WO2011021256A1 - 無線アクセスネットワーク、基地局、データ転送方法 - Google Patents

無線アクセスネットワーク、基地局、データ転送方法 Download PDF

Info

Publication number
WO2011021256A1
WO2011021256A1 PCT/JP2009/004044 JP2009004044W WO2011021256A1 WO 2011021256 A1 WO2011021256 A1 WO 2011021256A1 JP 2009004044 W JP2009004044 W JP 2009004044W WO 2011021256 A1 WO2011021256 A1 WO 2011021256A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
data
information
base station
transferred
Prior art date
Application number
PCT/JP2009/004044
Other languages
English (en)
French (fr)
Inventor
比呂志 田窪
博敏 佐伯
匠 笹谷
雅史 房野
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP09848459.5A priority Critical patent/EP2469923A4/en
Priority to JP2011527496A priority patent/JP5333590B2/ja
Priority to PCT/JP2009/004044 priority patent/WO2011021256A1/ja
Publication of WO2011021256A1 publication Critical patent/WO2011021256A1/ja
Priority to US13/398,584 priority patent/US8958798B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • H04W36/023Buffering or recovering information during reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • H04W36/023Buffering or recovering information during reselection
    • H04W36/0235Buffering or recovering information during reselection by transmitting sequence numbers, e.g. SN status transfer

Definitions

  • the present invention relates to a data transfer technique during base station handover processing.
  • a mobile station such as a mobile phone performs a handover for switching a base station to ensure continuity of communication even while moving.
  • the packet When a handover is performed while receiving a packet from the base station, the packet may be lost due to weakening of the radio wave intensity from the base station before switching.
  • the data sent from the content server is once buffered in the base station before being transferred to the mobile station, and then transferred to the mobile station. This is because the data transfer rate between the content server and the base station is faster than the transfer rate between the base station and the mobile station.
  • an object of the present invention is to transfer data buffered in the base station before handover to the mobile station without omission when handover is performed while the mobile station is receiving data.
  • a radio access network includes a storage unit that stores data to be transferred from a base station to a mobile station; A receiving means for receiving information indicating from the mobile station, and when receiving the plurality of pieces of information by the receiving means, the amount of data that can be transferred to the mobile station before communication with the mobile station becomes impossible. Data transfer means for calculating the data based on the received time and transferring the data equal to or less than the calculated data amount to the mobile station.
  • the radio access network having the above configuration can transfer the data buffered in the base station before the handover to the mobile station without omission when handover is performed while the mobile station is receiving data.
  • FIG. 1 is a diagram illustrating a configuration example of a mobile communication network 10 according to the embodiment.
  • the mobile communication network 10 has two communication networks.
  • LTE Long Termination Evolution
  • MME Mobility Management Entity
  • the other is a UMTS (Universal Mobile Telecommunication System) network including SGCN (Serving GPRS Support Node) 2002, RNC (Radio Network Controller) 2000A, RNC 2000B, NodeB 2001A, NodeB 2001B, and NodeB 2001C.
  • SGCN Server GPRS Support Node
  • RNC Radio Network Controller
  • the MME 1001 of the LTE network is a main control node constituting the core network of the LTE network, and has a function of performing paging control, communication control with a public mobile communication network via a GW (Gate Way) 4001 and the like.
  • communication is performed with an ISP (Internet Service Provider) 4000 through an IP (Internet Protocol) network.
  • ISP Internet Service Provider
  • IP Internet Protocol
  • eNodeB 1000A and eNodeB 1000B communicate directly with mobile station 3000 in the LTE network. These are so-called base stations, and constitute a radio access network (RAN: Radio Access Network) 11 of the LTE network.
  • RAN Radio Access Network
  • the eNodeB 1000A and the eNodeB 1000B are managed by the MME 1001.
  • ENodeB 1000A and eNodeB 1000B have similar functions.
  • the node is collectively referred to as eNodeB1000.
  • a solid circle centered on the eNodeB 1000 indicates a so-called cell that is a region covered by the eNodeB 1000 in a regional manner.
  • the SGCN 2002 of the UMTS network constitutes a core network of the UMTS network and has functions for performing user location management, security management, access control, and the like of GPRS (General Packet Radio Service).
  • GPRS General Packet Radio Service
  • the RNC 2000A and the RNC 2000B are so-called base station controllers that perform handover control and the like.
  • RNC 2000A and RNC 2000B are managed by SGCN2002.
  • RNC2000A and RNC2000B have the same functions, and are hereinafter collectively referred to as RNC2000.
  • Node B 2001A to C are so-called base stations in the UMTS network.
  • NodeB 2001A and NodeB 2001B are managed by RNC 2000A
  • Node B 2001C is managed by RNC 2000B.
  • NodeBs 2001A to 2001C have the same function, and are hereinafter collectively referred to as NodeB2001.
  • a solid circle centered on NodeB 2001 indicates the cell of the eNodeB 1000.
  • RNC2000A, RNC2000B and NodeB2001A-C constitute a radio access network 12 of the UMTS network.
  • the mobile station 3000 which is a mobile phone that is downloading content, moves from the LTE network to the UMTS network (see the white arrow), that is, a case where the mobile station 3000 is handed over to a base station of a different communication network is described as an example To do.
  • source eNodeB 1000 when referring to a device before handover, it is referred to as “source eNodeB 1000” or the like with “source” attached, and when referring to a device as a handover destination, “target” is attached to “target RNC 2000” or the like.
  • buffer data is sequentially transferred to the mobile station 3000 by the eNodeB 1000.
  • the data buffered in the source eNodeB 1000 is transferred to the target eNodeB 1000 during the handover.
  • the eNodeB 1000A directly transfers the buffered data to the eNodeB 1000B during the handover.
  • the eNodeB 1000B temporarily stores the data received from the eNodeB 1000A, and then transfers the data to the mobile station 3000.
  • the data that remains without being transferred to the mobile station 3000 when the handover is performed is transferred from the target eNodeB 1000 to the mobile station 3000.
  • content data received from the ISP 4000 via the GW 4001 is stored in the buffer of the RNC 2000.
  • the data buffered in the RNC 2000 is sequentially transferred to the mobile station 3000 via the NodeB 2001.
  • the RNC 2000A switches the data transfer destination from the NodeB 2001A to the NodeB 2001B. Also, when performing handover from NodeB 2001B to NodeB 2001C, RNC 2000A transfers the buffered data to RNC 2000B. The RNC 2000B temporarily stores the transferred data and then transfers it to the mobile station 3000.
  • the data that remains without being transferred to the mobile station 3000 when the handover is performed is transferred from the RNC 2000 to the mobile station 3000 via the target NodeB 2001.
  • the mobile station 3000 moves from the LTE network to the UMTS network, that is, when moving to a different network, the data buffered by the eNodeB 1000 is transferred to the RNC 2000.
  • the target RNC 2000 when the data buffered by the source eNodeB 1000 is transferred, the target RNC 2000 needs to have a memory capable of storing the transferred data. That is, if the target RNC 2000 does not have the necessary memory, all of the data buffered by the source eNodeB 1000 cannot be transferred to the target RNC 2000, and there is a risk of data loss.
  • each device when handing over within the same communication network, it is considered that each device often has the same capability, and therefore data is hardly lost.
  • the same processing as that of the mobile communication network 10 of the embodiment may be performed.
  • the data buffered by the source eNodeB 1000 can be transferred to the mobile station 3000 even when the amount of data that the target RNC 2000 can accept is small.
  • the source eNodeB 1000 of the mobile communication network 10 transfers the buffered data to the mobile station 3000 in two stages.
  • the first stage transfers the buffered data directly to the mobile station 3000 during the handover.
  • the eNodeB 1000 first receives a Measurement Report (hereinafter referred to as “measurement report”) notifying that the reception strength has weakened from the mobile station 3000, and then performs normal handover processing. Until completion.
  • the target RNC 2000 In the second stage, when there is data that could not be transferred in the transfer process of the first stage, the target RNC 2000 repeatedly transfers data of a capacity that can be accepted at that time to the target RNC 2000, so that all remaining Transfer the data to the target RNC2000.
  • the data that could not be transferred in the transfer process in the first stage refers to buffered data other than the data transferred directly in the first stage, and the transfer was attempted in the first stage. Including missing data. Data is transferred from the target RNC 2000 to the mobile station 3000.
  • the mobile communication network 10 it is not necessary to re-download content from a content server such as ISP4000. Also, the possibility that the direct transfer of data to the target RNC 2000 will fail during handover is reduced. This is because the amount of data that can be transferred is calculated and then transferred. Furthermore, even if direct transfer is performed, data that remains and data that cannot be transferred by direct transfer can be transferred to the target RNC 2000. As a result, resources such as lines and bands can be effectively used.
  • FIG. 2 is a block diagram illustrating an example of the functional configuration of the eNodeB 1000 in the LTE network, the RNC 2000 in the UMTS network, and the mobile station 3000.
  • the eNodeB 1000 includes a control unit 1100, a communication unit 1200, a handover processing unit 1300, a data transfer management unit 1400, a transferable amount calculation unit 1500, a stay time calculation unit 1600, a call connection information storage unit 1700, and a user data storage unit 1800. .
  • the control unit 1100 has a function normally provided as the eNodeB 1000. In addition, it has a function of controlling other functional units in order to transfer data buffered in the mobile station 3000 at the time of handover.
  • the communication unit 1200 has a function of communicating with the mobile station 3000 wirelessly. Further, it has a function of communicating with the RNC 2000 and the MME 1001 by wire or wirelessly.
  • the handover processing unit 1300 has a function of performing normal handover processing. In addition, it has a function of controlling other functional units in order to transfer an amount of data that can be transferred to the mobile station 3000 during the handover.
  • the data transfer management unit 1400 has roughly two functions.
  • the first function is to store and manage content data downloaded from the ISP 4000 in the user data storage unit 1800.
  • the second function is a function of inquiring the target RNC 2000 about the amount of data that can be accepted and transferring the data when data to be transferred to the target RNC 2000 remains in the user data storage unit 1800 after the handover.
  • the transferable amount calculation unit 1500 has a function of calculating the amount of data that can be transferred to the target RNC 2000 during handover.
  • the service area calculation unit 1600 has a function of calculating a time during which data can be transferred to the target RNC 2000 during handover.
  • the graph of FIG. 3 shows the radio field intensity of the signal received by the mobile station 3000.
  • a solid curve 50 indicates the radio field intensity of the signal from the source eNodeB 1000.
  • a dotted curve 51 indicates the radio field intensity of the signal from the target NodeB 2001.
  • the mobile station 3000 When the radio field intensity of the signal received from the source eNodeB 1000 falls below a predetermined radio field intensity (hereinafter referred to as “notification threshold”), the mobile station 3000 includes the measured current radio field intensity in the measurement report. Transfer to eNodeB 1000 (see first measurement report 52). This is to request a handover.
  • notification threshold a predetermined radio field intensity
  • the source eNodeB 1000 that has received the measurement report immediately starts the handover process.
  • the source eNodeB 1000 of the mobile communication network 10 starts the handover process when receiving the next measurement report (see the second measurement report 53).
  • the stay time calculation unit 1600 of the source eNodeB 1000 obtains an interval 55 from the time when the first measurement report 52 is received to the time when the second measurement report 53 is received. Based on the interval 55 and the radio wave intensity included in each of the first measurement report 52 and the second measurement report 53, a time 56 in which the communication with the mobile station 3000 cannot be performed is obtained.
  • the stay time 56 is the time from when the second measurement report 53 is received until the quality level of the radio wave received by the mobile station 3000 from the source eNodeB 1000 becomes the limit.
  • this limit quality level is described as “limit threshold”.
  • This limit threshold is derived from the intensity of radio waves, noise, and the loss rate of data transfer after a radio carrier performs radio wave measurement in advance.
  • the level with better radio wave quality than this threshold value is used as a notification threshold value, and it is included in the notification signal and notified to the mobile station 3000.
  • the broadcast signal is a signal that eNodeB 1000 periodically sends to notify all mobile stations 3000 in its own cell of various information.
  • the radio wave intensity included in the first measurement report 52 is referred to as “first radio wave intensity”, and the radio wave intensity included in the second measurement report 53 is referred to as “second radio wave intensity”.
  • the transferable amount calculation unit 1500 obtains the amount of data that can be transferred to the mobile station 3000 from the stay time 56 and the data transfer rate.
  • the call connection information storage unit 1700 has a function of storing information related to calls made by the mobile station 3000 managed by the eNodeB 1000 itself.
  • the user data storage unit 1800 has a function of storing data of content downloaded from the ISP 4000.
  • the RNC 2000 includes a control unit 2100, a communication unit 2200, a data transfer management unit 2300, a bufferable amount calculation unit 2400, and a user data storage unit 2500.
  • the control unit 2100 has a function normally possessed by the RNC 2000. In addition, it has a function of controlling other functional units in order to receive data from the eNodeB 1000 at the time of handover.
  • the communication unit 2200 has a function of wirelessly communicating with the mobile station 3000 via the NodeB 2001. Moreover, it has the function to communicate with NodeB2001, SGCN2002, and eNodeB1000 by wire or wirelessly.
  • the data transfer management unit 2300 is roughly divided into two functions.
  • the first function is to store and manage data transferred from the eNodeB 1000 in the user data storage unit 2500 during handover.
  • the second function is to store and manage content data downloaded from the ISP 4000 in the user data storage unit 2500.
  • the target RNC 2000 may receive data transferred from two routes as data downloaded from the ISP 4000.
  • the data transferred from the source eNodeB 1000 is only when there is data that could not be transferred during the handover.
  • the bufferable amount calculation unit 2400 has a function of calculating an acceptable data amount.
  • the amount of data that can be accepted is that the source eNodeB 1000 inquires after the handover only when there is data that could not be transferred during the handover.
  • the buffer capacity calculation unit 2400 of the target RNC 2000 calculates the amount of data that can be accepted in consideration of the traffic volume of the call that the RNC 2000 is making and the buffer free space. That is, as shown by the graph showing the relationship between the bufferable amount and the traffic amount in FIG. 4, the buffer amount to be used increases as the traffic amount increases, so that the acceptable data amount decreases.
  • Bufferable amount Buffer capacity-current usage-(call volume x average data volume)
  • Call volume Total number of calls per unit time
  • Average data volume Average buffer usage per call
  • User data storage section 2500 has a function of storing data of content downloaded from ISP 4000.
  • the mobile station 3000 includes a control unit 3100, a communication unit 3200, a level measurement unit 3300, and a user data storage unit 3400.
  • the control unit 3100 has a call function, a mail function, and the like that are normally provided as a mobile phone. In addition, it has a function of generating and transmitting a measurement report at the time of handover.
  • the communication unit 3200 has a function of communicating with the eNodeB 1000 and the NodeB 2001 wirelessly.
  • the level measurement unit 3300 always has a function of measuring the radio field intensity of a signal received from a surrounding eNodeB 1000 or NodeB 2001 while communicating with any of the base stations, that is, the eNodeB 1000 or NodeB 2001. Further, it has a function of notifying the control unit 3100 when the radio wave intensity of the signal received from the source eNodeB 1000 or the source NodeB 2001 falls below the notification threshold (see FIG. 3).
  • User data storage unit 3400 has a function of storing data of content downloaded from ISP 4000.
  • All or part of the functions described above are realized by the CPUs of the eNodeB 1000, the RNC 2000, and the mobile station 3000 executing programs recorded in the memories of the eNodeB 1000, the RNC 2000, and the mobile station 3000, respectively.
  • FIG. 5 is a diagram showing an example of the configuration and contents of the measurement report 1720.
  • the measurement report 1720 is transmitted to the eNodeB 1000 with which the mobile station 3000 is communicating, that is, the source eNodeB 1000.
  • the mobile station 3000 generates and transmits a measurement report 1720 when the radio wave intensity of the signal received from the source eNodeB 1000 falls below a predetermined radio wave intensity, that is, a notification threshold (see FIG. 3).
  • the notification threshold is notified to each mobile station 3000 by being included in the broadcast information that each eNodeB 1000 periodically transmits to the mobile station 3000 in its own cell.
  • the mobile station 3000 continues to transmit repeatedly at a predetermined interval until a handover instruction is received as long as the radio field intensity is below the notification threshold.
  • the measurement report 1720 includes a call connection identification number 1721, a mobile station identifier 1722, a radio wave intensity 1723, and information 1724 for determining a handover destination.
  • the call connection identification number 1721 indicates a number for identifying the call connection delivered from the eNodeB 1000.
  • the mobile station identifier 1722 indicates the identifier of the mobile station 3000 that is the transmission source of the measurement report 1720.
  • the radio wave intensity 1723 indicates the radio wave intensity of the signal from the source eNodeB 1000 measured by the mobile station 3000 indicated by the mobile station identifier 1722.
  • Information 1724 for determining the handover destination indicates information necessary for determining the handover destination, such as the reception strength of a signal from an eNodeB 1000 other than the source eNodeB 1000, the reception strength of a signal from the NodeB 2001, and the like.
  • FIG. 6 is a diagram showing an example of the configuration and contents of the call connection management information 1710.
  • the call connection management information 1710 is generated for each “call”, that is, for each transaction.
  • one transaction refers to the time from connection to the other party of the call until it is disconnected, and in the case of content download, from connection to the ISP 4000 until the download ends and the connection is disconnected.
  • the call connection management information 1710 corresponding to the number of “calls” managed by the eNodeB 1000 is stored in the call connection information storage unit 1700.
  • the call connection management information 1710 includes a call connection identification number 1711, a mobile station identifier 1712, and level measurement information 1713.
  • the call connection identification number 1711 indicates a number for identifying a call connection. This number is assigned by the eNodeB 1000 for each connection managed by the eNodeB 1000 itself.
  • the mobile station identifier 1712 indicates the identifier of the mobile station 3000 that has transmitted the measurement report 1720 and is the mobile station 3000 in the call indicated by the call connection identification number 1711.
  • Level measurement information 1713 indicates information on the radio field intensity measured by the mobile station 3000 indicated by the mobile station identifier 1712. Specifically, the radio field intensity 1723 included in the measurement report 1720 transmitted by the mobile station 3000 indicated by the mobile station identifier 1712 is stored.
  • the first measurement information having the radio wave intensity 1723 included in the measurement report 1720 received first and the time when the measurement report 1720 was received, and the radio wave included in the measurement report 1720 received next.
  • Second measurement information having an intensity 1723 and a time when the measurement report 1720 is received is stored.
  • FIG. 7 is a flowchart showing data transfer processing at the time of handover.
  • white arrows indicate content data transferred by the bearer service. The same applies to FIG.
  • the user of the mobile station 3000 operates a key provided in the mobile station 3000 to instruct downloading of data of a certain content.
  • the control unit 3100 of the mobile station 3000 that has acquired the instruction to download the content data (Step S100) establishes a connection by RRC (Radio Resource Control) with the eNodeB 1000A via the communication unit 3200.
  • RRC Radio Resource Control
  • control unit 3100 of the mobile station 3000 establishes a connection with the ISP 4000 via the MME 1001 and the GW 4001 (step S110).
  • the control unit 3100 of the mobile station 3000 that has established a connection with the ISP 4000 requests the ISP 4000 to transfer content data (step S120).
  • the ISP 4000 that has received the request starts data transmission to the mobile station 3000 via the GW 4001 and the MME 1001 (step S130).
  • the communication unit 1200 of the eNodeB 1000A receives content data via the MME 1001 and passes it to the data transfer management unit 1400.
  • the data transfer management unit 1400 that has received the data causes the user data storage unit 1800 to store the received data. At this time, it is stored in association with the destination of the mobile station 3000.
  • the data transfer management unit 1400 reads the data stored in the user data storage unit 1800 in accordance with the communication speed with the mobile station 3000 and transfers the data to the mobile station 3000 (step S140).
  • step S130 and step S140 The processing of step S130 and step S140 is continued until a stop request (step S210 described later) is received from the mobile station 3000.
  • the control unit 3100 that has received the data via the communication unit 3200 of the mobile station 3000 causes the user data storage unit 3400 to store the received data.
  • the level measurement unit 3300 measures the radio field intensity of the signal from the source eNodeB 1000A, and when the measured radio field intensity falls below the notification threshold (see FIG. 3) (step S150: Yes), the radio field intensity measured by the control unit 3100 To notify that it is below the notification threshold. When the measured radio field intensity is equal to or higher than the notification threshold (step S150: No), the control unit 3100 is not notified.
  • the level measurement unit 3300 continues to measure the radio field intensity of the signal from the source eNodeB 1000A regardless of the measured radio field intensity value. In the embodiment, it is assumed that the radio wave intensity gradually decreases.
  • control unit 3100 Upon receiving the notification from the level measurement unit 3300, the control unit 3100 generates a measurement report 1720.
  • the call connection identification number 1721 of the measurement report 1720 a number passed at the time of connection from the eNodeB 1000 is set.
  • the mobile station identifier 1722 the identifier of the mobile station 3000 itself is set, and as the radio field intensity 1723, the radio field intensity passed from the level measuring unit 3300 is set.
  • information 1724 for determining the handover destination information such as the radio wave intensity of the signal from the surrounding eNodeB 1000 or the like is acquired from the level measuring unit 3300 or the like and set.
  • the control unit 3100 stores an identifier of the mobile station 3000 itself in advance.
  • the control unit 3100 that has generated the measurement report 1720 transmits the generated measurement report 1720 to the source eNodeB 1000A (step S160).
  • the control unit 1100 that has received the measurement report 1720 via the communication unit 1200 of the eNodeB 1000A passes the received measurement report 1720 and the received time to the handover processing unit 1300 and requests a handover process.
  • the handover processing unit 1300 Upon receiving the request, the handover processing unit 1300 stores, as the first measurement information, the value of the radio field intensity set as the radio field intensity 1723 of the measurement report 1720 received from the control unit 1100 and the received time (step S170). .
  • the call connection management information 1710 stored in the call connection information storage unit 1700 the number set in the call connection identification number 1711 is set as the call connection identification number 1721 in the received measurement report 1720. Call connection management information 1710 having the same number is selected. Then, the value of the radio field intensity set as the radio field intensity 1723 of the measurement report 1720 and the received time are stored as the first measurement information of the level measurement information 1713 of the selected call connection management information 1710.
  • the call connection management information 1710 is referred to as “call connection management information 1710 of the mobile station 3000”.
  • the automatic cursor unit 3300 of the mobile phone 3000 measures the radio field intensity of the signal from the source eNodeB 1000A again after a predetermined time has elapsed since the previous measurement. Since the measured radio field intensity of the signal from the source eNodeB 1000A is lower than the notification threshold, the control unit 3100 is notified of this.
  • the control unit 3100 that has received the notification generates a measurement report 1720 and transmits the generated measurement report 1720 to the source eNodeB 1000A (step S180).
  • the control unit 1100 that has received the measurement report 1720 via the communication unit 1200 of the eNodeB 1000A passes the received measurement report 1720 and the received time to the handover processing unit 1300 and requests a handover process.
  • the handover processing unit 1300 Upon receiving the request, the handover processing unit 1300 stores the value of the radio wave intensity set as the radio wave intensity 1723 of the measurement report 1720 received from the control unit 1100 and the reception time in the call connection management information 1710 of the mobile station 3000. It memorize
  • the handover processing unit 1300 storing the second measurement information transmits a handover request to the mobile station 3000 (step S200).
  • the handover processing unit 1300 starts a handover process.
  • the control unit 3100 of the mobile station 3000 Upon receiving the handover request, the control unit 3100 of the mobile station 3000 starts the handover process, and transmits a downlink stop request, that is, a content data transfer stop request, to the GW 4001 (step S210).
  • a downlink stop request that is, a content data transfer stop request
  • the handover process is performed in parallel with the data transfer process described below in the mobile station 3000, the source eNodeB 1000A, and the target RNC 2000.
  • the GW 4001 that has received the stop request stops the data transfer to the source eNodeB 1000A until the target device, in the embodiment, the RNC 2000A is notified from the source eNodeB 1000A in the handover process (step S220).
  • the handover processing unit 1300 of the source eNodeB 1000A transmits a handover request to the mobile station 3000, and then performs a data transfer process described below in parallel with the normal handover process.
  • the handover processing unit 1300 inquires of the data transfer management unit 1400 whether data to be transferred to the mobile station 3000 remains.
  • the identifier set as the mobile station identifier 1712 of the call connection management information 1710 of the mobile station 3000 is read, and data transfer management is performed to determine whether data to be transferred to the mobile station 3000 indicated by the read identifier remains. Contact the part 1400.
  • the data transfer management unit 1400 refers to the user data storage unit 1800 and notifies the handover processing unit 1300 whether or not data remains.
  • the handover processing unit 1300 When the handover processing unit 1300 receives a notification that data remains (step S230: Yes), the handover processing unit 1300 requests the transferable amount calculation unit 1500 to determine the amount of data that can be transferred by the limit threshold (see FIG. 3). To do.
  • the transferable amount calculation unit 1500 requests the stay time calculation unit 1600 to calculate the stay time 56 (see FIG. 3).
  • the visiting time calculation unit 1600 calculates the visiting time 56 with reference to the call connection management information 1710 of the mobile station 3000 stored in the call connection information storage unit 1700. Specifically, calculation is performed based on the first measurement information and the second measurement information stored as the level measurement information 1713 (step S240).
  • the service area calculation unit 1600 that has calculated the service area time 56 passes the calculated service area 56 to the transferable amount calculation unit 1500.
  • the transferable amount calculation unit 1500 calculates a transferable data amount based on the received staying time (step S250).
  • the transferable amount calculation unit 1500 that has calculated the transferable data amount passes the calculated data amount to the handover processing unit 1300.
  • the handover processing unit 1300 passes the transferred data amount to the data transfer management unit 1400 and requests the mobile station 3000 to transfer the data.
  • the data transfer management unit 1400 Upon receipt of the request, the data transfer management unit 1400 reads the transferred data amount from the user data storage unit 1800 and transfers it to the mobile station 3000 (step S260).
  • step S230: No when the handover processing unit 1300 receives a notification that no data remains (step S230: No), the handover processing unit 1300 does not perform data transfer processing.
  • FIG. 8 is a flowchart showing data transfer processing after handover.
  • the GW 4001 After handover, the GW 4001 starts transferring content data to the RNC 2000A via the SGCN 2002 (step S300).
  • the communication unit 2200 of the RNC 2000A receives content data via the SGCN 2002 and passes it to the data transfer management unit 2300.
  • the data transfer management unit 2300 that has received the data is stored in the user data storage unit 2500. At this time, it is stored in association with the destination of the mobile station 3000.
  • the data transfer management unit 2300 reads out the data stored in the user data storage unit 2500 according to the communication speed with the mobile station 3000, and transfers the data to the mobile station 3000 via the NodeB 2001A (step S310).
  • the mobile station 3000 can continue to download content data from the ISP 4000 after the handover.
  • the handover processing unit 1300 of the source eNodeB 1000A requests the data transfer management unit 1400 to transfer the data to be transferred to the mobile station 3000 if it remains. At this time, the identifier of the mobile station 3000 that performed the handover and the destination of the target RNC 2000A are notified.
  • the handover processing unit 1300 reads out and stores the identifier of the mobile station 3000 set as the mobile station identifier 1712 before deleting the call connection management information 1710 of the mobile station 3000 in the handover process. .
  • the data transfer management unit 1400 Upon receiving the request, the data transfer management unit 1400 refers to the user data storage unit 1800, and when there is data to be transferred to the notified mobile station (step S320: Yes), the target RNC 2000A An inquiry is made as to the amount of data that can be accepted (step S330). When there is no data to be transferred (step S320: No), the data transfer process is not performed.
  • the control unit 2100 that has received the inquiry via the communication unit 2200 of the RNC 2000A requests the bufferable amount calculation unit 2400 to calculate an acceptable data amount.
  • the bufferable amount calculation unit 2400 inquires of the data transfer management unit 2300 about the free space.
  • the data transfer management unit 2300 refers to the user data storage unit 2500 to acquire the free space and returns it to the bufferable amount calculation unit 2400.
  • the bufferable amount calculation unit 2400 that has acquired the free space calculates an acceptable data amount and returns it to the control unit 2100.
  • the control unit 2100 that has acquired the acceptable data amount transmits the acceptable data amount to the source eNodeB 1000A (step S340).
  • the data transfer management unit 1400 that has received an acceptable data amount via the communication unit 1200 of the source eNodeB 1000A reads the received data amount data from the user data storage unit 1800 and transfers it to the target RNC 2000A (step S350).
  • step S370 If the data is still left (step S370: Yes), the data transfer management unit 1400 that has transferred the data inquires the target RNC 2000A about the amount of data that can be accepted, and repeats the processing from step S330 to step S370.
  • step S370: No If all data has been transferred (step S370: No), the data transfer process is terminated.
  • the data transfer management unit 2300 of the source RNC 2000A stores the content data transferred from the source eNodeB 1000A in the user data storage unit 2500. Further, the stored data is read according to the communication speed with the mobile station 3000 and transferred to the mobile station 3000 via the NodeB 2001A (step S360).
  • the handover process is started after receiving the measurement report twice, but when the data to be transferred to the mobile station 3000 does not remain in the user data storage unit 1800, 1 When the second measurement report is received, the handover process may be started.
  • the handover from the LTE network to the UMTS network has been described as an example. However, the handover may be performed within the same network. Further, it may be a handover from the UMTS network to the LTE network. Furthermore, another communication network may be used.
  • the eNodeB 1000 or the like all or a part of each component shown in FIG. (4) The eNodeB 1000 or the like may be realized by using a computer program for all or part of the components shown in FIG. 2 or the like, or may be implemented in any other form.
  • a program written in any recording medium such as a memory card or CD-ROM may be read and executed by a computer, or a program may be downloaded and executed via a network. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線アクセスネットワークは、基地局から移動局に転送するデータを記憶する記憶手段を有し、前記移動局が前記基地局から受信する信号の強度が閾値を下回ったら、当該強度を示す情報を当該移動局から受信し、前記受信手段によって前記情報を複数受信したら、前記移動局と通信が出来なくなるまでに当該移動局に転送できるデータ量を、当該情報と当該情報を受信した時とに基づいて算出し、算出したデータ量以下の前記データを前記移動局に転送する。

Description

無線アクセスネットワーク、基地局、データ転送方法
 本発明は、基地局のハンドオーバ処理時のデータ転送技術に関する。
 移動通信ネットワークにおいて、携帯電話機等の移動局は、移動中でも通信の継続性を保証するために基地局を切り換えるハンドオーバを行っている。
 基地局からパケットを受信中にハンドオーバを行う場合、切り替え前の基地局からの電波強度が弱くなること等によりパケットの紛失等が生じ得る。
 そこで、パケットの損失等を防止する技術が提案されている。例えば、移動局が交換機に対して、基地局を切り替えるべき最適なパケットの区切目を指示することでパケットの損失等を防止する技術である(特許文献1参照)。
特開2003-153327号公報
 しかし、近年、移動局では、Web(World Wide Web)アクセス及びマルチメディア通信等が可能となり、大容量のデータをコンテンツサーバ等からダウンロードすることが行われている。
 データを移動局にダウンロードする場合、コンテンツサーバから送られたデータは移動局に転送される前に、一旦、基地局等にバッファリングされてから、移動局に転送される。コンテンツサーバと基地局等との間のデータ転送速度の方が、基地局等と移動局との間の転送速度より速いからである。
 データのダウンロード中にハンドオーバを行った場合、ハンドオーバ前の基地局にバッファリングされており未だ移動局に転送されていないデータは、移動局に転送することが出来なくなってしまう。基地局が切り替わってしまうからである。
 この場合は、ハンドオーバ後に、改めてデータを最初からダウンロードする必要が生じてしまう。また、リアルタイム性を要するデータの場合は、バッファリングされていたデータは再生できないこととなるので再生が乱れる場合が生じ得る。
 そこで、本発明は、移動局がデータを受信している間にハンドオーバを行った場合に、ハンドオーバ前の基地局にバッファリングされたデータを漏れなく移動局に転送することを目的とする。
 本発明の1形態に係る無線アクセスネットワークは、基地局から移動局に転送するデータを記憶する記憶手段と、前記移動局が前記基地局から受信する信号の強度が閾値を下回ったら、当該強度を示す情報を当該移動局から受信する受信手段と、前記受信手段によって前記情報を複数受信したら、前記移動局と通信が出来なくなるまでに当該移動局に転送できるデータ量を、当該情報と当該情報を受信した時とに基づいて算出し、算出したデータ量以下の前記データを前記移動局に転送するデータ転送手段と、を有する。
 上記構成の無線アクセスネットワークは、移動局がデータを受信している間にハンドオーバを行った場合に、ハンドオーバ前の基地局にバッファリングされたデータを漏れなく移動局に転送することができる。
実施形態の移動通信ネットワークの構成例を示す図である。 LTE網のeNodeB、UMTS網のRNC及び移動局の機能的構成の例を示すブロック図である。 移動局が受信する信号の電波強度を示すグラフである。 バッファ可能量とトラフィック量との関係を示すグラフである。 測定レポートの構成及び内容の例を示す図である。 呼接続管理情報の構成及び内容の例を示す図である。 ハンドオーバの際のデータ転送処理を表すフローチャートである。 ハンドオーバ後のデータ転送処理を表すフローチャートである。
<実施形態>
 図1は、実施形態の移動通信ネットワーク10の構成例を示す図である。
 移動通信ネットワーク10は、2つの通信網を有する。
 一つは、MME(Mobility Management Entity)1001、eNodeB1000A及びeNodeB1000Bを含むLTE(Long Term Evolution)網である。
 もう一つは、SGCN(Serving GPRS Support Node)2002、RNC(Radio Network Controller)2000A、RNC2000B、NodeB2001A、NodeB2001B及びNodeB2001Cを含むUMTS(Universal Mobile Telecommunication System)網である。
 LTE網のMME1001は、LTE網のコアネットワークを構成する主要なコントロールノードであり、ページングの制御、GW(Gate Way)4001を介しての公衆移動通信網との通信制御等を行う機能を有する。図1では、IP(Internet Protocol)網を通じてISP(Internet Service Provider)4000と通信する。
 また、eNodeB1000A及びeNodeB1000Bは、LTE網において移動局3000と直接通信を行う。これらは、いわゆる基地局であり、LTE網の無線アクセスネットワーク(RAN:Radio Access Network)11を構成する。図1では、eNodeB1000A及びeNodeB1000Bは、MME1001によって管理されている。
 eNodeB1000A及びeNodeB1000Bは同様の機能を有する。以下、総称してeNodeB1000というものとする。尚、eNodeB1000を中心とした実線の円は、そのeNodeB1000が地域的にカバーする範囲である、いわゆるセルを示す。
 UMTS網のSGCN2002は、UMTS網のコアネットワークを構成し、GPRS(General Packet Radio Service:パケット無線サービス)のユーザの位置管理、セキュリティ管理及びアクセス制御等を行う機能を有する。
 RNC2000A及びRNC2000Bは、いわゆる基地局制御装置であり、ハンドオーバの制御等を行う。図1では、RNC2000A及びRNC2000Bは、SGCN2002に管理されている。
 RNC2000A及びRNC2000Bは同様の機能を有し、以下、総称してRNC2000というものとする。
 NodeB2001A~Cは、UMTS網における、いわゆる基地局である。図1では、NodeB2001A及びNodeB2001Bは、RNC2000Aによって管理され、NodeB2001Cは、RNC2000Bに管理されている。
 NodeB2001A~Cはそれぞれ同様の機能を有し、以下、総称してNodeB2001というものとする。尚、NodeB2001を中心とした実線の円は、そのeNodeB1000のセルを示す。
 RNC2000A、RNC2000B及びNodeB2001A~Cは、UMTS網の無線アクセスネットワーク12を構成する。
 実施形態では、コンテンツをダウンロード中の携帯電話機である移動局3000が、LTE網からUMTS網に移動する場合(白抜き矢印参照)、すなわち、異なる通信網の基地局にハンドオーバする場合を例に説明する。
 以下、ハンドオーバ前の装置を示す場合、「ソース」を付けて「ソースeNodeB1000」等といい、ハンドオーバ先の装置を示す場合、「ターゲット」を付けて「ターゲットRNC2000」等というものとする。
 LTE網において、ISP4000からコンテンツを移動局3000にダウンロードする場合、GW4001を介してISP4000から移動局3000が受信するコンテンツデータは、eNodeB1000の緩衝用メモリであるバッファに一旦蓄えられる。バッファに蓄えられたデータ(以下、「バッファリングされているデータ」という。)は、順次、eNodeB1000によって移動局3000に転送される。
 コンテンツをダウンロード中の移動局3000が、LTE網内においてハンドオーバする場合は、ソースeNodeB1000にバッファリングされているデータをハンドオーバ中にターゲットeNodeB1000に転送する。例えば、eNodeB1000AからeNodeB1000Bにハンドオーバする場合は、eNodeB1000Aは、バッファリングされているデータを、ハンドオーバ中にeNodeB1000Bに直接転送する。eNodeB1000Bは、eNodeB1000Aから受信したデータを一旦蓄えた後、移動局3000に転送する。
 このようにすることで、バッファリングされているデータのうち、ハンドオーバを行うときに移動局3000に転送されずに残ってしまっていたデータは、ターゲットeNodeB1000から移動局3000に転送される。
 一方、UMTS網においては、GW4001を介してISP4000から受信するコンテンツデータは、RNC2000のバッファに蓄えられる。RNC2000にバッファリングされているデータは、順次、NodeB2001を介して移動局3000に転送される。
 従って、コンテンツをダウンロード中の移動局3000が、UMTS網内においてハンドオーバする場合、例えば、NodeB2001AからNodeB2001Bにハンドオーバする場合は、RNC2000Aがデータの転送先をNodeB2001AからNodeB2001Bに切り替える。また、NodeB2001BからNodeB2001Cにハンドオーバする場合、RNC2000Aは、バッファリングされているデータをRNC2000Bに転送する。RNC2000Bは、転送されてきたデータを一旦蓄えた後、移動局3000に転送する。
 このように、バッファリングされているデータのうち、ハンドオーバを行うときに移動局3000に転送されずに残ってしまっていたデータは、RNC2000からターゲットNodeB2001を介して移動局3000に転送される。
 ここで、移動局3000がLTE網からUMTS網に移動する場合、すなわち、異なる網への移動の場合は、eNodeB1000がバッファリングしているデータを、RNC2000に転送することとなる。
 しかし、この場合、ソースeNodeB1000がバッファリングしているデータを転送する際に、転送しているデータを記憶できるだけのメモリをターゲットRNC2000が備えていることが必要になる。すなわち、ターゲットRNC2000が必要なメモリを備えていない場合は、ソースeNodeB1000がバッファリングしているデータの全てをターゲットRNC2000に転送することができないので、データが欠損する恐れがある。
 尚、同一通信網内においてハンドオーバする場合は、各装置が同等の能力を有していることが多いと考えられるので、データが欠損することはほとんどない。但し、同一通信網におけるハンドオーバにおいても装置の能力が異なる場合は、実施形態の移動通信ネットワーク10と同様の処理を行うこととしてもよい。
 また、実施形態の移動通信ネットワーク10では、ターゲットRNC2000が受け入れることが可能なデータ量が少ない場合であっても、ソースeNodeB1000がバッファリングしているデータを移動局3000に転送できるようにしている。
 移動通信ネットワーク10のソースeNodeB1000は、バッファリングされているデータを2段階に分けて移動局3000に転送する。
 第1段階は、ハンドオーバ中に、バッファリングされているデータを移動局3000に直接転送する。ここで、ハンドオーバ中とは、eNodeB1000が移動局3000から、受信強度が弱まったことを通知するMeasurement Report(以下、「測定レポート」という。)を最初に受信したときから、通常のハンドオーバの処理を完了するまでをいう。
 第2段階は、第1段階の転送処理で転送できなかったデータがある場合に、ターゲットRNC2000がその時に受け入れ可能な容量のデータを、ターゲットRNC2000に転送することを繰り返すことで、残っている全データをターゲットRNC2000に転送する。尚、第1段階の転送処理で転送できなかったデータとは、第1段階で直接転送したデータ以外のバッファリングされたデータをいい、第1段階で転送しようとしたが、何らかの理由で転送できなかったデータも含む。データは、ターゲットRNC2000から移動局3000に転送される。
 このように、移動通信ネットワーク10では、ISP4000等のコンテンツサーバからのコンテンツの再ダウンロードを行う必要がなくなる。また、ハンドオーバ中にターゲットRNC2000へのデータの直接転送が失敗する可能性が少なくなる。転送できるデータ量を算出してから転送するからである。更に、直接転送を行ったとしても残ってしまったデータ及び直接転送で転送できなかったデータもターゲットRNC2000に転送することが可能となる。結果的に、回線及び帯域等のリソースの有効活用が可能となる。
 以下、実施形態の移動通信ネットワーク10について、図を用いて説明する。
 <機能>
 図2は、LTE網のeNodeB1000、UMTS網のRNC2000及び移動局3000の機能的構成の例を示すブロック図である。
 eNodeB1000は、制御部1100、通信部1200、ハンドオーバ処理部1300、データ転送管理部1400、転送可能量計算部1500、在圏時間計算部1600、呼接続情報記憶部1700及びユーザデータ記憶部1800を有する。
 制御部1100は、eNodeB1000として通常有している機能を有する。その他、ハンドオーバに際して、移動局3000にバッファリングされているデータを転送するために他の機能部を制御する機能等を有する。
 通信部1200は、移動局3000と無線で通信する機能を有する。また、RNC2000及びMME1001と有線又は無線で通信する機能を有する。
 ハンドオーバ処理部1300は、通常のハンドオーバの処理を行う機能を有する。その他、ハンドオーバ中に移動局3000に対して転送可能な量のデータを転送するために他の機能部を制御する機能等を有する。
 データ転送管理部1400は、大きく分けて2つの機能を有する。1つ目は、ISP4000からダウンロードするコンテンツのデータをユーザデータ記憶部1800に記憶させ、管理する機能である。2つ目は、ハンドオーバ後に、ターゲットRNC2000に転送すべきデータがユーザデータ記憶部1800に残っている場合に、ターゲットRNC2000に受け入れ可能なデータ量を問い合わせ、データを転送する機能である。
 転送可能量計算部1500は、ハンドオーバ中にターゲットRNC2000に転送可能なデータ量を算出する機能を有する。
 また、在圏時間計算部1600は、ハンドオーバ中に、ターゲットRNC2000にデータを転送することが可能な時間を算出する機能を有する。
 ここで、転送可能量計算部1500が、ハンドオーバ中に移動局3000に直接転送するデータ量の求め方について、図3を用いて説明する。
 図3のグラフは、移動局3000が受信する信号の電波強度を示す。実線の曲線50は、ソースeNodeB1000からの信号の電波強度を示す。また、点線の曲線51は、ターゲットNodeB2001からの信号の電波強度を示す。
 移動局3000は、ソースeNodeB1000から受信している信号の電波強度が、所定の電波強度(以下、「通知閾値」という。)を下回った時に、測定した現在の電波強度を測定レポートに含ませてeNodeB1000に転送する(第1回目の測定レポート52参照)。ハンドオーバを要求するためである。
 通常であれば、測定レポートを受信したソースeNodeB1000は、直ちにハンドオーバの処理を開始する。
 しかし、移動通信ネットワーク10のソースeNodeB1000は、次の測定レポートを受信した時(第2回目の測定レポート53参照)にハンドオーバの処理を開始する。
 ソースeNodeB1000の在圏時間計算部1600は、第1回目の測定レポート52を受信した時から第2回目の測定レポート53を受信した時までの間隔55を求める。間隔55と、第1回目の測定レポート52と第2回目の測定レポート53のそれぞれに含まれる電波強度とから、移動局3000との通信が行えなくなる時までの在圏時間56を求める。
 この在圏時間56は、第2回目の測定レポート53を受信した時から、移動局3000がソースeNodeB1000から受信する電波の品質レベルが限界となる時までの時間である。図3では、この限界となる品質レベルを「限界閾値」と記載している。
 この限界閾値は、通信事業者が事前に電波測定を実施し、電波の強度、ノイズとデータ転送の欠損率から導き出す。
 この限界閾値よりも、電波の品質が良好なレベルを通知閾値として、報知信号に含ませて移動局3000に通知する。報知信号とは、eNodeB1000が自身のセル内に在る全ての移動局3000に対して各種情報を通知するために定期的に送出している信号である。
 以下に、在圏時間56を算出する1例の式を示す。尚、第1回目の測定レポート52に含まれる電波強度を「第1電波強度」といい、第2回目の測定レポート53に含まれる電波強度を「第2電波強度」という。
 式)在圏時間56=(限界閾値-通知閾値)
           ÷((第1電波強度-第2電波強度)÷間隔55)
 転送可能量計算部1500は、在圏時間56とデータ転送速度とから、移動局3000に転送することができるデータ量を求める。
 呼接続情報記憶部1700は、eNodeB1000自身が管理している移動局3000が行っている呼に関する情報を記憶しておく機能を有する。
 ユーザデータ記憶部1800は、ISP4000からダウンロードしているコンテンツのデータを記憶しておく機能を有する。
 次に、RNC2000は、制御部2100、通信部2200、データ転送管理部2300、バッファ可能量計算部2400及びユーザデータ記憶部2500を有する。
 制御部2100は、RNC2000として通常有している機能を有する。その他、ハンドオーバに際して、eNodeB1000からデータを受信するために他の機能部を制御する機能等を有する。
 通信部2200は、NodeB2001を介して移動局3000と無線で通信する機能を有する。また、NodeB2001、SGCN2002及びeNodeB1000と有線又は無線で通信する機能を有する。
 データ転送管理部2300は、大きく分けて2つの機能を有する。1つ目は、ハンドオーバに際して、eNodeB1000から転送されてくるデータをユーザデータ記憶部2500に記憶させ、管理する機能である。2つ目は、ISP4000からダウンロードするコンテンツのデータをユーザデータ記憶部2500に記憶させ、管理する機能である。
 すなわち、ハンドオーバ後、ターゲットRNC2000は、ISP4000からダウンロードしているデータとして、2つのルートから転送されてくるデータを受信する場合がある。
 但し、ソースeNodeB1000から転送されてくるデータは、ハンドオーバ中に転送できなかったデータがある場合のみである。
 バッファ可能量計算部2400は、受け入れ可能なデータ量を算出する機能を有する。
 受け入れ可能なデータ量は、ハンドオーバ中に転送できなかったデータがある場合にのみ、ソースeNodeB1000がハンドオーバ後に問い合わせてくるものである。
 ターゲットRNC2000のバッファ可能量計算部2400は、自身が行っている呼のトラフィック量及びバッファの空き領域等を勘案して受け入れ可能なデータ量を算出する。すなわち、図4のバッファ可能量とトラフィック量との関係を示すグラフで示すように、トラフィック量が大きくなると使用するバッファ量が大きくなるので、受け入れ可能なデータ量は少なくなる。
 以下に、受け入れ可能なデータ量を算出する1例の式を示す。
 式)バッファ可能量=
       バッファ容量-現在の使用量-(呼量×平均データ量)
     呼量:単位時間当たりの延べ呼数
     平均データ量:1呼当たりの平均バッファ使用量
 ユーザデータ記憶部2500は、ISP4000からダウンロードしているコンテンツのデータを記憶しておく機能を有する。
 移動局3000は、制御部3100、通信部3200、レベル測定部3300及びユーザデータ記憶部3400を有する。
 制御部3100は、携帯電話機として通常有している通話機能、メール機能等を有する。また、ハンドオーバに際して、測定レポートを生成して送信する機能等を有する。
 通信部3200は、eNodeB1000及びNodeB2001と無線で通信する機能を有する。
 レベル測定部3300は、いずれかの基地局、すなわち、eNodeB1000又はNodeB2001と通信を行っている間は、常に、周囲のeNodeB1000又はNodeB2001から受信している信号の電波強度を測定する機能を有する。また、ソースeNodeB1000又はソースNodeB2001から受信している信号の電波強度が通知閾値(図3参照)を下回ったら、制御部3100に通知する機能を有する。
 ユーザデータ記憶部3400は、ISP4000からダウンロードしているコンテンツのデータを記憶しておく機能を有する。
 上述した機能の全部または一部は、eNodeB1000、RNC2000及び移動局3000の有するそれぞれのCPUが、eNodeB1000、RNC2000及び移動局3000それぞれのメモリ等に記録されているプログラムを実行することにより実現される。
 <データ>
 次に、実施形態の移動通信ネットワーク10で用いるデータについて図5及び図6を用いて説明する。
 図5は、測定レポート1720の構成及び内容の例を示す図である。
 この測定レポート1720は、移動局3000が通信中のeNodeB1000、すなわち、ソースeNodeB1000に送信するものである。
 移動局3000は、ソースeNodeB1000から受信している信号の電波強度が、所定の電波強度、すなわち、通知閾値(図3参照)を下回った時に測定レポート1720を生成して送信する。通知閾値は、各eNodeB1000が自身のセル内に在る移動局3000に対して定期的に送信している報知情報に含ませて、各移動局3000に通知している。
 移動局3000は、一旦、測定レポート1720をソースeNodeB1000に対して送信し始めると、電波強度が通知閾値を下回っている限りにおいてハンドオーバの指示を受け取るまで所定間隔で繰り返し送信し続ける。
 測定レポート1720は、呼接続識別番号1721、移動局識別子1722、電波強度1723及びハンドオーバ先を決定するための情報1724を有する。
 呼接続識別番号1721は、eNodeB1000から渡された呼接続を識別するための番号を示す。
 移動局識別子1722は、測定レポート1720の送信元である移動局3000の識別子を示す。
 電波強度1723は、移動局識別子1722で示される移動局3000が測定したソースeNodeB1000からの信号の電波強度を示す。
 ハンドオーバ先を決定するための情報1724は、ソースeNodeB1000以外のeNodeB1000からの信号の受信強度や、NodeB2001からの信号の受信強度等の、ハンドオーバ先を決定するために必要な情報を示す。
 図6は、呼接続管理情報1710の構成及び内容の例を示す図である。
 この呼接続管理情報1710は、「呼」毎に、すなわち、トランザクション毎に生成される。1トランザクションとは、例えば、通話である場合は、通話相手に繋がってから切られるまでを示し、コンテンツのダウンロードの場合は、ISP4000に繋がってからダウンロードが終了して繋がりが切られるまでをいう。
 eNodeB1000が管理している「呼」の個数分の呼接続管理情報1710が、呼接続情報記憶部1700に記憶されている。
 呼接続管理情報1710は、呼接続識別番号1711、移動局識別子1712及びレベル測定情報1713を有する。
 呼接続識別番号1711は、呼接続を識別するための番号を示す。eNodeB1000自身が管理している接続毎に、eNodeB1000が割り当てる番号である。
 移動局識別子1712は、呼接続識別番号1711で示される呼における移動局3000であって、測定レポート1720を送信してきた移動局3000の識別子を示す。
 レベル測定情報1713は、移動局識別子1712で示される移動局3000が測定した電波強度の情報を示す。具体的には、移動局識別子1712で示される移動局3000が送信してきた測定レポート1720に含まれる電波強度1723が記憶されたものである。
 このレベル測定情報1713として、最初に受信した測定レポート1720に含まれる電波強度1723とその測定レポート1720を受信した時刻とを有する第1回測定情報と、次に受信した測定レポート1720に含まれる電波強度1723とその測定レポート1720を受信した時刻とを有する第2回測定情報とが記憶されている。
 <動作>
 以下、実施形態の移動通信ネットワーク10の動作について図7及び図8を用いて説明する。
 まず、ハンドオーバ中の第1段階のデータ転送処理について、図7を用いて説明し、ハンドオーバ後の第2段階のデータ転送処理について、図8を用いて説明する。
 図7は、ハンドオーバの際のデータ転送処理を表すフローチャートである。図7において、白抜き矢印は、ベアラサービスにより転送されるコンテンツのデータを示す。図8においても、同様である。
 移動局3000のユーザが、移動局3000が備えるキーを操作し、あるコンテンツのデータのダウンロードを指示する。
 コンテンツのデータのダウンロードの指示を取得した移動局3000の制御部3100は(ステップS100)、通信部3200を介して、eNodeB1000Aとの間でRRC(Radio Resource Control)によるコネクションを確立する。
 その後、移動局3000の制御部3100は、MME1001とGW4001とを経由して、ISP4000とのコネクションを確立する(ステップS110)。
 ISP4000とのコネクションを確立した移動局3000の制御部3100は、コンテンツのデータの転送をISP4000に依頼する(ステップS120)。
 依頼を受けたISP4000は、GW4001とMME1001とを経由して、移動局3000宛にデータの送信を開始する(ステップS130)。
 eNodeB1000Aの通信部1200は、MME1001を介してコンテンツのデータを受信し、データ転送管理部1400に渡す。
 データを受け取ったデータ転送管理部1400は、受け取ったデータをユーザデータ記憶部1800に記憶させる。この際、移動局3000の宛先と対応付けて記憶させる。
 また、データ転送管理部1400は、ユーザデータ記憶部1800に記憶されているデータを、移動局3000との通信速度に合わせて読み出して、移動局3000に転送する(ステップS140)。
 ステップS130及びステップS140の処理は、移動局3000から停止要求(後述するステップS210)があるまで続けられる。
 移動局3000の通信部3200を介して、データを受信した制御部3100は、ユーザデータ記憶部3400に受信したデータを記憶させる。
 レベル測定部3300は、ソースeNodeB1000Aからの信号の電波強度を測定し、測定した電波強度が通知閾値(図3参照)を下回った場合は(ステップS150:Yes)、制御部3100に測定した電波強度を渡して、通知閾値を下回った旨を通知する。測定した電波強度が通知閾値以上である場合は(ステップS150:No)、制御部3100への通知を行わない。
 尚、レベル測定部3300は、測定した電波強度の値に関わらず、ソースeNodeB1000Aからの信号の電波強度を測定し続ける。実施形態では、電波強度は徐々に小さくなっていくものとする。
 レベル測定部3300からの通知を受けた制御部3100は、測定レポート1720を生成する。
 具体的には、測定レポート1720の呼接続識別番号1721として、eNodeB1000から接続時に渡された番号を設定する。移動局識別子1722として、移動局3000自身の識別子を設定し、電波強度1723として、レベル測定部3300から渡された電波強度を設定する。また、ハンドオーバ先を決定する為の情報1724として、周囲のeNodeB1000等からの信号の電波強度等の情報をレベル測定部3300等から取得して設定する。尚、制御部3100は、移動局3000自身の識別子を予め記憶しているものとする。
 測定レポート1720を生成した制御部3100は、生成した測定レポート1720をソースeNodeB1000Aに送信する(ステップS160)。
 eNodeB1000Aの通信部1200を介して、測定レポート1720を受信した制御部1100は、受信した測定レポート1720及び受信した時刻をハンドオーバ処理部1300に渡して、ハンドオーバ処理を依頼する。
 依頼を受けたハンドオーバ処理部1300は、制御部1100から受け取った測定レポート1720の電波強度1723として設定されている電波強度の値及び受信した時刻を、第1回測定情報として記憶する(ステップS170)。
 具体的には、呼接続情報記憶部1700に記憶されている呼接続管理情報1710のうち、呼接続識別番号1711に設定されている番号が、受信した測定レポート1720の呼接続識別番号1721として設定されている番号同じである呼接続管理情報1710を選択する。そして、測定レポート1720の電波強度1723として設定されている電波強度の値及び受信した時刻を、選択した呼接続管理情報1710のレベル測定情報1713の第1回測定情報として記憶する。以下、この呼接続管理情報1710を「移動局3000の呼接続管理情報1710」という。
 携帯電話機3000の自動カーソル部3300は、前回の測定から所定時間経過後に、再度、ソースeNodeB1000Aからの信号の電波強度を測定する。測定したソースeNodeB1000Aからの信号の電波強度は通知閾値を下回っているので、制御部3100にその旨を通知する。
 通知を受けた制御部3100は、測定レポート1720を生成し、生成した測定レポート1720をソースeNodeB1000Aに送信する(ステップS180)。
 eNodeB1000Aの通信部1200を介して、測定レポート1720を受信した制御部1100は、受信した測定レポート1720及び受信した時刻をハンドオーバ処理部1300に渡して、ハンドオーバ処理を依頼する。
 依頼を受けたハンドオーバ処理部1300は、制御部1100から受け取った測定レポート1720の電波強度1723として設定されている電波強度の値及び受信した時刻を、移動局3000の呼接続管理情報1710に第2回測定情報として記憶する(ステップS190)。
 第2回測定情報を記憶したハンドオーバ処理部1300は、ハンドオーバの要求を移動局3000に送信する(ステップS200)。ハンドオーバ処理部1300は、ハンドオーバの処理を開始する。
 ハンドオーバの要求を受けた移動局3000の制御部3100は、ハンドオーバの処理を開始し、GW4001にdownlink停止、すなわち、コンテンツのデータの転送の停止要求を送信する(ステップS210)。
 尚、ハンドオーバの処理は、移動局3000、ソースeNodeB1000A及びターゲットRNC2000において、以下に説明するデータの転送処理と並行して行われている。
 停止要求を受信したGW4001は、ハンドオーバ処理においてソースeNodeB1000Aからターゲットの装置、実施形態ではRNC2000Aが通知されるまで、ソースeNodeB1000Aへのデータ転送を停止する(ステップS220)。
 ソースeNodeB1000Aのハンドオーバ処理部1300は、ハンドオーバの要求を移動局3000に送信した後、通常のハンドオーバの処理と並行して、以下に説明するデータ転送処理を行う。
 ハンドオーバ処理部1300は、移動局3000に転送すべきデータが残っているか否かをデータ転送管理部1400に問い合わせる。
 具体的には、移動局3000の呼接続管理情報1710の移動局識別子1712として設定されている識別子を読み出し、読み出した識別子で示される移動局3000に転送すべきデータが残っているかをデータ転送管理部1400に問い合わせる。
 問い合わせを受けたデータ転送管理部1400は、ユーザデータ記憶部1800を参照して、データが残っているか否かをハンドオーバ処理部1300に通知する。
 ハンドオーバ処理部1300は、データが残っている旨の通知を受けた場合は(ステップS230:Yes)、転送可能量計算部1500に限界閾値(図3参照)までに転送できるデータ量を求めるよう依頼する。
 依頼を受けた転送可能量計算部1500は、在圏時間計算部1600に在圏時間56(図3参照)の算出を依頼する。
 依頼を受けた在圏時間計算部1600は、呼接続情報記憶部1700に記憶されている移動局3000の呼接続管理情報1710を参照して在圏時間56を算出する。具体的には、レベル測定情報1713として記憶されている第1回測定情報及び第2回測定情報を基に算出する(ステップS240)。
 在圏時間56を算出した在圏時間計算部1600は、算出した在圏時間56を転送可能量計算部1500に渡す。転送可能量計算部1500は、受け取った在圏時間を基に、転送可能なデータ量を算出する(ステップS250)。
 転送可能なデータ量を算出した転送可能量計算部1500は、算出したデータ量をハンドオーバ処理部1300に渡す。ハンドオーバ処理部1300は、渡されたデータ量をデータ転送管理部1400に渡して、移動局3000にデータを転送するよう依頼する。
 依頼を受けたデータ転送管理部1400は、ユーザデータ記憶部1800から、渡されたデータ量のデータを読み出し、移動局3000に転送する(ステップS260)。
 一方、ハンドオーバ処理部1300は、データが残っていない旨の通知を受けた場合は(ステップS230:No)、データ転送の処理は行わない。
 次に、ハンドオーバ後のデータ転送処理について、図8を用いて説明する。
 図8は、ハンドオーバ後のデータ転送処理を表すフローチャートである。
 ハンドオーバ後、GW4001は、SGCN2002を経由してRNC2000Aにコンテンツのデータの転送を開始する(ステップS300)。
 RNC2000Aの通信部2200は、SGCN2002を介してコンテンツのデータを受信し、データ転送管理部2300に渡す。
 データを受け取ったデータ転送管理部2300は、ユーザデータ記憶部2500に記憶させる。この際、移動局3000の宛先と対応付けて記憶させる。
 また、データ転送管理部2300は、ユーザデータ記憶部2500に記憶されているデータを、移動局3000との通信速度に合わせて読み出して、NodeB2001Aを介して移動局3000に転送する(ステップS310)。
 すなわち、移動局3000は、ハンドオーバ後も引き続きISP4000からコンテンツのデータをダウンロードし続けることができる。
 ソースeNodeB1000Aのハンドオーバ処理部1300は、ハンドオーバ処理が完了したら、移動局3000に転送すべきデータが残っている場合は転送するようデータ転送管理部1400に依頼する。この際、ハンドオーバを行った移動局3000の識別子と、ターゲットRNC2000Aの宛先を通知する。
 尚、ハンドオーバ処理部1300は、ハンドオーバ処理において移動局3000の呼接続管理情報1710を削除する前に、移動局識別子1712として設定されている移動局3000の識別子を読み出して記憶しておくものとする。
 依頼を受けたデータ転送管理部1400は、ユーザデータ記憶部1800を参照して、通知された移動局に転送すべきデータが残っている場合は(ステップS320:Yes)、ターゲットRNC2000Aに対して、受け入れ可能なデータ量を問い合わせる(ステップS330)。尚、転送すべきデータが残っていない場合は(ステップS320:No)、データ転送処理は行わない。
 RNC2000Aの通信部2200を介して、問い合わせを受信した制御部2100は、バッファ可能量計算部2400に受け入れ可能なデータ量の算出を依頼する。
 依頼を受けたバッファ可能量計算部2400は、データ転送管理部2300に空き容量を問い合わせる。
 問い合わせを受けたデータ転送管理部2300は、ユーザデータ記憶部2500を参照して空き容量を取得してバッファ可能量計算部2400に返す。
 空き容量を取得したバッファ可能量計算部2400は、受け入れ可能なデータ量を算出して制御部2100に返す。
 受け入れ可能なデータ量を取得した制御部2100は、ソースeNodeB1000Aに受け入れ可能なデータ量を送信する(ステップS340)。
 ソースeNodeB1000Aの通信部1200を介して、受け入れ可能なデータ量を受信したデータ転送管理部1400は、受信したデータ量のデータをユーザデータ記憶部1800から読み出してターゲットRNC2000Aに転送する(ステップS350)。
 データを転送したデータ転送管理部1400は、未だデータが残っている場合は(ステップS370:Yes)、ターゲットRNC2000Aに対して、受け入れ可能なデータ量を問い合わせ、ステップS330~ステップS370の処理を繰り返す。
 すべてのデータを転送した場合は(ステップS370:No)、データ転送処理を終了する。
 ソースRNC2000Aのデータ転送管理部2300は、ソースeNodeB1000Aから転送されてきたコンテンツデータをユーザデータ記憶部2500に記憶する。また、記憶されているデータを、移動局3000との通信速度に合わせてデータを読み出して、NodeB2001Aを介して移動局3000に転送する(ステップS360)。
 <その他の実施形態>
 以上、本発明の実施形態について説明したが、本発明は上記形態に限らず、以下のようにしてもよい。
(1)実施形態では、測定レポートを2回受信してからハンドオーバの処理を開始することとしているが、移動局3000に転送すべきデータがユーザデータ記憶部1800に残っていない場合には、1回目の測定レポートを受信したらハンドオーバの処理を開始することとしてもよい。
(2)実施形態では、LTE網からUMTS網へのハンドオーバを例に説明したが、同一網内においてのハンドオーバであってもよい。また、UMTS網からLTE網へのハンドオーバであってもよい。更には、他の通信ネットワーク網であってもよい。
(3)eNodeB1000等は、図2等の各構成要素の全部又は一部を、1チップ又は複数チップの集積回路で実現してもよい。
(4)eNodeB1000等は、図2等の各構成要素の全部又は一部を、コンピュータのプログラムで実現してもよいし、その他どのような形態で実施してもよい。
 コンピュータプログラムの場合、メモリカード、CD-ROMなどいかなる記録媒体に書き込まれたものをコンピュータに読み込ませて実行させる形にしてもよいし、ネットワークを経由してプログラムをダウンロードして実行させる形にしてもよい。
10 移動通信ネットワーク
55 間隔
56 在圏時間
1100 2100 3100 制御部
1200 2200 3200 通信部
1300 ハンドオーバ処理部
1400 2300 データ転送管理部
1500 転送可能量計算部
1600 在圏時間計算部
1700 呼接続情報記憶部
1710 呼接続管理情報
1711 1721 呼接続識別番号
1712 1722 移動局識別子
1713 レベル測定情報
1720 測定レポート
1723 電波強度
1724 ハンドオーバ先を決定する為の情報
1800 ユーザデータ記憶部
2400 バッファ可能量計算部
2500 ユーザデータ記憶部
3000 移動局
3300 レベル測定部
3400 ユーザデータ記憶部

Claims (7)

  1.  基地局から移動局に転送するデータを記憶する記憶手段と、
     前記移動局が前記基地局から受信する信号の強度が閾値を下回ったら、当該強度を示す情報を当該移動局から受信する受信手段と、
     前記受信手段によって前記情報を複数受信したら、前記移動局と通信が出来なくなるまでに当該移動局に転送できるデータ量を、当該情報と当該情報を受信した時とに基づいて算出し、算出したデータ量以下の前記データを前記移動局に転送するデータ転送手段と
     を備える無線アクセスネットワーク。
  2.  前記受信手段で前記情報を受信したら、前記移動局に他の基地局との通信を開始させるハンドオーバ手段を備え、
     前記データ転送手段による転送は、前記移動局が前記他の基地局との通信を開始する前に行われる
     請求項1記載の無線アクセスネットワーク。
  3.  前記記憶手段の他に、前記他の基地局から前記移動局に転送するデータを記憶する他の記憶手段と、
     前記他の記憶手段が記憶可能なデータ量を取得する取得手段と、
     前記ハンドオーバ手段が前記移動局に前記他の基地局との通信を開始させた後に、前記取得手段に前記記憶可能なデータ量を取得させ、前記記憶手段が記憶しているデータのうち前記取得したデータ量以下のデータを、前記他の記憶手段に転送する第2データ転送手段と
     を備える請求項2記載の無線アクセスネットワーク。
  4.  前記他の記憶手段及び前記他の基地局は、前記記憶手段及び前記基地局が含まれる通信網とは異なる種類の通信網に含まれる
     請求項3記載の無線アクセスネットワーク。
  5.  基地局から移動局に転送するデータを記憶する記憶手段と、
     前記移動局が前記基地局から受信する信号の強度が閾値を下回ったら、当該強度を示す情報を当該移動局から受信する受信手段と、
     前記受信手段によって前記情報を複数受信したら、前記移動局と通信が出来なくなるまでに当該移動局に転送できるデータ量を、当該情報と当該情報を受信した時とに基づいて算出し、算出したデータ量以下の前記データを前記移動局に転送するデータ転送手段と
     を備える基地局。
  6.  基地局から移動局に転送するデータを記憶する記憶手段を有する無線ネットワークに、当該データを当該移動局に転送させるデータ転送方法であって、
     前記移動局が前記基地局から受信する信号の強度が閾値を下回ったら、当該強度を示す情報を当該移動局から受信させ、
     前記受信手段によって前記情報を複数受信したら、前記移動局と通信が出来なくなるまでに当該移動局に転送できるデータ量を、当該情報と当該情報を受信した時とに基づいて算出し、算出したデータ量以下の前記データを前記移動局に転送させる
     データ転送方法。
  7.  基地局から移動局に転送するデータを記憶する記憶手段を有する基地局に、当該データを当該移動局に転送させるコンピュータプログラムであって、
     前記移動局が前記基地局から受信する信号の強度が閾値を下回ったら、当該強度を示す情報を当該移動局から受信する受信処理を実行させ、
     前記受信手段によって前記情報を複数受信したら、前記移動局と通信が出来なくなるまでに当該移動局に転送できるデータ量を、当該情報と当該情報を受信した時とに基づいて算出し、算出したデータ量以下の前記データを前記移動局に転送するデータ転送処理を実行させる
     コンピュータプログラム。
                                                                                    
PCT/JP2009/004044 2009-08-21 2009-08-21 無線アクセスネットワーク、基地局、データ転送方法 WO2011021256A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09848459.5A EP2469923A4 (en) 2009-08-21 2009-08-21 RADIO ACCESS NETWORK, BASE STATION, AND DATA TRANSFER METHOD
JP2011527496A JP5333590B2 (ja) 2009-08-21 2009-08-21 無線アクセスネットワーク、基地局、データ転送方法
PCT/JP2009/004044 WO2011021256A1 (ja) 2009-08-21 2009-08-21 無線アクセスネットワーク、基地局、データ転送方法
US13/398,584 US8958798B2 (en) 2009-08-21 2012-02-16 Radio access network, base station, and data transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004044 WO2011021256A1 (ja) 2009-08-21 2009-08-21 無線アクセスネットワーク、基地局、データ転送方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/398,584 Continuation US8958798B2 (en) 2009-08-21 2012-02-16 Radio access network, base station, and data transfer method

Publications (1)

Publication Number Publication Date
WO2011021256A1 true WO2011021256A1 (ja) 2011-02-24

Family

ID=43606724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004044 WO2011021256A1 (ja) 2009-08-21 2009-08-21 無線アクセスネットワーク、基地局、データ転送方法

Country Status (4)

Country Link
US (1) US8958798B2 (ja)
EP (1) EP2469923A4 (ja)
JP (1) JP5333590B2 (ja)
WO (1) WO2011021256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131946A1 (ja) * 2011-03-30 2012-10-04 富士通株式会社 無線アクセス装置、ハンドオーバ方法、および無線アクセスシステム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130049541A (ko) * 2011-11-04 2013-05-14 삼성전자주식회사 이동통신 시스템에서 데이터를 전송하기 위한 장치 및 방법
KR102279486B1 (ko) * 2014-03-13 2021-07-20 삼성전자 주식회사 무선 통신 시스템에서 연결을 생성하는 방법 및 장치
US10462834B2 (en) * 2015-05-15 2019-10-29 Qualcomm Incorporated Offloading through simplified multiflow
US20230262552A1 (en) * 2022-02-14 2023-08-17 At&T Intellectual Property I, L.P. Apparatuses and methods for facilitating communication services via connectionless technology

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11146464A (ja) * 1997-09-02 1999-05-28 Sumitomo Electric Ind Ltd 地上通信装置及び車載通信装置並びに路車間データ通信システム
JP2001292481A (ja) * 2000-04-07 2001-10-19 Nippon Telegr & Teleph Corp <Ntt> 移動体通信システムおよび方法ならびに記録媒体
JP2003018658A (ja) * 2001-07-04 2003-01-17 Nippon Hoso Kyokai <Nhk> 移動体通信に用いられる送受信装置及び基地局
JP2003153327A (ja) 2001-11-12 2003-05-23 Matsushita Electric Ind Co Ltd 無線通信システム及びそれに用いられるハンドオーバを実施する方法及び無線通信端末
JP2005012300A (ja) * 2003-06-17 2005-01-13 Toyota Motor Corp モバイル端末
JP2008022309A (ja) * 2006-07-13 2008-01-31 Fujitsu Ltd 移動通信システム
JP2008098880A (ja) * 2006-10-11 2008-04-24 Nec Corp 無線通信端末、無線通信ネットワークシステム、ハンドオーバータイミング決定方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471670A (en) * 1993-07-02 1995-11-28 Motorola, Inc. Method for determining communciation resource handoffs
JP3092589B2 (ja) * 1998-05-07 2000-09-25 日本電気株式会社 ハンドオフ制御方式
KR100413418B1 (ko) * 1998-07-10 2004-02-14 엘지전자 주식회사 역방향링크의독립적소프트핸드오프제어방법
KR100400729B1 (ko) * 1999-10-21 2003-10-08 엘지전자 주식회사 이동 통신 시스템의 보조통화채널 할당 방법
CN101553012A (zh) * 2002-04-05 2009-10-07 美商内数位科技公司 在提供高速下行链路封包存取小区改变时的节点b及无线网络控制器动作
JP2004304399A (ja) * 2003-03-31 2004-10-28 Nec Corp 通信端末、基地局、サーバ、ネットワークシステム及びハンドオーバ方法
GB0308137D0 (en) * 2003-04-09 2003-05-14 Ibm Method and apparatus for data logging
US7493103B2 (en) * 2004-07-22 2009-02-17 International Business Machines Corporation Method and apparatus to transfer data and detect weak signals
KR100656349B1 (ko) * 2004-12-07 2006-12-11 한국전자통신연구원 위치정보를 이용한 무선 단말기의 이종 시스템간 핸드오버수행 방법 및 그 장치
JP4734341B2 (ja) * 2005-12-14 2011-07-27 パナソニック株式会社 通信装置及びハンドオーバ方法
US7782824B2 (en) * 2006-07-20 2010-08-24 Cisco Technology, Inc. Method and system for handling a mobile endpoint in a wireless network
US9265003B2 (en) * 2006-11-13 2016-02-16 Qualcomm Incorporated Apparatus and methods for reducing power consumption and/or radio frequency interference in a mobile computing device
EP2149274B1 (en) * 2007-04-27 2017-04-05 Optis Wireless Technology, LLC Handover using dedicated resources reserved for a limited time interval
JP5372755B2 (ja) * 2007-07-06 2013-12-18 富士通株式会社 無線通信システムのパス切替制御方法、同システムにおける制御装置、無線基地局、無線通信システム及び無線端末
JP4772080B2 (ja) * 2008-03-14 2011-09-14 三星電子株式会社 通信システムにおける状態情報の伝達及び構成のための方法及びシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11146464A (ja) * 1997-09-02 1999-05-28 Sumitomo Electric Ind Ltd 地上通信装置及び車載通信装置並びに路車間データ通信システム
JP2001292481A (ja) * 2000-04-07 2001-10-19 Nippon Telegr & Teleph Corp <Ntt> 移動体通信システムおよび方法ならびに記録媒体
JP2003018658A (ja) * 2001-07-04 2003-01-17 Nippon Hoso Kyokai <Nhk> 移動体通信に用いられる送受信装置及び基地局
JP2003153327A (ja) 2001-11-12 2003-05-23 Matsushita Electric Ind Co Ltd 無線通信システム及びそれに用いられるハンドオーバを実施する方法及び無線通信端末
JP2005012300A (ja) * 2003-06-17 2005-01-13 Toyota Motor Corp モバイル端末
JP2008022309A (ja) * 2006-07-13 2008-01-31 Fujitsu Ltd 移動通信システム
JP2008098880A (ja) * 2006-10-11 2008-04-24 Nec Corp 無線通信端末、無線通信ネットワークシステム、ハンドオーバータイミング決定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2469923A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131946A1 (ja) * 2011-03-30 2012-10-04 富士通株式会社 無線アクセス装置、ハンドオーバ方法、および無線アクセスシステム

Also Published As

Publication number Publication date
US20120149375A1 (en) 2012-06-14
EP2469923A4 (en) 2014-11-19
US8958798B2 (en) 2015-02-17
EP2469923A1 (en) 2012-06-27
JPWO2011021256A1 (ja) 2013-01-17
JP5333590B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
KR100769380B1 (ko) 이동 통신 시스템 및 이동 통신 방법
KR100920546B1 (ko) 이동 통신 시스템, 코어 네트워크 노드 선택 방법, 및기지국과 이 기지국에서 사용되는 이동국
KR101100157B1 (ko) 광대역 무선 접속 시스템에 적용되는 주파수간 핸드오버방법
JP4821471B2 (ja) 移動通信システム、基地局及び移動局並びにプログラム
US8243680B2 (en) Traffic transmission path relocation method for radio communication system
US20190159090A1 (en) A Method, Network Functions and a Computer Program Product for Supporting the Handing Over of a User Equipment, UE, from a First Type of Radio Access Technology, RAT, to a Second Type of RAT
JP5333590B2 (ja) 無線アクセスネットワーク、基地局、データ転送方法
US11589273B2 (en) Context placement in the mobile communications network
US20110014937A1 (en) Communication Control Device And Communication Control Method
KR100913098B1 (ko) 광대역 무선 접속 시스템에 적용되는 주파수간 핸드오버 방법
CN110662248B (zh) 信号测量方法和设备
CN117715136A (zh) 通信系统以及通信方法
EP4265003A1 (en) Handover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848459

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527496

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009848459

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE