WO2011016566A1 - 光学ガラス - Google Patents

光学ガラス Download PDF

Info

Publication number
WO2011016566A1
WO2011016566A1 PCT/JP2010/063428 JP2010063428W WO2011016566A1 WO 2011016566 A1 WO2011016566 A1 WO 2011016566A1 JP 2010063428 W JP2010063428 W JP 2010063428W WO 2011016566 A1 WO2011016566 A1 WO 2011016566A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
mass
optical glass
optical
Prior art date
Application number
PCT/JP2010/063428
Other languages
English (en)
French (fr)
Inventor
進 上原
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43544460&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011016566(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to CN2010800343660A priority Critical patent/CN102471130A/zh
Priority to JP2011525960A priority patent/JP5731388B2/ja
Publication of WO2011016566A1 publication Critical patent/WO2011016566A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass.
  • Optical systems such as digital cameras and video cameras, although large and small, contain blurs called aberrations. These aberrations are classified into monochromatic aberrations and chromatic aberrations, and among these, chromatic aberrations are particularly strongly dependent on the material properties of the lens used in the optical system.
  • Chromatic aberration is generally corrected by combining a low-dispersion convex lens and a high-dispersion concave lens. However, when this combination is used, aberrations in the blue region remain because only aberrations in the red region and green region can be corrected. This blue region aberration that cannot be removed is called a secondary spectrum. In order to correct the secondary spectrum, it is necessary to perform an optical design in consideration of the trend of the g-line (435.835 nm) in the blue region. At this time, the partial dispersion ratio ( ⁇ g, F) is used as an index of the optical characteristics to be noticed in the optical design.
  • an optical material having a large partial dispersion ratio ( ⁇ g, F) is used for the low dispersion side lens, and the partial dispersion ratio ( By using an optical material having a small ⁇ g, F), the secondary spectrum is corrected well.
  • the partial dispersion ratio ( ⁇ g, F) is expressed by the following equation (1).
  • ⁇ g, F (n g ⁇ n F ) / (n F ⁇ n C ) (1)
  • optical glass there is an approximately linear relationship between a partial dispersion ratio ( ⁇ g, F) representing partial dispersion in a short wavelength region and an Abbe number ( ⁇ d ).
  • the straight line representing this relationship plots the partial dispersion ratio and Abbe number of NSL7 and PBM2 on the Cartesian coordinates employing the partial dispersion ratio ( ⁇ g, F) on the vertical axis and the Abbe number ( ⁇ d ) on the horizontal axis. It is represented by a straight line connecting two points and is called a normal line (see FIG. 1).
  • Normal glass which is the standard for normal lines, differs depending on the optical glass manufacturer, but each company defines it with almost the same slope and intercept.
  • NSL7 and PBM2 are optical glasses manufactured by OHARA, Inc., and the Abbe number ( ⁇ d ) of PBM2 is 36.3, the partial dispersion ratio ( ⁇ g, F) is 0.5828, and the Abbe number ( ⁇ d ) of NSL7. Is 60.5, and the partial dispersion ratio ( ⁇ g, F) is 0.5436.
  • optical glass as shown in Patent Document 1 is known.
  • the optical glass of Patent Document 1 has a small partial dispersion ratio and is not sufficient for use as a lens for correcting the secondary spectrum. That is, an optical glass having a high dispersion and a small partial dispersion ratio ( ⁇ g, F) is required.
  • the present invention has been made in view of the above-mentioned problems.
  • the object of the present invention is to achieve a partial dispersion ratio (n d ) and an Abbe number ( ⁇ d ) within a desired range.
  • the object is to obtain an optical glass having a small ⁇ g, F) and a lens preform using the same.
  • the present inventors have conducted intensive test research, and as a result, the SiO 2 component is used as an essential component, and this includes Nb 2 O 5 component, TiO 2 component, ZrO 2 component, Ta 2 O.
  • the glass has a high refractive index, but the partial dispersion ratio ( ⁇ g, F) of the glass is desired to be between the Abbe number ( ⁇ d ).
  • the present inventors have found that the chemical durability of glass, particularly water resistance, can be improved, and the present invention has been completed.
  • the partial dispersion ratio ( ⁇ g, F) of the glass is increased while the refractive index of the glass is increased. It has been found that it has a desired relationship with the number ( ⁇ d ), and the chemical durability, particularly water resistance, of the glass is enhanced.
  • the SiO 2 component and at least one of the TiO 2 component, the ZrO 2 component, the Ta 2 O 5 component, and the WO 3 component in combination it is possible to increase the refractive index of the glass. It has been found that the partial dispersion ratio ( ⁇ g, F) has a desired relationship with the Abbe number ( ⁇ d ), and the chemical durability, particularly water resistance, of the glass is improved. Specifically, the present invention provides the following.
  • optical glass according to (1) comprising an SiO 2 component, an Nb 2 O 5 component, and an Na 2 O component as essential components.
  • the SiO 2 component is contained in 1.0% or more and 60.0% or less by mass% with respect to the total glass mass of the oxide conversion composition, and the content of the Nb 2 O 5 component is 1.0% or more and 65.
  • the optical glass according to (2), which is 0.0% or less and the content of the Na 2 O component is 1.0% or more and 30.0% or less.
  • the optical glass according to (1) which contains an SiO 2 component as an essential component and further contains at least one of a TiO 2 component, a ZrO 2 component, a Ta 2 O 5 component, and a WO 3 component.
  • the SiO 2 component is contained by 1.0% or more and 60.0% or less by mass% with respect to the total glass mass of the oxide conversion composition, and the mass sum (TiO 2 + ZrO 2 + Ta 2 O 5 + WO 3 )
  • the optical glass according to (4) which is 1.0% or more and 30.0% or less.
  • the entire mass of the glass in terms of oxide composition, in mass%, Nb 2 O 5 content of the component is not more than 65.0% (4) to (6) or wherein the optical glass.
  • the mass sum of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na and K) with respect to the total glass mass of the oxide equivalent composition is 1.0% or more.
  • the mass sum of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba and Zn) with respect to the total glass mass of the oxide equivalent composition is 30.0. % Or less of the optical glass according to (17).
  • O 3 component 0-30.0% and / or Yb 2 O 3 component 0-10.0% and / or Lu 2 O 3 component 0-10.0% The optical glass according to any one of (1) to (18), further comprising:
  • the mass sum of the Ln 2 O 3 component (wherein Ln is at least one selected from the group consisting of La, GdY, Yb and Lu) with respect to the total glass mass of the oxide equivalent composition is 30.
  • a lens preform for mold press molding comprising the optical glass according to any one of (1) to (23).
  • an SiO 2 component as an essential component, and further containing at least one of an Nb 2 O 5 component, a TiO 2 component, a ZrO 2 component, a Ta 2 O 5 component, and a WO 3 component,
  • An optical glass having a desired relationship between the glass partial dispersion ratio ( ⁇ g, F) and the Abbe number ( ⁇ d ) while increasing the refractive index of the glass, and a lens preform using the optical glass Obtainable.
  • the partial dispersion ratio ( ⁇ g, F) of the glass is increased while the refractive index of the glass is increased. It has a desired relationship with the number ( ⁇ d ), and the chemical durability, particularly water resistance, of the glass is enhanced. Further, SiO 2 components, by combining the Nb 2 O 5 component and Na 2 O component, the glass transition point of the glass (Tg) of lower, coloration of the glass is reduced.
  • the glass portion can be increased while the refractive index of the glass is increased.
  • the dispersion ratio ( ⁇ g, F) has a desired relationship with the Abbe number ( ⁇ d ), and the chemical durability, particularly water resistance, of the glass is improved.
  • the SiO 2 component in combination with at least one of the TiO 2 component, the ZrO 2 component, the Ta 2 O 5 component, and the WO 3 component the glass transition point (Tg) of the glass is lowered, and the glass is colored. Is reduced.
  • the first optical glass of the present invention contains an SiO 2 component, an Nb 2 O 5 component and an Na 2 O component as essential components, and has a refractive index (nd) of 1.78 or more and an Abbe number ( ⁇ d of 30 or less).
  • the partial dispersion ratio ( ⁇ g, F) is in the range of ⁇ d ⁇ 25 with respect to the Abbe number ( ⁇ d ), ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6346) ⁇ ( ⁇ g, F) ⁇ ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207), and in the range of ⁇ d > 25, ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571) ⁇
  • the relationship ( ⁇ g, F) ⁇ ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207) is satisfied.
  • the glass transition point (Tg) is lowered and the partial dispersion ratio ( ⁇ g, F) is reduced while the glass has a high refractive index. It is close to the normal line, the transmittance of the glass with respect to visible light is increased, and the chemical durability of the glass, particularly the water resistance, is increased. For this reason, while having a refractive index (nd) of 1.78 or more and an Abbe number ( ⁇ d ) of 30 or less, mold press molding is easy, white turbidity due to polishing and cleaning is small, chromatic aberration is small, and An optical glass having high transparency with respect to visible light and a lens preform using the optical glass can be obtained.
  • nd refractive index
  • ⁇ d Abbe number
  • the second optical glass of the present invention contains a SiO 2 component as an essential component, and further contains at least one of a TiO 2 component, a ZrO 2 component, a Ta 2 O 5 component, and a WO 3 component.
  • the refractive index (nd) is 78 or more and the Abbe number ( ⁇ d ) is 30 or less, and the partial dispersion ratio ( ⁇ g, F) is within the range of ⁇ d ⁇ 25 between the Abbe number ( ⁇ d ) ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6346) ⁇ ( ⁇ g, F) ⁇ ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207) and satisfies the relationship of ⁇ d > 25
  • the relationship ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571) ⁇ ( ⁇ g, F) ⁇ ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207) is satisfied.
  • a glass transition point (Tg) is obtained by using a SiO 2 component in combination with at least one of a TiO 2 component, a ZrO 2 component, a Ta 2 O 5 component and a WO 3 component, while the glass has a high refractive index.
  • the partial dispersion ratio ( ⁇ g, F) is brought close to the normal line, the transmittance of the glass with respect to visible light is increased, and the chemical durability, particularly water resistance, of the glass is increased.
  • each component constituting the optical glass of the present invention The composition range of each component constituting the optical glass of the present invention is described below. In the present specification, unless otherwise specified, the content of each component is expressed in mass% with respect to the total mass of the glass in terms of oxide.
  • the “equivalent oxide composition” means that the oxide, composite salt, metal fluoride, etc. used as a raw material of the glass component of the present invention are all decomposed and changed into an oxide when melted. It is the composition which described each component contained in glass by making the total mass of a production
  • the SiO 2 component is a glass-forming oxide and is a useful component for forming a glass skeleton.
  • the content of the SiO 2 component is 1.0% or more, the glass network structure increases to such an extent that a stable glass can be obtained, so that the devitrification resistance of the glass can be improved.
  • the content of the SiO 2 component is 60.0% or less, the refractive index of the glass is hardly lowered, and an optical glass having a desired refractive index can be easily obtained.
  • the content of the SiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%, more preferably 5.0%, and most preferably 10.0% as the lower limit, preferably 60.0. %, More preferably 50.0%, still more preferably 40.0%, and most preferably 30.0%.
  • SiO 2 component may be contained in the glass by using as a raw material such as SiO 2, K 2 SiF 6, Na 2 SiF 6 or the like.
  • the Nb 2 O 5 component is a component that lowers the partial dispersion ratio ( ⁇ g, F) of the glass and increases the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the Nb 2 O 5 component is preferably 65.0%, more preferably 60.0%, and most preferably 58.0%.
  • the content of the Nb 2 O 5 component is preferably 1.0%, more preferably 5.0%, still more preferably 10.0%, and most preferably 15.0 with respect to the total glass mass of the oxide equivalent composition. % Is the lower limit.
  • the content of the Nb 2 O 5 component is preferably 10.0% or more.
  • the Nb 2 O 5 component can be contained in the glass using, for example, Nb 2 O 5 as a raw material.
  • the TiO 2 component is a component that increases the refractive index of the glass and decreases the Abbe number, and is an optional component in the optical glass of the present invention.
  • the content of the TiO 2 component 40.0% or less the internal transmittance at a visible short wavelength (500 nm or less) can be made difficult to deteriorate by reducing the coloration on the glass. Therefore, the content of the TiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 40.0%, more preferably 30.0%, and most preferably 20.0%.
  • the content of the TiO 2 component is preferably less than 12.0%.
  • the content of the TiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably less than 12.0%, more preferably less than 11.0%, and most preferably less than 10.0%.
  • the content of the TiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably more than 0%, more preferably 0.1%, and most preferably 0.5%.
  • TiO 2 component may be contained in the glass by using as the starting material for example TiO 2 or the like.
  • the ZrO 2 component is a component that increases the devitrification resistance by lowering the liquidus temperature of the glass and improves the chemical durability of the glass. It is also an optional component that has the effect of reducing the partial dispersion ratio ( ⁇ g, F) of the glass. In particular, when the content of the ZrO 2 component is 25.0% or less, the chemical durability of the glass can be enhanced. Therefore, the content of the ZrO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 25.0%, more preferably 20.0%, and most preferably 15.0%.
  • the ZrO 2 component can be contained in the glass using, for example, ZrO 2 , ZrF 4 or the like as a raw material.
  • the Ta 2 O 5 component is a component that lowers the devitrification temperature of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the devitrification resistance of the glass can be maintained by setting the content of the Ta 2 O 5 component to 20.0% or less. Therefore, the content of the Ta 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 10.0%, and most preferably 5.0%.
  • the Ta 2 O 5 component can be contained in the glass using, for example, Ta 2 O 5 as a raw material.
  • the WO 3 component is a component that lowers the devitrification temperature of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the WO 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the WO 3 component can be contained in the glass using, for example, WO 3 as a raw material.
  • the optical glass of the present invention contains at least one of Nb 2 O 5 component, TiO 2 component, ZrO 2 component, Ta 2 O 5 component and WO 3 component as an essential component. Thereby, since a refractive index is raised, a desired high refractive index can be easily obtained.
  • the second optical glass of the present invention contains at least one of a TiO 2 component, a ZrO 2 component, a Ta 2 O 5 component, and a WO 3 component as an essential component. Thereby, it is possible to easily obtain a low partial dispersion ratio ( ⁇ g, F) close to the normal line, which is desired in the present invention, while the refractive index is increased.
  • the total content of the RO component with respect to the total mass of the second optical glass having the oxide-converted composition is preferably 1.0%, more preferably 3.0%, and most preferably 4.0%.
  • the upper limit is preferably 30.0%, more preferably 25.0%, still more preferably less than 20.0%, and most preferably less than 18.0%.
  • the content of the Na 2 O component is preferably 30.0%, more preferably 20.0%, and most preferably 15.0%.
  • the Na 2 O component is an optical glass having desired physical properties without containing can be prepared, by the content of Na 2 O component above 1.0%, the chemical glass The effect of enhancing durability can be easily achieved.
  • the content of the Na 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%, more preferably 2.0%, and most preferably 3.0%.
  • the content of the Na 2 O component is preferably 1.0% in order to increase the chemical durability of the glass, particularly the water resistance.
  • the Na 2 O component can be contained in the glass using, for example, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like as a raw material.
  • the Li 2 O component is a component that lowers the partial dispersion ratio ( ⁇ g, F) of the glass, lowers the devitrification temperature of the glass, and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention. It is. In particular, when the content of the Li 2 O component is 20.0% or less, solarization becomes difficult to increase, so that an optical glass with reduced solarization can be easily obtained. Therefore, the content of the Li 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • an optical glass having desired physical properties can be produced without containing a Li 2 O component, but a low glass transition point (Tg) is secured, and the refractive index and Abbe number of the glass are set to desired values.
  • the content of the Li 2 O component with respect to the total glass mass of the oxide conversion composition is preferably more than 2.0%, more preferably 3.0%, and most preferably 4%. 0.0% is the lower limit.
  • the content of the Li 2 O component with respect to the total glass mass of the oxide conversion composition is preferably more than 3.0%, more preferably 3.5%, most preferably 4%. 0.0% is the lower limit.
  • the Li 2 O component can be contained in the glass using, for example, Li 2 CO 3 , LiNO 3 , LiF or the like as a raw material.
  • K 2 O component is a component for glass transition point (Tg) lower, are optional components of the optical glass of the present invention.
  • Tg glass transition point
  • the content of the K 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 10.0%, and most preferably 2.0%.
  • the K 2 O component can be contained in the glass using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
  • the mass sum of the content of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is 30.0% or less. preferable. By making this mass sum 20.0% or less, it is possible to facilitate vitrification by suppressing an increase in the devitrification temperature of the glass. Therefore, the mass sum of the content of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 25.0%, and most preferably 20.0%. In the optical glass of the present invention, it is possible to produce an optical glass with reduced solarization without containing the Rn 2 O component, but the total content of the Rn 2 O component is 1.0% or more.
  • the glass transition point (Tg) can be made low and the glass which is easy to press-mold can be obtained. Therefore, the total content of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%, more preferably 2.0%, and most preferably 4.0%.
  • the mass ratio of the content of the Na 2 O component to the mass sum of the Rn 2 O component is preferably 0.30 or more.
  • the mass ratio (Na 2 O / Rn 2 O) in the oxide-converted composition is preferably 0.30, more preferably 0.40, and most preferably 0.50.
  • the upper limit of the mass ratio (Na 2 O / Rn 2 O) may be 1.00, but preferably 0 in terms of increasing the devitrification resistance of the glass by lowering the liquidus temperature of the glass. .95, more preferably 0.92, and most preferably 0.90.
  • the MgO component is a component that lowers the melting temperature of the glass and is an optional component in the optical glass of the present invention.
  • the chemical durability of the glass can be increased by setting the content of the MgO component to 20.0% or less. Therefore, the content of the MgO component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 10.0%, and most preferably 7.0%.
  • the MgO component can be contained in the glass using, for example, MgO, MgCO 3 , MgF 2 or the like as a raw material.
  • the CaO component is a component that lowers the devitrification temperature of the glass and is an optional component in the optical glass of the present invention.
  • the chemical durability of the glass can be increased by setting the content of the CaO component to 30.0% or less. Therefore, the content of the CaO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the content of the CaO component with respect to the total glass mass of the oxide conversion composition is preferably less than 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the CaO component can be contained in the glass using, for example, CaCO 3 , CaF 2 or the like as a raw material.
  • the SrO component is a component that lowers the devitrification temperature of the glass and adjusts the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the devitrification resistance of the glass can be enhanced by setting the content of the SrO component to 30.0% or less. Therefore, the content of the SrO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the SrO component can be contained in the glass using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
  • the BaO component is a component that lowers the devitrification temperature of the glass and adjusts the optical constant of the glass.
  • the devitrification resistance of the glass can be improved by setting the content of the BaO component to 30.0% or less. Therefore, the content of the BaO component with respect to the total glass mass of the oxide-converted composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the BaO component can be contained in the glass using, for example, BaCO 3 , Ba (NO 3 ) 2 or the like as a raw material.
  • the ZnO component is a component that lowers the devitrification temperature of the glass and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention.
  • the chemical durability of the glass can be enhanced by setting the content of the ZnO component to 30.0% or less.
  • the content of the ZnO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the ZnO component can be contained in the glass using, for example, ZnO, ZnF 2 or the like as a raw material.
  • the RO component (wherein R is one or more selected from the group consisting of Zn, Mg, Ca, Sr, and Ba) lowers the devitrification temperature of the glass as described above, and is refracted. It is a useful component for adjusting the rate.
  • the total content of these RO components is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the La 2 O 3 component is a component that increases the Abbe number of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the devitrification resistance of the glass can be improved by setting the content of the La 2 O 3 component to 50.0% or less. Therefore, the content of the La 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 50.0%, more preferably 30.0%, and most preferably 10.0%.
  • the La 2 O 3 component for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like can be used as a raw material.
  • the Gd 2 O 3 component is a component that increases the Abbe number of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the devitrification resistance of the glass can be enhanced by setting the content of the Gd 2 O 3 component to 30.0% or less. Therefore, the content of the Gd 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 15.0%, and most preferably 5.0%.
  • the Gd 2 O 3 component for example, Gd 2 O 3 , GdF 3 or the like can be used as a raw material.
  • the Y 2 O 3 component while increasing the refractive index of the glass, or to enhance the devitrification resistance of the glass, an optional component of the optical glass of the present invention.
  • the content of the Y 2 O 3 component 30.0% or less, an increase in the liquidus temperature of the glass can be suppressed, so that it is difficult to devitrify the glass when the glass is produced from a molten state. Can do. Therefore, the content of the Y 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 15.0%, and most preferably 5.0%.
  • the Y 2 O 3 component for example, Y 2 O 3 , YF 3 or the like can be used as a raw material.
  • the Yb 2 O 3 component is a component that realizes a high refractive index and improves properties such as hardness and Young's modulus.
  • the content of the Yb 2 O 3 component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the Lu 2 O 3 component is a component that realizes a high refractive index and improves properties such as hardness and Young's modulus.
  • the content of the Lu 2 O 3 component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the mass sum of the content of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, Yb and Lu) is 30.0%.
  • Ln is one or more selected from the group consisting of La, Gd, Y, Yb and Lu
  • the mass sum of the content of the Ln 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%. .
  • the B 2 O 3 component is a glass-forming oxide, a component useful for forming a glass skeleton, and an optional component in the optical glass of the present invention.
  • the content of the B 2 O 3 component is 40.0% or less, the refractive index of the glass is hardly lowered, and the internal transmittance in the visible light short wavelength region is hardly deteriorated. Therefore, the content of the B 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 15.0%.
  • the B 2 O 3 component can be contained in the glass using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 .10H 2 O, BPO 4 or the like as a raw material.
  • the GeO 2 component is a component that increases the refractive index of the glass and stabilizes the glass to reduce devitrification during molding, and is an optional component in the optical glass of the present invention.
  • the content of the GeO 2 component is preferably 30.0%, more preferably 15.0%, and most preferably 5.0%.
  • the GeO 2 component can be contained in the glass using, for example, GeO 2 as a raw material.
  • P 2 O 5 component is a component which enhances the stability of the glass, an optional component of the optical glass of the present invention.
  • the content of the P 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 7.0%, and most preferably 5.0%.
  • the P 2 O 5 component can be contained in the glass using, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 or the like as a raw material. .
  • the Al 2 O 3 component is a component that improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention.
  • the devitrification resistance of the glass can be increased by setting the content of the Al 2 O 3 component to 15.0% or less. Therefore, the upper limit of the content of the Al 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 10.0%, and most preferably 5.0%.
  • the Al 2 O 3 component can be contained in the glass using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
  • Ga 2 O 3 component is a component that raises the refractive index of the glass, an optional component of the optical glass of the present invention.
  • the content of the Ga 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 10.0%, and most preferably 5.0%.
  • the Ga 2 O 3 component can be contained in the glass using, for example, Ga 2 O 3 as a raw material.
  • the TeO 2 component is a component that increases the refractive index of the glass and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention.
  • the internal transmittance of the glass can be increased by reducing the coloring of the glass by setting the content of the TeO 2 component to 50.0% or less. Therefore, the content of the TeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 50.0%, more preferably 30.0%, and most preferably less than 10.0%.
  • the TeO 2 component can be contained in the glass using, for example, TeO 2 as a raw material.
  • the Bi 2 O 3 component is a component that increases the refractive index of the glass and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention.
  • the internal transmittance of the glass can be increased by reducing the coloring of the glass by setting the content of the Bi 2 O 3 component to 50.0% or less. Therefore, the content of the Bi 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 50.0%, more preferably 30.0%, and most preferably less than 10.0%.
  • the Bi 2 O 3 component can be contained in the glass using, for example, Bi 2 O 3 as a raw material.
  • the CeO 2 component is a component that adjusts the optical constant of the glass and improves the solarization of the glass, and is an optional component in the optical glass of the present invention.
  • the CeO 2 component content with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • the CeO 2 component is not substantially contained in terms of coloring of the glass.
  • the CeO 2 component can be contained in the glass using, for example, CeO 2 as a raw material.
  • the Sb 2 O 3 component is a component that accelerates defoaming of the glass and clarifies the glass, and is an optional component in the optical glass of the present invention.
  • the content of the Sb 2 O 3 component is preferably 1.0%, more preferably 0.8%, and most preferably 0.5%.
  • the Sb 2 O 3 component can be contained in the glass using, for example, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 ⁇ 5H 2 O, or the like as a raw material.
  • components of the fining defoaming of glass is not limited to the above Sb 2 O 3 ingredients may be used known refining agents and defoamers in the field of glass production, or a combination thereof .
  • optical glass of the present invention other components can be added as necessary within a range not impairing the properties of the glass.
  • the transition metal components such as V, Cr, Mn, Co, Ni, Cu, Ag, and Mo, excluding Ti, Zr, and Nb, are colored by the glass even when each of them is contained alone or in combination. Since it has a property of causing absorption at a specific wavelength in the visible range, it is preferable that the optical glass using the wavelength in the visible range does not substantially contain.
  • lead compounds such as PbO, arsenic compounds such as As 2 O 3 , and components of Th, Cd, Tl, Os, Be, and Se have been refraining from being used as harmful chemical substances in recent years.
  • Environmental measures are required not only in the manufacturing process but also in the processing process and disposal after commercialization. Therefore, when importance is placed on the environmental impact, it is preferable not to substantially contain them except for inevitable mixing.
  • the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking any special environmental measures.
  • the glass that is preferably used as the optical glass of the present invention cannot be expressed directly in the description of mol% because the composition is represented by mass% with respect to the total mass of the glass in terms of oxide composition, but is required in the present invention.
  • the composition expressed by mol% of each component present in the glass composition satisfying various properties generally takes the following values in terms of oxide conversion.
  • the optical glass of the present invention is produced, for example, as follows. That is, the raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a platinum crucible, a quartz crucible or an alumina crucible and roughly melted. Thereafter, it is placed in a gold crucible, platinum crucible, platinum alloy crucible or iridium crucible and melted in a temperature range of 1200 to 1300 ° C. for 2 to 4 hours. Then, finish stirring is performed to remove the striae, casting into a mold and slow cooling, thereby producing the optical glass of the present invention.
  • the optical glass of the present invention preferably has a predetermined refractive index and dispersion (Abbe number). More specifically, the refractive index (n d ) of the optical glass of the present invention is preferably 1.78, more preferably 1.80, and most preferably 1.82.
  • the upper limit of the refractive index (n d ) of the optical glass of the present invention is not particularly limited, but is generally 2.20 or less, more specifically 2.10 or less, and more specifically 2.00 or less. There are many cases.
  • the upper limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 30, more preferably 29, and most preferably 28.
  • the lower limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is not particularly limited, but is generally about 10 or more, more specifically 12 or more, and more specifically 15 or more. As a result, the degree of freedom in optical design is increased, and a large amount of light refraction can be obtained even if the device is made thinner.
  • the optical glass of the present invention has a low partial dispersion ratio ( ⁇ g, F). More specifically, the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ) in the range of ⁇ d ⁇ 25 with respect to the Abbe number ( ⁇ d ). ⁇ d +0.6346) ⁇ ( ⁇ g, F) ⁇ ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207) and ( ⁇ 2.50 ⁇ 10 ⁇ 10) in the range of ⁇ d > 25. ⁇ 3 ⁇ ⁇ d +0.6571) ⁇ ( ⁇ g, F) ⁇ ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207).
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass at ⁇ d ⁇ 25 is preferably ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6346), more preferably ( ⁇ 1.60 ⁇ 10 6). ⁇ 3 ⁇ ⁇ d +0.6366), most preferably ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6386).
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass at ⁇ d > 25 is preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571), more preferably ( ⁇ 2.50 ⁇ 10 ⁇ ). 3 ⁇ ⁇ d +0.6591), and most preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6611) is set as the lower limit.
  • the upper limit of the partial dispersion ratio ( ⁇ g, F) of the optical glass is preferably ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207), more preferably ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ).
  • the optical glass of the present invention preferably has high chemical durability, particularly water resistance.
  • the chemical durability (water resistance) of the glass powder method according to JOGIS06-1999 is preferably class 1 to 3.
  • water resistance is the durability against erosion of glass by water, and this water resistance is measured according to the Japan Optical Glass Industry Association Standard “Method for Measuring Chemical Durability of Optical Glass” JOGIS06-1999. Can do.
  • the chemical durability (water resistance) by the powder method is class 1 to 3” means that the chemical durability (water resistance) performed according to JOGIS06-1999 is the mass of the sample before and after the measurement.
  • the weight loss rate means less than 0.10% by mass.
  • class 1 the weight loss rate of the sample before and after the measurement is less than 0.05% by mass
  • class 2 is 0.05% by mass or more and less than 0.10% by mass
  • class 3 is 0%. It is 10 mass% or more and less than 0.25 mass%.
  • the optical glass of this invention has little coloring.
  • the optical glass of the present invention has a wavelength ( ⁇ 70 ) of 440 nm or less, more preferably 420 nm or less, most preferably, when the sample has a thickness of 10 mm and exhibits a spectral transmittance of 70%. Is 400 nm or less.
  • the wavelength ( ⁇ 5 ) exhibiting a spectral transmittance of 5% is 380 nm or less, more preferably 360 nm or less, and most preferably 350 nm or less.
  • this optical glass can be preferably used as a material for an optical element such as a lens.
  • the optical glass of the present invention preferably has a solarization of 5.0% or less.
  • the device incorporating the optical glass is unlikely to deteriorate in color balance even after long-term use.
  • the optical glass of the present invention is particularly effective when used at high temperatures such as in-vehicle use.
  • the upper limit of solarization of the optical glass of the present invention is preferably 5.0%, more preferably 4.8%, and most preferably 4.5%.
  • solarization refers to the amount of degradation in spectral transmittance at 450 nm when glass is irradiated with ultraviolet rays.
  • the “Optical Glass Industry Association Standard JOGIS 04-1994” According to “Measurement Method of Solarization of Glass”, the spectral transmittance before and after being irradiated with light from a high-pressure mercury lamp is measured.
  • the optical glass of the present invention preferably has a glass transition point (Tg) of 650 ° C. or lower.
  • Tg glass transition point
  • the upper limit of the glass transition point (Tg) of the optical glass of the present invention is preferably 650 ° C., more preferably 620 ° C., and most preferably 600 ° C.
  • the lower limit of the glass transition point (Tg) of the optical glass of the present invention is not particularly limited, but the glass transition point (Tg) of the glass obtained by the present invention is generally 100 ° C. or higher, specifically 150 ° C. or higher. More specifically, it is often 200 ° C. or higher.
  • the optical glass of the present invention preferably has a yield point (At) of 700 ° C. or lower.
  • the yield point (At) is one of indices indicating the softening property of glass, and is an index indicating a temperature close to the press molding temperature. Therefore, by using a glass having a yield point (At) of 700 ° C. or lower, press molding at a lower temperature becomes possible, and therefore press molding can be performed more easily.
  • the upper limit of the yield point (At) of the optical glass of the present invention is preferably 700 ° C., more preferably 670 ° C., and most preferably 650 ° C.
  • the lower limit of the yield point (At) of the optical glass of the present invention is not particularly limited, but the yield point (At) of the glass obtained by the present invention is generally 150 ° C. or higher, specifically 200 ° C. or higher, more specifically. Specifically, it is often 250 ° C. or higher.
  • a glass molded body can be produced from the produced optical glass using means such as reheat press molding or precision press molding. That is, a lens preform for mold press molding is manufactured from optical glass, and after reheat press molding is performed on the lens preform, a polishing process is performed to manufacture a glass molded body, for example, a polishing process is performed.
  • the glass preform can be produced by precision press molding the lens preform produced in this way.
  • the means for producing the glass molded body is not limited to these means.
  • the glass molded body produced in this manner is useful for various optical elements, and among them, it is particularly preferable to use for optical elements such as lenses and prisms.
  • optical elements such as lenses and prisms.
  • color bleeding due to chromatic aberration in the transmitted light of the optical system provided with the optical element is reduced. Therefore, when this optical element is used in a camera, a photographing object can be expressed more accurately, and when this optical element is used in a projector, a desired image can be projected with higher definition.
  • the glass of Examples (No. 1 to No. 250) and Comparative Examples (No. 1 to No. 2) of the present invention are all oxides, hydroxides, carbonates corresponding to the raw materials of the respective components, High-purity raw materials used in ordinary optical glass such as nitrates, fluorides, hydroxides, metaphosphoric acid compounds, etc. are selected, and the composition ratios of the examples and comparative examples shown in Tables 1 to 33 are obtained.
  • the glass used in this measurement was a glass that had been treated in a slow cooling furnace at a slow cooling rate of ⁇ 25 ° C./hr.
  • the chemical durability (water resistance) of the glass of Examples (No. 1 to No. 250) and Comparative Examples (No. 1 to No. 2) was determined by the Japan Optical Glass Industry Association standard “Chemicals of Optical Glass”. Durability measurement method "Measured according to JOGIS06-1999. That is, a glass sample crushed to a particle size of 425 to 600 ⁇ m was placed in a specific gravity bottle and placed in a platinum basket. The platinum basket was placed in a quartz glass round bottom flask containing pure water (pH 6.5-7.5) and treated in a boiling water bath for 60 minutes. Calculate the weight loss rate (mass%) of the glass sample after treatment.
  • this weight loss rate is less than 0.05, class 1; if the weight loss rate is less than 0.05 to 0.10, class 2; Is less than 0.10 to 0.25, class 3; when weight loss rate is less than 0.25 to 0.60, class 4; when weight loss rate is less than 0.60 to 1.10, class 5; The case where the rate was 1.10 or higher was classified as class 6. At this time, the smaller the number of classes, the better the water resistance of the glass.
  • the transmittances of the glasses of Examples (No. 1 to No. 250) and Comparative Examples (No. 1 to No. 2) were measured according to Japan Optical Glass Industry Association Standard JOGIS02.
  • the presence / absence and degree of coloration of the glass were determined by measuring the transmittance of the glass.
  • a face parallel polished product having a thickness of 10 ⁇ 0.1 mm was measured for a spectral transmittance of 200 to 800 nm in accordance with JISZ8722, and ⁇ 70 (wavelength when the transmittance was 70%) was obtained.
  • the solarization of the glass of the examples (No. 1 to No. 250) and the comparative examples (No. 1 to No. 2) is described in Japan Optical Glass Industry Association Standard JOGIS 04-1994 “Measurement Method of Solarization of Optical Glass”.
  • the change (%) in light transmittance at a wavelength of 450 nm before and after light irradiation was measured.
  • the light irradiation was performed by heating an optical glass sample to 100 ° C. and irradiating light with a wavelength of 450 nm for 4 hours using an ultrahigh pressure mercury lamp.
  • the glass transition point (Tg) and the yield point (At) of the glass of Examples (No. 1 to No. 250) and Comparative Examples (No. 1 to No. 2) were measured with a differential heat measuring device (manufactured by Netchigerebau) It was determined by performing measurement using STA 409 CD).
  • the sample particle size at the time of measurement was 425 to 600 ⁇ m, and the temperature elevation rate was 10 ° C./min.
  • the optical glass of the example of the present invention has a partial dispersion ratio ( ⁇ g, F) of ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ⁇ d ) when ⁇ d ⁇ 25. +0.6346) or more, more specifically ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6497) or more.
  • the partial dispersion ratio ( ⁇ g, F) is ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571) or more, more specifically ( ⁇ 2.50 ⁇ 10 ⁇ 3).
  • ⁇ ⁇ d +0.6670 or more.
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass of the example of the present invention is ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207) or less, more specifically ( ⁇ 4.21). ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7187) or less. Therefore, it was found that these partial dispersion ratios ( ⁇ g, F) are in a desired range.
  • the glasses of the comparative examples of the present invention all had a partial dispersion ratio ( ⁇ g, F) exceeding ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7187). Therefore, it was clarified that the optical glass of the example of the present invention has a smaller partial dispersion ratio ( ⁇ g, F) in the relational expression with the Abbe number ( ⁇ d ) than the glass of Comparative Example 2.
  • the optical glasses of the examples of the present invention all have a water resistance of class 1 to 3, more specifically class 1 to 2, and are within a desired range.
  • the water resistance class was class 3, and the water resistance was low. Therefore, it became clear that the optical glass of the example of the present invention has higher water resistance than the glasses of Comparative Examples 1 and 2.
  • the optical glass of the example of the present invention has a glass transition point (Tg) of 650 ° C. or lower, more specifically 587 ° C. or lower, and a yield point (At) of 700 ° C. or lower, more specifically 630.
  • Tg glass transition point
  • At yield point
  • the optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.78 or more, more specifically 1.83 or more, and this refractive index (n d ) of 2.20 or less. More specifically, it was 1.90 or less, and was within a desired range.
  • the optical glasses of the examples of the present invention each have an Abbe number ( ⁇ d ) of 10 or more, more specifically 22 or more, and this Abbe number ( ⁇ d ) of 30 or less, more specifically 27. And within the desired range.
  • the optical glass of the embodiment of the present invention is easy to perform mold press molding and has small chromatic aberration while the refractive index (n d ) and Abbe number ( ⁇ d ) are within the desired ranges. It was.
  • a preform for reheat press molding is produced using the optical glass of the embodiment of the present invention, and after performing the reheat press molding on the preform, grinding and polishing are performed to obtain the shape of the lens and the prism. And washed with water and an organic solvent to obtain a glass molded body.
  • a precision press molding preform is formed, the precision press molding preform is subjected to precision press molding processing, and washed with water and an organic solvent.
  • a glass molded body was obtained.
  • the glass molded body obtained from the optical glass of the example of the present invention was not fogged, and a glass molded body that could be used as a lens and a prism could be obtained more reliably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

 屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、部分分散比(θg,F)の小さい光学ガラスと、これを用いたレンズプリフォームを得る。 光学ガラスは、SiO成分を必須成分として含有し、Nb成分、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかをさらに含有し、1.78以上の屈折率(nd)及び30以下のアッベ数(ν)を有し、部分分散比(θg,F)がアッベ数(ν)との間で、ν≦25の範囲において(-1.60×10-3×ν+0.6346)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たし、ν>25の範囲において(-2.50×10-3×ν+0.6571)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たす。

Description

光学ガラス
 本発明は、光学ガラスに関する。
 デジタルカメラやビデオカメラ等の光学系は、その大小はあるが、収差と呼ばれるにじみを含んでいる。この収差は単色収差と色収差に分類され、このうち特に色収差は、光学系に使用されるレンズの材料特性に強く依存している。
 色収差は、一般に低分散の凸レンズと高分散の凹レンズとを組み合わせることで補正されるが、この組み合わせを用いた場合、赤色領域と緑色領域の収差の補正しかできないため、青色領域の収差が残る。この除去しきれない青色領域の収差を二次スペクトルと呼ぶ。二次スペクトルを補正するには、青色領域のg線(435.835nm)の動向を加味した光学設計を行う必要がある。このとき、光学設計で着目される光学特性の指標として、部分分散比(θg,F)が用いられている。上述の低分散のレンズと高分散のレンズとを組み合わせた光学系では、低分散側のレンズに部分分散比(θg,F)の大きい光学材料を用い、高分散側のレンズに部分分散比(θg,F)の小さい光学材料を用いることで、二次スペクトルが良好に補正される。
 部分分散比(θg,F)は、下式(1)により示される。
θg,F=(n-n)/(n-n)・・・・・・(1)
 光学ガラスには、短波長域の部分分散性を表す部分分散比(θg,F)とアッベ数(ν)との間に、およそ直線的な関係がある。この関係を表す直線は、部分分散比(θg,F)を縦軸に、アッベ数(ν)を横軸に採用した直交座標上で、NSL7とPBM2の部分分散比及びアッベ数をプロットした2点を結ぶ直線で表されるものであり、ノーマルラインと呼ばれている(図1参照)。ノーマルラインの基準となるノーマルガラスは、光学ガラスメーカー毎によっても異なるが、各社ともほぼ同等の傾きと切片で定義している。(NSL7とPBM2は株式会社オハラ社製の光学ガラスであり、PBM2のアッベ数(ν)は36.3,部分分散比(θg,F)は0.5828、NSL7のアッベ数(ν)は60.5、部分分散比(θg,F)は0.5436である。)
 ここで、高分散を有するガラスとして、例えば特許文献1に示されるような光学ガラスが知られている。
特再公表WO04/110942号公報
 しかし、特許文献1の光学ガラスは、部分分散比が小さくなく、前記二次スペクトルを補正するレンズとして使用するには十分でなかった。すなわち、高分散で且つ部分分散比(θg,F)の小さい光学ガラスが求められている。
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、部分分散比(θg,F)の小さい光学ガラスと、これを用いたレンズプリフォームを得ることにある。
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、SiO成分を必須成分として用い、これにNb成分、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかを併用することによって、ガラスの高屈折率化が図られながらも、ガラスの部分分散比(θg,F)がアッベ数(ν)との間で所望の関係を有し、且つガラスの化学的耐久性、特に耐水性が高められることを見出し、本発明を完成するに至った。
 より具体的には、SiO成分、Nb成分及びNaO成分を併用することによって、ガラスの高屈折率化が図られながらも、ガラスの部分分散比(θg,F)がアッベ数(ν)との間で所望の関係を有し、且つガラスの化学的耐久性、特に耐水性が高められることを見出した。
 一方、SiO成分と、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかと、を併用することによっても、ガラスの高屈折率化が図られながらも、ガラスの部分分散比(θg,F)がアッベ数(ν)との間で所望の関係を有し、且つガラスの化学的耐久性、特に耐水性が高められることを見出した。具体的には、本発明は以下のようなものを提供する。
 (1) SiO成分を必須成分として含有し、Nb成分、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかをさらに含有し、1.78以上の屈折率(nd)及び30以下のアッベ数(ν)を有し、部分分散比(θg,F)がアッベ数(ν)との間で、ν≦25の範囲において(-1.60×10-3×ν+0.6346)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たし、ν>25の範囲において(-2.50×10-3×ν+0.6571)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たす光学ガラス。
 (2) SiO成分、Nb成分及びNaO成分を必須成分として含有する(1)記載の光学ガラス。
 (3) 酸化物換算組成のガラス全質量に対して、質量%でSiO成分を1.0%以上60.0%以下含有し、Nb成分の含有量が1.0%以上65.0%以下であり、NaO成分の含有量が1.0%以上30.0%以下である(2)記載の光学ガラス。
 (4) SiO成分を必須成分として含有し、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかをさらに含有する(1)記載の光学ガラス。
 (5) 酸化物換算組成のガラス全質量に対して、質量%でSiO成分を1.0%以上60.0%以下含有し、質量和(TiO+ZrO+Ta+WO)が1.0%以上30.0%以下である(4)記載の光学ガラス。
 (6) 酸化物換算組成のガラス全質量に対して、質量和(TiO+ZrO+Ta+WO)が20.0%未満である(5)記載の光学ガラス。
 (7) 酸化物換算組成のガラス全質量に対して、質量%で、Nb成分の含有量が65.0%以下である(4)から(6)のいずれか記載の光学ガラス。
 (8) 酸化物換算組成のガラス全質量に対して、質量%でNaO成分を1.0%以上30.0%以下さらに含有する(4)から(7)のいずれか記載の光学ガラス。
 (9) 酸化物換算組成のガラス全質量に対して、質量%で
LiO成分  0~20.0%、及び/又は
O成分  0~20.0%
の各成分をさらに含有する(1)又は(8)記載の光学ガラス。
 (10) 酸化物換算組成のガラス全質量に対して、質量%でLiO成分の含有量が2.0%より多い(9)記載の光学ガラス。
 (11) 酸化物換算組成のガラス全質量に対して、質量%でLiO成分の含有量が3.0%より多い(9)記載の光学ガラス。
 (12) 酸化物換算組成のガラス全質量に対するRnO成分(式中、Rnは、Li、Na及びKからなる群より選択される1種以上である)の質量和が1.0%以上30.0%以下である(1)から(11)のいずれか記載の光学ガラス。
 (13) 酸化物換算組成における質量比(NaO/RnO)が0.30以上である(12)記載の光学ガラス。
 (14) 酸化物換算組成のガラス全質量に対して、質量%でTiO成分の含有量が40.0%以下である(1)から(13)のいずれか記載の光学ガラス。
 (15) 酸化物換算組成のガラス全質量に対して、質量%でTiO成分の含有量が12.0%未満である(14)記載の光学ガラス。
 (16) 酸化物換算組成のガラス全質量に対して、質量%で
ZrO成分  0~25.0%、及び/又は
Ta成分  0~20.0%、及び/又は
WO成分  0~20.0%
の各成分を含有する(1)から(15)のいずれか記載の光学ガラス。
 (17) 酸化物換算組成のガラス全質量に対して、質量%で
MgO成分  0~20.0%、及び/又は
CaO成分  0~30.0%、及び/又は
SrO成分  0~30.0%、及び/又は
BaO成分  0~30.0%、及び/又は
ZnO成分  0~30.0%
の各成分をさらに含有する(1)から(16)のいずれか記載の光学ガラス。
 (18) 酸化物換算組成のガラス全質量に対するRO成分(式中、Rは、Mg、Ca、Sr、Ba及びZnからなる群より選択される1種以上である)の質量和が30.0%以下である(17)記載の光学ガラス。
 (19) 酸化物換算組成のガラス全質量に対して、質量%で
La成分  0~50.0%、及び/又は
Gd成分  0~30.0%、及び/又は
成分  0~30.0%、及び/又は
Yb成分  0~10.0%、及び/又は
Lu成分  0~10.0%
の各成分をさらに含有する(1)から(18)のいずれか記載の光学ガラス。
 (20) 酸化物換算組成のガラス全質量に対するLn成分(式中、Lnは、La、GdY、Yb及びLuからなる群より選択される1種以上である)の質量和が30.0%以下である(19)記載の光学ガラス。
 (21) 酸化物換算組成のガラス全質量に対して、質量%で
成分  0~40.0%、及び/又は
GeO成分  0~30.0%、及び/又は
成分  0~10.0%、及び/又は
Al成分  0~15.0%、及び/又は
Ga成分  0~20.0%、及び/又は
TeO成分  0~50.0%、及び/又は
Bi成分  0~50.0%、及び/又は
CeO成分  0~10.0%、及び/又は
Sb成分  0~1.0%
の各成分をさらに含有する(1)から(20)のいずれか記載の光学ガラス。
 (22) 1.78以上2.20以下の屈折率(nd)と、10以上30以下のアッベ数(ν)を有する(1)から(21)のいずれか記載の光学ガラス。
 (23) 粉末法による化学的耐久性(耐水性)がクラス1~3である(1)から(22)のいずれか記載の光学ガラス。
 (24) (1)から(23)のいずれか記載の光学ガラスを母材とする光学素子。
 (25) (1)から(23)のいずれか記載の光学ガラスからなるレンズプリフォーム。
 (26) (1)から(23)のいずれか記載の光学ガラスからなるモールドプレス成形用のレンズプリフォーム。
 (27) (25)又は(26)記載のレンズプリフォームを成形してなる光学素子。
 本発明によれば、SiO成分を必須成分として含有し、Nb成分、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかをさらに含有することによって、ガラスの高屈折率化が図られながらも、ガラスの部分分散比(θg,F)がアッベ数(ν)との間で所望の関係を有する光学ガラスと、これを用いたレンズプリフォームを得ることができる。
 より具体的には、SiO成分、Nb成分及びNaO成分を併用することによって、ガラスの高屈折率化が図られながらも、ガラスの部分分散比(θg,F)がアッベ数(ν)との間で所望の関係を有し、且つ、ガラスの化学的耐久性、特に耐水性が高められる。また、SiO成分、Nb成分及びNaO成分を併用することによって、ガラスのガラス転移点(Tg)が低くなり、ガラスの着色が低減される。
 また、SiO成分と、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかと、を併用することによって、ガラスの高屈折率化が図られながらも、ガラスの部分分散比(θg,F)がアッベ数(ν)との間で所望の関係を有し、且つガラスの化学的耐久性、特に耐水性が高められる。また、SiO成分と、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかと、を併用することによって、ガラスのガラス転移点(Tg)が低くなり、ガラスの着色が低減される。
 従って、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、モールドプレス成形を行い易く、研磨加工や洗浄による白濁が少なく、色収差が小さく、且つ可視光に対して高い透明性を有する光学ガラスと、これを用いたレンズプリフォームを得ることができる。
部分分散比(θg,F)が縦軸でありアッベ数(ν)が横軸である直交座標に表される、ノーマルラインを示す図である。
 本発明の第1の光学ガラスは、SiO成分、Nb成分及びNaO成分を必須成分として含有し、1.78以上の屈折率(nd)及び30以下のアッベ数(ν)を有し、部分分散比(θg,F)がアッベ数(ν)との間で、ν≦25の範囲において(-1.60×10-3×ν+0.6346)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たし、ν>25の範囲において(-2.50×10-3×ν+0.6571)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たす。SiO成分、Nb成分及びNaO成分を併用することによって、ガラスが高い屈折率を有しながらも、ガラス転移点(Tg)が低くなり、部分分散比(θg,F)がノーマルラインに近付けられ、ガラスの可視光に対する透過率が高められ、且つガラスの化学的耐久性、特に耐水性が高められる。このため、1.78以上の屈折率(nd)及び30以下のアッベ数(ν)を有しながらも、モールドプレス成形を行い易く、研磨加工や洗浄による白濁が少なく、色収差が小さく、且つ可視光に対して高い透明性を有する光学ガラスと、これを用いたレンズプリフォームを得ることができる。
 また、本発明の第2の光学ガラスは、SiO成分を必須成分として含有し、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかをさらに含有し、1.78以上の屈折率(nd)及び30以下のアッベ数(ν)を有し、部分分散比(θg,F)がアッベ数(ν)との間で、ν≦25の範囲において(-1.60×10-3×ν+0.6346)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たし、ν>25の範囲において(-2.50×10-3×ν+0.6571)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たす。SiO成分と、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかと、を併用することによって、ガラスが高い屈折率を有しながらも、ガラス転移点(Tg)が低くなり、部分分散比(θg,F)がノーマルラインに近付けられ、ガラスの可視光に対する透過率が高められ、且つガラスの化学的耐久性、特に耐水性が高められる。このため、1.78以上の屈折率(nd)及び30以下のアッベ数(ν)を有しながらも、モールドプレス成形を行い易く、研磨加工や洗浄による白濁が少なく、且つ色収差が小さい光学ガラスと、これを用いたレンズプリフォームを得ることができる。
 以下、本発明の光学ガラスの実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。
[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有率は、特に断りがない場合、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」は、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が溶融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
<必須成分、任意成分について>
 SiO成分は、ガラス形成酸化物であり、ガラスの骨格を形成する為に有用な成分である。特に、SiO成分の含有量を1.0%以上にすることで、安定なガラスが得られる程度にガラスの網目構造が増加するため、ガラスの耐失透性を高めることができる。一方、SiO成分の含有量を60.0%以下にすることで、ガラスの屈折率が低下し難くなり、所望の屈折率を有する光学ガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対するSiO成分の含有量は、好ましくは1.0%、より好ましくは5.0%、最も好ましくは10.0%を下限とし、好ましくは60.0%、より好ましくは50.0%、さらに好ましくは40.0%、最も好ましくは30.0%を上限とする。SiO成分は、原料として例えばSiO、KSiF、NaSiF等を用いてガラス内に含有することができる。
 Nb成分は、ガラスの部分分散比(θg,F)を低下させ、ガラスの屈折率を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Nb成分の含有量を65.0%以下にすることで、耐失透性の低下が抑えられ、且つ所望の分散を有するガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対するNb成分の含有量は、好ましくは65.0%、より好ましくは60.0%、最も好ましくは58.0%を上限とする。なお、本発明でNb成分を含有しなくとも、所望の光学特性を有する光学ガラスを得ることはできるが、Nb成分を含有することで、所望の屈折率及び部分分散比(θg,F)を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するNb成分の含有量は、好ましくは1.0%、より好ましくは5.0%、さらに好ましくは10.0%、最も好ましくは15.0%を下限とする。特に、Nb成分を必須成分として含有する第1の光学ガラスでは、Nb成分の含有量を10.0%以上にすることが好ましい。Nb成分は、原料として例えばNb等を用いてガラス内に含有することができる。
 TiO成分は、ガラスの屈折率を高め、アッベ数を低下させる成分であり、本発明の光学ガラス中の任意成分である。TiO成分の含有量を40.0%以下にすることで、ガラスへの着色を低減することで、特に可視短波長(500nm以下)における内部透過率を悪化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。特に、λ70(透過率70%時の波長)が500nm以下となるような高い透明性を有するガラスが得られる観点では、TiO成分の含有量を12.0%未満とすることが好ましい。この場合、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは12.0%未満、より好ましくは11.0%未満、最も好ましくは10.0%未満とする。なお、本発明ではTiO成分を含有しなくとも、所望の光学特性を有する光学ガラスを得ることはできるが、TiO成分を含有することで、ガラスの屈折率をより高めることができる。従って、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは0%を超え、より好ましくは0.1%、最も好ましくは0.5%を下限とする。TiO成分は、原料として例えばTiO等を用いてガラス内に含有することができる。
 ZrO成分は、ガラスの液相温度を下げることで耐失透性を高め、且つガラスの化学的耐久性を改善する成分である。また、ガラスの部分分散比(θg,F)を低下させる効果のある任意成分でもある。特に、ZrO成分の含有量を25.0%以下にすることで、ガラスの化学的耐久性を高めることができる。従って、酸化物換算組成のガラス全質量に対するZrO成分の含有量は、好ましくは25.0%、より好ましくは20.0%、最も好ましくは15.0%を上限とする。ZrO成分は、原料として例えばZrO、ZrF等を用いてガラス内に含有することができる。
 Ta成分は、ガラスの屈折率を高めつつ、ガラスの失透温度を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、Ta成分の含有量を20.0%以下にすることで、ガラスの耐失透性を維持することができる。従って、酸化物換算組成のガラス全質量に対するTa成分の含有量は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。Ta成分は、原料として例えばTa等を用いてガラス内に含有することができる。
 WO成分は、ガラスの屈折率を高めつつ、ガラスの失透温度を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、WO成分の含有量を20.0%以下にすることで、特に可視短波長(500nm以下)における透過率を悪化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するWO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。WO成分は、原料として例えばWO等を用いてガラス内に含有することができる。
 本発明の光学ガラスは、Nb成分、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかを必須成分として含有する。これにより、屈折率が高められるため、所望の高屈折率を得易くできる。特に、本発明の第2の光学ガラスでは、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかを必須成分として含有する。これにより、屈折率が高められながらも、本発明で所望とされる、ノーマルラインに近付けられた低い部分分散比(θg,F)を得易くできる。一方で、TiO成分、ZrO成分、Ta成分及びWO成分の合計含有量が多すぎると、ガラスの耐失透性が悪化し易くなる。従って、酸化物換算組成の第2の光学ガラスの全質量に対するRO成分の合計含有量は、好ましくは1.0%、より好ましくは3.0%、最も好ましくは4.0%を下限とし、好ましくは30.0%、より好ましくは25.0%を上限とし、さらに好ましくは20.0%未満とし、最も好ましくは18.0%未満とする。
 NaO成分は、ガラスの化学的耐久性、特に耐水性を高める成分であるとともに、ガラス転移点(Tg)を低くする成分である。特に、NaO成分の含有量を30.0%以下にすることで、ガラスの失透温度の上昇を抑えてガラス化を容易にすることができる。従って、酸化物換算組成のガラス全質量に対するNaO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは15.0%を上限とする。本発明において、NaO成分は含有しなくとも所望の物性を有する光学ガラスは製造することはできるが、NaO成分の含有量を1.0%以上にすることで、ガラスの化学的耐久性を高める効果を奏し易くできる。従って、酸化物換算組成のガラス全質量に対するNaO成分の含有量は、好ましくは1.0%、より好ましくは2.0%、最も好ましくは3.0%を下限とする。特に、NaO成分を必須成分として含有する第1の光学ガラスでは、ガラスの化学的耐久性、特に耐水性を高めるために、NaO成分の含有量を1.0%ことが好ましい。NaO成分は、原料として例えばNaCO、NaNO、NaF、NaSiF等を用いてガラス内に含有することができる。
 LiO成分は、ガラスの部分分散比(θg,F)を低下させ、ガラスの失透温度を下げ、ガラス転移点(Tg)を低くする成分であり、本発明の光学ガラス中の任意成分である。特に、LiO成分の含有量を20.0%以下にすることで、ソラリゼーションが高まり難くなるため、ソラリゼーションの低減された光学ガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対するLiO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。本発明において、LiO成分を含有しなくとも所望の物性を有する光学ガラスは製造することはできるが、低いガラス転移点(Tg)を確保し、ガラスの屈折率及びアッベ数を所望の値に調整し易くするためには、LiO成分を含有することが好ましい。特に、第1の光学ガラスでは、酸化物換算組成のガラス全質量に対するLiO成分の含有量は、好ましくは2.0%より多く含有し、より好ましくは3.0%、最も好ましくは4.0%を下限とする。一方、第2の光学ガラスでは、酸化物換算組成のガラス全質量に対するLiO成分の含有量は、好ましくは3.0%より多く含有し、より好ましくは3.5%、最も好ましくは4.0%を下限とする。LiO成分は、原料として例えばLiCO、LiNO、LiF等を用いてガラス内に含有することができる。
 KO成分は、ガラス転移点(Tg)を低くする成分であり、本発明の光学ガラス中の任意成分である。特に、KO成分の含有量を20.0%以下にすることで、ガラスの失透温度の上昇を抑えてガラス化を容易にすることができる。従って、酸化物換算組成のガラス全質量に対するKO成分の含有量は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは2.0%を上限とする。KO成分は、原料として例えばKCO、KNO、KF、KHF、KSiF等を用いてガラス内に含有することができる。
 本発明の光学ガラスは、RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の質量和が、30.0%以下であることが好ましい。この質量和を20.0%以下にすることで、ガラスの失透温度の上昇を抑えてガラス化を容易にすることができる。従って、酸化物換算組成のガラス全質量に対するRnO成分の含有量の質量和は、好ましくは30.0%、より好ましくは25.0%、最も好ましくは20.0%を上限とする。なお、本発明の光学ガラスでは、RnO成分を含有しなくともソラリゼーションの低減された光学ガラスを作製することは可能であるが、RnO成分の合計含有量を1.0%以上にすることで、ガラス転移点(Tg)を低くしてプレス成形を行い易いガラスを得ることができる。従って、酸化物換算組成のガラス全質量に対するRnO成分の合計含有量は、好ましくは1.0%、より好ましくは2.0%、最も好ましくは4.0%を下限とする。
 本発明の光学ガラスでは、RnO成分の質量和に対するNaO成分の含有量の質量比が0.30以上であることが好ましい。これにより、ガラスの化学的耐久性が高められるため、ガラスの加工時及び洗浄時におけるガラスの白濁を低減できる。従って、酸化物換算組成における質量比(NaO/RnO)は、好ましくは0.30、より好ましくは0.40、最も好ましくは0.50を下限とする。なお、質量比(NaO/RnO)の上限は1.00であってもよいが、特にガラスの液相温度を低くしてガラスの耐失透性を高める点では、好ましくは0.95、より好ましくは0.92、最も好ましくは0.90を上限とする。
 MgO成分は、ガラスの溶融温度を低下する成分であり、本発明の光学ガラス中の任意成分である。特に、MgO成分の含有量を20.0%以下にすることで、ガラスの化学的耐久性を高めることができる。従って、酸化物換算組成のガラス全質量に対するMgO成分の含有量は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは7.0%を上限とする。MgO成分は、原料として例えばMgO、MgCO、MgF等を用いてガラス内に含有することができる。
 CaO成分は、ガラスの失透温度を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、CaO成分の含有量を30.0%以下にすることで、ガラスの化学的耐久性を高めることができる。従って、酸化物換算組成のガラス全質量に対するCaO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。特に、得られるガラスの失透を低減する観点では、CaO成分の含有量をより低減することが好ましい。この場合、酸化物換算組成のガラス全質量に対するCaO成分の含有量は、好ましくは10.0%未満とし、より好ましくは8.0%、最も好ましくは5.0%を上限とする。CaO成分は、原料として例えばCaCO、CaF等を用いてガラス内に含有することができる。
 SrO成分は、ガラスの失透温度を下げ、且つガラスの屈折率を調整する成分であり、本発明の光学ガラス中の任意成分である。特に、SrO成分の含有量を30.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するSrO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。SrO成分は、原料として例えばSr(NO、SrF等を用いてガラス内に含有することができる。
 BaO成分は、ガラスの失透温度を下げ、且つガラスの光学定数を調整する成分である。特に、BaO成分の含有量を30.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するBaO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。BaO成分は、原料として例えばBaCO、Ba(NO等を用いてガラス内に含有することができる。
 ZnO成分は、ガラスの失透温度を下げ、且つガラス転移点(Tg)を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、ZnO成分の含有量を30.0%以下にすることで、ガラスの化学的耐久性を高めることができる。従って、酸化物換算組成のガラス全質量に対するZnO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。ZnO成分は、原料として例えばZnO、ZnF等を用いてガラス内に含有することができる。
 本発明の光学ガラスでは、RO成分(式中、RはZn、Mg、Ca、Sr、Baからなる群より選択される1種以上)は、上述のようにガラスの失透温度を下げ、屈折率を調整するために有用な成分である。しかし、これらRO成分の合計含有量が多すぎると、ガラスの耐失透性が悪化し易くなる。従って、酸化物換算組成のガラス全質量に対するRO成分の合計含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。
 La成分は、ガラスの屈折率を高めつつ、ガラスのアッベ数を高める成分であり、本発明の光学ガラス中の任意成分である。特に、La成分の含有量を50.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するLa成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは10.0%を上限とする。La成分は、原料として例えばLa、La(NO・XHO(Xは任意の整数)等を用いることができる。
 Gd成分は、ガラスの屈折率を高めつつ、ガラスのアッベ数を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Gd成分の含有量を30.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するGd成分の含有量は、好ましくは30.0%、より好ましくは15.0%、最も好ましくは5.0%を上限とする。Gd成分は、原料として例えばGd、GdF等を用いることができる。
 Y成分は、ガラスの屈折率を高めつつ、ガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Y成分の含有量を30.0%以下にすることで、ガラスの液相温度の上昇が抑えられるため、溶融状態からガラスを作製したときにガラスを失透し難くすることができる。従って、酸化物換算組成のガラス全質量に対するY成分の含有量は、好ましくは30.0%、より好ましくは15.0%、最も好ましくは5.0%を上限とする。Y成分は、原料として例えばY、YF等を用いることができる。
 Yb成分は、高屈折率を実現し、且つ硬度やヤング率等の特性を向上する成分である。特に、Yb成分の含有率を10.0%以下にすることで、ガラスの分散の低下を抑制し、且つガラス形成時における耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するYb成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。
 Lu成分は、高屈折率を実現し、且つ硬度やヤング率等の特性を向上する成分である。特に、Lu成分の含有率を10.0%以下にすることで、ガラスの分散の低下を抑制し、且つガラス形成時における耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するLu成分の含有率は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。
 本発明の光学ガラスでは、Ln成分(式中、LnはLa、Gd、Y、Yb及びLuからなる群より選択される1種以上)の含有量の質量和が、30.0%以下であることが好ましい。この質量和を30.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するLn成分の含有量の質量和は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。
 B成分は、ガラス形成酸化物であり、ガラスの骨格を形成する為に有用な成分であり、本発明の光学ガラス中の任意成分である。特に、B成分の含有量を40.0%以下にすることで、ガラスの屈折率が低下し難くなり、可視光短波長領域における内部透過率が悪化し難くなる。従って、酸化物換算組成のガラス全質量に対するB成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは15.0%を上限とする。B成分は、原料として例えばHBO、Na、Na・10HO、BPO等を用いてガラス内に含有することができる。
 GeO成分は、ガラスの屈折率を高め、且つガラスを安定化させて成形時の失透を低減する成分であり、本発明の光学ガラス中の任意成分である。特に、GeO成分の含有量を30.0%以下にすることで、高価なGeO成分の使用量が低減されるため、ガラスの材料コストを低減することができる。従って、酸化物換算組成のガラス全質量に対するGeO成分の含有量は、好ましくは30.0%、より好ましくは15.0%、最も好ましくは5.0%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラス内に含有することができる。
 P成分は、ガラスの安定性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、P成分の含有量を10.0%以下にすることで、P成分の過剰な含有による失透傾向が低減されるため、ガラスの安定性を高めることができる。従って、酸化物換算組成のガラス全質量に対するP成分の含有量は、好ましくは10.0%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。P成分は、原料として例えばAl(PO、Ca(PO、Ba(PO、BPO、HPO等を用いてガラス内に含有することができる。
 Al成分は、ガラスの化学的耐久性を改善する成分であり、本発明の光学ガラス中の任意成分である。特に、Al成分の含有量を15.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するAl成分の含有量は、好ましくは15.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。Al成分は、原料として例えばAl、Al(OH)、AlF等を用いてガラス内に含有することができる。
 Ga成分は、ガラスの屈折率を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Ga成分の含有量を20.0%以下にすることで、高価なGa成分の使用量が低減されるため、ガラスの材料コストを低減することができる。従って、酸化物換算組成のガラス全質量に対するGa成分の含有量は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。Ga成分は、原料として例えばGa等を用いてガラス内に含有することができる。
 TeO成分は、ガラスの屈折率を上げ、且つガラス転移点(Tg)を低くする成分であり、本発明の光学ガラス中の任意成分である。特に、TeO成分の含有量を50.0%以下にすることで、ガラスの着色を低減することで、ガラスの内部透過率を高めることができる。従って、酸化物換算組成のガラス全質量に対するTeO成分の含有量は、好ましくは50.0%、より好ましくは30.0%を上限とし、最も好ましくは10.0%未満とする。TeO成分は、原料として例えばTeO等を用いてガラス内に含有することができる。
 Bi成分は、ガラスの屈折率を上げ、且つガラス転移点(Tg)を低くする成分であり、本発明の光学ガラス中の任意成分である。特に、Bi成分の含有量を50.0%以下にすることで、ガラスの着色を低減することで、ガラスの内部透過率を高めることができる。従って、酸化物換算組成のガラス全質量に対するBi成分の含有量は、好ましくは50.0%、より好ましくは30.0%を上限とし、最も好ましくは10.0%未満とする。Bi成分は、原料として例えばBi等を用いてガラス内に含有することができる。
 CeO成分は、ガラスの光学定数を調整し、ガラスのソラリゼーションを改善する成分であり、本発明の光学ガラス中の任意成分である。特に、CeO成分の含有量を10.0%以下にすることで、ガラスのソラリゼーションを低下させることができる。従って、酸化物換算組成のガラス全質量に対するCeO成分の含有量は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。但し、CeO成分を含有すると可視域の特定の波長に吸収が生じ易くなるため、ガラスの着色の面では、CeO成分を実質的に含まないことが好ましい。CeO成分は、原料として例えばCeO等を用いてガラス内に含有することができる。
 Sb成分は、ガラスの脱泡を促進し、ガラスを清澄する成分であり、本発明の光学ガラス中の任意成分である。特に、Sb成分の含有率を1.0%以下にすることで、ガラス溶融時における過度の発泡を生じ難くすることができ、Sb成分が溶解設備(特にPt等の貴金属)と合金化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するSb成分の含有率は、好ましくは1.0%、より好ましくは0.8%、最も好ましくは0.5%を上限とする。特に、光学ガラスの環境上の影響を重視する場合には、Sb成分を含有しないことが好ましい。Sb成分は、原料として例えばSb、Sb、NaSb・5HO等を用いてガラス内に含有することができる。
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤や脱泡剤、或いはそれらの組み合わせを用いることができる。
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
 本発明の光学ガラスには、他の成分をガラスの特性を損なわない範囲で必要に応じ、添加することができる。
 ただし、Ti、Zr、Nbを除く、V、Cr、Mn、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。
 さらに、PbO等の鉛化合物及びAs等のヒ素化合物、並びに、Th、Cd、Tl、Os、Be、Seの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、不可避な混入を除き、これらを実質的に含有しないことが好ましい。これにより、光学ガラスに環境を汚染する物質が実質的に含まれなくなる。そのため、特別な環境対策上の措置を講じなくとも、この光学ガラスを製造し、加工し、及び廃棄することができる。
 本発明の光学ガラスとして好ましく用いられるガラスは、その組成が酸化物換算組成のガラス全質量に対する質量%で表されているため直接的にモル%の記載に表せるものではないが、本発明において要求される諸特性を満たすガラス組成物中に存在する各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
SiO成分 1.0~70.0モル%
並びに
TiO成分 0~50.0モル%及び/又は
ZrO成分 0~20.0モル%及び/又は
Ta成分 0~5.0モル%及び/又は
WO成分 0~10.0モル%及び/又は
Nb成分 0~25.0モル%
NaO成分 0~45.0モル%及び/又は
LiO成分 0~55.0モル%及び/又は
O成分 0~20.0モル%及び/又は
MgO成分 0~45.0モル%及び/又は
CaO成分 0~55.0モル%及び/又は
SrO成分 0~30.0モル%及び/又は
BaO成分 0~20.0モル%及び/又は
ZnO成分 0~40.0モル%及び/又は
La成分 0~15.0モル%及び/又は
Gd成分 0~10.0モル%及び/又は
成分 0~15.0モル%及び/又は
Yb成分 0~3.0モル%及び/又は
Lu成分 0~3.0モル%及び/又は
成分 0~55.0モル%及び/又は
GeO成分 0~30.0モル%及び/又は
Al成分 0~15.0モル%及び/又は
Ga成分 0~10.0モル%及び/又は
TeO成分 0~30.0モル%及び/又は
Bi成分 0~20.0モル%及び/又は
CeO成分 0~3.0モル%及び/又は
Sb成分 0~0.3モル%
 特に、第1の光学ガラスでは、
SiO成分 1.0~70.0モル%、
Nb成分 3.0~25.0モル%及び
NaO成分 0.1~45.0モル%
並びに
LiO成分 0~55.0モル%及び/又は
O成分 0~20.0モル%及び/又は
TiO成分 0~50.0モル%及び/又は
ZrO成分 0~20.0モル%及び/又は
Ta成分 0~5.0モル%及び/又は
WO成分 0~10.0モル%及び/又は
MgO成分 0~45.0モル%及び/又は
CaO成分 0~55.0モル%及び/又は
SrO成分 0~30.0モル%及び/又は
BaO成分 0~20.0モル%及び/又は
ZnO成分 0~40.0モル%及び/又は
La成分 0~15.0モル%及び/又は
Gd成分 0~10.0モル%及び/又は
成分 0~15.0モル%及び/又は
Yb成分 0~3.0モル%及び/又は
Lu成分 0~3.0モル%及び/又は
成分 0~55.0モル%及び/又は
GeO成分 0~30.0モル%及び/又は
Al成分 0~15.0モル%及び/又は
Ga成分 0~10.0モル%及び/又は
TeO成分 0~30.0モル%及び/又は
Bi成分 0~20.0モル%及び/又は
CeO成分 0~3.0モル%及び/又は
Sb成分 0~0.3モル%
の値を取ることが多い。
[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、各成分が所定の含有率の範囲内になるように上記原料を均一に混合し、作製した混合物を白金坩堝、石英坩堝又はアルミナ坩堝に投入して粗溶融する。その後、金坩堝、白金坩堝、白金合金坩堝又はイリジウム坩堝に入れて1200~1300℃の温度範囲で2~4時間溶融し、攪拌均質化して泡切れ等を行った後、1100~1200℃の温度に下げてから仕上げ攪拌を行って脈理を除去し、金型に鋳込んで徐冷することにより、本発明の光学ガラスが作製される。
<物性>
 本発明の光学ガラスは、所定の屈折率及び分散(アッベ数)を有することが好ましい。より具体的には、本発明の光学ガラスの屈折率(n)は、好ましくは1.78、より好ましくは1.80、最も好ましくは1.82を下限とする。ここで、本発明の光学ガラスの屈折率(n)の上限は特に限定されないが、概ね2.20以下、より具体的には2.10以下、さらに具体的には2.00以下であることが多い。一方、本発明の光学ガラスのアッベ数(ν)は、好ましくは30、より好ましくは29、最も好ましくは28を上限とする。ここで、本発明の光学ガラスのアッベ数(ν)の下限は特に限定されないが、概ね10以上、より具体的には12以上、さらに具体的には15以上であることが多い。これらにより、光学設計の自由度が広がり、さらに素子の薄型化を図っても大きな光の屈折量を得ることができる。
 また、本発明の光学ガラスは、低い部分分散比(θg,F)を有する。より具体的には、本発明の光学ガラスの部分分散比(θg,F)は、アッベ数(ν)との間で、ν≦25の範囲において(-1.60×10-3×ν+0.6346)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たし、且つ、ν>25の範囲において(-2.50×10-3×ν+0.6571)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たす。これにより、ノーマルラインに近付けられた部分分散比(θg,F)を有する光学ガラスが得られるため、この光学ガラスから形成される光学素子の色収差を低減できる。ここで、ν≦25における光学ガラスの部分分散比(θg,F)は、好ましくは(-1.60×10-3×ν+0.6346)、より好ましくは(-1.60×10-3×ν+0.6366)、最も好ましくは(-1.60×10-3×ν+0.6386)を下限とする。また、ν>25における光学ガラスの部分分散比(θg,F)は、好ましくは(-2.50×10-3×ν+0.6571)、より好ましくは(-2.50×10-3×ν+0.6591)、最も好ましくは(-2.50×10-3×ν+0.6611)を下限とする。一方で、光学ガラスの部分分散比(θg,F)の上限は、好ましくは(-4.21×10-3×ν+0.7207)、より好ましくは(-4.21×10-3×ν+0.7187)、さらに好ましくは(-4.21×10-3×ν+0.7177)、最も好ましくは(-4.21×10-3×ν+0.7172)である。なお、特にアッベ数(ν)が小さい領域では、一般的なガラスの部分分散比(θg,F)はノーマルラインよりも高い値にあるため、一般的なガラスの部分分散比(θg,F)とアッベ数(ν)の関係は曲線で表される。しかしながら、この曲線の近似が困難であるため、本発明では、一般的なガラスよりも部分分散比(θg,F)が低いことを、ν=25を境に異なった傾きを有する直線を用いて表した。
 また、本発明の光学ガラスは、高い化学的耐久性、特に耐水性を有することが好ましい。具体的には、JOGIS06-1999に準じたガラスの粉末法による化学的耐久性(耐水性)がクラス1~3であることが好ましい。これにより、光学ガラスを研磨加工する際や洗浄する際に、水性の研磨液や洗浄液によるガラスの曇りが低減されるため、ガラスに対する加工をより行い易くすることができる。ここで「耐水性」とは、水によるガラスの侵食に対する耐久性であり、この耐水性は、日本光学硝子工業会規格「光学ガラスの化学的耐久性の測定方法」JOGIS06-1999により測定することができる。また、「粉末法による化学的耐久性(耐水性)がクラス1~3である」とは、JOGIS06-1999に準じて行った化学的耐久性(耐水性)が、測定前後の試料の質量の減量率で、0.10質量%未満であることを意味する。なお、クラス1は、測定前後の試料の質量の減量率が、0.05質量%未満であり、クラス2は、0.05質量%以上0.10質量%未満であり、クラス3は、0.10質量%以上0.25質量%未満である。
 また、本発明の光学ガラスは、着色が少ないことが好ましい。特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分光透過率70%を示す波長(λ70)が440nm以下であり、より好ましくは420nm以下であり、最も好ましくは400nm以下である。また、分光透過率5%を示す波長(λ)が380nm以下であり、より好ましくは360nm以下であり、最も好ましくは350nm以下である。これにより、ガラスの吸収端が紫外領域の近傍に位置するようになり、可視域におけるガラスの透明性が高められるため、この光学ガラスをレンズ等の光学素子の材料として好ましく用いることができる。
 また、本発明の光学ガラスは、ソラリゼーションが5.0%以下であることが好ましい。これにより、光学ガラスを組み込んだ機器は、長期間の使用によってもカラーバランスが悪くなり難くなる。特に、使用温度が高いほどソラリゼーションはより大きく低減するため、車載用等、高温下で用いられる場合に、本発明の光学ガラスは特に有効である。従って、本発明の光学ガラスのソラリゼーションは、好ましくは5.0%、より好ましくは4.8%、最も好ましくは4.5%を上限とする。なお、本明細書中において「ソラリゼーション」とはガラスに紫外線を照射した場合の450nmにおける分光透過率の劣化量を表すものであり、具体的には、日本光学硝子工業会規格JOGIS04-1994「光学ガラスのソラリゼーションの測定方法」に従い、高圧水銀灯の光を照射した前後の分光透過率をそれぞれ測定することにより求められる。
 また、本発明の光学ガラスは、650℃以下のガラス転移点(Tg)を有することが好ましい。これにより、より低い温度でのプレス成形が可能になるため、モールドプレス成形に用いる金型の酸化を低減して金型の長寿命化を図ることもできる。従って、本発明の光学ガラスのガラス転移点(Tg)は、好ましくは650℃、より好ましくは620℃、最も好ましくは600℃を上限とする。なお、本発明の光学ガラスのガラス転移点(Tg)の下限は特に限定されないが、本発明によって得られるガラスのガラス転移点(Tg)は、概ね100℃以上、具体的には150℃以上、さらに具体的には200℃以上であることが多い。
 また、本発明の光学ガラスは、700℃以下の屈伏点(At)を有することが好ましい。屈伏点(At)は、ガラス転移点(Tg)と同様にガラスの軟化性を示す指標の一つであり、プレス成形温度に近い温度を示す指標である。そのため、屈伏点(At)が700℃以下のガラスを用いることにより、より低い温度でのプレス成形が可能になるため、より容易にプレス成形を行うことができる。従って、本発明の光学ガラスの屈伏点(At)は、好ましくは700℃、より好ましくは670℃、最も好ましくは650℃を上限とする。なお、本発明の光学ガラスの屈伏点(At)の下限は特に限定されないが、本発明によって得られるガラスの屈伏点(At)は、概ね150℃以上、具体的には200℃以上、さらに具体的には250℃以上であることが多い。
[レンズプリフォーム及び光学素子]
 作製された光学ガラスから、例えばリヒートプレス成形や精密プレス成形等の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスからモールドプレス成形用のレンズプリフォームを作製し、このレンズプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、例えば研磨加工を行って作製したレンズプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
 このようにして作製されるガラス成形体は、様々な光学素子に有用であるが、その中でも特に、レンズやプリズム等の光学素子の用途に用いることが好ましい。これにより、光学素子が設けられる光学系の透過光における、色収差による色のにじみが低減される。そのため、この光学素子をカメラに用いた場合は撮影対象物をより正確に表現でき、この光学素子をプロジェクタに用いた場合は所望の映像をより高精彩に投影できる。
 本発明の実施例(No.1~No.250)及び比較例(No.1~No.2)の組成、並びに、屈折率(n)、アッベ数(ν)、部分分散比(θg,F)、化学的耐久性(耐水性)、ガラス転移点(Tg)、屈伏点(At)、分光透過率が70%を示す波長(λ70)、並びにソラリゼーションの結果を表1~表33に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。
 本発明の実施例(No.1~No.250)及び比較例(No.1~No.2)のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度の原料を選定し、表1~表33に示した各実施例及び比較例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1200~1350℃の温度範囲で2~4時間溶解し、攪拌均質化して泡切れ等を行った後、1100~1200℃に温度を下げて攪拌均質化してから金型に鋳込み、徐冷してガラスを作製した。
 ここで、実施例(No.1~No.250)及び比較例(No.1~No.2)のガラスの屈折率(n)、アッベ数(ν)、及び部分分散比(θg,F)は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定した。そして、求められたアッベ数(ν)及び部分分散比(θg,F)の値について、関係式(θg,F)=-a×ν+bにおける、傾きaが0.0016、0.0020及び0.00421のときの切片bを求めた。なお、本測定に用いたガラスは、徐冷降温速度を-25℃/hrとして、徐冷炉にて処理を行ったものを用いた。
 また、実施例(No.1~No.250)及び比較例(No.1~No.2)のガラスの化学的耐久性(耐水性)は、日本光学硝子工業会規格「光学ガラスの化学的耐久性の測定方法」JOGIS06-1999に準じて測定した。すなわち、粒度425~600μmに破砕したガラス試料を比重ビンにとり、白金かごの中に入れた。白金かごを純水(pH6.5~7.5)の入った石英ガラス製丸底フラスコに入れて、沸騰水浴中で60分間処理した。処理後のガラス試料の減量率(質量%)を算出して、この減量率が0.05未満の場合をクラス1、減量率が0.05~0.10未満の場合をクラス2、減量率が0.10~0.25未満の場合をクラス3、減量率が0.25~0.60未満の場合をクラス4、減量率が0.60~1.10未満の場合をクラス5、減量率が1.10以上の場合をクラス6とした。このとき、クラスの数が小さいほど、ガラスの耐水性が優れていることを意味する。
 また、実施例(No.1~No.250)及び比較例(No.1~No.2)のガラスの透過率は、日本光学硝子工業会規格JOGIS02に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、λ70(透過率70%時の波長)を求めた。
 また、実施例(No.1~No.250)及び比較例(No.1~No.2)のガラスのソラリゼーションは、日本光学硝子工業会規格JOGIS04-1994「光学ガラスのソラリゼーションの測定方法」に準じて、光照射前後における波長450nmの光透過率の変化(%)を測定した。ここで、光の照射は、光学ガラス試料を100℃に加熱し、超高圧水銀灯を用いて波長450nmの光を4時間照射することにより行った。
 また、実施例(No.1~No.250)及び比較例(No.1~No.2)のガラスのガラス転移点(Tg)及び屈伏点(At)は、示差熱測定装置(ネッチゲレテバウ社製 STA 409 CD)を用いた測定を行うことで求めた。ここで、測定を行う際のサンプル粒度は425~600μmとし、昇温速度は10℃/minとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 表1~表33に表されるように、本発明の実施例の光学ガラスは、ν≦25のものは部分分散比(θg,F)が(-1.60×10-3×ν+0.6346)以上、より詳細には(-1.60×10-3×ν+0.6497)以上であった。また、ν>25のものは、部分分散比(θg,F)が(-2.50×10-3×ν+0.6571)以上、より詳細には(-2.50×10-3×ν+0.6670)以上であった。その反面で、本発明の実施例の光学ガラスの部分分散比(θg,F)は、(-4.21×10-3×ν+0.7207)以下、より詳細には(-4.21×10-3×ν+0.7187)以下であった。そのため、これらの部分分散比(θg,F)が所望の範囲内にあることがわかった。一方、本発明の比較例のガラスは、いずれも部分分散比(θg,F)が(-4.21×10-3×ν+0.7187)を超えていた。従って、本発明の実施例の光学ガラスは、比較例2のガラスに比べ、アッベ数(ν)との関係式において部分分散比(θg,F)が小さいことが明らかになった。
 また、本発明の実施例の光学ガラスは、いずれも耐水性がクラス1~3、より具体的にはクラス1~2であり、所望の範囲内であった。一方で、比較例1及び2のガラスは、耐水性のクラスがクラス3であり、耐水性が低かった。従って、本発明の実施例の光学ガラスは、比較例1及び2のガラスに比べて耐水性が高いことが明らかになった。
 また、本発明の実施例の光学ガラスは、ガラス転移点(Tg)が650℃以下、より詳細には587℃以下であり、且つ、屈伏点(At)が700℃以下、より詳細には630℃以下であり、いずれも所望の範囲内であった。
 また、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.78以上、より詳細には1.83以上であるとともに、この屈折率(n)は2.20以下、より詳細には1.90以下であり、所望の範囲内であった。
 また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が10以上、より詳細には22以上であるとともに、このアッベ数(ν)は30以下、より詳細には27以下であり、所望の範囲内であった。
 従って、本発明の実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、モールドプレス成形を行い易く、且つ色収差が小さいことが明らかになった。
 さらに、本発明の実施例の光学ガラスを用いてリヒートプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で、研削及び研磨を行ってレンズ及びプリズムの形状に加工し、水及び有機溶媒で洗浄を行ってガラス成形体を得た。また、本発明の実施例の光学ガラスを用いて、精密プレス成形用プリフォームを形成し、この精密プレス成形用プリフォームに対して精密プレス成形加工を行い、水及び有機溶媒で洗浄を行ってガラス成形体を得た。その結果、本発明の実施例の光学ガラスから得られたガラス成形体には曇りが生じず、レンズ及びプリズムとして用いることが可能なガラス成形体をより確実に得ることができた。一方で、比較例のガラスから得られたガラス成形体には曇りが生じた。このため、本発明の実施例の光学ガラスから作製されるガラス成形体は、比較例のガラスから作製されるガラス成形体に比べて、曇りが低減されることが明らかになった。
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。

Claims (22)

  1.  SiO成分を必須成分として含有し、Nb成分、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかをさらに含有し、1.78以上の屈折率(nd)及び30以下のアッベ数(ν)を有し、部分分散比(θg,F)がアッベ数(ν)との間で、ν≦25の範囲において(-1.60×10-3×ν+0.6346)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たし、ν>25の範囲において(-2.50×10-3×ν+0.6571)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たす光学ガラス。
  2.  SiO成分、Nb成分及びNaO成分を必須成分として含有する請求項1記載の光学ガラス。
  3.  酸化物換算組成のガラス全質量に対して、質量%でSiO成分を1.0%以上60.0%以下含有し、Nb成分の含有量が1.0%以上65.0%以下であり、NaO成分の含有量が1.0%以上30.0%以下である請求項2記載の光学ガラス。
  4.  SiO成分を必須成分として含有し、TiO成分、ZrO成分、Ta成分及びWO成分の少なくともいずれかをさらに含有する請求項1記載の光学ガラス。
  5.  酸化物換算組成のガラス全質量に対して、質量%でSiO成分を1.0%以上60.0%以下含有し、質量和(TiO+ZrO+Ta+WO)が1.0%以上30.0%以下である請求項4記載の光学ガラス。
  6.  酸化物換算組成のガラス全質量に対して、質量%で、Nb成分の含有量が65.0%以下である請求項4又は5記載の光学ガラス。
  7.  酸化物換算組成のガラス全質量に対して、質量%でNaO成分を1.0%以上30.0%以下さらに含有する請求項4から6のいずれか記載の光学ガラス。
  8.  酸化物換算組成のガラス全質量に対して、質量%で
    LiO成分  0~20.0%、及び/又は
    O成分  0~20.0%
    の各成分をさらに含有する請求項1から7のいずれか記載の光学ガラス。
  9.  酸化物換算組成のガラス全質量に対するRnO成分(式中、Rnは、Li、Na及びKからなる群より選択される1種以上である)の質量和が1.0%以上30.0%以下である請求項1から8のいずれか記載の光学ガラス。
  10.  酸化物換算組成における質量比(NaO/RnO)が0.30以上である請求項9記載の光学ガラス。
  11.  酸化物換算組成のガラス全質量に対して、質量%で
    TiO成分  0~40.0%、及び/又は
    ZrO成分  0~25.0%、及び/又は
    Ta成分  0~20.0%、及び/又は
    WO成分  0~20.0%
    の各成分を含有する請求項1から10のいずれか記載の光学ガラス。
  12.  酸化物換算組成のガラス全質量に対して、質量%で
    MgO成分  0~20.0%、及び/又は
    CaO成分  0~30.0%、及び/又は
    SrO成分  0~30.0%、及び/又は
    BaO成分  0~30.0%、及び/又は
    ZnO成分  0~30.0%
    の各成分をさらに含有する請求項1から11のいずれか記載の光学ガラス。
  13.  酸化物換算組成のガラス全質量に対するRO成分(式中、Rは、Mg、Ca、Sr、Ba及びZnからなる群より選択される1種以上である)の質量和が30.0%以下である請求項12記載の光学ガラス。
  14.  酸化物換算組成のガラス全質量に対して、質量%で
    La成分  0~50.0%、及び/又は
    Gd成分  0~30.0%、及び/又は
    成分  0~30.0%、及び/又は
    Yb成分  0~10.0%、及び/又は
    Lu成分  0~10.0%
    の各成分をさらに含有する請求項1から13のいずれか記載の光学ガラス。
  15.  酸化物換算組成のガラス全質量に対するLn成分(式中、Lnは、La、Gd、Y、Yb及びLuからなる群より選択される1種以上である)の質量和が30.0%以下である請求項14記載の光学ガラス。
  16.  酸化物換算組成のガラス全質量に対して、質量%で
    成分  0~40.0%、及び/又は
    GeO成分  0~30.0%、及び/又は
    成分  0~10.0%、及び/又は
    Al成分  0~15.0%、及び/又は
    Ga成分  0~20.0%、及び/又は
    TeO成分  0~50.0%、及び/又は
    Bi成分  0~50.0%、及び/又は
    CeO成分  0~10.0%、及び/又は
    Sb成分  0~1.0%
    の各成分をさらに含有する請求項1から15のいずれか記載の光学ガラス。
  17.  1.78以上2.20以下の屈折率(nd)と、10以上30以下のアッベ数(ν)を有する請求項1から16のいずれか記載の光学ガラス。
  18.  粉末法による化学的耐久性(耐水性)がクラス1~3である請求項1から17のいずれか記載の光学ガラス。
  19.  請求項1から18のいずれか記載の光学ガラスを母材とする光学素子。
  20.  請求項1から18のいずれか記載の光学ガラスからなるレンズプリフォーム。
  21.  請求項1から18のいずれか記載の光学ガラスからなるモールドプレス成形用のレンズプリフォーム。
  22.  請求項20又は21記載のレンズプリフォームを成形してなる光学素子。
PCT/JP2010/063428 2009-08-07 2010-08-06 光学ガラス WO2011016566A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800343660A CN102471130A (zh) 2009-08-07 2010-08-06 光学玻璃
JP2011525960A JP5731388B2 (ja) 2009-08-07 2010-08-06 光学ガラス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-185321 2009-08-07
JP2009185321 2009-08-07
JP2009185322 2009-08-07
JP2009-185322 2009-08-07

Publications (1)

Publication Number Publication Date
WO2011016566A1 true WO2011016566A1 (ja) 2011-02-10

Family

ID=43544460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063428 WO2011016566A1 (ja) 2009-08-07 2010-08-06 光学ガラス

Country Status (4)

Country Link
JP (1) JP5731388B2 (ja)
KR (1) KR20120052349A (ja)
CN (1) CN102471130A (ja)
WO (1) WO2011016566A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133420A1 (ja) * 2011-03-29 2012-10-04 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
WO2012133421A1 (ja) * 2011-03-29 2012-10-04 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2012206894A (ja) * 2011-03-29 2012-10-25 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012206891A (ja) * 2011-03-29 2012-10-25 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012206893A (ja) * 2011-03-29 2012-10-25 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012206892A (ja) * 2011-03-29 2012-10-25 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012240907A (ja) * 2011-05-24 2012-12-10 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012240909A (ja) * 2011-05-24 2012-12-10 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012240908A (ja) * 2011-05-24 2012-12-10 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2014131948A (ja) * 2012-12-07 2014-07-17 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2015193516A (ja) * 2013-04-30 2015-11-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2015193515A (ja) * 2013-04-30 2015-11-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2016088759A (ja) * 2014-10-29 2016-05-23 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2017154963A (ja) * 2016-02-29 2017-09-07 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2019064898A (ja) * 2017-10-02 2019-04-25 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2020172428A (ja) * 2019-04-12 2020-10-22 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN114230174A (zh) * 2021-12-24 2022-03-25 福耀玻璃工业集团股份有限公司 玻璃、玻璃组件及车辆
JP7427068B2 (ja) 2015-12-07 2024-02-02 株式会社オハラ 光学ガラス、プリフォーム及び光学素子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5767179B2 (ja) * 2012-08-30 2015-08-19 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
TWI658021B (zh) * 2012-12-07 2019-05-01 日商小原股份有限公司 光學玻璃、預成形體及光學元件
CN103043899B (zh) * 2013-01-11 2015-06-24 湖北新华光信息材料有限公司 光学玻璃
CN106587595A (zh) * 2016-11-08 2017-04-26 南通瑞森光学元件科技有限公司 一种高折射大色散功能玻璃
CN107010826B (zh) * 2017-05-15 2020-06-26 湖北戈碧迦光电科技股份有限公司 环保镧火石光学玻璃及其制备方法
CN107445472A (zh) * 2017-09-11 2017-12-08 成都随如科技有限公司 一种适用于模压成型的光学玻璃
CN107935379A (zh) * 2017-11-20 2018-04-20 柳州市奥康眼镜有限公司 一种高折射率光学玻璃及其制备方法
CN108773998A (zh) * 2018-06-22 2018-11-09 秦皇岛星箭特种玻璃有限公司 一种抗辐射柔性玻璃及其制备方法
CN109896740B (zh) * 2019-04-24 2022-04-22 成都光明光电股份有限公司 光学玻璃及光学元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08175841A (ja) * 1994-12-26 1996-07-09 Ohara Inc 光学ガラス
JP2004161598A (ja) * 2002-04-02 2004-06-10 Ohara Inc 光学ガラス
US20050026768A1 (en) * 2003-06-10 2005-02-03 Koji Shimizu Optical glass
WO2009096437A1 (ja) * 2008-01-31 2009-08-06 Hoya Corporation 光学ガラス
JP2009179538A (ja) * 2008-01-31 2009-08-13 Ohara Inc 光学ガラス
WO2010038597A1 (ja) * 2008-09-30 2010-04-08 株式会社オハラ 光学ガラス及び分光透過率の劣化抑制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08175841A (ja) * 1994-12-26 1996-07-09 Ohara Inc 光学ガラス
JP2004161598A (ja) * 2002-04-02 2004-06-10 Ohara Inc 光学ガラス
US20050026768A1 (en) * 2003-06-10 2005-02-03 Koji Shimizu Optical glass
WO2009096437A1 (ja) * 2008-01-31 2009-08-06 Hoya Corporation 光学ガラス
JP2009179538A (ja) * 2008-01-31 2009-08-13 Ohara Inc 光学ガラス
WO2010038597A1 (ja) * 2008-09-30 2010-04-08 株式会社オハラ 光学ガラス及び分光透過率の劣化抑制方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133420A1 (ja) * 2011-03-29 2012-10-04 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
WO2012133421A1 (ja) * 2011-03-29 2012-10-04 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2012206894A (ja) * 2011-03-29 2012-10-25 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012206891A (ja) * 2011-03-29 2012-10-25 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012206893A (ja) * 2011-03-29 2012-10-25 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012206892A (ja) * 2011-03-29 2012-10-25 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012240907A (ja) * 2011-05-24 2012-12-10 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012240909A (ja) * 2011-05-24 2012-12-10 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2012240908A (ja) * 2011-05-24 2012-12-10 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2014131948A (ja) * 2012-12-07 2014-07-17 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2015193516A (ja) * 2013-04-30 2015-11-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2015193515A (ja) * 2013-04-30 2015-11-05 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2020019711A (ja) * 2013-04-30 2020-02-06 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2016088759A (ja) * 2014-10-29 2016-05-23 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP7427068B2 (ja) 2015-12-07 2024-02-02 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2017154963A (ja) * 2016-02-29 2017-09-07 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP7133901B2 (ja) 2016-02-29 2022-09-09 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2019064898A (ja) * 2017-10-02 2019-04-25 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP7126379B2 (ja) 2017-10-02 2022-08-26 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2020172428A (ja) * 2019-04-12 2020-10-22 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP7334133B2 (ja) 2019-04-12 2023-08-28 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN114230174A (zh) * 2021-12-24 2022-03-25 福耀玻璃工业集团股份有限公司 玻璃、玻璃组件及车辆
CN114230174B (zh) * 2021-12-24 2022-08-02 福耀玻璃工业集团股份有限公司 玻璃、玻璃组件及车辆

Also Published As

Publication number Publication date
CN102471130A (zh) 2012-05-23
JP5731388B2 (ja) 2015-06-10
JPWO2011016566A1 (ja) 2013-01-17
KR20120052349A (ko) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5731388B2 (ja) 光学ガラス
JP6014301B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5767179B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5917791B2 (ja) 光学ガラス、プリフォーム材及び光学素子
WO2010038597A1 (ja) 光学ガラス及び分光透過率の劣化抑制方法
JP5721534B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5731358B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5705175B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP6076594B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2012126586A (ja) 光学ガラス、プリフォーム及び光学素子
JP5956117B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2013047168A (ja) 光学ガラス、プリフォーム及び光学素子
JP2012206893A (ja) 光学ガラス、プリフォーム及び光学素子
JP5863745B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5783977B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2017031054A (ja) 光学ガラス、プリフォーム及び光学素子
JP5706231B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5800766B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP5748613B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2012206891A (ja) 光学ガラス、プリフォーム及び光学素子
JP2014080317A (ja) 光学ガラス、プリフォーム及び光学素子
JP5748614B2 (ja) 光学ガラス、プリフォーム及び光学素子
WO2012133421A1 (ja) 光学ガラス、プリフォーム及び光学素子
JP2012206892A (ja) 光学ガラス、プリフォーム及び光学素子
JP6086941B2 (ja) 光学ガラス及び分光透過率の劣化抑制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034366.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525960

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127004886

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10806565

Country of ref document: EP

Kind code of ref document: A1