performs predetermined image processing to form a subject image.
  • the CPU 503, the RAM 504, the ROM 505, the input unit 506, the display unit 507, and the storage unit 508 are connected to the bus 509 in the control PC 501.
  • control PC 501 is connected to the detector 502 via an optical fiber 511 which is a signal line.
  • the control PC 501 acquires an object image from the detector 502 and stores the image in the storage unit 508, and displays the image on the display unit 507.
  • the input unit 506 includes a mouse, a keyboard, and the like, and receives an instruction from the user.
  • the display unit 507 includes, for example, a liquid crystal display, and displays the created display data under the control of the CPU 503 functioning as a display control unit.
  • control PC 501 a computer program for performing the process shown in FIG. 8 to be described later is stored in the storage unit 508, which is read into the RAM 504 and executed by the CPU 503.
  • the hardware resources of the control PC 501 cooperate with the computer program to realize the display processing of the defective pixel in FIG.
  • the CPU 503 functions as a display control unit of the display unit 507.
  • the CPU 503 is an entity that performs processing and instructs execution of the processing.
  • the detector 502 receives X-rays transmitted through the subject, changes the imaging method, and picks up a plurality of images before correction (step 601).
  • a plurality of imaging methods executed by the detector 502 and the X-ray generator 510 are also acquired (step 602). This information may be acquired by being automatically notified from a sensor, or may be manually given by the user.
  • a defective pixel map which is data including position information of existing defective pixels is acquired from the storage unit 508 (step 603).
  • the defective pixel map is, for example, data of a bitmap format in which a pixel which is a defective pixel is 1 and a pixel which is a normal pixel is 0.
  • the defective pixel map classified by the imaging method obtained in step 602 is acquired.
  • a defect is extracted from the pre-correction image acquired in step 601 (step 604).
  • the CPU 503 in the control PC that executes this step corresponds to the defect pixel acquisition unit 103 in the first embodiment.
  • the defective pixel map is classified and additionally written together with the date and time acquired as a new defective pixel, and the defect map is updated (step 605).
  • the updated defective pixel map is stored in the storage unit 508.
  • the defective pixel map is composed of a plurality of defective pixel maps classified according to a defect pixel acquisition method
  • the defect is classified by updating the map.
  • defective pixel classification is performed by updating the value of the defective pixel map to include information on the defective pixel acquisition method.
  • the position of the defect pixel is specified using the defect pixel map in which the image before correction is updated, and the defect pixel correction is performed to obtain the image after correction (step 606). Then, it is determined whether all the defective pixel acquisition methods have been executed (step 607). If all the methods have been executed, the processing proceeds to step 608. If there is a method not executed yet, the processing of step 601 is performed. To extract a defective pixel from the uncorrected image.
  • the all defective pixel acquisition method referred to here may be all defective pixel acquisition methods that can be executed by the imaging system or all defective pixel acquisition methods specified by the user.
  • the display unit 507 displays options for acquiring a defective pixel.
  • the user operates the input unit 506 to specify this option, and the CPU 503 selects an acquisition method of defect information to be displayed according to the specified information (step 608).
  • a defect pixel map corresponding to that method is selected, and display data for displaying the position of the defect pixel is created based on this map (step 609).
  • the display unit 507 displays the image data, and changes the display on the screen designated by the user to the display of the selected state. Thereby, the screen display of FIGS. 7 to 10 for displaying the position information of the defective pixel is realized (step 610).
  • the user can arbitrarily switch the position of the defective pixel to be displayed according to the designation of the acquisition method, and it becomes possible to confirm the position of the necessary defective pixel depending on the occasion.
  • the user presses the confirmation button, and in response to this input, the CPU 503 performs an end process (step 611).
  • the user selects all acquisition methods displayed on the screen, and the CPU 503 determines whether or not a defect is displayed, and pressing of the confirmation button is effective only when it is determined that all have been selected. It becomes. If it is determined that all items have not been selected, a notification to that effect is given.
  • the color of the confirmation button depending on whether or not the depression of the confirmation button is valid, the user is notified that the confirmation of all the defective pixels has been completed. This makes it possible to prevent the confirmation omission of the defective pixel.
  • the screen display illustrated in FIG. 7 will be described.
  • still image shooting, cine shooting (moving image shooting with high X-ray dose), fluoroscopic shooting (moving image shooting), image addition number when adding and adding pixels, etc. as an image format The method is displayed.
  • the acquisition method of the defective pixel such as the imaging method
  • the position information of the corresponding defective pixel is selected and displayed on the left side of the drawing.
  • defect information obtained by ORing the obtained methods is acquired and displayed.
  • the imaging method itself may be displayed as it is.
  • the corrected image and the position of the defective pixel may be simultaneously displayed.
  • the screen display of FIG. 8A even in the case of driving a still image, selection can be made by the front and rear imaging methods.
  • the driving of the imaging apparatus may be different between still image shooting during moving image shooting and still image shooting performed alone, and in this case, the occurrence position of the defective pixel is different, so it is necessary to separately check.
  • Such display can be realized by separately acquiring a normal still image and a still image captured during moving image shooting and extracting the defective pixels for each when acquiring the defective pixel.
  • the single mode and the mixed mode in which the still image and the moving image shooting are combined can be selected separately.
  • the mixed mode it is further selected whether addition readout is performed for each of the moving image and the still image.
  • Defect information is displayed according to the configuration.
  • the defect map of the moving image and the defect map of the still image are sequentially displayed.
  • the imaging protocol is displayed as an option.
  • the imaging protocol is, for example, upper gastrointestinal tract imaging or chest front imaging, and imaging in which a plurality of imaging methods such as moving images and still images are combined is performed.
  • the imaging protocol is determined, a series of imaging methods by the detector and an acquisition method of defective pixels including the imaging method are determined.
  • the position of the defective pixel is displayed on the screen based on the position of the defective pixel in the image obtained from the defective pixel map. Also, a play button is displayed on the screen. By pressing the play button, the transition of the defect at the time of shooting is displayed in order so as to be understood.
  • FIG. 9 is a diagram showing the sequential display when the play button in FIG. 8B and FIG. 8C is pressed.
  • there are five defect pixel maps for moving image shooting in the case of moving image shooting to still image shooting and there is one defect pixel map for still image shooting in the case of moving image shooting to still image shooting . They are displayed in order of the defect pixel map so that the defect transition can be seen.
  • the display time of the moving image shooting defect map may be longer than the display time of the still image shooting defect map.
  • the average pixel value m and the standard deviation value ⁇ in a predetermined small area are calculated for each of the defective pixel of the still image and the defective pixel of the moving image, and the pixel value is out of the range of m ⁇ 5 ⁇ .
  • An extraction method in which the defective pixel is a defective pixel is displayed as an option.
  • a moving image has more noise than a still image, and a moving image is processed as a defective pixel outside the range of m ⁇ 8 ⁇ , and the other is dealt with correction processing such as gain correction.
  • noise is small in a still image, so it is conceivable to designate outside the range of m ⁇ 5 ⁇ as a defective pixel.
  • the moving image has a smaller X-ray dose, and the gain is increased compared to the still image. Therefore, when extracting a defective pixel from the image before gain control, pixels exceeding m ⁇ 5 ⁇ It may be necessary to extract as a defect. As described above, since it is necessary to change the extraction method according to the situation, it is significant to check a defective pixel for each extraction method.
  • the extraction method for extracting each of the isolated defect, the block defect, and the line defect is selected according to the user's input, and the corresponding defective pixel is displayed.
  • block defects and line defects have a large influence on the image quality, it is important to select them in the case of preferentially confirming them.
  • isolated defects may become block defects due to deterioration with time, and it is necessary to selectively confirm isolated defects at that point.
  • FIG. 11 is a flowchart showing the flow of processing performed by the information processing system
  • FIG. 12 is a view showing an example of a display screen of defective pixels by the system. Since these processes and display screen are realized by an information processing system having the same configuration as that of the second embodiment, the description of the configuration is omitted. The flow of the process shown in FIG. 11 is the same as that of the second embodiment except for step 1108, so the description is omitted.
  • Step 1108 in FIG. 11 is a process of instructing one of the acquired defective pixels to be displayed.
  • description will be made based on the screen example of FIG.
  • defective pixels corresponding to a plurality of acquisition methods are displayed side by side. It is possible to compare and confirm defective pixels appearing at different positions for each acquisition method.
  • the positions of defective pixels according to imaging methods such as still images, perspective moving images, and cines are displayed side by side. Thereby, the position of the defective pixel can be confirmed for each acquisition method.
  • FIG. 12A when the user selects a button on the screen, all defective pixels are displayed, or only defective pixels exceeding allowable values for area, shape, density, etc. regarding defective pixels are displayed. You can make a choice.
  • the allowable value means, when a plurality of defects are gathered together to form a group defect, a shape formed by the gathered group defects, an area occupied by the gathered group defects in the image, a certain range of the image
  • the tolerance value such as the density of defective pixels in
  • a group defect composed of many defective pixels has a large area and has a large influence on image quality.
  • the shape of the defect becomes a problem because the circularly distributed defective pixels have a greater influence on the image quality than the linearly continuous defective pixels.
  • even when defective pixels are distributed at a high density in a certain image area it is considered that the influence on the image quality is high.
  • a process is realized by defining a threshold regarding the area, shape, density, and the like, and performing determination based on the threshold with respect to the acquired set of defective pixels.
  • a threshold regarding the area, shape, density, and the like
  • FIG. 12B when the user designates a detection date, defective pixels corresponding to the detection date are displayed. Since the number of defective pixels increases with the passage of time due to the deterioration with time of the device, it is significant to check each date. In order to do this, defect correction is performed using an existing defect pixel map before defect pixel detection, and a defect pixel is extracted using the image after the correction as an input, and the defect pixel map is updated in association with the extraction date. You should save. Thus, for example, when confirming the position of a defective pixel in an image captured in the past, the method of acquiring the defective pixel corresponding to the image and the date on which the image was captured are specified, and the image is captured It is possible to confirm the position of the defective pixel that sometimes appears.
  • the defect pixel was taken as an example of a peculiar pixel and the example of application about a defect pixel was explained, the example of application of the present invention may not be limited to this, but may be objected for peculiar pixels other than a defect pixel.
  • the defective pixel acquisition device 102 outside the information processing device 101 acquires the position of the defective pixel from the image, and the acquisition unit 103 of the information processing device 101 detects the defect from the defective pixel acquisition device 102.
  • the configuration is such that pixel position acquisition is performed.
  • the present invention is not limited to this, and the information processing apparatus 101 itself may extract and acquire the position of the defective pixel from the image.
  • the information processing apparatus 101 is configured to include the defective pixel acquisition unit 203 in the defective pixel acquisition apparatus 102, and the information processing apparatus 101 performs all the processing illustrated in FIG.
  • the present invention is not limited thereto.
  • the number of defective pixels obtained for each acquisition method is a problem
  • the coordinates of the defective pixel in the image may be displayed as character information.
  • the present invention is also realized by performing the following processing. That is, a program for realizing the functions of the above-described embodiments is supplied to an information processing apparatus or an information processing system, and a computer (or a CPU, an MPU, or the like) of the system or apparatus reads and executes the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 取得方式により変わる欠陥画素などの特異画素が発生する位置を表示させる仕組みを提供する。 取得部103は、外部の欠陥画素取得装置102にて複数の欠陥画素取得方式により取得された欠陥画素の位置の夫々を取得する(ステップ306)。表示制御部104が欠陥画素とその欠陥画素の取得方式とを対応付けて表示させるための表示データを作成し、表示部105に表示させる(ステップ307)。表示の態様として、取得方式毎に異なる表示形式による表示させる態様、ユーザの指定に応じて取得方式を選択して表示させる態様、取得方式毎に並べて表示させる態様がある。

Description

情報処理装置、情報処理システム、情報処理方法及び情報処理方法を実行するためのコンピュータプログラム
 本発明は、撮像装置により撮像された画像に発生する特異画素の位置を表示させるための情報処理装置、情報処理システム、情報処理方法及び当該情報処理方法を実行するためのコンピュータプログラムに関する。
 撮像装置が撮像した画像は複数の画素で構成され、この画素が表現する色及び濃淡により全体として画像が形成されるが、この複数の画素の中には特異画素と呼ばれる画素が存在する。特異画素とは、撮像装置中の回路や素子の異常等により、所定の入力に対して予め定められた出力範囲を外れた出力を示す欠陥画素や、その他の異常又は不良の値を示す画素のことである。これら特異画素は撮影画像の画質に影響を与えるため、その周辺画素の平均画素値等を用いて置換する等の方法により補正され、特異画素が補正された画像がユーザに提供される。
 また、特異画素の位置は画像の撮像方式やその画像から特異画素を抽出する方式などの、特異画素の取得方式によって変わる。この特異画素を補正するための技術として、特許文献1には撮像装置の撮像方式によって変わる特異画素の位置を補正する技術が開示されている。特許文献2には、回路系の利得に応じて異なる特異画素を抽出し、補正する技術が開示されている。
 一方例えば医療分野においては、補正処理がされた特異画素があった位置を確認したいという要求がある。これは、特異画素を補正処理することにより画素値が変わってしまうため、元の画像を確認する必要があるからである。特許文献3には放射線画像においてユーザが選択した領域内に存在する特異画素の位置を表示する技術が開示されている。ただ、この特許文献3における特異画素の表示には、特異画素の取得方式によって特異画素の位置が変わることが考慮されていない。先述の特許文献1、特許文献2に記載の技術は取得方式の違いが考慮されているが、特異画素を見えなくする補正処理に関するものであり、特異画素の表示とは相反するものである。
特開2001-8928号公報 特開2000-101925号公報 特開2004-187163号公報
 そのため従来の技術では、複数の撮像方式や、複数の特異画素を抽出する方式がある場合など、特異画素の取得方式が複数利用される場合に、取得方式毎に変わる特異画素の位置を比較して確認したいという要求に応える技術が無かった。
 本発明はかかる課題を解決するためになされたものであり、画像の特異画素を表示させる情報処理装置であって、前記特異画素を取得する複数の取得方式毎に特異画素を各々取得する取得手段と、前記複数の取得方式のうち少なくとも1つの取得方式と、前記少なくとも1つの取得方式により得られる特異画素とを対応付けて表示させる表示制御手段とを有することを特徴とする。
 本発明によれば、特異画素とその取得方式とを対応付けて表示させることができるため、どの取得方式を利用するとどのように特異画素が現れるかを比較しつつ確認することができる。
第1の実施例に係る情報処理装置の構成図である。 第1の実施例に係る情報処理装置と共に利用される欠陥画素取得装置の構成図である。 情報処理装置による処理の流れを示すフローチャートである。 情報処理装置による欠陥画素の表示画面例を示す図である。 第2の実施例に係るX線撮像システムの構成図である。 X線撮像システムによる欠陥画素を表示する処理の流れを示すフローチャートである。 X線撮像システムによる欠陥画素の表示画面例を示す図である。 その他の表示画面例を示す図である。 複数の欠陥画素位置を示す画像を順送りに表示する表示画面例を示す図である。 その他の欠陥画素の表示画面例を示す図である。 第3の実施例に係るX線撮像システムが実行する欠陥画素表示処理の流れを示すフローチャートである。 欠陥画素の位置を表示する画面を示す図である。
 以下、本発明の実施形態を実施例1乃至3に従って説明する。なお本発明において特異画素とは異常または出力不良の画素のことであり、その周囲の画素の画素値から大きく外れた画素である。例えば画像を所定領域ごとに区切り、その区切られた各領域における画素の平均画素値から標準偏差値の8倍以上外れた画素を特異画素として定義する方法がある。以下の実施例においては、この特異画素のうち素子や回路等の異常により発生する欠陥画素を特異画素の例として説明する。
 (実施例1)
 以下、第1実施例について図1乃至図4を用いて説明する。本実施例は、撮像装置により撮像した画像から取得した欠陥画素の位置を表示する情報処理装置に本発明を適用したものである。この情報処理装置は欠陥画素を取得する複数の取得方式の各々により取得された欠陥画素の位置を、取得方式毎に異なる表示形式で表示させる表示制御を行う。これにより欠陥画素の位置情報と取得方式とを対応付けて表示させるものである。図1は本発明に係る情報処理装置の構成を示した図であり、図2は欠陥画素の位置情報を取得する欠陥画素取得装置の構成を示した図である。図3は欠陥画素取得装置及び情報処理が行う処理の流れを示したフローチャートである。図4は情報処理装置が表示部に表示させる画面の例を示す図である。
 ここで、本実施例における欠陥画素の取得方式とは、抽出対象から欠陥画素を抽出する抽出方式に加え、欠陥画素の抽出対象とする画像を撮像装置が取得する際の撮像方式の両方を含む概念とする。
 図1に示される情報処理装置の構成について説明する。情報処理装置101は、欠陥画素取得装置102から、欠陥画素の位置情報を取得し、表示部105に表示させる表示制御を行うものである。情報処理装置101の取得部103は、欠陥画素取得装置102が取得した欠陥画素の位置を取得する。この欠陥画素の位置は、複数の取得方式の夫々を実行して得られたものである。取得部103は、複数の抽出方式に対応する欠陥画素の位置を取得する。情報処理装置101の表示制御部104は、画像における欠陥画素の位置を表示させるための表示制御を行うものであり、取得した欠陥画素の位置情報を取得方式毎に異なる表示形式で表示するための表示データを作成する。この表示データが表示部105に対して送られ、欠陥画素とその取得方式とが対応付けられて表示される。
 図2に示される欠陥画素を取得する欠陥画素取得装置102の構成について説明する。この欠陥画素取得装置102は、撮像装置205により複数の撮像方式により撮像された画像を取得し、欠陥画素を取得して、取得方式毎に分類して記憶するというものである。方式記憶部201には、欠陥画素の取得方式が複数記憶されている。取得方式として記憶されているデータは、欠陥画素取得の対象とする画像データの撮像方式や、画像から欠陥画素を抽出する抽出方式などである。また、例えば同じ動画について複数の取得方式が記憶されていてもよい。方式選択部202は、方式記憶部201から複数の取得方式を取得し、1つずつ選択して欠陥画素取得部203に送る。なお方式記憶部201を用いずに、ユーザの入力により適宜欠陥画素の取得方式を取得し実行する構成であってもよい。
 欠陥画素取得部203の画像取得部204は選択された取得方式に関する情報に基づき、欠陥画素の抽出対象とする画像を撮像装置205から取得する。欠陥画素抽出部206は画像から欠陥画素を抽出する。ここで欠陥画素の抽出方法は、例えば特異画素の定義例を用いて、所定領域内の画素平均値から標準偏差値の8倍以上離れた画素を欠陥画素とする方法を用いる。この方法で抽出される画素は欠陥画素以外の特異画素も含み得る。この点で、本実施形態が欠陥画素のみならず特異画素についても適用できることは明らかである。
 欠陥画素抽出部206で抽出された欠陥画素を分類部207が分類する。分類部207は取得された欠陥画素の位置と、方式選択部202で選択された欠陥画素の取得方式とを関連付けて欠陥画素記憶部208に格納する。この欠陥画素の位置に基づいて表示制御部104が表示用のデータを作成し、表示部105に表示させることにより欠陥画素の表示がなされる。この画面表示については後述する。
 なお、取得方式は、画像の撮像方式とそれにより得られた画像から欠陥画素を抽出する抽出方式とに分けられる。撮像方式としては、静止画、動画などがある。また、画素加算読み出し(ビニング)を行って動画を撮像する方式と画素加算読み出しをしないで動画を撮像する方式がある。また、画質よりもフレームレートを優先する動画を撮像する方式とフレームレートよりも画質を優先する動画を撮像する方式がある。抽出方式としては、複数枚の画像を取得し、うち所定枚数以上の画像において出力以上と判定された画素を欠陥画素とする方法がある。例えば4枚の画像を取得し、4枚中2枚以上の画像において出力異常と判定された画素を欠陥画素とする。出力異常の判定方法としては、画像を複数の領域に分割して夫々の領域について画素値の平均値を算出し、平均値を含む所定の範囲を外れた値を示す画素を欠陥画素とする方法がある。例えば、平均値から標準偏差値の数倍以上離れた画素値である場合に出力異常とする。また、孤立している欠陥画素、群を形成する欠陥画素、線上に連続して分布するライン欠陥など、抽出対象とする欠陥画素を決めることも、欠陥画素の取得方式に含まれる。更には、撮像された画像であって周知のオフセット補正やゲイン補正と呼ばれる補正がいない画像から欠陥画素を抽出するか、画像処理を終えた画像から欠陥画素を抽出するかも、取得方式に含む。
 欠陥画素を抽出する対象の画像は、被写体を介さずに、撮像装置のセンサ面に略均一な光が照射されるようにして取得した白画像と呼ばれる画像であっても、所定のテストパターンを撮像した画像であってもよい。
 図3に示される、上記装置による処理の流れを説明する。この処理は、複数の欠陥画素取得方式を実行する装置から欠陥画素の位置情報とその欠陥画素に対応する取得方式を取得し、取得方式毎に異なる表示形式で欠陥画素を表示するというものである。
 まず、欠陥画素取得装置102の方式選択部202は方式記憶部201から複数の欠陥画素の取得方式を取得する(ステップ301)。取得した複数の欠陥画素取得方式を順に欠陥画素取得部203が実行する。この欠陥画素取得部203の画像取得部204は、撮像装置205から画像を取得する(ステップ302)。この際、選択された欠陥画素の取得方式に定められた撮像方式で得られた画像を取得する。
 欠陥画素取得装置102の欠陥画素抽出部206が取得した白画像から欠陥画素を抽出する(ステップ303)。分類部207は、取得された欠陥画素の位置を抽出部から取得し、取得方式を方式選択部202から取得し、関連付けて欠陥画素記憶部208に記憶させる(ステップ304)。その後、方式選択部202は必要な取得方式の全てが実行されたかを判定する(ステップ305)。この判定は、ユーザの入力に応じて方式選択部202が行ってもよい。実行対象の欠陥画素取得方式があれば、ステップ301に進み欠陥画素の取得が実行され、取得が終わっていれば欠陥画素取得の処理を終える。以上の処理により、撮像装置205について複数の欠陥画素取得方式により得られる欠陥画素が欠陥画素取得装置102の欠陥画素記憶部208に格納されることとなる。
 次に、本発明に係る情報処理装置101の取得部103がステップ304にて記憶された欠陥画素の位置情報を取得する(ステップ306)。この欠陥画素の位置情報は、先述のステップ302及びステップ303により、複数の欠陥画素取得方式を欠陥画素取得装置102の欠陥画素取得部203が実行して得たものである。この位置情報には、欠陥画素の位置に関する情報と共に、取得方式に関する情報が含まれる。情報処理装置101の表示制御部104は取得方式に応じて表示形式を変えて欠陥画素を表示させるように表示データを作成し(ステップ307)、表示部105が表示を行う(ステップ308)。
 図4(a)に示される表示画面では、欠陥画素が存在する位置に塗り潰された正方形のマークが付されると共に、撮像方式に対応した記号が付される。これにより撮像方式毎に発生する欠陥画素の位置を記号の対応で確認することができる。なお、欠陥画素を異なる色で表示する表示形式であってもよい。このように、欠陥画素の位置を取得方式毎に異なる表示形式で表示されるため、複数の取得方式に対応する欠陥画素の位置を同時に1画面で確認することができる。このような効果は、複数の取得方式により取得した欠陥画素の位置を表示することや、取得方式毎に異なる表示形式で表示することも開示が無い従来技術からは想到し得ないものである。
 図4(b)はまた別の表示例である。画面右側には1つの取得方式に対応した表示がされている。1つは白画像を複数枚、例えば4枚撮影し、4枚中1枚以上の画像において出力が異常と判定された画素を欠陥画素とする方式である。もう1つは、3枚以上の画像において異常出力であると判定された画素を欠陥画素とする方式である。前者の方式は、後者の方式に比べ、少しでも不安定と判定される画素を欠陥画素として抽出する方式であり、より欠陥画素による補正を利用する場合に利用される。この方式は、例えば欠陥画素の補正処理の信頼性が高い場合に利用される。後者の方式は、前者の方式に比べ、欠陥画素として抽出する画素を特に不安定なものに限る趣旨で利用される方式である。例えば、多少の不安定さであればゲイン補正等の他の補正により画質を担保できる場合などに利用されるものである。このように、状況に応じて抽出方式を変える場合に、これら抽出方式毎により変わる欠陥画素の位置を確認することができる。
 (実施例2)
 第2実施例について、図5乃至図10を用いて説明する。本実施例ではX線撮像システム自体が画像を撮像し、その画像から欠陥画素の位置情報を抽出して取得する。そして、取得方式の少なくとも1つを指定するユーザの入力に応じ、欠陥画素の取得方式を選択し、その選択に対応する欠陥画素位置の表示を行うことで、欠陥画素の位置情報と取得方式とを対応付けて表示させるものである。図5は本発明に係る情報処理システムであるX線撮像システムの構成を示した図である。図6はその情報処理システムが行う処理の流れを示すフローチャートである。図7乃至図10は情報処理システムによる欠陥画素の表示画面例を示す図である。
 以下、図7に示されるX線撮像システムの構成について説明する。X線発生装置510は発生したX線を被写体に対して照射し、これと同期して検出器502がX線を受光する。検出器502は受光したX線を電荷に変換して蓄積し、所定の蓄積時間の後電荷を電気信号として読み出し、所定の画像処理を行って被写体画像を形成する撮像部として機能する。コントロールPC501には、バス509に対して、CPU503、RAM504、ROM505、入力部506、表示部507、記憶部508が接続される。また、コントロールPC501は、信号線である光ファイバー511を介して検出器502と接続されている。コントロールPC501は検出器502から被写体画像を取得して記憶部508に格納すると共に、表示部507に表示する処理をする。入力部506は、マウスやキーボード等からなり、ユーザの指示を受け付ける。表示部507は、例えば液晶ディスプレイからなり、表示制御部として機能するCPU503の制御に応じて、作成された表示データを表示する。
 このコントロールPC501では、後述する図8に示される処理を行うためのコンピュータプログラムが記憶部508に格納されており、これがRAM504に読み込まれ、CPU503により実行される。これによって、コントロールPC501のハードウェア資源とコンピュータプログラムが協働して図6の欠陥画素の表示処理が実現される。この際、CPU503が表示部507の表示制御部として機能する。
 図6に示される、上述のX線撮像システムが実行する処理の流れを説明する。特に明示が無い限り処理の主体及び処理の実行の指示を行う主体はCPU503である。
 まず、検出器502は被写体を透過したX線を受光し、撮像方式を変えて補正前画像を複数枚撮像する(ステップ601)。また、この補正前画像を得ると同時に、検出器502およびX線発生装置510にて実行された撮像方式も複数取得する(ステップ602)。この情報はセンサから自動通知されることで取得してもよいし、ユーザが手動で与えても良い。次に記憶部508から既存の欠陥画素の位置情報を含むデータである欠陥画素マップを取得する(ステップ603)。欠陥画素マップとは、例えば欠陥画素である画素を1とし、正常画素である画素を0としたビットマップ形式のデータである。この場合は、取得する際に、ステップ602にて得られた撮像方式によって分類された欠陥画素マップを取得する。次にステップ601にて取得した補正前画像から欠陥の抽出を行う(ステップ604)。このステップを実行するコントロールPC内のCPU503は、実施例1における欠陥画素の取得部103に対応する。
 次にステップ604の検出結果において、欠陥画素が増加していた場合、新たな欠陥画素として取得した日時と共に欠陥画素マップへ分類して追記し、欠陥マップを更新する(ステップ605)。更新された欠陥画素マップは、記憶部508に格納する。例えば、欠陥画素マップが欠陥画素の取得方式によって分類された複数の欠陥画素マップからなる場合には、このマップの更新作業をすることで欠陥の分類がされる。一方、欠陥画素マップが取得方式によって分類されておらず1つのマップである場合は、欠陥画素マップの値に欠陥画素取得方式に関する情報を含ませて更新することで欠陥画素の分類がなされる。
 その後、補正前画像を更新された欠陥画素マップを用いて欠陥画素の位置を特定して欠陥画素補正を行い、補正後画像を取得する(ステップ606)。そして、全ての欠陥画素取得方式が実行されているか否かを判定し(ステップ607)、全て実行済みであればステップ608の処理へ進み、まだ実行していない方式があれば、ステップ601の処理に進み、補正前画像に対して欠陥画素の抽出を行う。ここでいう全ての欠陥画素取得方式とは、撮像システムが実行可能な全ての欠陥画素取得方式であっても、ユーザが指定した欠陥画素取得方式の全てであってもよい。
 次に表示部507に欠陥画素の取得方式の選択肢を表示する。この選択肢をユーザが入力部506を操作して指定し、その指定情報に応じてCPU503が表示すべき欠陥情報の取得方式を選択する(ステップ608)。これらの欠陥画素取得方式が選択されると、その方式に対応する欠陥画素マップを選択し、このマップに基づいて欠陥画素の位置を表示するための表示データの作成を行う(ステップ609)。その画像データを表示部507が表示し、また画面上においてユーザが指定した画面上の表示を選択状態の表示へと変える。これにより、欠陥画素の位置情報を表示する図7乃至図10の画面表示が実現する(ステップ610)。これにより、ユーザが取得方式の指定に応じて表示させる欠陥画素の位置を任意に切り換えることができ、その時々に応じて必要な欠陥画素の位置を確認することが可能になる。欠陥の確認作業が完了したら、ユーザが確認ボタンを押下し、この入力に応じてCPU503が終了処理を行う(ステップ611)。この終了処理では、ユーザが画面に表示された全ての取得方式を選択し、欠陥を表示したか否かをCPU503にて判定し、全て選択されたと判定された場合に初めて確認ボタンの押下が有効となる。仮に、全て選択されていないと判定された場合には、その旨の通知を行う。確認ボタンの押下が有効か否かで確認ボタンの色を変えることにより、全ての欠陥画素の確認が終了したことをユーザに通知する。これにより欠陥画素の確認漏れを防ぐことができる。
 図7に例示される画面表示を説明する。図7(a)右側には、画像の形式として静止画撮影、シネ撮影(X線量が高い動画撮影)、透視撮影(動画撮影)、画素を加算して読み出す際の加算数など、画像の撮影方法が表示される。これら撮影方式等の欠陥画素の取得方式をユーザが指定することにより、対応する欠陥画素の位置情報を選択し、図の左側に表示する。これによって撮像方式毎に変わる欠陥画素の位置を確認することができる。図7(b)にて示されるように複数の取得方式が選択された場合は、選択された方式で得られる論理和をとった欠陥情報を取得し表示する。この際には、取得方式毎に異なる表示形式で表示させれば、取得方式毎に現れる欠陥画素の位置を把握することができる。また、撮像方式自体をそのまま表示しても良い。なお、補正後画像と欠陥画素の位置とを同時に表示をしてもよい。
図8(a)の画面表示では、静止画の駆動であっても、前後の撮像方式によって選択を可能とする。これは例えば動画撮影中の静止画撮影と、単体で行う静止画撮影では撮像装置の駆動が異なる場合があり、この場合欠陥画素の発生位置が異なるため、別々に確認する必要がある。このような表示は、欠陥画素の取得を行う際に、通常の静止画と動画撮影中に撮像した静止画とを分けて取得し、夫々について欠陥画素を抽出することを通して実現できる。これにより、静止画単体で撮像する際の静止画に現れる欠陥画素と、動画撮影中に撮影される静止画に現れる欠陥画素が異なる場合であっても、夫々の静止画に発生する欠陥画素を別々に確認することができる。
 図8(c)では、単体のモードと静止画、動画撮影が組み合わさった混合モードとを分けて選択できる。この場合混合モードでは更に、動画、静止画のそれぞれで加算読み出しをするか否かを選択する。その構成によって欠陥情報を表示する。混合モードの場合は動画の欠陥マップと静止画の欠陥マップとを順送りで表示する。図8(c)の画面表示例では、撮影プロトコルが選択肢として表示される。ここで撮影プロトコルとは、例えば上部消化管撮影や胸部正面撮影であり、動画や静止画など複数の撮像方式を組み合わせた撮影が行われる。撮影プロトコルが決まると検出器による一連の撮像方式と、その撮像方式を含む欠陥画素の取得方式が決まる。欠陥画素マップから得られる画像中の欠陥画素位置に基づき、画面に欠陥画素の位置を表示する。また画面上には再生ボタンが表示される。再生ボタンを押下することで、撮影時の欠陥の遷移がわかるように順送りで表示する。
 図9は図8(b)および図8(c)における再生ボタンを押下した際の順送り表示を示した図である。この例では、動画撮影から静止画撮影を行うケースでの動画撮影用の欠陥画素マップが5つあり、動画撮影から静止画撮影を行うケースでの静止画撮影用の欠陥画素マップが1つある。それらを、欠陥の遷移がわかるように欠陥画素マップを順送りで表示する。または、動画撮影用欠陥マップが1つしか無い場合は、動画撮影用の欠陥マップの表示時間を静止画撮影用の欠陥マップの表示時間よりも長くしてもよい。このような画面表示により、撮像方式毎に発生する欠陥画素の位置を撮像方式の利用順と同じ順序で確認することができる。
 図10(a)では、静止画の欠陥画素と動画の欠陥画素それぞれについて、所定の小領域内の平均画素値mと標準偏差値σを計算し、画素値がm±5σの範囲外となった画素を欠陥画素とする抽出方式が選択肢として表示されている。また、m±8σの範囲外となった画素を欠陥画素とする抽出方式も選択可能となっている。このどちらかをユーザの入力に応じて選択し、選択に応じた欠陥画素を表示する。例えば、一般に動画では静止画に比べてノイズが多く、動画像ではm±8σの範囲外を欠陥画素として処理し、それ以外をゲイン補正等の補正処理で対処することが考えられる。この観点では、静止画像においてはノイズが小さいため、m±5σの範囲外を欠陥画素として指定することが考え得る。別の観点では、動画の方がX線の線量が小さく静止画に比べゲインを大きくする処理を行うため、ゲインコントロールをする前の画像から欠陥画素を抽出する際にはm±5σを超える画素を欠陥として抽出する必要がある場合が考えられる。このように、状況に応じて抽出方式を変える必要があるため、抽出方式毎に欠陥画素を確認する意義がある。
 図10(b)では、孤立欠陥、ブロック欠陥、ライン欠陥をそれぞれ抽出するための抽出方式をユーザの入力に応じて選択し、対応する欠陥画素を表示する。例えば、ブロック欠陥、ライン欠陥等は画質に与える影響が大きいためこれらを優先的に確認する場合に選択する意義がある。また、孤立欠陥は経時劣化によってブロック欠陥へとなる可能性があり、その点で孤立欠陥を選択的に確認する必要がある。
 (実施例3)
 第3の実施例を図11及び図12を用いて説明する。本実施例は、欠陥画素の位置を示す画像を取得方式毎に並べて表示することで、欠陥画素の位置情報と取得方式とを対応付けて表示させるものである。また、取得された欠陥画素の中から指定された、例えば診断上大きな問題となる欠陥画素を選択して表示する。図11は情報処理システムが行う処理の流れを示すフローチャートであり、図12はシステムによる欠陥画素の表示画面例を示す図である。なお、これらの処理及び表示画面は第2の実施例と同様の構成を有する情報処理システムにより実現されるため、構成の説明は省略する。図11に示される処理の流れのうち、ステップ1108以外は実施例2と同様であるため説明を省略する。
 X線撮像システムまたは情報処理システムが実行する処理を説明する。図11のステップ1108は、取得した欠陥画素のうち、表示対象とするものを指示する処理である。以下、図12の画面例に基づいて説明する。
 図12の欠陥画素を表示する画面の例では、複数の取得方式に対応する欠陥画素が並べて表示される。取得方式毎に位置を変えて現れる欠陥画素を比較して確認することができる。また、図12(a)の画面表示では、静止画、透視動画、シネなどの撮像方式に応じた欠陥画素の位置が並べて表示される。これにより、取得方式毎に欠陥画素の位置を確認することができる。また図12(a)において、ユーザが画面中のボタンを選択することにより、全ての欠陥画素を表示するか、欠陥画素に関する面積、形状、密度等に関する許容値を超えた欠陥画素のみを表示するかの選択をすることができる。ここでいう許容値とは、複数欠陥が集合し連なって群欠陥を構成している場合にはその集合した群欠陥がつくる形状、その集合した群欠陥が画像に占める面積、画像のある範囲内における欠陥画素の密度などの許容値である。例えば、多くの欠陥画素で構成されている群欠陥はそれだけ面積が大きく、画質に与える影響が大きい。また同一欠陥画素数の欠陥群でも、線状に連続する欠陥画素に比べて円状に分布する欠陥画素の方が画質に与える影響が大きいため、形状が問題となる。また、一定の画像領域内に欠陥画素が高い密度で分布している場合にも、画質に与える影響が高いと考えられる。これら面積、形状、密度等に関する閾値を定め、取得された欠陥画素の集合に対してこの閾値による判定を行い分類することで処理が実現される。このように、欠陥画素に関する面積、形状、密度等に関する許容値を超えた欠陥画素を表示させることにより、画質に特に影響が大きい欠陥画素の位置を優先して確認することができる。なお、許容値を超えた欠陥画素のみを表示させても、許容値を超えた欠陥画素に許容値を超えない欠陥画素と異なる表示形式で表示してもよい。
 図12(b)では、ユーザが検出日を指定すると、その検出日に対応する欠陥画素が表示されるというものである。欠陥画素は装置の経時劣化により時間経過と共に増加するため、日付ごとに確認する意義がある。これには、欠陥画素検出の前に既存の欠陥画素マップにて欠陥補正をし、その補正後の画像を入力として欠陥画素を抽出し、その抽出日と対応付けて欠陥画素マップを更新しておけばよい。これによって、例えば過去に撮影した画像についての欠陥画素の位置を確認する際には、その画像に対応する欠陥画素の取得方式と、その画像が撮像された日付を指定して、その画像の撮像時に現れる欠陥画素の位置を確認することができる。
 以上、特異画素の例として欠陥画素を取り上げ、欠陥画素についての適用例を説明してきたが、本発明の適用例はこれに限らず、欠陥画素以外の特異画素を対象としてもよい。
 なお、第1の実施例では、情報処理装置101の外部にある欠陥画素取得装置102が画像から欠陥画素の位置を取得し、情報処理装置101の取得部103がこの欠陥画素取得装置102から欠陥画素の位置取得を行う構成としている。しかしこれに限らず、情報処理装置101自体が画像から欠陥画素の位置を抽出して取得してもよい。この場合には、情報処理装置101が欠陥画素取得装置102における欠陥画素取得部203を備える構成とし、図3に示される処理の全てを情報処理装置101が実行することにより実現される。
 上記実施例においては、欠陥画素を表示する際に欠陥画素の位置を示す画像を表示させるものとして説明したが、これに限らず、例えば取得方式毎に得られる欠陥画素の数が問題になる場合には、欠陥画素の数を表示させてよい。また、画像における欠陥画素の座標を文字情報として表示してもよい。
 更に本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するプログラムを、情報処理装置または情報処理システムに供給し、そのシステムまたは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
 101 情報処理装置
 102 欠陥画素取得装置
 103 取得部
 104 表示制御部

Claims (17)

  1.  画像の特異画素を表示させる情報処理装置であって、
     前記特異画素を取得する複数の取得方式毎に特異画素を各々取得する取得手段と、
     前記複数の取得方式のうち少なくとも1つの取得方式と、前記少なくとも1つの取得方式により得られる特異画素とを対応付けて表示させる表示制御手段とを有することを特徴とする情報処理装置。
  2.  前記表示制御手段は、前記複数の取得方式より得られる特異画素を前記取得方式に応じて表示形式を変えて表示させることを特徴とする請求項1に記載の情報処理装置。
  3.  前記複数の取得方式から少なくとも1つの取得方式を選択する選択手段を有し、
     前記表示制御手段は前記選択された取得方式により得られる特異画素を表示させることを特徴とする請求項1に記載の情報処理装置。
  4.  前記表示制御手段は、前記複数の取得方式により得られる特異画素の位置を示す画像を前記取得方式毎に並べて表示させることを特徴とする請求項1に記載の情報処理装置。
  5.  前記複数の取得方式では、前記画像を撮像装置が撮像する撮像方式が異なることを特徴とする請求項1乃至4のいずれか1項に記載の情報処理装置。
  6.  前記撮像方式は、動画を撮像する撮像方式と静止画を撮像する撮像方式のいずれかであることを特徴とする請求項5に記載の情報処理装置。
  7.  前記取得手段は、前記撮像装置が動画撮影中に撮像する静止画に現れる特異画素を取得することを特徴とする請求項6に記載の情報処理装置。
  8.  前記複数の取得方式では、前記画像から特異画素を抽出する抽出方式が異なることを特徴とする請求項1乃至7のいずれか1項に記載の情報処理装置。
  9.  前記表示制御手段は、複数の取得方式の夫々により得られる特異画素の位置を示す画像を順送りで表示させることを特徴とする請求項1乃至8のいずれか1項に記載の情報処理装置。
  10.  前記特異画素の集合の前記画像における面積の大きさ、前記集合がつくる形状、前記画像の所定の範囲における前記特異画素の密度のいずれかに応じて、前記特異画素を表示させることを特徴とする請求項1乃至9のいずれか1項に記載の情報処理装置。
  11.  前記取得手段は、前記複数の取得方式を実行する外部の装置から得ることを特徴とする請求項1乃至10のいずれか1項に記載の情報処理装置。
  12.  前記取得手段は、前記複数の取得方式を実行して前記特異画素を得ることを特徴とする請求項1乃至11のいずれか1項に記載の情報処理装置。
  13.  前記複数の取得方式は、前記画像における特異画素の位置を取得する方式であり、
     前記表示制御手段は、前記少なくとも1つの取得方式により得られる特異画素の位置を表示させることを特徴とする請求項1乃至12のいずれか1項に記載の情報処理装置。
  14.  前記特異画素は欠陥画素であることを特徴とする請求項1乃至13のいずれか1項に記載の情報処理装置。
  15.  画像の特異画素を表示させる情報処理方法であって、
     前記特異画素を取得する複数の取得方式毎に特異画素を各々取得する取得ステップと、
     前記複数の取得方式のうち少なくとも1つの取得方式と、前記少なくとも1つの取得方式により得られる特異画素とを対応付けて表示させる表示制御ステップとを有することを特徴とする情報処理方法。
  16.  画像の特異画素を表示させる情報処理方法であって、
     前記特異画素を取得する複数の取得方式毎に特異画素を各々取得する取得ステップと、
     前記複数の取得方式のうち少なくとも1つの取得方式と、前記少なくとも1つの取得方式により得られる特異画素とを対応付けて表示させる表示制御ステップとを有することを特徴とする情報処理方法をコンピュータに実行させるプログラム。
  17.  画像を撮像する撮像手段と、
     前記撮像された画像における特異画素の位置を複数の取得方式の各々により取得する取得手段と、
     前記複数の取得方式により取得された特異画素の位置を、取得方式毎に分類する分類手段と、
     前記分類された特異画素の位置と、該特異画素に対応する取得方式とを対応付けて表示する表示手段と
     を有することを特徴とする情報処理システム。
PCT/JP2009/065040 2009-08-28 2009-08-28 情報処理装置、情報処理システム、情報処理方法及び情報処理方法を実行するためのコンピュータプログラム WO2011024287A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/065040 WO2011024287A1 (ja) 2009-08-28 2009-08-28 情報処理装置、情報処理システム、情報処理方法及び情報処理方法を実行するためのコンピュータプログラム
JP2011528566A JP5539365B2 (ja) 2009-08-28 2009-08-28 情報処理装置、情報処理システム、情報処理方法及び情報処理方法を実行するためのコンピュータプログラム
US12/870,155 US8797430B2 (en) 2009-08-28 2010-08-27 Information processing apparatus for displaying an anomalous pixel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065040 WO2011024287A1 (ja) 2009-08-28 2009-08-28 情報処理装置、情報処理システム、情報処理方法及び情報処理方法を実行するためのコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2011024287A1 true WO2011024287A1 (ja) 2011-03-03

Family

ID=43624346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065040 WO2011024287A1 (ja) 2009-08-28 2009-08-28 情報処理装置、情報処理システム、情報処理方法及び情報処理方法を実行するためのコンピュータプログラム

Country Status (3)

Country Link
US (1) US8797430B2 (ja)
JP (1) JP5539365B2 (ja)
WO (1) WO2011024287A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379664B2 (ja) * 2009-12-11 2013-12-25 キヤノン株式会社 画像表示装置およびその制御方法
KR101195388B1 (ko) * 2010-10-29 2012-10-29 에스케이하이닉스 주식회사 데드 픽셀 보상 테스트 장치
JP2013093685A (ja) * 2011-10-25 2013-05-16 Sumitomo Electric Ind Ltd 撮像装置
JP2013255040A (ja) * 2012-06-05 2013-12-19 Canon Inc 撮像装置、撮像システム、撮像装置の制御方法およびプログラム
US20180005598A1 (en) * 2016-06-29 2018-01-04 Intel Corporation Oled-aware content creation and content composition
JP7113657B2 (ja) * 2017-05-22 2022-08-05 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム
WO2018216629A1 (ja) 2017-05-22 2018-11-29 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008928A (ja) * 1999-04-30 2001-01-16 General Electric Co <Ge> 画像を表示する方法および装置
JP2008022520A (ja) * 2006-03-16 2008-01-31 Canon Inc 撮像装置、その処理方法及びプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529618B1 (en) * 1998-09-04 2003-03-04 Konica Corporation Radiation image processing apparatus
US6704458B2 (en) * 1999-12-29 2004-03-09 Eastman Kodak Company Method and apparatus for correcting heavily damaged images
JP4485087B2 (ja) * 2001-03-01 2010-06-16 株式会社半導体エネルギー研究所 半導体装置の動作方法
US6919568B2 (en) * 2003-04-08 2005-07-19 Ge Medical Systems Global Technology Company Llc Method and apparatus for identifying composite defective pixel map
JP4346968B2 (ja) * 2003-06-13 2009-10-21 キヤノン株式会社 放射線撮影方法、放射線撮影装置、及びコンピュータプログラム
US20050030412A1 (en) * 2003-08-07 2005-02-10 Canon Kabushiki Kaisha Image correction processing method and image capture system using the same
EP1884193A4 (en) * 2005-05-23 2010-01-27 Konica Minolta Med & Graphic METHOD FOR DISPLAYING ABNORMAL SHADOW CANDIDATE, AND MEDICAL IMAGE PROCESSING SYSTEM
JP4773841B2 (ja) * 2006-02-17 2011-09-14 キヤノン株式会社 撮像装置
JP4874843B2 (ja) * 2007-03-22 2012-02-15 富士フイルム株式会社 放射線画像撮影方法および放射線画像撮影装置
JP2009061176A (ja) * 2007-09-07 2009-03-26 Konica Minolta Medical & Graphic Inc 医用画像処理装置及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008928A (ja) * 1999-04-30 2001-01-16 General Electric Co <Ge> 画像を表示する方法および装置
JP2008022520A (ja) * 2006-03-16 2008-01-31 Canon Inc 撮像装置、その処理方法及びプログラム

Also Published As

Publication number Publication date
JP5539365B2 (ja) 2014-07-02
US8797430B2 (en) 2014-08-05
US20110050933A1 (en) 2011-03-03
JPWO2011024287A1 (ja) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5534756B2 (ja) 画像処理装置、画像処理方法、画像処理システム及びプログラム
JP5235823B2 (ja) 情報処理装置、情報処理システム、情報処理方法及び当該情報処理方法をコンピュータに実行させるプログラム
WO2011024287A1 (ja) 情報処理装置、情報処理システム、情報処理方法及び情報処理方法を実行するためのコンピュータプログラム
JP6102749B2 (ja) 情報処理装置、撮像制御方法、プログラム、デジタル顕微鏡システム、表示制御装置、表示制御方法及びプログラム
US20090208135A1 (en) Image processing apparatus, image processing method and imaging apparatus
JP2007143131A (ja) 画像信号処理方法および装置
JP6361931B2 (ja) 画像処理装置及びこれを備えた撮像システムならびに画像処理方法
JP7204499B2 (ja) 画像処理装置、画像処理方法、および、プログラム
US20090041295A1 (en) Image Display Device, Image Display Method, and Image Display Program
JP5586909B2 (ja) 情報処理装置、システム、方法及びプログラム
JP5547975B2 (ja) 撮像装置、顕微鏡システム、及びホワイトバランス調整方法
JPH07274194A (ja) カラー映像信号処理装置
JP2000224525A (ja) プリンタ装置
JP3829024B2 (ja) 表示画面の検査方法と装置
JP5088287B2 (ja) 放射線撮影装置
JP2005027161A (ja) 画像処理装置及び画像処理方法
JP2016225960A (ja) 撮像装置および撮像方法
US20230419548A1 (en) Color adjustment apparatus used for color matching between image capturing apparatuses, color adjustment method, and storage medium storing color adjustment program
JP5272821B2 (ja) 放射線撮像装置
JP6111736B2 (ja) 画像処理装置、撮像装置、画像処理方法および画像処理プログラム
JP2015171051A (ja) 大型表示装置、不具合表示パネルの検出システム、不具合表示パネルの検出方法及びプログラム
JP2005167773A (ja) 画像処理方法及び装置
CN112181548A (zh) 一种显示器和图像显示方法
JP5510387B2 (ja) X線検査装置
JP2019176387A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528566

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848735

Country of ref document: EP

Kind code of ref document: A1