WO2011016418A1 - シリカ層で被覆されたシリカ-ジルコニア複合粒子の製造方法 - Google Patents

シリカ層で被覆されたシリカ-ジルコニア複合粒子の製造方法 Download PDF

Info

Publication number
WO2011016418A1
WO2011016418A1 PCT/JP2010/063025 JP2010063025W WO2011016418A1 WO 2011016418 A1 WO2011016418 A1 WO 2011016418A1 JP 2010063025 W JP2010063025 W JP 2010063025W WO 2011016418 A1 WO2011016418 A1 WO 2011016418A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
composite oxide
particles
oxide particles
reaction
Prior art date
Application number
PCT/JP2010/063025
Other languages
English (en)
French (fr)
Inventor
雅人 関野
正嗣 草野
Original Assignee
株式会社トクヤマデンタル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマデンタル filed Critical 株式会社トクヤマデンタル
Priority to CN201080035167.1A priority Critical patent/CN102471077B/zh
Priority to US13/387,163 priority patent/US9067798B2/en
Priority to JP2011525879A priority patent/JP4988964B2/ja
Priority to EP10806417.1A priority patent/EP2463235B1/en
Publication of WO2011016418A1 publication Critical patent/WO2011016418A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/16Refractive index
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • A61K6/62Photochemical radical initiators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/818Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • A61K6/853Silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • A61K6/878Zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the present invention relates to a method for producing silica-zirconia composite particles whose surfaces are coated with a silica layer (hereinafter sometimes abbreviated as multilayer particles). According to this production method, multilayer particles having good monodispersibility can be produced under stable production conditions.
  • a method of producing spherical silica particles having high monodispersibility by hydrolyzing and polycondensing alkoxides such as silicon is known.
  • a method of producing metal oxide particles by using an organic metal compound such as a metal alkoxide as a raw material and subjecting the raw material to a polycondensation reaction in a water-containing solvent is generally called a sol-gel method.
  • silica-based composite oxide particles are produced by a sol-gel method.
  • Examples of the silica-based composite oxide particles include silica-titania, silica-alumina, silica-zirconia and the like.
  • Silica-based composite oxide particles produced by the sol-gel method are imparted with characteristic performance according to the type of metal oxide composited with silica. These characteristics are characteristics that cannot be obtained with particles made of silica alone.
  • the particles having these characteristics are applied to various uses. For example, by changing the blending ratio of silica and a metal oxide other than silica, the refractive index of the particles can be arbitrarily adjusted while maintaining optical transparency. Applications of this technology include transparent composite resins and dental composite resins.
  • These composite resins and composite resins use particles with a refractive index that matches the refractive index of the resin as fillers, while maintaining visual transparency and maintaining performance such as resin mechanical strength and low thermal expansion. Improvement is achieved. From the viewpoint of ease of prognosis, it is beneficial that the filler blended in the dental composite resin is imparted with X-ray contrast properties in addition to the transparency. Accordingly, silica-based composite oxide particles in which silica and other metal oxides are combined are usually used as a filler to be blended in the dental composite resin. As the metal oxide to be combined with the silica-based composite oxide particles, titania, zirconia, barium oxide and the like having X-ray contrast properties are preferable. By adjusting the blending ratio of these metal oxides and making the refractive index of the filler coincide with the refractive index of the resin, a dental filler having both transparency and X-ray contrast properties can be obtained.
  • the conventional method has a problem that the silica-based composite oxide particles that are usually produced tend to aggregate. Furthermore, since fine particles of new silica-based composite oxide particles are generated one after another with the passage of time, there is a problem that the particle size of the obtained particles becomes non-uniform. These phenomena become more prominent as the content of metal oxides other than silica in the composite oxide particles increases. As a result, it is difficult to obtain silica-based composite oxide particles having good monodispersibility and a uniform particle size.
  • the silica-based composite oxide particles produced by the above method are preferably coated with a silica layer to form multilayer particles.
  • the multilayer particle is particularly useful when used as a filler for a dental composite resin.
  • the silica-based composite oxide particles are different from particles composed of silica alone due to the metal oxide complexed with the silica constituting the particles, and have strong acid sites formed on the surface thereof. Yes.
  • the particles in which the acid sites are formed are blended with the dental composite resin, the resin matrix portion constituting the composite resin is deteriorated and the fillers are aggregated.
  • the acid point promotes the adsorption of contained trace components (pigments, polymerization initiators, polymerization inhibitors, etc.), and as a result, these functions to be performed are not fully performed. Therefore, it is extremely effective for reducing the activity of acid sites that the surface of the silica-based composite oxide particles is coated with an inert silica layer.
  • the present inventors are silica-based composite oxide particles obtained by a sol-gel method using a reaction solution containing acetonitrile, the surface of the silica-based composite oxide particles is not covered with a silica layer. I learned that it was difficult.
  • the inventors subsequently reacted silicon alkoxide in the same reaction solution.
  • the monodispersity of the particles in the reaction solution deteriorated rapidly, and the generation of aggregated particles was remarkable.
  • this aggregation was remarkable when the content of the metal oxide other than silica in the silica-based composite oxide particles to be coated was 10 mol% or more.
  • the situation where the multilayer particles cannot be stably produced with good monodispersibility has a large industrial problem.
  • the silica composite oxide particles were produced using the silicon alkoxide and the metal alkoxide other than silicon, and the reaction of coating the silica layer on the surface of the silica composite oxide particles was studied.
  • the reaction in which silica-based composite oxide particles produced in a water-containing solvent containing acetonitrile are used as a raw material and the silica layer is coated on the surface the resulting multi-layer particles are extremely rare throughout and after the reaction. It was confirmed that it was easy to aggregate.
  • the inventors further studied the reaction of coating the silica layer on the surface.
  • a silica layer is formed on the surface of the oxide particles while maintaining the dispersibility of the resulting multilayer particles extremely high. It has been found that it can be coated. That is, the present inventors use a silica-based composite oxide particle dispersion produced in a water-containing solvent containing acetonitrile, and a reaction for coating a silica layer on the surface of the composite oxide particles in the dispersion.
  • the present inventors have found that the aggregation of the composite oxide particles is remarkably suppressed only when the silica-zirconia composite oxide particles are coated among the various silica-based composite oxide particles. As a result, it was confirmed that when the silica-zirconia composite oxide particles were coated, the silica-zirconia composite oxide particles coated with the target silica layer could be produced very efficiently.
  • the present invention has been completed based on the above research.
  • the present invention relates to a silicon alkoxide and / or a condensable compound derived from the alkoxide and a zirconium alkoxide and / or a condensable compound derived from the alkoxide.
  • a silica-zirconia composite oxide particle dispersion is obtained by reacting in a hydrous solvent containing at least mass%, and then the silica dispersed in the silica-zirconia composite oxide particle dispersion is dispersed in the dispersion.
  • the surface of the silica-zirconia composite oxide particles is coated with a silica layer by reacting the zirconia composite oxide particles with silicon alkoxide and / or a condensable compound derived from the alkoxide.
  • silica-zirconia composite oxide particles coated with a silica layer A are examples of silica-zirconia composite oxide particles coated with a silica layer A.
  • the present invention is a method for producing silica-zirconia composite oxide particles coated with a silica layer.
  • Composite oxide particles coated with a silica layer containing a metal oxide other than zirconia cannot be produced by this production method.
  • the silica-zirconia composite oxide particles coated with the silica layer produced by the production method of the present invention have excellent X-ray contrast properties.
  • the refractive index of the silica-zirconia composite oxide particles coated with the silica layer and the resin can be matched by adjusting the blending ratio of silica and zirconia.
  • the silica-zirconia composite oxide particles coated with the silica layer produced by the production method of the present invention can be used as a filler having both human visual transparency and X-ray contrast properties.
  • This filler is useful as a filler to be blended into a dental composite resin.
  • Silica-zirconia composite oxide particles have acid sites on the surface. Therefore, the surface of the silica-zirconia composite oxide particles has high activity.
  • the silica-zirconia composite oxide particles having a surface coated with a silica layer manufactured according to the present invention are coated with the acidic surface property by the silica layer covering the surface, and thus become inactive. According to the production method of the present invention, silica-zirconia composite oxide particles coated with a silica layer having an inert surface property can be stably produced without causing aggregation.
  • the production method of the present invention comprises a first stage reaction step for producing silica-zirconia composite oxide particles, and a silica layer covering the surface of the silica-zirconia composite oxide particles obtained in the first stage reaction step. It consists of a two-stage reaction process.
  • the first-stage reaction step is basically the same as the conventional method for producing silica-zirconia composite oxide particles by the sol-gel method. That is, a silica raw material and a zirconia raw material are added to a hydrous solvent, and these raw materials are reacted.
  • the present invention is characterized in that the first-stage reaction step for producing the silica-zirconia composite oxide particles is always performed in the presence of a predetermined concentration of acetonitrile.
  • the first-stage reaction step is performed in a hydrous solvent containing 10% by mass or more of acetonitrile in the reaction solution.
  • the reaction liquid is a reaction solvent at the start of the reaction (an organic solvent containing water.
  • composite oxide particles When composite oxide particles are produced, it is a dispersion medium at the same time), a catalyst, a solid component produced by the reaction (silica System composite oxide particles), by-products such as alcohol produced by the reaction, unreacted raw materials remaining in the reaction system, and if necessary, all components such as water and organic solvent added during the reaction It means a mixture.
  • the acetonitrile concentration is based on the total mass of the mixture.
  • the surface potential of the particles decreases as the content of the metal oxide other than silica increases.
  • the repulsive force between the particles becomes insufficient, and the particles tend to aggregate.
  • the content of metal oxides other than silica in the silica-based composite oxide particles increases, particles with high monodispersibility cannot be obtained. Further, this agglomeration phenomenon becomes intensified in proportion to the amount of dispersion of the silica-based composite oxide particles to be produced. This is because the repulsive energy between the particles decreases, and the surface potential of the individual particles further decreases.
  • an effect of suppressing a decrease in surface potential can be expected.
  • Aprotic polar solvents do not serve as electrolytes. This is because an aprotic polar solvent does not donate protons to the other party, so it can be expected to coordinate with the particles and increase the electrical repulsion between the particles.
  • an aprotic polar solvent other than acetonitrile such as dimethyl sulfoxide or dimethylformamide is used, the effect of suppressing aggregation is not as great as expected for the above reason. This excellent aggregation suppressing effect is a specific effect of acetonitrile.
  • the aggregation suppressing effect of acetonitrile is exhibited by maintaining the concentration of acetonitrile contained in the reaction solution at 10% by mass or more.
  • the other metal oxide combined with silica is zirconium
  • the effect of preventing aggregation of particles due to acetonitrile mixed in the reaction solution of the first stage reaction step is particularly excellent. Therefore, even when the content of acetonitrile is a relatively small amount that slightly exceeds 10% by mass, the effect of suppressing the aggregation of particles is good.
  • the dispersibility when producing silica-zirconia composite oxide particles containing 10 mol% or more of zirconia is particularly poor.
  • the concentration of the acetonitrile is preferably 15 to 85% by mass, and 15 to 60%. The mass% is more preferable.
  • the production method of the present invention when particles having a zirconia content of 10 mol% or more are produced under the condition that the concentration of acetonitrile in the reaction solution of the first stage reaction step is kept at 10 mass% or more.
  • the variation coefficient of the particle diameter of the silica-zirconia composite particles (multilayer particles) whose surface is coated with a silica layer is usually 8% or less.
  • the circularity of the multilayer particle is usually 0.7 or more.
  • the variation coefficient of the particle diameter of the obtained multilayer particle is usually 7% or less, and the circularity of the multilayer particle is usually 0.8 or more.
  • the shape of the silica-based composite oxide particles or the silica-zirconia composite particles whose surface is coated with a silica layer can be observed using a scanning or transmission electron microscope.
  • a scanning or transmission electron microscope Using an image analyzer, the image of the scanning electron microscope is analyzed, the particle size of 200 or more particles in the image is measured, and the average value of the measured values is calculated. The average particle size can be determined.
  • the monodispersity of particles is indicated by the value of the ratio between the average particle diameter of 200 particles measured by the above method and its standard deviation.
  • the circularity of a particle is a parameter that represents how close a particle is to a sphere.
  • the circularity is a value represented by (4 ⁇ xS) / L 2 where S is the projected area of particles observed with a scanning or transmission electron microscope and L is the perimeter.
  • the concentration of acetonitrile in the reaction solution is preferably high at the beginning of the reaction.
  • the concentration of acetonitrile at the start of the reaction is preferably 20% by mass or more, more preferably 30% by mass or more, and particularly preferably 40 to 80% by mass.
  • the reaction between the silica raw material and the zirconium raw material is carried out by a conventional sol-gel method in a solvent containing acetonitrile except that the acetonitrile concentration is always kept at 10% by mass or more throughout the reaction.
  • Any reaction reagent conventionally used can be used without particular limitation.
  • the average particle size of the silica-zirconia composite oxide particles produced at the end of the first stage reaction step is not particularly limited, but is usually 0.05 to 1.0 ⁇ m, and 0.08 to 0. More preferably, it is 5 ⁇ m. In the case of producing particles having an average particle diameter exceeding 1.0 ⁇ m, it takes a long time to grow the particles, and new particle nuclei are easily generated during the production. As a result, composite oxide particles with high monodispersibility tend to be difficult to obtain. When producing particles having an average particle size smaller than 0.05 ⁇ m, the monodispersity of the obtained particles is high. However, the silica-zirconia composite oxide particles coated with the silica layer produced using the composite oxide particles are inferior in handleability, and are easily aggregated in a drying process or a firing process performed as desired. .
  • the silica raw material used is (1) A silicon alkoxide represented by the general formula Si (OR) 4 or SiR′n (OR) 4-n (wherein R and R ′ are organic groups which may contain an ether bond or an ester bond, n is an integer of 1 to 3), (2) A low condensate obtained by partially hydrolyzing the silicon alkoxide (the low condensate is a condensable compound having an alkoxy group or a hydroxyl group in the molecule, ie, a condensable compound). Or (3) a mixture of these (1) and (2).
  • a plurality of R contained in one molecule may be the same or different from each other.
  • R and R ′ are the above organic groups, and these organic groups are preferably alkyl groups. This is because it is easy to obtain the raw material.
  • R and R ′ are particularly lower alkyl groups such as methyl group, ethyl group, isopropyl group and butyl group, these silica raw materials and the organic solvent have good compatibility, and alcohols formed as a result of hydrolysis Is preferred because it can be easily removed from the particles.
  • an alkoxide of zirconia is used without particular limitation.
  • an alkoxide in which Si is replaced with Zr an alkoxide in which Si is replaced with Zr, and a low condensate obtained by partially hydrolyzing these zirconia alkoxides (the low condensate is also condensable).
  • the low condensate is also condensable.
  • a mixture thereof can be preferably used.
  • the zirconia content of the silica-zirconia composite oxide particles produced in the first stage reaction step may be determined appropriately according to the intended use of the particles.
  • the zirconia content is determined in consideration of transparency and X-ray contrast.
  • the content of zirconia is generally preferably in the range of 5 to 30 mol%. As described above, from the viewpoint of the content of zirconia that exhibits the effect of the present invention that suppresses the aggregation of particles more significantly, it is preferably 10 mol% or more, more preferably 11 to 20 mol%.
  • the silica-zirconia composite oxide particles produced in the first reaction step of the present invention do not necessarily need to be composed only of the silica and zirconia.
  • the particles may contain a small amount of other metal oxides.
  • metal oxides other than silica and zirconia include oxides of metals of Group 1, Group 2, Group 3, Group 4 (excluding zirconia) and Group 13 of the Periodic Table. Specific examples include lithium, sodium, magnesium, calcium, strontium, barium, scandium, yttrium, titanium, hafnium, aluminum, lanthanoid, and actinoid.
  • alkali metal oxides are preferable and sodium oxide is particularly preferable because the surface acid sites can be easily neutralized by adding a small amount.
  • an alkoxide of a metal other than these silica and zirconia, and an alkoxide of the metal are partially included.
  • a low-condensate obtained by hydrolyzing the mixture (the low-condensate is also a condensable compound) or a mixture thereof may be used as a raw material for the composite oxide particles.
  • the content of metal oxides other than silica and zirconia is preferably 5 mol% or less, and more preferably 3 mol% or less, based on the total metal oxide constituting the composite oxide particles.
  • the silica raw material, zirconia raw material, and the like are added to a reaction solvent containing water, acetonitrile, an organic solvent, and the like to be reacted.
  • a catalyst is preferably added to the reaction solution in order to promote the hydrolysis reaction and polycondensation reaction.
  • the catalyst is not particularly limited as long as it has a function of promoting the hydrolysis and polycondensation reaction of the metal alkoxide.
  • acids and bases can be used. It is preferable to use a base catalyst because spherical and highly monodisperse particles can be obtained.
  • Examples of the base catalyst that can be suitably used in the present invention include inorganic bases such as ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide; methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, Propylamine, tripropylamine, pyridine, imidazole, piperidine, quinoline, pyrrole, 1,4-diazabicyclo [2.2.2] octane, 1,8-diazabicyclo [5.4.0] unde-7-cene, water And organic bases such as tetramethylammonium oxide.
  • inorganic bases such as ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide
  • methylamine dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, Propylamine, tripropylamine
  • pyridine imidazole, pipe
  • a metal-free base such as ammonia or amine.
  • the manufactured silica-based oxide particles may be dried or fired as a post-treatment.
  • the catalyst is particularly preferable because it does not leave a base component or a metal component in the particles.
  • the amount of the catalyst added varies depending on the type of catalyst used, the type of water in the reaction solution, the organic solvent, etc., and the blending ratio. In general, it is preferable to add the catalyst so that the pH of the reaction solution is 10 or more, preferably 11 or more. In addition, when the raw material is added during the reaction, the amount of the reaction liquid increases and the concentration of the catalyst changes. In this case, it is preferable to add a catalyst continuously or intermittently so that the pH of the reaction solution maintains the above range during the reaction. When ammonia most suitable as a catalyst is used as a catalyst, from the start of the first stage reaction to the end of the second stage reaction, 2 to 20% by mass, preferably 3 to 15% by mass, based on the mass of the reaction solution. It is preferable to coexist ammonia in the range of%.
  • the mass of the reaction liquid is specifically the mass of the entire reaction liquid including the organic solvent containing water initially charged, the supplied raw material, the supplied catalyst, and the like.
  • the reaction solvent is not particularly limited as long as it is a solvent containing water and acetonitrile having the above-mentioned concentration.
  • the concentration of water is not particularly limited, but all components except acetonitrile and the catalyst may be water.
  • the content of water in the reaction solution is the theory necessary for the total amount of silica raw material and zirconium raw material to be hydrolyzed and polycondensed so that hydrolysis and polycondensation can be performed satisfactorily. More than the amount. That is, water of not less than 1 ⁇ 2 mol of all alkoxide groups contained in these raw materials is added to the reaction solvent.
  • a water-soluble organic solvent may be added to the reaction solvent.
  • water-soluble organic solvents include alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutyl alcohol, ethylene glycol and propylene glycol, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, and ethyl acetate. Examples include esters.
  • As the reaction solvent lower alcohols having 1 to 4 carbon atoms such as methanol, ethanol and isopropanol are preferable. These water-soluble organic solvents are preferable because they are highly compatible with metal alkoxide and water, have a low viscosity, and have an effect of easily keeping the average particle size of the obtained composite oxide particles small.
  • acetonitrile in the reaction solvent is diluted with the raw material to be supplied (silica raw material and zirconia raw material) or ammonia water supplied as necessary. Accordingly, if left unattended, the concentration of acetonitrile decreases from the concentration at the start of the reaction to a lower concentration.
  • the concentration of acetonitrile contained in the reaction liquid it is preferable to adjust the compounding amount of acetonitrile in advance in consideration of the mass increase of these raw materials.
  • acetonitrile may be intermittently or continuously supplied to the reaction solution during the reaction so that the concentration of acetonitrile in the reaction solution can be maintained at 10% by mass or more.
  • the method of reacting by adding the raw material to an organic solvent is the same as the conventional sol-gel method.
  • a silica raw material and a zirconia raw material are mixed in advance to obtain a mixture, and then this mixture is added to a reaction solvent.
  • silicon alkoxide is used as the silica raw material, it is preferable that a part or all of the silicon alkoxide is partially hydrolyzed prior to the mixing (hereinafter also referred to as partial hydrolysis). By this method, more uniform composite oxide particles can be obtained.
  • an acid is preferable. Specific examples include hydrochloric acid, sulfuric acid, nitric acid, and oxalic acid, but there is no particular limitation.
  • the acid concentration it is preferable to use an acid having a pH in the range of 1 to 4.
  • silica-based composite oxide particles As a method for mixing the silica raw material and the zirconia raw material, it is preferable to measure each raw material according to the composition of the silica-based composite oxide particles to be produced, and stir and mix them. By employing this mixing method, a composite alkoxide in which both raw materials are combined is formed. As a result, silica-zirconia composite oxide particles having a small coefficient of variation in particle diameter can be efficiently produced. If the silicon alkoxide is partially hydrolyzed in advance, the reaction solution at that time may be mixed with the zirconia raw material.
  • the first stage reaction step may be changed in various ways as long as the gist of the present invention is not changed, in addition to being executed according to the above procedure. For example, you may react by adding each raw material substance to a reaction solvent separately.
  • the amount of raw material to be supplied is a high concentration such that the concentration of the particles in the reaction liquid is 5 to 30% by mass when the reaction for forming the silica-zirconia composite oxide particles is completed, preferably It is preferable to supply a high concentration of 7 to 20% by mass, more preferably 7 to 15% by mass, particularly preferably 10 to 15% by mass.
  • the raw material includes silica raw material and zirconia raw material. Furthermore, there are other metal oxide raw material materials other than the silica raw material and the zirconia raw material, which are used together with the above raw materials as necessary within the range not impairing the effects of the present invention.
  • the aggregation of silica-zirconia composite oxide particles becomes more severe as the dispersion concentration of the particles increases. Furthermore, due to the ease of aggregation of the particles, the particles are more easily aggregated during the coating reaction of the silica layer in the second reaction step, which is the next step. Therefore, in the case of the above high-concentration particle dispersion, the effect of the present invention for suppressing aggregation is particularly remarkable.
  • the first stage reaction step when the formation reaction of the silica-based composite oxide particles is completed, if the dispersion concentration of the particles in the reaction liquid is less than 5% by mass, until the end of the second stage reaction step. Including, the generation of aggregated particles is considerably less. Even if the other metal oxide compounded with silica is other than zirconia, the monodispersity of the particles is not greatly deteriorated.
  • the concentration of the particles in the reaction solution exceeds 30% by mass, the aggregation of the particles becomes severe even if the other metal oxide is zirconia. As a result, it is difficult to suppress aggregation even if the concentration of acetonitrile is controlled within the above range.
  • silica-zirconia composite oxide particles In order to produce silica-zirconia composite oxide particles at a high concentration in the reaction solution, a method such as increasing the amount of each raw material substance supplied to the reaction solution or extending the reaction time may be appropriately employed. .
  • a particularly preferable method is a method of increasing the concentration of the raw material in the reaction solution and reducing the reaction solution. By reacting under such conditions, silica-zirconia composite oxide particles having the above particle concentration range and an average particle diameter of 0.1 to 1.0 ⁇ m are formed in the reaction solution.
  • these starting materials When starting materials are added to the reaction solvent, these starting materials may be diluted with an organic solvent such as alcohol or acetonitrile and added to the reaction solvent.
  • an organic solvent such as alcohol or acetonitrile
  • the dilution rate is 30% by mass or less, particularly preferably 10% by mass or less even when it is added without being diluted at all or diluted. It is desirable to do.
  • Dropping in liquid refers to a supply method in which a source material is supplied to a reaction solvent in a state where the tip of the source material supply pipe (source material discharge port) is immersed in the reaction solvent.
  • the position of the discharge port tip is not particularly limited as long as it is in the liquid.
  • the position of the tip of the discharge port is desirably a position where stirring is sufficiently performed, such as in the vicinity of the stirring blade.
  • a basic catalyst such as ammonia is preferable.
  • the alkaline aqueous solution containing the basic catalyst 10 to 30% by mass of aqueous ammonia is suitable.
  • a method for adding the catalyst it is preferable that an alkaline aqueous solution prepared separately together with the raw material is simultaneously dropped into the reaction solution.
  • the dropping method of the alkaline aqueous solution it is not particularly necessary to use the dropping method in liquid.
  • the reaction rate is kept high throughout the reaction period. That is, the concentration of the reaction substrate generated by the alkali is kept high. As a result, particles can be synthesized with a high solid content concentration, so that synthesis with high yield (productivity) is possible.
  • the number of moles of water in the supplied alkaline aqueous solution is preferably 1 to 6 times the total number of moles of silicon and zirconia metals contained in the simultaneously supplied raw materials. Is preferably added dropwise with an alkaline aqueous solution so as to be 2 to 5 times.
  • the dropping rate of the raw material is small. However, if the dropping speed is too low, it takes a long time to complete the first reaction step. Therefore, it is preferable to reduce the dropping speed at the beginning of the step and increase the dropping speed after the latter half.
  • the raw material and the alkaline aqueous solution are continuously dropped from the start to the end of the dropping.
  • continuous means that an interval of preferably 10 minutes or longer, more preferably 3 minutes or longer is not provided.
  • the dropping speed is not necessarily constant, but it is desirable to change continuously when changing the dropping speed.
  • the atmosphere in the reaction solution may be disturbed by the sudden addition of water, causing aggregation of particles or generation of new core particles.
  • the reaction temperature is appropriately set according to the type of raw material used. Usually, it is 0 to 50 ° C.
  • the reaction proceeds promptly after the raw material is supplied.
  • Si—O—Si bonds and Si—O—Zr bonds are formed by the condensation polymerization reaction (usually dealcoholization condensation) that occurs following hydrolysis, and as a result, silica-zirconia composite oxide particles are generated.
  • the first-stage reaction step for producing the silica-zirconia composite oxide particles all the raw materials are added to the reaction solution, stirred for 0.5 to 2 hours, and further, if necessary, about 1 to 60 minutes. To complete the reaction.
  • the obtained silica-zirconia composite oxide particle dispersion is sent to the following second stage reaction step.
  • the second stage reaction step it is preferable that the dispersion obtained in the first stage reaction step is used as it is and the surface of the composite oxide particles is covered with a silica layer in the reaction liquid. Specifically, hydrolysis / polycondensation of silicon alkoxide and / or a condensable compound derived from the alkoxide is performed in the silica-zirconia composite oxide particle dispersion.
  • the silica-based composite oxide particles As described above, in the first stage reaction step, as the silica-based composite oxide particles, other metal oxides (for example, titanium, aluminum, borane, etc.) other than silica and zirconia are combined and other than silica and zirconia. In some cases, the composite oxide particles are produced. In this case, a particle dispersion with high monodispersity may be obtained due to the effect of blending the acetitolyl. Even in this case, when the second-stage reaction step is performed using this highly monodispersed particle dispersion, the monodispersibility is greatly reduced in cases other than silica-zirconia composite particles, and aggregated particles are remarkably generated. It is normal to do.
  • other metal oxides for example, titanium, aluminum, borane, etc.
  • the generation mechanism of the aggregated particles is not necessarily clear at present, but the present inventors consider as follows. That is, at the end of the first stage reaction step, the supply of the raw material to the reaction solution is stopped and the reaction is temporarily terminated. Thereafter, the second stage reaction step is started. However, the reaction in the second stage reaction process is resumed under reaction conditions different from those in the previous process. In this case, it is considered that the particles are likely to aggregate until the reaction solution is stabilized. In this state, a small amount of particles agglomerate, and the agglomerated particles serve as nuclei, and the agglomerates grow throughout the second stage reaction step. Furthermore, the aggregated particles are partially crushed. As a result, the remarkable monodispersibility is lowered.
  • silica-zirconia composite oxide particles are produced as silica-based composite oxide particles as in this production method, the generation of aggregated particles is highly suppressed even in the second stage reaction step. The reason is not clear.
  • the present inventors consider as follows. That is, due to the mild silica-zirconia reactivity in the first stage reaction step, the surface properties of the resulting composite oxide particles are less likely to aggregate than in the case of composite oxides of other metal oxides. The inventors think that it is supposed to take on.
  • the silica-zirconia composite oxide particle dispersion contains 10% by mass or more of acetonitrile. Therefore, in this silica-zirconia composite oxide particle dispersion, a second-stage reaction step for coating the silica layer is performed following the first-stage reaction step. In this case, this covering reaction is completed in a shorter time than the first stage reaction step. As a result, the target coating reaction can be carried out in a state where the good aggregation suppressing effect by acetonitrile is maintained well.
  • the concentration of the acetonitrile is slightly lower than 10% by mass during the reaction (preferably in a range not lower than 7% by mass). Even in some cases, the agglomeration of the particles can be kept to an acceptable low level.
  • acetonitrile is replenished as necessary in parallel with the supply of the silica raw material, and the concentration is within the specified value (10 mass% or more, more preferably 15 to 85% by mass), the monodispersity of the particles obtained in the second-stage reaction step is further increased.
  • the silica raw material used for coating the silica layer the silica raw material used as a raw material for producing silica-zirconia composite oxide particles in the first stage reaction step can be used.
  • the catalyst used is the same as the catalyst used in the first stage reaction step.
  • the reaction step is carried out while appropriately supplementing the catalyst deficiency.
  • the second stage reaction step is performed while supplementing a deficient amount of water as necessary.
  • the raw material supply method and various reaction conditions such as the reaction temperature are the same as those described in the first reaction step.
  • the thickness of the silica layer formed on the surface of the silica-zirconia composite oxide particles is 5 considering the balance between the sufficient coating of strong acid sites and the X-ray contrast and transparency of the silica-zirconia composite oxide particles. ⁇ 30 nm is preferred, and 5 ⁇ 25 nm is more preferred.
  • the method of coating the silica layer on the surface of the silica-zirconia composite oxide particles is obtained by diluting the silica-zirconia composite oxide particles dispersed in the reaction liquid and the silica raw material such as silicon alkoxide directly or in a solvent, or The method of making it react by carrying out partial hydrolysis is illustrated.
  • the silica raw material is preferably represented by the general formula Si (OR) 4 or SiR′n (OR) 4-n , as in the first stage reaction step.
  • the second stage reaction step is the same as the first stage reaction. That is, after all the raw materials are supplied to the reaction dispersion, the reaction is terminated by stirring for about 1 to 30 minutes as necessary. After completion of the reaction, it is preferable to isolate silica-zirconia composite oxide particles (multilayer particles) coated with a silica layer from the reaction solution.
  • the isolation operation is performed by solid-liquid separation using centrifugation, filtration, distillation under reduced pressure, spray drying, or the like.
  • the reaction solvent may be replaced with an organic solvent such as water or alcohol and stored in the form of a dispersion of multilayer particles. There is no restriction
  • a desired solvent may be added to redisperse the multilayer particles in the solvent.
  • the solvent may be replaced by repeating the operation of concentrating by ultrafiltration or the like and then adding a desired solvent.
  • the multilayer particle powder separated from the solvent may be further dried.
  • the drying temperature for drying is preferably 50 to 300 ° C.
  • the drying time is preferably several hours to several days.
  • the dried powder may be fired at a higher temperature.
  • the firing temperature is preferably in the range of 300 to 1300 ° C., and the firing time is preferably in the range of 1 to 24 hours.
  • the dried or fired multilayer particles can be pulverized using a pulverizer such as a ball mill or a jet mill. When the multilayer particles are dispersed in a resin or the like using a high shear disperser, the particles can be crushed simultaneously with the dispersion in the resin.
  • the variation coefficient of the particle diameter of the silica-zirconia composite oxide particles coated with the silica layer and the circularity of the particles produced through the second stage reaction step are the same as those produced in the first stage reaction step.
  • the corresponding value of the silica-zirconia composite oxide particles is usually suitably maintained.
  • silica-zirconia composite oxide particles coated with a silica layer produced according to the present invention are particularly useful as a filler for dental composite resins. Furthermore, it is also useful as an additive for antireflection layers, transparent high refractive index resins, films and the like.
  • S is the projected area of the particle
  • L is the projected perimeter of the particle.
  • “Circularity” is a parameter that represents how close a particle is to a sphere.
  • (2) Refractive index The refractive index of the particles was measured by a liquid immersion method. That is, a mixed solvent having an arbitrary refractive index was prepared by appropriately mixing solvents having different refractive indexes (for example, toluene, 1-bromonaphthalene, 1-chloronaphthalene, diiodomethane, sulfur-containing diiodomethane, etc.).
  • Particle dispersion was made by dispersing particles in mixed solvents having different refractive indexes.
  • the refractive index of the most transparent particle dispersion at 25 ° C. was defined as the refractive index of the particles.
  • the refractive index of the mixed solvent was measured at 25 ° C. using an Abbe refractometer.
  • Crystal morphology The crystal morphology of the particles was identified using an X-ray diffractometer.
  • Thickness of the silica coating layer The thickness of the silica coating layer was determined by observing the particles using a transmission electron microscope and analyzing the image of 10 particles randomly selected from the photographed images.
  • Particle Concentration 10 g of the silica-zirconia composite oxide particle dispersion was weighed and measured for mass after drying at 100 ° C. for 12 hours using an oven. The particle concentration was calculated using the following formula.
  • Example 1 Preparation of alkoxide solution for composite oxide particles
  • 356 g of tetraethoxysilane Coldcoat Co., Ltd.
  • 427 g of isobutyl alcohol were charged and stirred.
  • 0.06 mass% dilute sulfuric acid 8.9g was added in this, and it stirred for 17 hours, and the partial hydrolysis of tetraethoxysilane was performed.
  • the temperature of circulating water in the jacket was set to 40 ° C., and the inside of the reactor was stirred by rotating the stirring blade at 180 rpm. Next, the total amount of 923.2 g of the alkoxide solution for producing composite oxide particles prepared in advance was supplied to the reaction solvent thus prepared over 7 hours. Thereafter, the mixture was stirred for 20 minutes to obtain a silica-zirconia composite oxide particle dispersion.
  • the particle concentration of the silica-zirconia composite oxide particle dispersion was determined to be 12% by mass.
  • the composition of the produced silica-zirconia composite oxide particles was 83.3 mol% of SiO 2 , 14.5 mol% of ZrO 2 , and 2.2 mol% of Na 2 O when calculated from the preparation of the raw material.
  • the average particle size was 0.15 ⁇ m
  • the variation coefficient of the particle size was 6.0%
  • the circularity of the particles was 0.9. Further, when the dispersibility of the particles was evaluated, it was “E”.
  • the acetonitrile concentration in the reaction solution at the start of the reaction was 50% by mass
  • the acetonitrile concentration at the end of the reaction was 22% by mass.
  • silica layer coating Into a 1 L Erlenmeyer flask, 89.3 g of tetraethoxysilane (Colcoat Co.) and 300 g of methyl alcohol were charged and stirred to prepare an alkoxide solution for silica coating. The total amount of the obtained silica coating alkoxide solution was added dropwise to the silica-zirconia composite oxide particle dispersion over 2 hours with stirring. Stir for 20 minutes after feeding. The concentration of acetonitrile at the end of the reaction was 17% by mass.
  • silica-zirconia composite oxide particles coated with a silica layer were observed with a scanning electron microscope.
  • the particle shape was spherical, and adhered particles and aggregated particles could not be observed.
  • Image analysis was performed.
  • the average particle size was 0.15 ⁇ m, the variation coefficient of the particle size was 6.0%, and the circularity of the particles was 0.90.
  • the thickness of the silica coating layer was 10 nm. It was "E" when the dispersibility of the particles was evaluated. Thereafter, the silica-zirconia composite oxide particles coated with the silica layer were coagulated and settled, filtered off and dried.
  • Example 2 Preparation of alkoxide solution for composite oxide particle production
  • 786 g of tetraethoxysilane Coldcoat Co., Ltd.
  • 444 g of isobutyl alcohol were charged and stirred.
  • silica-zirconia composite oxide particle dispersion was obtained.
  • the particle concentration in the dispersion was determined, the particle concentration was 19%.
  • the composition of the produced silica-zirconia composite oxide particles was calculated as 83.3 mol% of SiO 2 , 14.5 mol% of ZrO 2 , and 2.2 mol% of Na 2 O from the charged amount of the raw material.
  • the average particle size was 0.15 ⁇ m
  • the variation coefficient of the particle size was 7.2%
  • the circularity of the particles was 0.7. Further, when the dispersibility of the particles was evaluated, it was “G”.
  • the acetonitrile concentration in the reaction solution at the start of the reaction was 52% by mass
  • the acetonitrile concentration at the end of the reaction was 14% by mass.
  • silica layer coating Into a 1 L Erlenmeyer flask, 268 g of tetraethoxysilane (Colcoat Co., Ltd.) and 500 g of methyl alcohol were charged and stirred to prepare an alkoxide solution for silica coating. The obtained silica coating alkoxide solution was dropped into the silica-zirconia composite oxide particle dispersion prepared above over 5 hours, and the mixture was stirred for 20 minutes. The concentration of acetonitrile at the end of the reaction was 8% by mass.
  • Example 3 (Preparation of alkoxide solution for composite oxide particles) The same alkoxide solution for producing composite oxide particles as used in Example 1 was used.
  • the composition of the produced silica-zirconia composite oxide particles was 83.3 mol% of SiO 2 , 14.5 mol% of ZrO 2 , and 2.2 mol% of Na 2 O when calculated from the charged amount of raw material.
  • the acetonitrile concentration at the end of the reaction was 38% by mass.
  • silica-zirconia composite oxide particles coated with a silica layer were observed with a scanning electron microscope.
  • the particle shape was spherical, and no adhered or aggregated particles were observed. Image analysis was performed.
  • the average particle size was 0.15 ⁇ m, the variation coefficient of the particle size was 6.2%, and the circularity of the particles was 0.8.
  • the coating thickness of the silica layer was 10 nm. Further, when the dispersibility of the particles was evaluated, it was “E”. Thereafter, the silica-zirconia composite oxide particles coated with the silica layer were coagulated and settled, filtered off and dried.
  • Comparative Example 1 Preparation of alkoxide solution for composite oxide particles
  • 518 g of tetramethoxysilane (Tama Chemical Co., Ltd.) and 160 g of methanol were charged and stirred.
  • 0.06 mass% dilute sulfuric acid 8.9g was added in this, and the partial hydrolysis of tetraethoxysilane was performed for 17 hours with stirring.
  • 170.5 g of titanium tetraisopropoxide (Nippon Soda Co., Ltd., trade name: A-1) was added to obtain a colorless and transparent alkoxide solution for producing composite oxide particles.
  • the particle concentration of the silica-titania composite oxide particle dispersion was determined to be 15% by mass.
  • the composition of the produced silica-titania composite oxide particles was 85.0 mol% SiO 2 and 15.0 mol% TiO 2 when calculated from the raw material charge.
  • the average particle size was 0.20 ⁇ m
  • the variation coefficient of the particle size was 5.2%
  • the circularity of the particles was 0.9. It was "E” when the dispersibility of the particles was evaluated.
  • the acetonitrile concentration in the reaction solution at the start of the reaction was 83% by mass
  • the acetonitrile concentration at the end of the reaction was 48% by mass.
  • silica layer coating Into a 1 L Erlenmeyer flask, 89.3 g of tetraethoxysilane (Colcoat Co.) and 300 g of MeOH were charged and stirred to prepare an alkoxide solution for silica coating. The obtained silica coating alkoxide solution was added dropwise to the silica-titania composite oxide particle dispersion. About 1 hour after the start of dropping, intense aggregation of particles was observed. As a result, monodispersed particles were not obtained.
  • Example 2 In Example 1, except that in the step (preparation of alkoxide solution for producing composite oxide particles), instead of tetrabutyl zirconate 114 g, aluminum ethoxide (Wako Pure Chemicals, reagent) was used in an equimolar amount of 41 g, In the same manner as in Example 1, production of silica layer-coated silica-alumina composite oxide particles was attempted.
  • step (preparation of alkoxide solution for producing composite oxide particles) instead of tetrabutyl zirconate 114 g, aluminum ethoxide (Wako Pure Chemicals, reagent) was used in an equimolar amount of 41 g.
  • silica-alumina composite oxide particles formed in the reaction solution about 1 hour after the start of dropping of the alkoxide solution for manufacturing composite oxide particles was started. Agglomeration was observed, and monodispersed particles were not obtained.
  • Comparative Example 3 Preparation of complex alkoxide solution
  • 356 g of tetraethoxysilane (Colcoat Co.) and 427 g of isobutyl alcohol were charged into a 2 liter Erlenmeyer flask and stirred.
  • 0.06 mass% diluted sulfuric acid 8.9g was added in this, and the partial hydrolysis of tetraethoxysilane was performed for 17 hours.
  • a silica-zirconia composite particle dispersion was obtained by the above reaction, and the particle concentration was determined to be 11% by mass.
  • the composition of the produced silica-zirconia composite particles was 83.3 mol% of SiO 2 , 14.5 mol% of ZrO 2 , and 2.2 mol% of Na 2 O when calculated from preparation of raw material.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Silicon Compounds (AREA)
  • Dental Preparations (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明により、シリコンのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物と、ジルコニウムのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物とを、アセトニトリルが反応液中に10質量%以上含有される含水溶媒中で反応させることによりシリカ-ジルコニア複合酸化物粒子分散液を得、 次いで、前記シリカ-ジルコニア複合酸化物粒子分散液中で該分散液中に分散しているシリカ-ジルコニア複合酸化物粒子とシリコンのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物とを反応させることにより、該シリカ-ジルコニア複合酸化物粒子の表面をシリカ層で被覆させることを特徴とする、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の製造方法が開示される。

Description

シリカ層で被覆されたシリカ-ジルコニア複合粒子の製造方法
 本発明は、表面がシリカ層で被覆された、シリカ-ジルコニア複合粒子(以下、複層粒子と略記する場合がある)の製造方法に関する。本製造方法によれば、単分散性の良い複層粒子を、安定した製造条件で製造できる。
 シリコン等のアルコキシド等を加水分解すると共に重縮合させることによって、単分散性の高い球状のシリカ粒子を製造する方法が知られている。金属アルコキシドなどの有機金属化合物を原料として用いて、この原料を含水溶媒中で重縮合反応させることにより、金属酸化物粒子を製造する方法は、一般にゾル-ゲル法と呼ばれている。原料として、シリコンのアルコキシドとシリカ以外の金属のアルコキシドとを用いることによって、シリカ系複合酸化物粒子がゾル-ゲル法により製造される。シリカ系複合酸化物粒子としては、シリカ-チタニア、シリカ-アルミナ、シリカ-ジルコニア等の粒子が例示される。
 ゾル-ゲル法により製造されるシリカ系複合酸化物粒子は、シリカと複合される金属酸化物の種類に応じて、特徴ある性能が付与される。これらの特徴はシリカ単独で製造される粒子では得られない特徴である。
 これらの特徴を有する粒子は様々な用途に応用されている。例えば、シリカとシリカ以外の金属酸化物との配合比率を変えることにより、光学的透明性を保ちながら、粒子の屈折率を任意に調節できる。この技術の応用として、透明な複合樹脂や、歯科用のコンポジットレジンがある。
 これらの複合樹脂やコンポジットレジンは、樹脂の屈折率と一致する屈折率の粒子を充填材として用いることで、視覚的透明性を維持しながら、樹脂の機械的強度、低熱膨張性などの性能の向上が達成される。
予後の診断の容易性の観点から、歯科用コンポジットレジンに配合する充填材には、上記透明性の他に、X線造影性が付与されていることが有益である。したがって、歯科用コンポジットレジンに配合する充填材としては、シリカと他の金属酸化物とが複合されたシリカ系複合酸化物粒子が通常使用される。前記シリカ系複合酸化物粒子に複合させる金属酸化物としては、X線造影性を有するチタニア、ジルコニア、バリウム酸化物等が好ましい。これら金属酸化物の配合比率を調節して充填材の屈折率を樹脂の屈折率と一致させることで、透明性と該X線造影性とを兼ね備えた歯科用の充填材が得られる。
 一方、シリカ系複合酸化物粒子を前記ゾル-ゲル法により製造する場合、従来法においては、通常生成して来るシリカ系複合酸化物粒子が凝集し易い問題がある。更に、時間の経過と共に、次々と新たなシリカ系複合酸化物粒子の微粒子が生成するので、得られる粒子の粒径が不均一になる問題がある。これらの現象は、複合酸化物粒子中のシリカ以外の金属酸化物の含有率が高くなるにつれて顕著になる。その結果、単分散性が良好で、粒径の均一なシリカ系複合酸化物粒子を得ることは困難である。
単分散性の良いシリカ系複合酸化物粒子を製造する方法として、ゾル-ゲル法の反応液に含水アセトニトリルを用いる方法が提案されている(特許文献1参照)。反応液中のアセトニトリルの濃度は、20質量%以上である。この提案は、上記課題の解決に関して大変効果的である。実際、単分散性に優れるシリカ系複合酸化物粒子を効率的に製造することができる。
特開2007-269594号公報
 上記方法等により製造されるシリカ系複合酸化物粒子は、その表面をシリカ層で被覆して複層粒子にすることが好ましい。該複層粒子は、歯科用コンポジットレジンの充填材として使用する場合等において、特に有益である。
一般に、前記シリカ系複合酸化物粒子は、該粒子を構成するシリカと複合している金属酸化物に起因して、シリカ単体で構成される粒子と異なり、その表面に強い酸点が形成されている。この酸点が形成されている粒子を歯科用コンポジットレジンに配合する場合、コンポジットレジンを構成する樹脂マトリックス部分の変質や、充填材同士の凝集を引き起す。更に、酸点は、含有されている微量成分(顔料、重合開始剤、重合禁止剤等)の吸着を促進し、その結果、これらの果すべき機能が十分に発揮され無くなる。したがって、シリカ系複合酸化物粒子の表面は、不活性なシリカ層で被覆されていることが、酸点の活性の低減に極めて効果的である。
 ところが、本発明者らは、アセトニトリルを含む反応液を用いるゾルーゲル法で得られるシリカ系複合酸化物粒子の場合であっても、このシリカ系複合酸化物粒子の表面をシリカ層で被覆することは困難であることを知得した。
本発明者らは、シリカ系複合酸化物粒子の表面をシリカ層で被覆するために、引き続いて同じ反応液中でシリコンのアルコキシドを反応させた。この場合、反応液中の該粒子の単分散性は急激に悪化し、凝集粒子の発生は顕著であった。特に、被覆されるシリカ系複合酸化物粒子のシリカ以外の金属酸化物の含有率が10モル%以上の場合、この凝集は著しかった。 
上述のように、該複層粒子を、単分散性良く、且つ安定的に製造できない状況は、工業的に大きな問題を有する。
 従って、透明性とX線造影性とを兼ね備え、歯科用コンポジットレジンに配合する充填材として有益なシリカ系複合酸化物粒子であって、その表面がシリカ層で被覆されている複層粒子を、反応中に凝集粒子を生じさせることなく、安定的に製造する方法を開発することが、本発明の課題である。
 本発明者らは、上記課題に鑑み鋭意研究を続けた。即ち、前記シリコンのアルコキシドとシリコン以外の金属のアルコキシドを用いてシリカ系複合酸化物粒子を製造し、更にこのシリカ系複合酸化物粒子の表面にシリカ層を被覆する反応を研究した。その結果、アセトニトリルを含有する含水溶媒中で製造したシリカ系複合酸化物粒子を原料として、その表面にシリカ層を被覆する反応においては、その反応中及び反応後を通して、生成する複層粒子は極め凝集し易くなっていることが確認された。
 本発明者らは、上記シリカ層を表面に被覆する反応を更に研究した。その結果、該シリコン以外の金属がジルコニウムであるシリカ系複合酸化物粒子の場合に限って、得られる複層粒子の分散性を格別高く維持した状態で、該酸化物粒子の表面にシリカ層を被覆できることを見出した。
即ち、本発明者らは、上記アセトニトリルを含有する含水溶媒中で製造されるシリカ系複合酸化物粒子分散液を用いて、該分散液中の複合酸化物粒子の表面にシリカ層を被覆する反応においては、種々のシリカ系複合酸化物粒子の内、シリカ-ジルコニア複合酸化物粒子を被覆する場合のみに、複合酸化物粒子の凝集が顕著に抑制されることを見出した。その結果、シリカ-ジルコニア複合酸化物粒子を被覆する場合には、目的とするシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子が極めて効率的に製造できることを確認した。本発明は、上記研究に基づいて完成するに至った。
 すなわち、本発明は、シリコンのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物、並びにジルコニウムのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物を、アセトニトリルが、反応液中に10質量%以上含有される含水溶媒中で反応させることによりシリカ-ジルコニア複合酸化物粒子分散液を得、次いで前記シリカ-ジルコニア複合酸化物粒子分散液中で該分散液中に分散しているシリカ-ジルコニア複合酸化物粒子とシリコンのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物とを反応させることにより、該シリカ-ジルコニア複合酸化物粒子の表面をシリカ層で被覆させることを特徴とする、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の製造方法である。
 本発明は、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の製造方法である。ジルコニア以外の金属酸化物を含有する、シリカ層で被覆された複合酸化物粒子は、本製造方法によっては製造できない。
本発明の製造方法により製造するシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子は、優れたX線造影性を備えている。更に、シリカとジルコニアとの配合比率を調整することにより、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子と樹脂との屈折率を一致させることができる。従って、本発明の製造方法により製造される、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子は、人間の視覚的透明性とX線造影性とを兼ね備えた充填材として利用できる。この充填材は、歯科用コンポジットレジンへ配合する充填材等として有用である。
シリカ-ジルコニア複合酸化物粒子は、表面に酸点を有する。従って、シリカ-ジルコニア複合酸化物粒子の表面は活性が高い。これに対し、本発明により製造される表面がシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子は、表面を覆うシリカ層により、前記酸性の表面性状が被覆され、不活性になっている。本発明の製造方法によれば、表面性状が不活性のシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子を、凝集を生じること無く、安定して製造することができる。
 本発明の製造方法は、シリカ-ジルコニア複合酸化物粒子を製造する第1段の反応工程と、第1段の反応工程で得られるシリカ-ジルコニア複合酸化物粒子の表面をシリカ層で被覆する第2段の反応工程とからなる。
(第1段の反応工程)
第1段の反応工程は、基本的には、従来のゾル-ゲル法によるシリカ-ジルコニア複合酸化物粒子の製造方法と同様である。即ち、含水溶媒中にシリカ原料物質、及びジルコニア原料物質を添加して、これら原料物質を反応させる。
本発明においては、このシリカ-ジルコニア複合酸化物粒子を製造する第1段の反応工程を、常に所定濃度のアセトニトリルの存在下で行う点に特徴を有する。
本発明の製造方法においては、反応液中にアセトニトリルを10質量%以上含有している含水溶媒中で第1段の反応工程を行なう。なお、反応液とは、反応開始時における反応溶媒(水を含む有機溶媒。複合酸化物粒子が生成している場合は、同時に分散媒である。)、触媒、反応により生成する固体成分(シリカ系複合酸化物粒子)、反応により生成するアルコールなどの副生物、反応系に残存する未反応の反応原料、及び必要に応じて反応中に添加される水や有機溶媒などの全ての成分を含む混合物を意味する。上記アセトニトリルの濃度は、前記混合物の総質量を基準とする。
 反応液にアセトニトリルが上記濃度で含有されている状態で、シリカ-ジルコニア複合酸化物粒子を製造する第1段の反応工程を行う場合、生成するシリカ-ジルコニア複合酸化物粒子の凝集は高度に抑制される。その結果、単分散性に優れるシリカ-ジルコニア複合酸化物粒子分散液が得られる。
上述のように、シリカと複合する他の金属としてジルコニウムを選択する場合にのみ、第2段の反応工程において、粒子の凝集が高度に抑制される原因は必ずしも明確に解明されていない。一般に、他の金属酸化物の関与する反応と比較して、ジルコニウムが関与する重縮合反応は穏やかに進行する。この反応の穏やかさと、アセトニトリルを配合することによる凝集抑制効果とが相乗的に作用し合い、その結果、第2段の反応が極めて穏やかに進行することが、凝集の抑制に寄与していると、本発明者らは考えている。
 前記のように、ゾル-ゲル法によりシリカ系複合酸化物粒子を製造する場合は、シリカ以外の金属酸化物の含有率が高くなると、粒子の表面電位が低下する。その結果、各粒子間の反発力が不十分になり、各粒子は凝集し易くなる。以上の理由で、シリカ系複合酸化物粒子中のシリカ以外の金属酸化物の含有率が高くなると、単分散性の高い粒子が得られなくなる。
更に、この凝集現象は、生成するシリカ系複合酸化物粒子の分散量に比例して激しくなる。粒子間の反発エネルギーが減少し、個々の粒子の表面電位が更に低下するためである。
 非プロトン性の極性溶媒を高濃度で含む溶媒(或いは分散媒)中で反応を行うことにより、表面電位の低下を抑制する効果を期待することができる。非プロトン性の極性溶媒は、電解質の役割をしない。非プロトン性の極性溶媒は、プロトンを相手に供与しないので、粒子に配位して粒子間の電気的斥力を強めることが期待できるからである。しかし、ジメチルスルホキシドや、ジメチルフォルムアミド等の上記アセトニトリル以外の非プロトン性極性溶媒を用いる場合は、上記理由によって期待される程大きな凝集抑制効果は得らない。この優れた凝集抑制効果は、アセトニトリルが有する特異的な効果である。
 アセトニトリルの有する凝集抑制効果は、反応液に含まれるアセトニトリルの濃度を10質量%以上に保つことにより発揮される。前記したように、シリカと複合する他の金属酸化物がジルコニウムの場合、第1段目の反応工程の反応液に配合するアセトニトリルに基因する粒子の凝集防止効果は特に優れる。したがって、アセトニトリルの含有量が、前記10質量%を僅かに超える程度の比較的少量の場合であっても、粒子の凝集抑制効果は良好である。
しかし、10モル%以上のジルコニアを含有率するシリカ-ジルコニア複合酸化物粒子を製造する際の分散性は特に悪くなる。この様な凝集し易い粒子を製造する場合や、単分散性が良く且つ粒子の円形性も特に良好な粒子を製造する場合は、該アセトニトリルの濃度は15~85質量%が好ましく、15~60質量%がより好ましい。
 本発明の製造方法においては、第1段目の反応工程の反応液中のアセトニトリルの濃度を10質量%以上に保つ条件下で、ジルコニアの含有率が10モル%以上の粒子を製造する場合は、得られる表面がシリカ層で被覆されたシリカージルコニア複合粒子(複層粒子)の粒子径の変動係数は通常8%以下である。複層粒子の円形度は通常0.7以上である。更に、上記アセトニトリルの濃度を15~90質量%に保つ場合、得られる複層粒子の粒子径の変動係数は通常7%以下であり、複層粒子の円形度は通常0.8以上である。
 なお、シリカ系複合酸化物粒子や、表面がシリカ層で被覆されたシリカージルコニア複合粒子の形状は、走査型や透過型の電子顕微鏡等を用いて観察できる。画像解析装置を用いて、走査型電子顕微鏡の撮影像を解析し、撮影像中の200個以上の粒子の粒径を測長し、測長値の平均値を算出することにより、これら粒子の平均粒子径を求めることができる。
 粒子の単分散性(粒子径の変動係数)は、前記方法で測定した200個の粒子の平均粒子径と、その標準偏差との比の値で示される。
粒子の円形度は、粒子がどれだけ球に近いかを表すパラメーターである。円形度は、走査型や透過型の電子顕微鏡で観察される粒子の投影面積をS、周囲長をLとしたときの、(4πxS)/Lで表される値である。
 第1段の反応工程において、反応液中のアセトニトリルの濃度は、反応初期において高いことが好ましい。反応開始時におけるアセトニトリルの濃度は20質量%以上が好ましく、30質量%以上がより好ましく、40~80質量%が特に好ましい。
 反応中には、原料物質(シリカ原料物質及びジルコニア原料物質)や必要に応じてアンモニア水などが供給される。その結果、反応液中のアセトニトリルの濃度は、反応開始時における濃度から徐々に低下していく。反応液中のアセトニトリルの濃度を10質量%以上に保つ方法としては、例えば、予めこれら原料物質等の供給量を考慮して、反応開始時に十分な量のアセトニトリルを含む反応液を使用する方法がある。或いは、反応液中のアセトニトリルの濃度が所定の範囲を維持するように、反応中にアセトニトリルを断続的又は連続的に供給する方法がある。
 シリカ原料物質およびジルコニウム原料物質の反応は、アセトニトリルを含む溶媒中で、反応が行われる間中、常にアセトニトリル濃度が10質量%以上となるように保つ以外は、従来のゾル-ゲル法でシリカ系複合酸化物粒子を製造する場合同様である。反応試薬も従来使用されているものが特に制限無く使用できる。
 第1段目の反応工程終了時に、生成するシリカ-ジルコニア複合酸化物粒子の平均粒子径は、特に制限されるものではないが、通常0.05~1.0μmであり、0.08~0.5μmがより好ましい。平均粒子径が1.0μmを越える粒子を製造する場合は、粒子を成長させるために多大な時間を要し、且つ製造の途中に新しく粒子の核が発生し易くなる。その結果、単分散性の高い複合酸化物粒子が得難くなる傾向にある。平均粒子径が0.05μmよりも小さい粒子を製造する場合は、得られる粒子の単分散性は高くなる。しかし、この複合酸化物粒子を用いて製造される、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子は取扱い性に劣り、その後所望により行われる乾燥工程や焼成工程で凝集し易いものである。
 第1段の反応工程において、使用するシリカ原料物質は、
(1)一般式Si(OR)またはSiR’n(OR)4-nで示されるシリコンのアルコキシド(前記式中、RおよびR’はエーテル結合、エステル結合を含んでも良い有機基であり、nは1~3の整数である。)、
(2)上記シリコンのアルコキシドを部分的に加水分解して得られる低縮合物(該低縮合物は、分子内にアルコキシ基又は水酸基を有している縮合可能な化合物、即ち可縮合性化合物である)、又は
(3)これら(1)、(2)の混合物
である。
なお、上記一般式で示されるシリコンのアルコキシドにおいて、1分子中に含まれる複数のRは、同一でも、互いに異なっていても良い。原料の入手が容易であるため、通常は1分子に含まれる複数のRは同一有機基である化合物が好ましい。RおよびR’は上記有機基であるが、これら有機基としては、アルキル基が好ましい。原料物質の入手が容易であるからである。RおよびR’ が特にメチル基、エチル基、イソプロピル基、ブチル基などの低級アルキル基である場合、これらのシリカ原料物質と有機溶媒とは相溶性が良好で、また加水分解の結果生成するアルコールの沸点が低いので、容易に粒子から除去できるため好ましい。
 ジルコニア原料物質としては、ジルコニアのアルコキシドが特に制限無く使用される。
具体的には、シリコンのアルコキシドを示す前記一般式において、SiをZrに置き換えたアルコキシド、及びこれらジルコニアのアルコキシドを部分的に加水分解して得られる低縮合物(該低縮合物も、可縮合性化合物である)、又はこれらの混合物が好適に使用できる。
 第1段の反応工程において生成するシリカ-ジルコニア複合酸化物粒子のジルコニア含有率は、該粒子の使用目的に応じて適宜に決定すれば良い。該粒子が歯科用コンポジットレジンに配合する充填材の場合は、透明性やX線造影性が考慮されて、ジルコニア含有率が決定される。ジルコニアの含有率は、一般には、5~30モル%の範囲が好ましい。前記のように、粒子の凝集を抑制する本発明の効果がより顕著に発揮されるジルコニアの含有率の観点からは、10モル%以上が好ましく、11~20モル%がより好ましい。
 なお、本発明の第1段の反応工程で製造されるシリカ-ジルコニア複合酸化物粒子は、必ずしも上記シリカとジルコニアとのみにより構成されていなくても良い。シリカ-ジルコニア複合酸化物粒子の優れた性状が維持されている範囲内であれば、該粒子に他の金属酸化物を少量含有していても良い。シリカおよびジルコニア以外の金属酸化物としては周期律表第1族、第2族、第3族、第4族(但し、ジルコニアは除く)、および第13族の金属の酸化物が挙げられる。具体的には、リチウム、ナトリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、チタン、ハフニウム、アルミニウム、ランタノイド、アクチノイド等が例示できる。このうちシリカおよびジルコニア以外の金属酸化物の中でも、少量の添加で表面酸点を中和し易い理由から、アルカリ金属の酸化物が好ましく、酸化ナトリウムが特に好ましい。
 これらの他の金属酸化物を複合させる方法としては、第1段の反応工程において、上記シリカ原料物質およびジルコニア原料物質の他に、これらシリカおよびジルコニア以外の金属のアルコキシド、該金属のアルコキシドを部分的に加水分解して得られる低縮合物(該低縮合物も、可縮合性化合物である)、又はこれらの混合物を、複合酸化物粒子の原料物質として使用すれば良い。上記シリカおよびジルコニア以外の金属酸化物の含有量は、一般には、複合酸化物粒子を構成する全金属酸化物に対して5モル%以下が好ましく、3モル%以下がより好ましい。
 本発明の第1段目の反応工程においては、上記シリカ原料物質、ジルコニア原料物質等を、水、アセトニトリル、有機溶媒等を含んでなる反応溶媒中に添加して反応させる。反応液中には、加水分解反応及び重縮合反応を促進するために、触媒を添加することが好ましい。
触媒としては、金属アルコキシドの加水分解及び重縮合反応を促進する機能を有するものであれば特に限定されない。通常、酸や塩基が使用できる。球状で単分散性の高い粒子が得られるという理由から、塩基触媒を使用することが好ましい。
 本発明で好適に使用できる塩基触媒を例示すれば、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの無機塩基;メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ピリジン、イミダゾール、ピペリジン、キノリン、ピロール、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]ウンデ-7-セン、水酸化テトラメチルアンモニウムなどの有機塩基;を挙げることができる。これらの中でも、アンモニアやアミンのような、金属を含まない塩基を使用することが好ましい。製造されるシリカ系酸化物粒子は、後処理として乾燥したり、焼成したりする場合がある。これらの後処理をする場合、上記触媒は、粒子中に塩基成分や金属成分を残留させないため、特に好ましい。
 触媒の添加量は、用いる触媒の種類、反応液中の水、有機溶媒等の種類や配合比率によって相違する。一般には、反応液のpHが10以上、好ましくは11以上になるように触媒を添加することが好ましい。なお、反応中に原料を添加していくと、反応液の量が増大し、触媒の濃度が変化する。この場合は、反応中に反応液のpHが上記範囲を維持しているように、連続的又は断続的に触媒を追加することが好ましい。
触媒として最も好適なアンモニアを触媒として使用する場合は、第1段の反応の開始から第2段の反応の終了まで、反応液の質量を基準として2~20質量%、好ましくは3~15質量%の範囲で、アンモニアを共存させることが好ましい。ここ反応液の質量とは、具体的には、初期に仕込んだ水を含む有機溶媒、供給された原料、供給された触媒などを含む反応液全体の質量である。
 第1段の反応工程において、反応溶媒は、水及び前記濃度のアセトニトリルを含む溶媒であれば、特に制限がない。水の濃度は特に限定されないが、アセトニトリル及び触媒を除く全ての成分は水であっても良い。良好に加水分解・重縮合反応を遂行できるように、反応液中の水の含有量は、供給されるシリカ原料物質およびジルコニウム原料物質の全量が加水分解・重縮合反応をするのに必要な理論量以上である。すなわち、これら原料物質の有する全アルコキシド基の1/2モル量以上の水を反応溶媒に配合する。
 反応溶媒には、水溶性有機溶媒を添加しても良い。水溶性有機溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブチルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類、酢酸エチル等のエステル類等が挙げられる。反応溶媒としては、メタノール、エタノール、イソプロパノールのような炭素数1~4の低級アルコール類が好ましい。これらの水溶性有機溶媒は、金属アルコキシドや水との相溶性が高く、粘度が低く、更に得られる複合酸化物粒子の平均粒子径を小さく保持し易くなる作用を有するため、好ましい。
 反応中においては、供給される原料物質(シリカ原料物質及びジルコニア原料物質)や、必要に応じて供給されるアンモニア水などにより、反応溶媒中のアセトニトリルは希釈される。従って、放置しておけば、アセトニトリルの濃度は反応開始時における濃度から、より低い濃度に低下して行く。反応液に含まれるアセトニトリルの濃度を10質量%以上に保つためには、予めこれら原料物質等の質量増加を考慮して、アセトニトリルの配合量を調節しておくことが好ましい。具体的には、反応開始時に使用する反応溶媒として、十分な量のアセトニトリルを含む反応溶媒を使用することが考えられる。或いは、反応液中のアセトニトリルの濃度が10質量%以上の状態を維持できるに、反応中に反応液にアセトニトリルを断続的又は連続的に供給すればよい。
 第1段の反応工程において、有機溶媒に前記原料物質を添加して反応させる方法は、従来のゾル-ゲル法と同様である。良好な性状のシリカ-ジルコニア複合酸化物粒子を製造するためには、シリカ原料物質とジルコニア原料物質とを予め混合して混合物を得、次いでこの混合物を反応溶媒に添加する方法を採用することが好ましい。
シリカ原料物質としてシリコンのアルコキシドを使用する際には、前記混合に先立ち、シリコンのアルコキシドの一部又は全部を部分的に加水分解させておく(以下では、部分加水分解ともいう)ことが好ましい。この方法により、より均質な複合酸化物粒子が得られる。部分加水分解を行う際には、該アルコキシドと水の両方に対して相溶性のある、アルコール等の有機溶媒を水と併用することが好ましい。部分加水分解を行う際に、触媒を添加すると、部分加水分解反応が迅速に進行する。触媒としては、酸が好ましい。具体的には、塩酸、硫酸、硝酸、シュウ酸などが挙げられるが、特に制限はない。酸の濃度としては、pHが1~4の範囲の酸を使用することが好ましい。
 シリカ原料物質とジルコニア原料物質との混合方法としては、製造するシリカ系複合酸化物粒子の組成に応じて、各原料物質を計量し、これらを撹拌、混合する方法が好ましい。この混合方法を採用することにより、両原料物質が複合化された複合アルコキシドが形成される。その結果、粒子径の変動係数の小さいシリカ-ジルコニア複合酸化物粒子を効率良く製造できる。なお、予めシリコンのアルコキシドを部分加水分解している場合は、そのときの反応液とジルコニア原料物質を混合すればよい。
 第1段の反応工程は、上記手順に従って実行される以外に、本発明の要旨を変更しない限り種々変更しても差支えない。例えば、各原料物質を別々に反応溶媒に添加して反応を行っても良い。
 第1段の反応工程において、供給する原料物質量は、シリカ-ジルコニア複合酸化物粒子の生成反応が終了する時に、反応液中に該粒子の濃度が5~30質量%の高濃度、好ましくは7~20質量%、より好ましくは7~15質量%、特に好ましくは10~15質量%の高濃度になるように供給することが好ましい。
 原料物質としては、前述のように、シリカ原料物質及びジルコニア原料物質がある。さらには本発明の効果を損わない範囲で必要に応じて上記原料物質と共に使用する、シリカ原料物質及びジルコニア原料物質以外の他の金属酸化物原料物質がある。
前記のように、シリカ-ジルコニア複合酸化物粒子は、該粒子の分散濃度が高くなるほど凝集が激しくなる。さらには、該粒子の凝集しやすさに基因し、次工程である第2段の反応工程におけるシリカ層の被覆反応の際にも、粒子は更に凝集し易くなる。したがって、上記高濃度の粒子分散液の場合、凝集を抑える本発明の効果が特に顕著に発揮される。
 第1段の反応工程において、シリカ系複合酸化物粒子の生成反応が終了する際に、反応液中の該粒子の分散濃度が5質量%より小さい場合、第2段の反応工程の終了時まで含めて、凝集粒子の発生は相当に少ない。なお、シリカと複合する他の金属酸化物がジルコニア以外であっても、粒子の単分散性の大きな悪化は見られない。
シリカ系複合酸化物粒子の生成反応が終了する際に、反応液中の該粒子の濃度が30質量%を越える場合、他の金属酸化物がジルコニアであっても粒子の凝集が激しくなる。その結果、アセトニトリルの濃度を前記範囲に制御しても、凝集を抑制することは難しい。
 反応液中にシリカ-ジルコニア複合酸化物粒子を高濃度に生成させるためには、反応液に供給する各原料物質量を多くすること、反応時間を長くすること等の方法を適宜採用すれば良い。特に好ましい方法は、反応液中の原料物質の濃度を高くし、反応液を少なくする方法である。
斯様な条件で反応させることによって、上記粒子濃度範囲で、かつ平均粒子径が0.1~1.0μmのシリカ-ジルコニア複合酸化物粒子が反応液中に生成する。
 反応溶媒に原料物質を添加する場合、これら原料物質はアルコールやアセトニトリル等の有機溶媒で希釈して反応溶媒に添加しても良い。しかし、反応液中の複合酸化物粒子の濃度を高めるために、全く希釈せずに添加するか、または、希釈する場合にも希釈率は30質量%以下、特に好適には10質量%以下にすることが望ましい。
 これら原料物質を反応溶媒に添加する場合、凝集粒子が形成されにくいという観点から、原料物質を反応溶媒中に液中滴下することが好ましい。液中滴下とは、原料物質の供給管の先端(原料物質の吐出口)が反応溶媒中に浸された状態で、原料物質が反応溶媒に供給される供給方法を言う。吐出口先端の位置は、液中にあれば特に限定されない。吐出口先端の位置は、撹拌羽根の近傍などの充分に撹拌が行われる位置が望ましい。
 触媒としては、アンモニアなどの塩基性触媒が好ましい。該塩基性触媒を含むアルカリ性水溶液としては、10~30質量%のアンモニア水が好適である。
触媒の添加方法は、原料物質と共に、別途調製されたアルカリ性水溶液を、反応液中に同時に滴下することが好ましい。アルカリ性水溶液の滴下方法としては、特に液中滴下方法による必要はない。しかし、撹拌羽根近傍でアルカリ性水溶液を液中滴下すると、反応液中において撹拌が充分に行われるので好ましい。上記のようにアルカリ性水溶液を原料物質と同時滴下することによって、反応期間中に継続して反応槽内のアルカリ量を一定に保つことができる。その結果、反応期間を通して反応速度が高い状態に保たれる。即ち、アルカリによって発生する反応基質の濃度は高く保たれる。結果として、固形分濃度が高い状態で粒子を合成できるので、収量(生産性)の高い合成が可能となる。
なお、アルカリ性水溶液の同時滴下に際しては、同時に供給される原料物質に含まれるシリコンとジルコニアの金属の総モル数に対して、供給されるアルカリ性水溶液中の水のモル数が1~6倍、好ましくは2~5倍となるようにアルカリ性水溶液を滴下することが好ましい。
 複合酸化物粒子の単分散性を高めるためには、原料物質の滴下速度は小さいことが好ましい。しかしながら、滴下速度を小さくしすぎると、第1の反応工程が終了するまでに長時間を要する。従って、該工程の初期には滴下速度を小さくし、後半になってから滴下速度を高めることが好ましい。
 原料物質およびアルカリ性水溶液は、それぞれ滴下を開始してから終了するまで連続的に滴下することが好ましい。なお、ここで言う連続的とは、好ましくは10分以上、さらに好ましくは3分以上の間隔を空けないことを言う。滴下速度は、必ずしも一定である必要はないが、滴下速度を変える場合には連続的に変えた方が望ましい。間隔を空けて断続的に供給する場合は、急激に水が添加されることによって反応液中の雰囲気が乱され、粒子同士の凝集や、新たな核粒子の発生などが起こることがある。
 反応温度は、用いる原料物質の種類に応じて適宜設定する。通常は、0~50℃である。反応は、原料物質の供給後速やかに進行する。加水分解に引き続き起こる縮重合反応(通常、脱アルコール縮合)により、Si-O-Si結合や、Si-O-Zr結合が形成され、結果的にシリカ-ジルコニア複合酸化物粒子が生成する。
 上記シリカ-ジルコニア複合酸化物粒子を生成させる第1段の反応工程においては、全ての原料を反応液に投入した後、0.5~2時間撹拌し、更に必要に応じて1~60分程度の攪拌をして反応を終了させる。次いで、得られるシリカ-ジルコニア複合酸化物粒子分散液は、下記第2段の反応工程に送られる。
(第2段の反応工程)
第2段の反応工程においては、第1段の反応工程で得られる分散液をそのまま用いて、反応液中で該複合酸化物粒子の表面をシリカ層で被覆することが好ましい。
具体的には、上記シリカ-ジルコニア複合酸化物粒子分散液中で、シリコンのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物の加水分解・重縮合を行う。
 前記のように、第1段の反応工程で、シリカ系複合酸化物粒子として、シリカとジルコニア以外の他の金属酸化物(例えば、チタン、アルミニウム、ボラン等)を複合させてシリカとジルコニアと以外の複合酸化物粒子を製造する場合がある。この場合、前記アセトリトリルを配合する効果により、単分散性の高い粒子分散液が得られる場合がある。この場合においても、この単分散性の高い粒子分散液を用いて第2段の反応工程を行うと、シリカ-ジルコニア複合粒子以外の場合は単分散性が大きく低下し、凝集粒子が顕著に発生するのが普通である。
凝集粒子の発生機構は、現在、必ずしも明確になっていないが、本発明者らは以下のように考えている。
即ち、第1段の反応工程の終期においては、反応液に原料を供給することを停止して、反応を一旦終了させる。その後、第2段の反応工程を開始する。しかし、第2段の反応工程は、前工程とは異なる反応条件で反応が再開される。この場合は、反応液が安定化するまで、粒子の凝集し易い状態になっていると考えられる。この状態において、少量の粒子の凝集が起き、この凝集粒子が核となって、第2段の反応工程全体にわたって凝集が成長する。更には、部分的に凝集粒子の解砕等も生じる。これらの結果、前記顕著な単分散性の低下を引き起こす。
 一方、本製造方法のように、シリカ系複合酸化物粒子としてシリカ-ジルコニア複合酸化物粒子を製造する場合は、第2段の反応工程においても、凝集粒子の発生は高度に抑制される。
その理由は定かではない。しかし、本発明者らは以下のように考えている。即ち、第1段の反応工程における穏やかなシリカ-ジルコニア系の反応性により、得られる複合酸化物粒子の表面性状が、他の金属酸化物の複合酸化物の場合よりも、より凝集し難い性状を帯びる様になっているのではないかと、発明者らは考えている。
 第2段の反応工程の開始当初において、シリカ-ジルコニア複合酸化物粒子分散液中には、アセトニトリルが10質量%以上含有されている。したがって、このシリカ-ジルコニア複合酸化物粒子分散液中で、第1段の反応工程に続けて、上記シリカ層を被覆する第2段の反応工程を行う。この場合は、この被覆反応は第1段の反応工程に比べれば短時間で完了する。その結果、アセトニトリルによる良好な凝集抑制効果が良好に維持された状態で、目的とする被覆反応を進めることができる。
例えば、この第2段の反応工程をアセトニトリルの補充なく実行した結果、反応の途中で該アセトニトリルの濃度が前記10質量%を多少下回るようなこと(好適には7質量%を下回らない範囲)がある場合でも、粒子の凝集は許容できる程度の僅かな発生に留めることができる。もちろん、この第2段の反応工程においても、シリカ原料物質の供給と併行して、必要に応じてアセトニトリルを補充し、その濃度を前記規定値内(10質量%以上、より好適には15~85質量%)に保持する場合は、第2段の反応工程で得られる粒子の単分散性は一層高くなる。
 シリカ層の被覆に使用するシリカ原料物質は、前記第1段の反応工程において、シリカ-ジルコニア複合酸化物粒子の製造原料として使用するシリカ原料物質が使用できる。使用する触媒も、前記第1段の反応工程で使用する触媒と同様である。シリカ-ジルコニア複合酸化物粒子分散液に残留している触媒量に応じて、適宜触媒の不足量を補充しつつ、反応工程を実施する。また、水も必要により不足量を補充しつつ、第2段の反応工程を実行する。
 その他、原料の供給方法や、反応温度等の反応の諸条件も、前記第1段の反応工程で説明したものと同様である。
 シリカ-ジルコニア複合酸化物粒子の表面に形成するシリカ層の厚みは、強酸点の十分な被覆と、シリカ-ジルコニア複合酸化物粒子が有するX線造影性や透明性とのバランスを勘案すると、5~30nmが好ましく、5~25nmがより好ましい。
シリカ-ジルコニア複合酸化物粒子表面にシリカ層を被覆する方法は、反応液に分散しているシリカ-ジルコニア複合酸化物粒子と、シリコンのアルコキシドなどのシリカ原料物質とを直接もしくは溶媒に希釈、または部分加水分解させて反応させる方法が例示される。シリカ原料物質としては、第1段目の反応工程と同様に、一般式Si(OR)またはSiR’n(OR)4-nで示されるのが好ましい。
 上記第2段の反応工程も第1段の反応同様である。即ち、反応分散液に原料を全て供給した後、必要に応じて1~30分程度攪拌をして反応を終了させる。反応終了後は、反応液から、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子(複層粒子)を単離することが好ましい。単離操作は、遠心分離、ろ過、減圧留去、スプレードライなどを用いて、固液分離することにより行う。また、反応溶媒を、水もしくはアルコールなどの有機溶媒に置換し、複層粒子の分散液の形態で保存しておいても良い。溶媒の置換方法に特に制限は無い。例えば、粉末の形で取り出した後に所望の溶媒を添加して複層粒子を溶媒に再分散してもよい。あるいは、限外ろ過法などにより濃縮し、その後所望の溶媒を添加する操作を繰り返して、溶媒を置換しても良い。
 複層粒子を製造した後、溶媒と分離した複層粒子の粉末は、更に乾燥させても良い。乾燥させる場合の乾燥温度は、50~300℃が好ましい。乾燥時間は数時間から数日が好ましい。乾燥した粉末はさらに高い温度で焼成しても良い。焼成温度は300~1300℃の範囲が好ましく、焼成時間は1~24時間の範囲が好ましい。乾燥または焼成後の複層粒子は、ボールミルやジェットミルなどの粉砕機を使用して解砕することができる。高シェアの分散機を使用して複層粒子を樹脂等に分散する場合は、樹脂への分散と同時に粒子の解砕を行うことができる。
 上記第2段の反応工程を経て製造される、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の粒子径の変動係数や、粒子の円形度は、前記第1段の反応工程で製造されるシリカ-ジルコニア複合酸化物粒子の対応する値が、通常好適に維持されている。
 本発明により製造される、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子は、歯科用コンポジットレジン用の充填材として特に有用である。更に、反射防止層、透明な高屈折率樹脂、フィルム等の添加剤としても有用である。
 以下、実施例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
 複層シリカ系複合酸化物粒子の各種物性は、次のようにして測定した。
(1)「平均粒子径」、「粒子径の変動係数」、及び「円形度」
  これら物性は、走査型電子顕微鏡の撮影像から無作為に選んだ200個の粒子像を、画像解析装置を用いて解析することにより求めた。ここで、「平均粒子径」とは画像解析によって得られた200個の粒子径の平均値をいい、「粒子径の変動係数」は以下の式によって算出した。
  変動係数(%)=(粒子径の標準偏差/平均粒子径)x100
  円形度-=(4πxS)/L
ここで、Sは粒子の投影面積、Lは粒子の投影周囲長である。
「円形度」は、粒子がどれだけ球に近いかを表すパラメーターである。
(2)屈折率
 粒子の屈折率は液浸法により測定した。即ち、異なる屈折率の溶媒(例えば、トルエン、1-ブロモナフタレン、1-クロロナフタレン、ジヨードメタン、イオウ入りジヨードメタンなど)を適当に混合することにより、任意の屈折率の混合溶媒を作った。前記屈折率の異なる混合溶媒中に粒子を分散させて粒子の分散液を作製した。25℃において最も透明な粒子の分散液の屈折率を粒子の屈折率とした。混合溶媒の屈折率はアッベ屈折率計を用いて25℃で測定した。
(3)結晶形態
粒子の結晶形態は、X線回折装置を用いて同定した。
(4)シリカ被覆層の厚み
 シリカ被覆層の厚みは、粒子を透過型電子顕微鏡を用いて観察し、その撮影像から無作為に選んだ10個の粒子像を画像解析することにより求めた。
(5)粒子濃度
 シリカ-ジルコニア複合酸化物粒子分散液の10g計り取り、オーブンを用いて100℃で12時間乾燥した後の質量を測定した。粒子濃度は以下の式を用いて算出した。
  (乾燥後の粒子濃度/シリカ-ジルコニア複合酸化物粒子分散液の重さ)x100(%)
(6)アセトニトリルの濃度
 反応前のアセトニトリルの濃度は、仕込み量を用いて算出した。反応後のアセトニトリルの濃度は、得られたシリカ-ジルコニア複合酸化物粒子分散液を遠心分離して濾液を得、このろ液を高速液体クロマトグラフを用いて分析した。分析値を基礎とし、比重を用いて質量に変換することによって、反応溶媒中のアセトニトリル濃度を求めた。また(5)で算出された粒子濃度を用いて、シリカ-ジルコニア複合酸化物粒子分散液全体に占めるアセトニトリルの濃度を求めた。
(7)粒子の分散性
 反応によって得られたシリカ-ジルコニア複合酸化物粒子分散液3gを分取し、10mlサンプル管に入れて30秒間静置した。この際に、分散液が液と沈降物とに分離する状態を、目視で評価した。僅かでも沈降粒子の分離が確認できた場合を「沈降」と評価した。次いで、「沈降」と評価されなかった分散液を一滴、走査型電子顕微鏡の試料台に滴下して乾燥させた。その後、該走査型電子顕微鏡の視野内に一次粒子が200個以上観察される倍率で、乾燥した粒子を観察した。2個以上の凝集粒子が全く無く、全てが単分散していた場合を「E」、2個以上の凝集粒子が僅かに観察された場合を「G」、2個以上の凝集粒子が多量に観察された場合を「B」とした。
実施例1
(複合酸化物粒子用アルコキシド溶液の調製)
 2リットルのエルレンマイヤーフラスコに、テトラエトキシシラン(コルコート(株))356g、イソブチルアルコール427gを仕込み撹拌した。この中に0.06質量%の希硫酸8.9gを加え、17時間撹拌してテトラエトキシシランの部分加水分解を行った。続いて、得られた反応液にテトラブチルジルコネート(北興化学工業(株)、商品名:HZ-NB)114g、28%ナトリウムメトキサイド(和光純薬)17.3gを加え、無色透明の複合酸化物粒子製造用アルコキシド溶液を得た。
(シリカ-ジルコニア複合酸化物粒子の製造)
 撹拌翼をセットした内容積3リットルのジャケット付ガラス製反応器に、アセトニトリル370g、イソブチルアルコール107gおよびアンモニア水(25質量%)260gを仕込んだ。ジャケットの循環水の温度を40℃に設定し、180rpmで撹拌翼を回転させて反応器内を撹拌した。次に、このようにして調製した反応溶媒に、予め調製した上記複合酸化物粒子製造用アルコキシド溶液の全量923.2gを7時間かけて供給した。その後20分間攪拌し、シリカ-ジルコニア複合酸化物粒子分散液を得た。
 シリカ-ジルコニア複合酸化物粒子分散液の粒子濃度を求めたところ、12質量%であった。生成したシリカ-ジルコニア複合酸化物粒子の組成は、原料物質の仕込みから算出すると、SiO83.3モル%、ZrO14.5モル%、NaO2.2モル%であった。
 粒子の一部を取り出し、この粒子を用いて画像解析を行なった。平均粒子径は0.15μm、粒子径の変動係数は6.0%、粒子の円形度は0.9の結果が得られた。また、粒子の分散性を評価したところ「E」であった。このシリカ-ジルコニア複合酸化物粒子の製造反応において、反応開始時の反応液中のアセトニトリル濃度は、50質量%であり、反応終了時の同アセトニトリル濃度は22質量%であった。
(シリカ層の被覆)
 1Lのエルレンマイヤーフラスコにテトラエトキシシラン(コルコート(株))89.3g、メチルアルコール300gを仕込み撹拌し、シリカ被覆用アルコキシド溶液を調整した。得られたシリカ被覆用アルコキシド溶液の全量を上記シリカ-ジルコニア複合酸化物粒子分散液に撹拌しながら2時間かけて液中滴下した。供給後20分間攪拌した。反応終了時のアセトニトリルの濃度は17質量%であった。
 上記反応により、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の高分散液が得られた。分散するシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子を走査型電子顕微鏡で観察した。粒子形状は球形であり、付着粒子や凝集粒子は観察できなかった。画像解析を行った。平均粒子径は0.15μm、粒子径の変動係数は6.0%、粒子の円形度は0.90であった。シリカ被覆層の厚みは10nmであった。 
粒子の分散性を評価したところ「E」であった。その後、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子を凝集沈降させ、ろ別し、乾燥させた。乾燥した粒子の一部を880℃で5時間焼成した。焼成した粒子を走査型電子顕微鏡で観察した結果、平均粒子径は8%ほど小さくなっていることが分った。その他の数値は上記とほぼ同様で、変化は認められなかった。粒子の屈折率は1.54であった。X線回折の結果、乾燥した粒子、焼成した粒子は、何れもほぼ非晶質であった。
実施例2
(複合酸化物粒子製造用アルコキシド溶液の調製)
 3リットルのエルレンマイヤーフラスコに、テトラエトキシシラン(コルコート(株))786g、イソブチルアルコール444gを仕込み撹拌した。更に、0.06質量%希硫酸22.2gを加え、テトラエトキシシランの部分加水分解を17時間行った。続いて、得られた反応液にテトラブチルジルコネート(北興化学工業(株)、商品名:HZ-NB)228g、28%ナトリウムメトキサイド(和光純薬)34.6gを加え、無色透明な複合酸化物粒子製造用アルコキシド溶液を得た。
(シリカ-ジルコニア複合酸化物粒子の製造)
 撹拌翼をセットした内容積3リットルのジャケット付ガラス製反応器に、アセトニトリル300g、アンモニア水(25質量%)280gをそれぞれ仕込み、ジャケットの循環水の温度を40℃に設定した。撹拌翼を180rpmで撹拌した。次に、このようにして調製した反応溶媒に予め調製した上記複合酸化物粒子製造用アルコキシド溶液1514.8gを7時間かけて全量を供給した。更に、供給後20分間反応液を攪拌した。
 上記反応により、シリカ-ジルコニア複合酸化物粒子分散液を得た。分散液中の粒子濃度を求めたところ、粒子濃度は19%であった。生成したシリカ-ジルコニア複合酸化物粒子の組成は、原料物質の仕込み量から、SiO83.3モル%、ZrO14.5モル%、NaO2.2モル%と算出された。
 粒子の一部を取り出し、画像解析を実施した。平均粒子径は0.15μm、粒子径の変動係数は7.2%、粒子の円形度は0.7であった。また、粒子の分散性を評価したところ「G」であった。このシリカ-ジルコニア複合酸化物粒子の製造反応において、反応開始時の反応液中のアセトニトリル濃度は、52質量%であり、反応終了時の同アセトニトリル濃度は14質量%であった。
(シリカ層の被覆)
 1Lのエルレンマイヤーフラスコにテトラエトキシシラン(コルコート(株))268g、メチルアルコール500gを仕込み、撹拌してシリカ被覆用アルコキシド溶液を調製した。得られたシリカ被覆用アルコキシド溶液を、上記調製したシリカ-ジルコニア複合酸化物粒子分散液に5時間かけて滴下し、供給後20分間攪拌した。反応終了時のアセトニトリルの濃度は8質量%であった。
 上記反応により、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の高分散液が得られた。分散するシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子を走査型電子顕微鏡を用いて観察した。粒子形状は球形であり、わずかに付着粒子が見られた。画像解析の結果によれば、平均粒子径は0.15μm、粒子径の変動係数は7.2%、粒子の円形度は0.7であった。また、粒子の分散性を評価したところ「E」であった。
シリカ層の被覆厚みは9nmであった。その後、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子を凝集沈降させ、ろ別した。乾燥した粒子の一部を860℃で6時間焼成した。焼成した粒子を走査型電子顕微鏡で観察した結果、平均粒子径は7%ほど小さくなっていることが分った。その他の数値は上記とほぼ同様であった。また、粒子の屈折率は1.54であった。X線回折の結果、乾燥した粒子、焼成した粒子は、何れもほぼ非晶質であった。
実施例3
(複合酸化物粒子用アルコキシド溶液の調製)
 実施例1で用いた複合酸化物粒子製造用アルコキシド溶液と同じものを用いた。
(シリカ-ジルコニア複合酸化物粒子の製造)
 撹拌翼をセットした内容積3リットルのジャケット付ガラス製反応器に、アセトニトリル477gおよびアンモニア水260g(25質量%)を仕込み、ジャケットの循環水の温度を40℃に設定した。撹拌翼を180rpmで回転させ、反応器内を撹拌した。この反応溶媒に、予め調製した上記複合酸化物粒子製造用アルコキシド溶液923.2g(全量)を7時間かけて供給し、供給後20分間攪拌した。
上記反応により、シリカ-ジルコニア複合酸化物粒子分散液を得た。粒子濃度は11質量%であった。粒子の分散性を評価したところ、「E」であった。生成したシリカ-ジルコニア複合酸化物粒子の組成は、原料物質の仕込み量から算出すると、SiO83.3モル%、ZrO14.5モル%、NaO2.2モル%であった。
 粒子の一部を取り出し、この粒子を用いて画像解析を行った。平均粒子径は0.15μm、粒子径の変動係数は6.2%、粒子の円形度は0.8であった。このシリカ-ジルコニア複合酸化物粒子の製造反応において、反応開始時の反応液中のアセトニトリル濃度は、65質量%であり、反応終了時の同アセトニトリル濃度は29質量%であった。
(シリカ層の被覆)
 1Lのエルレンマイヤーフラスコに、テトラエトキシシラン(コルコート(株))89.3g、アセトニトリル300gを仕込み撹拌し、シリカ被覆用アルコキシド溶液を調製した。得られたシリカ被覆用アルコキシド溶液の全量を上記シリカ-ジルコニア複合酸化物粒子分散液に撹拌しながら2時間かけて液中滴下した。
 反応終了時のアセトニトリルの濃度は38質量%であった。
 上記反応により、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の高分散液が得られた。分散するシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子を走査型電子顕微鏡で観察した。粒子形状は球形であり、付着や凝集粒子は観察されなかった。画像解析を行った。平均粒子径は0.15μm、粒子径の変動係数は6.2%、粒子の円形度は0.8であった。シリカ層の被覆厚みは10nmであった。また、粒子の分散性を評価したところ「E」であった。その後、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子を凝集沈降させ、ろ別し、乾燥させた。乾燥させた粒子の一部を880℃で5時間焼成した。焼成した粒子を走査型電子顕微鏡で観察した結果、平均粒子径は8%ほど小さくなっていることが分った。その他の数値は上記とほぼ同様で、変化は認められなかった。粒子の屈折率は1.54であった。X線回折の結果、乾燥した粒子、焼成した粒子は何れもほぼ非晶質であった。
実施例4~10
 表1および表2に示す反応条件に変更する以外は、実施例1に記載の操作に準じて操作し、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子を製造した。結果を、表1および表2に併せて示した。
比較例1
(複合酸化物粒子用アルコキシド溶液の調製)
 2リットルのエルレンマイヤーフラスコに、テトラメトキシシラン(多摩化学(株))518g、メタノール160gを仕込み撹拌した。この中に0.06質量%希硫酸8.9gを加え、テトラエトキシシランの部分加水分解を撹拌下に17時間行った。続いて、チタンテトライソプロポキシド(日本曹達(株)、商品名:A-1)170.5gを加え、無色透明な複合酸化物粒子製造用アルコキシド溶液を得た。
(シリカ-チタニア複合酸化物粒子の製造)
 撹拌翼をセットした内容積3リットルのジャケット付ガラス製反応器に、アセトニトリル667gおよびアンモニア水(25質量%)133gを仕込み、ジャケットの循環水の温度を40℃に設定した。180rpmで撹拌翼を回転させて反応器内を撹拌した。次に、このようにして調製した反応溶媒に、予め調製した上記複合酸化物粒子用アルコキシド溶液の全量857.4gを7時間かけて供給した。その後20分間攪拌し、シリカ-チタニア複合酸化物粒子分散液を得た。
 シリカ-チタニア複合酸化物粒子分散液の粒子濃度を求めたところ、15質量%であった。生成したシリカ-チタニア複合酸化物粒子の組成は、原料物質の仕込みから算出すると、SiO85.0モル%、TiO15.0モル%であった。
 粒子の一部を取り出し、この粒子を用いて画像解析を行なった。平均粒子径は0.20μm、粒子径の変動係数は5.2%、粒子の円形度は0.9であった。粒子の分散性を評価したところ「E」であった。このシリカ-チタニア複合酸化物粒子の製造反応において、反応開始時の反応液中のアセトニトリル濃度は、83質量%であり、反応終了時の同アセトニトリル濃度は48質量%であった。
(シリカ層の被覆)
 1Lのエルレンマイヤーフラスコにテトラエトキシシラン(コルコート(株))89.3g、MeOH300gを仕込んで撹拌し、シリカ被覆用アルコキシド溶液を調製した。得られたシリカ被覆用アルコキシド溶液を上記シリカ-チタニア複合酸化物粒子分散液に滴下した。滴下を開始してから、約1時間後に粒子の激しい凝集が見られた。その結果、単分散した粒子は得られなかった。
比較例2
 実施例1において、(複合酸化物粒子製造用アルコキシド溶液の調製)工程で、テトラブチルジルコネート114gに代えて、アルミニウムエトキシド(和光純薬、試薬)を等モル量の41g使用した以外は、該実施例1と同様に操作して、シリカ層被覆シリカ-アルミナ複合酸化物粒子の製造を試みた。
 しかし、(シリカ-アルミナ複合酸化物粒子の製造)工程では、複合酸化物粒子製造用アルコキシド溶液の滴下を開始してから、約1時間後に、反応液中に生成したシリカ-アルミナ複合酸化物粒子の激しい凝集が見られ、単分散した粒子は得られなかった。
  比較例3
(複合アルコキシド溶液の調製)
 実施例1と同様に、2リットルのエルレンマイヤーフラスコに、テトラエトキシシラン(コルコート(株))356g、イソブチルアルコール427gを仕込み撹拌した。この中に0.06質量%希硫酸8.9gを加え17時間テトラエトキシシランの部分加水分解を行った。続いて、得られた反応液にテトライソブチルジルコニウム(北興化学工業(株)、商品名:HZ-NB)114g、28%ナトリウムメトキサイド(和光純薬)17.3gを加え、無色透明な複合アルコキシド溶液を得た。 
(シリカ系複合酸化物粒子の製造)
 撹拌翼をセットした内容積3リットルのジャケット付ガラス製反応器に、アセトニトリル130g、イソブチルアルコール(IBA)200gおよびアンモニア水(25質量%)360gを仕込み、ジャケットの循環水の温度を40℃に設定し、180rpmで撹拌した。次に、このようにして調製した反応溶媒に予め調製した上記複合アルコキシド溶液の全量923.2gを7時間かけて供給した。
 上記反応により、シリカ-ジルコニア複合粒子分散液を得、粒子濃度を求めたところ11質量%であった。生成したシリカ-ジルコニア複合粒子の組成は、原料物質の仕込みから算出すると、SiO83.3モル%、ZrO14.5モル%、NaO2.2モル%であった。
 粒子の一部を取り出し、画像解析を行なった。平均粒子径は0.14μm、粒子径の変動係数は6.5%、粒子の円形度は0.8であった。粒子の分散性を評価したところ「G」であった。このシリカ-ジルコニア複合粒子の製造反応において、反応開始時の反応液中のアセトニトリル濃度は、19質量%であり、反応終了時の同アセトニトリル濃度は8質量%であった。
(シリカ層の被覆)
 1Lのエルレンマイヤーフラスコにテトラエトキシシラン(コルコート(株))89.3g、メチルアルコール300gを仕込み撹拌した。調整した反応液を上記シリカ系複合酸化物粒子の分散液に2時間かけて滴下したところ、滴下を開始してから約1時間後に、粒子の激しい凝集が見られた。その結果、単分散した粒子は得られなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (5)

  1. シリコンのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物と、ジルコニウムのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物とを、アセトニトリルが反応液中に10質量%以上含有される含水溶媒中で反応させることによりシリカ-ジルコニア複合酸化物粒子分散液を得、
    次いで、前記シリカ-ジルコニア複合酸化物粒子分散液中で該分散液中に分散しているシリカ-ジルコニア複合酸化物粒子とシリコンのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物とを反応させることにより、該シリカ-ジルコニア複合酸化物粒子の表面をシリカ層で被覆させることを特徴とする、シリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の製造方法。
  2. シリカ-ジルコニア複合酸化物粒子分散液に分散するシリカ-ジルコニア複合酸化物粒子の平均粒子径が0.05~1.0μmである請求項1に記載のシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の製造方法。
  3. シリカ-ジルコニア複合酸化物粒子の表面を被覆するシリカ層の厚みが5~30nmである請求項2に記載のシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の製造方法。
  4. シリカ-ジルコニア複合酸化物粒子分散液中で、該シリカ-ジルコニア複合酸化物粒子の表面をシリカ層で被覆させる反応を、アセトニトリルが10質量%以上含有される反応液中で実施する請求項1に記載のシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の製造方法。
  5. シリコンのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物と、ジルコニウムのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物とを、アセトニトリルが反応液中に10質量%以上含有される含水溶媒中で反応させることによりシリカ-ジルコニア複合酸化物粒子分散液を得、
    次いで、前記シリカ-ジルコニア複合酸化物粒子分散液中で該分散液中に分散しているシリカ-ジルコニア複合酸化物粒子とシリコンのアルコキシド及び/又は該アルコキシドから誘導される可縮合性化合物とを反応させることにより、該シリカ-ジルコニア複合酸化物粒子の表面をシリカ層で被覆させることを特徴とする、歯科用コンポジットレジン用の充填剤であるシリカ層で被覆されたシリカ-ジルコニア複合酸化物粒子の製造方法。
PCT/JP2010/063025 2009-08-07 2010-08-02 シリカ層で被覆されたシリカ-ジルコニア複合粒子の製造方法 WO2011016418A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080035167.1A CN102471077B (zh) 2009-08-07 2010-08-02 被覆有二氧化硅层的二氧化硅-氧化锆复合粒子的制造方法
US13/387,163 US9067798B2 (en) 2009-08-07 2010-08-02 Method for producing silica-zirconia composite particles each coated with silica layer
JP2011525879A JP4988964B2 (ja) 2009-08-07 2010-08-02 シリカ層で被覆されたシリカ−ジルコニア複合粒子の製造方法
EP10806417.1A EP2463235B1 (en) 2009-08-07 2010-08-02 Method for producing silica-zirconia composite particles each coated with silica layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009184803 2009-08-07
JP2009-184803 2009-08-07

Publications (1)

Publication Number Publication Date
WO2011016418A1 true WO2011016418A1 (ja) 2011-02-10

Family

ID=43544313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063025 WO2011016418A1 (ja) 2009-08-07 2010-08-02 シリカ層で被覆されたシリカ-ジルコニア複合粒子の製造方法

Country Status (5)

Country Link
US (1) US9067798B2 (ja)
EP (1) EP2463235B1 (ja)
JP (1) JP4988964B2 (ja)
CN (1) CN102471077B (ja)
WO (1) WO2011016418A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241315A (ja) * 2012-05-22 2013-12-05 Hayakawa Rubber Co Ltd 微粒子群及び微粒子群の製造方法
WO2020250813A1 (ja) * 2019-06-12 2020-12-17 株式会社トクヤマ 非晶質シリカチタニア複合酸化物粉末、樹脂組成物、分散液、及びシリカ被覆シリカチタニア複合酸化物粉末の製造方法
WO2023145283A1 (ja) * 2022-01-28 2023-08-03 株式会社トクヤマデンタル 複合酸化物粒子及びその製造方法、並びに硬化性組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421059B2 (en) 2014-10-24 2019-09-24 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
EP3053571B1 (en) 2015-02-05 2017-03-22 Dentsply DeTrey GmbH Process for the preparation of a particulate dental filler composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203683A (ja) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd シリカ系微粒子の製造方法および該シリカ系微粒子を含む被膜付基材
JP2007269594A (ja) 2006-03-31 2007-10-18 Tokuyama Corp シリカ系複合酸化物粒子の製造方法
JP2008007381A (ja) * 2006-06-30 2008-01-17 Tokuyama Corp 表面処理された球状複合酸化物粒子
JP2008037700A (ja) * 2006-08-04 2008-02-21 Tokuyama Corp シリカ系複合酸化物粒子集合体およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269594A (ja) * 1988-09-03 1990-03-08 Agency Of Ind Science & Technol 重質炭化水素の軽質化方法
US6680040B1 (en) * 1998-12-21 2004-01-20 Catalysts & Chemicals Industries Co., Ltd. Sol having fine particles dispersed and method for preparing
US7156911B2 (en) * 2004-05-17 2007-01-02 3M Innovative Properties Company Dental compositions containing nanofillers and related methods
US20090142565A1 (en) * 2005-08-12 2009-06-04 Shiseido Co., Ltd. Mesoporous Silica And Production Method Thereof
DE102007012578A1 (de) * 2006-09-01 2008-03-06 Bühler PARTEC GmbH Kationisch stabilisierte wässrige Silicadispersion, Verfahren zu deren Herstellung und deren Verwendung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203683A (ja) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd シリカ系微粒子の製造方法および該シリカ系微粒子を含む被膜付基材
JP2007269594A (ja) 2006-03-31 2007-10-18 Tokuyama Corp シリカ系複合酸化物粒子の製造方法
JP2008007381A (ja) * 2006-06-30 2008-01-17 Tokuyama Corp 表面処理された球状複合酸化物粒子
JP2008037700A (ja) * 2006-08-04 2008-02-21 Tokuyama Corp シリカ系複合酸化物粒子集合体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2463235A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241315A (ja) * 2012-05-22 2013-12-05 Hayakawa Rubber Co Ltd 微粒子群及び微粒子群の製造方法
WO2020250813A1 (ja) * 2019-06-12 2020-12-17 株式会社トクヤマ 非晶質シリカチタニア複合酸化物粉末、樹脂組成物、分散液、及びシリカ被覆シリカチタニア複合酸化物粉末の製造方法
JPWO2020250813A1 (ja) * 2019-06-12 2021-09-13 株式会社トクヤマ 非晶質シリカチタニア複合酸化物粉末、樹脂組成物及び分散液
CN113939477A (zh) * 2019-06-12 2022-01-14 株式会社德山 非晶质二氧化硅二氧化钛复合氧化物粉末、树脂组合物、分散液以及二氧化硅包覆的二氧化硅二氧化钛复合氧化物粉末的制造方法
CN113939477B (zh) * 2019-06-12 2023-09-01 株式会社德山 非晶质二氧化硅二氧化钛复合氧化物粉末、树脂组合物、分散液以及二氧化硅包覆的二氧化硅二氧化钛复合氧化物粉末的制造方法
WO2023145283A1 (ja) * 2022-01-28 2023-08-03 株式会社トクヤマデンタル 複合酸化物粒子及びその製造方法、並びに硬化性組成物

Also Published As

Publication number Publication date
JPWO2011016418A1 (ja) 2013-01-10
US9067798B2 (en) 2015-06-30
EP2463235B1 (en) 2014-10-08
EP2463235A4 (en) 2013-02-06
CN102471077A (zh) 2012-05-23
CN102471077B (zh) 2014-07-30
US20120121804A1 (en) 2012-05-17
JP4988964B2 (ja) 2012-08-01
EP2463235A1 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
KR100711081B1 (ko) 실리카 복합 산화물 입자 및 그 제조 방법
JP6061097B2 (ja) 水性インク用顔料、それを含有する水性インク組成物、およびその画像または印刷物
JP4988964B2 (ja) シリカ層で被覆されたシリカ−ジルコニア複合粒子の製造方法
KR101587933B1 (ko) 고굴절률 분말, 그 제조 방법 및 용도
JP5309447B2 (ja) 表面被覆ナノ粒子及びその製造方法並びに表面被覆ナノ粒子分散液
TW201138943A (en) Silane-surface treated metal oxide fine particles and production method thereof
JP2008037700A (ja) シリカ系複合酸化物粒子集合体およびその製造方法
JP4925706B2 (ja) シリカ系複合酸化物粒子の製造方法
TW201008878A (en) Hydrophobic organic solvent-dispersion sol of anhydrous zinc antimonate colloidal particle and production method thereof
JP6959290B2 (ja) 単斜晶ジルコニア系ナノ粒子及びその製造方法
JP4200001B2 (ja) シリカ系複合酸化物粒子およびその製造方法
JP4922038B2 (ja) 金属酸化物微粒子分散物及びその製造方法
JP5016347B2 (ja) 金属酸化物微粒子分散物及びその製造方法
JP2010138020A (ja) 酸化チタン微粒子の有機溶媒分散液およびその製造方法
JP5004492B2 (ja) シリカ系複合酸化物微粒子およびその製造方法
JP2008239461A (ja) 金属酸化物微粒子分散物及びその製造方法
JP5133532B2 (ja) アルミナ有機溶媒分散液の製造方法
JP3878113B2 (ja) シリカ−チタニア複合酸化物の製造方法
JP3387969B2 (ja) 複合酸化物粒子
JP6016494B2 (ja) 複合酸化物の粉体並びに水性分散液及び油性分散液
JP2008239463A (ja) 金属酸化物微粒子分散物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035167.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011525879

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010806417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13387163

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE