WO2011021518A1 - 画像処理方法、画像処理装置及びプログラム - Google Patents
画像処理方法、画像処理装置及びプログラム Download PDFInfo
- Publication number
- WO2011021518A1 WO2011021518A1 PCT/JP2010/063391 JP2010063391W WO2011021518A1 WO 2011021518 A1 WO2011021518 A1 WO 2011021518A1 JP 2010063391 W JP2010063391 W JP 2010063391W WO 2011021518 A1 WO2011021518 A1 WO 2011021518A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- sharpening
- edge
- strength
- processing
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 99
- 238000003707 image sharpening Methods 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 4
- 238000003708 edge detection Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 230000010365 information processing Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 230000004069 differentiation Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/40—Picture signal circuits
- H04N1/409—Edge or detail enhancement; Noise or error suppression
- H04N1/4092—Edge or detail enhancement
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/40—Picture signal circuits
- H04N1/409—Edge or detail enhancement; Noise or error suppression
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
- G06T5/75—Unsharp masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/46—Colour picture communication systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20192—Edge enhancement; Edge preservation
Definitions
- the present invention relates to an image processing method, an image processing apparatus, and a program.
- Non-Patent Document 1 a technique called unsharp masking is widely used (Non-Patent Document 1). Assuming that an image is f and a blurred image is f s , a sharpened image g is obtained as in Expression (1).
- ⁇ is a coefficient for adding a high spatial frequency portion of the image to the original image, that is, a coefficient for adjusting the sharpening intensity, and the optimum value is used after trial on many images. .
- the coefficient for adjusting the sharpening strength is set to a value that will apply a strong sharpening, while the natural image is the target. It is desirable to apply a value that gives a weaker sharpening.
- Japanese Patent Application Laid-Open No. 2004-228561 states that when sharpness is enhanced by edge enhancement on a digital image, it is necessary to adjust the edge thickness (edge enhancement range) according to the image characteristics.
- an adjustment method when there is an edge around the target pixel, a method is described in which the edge strength is adjusted by changing the emphasis radius or the weight matrix depending on the positional relationship between the edge thickness and the target pixel.
- the coefficient for adjusting the sharpening intensity differs depending on the scene of the input image.For example, when the scene of the input image is an artificial object, the coefficient is set to be strong. It is described that it is set to.
- Patent Document 1 describes a method of paying attention to the positional relationship between the thickness of an edge and a pixel of interest and adjusting the edge strength according to those features. Yes.
- An object of the present invention is to provide an image processing apparatus, an image processing method, and an image processing program for improving the image quality of an image.
- the present invention that solves the above-described problems detects an edge from an image to which a sharpening process is applied, and determines the strength of the sharpening process in the target pixel based on the length of the edge existing in the vicinity of the target pixel in the sharpening process. This is an image processing method.
- An image processing apparatus comprising: an image sharpening strength determination unit that performs a sharpening processing unit that sharpens the image based on the strength of the sharpening processing.
- the present invention that solves the above-described problems detects an edge from an image to which a sharpening process is applied, and determines the strength of the sharpening process in the target pixel based on the length of the edge existing in the vicinity of the target pixel in the sharpening process. And a sharpening process for sharpening the image based on the strength of the sharpening process.
- the present invention can improve the image quality by optimizing the sharpness of the portion in the image without depending on the attributes of the subject such as natural objects and artifacts in the image.
- FIG. 1 is a block diagram showing a first embodiment of the present invention.
- FIG. 2 is a block diagram illustrating the line segment detection unit in the first embodiment.
- FIG. 3 is a diagram showing an example of contents stored in the line segment list.
- FIG. 4 is a diagram for explaining the first embodiment.
- FIG. 5 is a diagram for explaining the first embodiment.
- FIG. 6 is a block diagram showing the first embodiment of the present invention.
- FIG. 1 is a block diagram showing a first embodiment of the present invention.
- FIG. 2 is a block diagram showing the line segment detection unit of the present invention.
- the original image 1 is normally composed of three component images of R (red), G (green), and B (blue), and the image conversion unit 2 converts this into a luminance image 3 and a color difference image 4. .
- the subsequent sharpening process is applied to the luminance image 3.
- the luminance image 3 composed of the Y component is sharpened.
- the brightness image composed of the L * component may be regarded as the luminance image 3 and converted from RGB to the CIELAB color space. .
- the luminance component or brightness component not only in the YC b C r and color space CIELAB, YUV, may be used color space such as HSV.
- the original image is a single color image, there is no color difference component, so that only the luminance image is sharpened.
- the line segment detection unit 5 extracts an edge in the luminance image 3.
- a specific example of the line segment detection unit 5 will be described with reference to FIG.
- a primary differential unit 51 and a secondary differential unit 52 act on the luminance image 3.
- the zero crossing detection unit 53 is caused to act on the output of the secondary differentiation unit 52.
- the binarization unit 54 is caused to act on the output of the primary differentiation unit 51.
- the output of the zero crossing detection unit 53 is an edge image having a width of 1 pixel, but a lot of noise is also detected at the same time.
- the output of the binarization unit 54 is a wide edge region. By combining these two, an edge image 55 with a width of 1 pixel and less noise is obtained. For details, see, for example, (Hideyuki Tamura, “Computer Image Processing”, pages 182-197, Ohm, 2002).
- the edge tracking unit 56 tracks the edge detected in the edge image 55 and stores the portion to which the straight line is applied in the line segment list 57 as a line segment.
- An example of the contents of the line segment list 57 is shown in FIG.
- FIG. 3 is an example of a line segment list 57 in which four line segments are written.
- the third line segment is a line having a length of 5 (pixels) consisting of 5 pixels of (2,4), (2,5), (2,6), (2,7), and (2,8). Indicates minutes.
- FIG. 4 shows the detected four line segments in units of pixels.
- the upper left coordinate is (0, 0).
- the maximum value of the distance from each pixel to each pixel is smaller than a predetermined threshold value, it can be executed by assuming that the line segment is applied.
- the sharpening intensity map creating unit 6 creates a sharpening intensity map image 7.
- the sharpening intensity map creating unit 6 writes the sharpening intensity ⁇ 0 given to the entire image in each pixel of the sharpening intensity map image 7.
- the length of each line segment created in the line segment list 57 of the line segment detection unit 5 is examined.
- the line of the sharpening intensity map image 7 whose length l is equal to or greater than the threshold value l th is used. in l n pixel minute near writes sharpening intensity lambda 1 which gives a strong sharpness.
- a sharpening intensity map image 7 is formed so that edge enhancement in the vicinity of an edge line segment having a length l equal to or greater than the threshold value l th is further enhanced.
- the sharpening intensity map image 7 in the vicinity of the line segment is displayed.
- a weak sharpening intensity ⁇ 2 is written in n pixels. If ⁇ 1 has already been written, a weak sharpening intensity ⁇ 2 is overwritten at the pixel position.
- the threshold values l th and l n are constants depending on conditions for observing the image, and are determined by experiments. For example, when printing an image with 12 pixels / mm, the threshold l th is suitably from 20 to 30 pixels, but this time l n is often result may be set to about 10 pixels is obtained, this Not as long. That is, since these threshold values are only a guide, it is desirable to determine the optimal threshold values through experiments.
- the above processing is for applying sharpening to a linear edge portion. That is, it is desirable that the same processing is applied not only to a strict straight line but also to a curve having an arc. Curves with arcs that are not strictly straight lines are divided into a plurality of line segments by the above processing, but if they are connected, they can be regarded as one line segment using the connectivity, or the division length of the line segment to determine the threshold l th to allow to satisfy the condition of threshold l th.
- the width l n and the sharpening intensity ⁇ 1 in the vicinity where sharpening is performed are given as constants. However, these constants are adaptively expressed by a linear function related to the length of a related line segment or a nonlinear function. It is also possible to make it sophisticated by changing it.
- the sharpening strengths ⁇ 0 , ⁇ 1 , and ⁇ 2 are constants that depend on the sharpening method.
- the sharpening intensity ⁇ 2 for a short image area of an edge line segment often found in natural objects may be set equal to the sharpening intensity ⁇ 0 given to the entire image.
- an example of the relationship between ⁇ 0 , ⁇ 1 , and ⁇ 2 is expressed by Equation (3).
- ⁇ 0 ⁇ 2 ⁇ 1
- the magnitude relationship between ⁇ 0 and ⁇ 2 is not limited to the expression (3), but may be smaller than ⁇ 1 .
- Pixels forming a line segment in the figure is shown with hatching, l th less than the pixel within the distance l n from the line segment of the line number 1 of length lambda 2, line number 2, 3, within a distance l n from 4 line segments, the no pixels within the distance l n from the line segment of the segment number 1 lambda 1, the remaining pixels are written the intensity of lambda 0.
- the image sharpening unit 8 performs sharpening on each pixel with reference to the sharpening intensity map image 7 with respect to the luminance image 3, for example, as in Expression (4).
- Y (i, j) is the pixel value at the position (i, j) of the luminance image 3
- Y ′ (i, j) is a pixel value at the position (i, j) of the sharpened luminance image 9 as a result of the sharpening process.
- g (k, l) is a convolution kernel function for the luminance image Y, and uses a Gaussian function or the like.
- a term in ⁇ of the equation (4) is a component having a high spatial frequency of the luminance image 3 and corresponds to (f ⁇ fs) of the equation (1). By adding this to the original luminance image Y, the luminance image 3 is sharpened.
- the image conversion unit 10 generates a sharpened image 11 expressed in R, G, and B for each pixel from the sharpened luminance image 9 and the color difference image 4 that have been subjected to the sharpening process, according to Expression 5.
- the sharpened image 11 is obtained by applying sharpening with an appropriate strength to the original image 1 according to the content of the image.
- FIG. 6 is a diagram showing the configuration of an image processing apparatus according to the second embodiment of the present invention.
- the original image is converted into a luminance image and a color difference image, and only the luminance image is sharpened.
- sharpening is performed for each of the R, G, and B components. Since substantially the same effect can be obtained even if the image processing is performed, the image processing apparatus according to the second embodiment applies sharpening to the RGB image.
- the line segment detection unit 15 handles the three components R, G, and B of the original image 1 separately, or has a configuration in which the above-described line segment detection unit 5 is tripled or the line segment detection unit 5 has three components. Are handled in order.
- the sharpening intensity map image 7 is obtained by the sharpening intensity map creating unit 6 as in the first embodiment.
- Equation (5) becomes Equation (6).
- a sharpened image 21 is obtained by the above processing.
- Appendix 1 An image processing method in which an edge is detected from an image to which a sharpening process is applied, and the strength of the sharpening process in the target pixel is determined by the length of the edge existing in the vicinity of the target pixel in the sharpening process.
- Appendix 2 Detect edges from images Extracting an edge line segment that is a straight line from the edge, The image processing method according to appendix 1, wherein the strength of the sharpening process on the target pixel is determined by the length of the edge line segment existing in the vicinity of the target pixel of the sharpening process.
- a luminance image and a color difference image or a chromaticity image are generated from the image, Applying a sharpening process to the luminance image to generate a sharpened luminance image;
- Appendix 6 The image processing method according to any one of appendix 1 to appendix 5, in which when a plurality of edges exist in the vicinity, an application range of the sharpening process is determined based on the length of the short edge.
- Image sharpening strength for detecting an edge from an image to which sharpening processing is applied and determining the strength of the sharpening processing on the target pixel based on the length of the edge existing in the vicinity of the target pixel of the sharpening processing
- An image processing apparatus comprising: a sharpening processing unit that sharpens the image based on the strength of the sharpening process.
- the image sharpening intensity determination unit An edge detector for detecting edges from the image; An edge line segment extraction unit that extracts an edge line segment that is a straight line from the edge;
- the image processing apparatus further comprising: an edge strength determination unit that determines the strength of the sharpening processing in the target pixel in the image based on a length of the edge line segment existing in the vicinity.
- the image sharpening strength determination unit determines the strength of the sharpening processing based on the luminance image
- the sharpening processing unit performs a sharpening process on the luminance image based on the strength of the sharpening process, and generates a sharpened luminance image
- the image processing device according to appendix 7 or appendix 8, further comprising an image conversion unit that outputs a sharpened color image from the sharpened luminance image and the color difference image or chromaticity image.
- strength determination part determines the intensity
- strength determination part is any one of Additional remark 7 to Additional remark 11 which determines the application range of a sharpening process based on the length of a short edge, when several edge exists in the vicinity.
- Image processing apparatus is any one of Additional remark 7 to Additional remark 11 which determines the application range of a sharpening process based on the length of a short edge, when several edge exists in the vicinity.
- strength which detects the edge from the image which applies a sharpening process, and determines the intensity
- the decision process A program for causing an information processing apparatus to execute a sharpening process for sharpening the image based on the strength of the sharpening process.
- the image sharpening intensity determination process includes: Edge detection processing for detecting edges from an image; Edge line segment extraction processing for extracting an edge line segment that is a straight line from the edge; 14.
- Image generation processing for generating a luminance image and a color difference image or a chromaticity image from an image is executed.
- the image sharpening intensity determination process determines the intensity of the sharpening process based on the luminance image
- the sharpening process performs a sharpening process on the luminance image based on the strength of the sharpening process to generate a sharpened luminance image;
- the image when an image input from a digital camera or scanner is used for printing, display, website, etc., the image is automatically corrected by correcting each part in the image to the optimum sharpness. It can be applied to applications such as improving image quality.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
- Color Image Communication Systems (AREA)
Abstract
Description
ここで、λは画像の空間周波数の高い部分を原画像に足しこむ際の係数、すなわち鮮鋭化の強度を調整する係数であり、その値は多くの画像で試行して最適な値が用いられる。たとえば、入力画像のシーンが建物などの人工物を対象としている場合、鮮鋭化の強度を調整する係数には強めの鮮鋭化を掛けるような値を設定し、一方、自然物を対象としている場合には、弱めの鮮鋭化を掛ける値を適用することが望ましい。
<第1の実施の形態>
第1の実施の形態を説明する。本発明の第1の実施の形態を、図1と図2を参照して説明する。図1は本発明の第1の実施の形態を示すブロック図である。図2は本発明の線分検出部を示すブロック図である。
線分検出部5は、輝度画像3中のエッジを抽出する。線分検出部5の具体例を、図2を参照して説明する。輝度画像3に対し、一次微分部51と二次微分部52とが作用する。二次微分部52の出力に対し、ゼロ交差検出部53を作用させる。また、一次微分部51の出力に対し、二値化部54を作用させる。ゼロ交差検出部53の出力は、幅1画素のエッジ画像であるが、同時にノイズも多く検出される。二値化部54の出力は、幅のあるエッジ領域である。この二つを組み合わせることによって、幅1画素でノイズの少ないエッジ画像55が得られる。この詳細については、例えば(田村秀行著「コンピュータ画像処理」、182~197ページ、オーム社、2002年)を参照することができる。
λ0=λ2<λ1 (3)
なお、λ0、λ2の大小関係は式(3)に限られるものではなく、λ1よりも小さければよい。
lth=4,ln=2とおいて実行した結果、鮮鋭化強度マップ画像7に書き込まれた鮮鋭化強度を示している。同図で線分を形成する画素は網掛けして示しており、lth未満の長さの線分番号1の線分から距離ln以内の画素にはλ2、線分番号2,3,4の線分から距離ln以内で、線分番号1の線分から距離ln以内にはない画素にはλ1、残りの画素にはλ0の強度が書き込まれている。
ここで、Y(i,j)は輝度画像3の位置(i,j)における画素値、λ2(i,j)は鮮鋭化強度マップ画像7の位置(i,j)における画素値(=鮮鋭化強度)、Y’(i,j)は鮮鋭化処理が行なわれた結果の鮮鋭化輝度画像9の位置(i,j)における画素値である。g(k,l)は輝度画像Yに対する畳み込みのカーネル関数であり、ガウス関数などを用いる。式(4)の{ }の中の項は輝度画像3の空間周波数の高い成分となり、式(1)の(f-fs)にあたる。これを原輝度画像Yに足しこむことにより、輝度画像3の鮮鋭化が行なわれる。λ(i,j)はその足しこむ程度を画素単位で制御するパラメータであり、λ2(i,j)=λ1の画素位置では強く、λ(i,j)=λ0、または、λ(i,j)=λ2の画素位置では弱めの鮮鋭化が行なわれる。
以上の構成によると、鮮鋭化画像11には原画像1に対し、画像の内容に応じ適度な強度の鮮鋭化が適用された結果が得られる。
<第2の実施の形態>
本発明の第2の実施の形態を説明する。
前記エッジから直線であるエッジ線分を抽出し、
鮮鋭化処理の対象画素の近傍に存在するエッジ線分の長さにより前記対象画素における鮮鋭化処理の強度を決定する
付記1に記載の画像処理方法。
前記輝度画像に対して鮮鋭化処理を適用して鮮鋭化輝度画像を生成し、
前記鮮鋭化輝度画像と前記色差画像又は色度画像とから鮮鋭化されたカラー画像を出力する
付記1又は付記2に記載の画像処理方法。
前記鮮鋭化処理の強度に基づいて、前記画像の鮮鋭化を行う鮮鋭化処理部と
を有する画像処理装置。
画像からエッジを検出するエッジ検出部と、
前記エッジから直線であるエッジ線分を抽出するエッジ線分抽出部と、
前記画像中の対象画素における前記鮮鋭化処理の強度を近傍に存在する前記エッジ線分の長さにより決定するエッジ強度決定部と
を有する付記7に記載の画像処理装置。
前記画像鮮鋭化強度決定部は、前記輝度画像に基づいて鮮鋭化処理の強度を決定し、
前記鮮鋭化処理部は、前記鮮鋭化処理の強度に基づいて、前記輝度画像に対して鮮鋭化処理を行い、鮮鋭化輝度画像を生成し、
前記鮮鋭化輝度画像と前記色差画像又は色度画像とから鮮鋭化されたカラー画像を出力する画像変換部を有する
付記7又は付記8に記載の画像処理装置。
付記7から付記9のいずれかに記載の画像処理装置。
付記7から付記10のいずれかに記載の画像処理装置。
付記7から付記11のいずれかに記載の画像処理装置。
前記鮮鋭化処理の強度に基づいて、前記画像の鮮鋭化を行う鮮鋭化処理と
を情報処理装置に実行させるプログラム。
画像からエッジを検出するエッジ検出処理と、
前記エッジから直線であるエッジ線分を抽出するエッジ線分抽出処理と、
前記画像中の対象画素における前記鮮鋭化処理の強度を近傍に存在する前記エッジ線分の長さにより決定するエッジ強度決定処理と
を有する付記13に記載のプログラム。
前記画像鮮鋭化強度決定処理は、前記輝度画像に基づいて鮮鋭化処理の強度を決定し、
前記鮮鋭化処理は、前記鮮鋭化処理の強度に基づいて、前記輝度画像に対して鮮鋭化処理を行い、鮮鋭化輝度画像を生成し、
前記鮮鋭化輝度画像と前記色差画像又は色度画像とから鮮鋭化されたカラー画像を出力する処理を実行させる
付記13又は付記14に記載のプログラム。
付記13から付記15のいずれかに記載のプログラム。
付記13から付記16のいずれかに記載のプログラム。
付記13から付記17のいずれかに記載のプログラム。
2 画像変換部
3 輝度画像
4 色差画像
5 線分検出部
6 鮮鋭化強度マップ作成部
7 鮮鋭化強度マップ画像
8 画像鮮鋭化部
9 鮮鋭化輝度画像
10 画像変換部
11 鮮鋭化画像
15 線分検出部
18 画像鮮鋭化部
21 鮮鋭化画像
51 一次微分部
52 二次微分部
53 ゼロ交差検出部
54 二値化部
55 エッジ画像
56 エッジ追跡部
57 線分リスト
Claims (18)
- 鮮鋭化処理を適用する画像からエッジを検出し、鮮鋭化処理の対象画素の近傍に存在する前記エッジの長さにより前記対象画素における鮮鋭化処理の強度を決定する画像処理方法。
- 画像からエッジを検出し、
前記エッジから直線であるエッジ線分を抽出し、
鮮鋭化処理の対象画素の近傍に存在するエッジ線分の長さにより前記対象画素における鮮鋭化処理の強度を決定する
請求項1に記載の画像処理方法。 - 画像から、輝度画像と、色差画像又は色度画像とを生成し、
前記輝度画像に対して鮮鋭化処理を適用して鮮鋭化輝度画像を生成し、
前記鮮鋭化輝度画像と前記色差画像又は色度画像とから鮮鋭化されたカラー画像を出力する
請求項1又は請求項2に記載の画像処理方法。 - 前記画像がRGB画像の場合、前記RGBの各成分の画像に対して前記鮮鋭化処理を適用する請求項1から請求項3のいずれかに記載の画像処理方法。
- 複数のエッジが近傍に存在する場合、短いエッジの長さに基づいて鮮鋭化処理の強度を決定する請求項1から請求項4のいずれかに記載の画像処理方法。
- 複数のエッジが近傍に存在する場合、短いエッジの長さに基づいて鮮鋭化処理の適用範囲を決定する請求項1から請求項5のいずれかに記載の画像処理方法。
- 鮮鋭化処理を適用する画像からエッジを検出し、鮮鋭化処理の対象画素の近傍に存在する前記エッジの長さにより前記対象画素における鮮鋭化処理の強度を決定する画像鮮鋭化強度決定部と、
前記鮮鋭化処理の強度に基づいて、前記画像の鮮鋭化を行う鮮鋭化処理部と
を有する画像処理装置。 - 前記画像鮮鋭化強度決定部は、
画像からエッジを検出するエッジ検出部と、
前記エッジから直線であるエッジ線分を抽出するエッジ線分抽出部と、
前記画像中の対象画素における前記鮮鋭化処理の強度を近傍に存在する前記エッジ線分の長さにより決定するエッジ強度決定部と
を有する請求項7に記載の画像処理装置。 - 画像から、輝度画像と、色差画像又は色度画像とを生成する画像生成部を有し、
前記画像鮮鋭化強度決定部は、前記輝度画像に基づいて鮮鋭化処理の強度を決定し、
前記鮮鋭化処理部は、前記鮮鋭化処理の強度に基づいて、前記輝度画像に対して鮮鋭化処理を行い、鮮鋭化輝度画像を生成し、
前記鮮鋭化輝度画像と前記色差画像又は色度画像とから鮮鋭化されたカラー画像を出力する画像変換部を有する
請求項7又は請求項8に記載の画像処理装置。 - 画像がRGB画像の場合、前記RGBの各成分の画像毎に、画像鮮鋭化強度決定部と鮮鋭化処理部とを設ける
請求項7から請求項9のいずれかに記載の画像処理装置。 - 前記画像鮮鋭化強度決定部は、複数のエッジが近傍に存在する場合、短いエッジの長さに基づいて鮮鋭化処理の強度を決定する
請求項7から請求項10のいずれかに記載の画像処理装置。 - 前記画像鮮鋭化強度決定部は、複数のエッジが近傍に存在する場合、短いエッジの長さに基づいて鮮鋭化処理の適用範囲を決定する
請求項7から請求項11のいずれかに記載の画像処理装置。 - 鮮鋭化処理を適用する画像からエッジを検出し、鮮鋭化処理の対象画素の近傍に存在する前記エッジの長さにより前記対象画素における鮮鋭化処理の強度を決定する画像鮮鋭化強度決定処理と、
前記鮮鋭化処理の強度に基づいて、前記画像の鮮鋭化を行う鮮鋭化処理と
を情報処理装置に実行させるプログラム。 - 前記画像鮮鋭化強度決定処理は、
画像からエッジを検出するエッジ検出処理と、
前記エッジから直線であるエッジ線分を抽出するエッジ線分抽出処理と、
前記画像中の対象画素における前記鮮鋭化処理の強度を近傍に存在する前記エッジ線分の長さにより決定するエッジ強度決定処理と
を有する請求項13に記載のプログラム。 - 画像から、輝度画像と、色差画像又は色度画像とを生成する画像生成処理を実行させ、
前記画像鮮鋭化強度決定処理は、前記輝度画像に基づいて鮮鋭化処理の強度を決定し、
前記鮮鋭化処理は、前記鮮鋭化処理の強度に基づいて、前記輝度画像に対して鮮鋭化処理を行い、鮮鋭化輝度画像を生成し、
前記鮮鋭化輝度画像と前記色差画像又は色度画像とから鮮鋭化されたカラー画像を出力する処理を実行させる
請求項13又は請求項14に記載のプログラム。 - 画像がRGB画像の場合、前記RGBの各成分の画像毎に、画像鮮鋭化強度決定処理と鮮鋭化処理とを実行する
請求項13から請求項15のいずれかに記載のプログラム。 - 前記画像鮮鋭化強度決定処理は、複数のエッジが近傍に存在する場合、短いエッジの長さに基づいて鮮鋭化処理の強度を決定する
請求項13から請求項16のいずれかに記載のプログラム。 - 前記画像鮮鋭化強度決定処理は、複数のエッジが近傍に存在する場合、短いエッジの長さに基づいて鮮鋭化処理の適用範囲を決定する
請求項13から請求項17のいずれかに記載のプログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10809863.3A EP2469834B1 (en) | 2009-08-19 | 2010-08-06 | Image processing method, image processing device, and program |
CN201080036836.7A CN102484673B (zh) | 2009-08-19 | 2010-08-06 | 图像处理方法、图像处理装置以及程序 |
JP2011527636A JP5614550B2 (ja) | 2009-08-19 | 2010-08-06 | 画像処理方法、画像処理装置及びプログラム |
US13/391,170 US9083913B2 (en) | 2009-08-19 | 2010-08-06 | Image processing method, image processing device, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009190248 | 2009-08-19 | ||
JP2009-190248 | 2009-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011021518A1 true WO2011021518A1 (ja) | 2011-02-24 |
Family
ID=43606973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/063391 WO2011021518A1 (ja) | 2009-08-19 | 2010-08-06 | 画像処理方法、画像処理装置及びプログラム |
Country Status (6)
Country | Link |
---|---|
US (1) | US9083913B2 (ja) |
EP (1) | EP2469834B1 (ja) |
JP (1) | JP5614550B2 (ja) |
KR (1) | KR20120042988A (ja) |
CN (1) | CN102484673B (ja) |
WO (1) | WO2011021518A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018028868A (ja) * | 2016-08-19 | 2018-02-22 | 正浩 小林 | 画像復元方法 |
US10068312B2 (en) | 2015-09-17 | 2018-09-04 | Samsung Electronics Co., Ltd. | Image processing apparatus, image processing method, and computer-readable recording medium |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102056664B1 (ko) * | 2012-10-04 | 2019-12-17 | 한국전자통신연구원 | 센서를 이용한 작업 방법 및 이를 수행하는 작업 시스템 |
US9264579B2 (en) * | 2014-03-26 | 2016-02-16 | Fuji Xerox Co., Ltd. | Correction control device, image reading apparatus, and correction control method |
CN111028182B (zh) * | 2019-12-24 | 2024-04-26 | 北京金山云网络技术有限公司 | 图像锐化方法、装置、电子设备及计算机可读存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10294862A (ja) * | 1997-04-18 | 1998-11-04 | Sharp Corp | 画像処理装置 |
JP2003101774A (ja) * | 2001-09-25 | 2003-04-04 | Ricoh Co Ltd | 画像処理装置 |
JP2004172704A (ja) * | 2002-11-18 | 2004-06-17 | Kyocera Mita Corp | 画像形成装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE558594A (ja) * | 1953-09-03 | |||
JPH09135331A (ja) | 1995-11-10 | 1997-05-20 | Ricoh Co Ltd | 画像処理装置 |
US5901253A (en) * | 1996-04-04 | 1999-05-04 | Hewlett-Packard Company | Image processing system with image cropping and skew correction |
JPH11284854A (ja) | 1998-03-26 | 1999-10-15 | Ricoh Co Ltd | 画像処理装置 |
JP2000155841A (ja) * | 1998-11-19 | 2000-06-06 | Nippon Telegr & Teleph Corp <Ntt> | 図形認識方法、装置、および図形認識プログラムを記録した記録媒体 |
JP3736219B2 (ja) | 1999-08-13 | 2006-01-18 | コニカミノルタビジネステクノロジーズ株式会社 | 画像処理装置及び方法 |
JP2001186353A (ja) | 1999-12-27 | 2001-07-06 | Noritsu Koki Co Ltd | 画像処理方法および画像処理プログラムを記録した記録媒体 |
AU1342502A (en) * | 2000-09-20 | 2002-04-02 | Nik Multimedia Inc | Digital image sharpening system |
JP4269521B2 (ja) * | 2001-01-24 | 2009-05-27 | コニカミノルタビジネステクノロジーズ株式会社 | 画像処理装置及び画像形成装置 |
US7269296B2 (en) * | 2003-01-16 | 2007-09-11 | Samsung Electronics Co., Ltd. | Method and apparatus for shoot suppression in image detail enhancement |
US7079687B2 (en) | 2003-03-06 | 2006-07-18 | Seiko Epson Corporation | Method and apparatus for segmentation of compound documents |
JP2005141477A (ja) * | 2003-11-06 | 2005-06-02 | Noritsu Koki Co Ltd | 画像鮮鋭化処理方法とこの方法を実施する画像処理装置 |
JP4333544B2 (ja) | 2004-02-13 | 2009-09-16 | セイコーエプソン株式会社 | 画像処理方法、及び画像処理装置、半導体装置、電子機器、画像処理プログラム、並びにコンピュータ読み取り可能な記録媒体 |
KR100648308B1 (ko) * | 2004-08-12 | 2006-11-23 | 삼성전자주식회사 | 해상도 변환방법 및 장치 |
KR100688757B1 (ko) | 2005-01-07 | 2007-03-02 | 삼성전기주식회사 | 이미지 데이터의 에지 강조 장치 및 방법 |
JP4182990B2 (ja) * | 2006-06-02 | 2008-11-19 | セイコーエプソン株式会社 | 印刷装置、画像がぼやけているか否かを決定する方法、およびコンピュータプログラム |
US8249357B2 (en) * | 2006-10-23 | 2012-08-21 | Ben Gurion University Of The Negev, Research And Development Authority | Blind restoration of images degraded by isotropic blur |
CN100478993C (zh) * | 2007-07-13 | 2009-04-15 | 天津大学 | 根据边缘和亮度特征进行自适应调整的图像增强方法 |
CN101345825B (zh) * | 2008-01-24 | 2010-06-02 | 华硕电脑股份有限公司 | 调整模糊图像的方法 |
US20090196524A1 (en) * | 2008-02-05 | 2009-08-06 | Dts Digital Images, Inc. | System and method for sharpening of digital images |
JP4706723B2 (ja) * | 2008-06-06 | 2011-06-22 | 朝日航洋株式会社 | 図形縮小編纂方法及び装置 |
-
2010
- 2010-08-06 CN CN201080036836.7A patent/CN102484673B/zh not_active Expired - Fee Related
- 2010-08-06 US US13/391,170 patent/US9083913B2/en active Active
- 2010-08-06 JP JP2011527636A patent/JP5614550B2/ja not_active Expired - Fee Related
- 2010-08-06 WO PCT/JP2010/063391 patent/WO2011021518A1/ja active Application Filing
- 2010-08-06 KR KR1020127003990A patent/KR20120042988A/ko not_active Application Discontinuation
- 2010-08-06 EP EP10809863.3A patent/EP2469834B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10294862A (ja) * | 1997-04-18 | 1998-11-04 | Sharp Corp | 画像処理装置 |
JP2003101774A (ja) * | 2001-09-25 | 2003-04-04 | Ricoh Co Ltd | 画像処理装置 |
JP2004172704A (ja) * | 2002-11-18 | 2004-06-17 | Kyocera Mita Corp | 画像形成装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2469834A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10068312B2 (en) | 2015-09-17 | 2018-09-04 | Samsung Electronics Co., Ltd. | Image processing apparatus, image processing method, and computer-readable recording medium |
JP2018028868A (ja) * | 2016-08-19 | 2018-02-22 | 正浩 小林 | 画像復元方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102484673A (zh) | 2012-05-30 |
EP2469834A1 (en) | 2012-06-27 |
KR20120042988A (ko) | 2012-05-03 |
EP2469834A4 (en) | 2014-01-22 |
US20120155762A1 (en) | 2012-06-21 |
JPWO2011021518A1 (ja) | 2013-01-24 |
CN102484673B (zh) | 2015-12-16 |
JP5614550B2 (ja) | 2014-10-29 |
US9083913B2 (en) | 2015-07-14 |
EP2469834B1 (en) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wong et al. | Histogram equalization and optimal profile compression based approach for colour image enhancement | |
CN105654437B (zh) | 一种对低照度图像的增强方法 | |
JP4858610B2 (ja) | 画像処理方法 | |
EP2833317B1 (en) | Image display device and/or method therefor | |
US7809208B2 (en) | Image sharpening with halo suppression | |
JP2008511048A (ja) | 画像処理方法、及び画像処理用コンピュータソフトウェア | |
JP5614550B2 (ja) | 画像処理方法、画像処理装置及びプログラム | |
CN104657941B (zh) | 一种图像边缘自适应增强方法及装置 | |
CN105931206B (zh) | 一种颜色恒常的彩色图像清晰度增强方法 | |
KR102404557B1 (ko) | 영상 처리 장치 및 영상 처리 방법 | |
Jiang et al. | Color image enhancement with brightness preservation using a histogram specification approach | |
JP2015056013A (ja) | 画像処理装置 | |
US9053552B2 (en) | Image processing apparatus, image processing method and non-transitory computer readable medium | |
JP5410378B2 (ja) | 映像信号補正装置および映像信号補正プログラム | |
US9336575B2 (en) | Image processing apparatus, image processing method, and image processing program | |
Tang et al. | Sky-preserved image dehazing and enhancement for outdoor scenes | |
US11580620B2 (en) | Image processing apparatus, image processing method, and non-transitory computer-readable medium | |
JP2009050035A (ja) | 画像処理方法、画像処理システムおよび画像処理プログラム | |
CN109886901B (zh) | 一种基于多通路分解的夜间图像增强方法 | |
JP7365206B2 (ja) | 画像処理装置、画像処理方法、及びプログラム | |
Zheng et al. | An illumination adaptive underwater image enhancement method | |
KR101634652B1 (ko) | 영상의 대비 강화 방법 및 장치 | |
WO2015151279A1 (ja) | フォーカス評価を補助するための装置、プログラム及び方法 | |
JP2010277607A (ja) | 画像処理装置及び画像処理方法 | |
WO2014050689A1 (ja) | 画像処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080036836.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10809863 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011527636 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010809863 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127003990 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13391170 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |