WO2011011971A1 - Orf7缺陷型水痘病毒、含有该病毒的疫苗及应用 - Google Patents

Orf7缺陷型水痘病毒、含有该病毒的疫苗及应用 Download PDF

Info

Publication number
WO2011011971A1
WO2011011971A1 PCT/CN2010/001139 CN2010001139W WO2011011971A1 WO 2011011971 A1 WO2011011971 A1 WO 2011011971A1 CN 2010001139 W CN2010001139 W CN 2010001139W WO 2011011971 A1 WO2011011971 A1 WO 2011011971A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
vzv
varicella virus
virus
varicella
Prior art date
Application number
PCT/CN2010/001139
Other languages
English (en)
French (fr)
Inventor
朱桦
李益民
夏宁邵
程通
叶祥忠
Original Assignee
新泽西医学院
北京万泰生物药业股份有限公司
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新泽西医学院, 北京万泰生物药业股份有限公司, 厦门大学 filed Critical 新泽西医学院
Priority to CN201080033216.8A priority Critical patent/CN102666842B/zh
Priority to AU2010278594A priority patent/AU2010278594B2/en
Priority to JP2012521930A priority patent/JP5767635B2/ja
Priority to US13/387,359 priority patent/US9885020B2/en
Priority to EP10803804.3A priority patent/EP2460878B1/en
Priority to CA2768887A priority patent/CA2768887C/en
Publication of WO2011011971A1 publication Critical patent/WO2011011971A1/zh
Priority to US15/865,540 priority patent/US10752885B2/en
Priority to US16/847,360 priority patent/US11220673B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • A61K39/25Varicella-zoster virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16711Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
    • C12N2710/16722New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16711Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
    • C12N2710/16734Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the invention belongs to the fields of virology and biopharmaceutics. Specifically, the present invention provides a 0RF7-deficient varicella virus, a vaccine containing the same, and an application thereof, and provides a good candidate vaccine drug for the prevention of varicella-zoster virus and the like.
  • VZV 7j pox-belt virus
  • VZV referred to as "varicella virus” or "VZV”;
  • the P-0ka strain was isolated from the varicella vesicle solution of Takahashi, a 3-year-old boy named Oka in Japan in 1971, and was obtained by human embryo lung cell culture and was considered to have the function of causing chickenpox and herpes zoster.
  • U.S. Patent No. 3,895,615 discloses the P-Oka strain by passage of guinea pig embryonic tissue (GPEC) and human embryonic lung cells multiple times to produce an attenuated V-0ka virus, and a V-0ka live vaccine for preventing varicella is prepared.
  • U.S. Patent No. 4000,256 describes the production of a VZV attenuated vaccine by subculture of VZV virus 10-48 times with human embryonic fibroblast WI-38 strain.
  • the varicella-Oka strain has been passaged by the passage of the "varicella virus attenuated strain" (Special Publication No.
  • Patent CN1163604C relates to the identification of attenuated strains of varicella virus, and reveals at the molecular level that the strain is a mixed strain consisting of a plurality of different sequences. Wild strains may be present, and herpes zoster originating from the V-0ka strain from V-0ka vaccines has been reported. Therefore, the potential harm of the attenuated forest still exists, but there are no other vaccine strains for preventing VZV.
  • the virus has strict species specificity, human being is its only natural host, and there is no suitable animal model to study the function of VZV gene; in addition, the virus has strong binding to the host cell, and the free virus is easily inactivated and available.
  • the transformed VZV viral DNA is very difficult, so the progress of the viral gene function research has been extremely slow for a long time.
  • VZV varicella-zoster virus
  • 0RF7 determines the function of VZV infecting human skin and sensory ganglia.
  • the ORF7 defect occurs, one of the following occurs: all or part of the deletion, the insertion of the stop codon, and the substitution by one or more bases, especially when the ORF7 or ORF7 is deleted to generate the inverted reverse frameshift mutation, the function of 0RF7 Loss, that is, VZV does not infect the skin and sensory ganglia, so there is no potential hazard to produce varicella or reactivation to produce herpes zoster (we call it a loss of function caused by ORF7 defects in the present invention, said function means being able to infect Human skin and sensory ganglia).
  • VZV-7D BAC or VZV-7DRM BAC The varicella virus strain deleted by 0RF7 can be further subjected to antibiotic screening or galactose screening (light red spots on McMurray's culture machine) in E. coli to obtain a single clone, which is not mixed.
  • antibiotic screening or galactose screening light red spots on McMurray's culture machine
  • One aspect of the present invention relates to a varicella virus (for example, a strain of P-0ka), wherein genomic ORF7 is deleted in whole or in part, or is substituted or inserted by one or more bases, and the varicella virus is incapable of infecting human skin. And sensory ganglia.
  • a varicella virus for example, a strain of P-0ka
  • ORF7 is replaced in whole or in part by an antibiotic resistance gene and/or a non-functional nucleic acid sequence.
  • the non-functional nucleic acid sequence means that the nucleic acid sequence does not restore the function of ORF7, that is, the varicella virus still cannot infect the skin and sensory ganglia, and the non-functional nucleic acid sequence may be a protein that does not encode a fusion protein or a protein.
  • the non-functional nucleic acid sequence is an inverted RFRF fragment of inverted RF.
  • ORF4 fragment refers to all or part of a nucleic acid sequence of 0RF7.
  • the sequence of the inverted RFT fragment mutated 0RF7 fragment is set forth in SEQ ID NO: 13.
  • the antibiotic resistance gene is selected from the group consisting of: penicillin, streptomycin, and kanamycin resistance genes.
  • the inventors used the P-Oka clinical isolate from the laboratory of Dr. Ann Arvin of Stanford University School of Medicine as a material, using VZV-BAC (P-Oka) as the framework, applying the principle of bacterial homologous recombination. Recombinant clones are produced.
  • the full-length ORF7 was replaced by the Kan gene to generate the VZV-7D BAC strain or the ORF7 partial fragment inverted by the inverted frameshift mutation to generate the VZV-7DRM BAC strain.
  • the sequence of the Kan r gene is as follows:
  • the present invention provides a varicella virus, the preservation number is CGMCC No. 3207, the date of deposit is July 28, 2009, and the depositing unit is the general microbiology center of the China Microbial Culture Collection Management Committee.
  • the virus strain does not infect human skin and sensory ganglia, so there is a high potential for the potential hazard of varicella or reactivation to produce herpes zoster; the strain can grow on MRC-5, Mewo, or ARPE cells. And the growth characteristics of the P-Oka strain are consistent, and the growth and proliferation characteristics of the virus in the thymus tissue are not changed; the strain retains all glycoproteins of the ⁇ -Oka strain, and its immunogenicity should be immune to the ⁇ -Oka strain.
  • the virulence forest is a potential hazard for screening a single clone by Kan screening or galactose, not in the mixed V-0ka strain; due to deletion of the entire ORF7, or by flipping the reverse frameshift mutation, VZV-7D BAC or The VZV-7DRM BAC strain is unlikely to produce a back mutation, and thus it is safer and more effective to prepare a live attenuated vaccine with the VZV-7D BAC or VZV-7DRM BAC strain.
  • Another aspect of the invention relates to a method of preparing a varicella virus as described above, comprising the steps of:
  • BAC is deleted in Mewo cells or MRC-5 cells or ARPE cells by the action of Cre enzyme.
  • the wild type varicella virus is a P-Oka strain, and the ORF7 described in step 1) is replaced by Kan f , or the inverted RFRF fragment of the reverse frameshift mutation is replaced.
  • the ORF7 fragment of the inverted reverse frameshift mutation is SEQ ID NO: 13.
  • a further aspect of the invention relates to a composition comprising any of the above mentioned varicella virus 0
  • a further aspect of the invention relates to a vaccine for preventing varicella and/or herpes zoster comprising any of the varicella viruses described above, and a vaccine excipient or carrier.
  • the term "vaccine against varicella and/or herpes zoster” refers to a varicella vaccine, a herpes zoster vaccine, and a vaccine for preventing varicella and herpes zoster.
  • a further aspect of the invention relates to the use of any of the above mentioned varicella viruses for the preparation of a vaccine for the prevention of varicella and/or herpes zoster.
  • a further aspect of the invention relates to the use of the DNA of any of the above varicella viruses for the preparation of an expression vector.
  • Still another aspect of the invention relates to an expression vector consisting of BAC and DNA of any of the above varicella viruses inserted into BAC.
  • An expression vector which is the DNA of any of the above varicella viruses.
  • the above expression vector can insert at least a 10 kb foreign gene without affecting its own growth and proliferation, can be used for the ⁇ Ji foreign gene, and the expression vector becomes safe due to the absence of 0RF7 function.
  • the expression vector can also be labeled with a luciferase gene (Zhang et al. Journa l of Virology, Sept, 2007 P9024-9033) for monitoring VZV-7 DRM function studies in vitro and in vivo.
  • Still another aspect of the invention relates to a recombinant vector comprising the above expression vector and an inserted foreign gene.
  • Still another aspect of the invention relates to a recombinant cell comprising the above expression vector or recombinant vector.
  • the host cell used in the recombinant cell is selected from the group consisting of:
  • a further aspect of the invention relates to a method of preventing varicella and/or herpes zoster comprising the step of administering to a patient an effective amount of the above vaccine.
  • DPI is an abbreviation of "days pos t infect ion" and refers to the number of days after virus infection.
  • Fig. 1 Construction of p-0ka BAC (VZV BAC) vector.
  • Fig. 2 Preparation of 0RF7 deletion BAC strain (VZV-7D BAC).
  • Fig. 3 Electrophoretic identification of 0V7-deficient VZV virus.
  • Fig. 4 Dorsal root ganglion culture of VZV-7D virus.
  • B Growth curves of wild-type (WT), back-mutant (7R), and defective D) in the dorsal root ganglia (DRG).
  • Fig. 5 Preparation of 0RF-7 back mutation (VZV-7R) varicella virus.
  • Fig. 6 Growth curve of fluorescently labeled (luc) VZV-7DRM virus in human MeWo cells.
  • Fig. 7 Growth curve of fluorescently labeled (luc) VZV-7DRM virus in human thymus tissue culture (T0C).
  • Fig. 8 Growth curve of fluorescently labeled (luc) VZV-7DRM virus in human skin tissue culture (S0C).
  • Fig. 9 A. MeWo cells and neuroblastoma (SH-SY5Y) cells were transfected with DNA from WT, VZV-7DRM and VZV-7R. VZV-7DRM cannot grow in neuroblastoma cells.
  • D. Increased GFP intensity after infection shows that wild-type (WT) VZV can grow in DRG cultures. detailed description
  • BAC vector containing prokaryotic replication initiation sequence (Or i ), replication and partitioning genes (repE, parA and parB), chloramphenicol resistance gene ( camR ), green fluorescent protein (gfp ), Two 500 bp VZV fragments a and b (grey) and two ⁇ sites (white).
  • pUSF-6 was digested into a linear structure with BamHl, and pUSF-6 was inserted into the VZV-containing cosmid pvSpe23 by homologous recombination;
  • VZV consists of 125 kb nucleotides, including a long fragment (UL) and a short fragment (US).
  • the complete genome was digested into four VZV gene fragments containing overlapping regions, cloned into a cosmid, and four recombinant clones pvFsp73, pvSpel4, pvPmel9 and pvSpe23 were generated.
  • pUSF-6 was inserted into the ORF60 of VZV cosmid pvSpe23 by homologous recombination.
  • pvSpe23 containing BAC vector (pUSF-6) was co-transfected with MeWo cells with three other VZV Cosmids, and the recombinant virus (VZVBAC) was able to replicate in MeWo cells and produce green fluorescent spots.
  • VZV-7D BAC Preparation of 0RF7-deficient BAC forest (VZV-7D BAC) and construction of the ORF VZV mutant deleted by ORF VZV BAC (Zhang et al. Journa l of Virology, Sept, 2007, p9024-9033 The ⁇ operation can also be seen in Fig. 2 and the following steps:
  • the two primers designed each contain a 20 bp kanamycin resistance gene homologous nucleotide sequence and a 40 bp homologous sequence linked to the start or stop codon of the 0RF7 deletion region.
  • the primers Fl and R1 used are as follows:
  • Rl AAA CAT ACA CCA GAA ACG TTT TTA GTT TTT ATT TCA ATA TTC TGC CAG TGT TAC AAC CAA (SEQ ID NO: 4).
  • the kanamycin resistance gene was amplified from the plasmid pGEM- or iV/kanl (Net terwa ld, Yang et al. 2005), and the PCR product was digested with Dpnl enzyme and recovered using a Qiagen gel extraction kit.
  • Escherichia coli DY380 strain was used as a highly efficient homologous recombination system, and the desired homologous sequence was as short as 40 bp.
  • Complete the Kan f using the characteristics of recombinase 42 t! activation / 32 inhibition
  • Homologous recombination of the gene with ORF7, 0RF7 was replaced by the Kan f gene, and a monoclonal bacterium recombinant was selected from an agar plate containing 30 g/ml kanamycin at 32 TC to isolate the varicella virus mutant from Escherichia coli ( 0RF7 is deleted) DNA of VZV-BAC.
  • the F2 and R2 sequences are as follows:
  • F2 ACCGAATCGTCGGTTTGGAGGATTTATCCATAGTTCAATACGTTGGAAAGCCAG TCAATCATGCCTGTTGACAATTAATCATCGGCA (SEQ ID NO: 6);
  • step 7 Take 1-2 ⁇ l (about 200 ng) of the purified PCR product in step 2, and transfer it to the VZVBAC E. coli SW102 competent cells prepared in step 6 according to the electrotransformation parameter in Example 2;
  • F3 CCTGTTGACAATTAATCATCGGCA (SEQ ID NO: 8);
  • R3 TCA GCACTGTCCTGCTCCTT (SEQ ID NO: 9);
  • the F4 and R4 primer sequences are as follows:
  • R4 AATTTTATATACAAAATAAAAACATACACCAGAAACGTTTTTAGTTTTTATTTC AATATGTGGTCCGTTCACACATGGAAAAC (SEQ ID NO: 11)
  • the 457 bp reading frame sequence is as follows:
  • the electroporation competent SW102 cells were then prepared by referring to steps 4-10 of this example.
  • F4 consists of a 60bp 0FR7 5' flanking homologous sequence and a ORF7 near 3' 457bp reverse sequence
  • R4 consists of a 60bp 0FR7 3' flanking homologous sequence and a ORF7 near 3' end 457bp forward sequence.
  • step 9 precipitate 1 ml of the culture, wash the bacteria 3 times with 1 ⁇ ⁇ 9 salt, and resuspend the pellet with 1 ml of 1 ⁇ ⁇ 9 salt. Resuspension and 10-fold dilutions ⁇ plus To M63 plates containing glycerol, leucine, biotin, 2-deoxy-galactose and chloramphenicol.
  • DNA was extracted from VZV-7D BAC prepared in Example 2, transferred to DY380, cultured, propagated, extracted and purified. 2. The extracted and purified DNA was separately electroporated to (Marchini, Liu et al. 2001) M C-5 cells, (GFP on BAC can be used for growth and proliferation of viruses in cells) or with Cre expression vector Together with electroporation (Marchini, Liu et al. 2001) MRC-5 cells, BAC was completely excised from the ⁇ cleavage site at both ends by the Cre enzyme to produce VZV-7D virus.
  • VZV-7DRM virus in which the inverted reverse frameshift mutation is substituted for 0RF7 can be obtained. Since the VRFV-7DRM has only a partial and inverted reverse sequence, the fragment cannot be expressed and has no 0RF7 function. Therefore, the VZV-7DRM has the same function as the VZV-7D.
  • Example 5 Identification of VZV-7D virus
  • the monolayer-derived MRC-5 cells were infected with the VZV-7D virus prepared in Example 4, and cultured in MEM medium containing 2% bovine serum. When about 80% of the cytopathies occurred, the medium was discarded, and the diseased cells were harvested. DNA was extracted and tested with P-Oka as a control.
  • the ORF-10 and 0RF-7 genes were amplified by PCR, and the DNA of VZV-7D and ⁇ -Oka strains were digested with Hindl l.
  • the PCR product and the Hindl l digestion product were electrophoresed on a 0.5% agarose gel, and the electrophoresis product was shown in Fig. 3.
  • the dorsal root ganglia (DRG) of the cervical and thoracic spine of the 20-week gestational fetus were isolated with sterile surgical scissors and forceps.
  • the isolated dorsal root ganglion was treated with 1% penicillin/streptomycin in an ice bath 1 XPBS.
  • Immediately wash, then transfer to the water bath medium (DEM, containing 15% heat-inactivated fetal bovine serum and 1% penicillin/streptomycin) place each dorsal root ganglion separately in a six-well plate with collagen-covered
  • EDM water bath medium
  • a 50% Mewo cell culture was prepared in a six-well cell plate for titer detection and growth curve analysis (Fig. 4A). Newly infected Mewo cells of P-0ka, VZV-7D and VZV-7R were harvested on day 6 and suspended in medium to 1 ml. Each dorsal root ganglion was individually housed on a collagen-coated coverslip in a six-well plate. A 10 ⁇ ⁇ suspension was used for virus titer detection and 2 ⁇ 1 was used for the growth curve of Mewo cell infection. The remaining cell suspension was forced through a 27-gauge needle 20 times, and the cell debris was pelleted by centrifugation at 4000 rpm for 10 minutes.
  • the supernatant was equally divided and used to infect the dorsal root ganglia, approximately 120 ⁇ /sample.
  • 2 drops (20 ⁇ ⁇ ) of cell suspension were used to infect another dorsal root ganglion, 371 C 5% C0 2 culture 3
  • the dorsal root ganglia were washed with 1 X PBS and fresh medium was added. Luciferase activity was measured every 24 hours.
  • the samples were incubated with D-lucifer in containing 150 ⁇ g/ml for 10 minutes, and the photon number was analyzed using an IVIS instrument and software. The test results are shown in Fig. 4B.
  • VZV-7D grew normally on Mewo and barely grew in the dorsal root ganglia. VZV-7D does not infect dorsal root ganglion cells, which lays a solid foundation for the development of safe live attenuated vaccines.
  • Example 7 Preparation of VZV-7D virus back mutant (VZV-7R) and correctness of face 0RF7 deletion can be identified not only by Hindi n digestion, but also by complete homologous recombination of genes to obtain a full VZV . That is, the complete VZV is rescued by the mechanism of bacterial homologous recombination, see Fig. 5.
  • the 0RF7 fragment can be PCR amplified using Invi trogen's high-fidelity Taq DNA polymerase kit and cloned between the Not l and Bg l l l sites of the plasmid pGEM-lox-zeo to form the pGEM-zeo-0RF7 plasmid.
  • the cloned fragment was correctly identified by sequencing analysis, and no error codon was introduced into the 0RF7 coding frame by PCR amplification.
  • the zeoR-0RF7 coding cassette was then PCR amplified using the pGEM-zeo-0RF7 plasmid as a template with the following primers.
  • R5 AAA CAT ACA CCA GAA ACG TTT TTA GTT TTT ATT TCA ATA TGG ATG GAT CCA TAA CTT CGT ( SEQ ID NO: 15 ) ,
  • the obtained PCR product was a 40 bp VZV gene sequence at both ends, which was ligated to the kanR coding sequence and located at the deleted 0RF7 site.
  • the resulting chimeric PCR product was electrotransformed into DY380 cells carrying 0RF7D BAC as described above. Recombinants were screened by agar plate 32 culture containing 50 g/ml zeocin (Invi trogen) and 12. 5 g/ml chloramphenicol.
  • the correct VZV clones were screened for their sensitivity to antibiotics. Proper cloning should be chloramphenicol resistance, hygromycin resistance, zeoc in resistance, kanamycin sensitivity, and ampicillin sensitivity. These clones were further confirmed by restriction digestion and PCR analysis.
  • the correct clone i.e., E. coli DY380 carrying the 0RF7 deletion or the luc VZV BAC rescuer
  • the DNA of VZVBAC was isolated by BAC DNA Mass Extraction Kit (BD Biosc iences, Pa lo Al to, CA) and transfected into MRC-5 cells using the transfection reagent FuGene6 (Roche, Indianapol i s, IN) according to the instructions.
  • One well (35-leg) in a 6-well plate was used at the time of transfection with DNA and transfection reagent at a ratio of 1.
  • the Cre expression vector can be co-transfected with VZV BAC DNA (Marchini, Liu et al. 2001) MRC-5 cells, using The characteristics of the Cre enzyme precisely excise the BAC to produce a complete VZV.
  • the varicella 0RF-7 back-mutated virus has the same growth and proliferation characteristics as the ⁇ -Oka virus. It is indicated that the function of 0RF-7 can be recovered by means of back mutation.
  • Example 8 Mewo cell culture of VZV-7DRM virus Mewo cells grown into a single layer in a six-well plate were infected with Luc-containing VZV-7DRM, VZV-7R and P-0ka strains respectively, with uninfected Mewo cells as controls, and Mewo cells containing 2% cattle at 37 ⁇ . Serum was cultured in MEM medium.
  • D-luc ifer in was added to the wells of the culture to a final concentration of 150 ⁇ g/ml, 37 for 10 minutes, and the in vivo imaging system IVIS (50 Ser ies; Xenogen Corporation) , Alameda, CA) The number of photons was measured simultaneously, and 3 well-infected cells were measured every day. After the measurement, the cells were replaced with D-lucifer in material by virus culture medium to continue the culture. The amount of viral fluorescence was measured every 24 hours and continuously measured for 7 days. The data mean measured with 3 wells plotted the growth curve versus time. The results are shown in Fig. 6.
  • VZV-7DRM Culture of VZV-7DRM virus in human thymus tissue
  • Human thymus-liver combined allografts were transplanted into male CB-17 SCID/beige mice. Construction and use of a human thymus-liver combination graft was performed as described by Jennifer F. M (Journa l of Virology, Sept. 1995, p. 5236 5242). After 3 months of transplantation, the human thymus-liver transplant was surgically exposed and directly injected with 2 ⁇ 10 3 to 4 ⁇ 10 3 PFU of Mewo-cultured luciferase-containing VZV-7DRM and P-0ka, 10 - 20 ⁇ . 1 cell suspension, 3 mice per virus were infected, and uninfected mice were used as controls, and the amount of fluorescence was measured every day after infection.
  • the cultured human thymus tissue was not infected with the virus or infected with the VZV wild strain or the VZV-7DRM strain and cultured for 7 days.
  • the number of photons was measured daily using the IVIS system after infection.
  • the mean number of photons measured with 3 rats was used to plot the growth curve versus time.
  • the figure shows the error bars of the three measured data. This test face indicates that the VZV-7DRM-deficient strain can grow in thymus tissue (T-cell) like a wild strain.
  • VZV-7D-deficient strains can also grow in thymus tissue (T-cells) like wild strains.
  • T-cells thymus tissue
  • the cultured human skin tissue was infected with the virus wild strain (P-0ka) or the 0RF7 deletion strain (VZV-7DRM) or the 0RF7 back mutant strain (VZV-7R), and the uninfected mouse was used as a control, and cultured for 7 days.
  • the number of photons was measured daily by the IVIS system after infection, and the growth curve was plotted against the mean of the three measured photons. The error bars of the three measurement data are marked in the figure.
  • VZV-7D also has serious growth defects in the skin, and this A functional defect can be restored after a mutation in the VZV-7D strain.
  • Example 11 0RF7 is necessary for VZV infection of nerve cells.
  • MeWo cells and neuroblastoma (SH-SY5Y) cells were transfected with BAC DNA of wild type (WT), 0RF7 deletion type (VZV-7DRM) and 0RF7 back mutation type (VZV-7R).
  • WT wild type
  • VZV-7DRM 0RF7 deletion type
  • VZV-7R 0RF7 back mutation type
  • the immunized serum or the pre-free serum was diluted 10-fold and mixed with the virus 1:1, 37 cultured for 60 minutes, and the culture mixture was infected with MRC-5 cells, and cultured in a 37 ⁇ 5% carbon dioxide incubator for 7 days, and then the culture solution was discarded.
  • Table 2 Guinea pig immune serum antibody titer and neutralization level of varicella virus
  • VZV-7DRM has good immunogenicity
  • the antibody level is comparable to that of V-0ka
  • the VZV-7DRM immune serum has a good neutralizing effect on the three viruses, and the initial development shows the prospect of vaccine development.
  • VZV-7D also has good immunogenicity and has a vaccine development prospect.
  • Example 13 Preparation of bioactive raw material for VZV-7DRM as carrier
  • the EV71-VP1 reading frame was PCR amplified from the pT-VP1 plasmid using the EV71-VP1 primer containing the homologous sequence of the 0RF7 flanking region.
  • the reading frame sequence is as follows:
  • the PCR product was transferred to SW102 bacteria containing VZV-7DRM BAC by electroporation, and the recombinant bacteria were screened according to Example 2. After identification, the appropriate amount was cultured and extracted.
  • VZV-7DRM-VP1 BAC was electroporated into the ARPE cells together with the Cre expression vector, and the BAC was completely excised from the loxP restriction sites at both ends by the Cre enzyme to generate the VZV-7DRM-VP1 recombinant virus.
  • the recombinant virus infects ARPE cells that grow into a single layer, and 35 cells are cultured for 3 to 4 days, and lesions appear in the cells.
  • the collected virus culture supernatant, the cell suspension was subjected to repeated centrifugation or ultrasonic fission, and the supernatant was loaded twice.
  • the activity of VP 1 was detected by E V71-specific double antibody sandwich method, and EV71 and VZV-7DRM were used as controls.
  • VZV-7DRM can be used as an expression vector for a foreign gene to express a target protein.
  • VZV-7DRM 0. 049 0. 025
  • VZV-7DRM-P1 0. 048 0. 692

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

0RF7缺陷型水痘病毒、 含有该病毒的疫苗及应用 技术领域
本发明属于病毒学和生物药学领域。 具体而言, 本发明提供 了 0RF7缺陷型水痘病毒、 含有该病毒的疫苗及其应用, 为水痘- 带状疱疹病毒等的预防提供良好的候选疫苗药物。 技术背景
7j痘-带状 渗病毒 ( Var icel la zos ter virus: VZV, 简称 "水痘病毒" 或 "VZV" ;)是严格种属特异性的病毒, 是导致人患 水痘或带状疱疹的致病因子。 其中, P-0ka株是由 Takahashi等于 1971年在日本 Oka姓氏的 3岁男孩的水痘嚢泡液中分离出来的, 并 经人胚肺细胞培养获得的, 被认为具有引发水痘和带状疱疹功能 ( Takahashi M, Otsuka T, Okuno Y, et al. Live vaccine used to prevent the spread of var icel la in chi ldren in hospi tal. Lancet 1974; 2: 1288 - 90. ) 。
美国专利 3985615 中公开了 P- Oka 株通过豚鼠胚胎组织 ( GPEC )和人胚肺细胞多次传代, 产生减毒的 V-0ka病毒, 制备 预防水痘的 V-0ka活疫苗。 美国专利 4000256中叙述了用人胚成 纤维细胞 WI-38株传代培养 VZV病毒 10-80次生产 VZV减毒疫苗。 但迄今为止, 只有 Ρ-Oka株经细胞传代获得的 "水痘病毒减毒冈 株" (特公昭 53- 41202号公报; Lancet 2: 1288-1290, 1974 ) 为 WHO批准的唯一用于预防水痘或带状疱疹疫苗制备的毒株, 该 毒株制备的疫苗在全球得到了广泛使用 [Requirement for Var icel la Vaccine (Live) Adopted 1984: WHO Technica l Report Ser ies, No. 725, pp. 102-104, 1985]。 但是, 尽管水痘疫苗接种 的人群比水痘自然感染人群的带状疱疹发生率低,且大多为免疫功 能低下儿童, 但是, 带状疱疹发生是不争的事实, 且从患者的疱疹 中分离到 V-Oka株 ( Schmid D. S, et al. Impact of Var icel la Vaccine on Varicel la-Zoster Virus Dynamics , CLINICAL MICROBIOLOGY REVIEWS, Jan. 2010, p. 202 - 217 ) 。
专利 CN1163604C涉及水痘病毒减毒岡株的鉴定,并且从分子 水平上揭示该毒株是由多个不同序列组成的混合株。 野毒株可能 存在于其中, 源于 V-0ka疫苗接种者产生 V-0ka株的带状疱疹已 有报道。 故该减毒林的潜在危害性还是存在的, 但是, 现在还没 有其它预防 VZV的疫苗株上市。 该病毒具有严格种属特异性, 人 是其唯一的自然宿主, 没有合适的动物模型研究 VZV基因功能; 再者该病毒对宿主细胞具有强结合性, 游离的病毒极易失活, 获 得可供转化的 VZV病毒 DNA非常困难, 故很长时间以来该病毒基 因功能研究的进展极为緩慢。
但是, 随着细菌人工染色体(BAC)在研究中的应用,组织培养 技术的进步, 异种生物间器官移植屏障的突破(联合免疫缺陷型 小鼠的开发) , 拓宽了种属特异的 VZV基因功能研究的空间, 可 以在体外或移植到动物体内进行 VZV 基因功能研究。 2004 年 Kazuhiro N.等在 " Cloning of the var icel la-zos ter virus genome as an infect ious bacter ia l art if ic ia l chromosome in Escher ichia col i" —文中揭示被克隆到 BAC载体上的 VZV Oka 株全基因组, 可以在大肠杆菌和人胚肺细胞中增殖, BAC 可被一 同转化到人胚肺细胞中的 Cre酶精确切除, 产生的重组 VZV病毒 具有 p-0ka 同样结构, 完全具有亲本病毒的特性。 BAC的应用为 VZV的功能研究带来了极大便利, 可以对 VZV每个基因进行功能 研究, 加速了 VZV基因功能研究的进程。 水痘-带状疱疹病毒 ( VZV ) 的 0RF7 位于病毒基因组的 8607-9386bp之间,编码一个 29kDa的蛋白,可能位于皮层结构中, 它的功能目前仍不清楚。
本发明人经过不懈的研究,惊奇地发现, 0RF7决定着 VZV感染 人皮肤和感觉神经节的功能。 当 0RF7缺陷即发生如下情况之一: 全部或部分缺失、被插入终止密码子,以及被一个或多个碱基取代, 特别是删除了 0RF7或者 0RF7产生翻转反向移码突变时, 0RF7的功 能丧失, 即 VZV不感染皮肤和感觉神经节, 故不存在产生水痘或再 活化产生带状疱疹的潜在危害 (我们在本发明中称之为 0RF7缺陷 引起的功能丧失,所述功能是指能够感染人的皮肤和感觉神经节)。 0RF7删除的水痘病毒株(VZV-7D BAC或 VZV-7DRM BAC )可以在大 肠杆菌中进一步经抗生素筛选或半乳糖筛选(麦糠基氏培养机上产 生亮红色斑)得到单一克隆株,不存于混合型 V-Oka株的潜在危害, 这为开发更加安全有效的疫苗带来了希望。 发明内容
本发明的一个方面涉及一种水痘病毒(例如 P-0ka株), 其基 因组 0RF7全部或部分缺失、 或者被一个或多个碱基取代或插入, 并且所述的水痘病毒不能够感染人的皮肤和感觉神经节。
0RF7 ( 8607-9386bp ) 的序列如下:
ATGCAGACGGTGTGTGCCAGCTTATGTGGATATGCTCGAATACCAAGTGAAGAGCCATCTTATGAAG AGGTGCGTGTAAACACGCACCCCCAAGGAGCCGCCCTGCTCCGCCTCCAAGAGGCTTTAACCGCTGTGAAT GGATTATTGCCTGCACCTCTAACGTTAGAAGACGTAGTCGCTTCTGCAGATAATACCCGTCGTTTGGTCCG CGCCCAGGCTTTGGCGCGAACTTACGCTGCATGTTCTCGTAACATTGAATGTTTAAAACAGCACCATTTTA CTGAAGATAACCCCGGTCTTAACGCCGTGGTCCGTTCACACATGGAAAACTCAAAACGGCTTGCTGATATG TGTTTAGCTGCAATTACCCATTTGTATTTATCGGTTGGCGCGGTGGATGTTACTACGGATGATATTGTCGA TCAAACCCTGAGAATGACCGCTGAAAGTGAAGTGGTCATGTCTGATGTTGTTCTTTTGGAGAAAACTCTTG GGGTCGTTGCTAAACCTCAGGCATCGTTTGATGTTTCCCACAACCATGAATTATCTATAGCTAAAGGGGAA AATGTGGGTTTAAAAACATCACCTATTAAATCGGAGGCGACACAATTATCTGAAATTAAACCCCCACTTAT AGAAGTATCGGATAATAACACATCTAACCTAACAAAAAAAACGTATCCGACAGAAACTCTTCAGCCCGTGT TGACCCCAAAACAGACGCAAGATGTACAACGCACAACCCCCGCGATCAAGAAATCCCATGTTATGCTTGTA TAA ( SEQ ID NO: 1 )
在本发明的一个实施方案中,0RF7全部或部分被抗生素抗性基 因和 /或者无功能的核酸序列所取代。 所述无功能的核酸序列是指 该核酸序列不使 0RF7功能恢复, 即水痘病毒仍不能感染皮肤和感 觉神经节, 该无功能的核酸序列可以是不编码融合蛋白的, 也可以 是编码蛋白的核^^列, 只要所编码的蛋白不会使 0RF7功能的恢 复。 在本发明的一个实施方案中, 所述无功能的核酸序列是翻转反 向移码突变的 0RF7片段。
术语 "0RF7片段" 是指 0RF7的全部或部分核酸序列。
在本发明的一个实施方案中, 所述翻转反向移码突变的 0RF7 片段的序列如 SEQ ID NO: 13所示。
在本发明的一个实施方案中, 所述抗生素抗性基因选自: 青霉 素、 链霉素、 以及卡那霉素的抗性基因。
在一个具体的实施方式中,发明人以来自斯坦福大学医学院 Dr. Ann Arvin实验室的 P-Oka临床分离株为材料, 以 VZV-BAC ( P-Oka ) 为框架, 应用细菌同源重组原理产生重组克隆。 全长 0RF7被 Kan 基因取代而产生 VZV-7D BAC株或被翻转反向移码突变的 0RF7部分 片段取代而产生 VZV-7DRM BAC株。 其中, Kanr基因的序列如下:
ATGAGCCATATTCAACGGGAAACGTCTTGCTCGAGGCCGCGATTAAATTCCAACATGGATGCTGATT TATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAG CCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGT CAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCGGTACTCCTGATGATG CGTGGTTACTCACCACTGCGATCCCCGGAAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGT GAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTT TAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTTGTTGATGCGAGTG ATTTTGATGACGAGCATAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAACTTTTGCCATTC TCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAAT AGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCC TCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAAT AAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAA ( SEQ ID NO: 2 )
具体地, 本发明提供一种水痘病毒, 其保藏编号为 CGMCC No. 3207, 保藏日期 2009年 7月 28 日, 保藏单位是中国微生物菌 种保藏管理委员会普通微生物中心。
体内外实验证实该病毒株不感染人皮肤和感觉神经节,故极可 能不存在引发水痘或再活化产生带状疱疹的潜在危害; 该毒株可在 MRC-5、 Mewo、 或 ARPE细胞上生长, 且同 P- Oka株生长特性一致, 并且也没有改变病毒在胸腺组织的生长增殖特性; 该毒株保留了 Ρ-Oka株的所有糖蛋白,其免疫原性理应同 Ρ-Oka株的免疫力相同; 该毒林是通过 Kan 筛选或半乳糖筛选单一克隆株, 不存于混合型 V-0ka株的潜在危害;由于整个 0RF7删除,或以翻转反向移码突变, VZV-7D BAC 或 VZV- 7DRM BAC株不可能产生回复突变, 因而, 以 VZV-7D BAC或 VZV-7DRM BAC株制备减毒活疫苗更为安全和有效。 本发明的另一方面涉及上述的水痘病毒的制备方法, 包括如下 步驟:
1 )将野生型水痘病毒的基因组克隆到 BAC载体上, 然后通过 细菌内重组, 使得水痘病毒的基因组 0RF7全部或部分缺失、 或者 被一个或多个碱基取代或插入,导致得到的水痘病毒不能够感染人 的皮肤和感觉神经节;
2 )分离 1 ) 中得到的水痘病毒的 DNA, 并与含 Cre酶的重组质 粒共转染 Mewo细胞或 MRC-5细胞或 ARPE细胞;
3 )通过 Cre酶的作用在 Mewo细胞或 MRC-5细胞或 ARPE细胞 中删除 BAC。 在本发明的一个实施方案中,所述野生型水痘病毒是 P- Oka株, 并且步骤 1 ) 中所述的 0RF7被 Kanf取代, 或者翻转反向移码突变 的 0RF7 片段所取代。 在一个具体的实施方式中, 所述翻转反向移 码突变的 0RF7片段是 SEQ ID NO: 13。 本发明的还一方面涉及一种组合物,其含有上述的任一种水痘 病毒 0
本发明的还一方面涉及一种预防水痘和 /或带状疱疹的疫苗, 其含有上所述的任一种水痘病毒, 以及疫苗用赋形剂或载体。
在本发明中, 术语 "预防水痘和 /或带状疱疹的疫苗" 是指水 痘疫苗、 带状疱疹疫苗、 以及预防水痘和带状疱疹的疫苗。
本发明的还一方面涉及上述的任一种水痘病毒在制备预防水 痘和 /或带状疱疹的疫苗中的用途。
本发明的还一方面涉及上述的任一种水痘病毒的 DNA在制备表 达载体中的用途。
发明的还一方面涉及一种表达载体,其由 BAC和插入到 BAC中 的上述的任一种水痘病毒的 DNA组成。 一种表达载体, 其为上述的 任一种水痘病毒的 DNA。上述的表达载体至少可以插入 10kb的外源 基因而不影响其本身生长和增殖, 可用于 ^Ji外源基因, 并且所述 表达载体由于 0RF7功能缺失而变得安全。 也可以将该表达载体用 荧光素酶基因标记( Zhang et a l. Journa l of Virology, Sept, 2007 P9024-9033 ) , 用于体内外 VZV-7DRM功能研究的监测。
发明的还一方面涉及一种重组载体, 其含有上述的表达载体以 及插入的外源基因。
发明的还一方面涉及一种重组细胞, 其含有上述的表达载体或 重组载体。 本发明的一个实施方案中, 所述重组细胞所用的宿主细胞选自 如下细胞:
MRC-5、 Mewo、 ARPE、 2BS、 WI-38、 以及 KMB17。
本发明的还一方面涉及一种预防水痘和 /或带状疱疹的方法, 包括给予患者接种有效量的上述疫苗的步骤。
在本发明中, 术语 "DPI" 是 "days pos t infect ion" 的缩 写, 是指病毒感染后的天数。 附图说明
Fig. 1: p-0ka BAC ( VZV BAC )载体构建。
Fig. 2: 0RF7缺失 BAC株 ( VZV-7D BAC ) 的制备。
Fig. 3: 0RF7缺失的 VZV病毒的电泳鉴定。
Fig. 4: VZV-7D病毒的背根神经节培养。 A. 野生型(WT )、 回 复突变型 (7R ) 、 缺陷型 (7D )在 MeMo细胞中的生长曲线。 B. 野 生型(WT )、 回复突变型(7R )、缺陷型 D )在背根神经节(DRG ) 中的生长曲线。
Fig. 5: 0RF-7回复突变 ( VZV-7R )水痘病毒的制备。
Fig. 6: 带有荧光标记的 ( luc ) VZV-7DRM病毒在人体 MeWo细 胞中生长曲线。
Fig. 7: 带有荧光标记的( luc ) VZV- 7DRM病毒在人胸腺组织培 养(T0C )物中的生长曲线。
Fig. 8: 带有荧光标记的( luc ) VZV-7DRM病毒在人皮肤组织培 养(S0C )物中的生长曲线。
Fig. 9: A. 用 WT、 VZV- 7DRM和 VZV-7R的 DNA转染 MeWo细胞 和神经细胞瘤 (SH-SY5Y ) 细胞。 VZV-7DRM不能在神经细胞瘤细胞 中生长。 B. 背根神经节(DRG )从人胚胎的脊髓中分离所得。 C. DRG 被移植到重症联合免疫缺陷 (SCID-hu ) 小鼠的肾嚢里, WT 或 VZV-7DRM病毒感染 DRG, 用 IVIS仪器测试病毒生长, VZV-7DRM不 能在 SCID-hu鼠(植入人组织的重症联合免疫缺陷鼠)中生长。 D. 感染后 GFP强度增加显示, 野生型 (WT ) VZV能够在 DRG培养物中 生长。 具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述。 本领 域技术人员将会理解, 下面的实施例仅用于说明本发明, 而不应 视为限定本发明的范围。 实施例中未注明具体技术或条件者, 按 照本领域内的文献所描述的技术或条件(例如参考 J.萨姆布鲁克 等著, 黄培堂等译的 《分子克隆实验指南》 , 第三版, 科学出版 社) 或者按照产品说明书进行。 所用试剂或仪器未注明生产厂商 者, 均为可以通过市购获得的常规产品。 实施例 1 : p-Oka BAC ( VZV BAC )载体构建
1 ) BAC载体(pUSF-6 ) , 含有原核复制起始序列 (Or i ) 、 复 制和分区基因 (repE, parA and parB),氯霉素抗性基因 ( camR ) 、 绿色荧光蛋白 (gfp ) , 两个 500bpVZV片段 a和 b (灰色) 、 两个 ΙοχΡ位点 (白色) 。 pUSF-6用 BamHl消化成线性结构, 通过同源 重组将 pUSF-6插入含 VZV的科斯质粒 pvSpe23中;
2 ) p-0ka基因结构模式图显示 VZV由 125kb核苷酸组成, 包括 一个长片段(UL )和一个短片段(US ) 。 完整基因组被消化成 4个 含重叠区的 VZV基因片段, 克隆到科斯质粒中, 产生 4个重组克隆 pvFsp73、 pvSpel4、 pvPmel9 和 pvSpe23, pUSF-6通过同源重组插 在 VZV科斯质粒 pvSpe23的 ORF60和 0RF61之间; 3 )含 BAC载体( pUSF-6 ) 的 pvSpe23与其它三个 VZV科斯质 粒共转染 MeWo细胞, 重组病毒( VZVBAC )能在 MeWo细胞中复制并 产生绿色荧光斑。
另外, 操作过程也可以参见 Fig. 1。
比较 VZV BAC病毒和野生型 pOka病毒的生长曲线。 病毒感染 后每天记录蚀斑形成单位数(PFU ) 。 结果显示 VZV BAC病毒(绿 色)没有出现生长缺陷, 与亲本病毒体外生长一致。 实施例 2: 0RF7缺失的 BAC林(VZV-7D BAC )的制备以及检验 0RF7删除的 VZV突变体的构建可以参照 luc VZV BAC (Zhang et a l. Journa l of Virology, Sept, 2007, p9024-9033) β 操作过程 也可以参见 Fig. 2以及下面的步骤:
1. 设计的两条引物各包含 20bp的卡那霉素抗性基因同源核苷 酸序列和 0RF7删除区起始或终止密码子相连的 40bp同源序列。所 用引物 Fl、 R1如下:
Fl : GAT TTA TCC ATA GTT CAA TAC GTT GGA AAG CCA GTC AAT CGC TCT TGT TGG CTA GTG CGT A (SEQ ID NO: 3) ,
Rl: AAA CAT ACA CCA GAA ACG TTT TTA GTT TTT ATT TCA ATA TTC TGC CAG TGT TAC AAC CAA (SEQ ID NO: 4)。
卡那霉素抗性基因从质粒 pGEM- or iV/kanl 上扩增 (Net terwa ld, Yang et a l. 2005) , PCR产物用 Dpnl酶进行消化, 用 Qiagen凝胶提取试剂盒进行回收。
2. 以 1. 6kv, 250 F的 BioRad Gene Pul ser I I电转仪将大 约 200ng的 PCR产^转进载有 VZVLuc BAC 的 DY380菌体中。
3. 采用大肠杆菌 DY380株作为高效同源重组系统, 所需同源 序列短至 40bp。 利用重组酶 42 t!激活 /32 抑制的特性, 完成 Kanf 基因与 0RF7的同源重组, 0RF7被 Kanf基因取代, 在 32 TC下从含有 30 g/ml卡那霉素的琼脂板上选择单克隆的重组子, 从大肠杆菌 中分离水痘病毒突变株 ( 0RF7缺失) VZV- BAC的 DNA。
4. 所得病毒基因组完整性由 Hindl l l酶切检验, 重组 DNA经 PCR检验。 证明得到了 0RF7缺失的 BAC株 ( VZV-7D BAC ), 其 0RF7 被 Kanf基因取代。 实施例 3: 0RF7翻转反向移码突变 BAC株( VZV-7DRM BAC )的 制备以及检验
思路如下:用 ga 1 k基因取代野生型病毒中的 0RF7序列,含 ga 1 k 基因的 VZV在以半乳糖为唯一碳源的麦糠基氏琼脂培养物上产生亮 红色斑, 用这种方法筛选出单克隆; 再用翻转反向移码突变序列取 代 galk,在完全培养基和基础培养基上筛选单克隆,获得 VZV-7DRM BAC
步骤如下:
1. 设计正反向引物 5 '端各含有 6 Obp 0RF7基因两端侧翼同源 序列的 galk基因表达框的扩增引物 F2和 R2。从 pgalk上扩增 galk 基因序列(l-82bp为启动子, 83-1231bp为 galk的 0RF ), 序列如 下 (SEQ ID NO: 5 ) :
CCTGTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAA CCCAGGAGGCAGATCATGAGTCTGAAAGAAAAAACACAATCTCTGTTTGCCAACGCATTTGGCTACCCTGC CACTCACACCATTCAGGCGCCTGGCCGCGTGAATTTGATTGGTGAACACACGGACTACAACGACGGTTTCG TTCTGCCCTGCGCGATTGATTATCAAACCGTGATCAGTTGTGCACCACGCGATGACCGTAAAGTTCGCGTG ATGGCAGCCGATTATGAAAATCAGCTCGACGAGTTTTCCCTCGATGCGCCCATTGTCGCACATGAAAACTA TCAATGGGCTAACTACGTTCGTGGCGTGGTGAAACATCTGCAACTGCGTAACAACAGCTTCGGCGGCGTGG ACATGGTGATCAGCGGCAATGTGCCGCAGGGTGCCGGGTTAAGTTCTTCCGCTTCACTGGAAGTCGCGGTC GGAACCGTATTGCAGCAGCTTTATCATCTGCCGCTGGACGGCGCACAAATCGCGCTTAACGGTCAGGAAGC AGAAAACCAGTTTGTAGGCTGTAACTGCGGGATCATGGATCAGCTAATTTCCGCGCTCGGCAAGAAAGATC ATGCCTTGCTGATCGATTGCCGCTCACTGGGGACCAAAGCAGTTTCCATGCCCAAAGGTGTGGCTGTCGTC ATCATCAACAGTAACTTCAAACGTACCCTGGTTGGCAGCGAATACAACACCCGTCGTGAACAGTGCGAAAC CGGTGCGCGTTTCTTCCAGCAGCCAGCCCTGCGTGATGTCACCATTGAAGAGTTCAACGCTGTTGCGCATG AACTGGACCCGATCGTGGCAAAACGCGTGCGTCATATACTGACTGAAAACGCCCGCACCGTTGAAGCTGCC AGCGCGeTGGAGCAAGGCGACCTGAAACGTATGGGCGAGTTGATGGCGGAGTCTCATGCCTCTATGCGCGA TGATTTCGAAATCACCGTGCCGCAAATTGACACTCTGGTAGAAATCGTCAAAGCTGTGATTGGCGACAAAG GTGGCGTACGCATGACCGGCGGCGGATTTGGCGGCTGTATCGTCGCGCTGATCCCGGAAGAGCTGGTGCCT GCCGTACAGCAAGCTGTCGCTGAACAATATGAAGCAAAAACAGGTATTAAAGAGACTTTTTACGTTTGTAA ACCATCACAAGGAGCAGGACAGTGCTGA ( SEQ ID NO: 5 )
F2和 R2序列如下:
F2 : ACCGAATCGTCGGTTTGGAGGATTTATCCATAGTTCAATACGTTGGAAAGCCAG TCAATCATGCCTGTTGACAATTAATCATCGGCA (SEQ ID NO: 6);
R2 :
TAATTTTATATACAAAATAAAAACATACACCAGAAACGTTTTTAGTTTTTATTT CAATATTCAGCACTGTCCTGCTCCTT (SEQ ID NO: 7);
2. 用此引物扩增 galk基因表达框,用 Dpnl消化过夜后纯化;
3. 用 VZV BAC转化大肠杆菌 SW102;
4. 挑取单克隆接种到 5ml LB-CM (含氯霉素 LB ) 的培养基, 在 32 °C培养过夜;
5. 用过夜培养菌接种到 250ml LB-CM培养液中, 32 振荡培 养到 0D值达到 0. 4-0. 6;
6. 制备电转细胞(VZVBAC转化的大肠杆菌 SW102 ) ;
7. 取 1-2μ1 (约 200ng )步骤 2纯化的 PCR产物按实施例 2中 的电转参数电转到步骤 6中制备的 VZVBAC大肠杆菌 SW102感受态 细胞中;
8. 向转化细胞中加 lml LB并于 32Ό培养 1小时; 9. 恢复后, 用 l x M9盐如下洗涤细菌 3次: 13200 RPM离心沉 淀培养物 15秒, 吸取离心上清, 用 1 χ Μ9盐重悬沉淀, 如上离心, 重复洗涤一次。 经 3次洗涤后, 弃除上清液, 沉淀用 l x M9盐 lml 重悬。 重悬物、 10倍稀释物、 100倍稀释物加到含半乳糖、 亮氨酸、 生物素和氯霉素的 M63基础培养基上。
10. 32 Ό培养 3天;
11. 挑取几个克隆到含有半乳糖、氯霉素指示剂的麦糠基氏琼 脂培养板上培养, 获得单克隆。 培养 3天出现的克隆应该是 Ga l+, 但是,为了排除 Ga卜污染,获得单一亮红色克隆对进行下一步试验 是非常重要的;
12. 挑取单一亮红色(半乳糖为唯一碳源的麦糠基氏培养基上 培养, Ga l+)克隆, 接种到 5 ml LB-CM培养液中, 32。C过夜培养; 用过夜培养物制备 BAC DNA, 并用 PCR确证含有 ga lk基因, 所用引 物如下:
F3: CCTGTTGACAATTAATCATCGGCA (SEQ ID NO: 8);
R3: TCA GCACTGTCCTGCTCCTT (SEQ ID NO: 9);
13.以 F4 (SEQ ID NO: 10)和 R4 (SEQ ID NO: 11)为引物的 0RF7 近 3'端 457bp的 PCR扩增 ( 457bp读码框序列(SEQ ID NO: 12) ) 。 由 于 F4、 R4引物设计引入了 1位碱基移码, 故扩增产物产生移码突 变。
F4和 R4引物序列如下:
F4 : CGAATCGTCGGTTTGGAGGATTTATCCATAGTTCAATACGTTGGAAAGCCAGTC AATTTAATGGGATTTCTTGATCGCGGGG (SEQ ID NO: 10)
R4 : AATTTTATATACAAAATAAAAACATACACCAGAAACGTTTTTAGTTTTTATTTC AATATGTGGTCCGTTCACACATGGAAAAC (SEQ ID NO: 11)
457bp读码框序列如下:
GTCCGTTCACACATGGAAAACTCAAAACGGCTTGCTGATATGTGTTTAGCTGCAATTACCCATTTGT ATTTATCGGTTGGCGCGGTGGATGTTACTACGGATGATATTGTCGATCAAACCCTGAGAATGACCGCTGAA AGTGAAGTGGTCATGTCTGATGTTGTTCTTTTGGAGAAAACTCTTGGGGTCGTTGCTAAACCTCAGGCATC GTTTGATGTTTCCCACAACCATGAATTATCTATAGCTAAAGGGGAAAATGTGGGTTTAAAAACATCACCTA TTAAATCGGAGGCGACACAATTATCTGAAATTAAACCCCCACTTATAGAAGTATCGGATAATAACACATCT AACCTAACAAAAAAAACGTATCCGACAGAAACTCTTCAGCCCGTGTTGACCCCAAAACAGACGCAAGATGT ACAACGCACAACCCCCGCGATCAAGAAATCCCATG (SEQ ID NO: 12)。
然后参照本实施例的步骤 4-10制备电转感受态 SW102细胞。
14. 200ng含与步骤 2 ga lk基因侧翼同源的 PCR产物经热激转 化 50μ1步骤 13的感受态细菌。 转化产物加到含 l OmlLB培养液的 50ml锥形瓶中, 32 'C水浴振荡培养 4. 5小时进行恢复。这种长时间 恢复旨在获得只含目标序列的重组 VZV BAC (舍弃含 ga 1 k表达框的 VZV BAC ) 。 因为 F4由 60bp 0FR7 5'端侧翼同源序列和 0RF7 近 3' 端 457bp反向序列组成, R4由 60bp 0FR7 3'端侧翼同源序列和 0RF7 近 3'端 457bp正向序列组成, 所^扩增产物与 0FR7位点上的 ga lk 基因同源重组时, 3'端 457bp序列产生翻转反向连接, 产生翻转反 向移码突变突变(SEQ ID NO: 13) , 不具^ 功能。 翻转反向移码突 变序列如下:
CATGGGATTTCTTGATCGCGGGGGTTGTGCGTTGTACATCTTGCGTCTGTTTTGGGGTCAACACGGG CTGAAGAGTTTCTGTCGGATACGTTTTTTTTGTTAGGTTAGATGTGTTATTATCCGATACTTCTATAAGTG GGGGTTTAATTTCAGATAATTGTGTCGCCTCCGATTTAATAGGTGATGTTTTTAAACCCACATTTTCCCCT TTAGCTATAGATAATTCATGGTTGTGGGAAACATCAAACGATGCCTGAGGTTTAGCAACGACCCCAAGAGT TTTCTCCAAAAGAACAACATCAGACATGACCACTTCACTTTCAGCGGTCATTCTCAGGGTTTGATCGACAA TATCATCCGTAGTAACATCCACCGCGCCAACCGATAAATACAAATGGGTAATTGCAGCTAAACACATATCA GCAAGCCGTTTTGAGTTTTCCATGTGTGAACGGAC (SEQ ID N0: 13)。
15. 如步骤 9操作, 沉淀 lml培养物, 用 1 χ Μ9盐洗涤细菌 3 次, 沉淀用 1 χ Μ9盐 lml重悬。 重悬物和 10倍稀释物各 Ι ΟΟμΙ加 到含甘油、 亮氨酸、 生物素、 2-脱氧 -半乳糖和氯霉素的 M63培养 板上。
16. 32Ό培养 3-4天;
17. 挑选并移种单克隆转到 LB-CM和 Galk-M63 CM基础培养基 的平板上。 在 LB- CM生长而在基础培养板上不生长的单克隆, 提取 病毒基因组用 Hindl l l酶切检猃完整性, 重组 DNA经 PCR检验。 证 明得到了 0RF7翻转反向移码突变的 BAC株(VZV-7DRM BAC ) 。
上述步骤所用试剂的配制如下面的表 1所示:
表 1: 本实施例所用试剂及其配制
Figure imgf000015_0001
实施例 4: VZV-7D 和 VZV-7DRM病毒的制备
1. 从实施例 2制得的 VZV-7D BAC 中提取 DNA, 转入 DY380 菌中培养、 增殖、 提取、 纯化。 2. 将提取纯化的 DNA单独电转染至(Marchini, Liu et a l. 2001 ) M C-5细胞, (BAC上带的 GFP可以用于病毒在细胞中生长 增殖研究)或与 Cre表达载体一同电转染至(Marchini, Liu et a l. 2001 ) MRC-5细胞, BAC被 Cre酶从其两端的 ΙοχΡ酶切位点完全切 除, 产生 VZV-7D病毒。
类似地,可以得到翻转反向移码突变取代 0RF7的 VZV-7DRM病 毒, 由于 VZV- 7DRM的 0RF7只有部分且为翻转反向序列, 所以, 此 片段不能表达, 更无 0RF7功能。 因此, VZV-7DRM与 VZV- 7D具有相 同的功能。 实施例 5: VZV-7D病毒的鉴定
用实施例 4中制得的 VZV- 7D病毒感染长成单层的 MRC- 5细胞, 用含 2%牛血清的 MEM培养基培养, 约 80%细胞病变发生时, 弃培养 基, 收获病变细胞, 提取 DNA, 以 P-Oka为对照进行试验。 PCR扩 增 ORF-10和 0RF-7基因, 用 Hindl l l消化 VZV-7D和 Ρ-Oka株的 DNA。 PCR产物和 Hindl l l消化产物用 0. 5%的琼脂糖凝胶进行电泳, 电泳产物见 Fig. 3。 VZV-7D在 ORF-10的 PCR产物同 P-Oka的一致, 但在 0RF-7上没有条带, 证实 0RF-7缺失。 Hindl l l对病毒的酶切 图谱上, VZV-7D和 P-Oka之间看不出差别。 实施例 6: VZV-7D病毒的背根神经节培养
用无菌的外科剪刀和镊子分离妊娠 20周胚胎的宫颈段和胸段 脊骨的背根神经节(DRG ), 分离的背根神经节用含 1%青霉素 /链霉 素的冰浴 1 XPBS瞬时洗涤, 然后转到水浴的培养基(DEM,含 15% 热灭活的胎牛血清和 1%青霉素 /链霉素) , 将每个背根神经节单独 放到六孔板中胶原覆盖的盖玻片上, 加 0. 5 ml培养基, 培养 5天, 其间换培养基一次。 六孔细胞板中制备 50% Mewo细胞培养物, 用 于滴度检测和生长曲线分析( Fig. 4A )。第 6天收获 P-0ka, VZV-7D 和 VZV-7R新近感染的 Mewo细胞, 于培养基悬浮至 lml。 每个背根 神经节单独饲养在六孔板中胶原包被的盖玻片上。 10 μ ΐ悬液用于 病毒滴度检测, 2 μ 1用于 Mewo细胞感染的生长曲线。 其余细胞悬 液用力通过 27号针 20次,细胞碎片通过 4000rpm离心 l Omin沉淀。 上清均分, 用于感染背根神经节, 约 120 μ ΐ/样品, 另外, 2滴(20 μ ΐ ) 细胞悬液用于感染另一个背根神经节, 371C 5%C02下培养 3 小时后, 背根神经节用 1 X PBS洗涤, 再补加新鲜培养基。 每 24小 时检测一次荧光素酶活性。 样品用含 150 y g/ml 的 D-lucifer in 培养 10分钟后, 用 IVIS仪器和软件分析光子数。 检测结果见 Fig. 4B。
结果表明, VZV- 7D在 Mewo上生长正常, 而在背根神经节中几 乎不生长。 VZV-7D不感染背根神经节细胞,这为开发安全的减毒活 疫苗奠定了坚实基础。 实施例 7: VZV-7D病毒的回复突变体(VZV-7R )制备以及臉证 0RF7缺失正确与否不仅可以用 Hindi n酶切鉴定,而且可以通 过基因的同源重组获得完整的 VZV加以脸证。 即应用细菌同源重组 机理拯救出完整的 VZV, 见 Fig. 5。 可以利用 Invi trogen的高保真 Taq DNA 聚合酶试剂盒 PCR扩增 0RF7 片段, 并将其克隆到质粒 pGEM-lox-zeo的 Not l和 Bg l l l位点之间,从而形成 pGEM-zeo-0RF7 质粒。 该克隆片段通过测序分析鉴定正确, 且通过 PCR扩增没有错 误密码子被引入 0RF7编码框中。 之后以 pGEM-zeo-0RF7质粒为模 板用下述引物 PCR扩增 zeoR-0RF7编码框。
F5: GAT TTA TCC ATA GTT CAA TAC GTT GGA AAG CCA GTC AAT CAT GCA GAC GGT GTG TGC CAG ( SEQ ID NO: 14 );
R5: AAA CAT ACA CCA GAA ACG TTT TTA GTT TTT ATT TCA ATA TGG ATG GAT CCA TAA CTT CGT ( SEQ IDNO: 15 ) ,
得到的 PCR产物是两端各含一段 40bp的 VZV基因序列,与 kanR 编码框序列相连的, 位于删除的 0RF7位点上。 将得到的这段嵌合 PCR产物按上文提到的方法电转化到携带有 0RF7D BAC的 DY380菌 体中。重组体要通过含有 50 g/ml的 zeocin (Invi trogen)和 12. 5 g/ml的氯霉素的琼脂平板 32 培养筛选。 正确的 VZV克隆通过 它们对抗生素的敏感状况而筛选获得。正确的克隆应该是氯霉素抗 性、 潮霉素抗性、 zeoc in抗性、 卡那霉素敏感性以及氨苄霉素敏感 性的。 这些克隆进一步被酶切消化和 PCR分析确证正确。
将鉴定正确的克隆(即携带有 0RF7缺失或者 luc VZV BAC拯 救子的大肠杆菌 DY380 )接种于含 12. 5 g/ml的氯霉素的 500mlLB 培养基中 321C培养 20小时。 VZVBAC的 DNA通过 BAC DNA大量提取 试剂盒(BD Biosc iences, Pa lo Al to, CA )分离得到, 并且利用 转染试剂 FuGene6 ( Roche, Indianapol i s, IN )按照使用说明转 染到 MRC-5细胞。 6孔板中的一孔(35-腿)在转染时 DNA与转染试剂 的使用比例为 1. 5 μ g : 6 μ 1。 一般情况转染后 3天可见水痘病毒 病斑。 为从水痘病毒基因组中去除 BAC载体(两侧有 ΙοχΡ酶切位 点),可将 Cre表达载体与 VZV BAC DNA—起共转染(Marchini, Liu et a l. 2001 ) MRC-5细胞, 利用 Cre酶的特性而精确切除 BAC, 产 生完整的 VZV。
水痘 0RF-7回复突变的病毒具有同 Ρ-Oka病毒相同的生长和增 殖特性。 说明 0RF- 7的功能可以通过回复突变手段得到恢复。 实施例 8: VZV-7DRM病毒的 Mewo细胞培养 六孔板中长成单层的 Mewo 细胞分别用含 Luc 的 VZV- 7DRM、 VZV-7R和 P-0ka株感染, 以未感染的 Mewo细胞作对照, Mewo细胞 在 37 Ό下用含 2%牛血清的 MEM培养基培养。 感染 24 小时后, D-luc ifer in加到培养的细胞孔中, 终浓度为 150 μ g/ml, 37 培 养 10分钟, 不同孔的生物荧光用体内成像系统 IVIS ( 50 Ser ies; Xenogen Corporat ion, Alameda, CA)同时测量光子数, 每天测量 3孔感染细胞, 测量后, 细胞用病毒培养液取代 D-lucifer in物质 继续培养。 病毒荧光量每 24小时测量一次, 连续测量 7天。 用 3 孔测量的数据均值对时间绘制生长曲线。 结果见 Fig. 6。
人 MeWo 细胞不被感染或者被水痘-带状疱疹病毒野生株 ( lucVZV )或者 VZV-7DRM突变株或者 VZV-7D回复株 ( luc7R )感 染、 培养 7天。 感染后每天用 IVIS系统测量光子数, 用 3孔测量 的均值对时间绘制生长曲线, 图中标出 3孔测量数据的误差线。 本 试验表明 VZV-7DRM病毒和 VZV-7R病毒和野生株一样都可以在 MeWo 细胞中正常生长。 同时, 试验结果表明将 BAC插入 VZV-7DRM中, 7DRM能正常增殖, BAC上的基因也能正常表达, 即 VZV- 7DRM可以 用作外源基因表达的载体。 实施例 9: VZV-7DRM病毒在人胸腺组织的培养
人胸腺-肝脏联合移植体异体移植到雄性的 CB- 17SCID/beige 鼠内。人胸腺-肝脏联合移植体构建和使用按 Jennifer F. M( Journa l of Virology, Sept. 1995, p. 5236 5242 )描述的方法进行。 移 植 3月后, 人胸腺 -肝脏移植体经外科手术暴露后, 直接注射 2 χ 103 至 4 χ 103 PFU的 Mewo培养的含有荧光素酶的 VZV-7DRM和 P-0ka, 10 - 20 μ 1细胞悬液, 每种病毒感染 3只小鼠, 以未感染鼠为对照, 感染后每天测量荧光量。 腹腔注射 250 μ ΐ荧光素酶底物, 即 D-lucifer inl O分钟后, 用生物荧光体内成像系统 IVIS在移植区按 实施例 8的方法测量荧光量, 每种病毒测量 3只小鼠。 结果见 Fig. 7。
培养的人胸腺组织不受病毒感染或者受 VZV 野生株或者 VZV-7DRM株感染,培养 7天。感染后每天用 IVIS系统测量光子数。 用 3只鼠测量的光子数均值对时间绘制生长曲线。 图中显示 3只测 量数据的误差线。 本试臉表明 VZV-7DRM缺陷株像野生株一样能在 胸腺组织 (T-细胞) 中生长。
类似的实脸证明, VZV-7D缺陷株也像野生株一样能在胸腺组织 ( T-细胞) 中生长。 实施例 10: VZV-7DRM病毒的皮肤培养
人胚胎皮肤完整结构按 Jennifer F. M ( Journal of Virology, Sept. 1995, p. 5236 5242 )描述的方法, 异体移植到重症联合免 疫缺陷( SCID )小鼠皮下。移植 4周后,三种含荧光素酶的 VZV- 7DRM、 VZV-7R和 P-0ka株感染皮肤,每种病毒感染 3只小鼠, 以未感染鼠 为对照, 感染后每天测量荧光量。 腹腔注射 250 μ 1荧光素酶底物, 即 D-lucifer inlO分钟后, 用生物荧光体内成像系统 IVIS在移植 区按实施例 8的方法测量荧光量, 每种病毒测量 3只小鼠。 结果见 Fig. 8。
培养的人皮肤组织被病毒野生株(P-0ka )或者 0RF7 缺失株 ( VZV-7DRM )或者 0RF7回复突变株(VZV- 7R )感染、 以不被感染 的鼠为对照, 培养 7天。 感染后每天用 IVIS系统测量光子数, 用 3 只测量的光子均值对时间绘制生长曲线。 图中标出 3只测量数据的 误差线。 实驗证实 VZV-7DRM在皮肤中有严重生长缺陷, 这种功能 缺陷在 VZV-7DRM株回复突变后可以被恢复。
类似的实验显示, VZV-7D在皮肤中也有严重生长缺陷,并且这 种功能缺陷在 VZV-7D株回复突变后可以被恢复。
实施例 11: 0RF7对 VZV感染神经细胞为必需的验证实猃
1. 神经细胞瘤细胞感染实验
用野生型 (WT ) 、 0RF7删除型 (VZV-7DRM )和 0RF7回复突变 型 ( VZV-7R ) 的 BAC DNA转染 MeWo细胞和神经细胞瘤 ( SH-SY5Y ) 细胞。 研究发现, WT、 VZV-7R在 MeWo细胞和神经细胞瘤细胞上生 长正常, 但 VZV-7DRM不能在神经细胞瘤细胞上生长(Fig. 9A ) 。 研究结果显示 0RF 7很可能是 VZV感染神经细胞所必需的。
2. DRG移植体感染实验
为了进一步验证本实施例中实验 1的结果,使用植入人胎儿背 根神经节(DRG )移植体的重症联合免疫缺陷鼠(SCID-hu )模型进 行试猃。 结果发现, 野生型在 DRG移植体中经历一个短暂的复制循 环 (有荧光现象)后, 很可能一直潜伏着。 但是, VZV-7D 不能在 DRG移植体中复制。 这些结果表明, 0RF7很可能是 VZV的嗜神经因 子 (Fig. 9B - D ) 。
以上两个实验证明, 0RF7是 VZV感染神经元所必需的。 实施例 12: 疫苗的制备以及 VZV-7DRM病毒的免疫原性检定
VZV-7DRM按 MOI=0. 1感染长成单层的 ARPE或 MRC-5细胞,病毒在 细胞上吸附 40分钟后, 向培养瓶中加病毒培养液后于 35 - 下培养。 细胞病变达到 80%左右 (通常为 3天) 时, 用 0. 1% EDTA消化收获, 收获物经离心、 加保护剂破碎和澄清后冻干制成疫苗。
疫苗复溶后经皮下接种体重约 250g豚鼠, 5只 /苗, 5000 PFU/0. 5ml/剂, 初免 4周后, 加强免疫 1剂, 以 P-Oka和 V-0ka为对照 进行试验。
加强免疫后 2周经心脏采血, 用 gp-ELISA检测免疫血清抗体滴 度。 用免疫抑制法检测免疫血清对病毒的中和能力。 免疫血清或免 前血清 10倍稀释后与病毒 1: 1混合, 37 培养 60分钟, 培养混合液 感染 MRC-5细胞, 于 37Ό 5%二氧化碳培养箱中培养 7天后, 弃去培养 液, 用考马斯蓝染色, 计蚀斑数再换算病毒滴度, 用 lOO x (被免 前血清中和的病毒滴度 -被免后血清中和的病毒滴度 ) /被免后血清 中和的病毒滴度。 检定结果见表 2。
表 2: 水痘病毒的豚鼠免疫血清抗体滴度和中和水平
Figure imgf000022_0001
实验结果表明 VZV-7DRM有良好的免疫原性, 抗体水平和 V-0ka 的相当, 且 VZV-7DRM免疫血清对三株病毒都有良好的中和作用, 初 步显示有疫苗开发前景。
类似的实猃显示, VZV-7D也具有良好的免疫原性, 具有疫苗开 发前景。 实施例 13: VZV-7DRM为载体的生物活性原料制备
用含 0RF7侧翼区同源序列的 EV71-VP1引物从 pT- VP1质粒上 PCR 扩增 EV71-VP1阅读框。
阅读框序列如下:
TGGGAGATAGGGTAGCAGATGTAATTGAAAGCTCCATAGGAGATAGCGTGAGCAGAGCCCTCACTCA CGCTCTACCAGCACCCACAGGCCAGAACACACAGGTGAGCAGTCATCAACTGGATACAGGCAAGGTTCCAG CACTCCAAGCTGCTGAAATTGGAGCATCATCAAATGCTAGTGACGAGAGCATGATTGAGACACGCTGTGTT CTTAACTCGCACAGCACAGCTGAGACCACTCTTGATAGTTTCTTCAGCAGAGCGGGATTAGTTGGAGAGAT AGATCTCCCTCTTAAAGGCACAACTAACCCAAATGGTTATGCCAACTGGGACATAGATATAACAGGTTACG CGCAAATGCGTAGAAAGGTGGAGCTATTCACCTACATGCGCTTTGATGCAGAGTTCACTTTTGTTGCGTGC ACACCCACCGGGGAAGTTGTCCCACAATTGCTCCAATATATGTTTGTGCCACCTGGAGCCCCTAAGCCAGA TTCCAGGGAATCCCTCGCATGGCAAACCGCCACCAACCCCTCGGTTTTTGTCAAGCTGTCAGACCCTCCAG CGCAGGTTTCAGTGCCATTCATGTCACCTGCGAGCGCTTACCAATGGTTTTATGACGGATATCCCACATTC GGAGAACACAAACAGGAGAAAGATCTTGAATATGGGGCATGTCCTAATAACATGATGGGCACGTTCTCAGT GCGGACTGTAGGGACCTCCAAGTCCAAGTACCCTTTAGTGGTTAGGATTTACATGAGAATGAAGCACGTTA GGGCGTGGATACCTCGCCCGATGCGTAACCAGAACTACCTATTCAAAGCCAACCCAAATTATGCTGGCAAC TCCATTAAGCCAACTGGTACCAGTCGTACAGCGATCACTACTCTTTAA (SEQ ID NO: 16)
PCR引物序列:
F6 ( 0RF7 5 '端侧翼区同源序列, 起始密码子和 EV71-VP1同源 序列) :
CGAATCGTCGGTTTGGAGGATTTATCCATAGTTCAATACGTTGGAAAGCCAGT CAATCATGGGAGATAGGGTAGGAGATGTAA (SEQ ID NO: 17)
R6 ( 0RF7 3'端侧翼区同源序列和 EV71-VP1同源序列) :
AATTTTATATACAAAATAAAAACATACACCAGAAACGTTTTTAGTTTTTATTT CAATATTTAAAGAGTAGTGATCGCTGTACGACTGGTA (SEQ ID NO: 18)
PCR产物采用电转手段转入含 VZV-7DRM BAC的 SW102细菌中, 按 照实施例 2筛选重组菌, 经鉴定正确后, 适量培养, 提取
VZV-7DRM-VP1 BAC, 与 Cre表达载体一同电转染至 ARPE细胞, BAC 被 Cre酶从其两端的 loxP酶切位点完全切除, 产生 VZV-7DRM- VP1重 组病毒。 重组病毒感染长成单层的 ARPE细胞, 35 培养 3- 4天, 细 胞出现病变。 收集的病毒培养上清、 细胞悬液经反复冻融或超声裂 解后的离心上清原倍上样, 采用 E V71特异的双抗体夹心法检测 VP 1 活性, 用 EV71和 VZV-7DRM作对照。 结果(见表 3 )在 VZV- 7DRM-VP1 病毒感染的 ARPE细胞中检测到 VP1活性, 表明 VP1重组到 VZV-7DRM 中。 此例表明 VZV-7DRM能用作外源基因的表达载体表达目标蛋白。
表 3: VZV-7DRM-VP1重组病毒的 VP1活性检测 (双抗体夹心法) 双抗体夹心 EV71活性( 0D值) 类别
培养上清 超声破碎
VZV-7DRM 0. 049 0. 025
VZV-7DRM-P1 0. 048 0. 692
EV71 2. 774 2. 537 类似的实验证明, VZV-7D也可以用于制备表达外源蛋白的载 体。 尽管本发明的具体实施方式已经得到详细的描述, 本领域技 术人员将会理解。 根据已经公开的所有教导, 可以对那些细节进 行各种修改和替换, 这些改变均在本发明的保护范围之内。 本发 明的全部范围由所附权利要求及其任何等同物给出。

Claims

权利要求
1. 一种水痘病毒, 其基因组 0RF7全部或部分缺失、 或者被一个 或多个碱基取代或插入, 并且所述水痘病毒不能够感染人的皮肤和 感觉神经节。
2. 根据权利要求 1所述的水痘病毒,其中, 0RF7全部或部分被 抗生素抗性基因和 /或者无功能的核酸序列所取代。
3. 根据权利要求 2所述的水痘病毒, 其中, 所述抗生素抗性基 因选自: 青霉素、 链霉素、 以及卡那霉素的抗性基因。
4. 根据权利要求 2所述的水痘病毒, 其中, 所述无功能的核酸 序列是翻转反向移码突变的 0RF7片段。
5. 根据权利要求 4所述的水痘病毒, 其中, 所述翻转反向移码 突变的 0RF7片段的序列如 SEQ ID NO: 13所示。
6. 一种水痘病毒, 其保藏编号为 CGMCC No. 3207 , 保藏日期 2009年 7月 28 日, 保藏单位是中国微生物菌种保藏管理委员会普 通微生物中心。
7. 权利要求 1所述的水痘病毒的制备方法, 包括如下步骤:
1 )将野生型水痘病毒的基因组克隆到 BAC载体上, 然后通过 细菌内重组, 使得水痘病毒的基因组 0RF7全部或部分缺失、 或者 被一个或多个碱基取代或插入,导致得到的水痘病毒不能够感染人 的皮肤和感觉神经节;
2 )分离 1 ) 中得到的水痘病毒的 DNA, 并与含 Cre酶的重组质 粒共转染 Mewo细胞或 MRC-5细胞或 ARPE细胞或 2BS细胞或 WI-38 细胞或 KMB17细胞等;
3 )通过 Cre酶的作用在 Mewo细胞或 MRC-5细胞或 ARPE细胞 或 2BS细胞或 WI-38细胞或 KMB17细胞等中删除 BAC。
8. 根据权利要求 7所述的方法, 其中, 所述野生型水痘病毒是 P Oka株, 并且步骤 1 )中所述的 0RF7被 Kanf取代, 或者翻转反向 移码突变的 0RF片段 SEQ ID NO: 13所取代。
9. 一种组合物, 其含有权利要求 1 - 6 中任一项所述的水痘病 毒。
10. 一种预防水痘和 /或带状疱疹的疫苗,其含有权利要求 1 - 6 中任一项所述的水痘病毒, 以及疫苗用赋形剂或载体。
11. 权利要求 1 - 6中任一项所述的水痘病毒在制备预防水痘和 /或带状疱疹的疫苗中的用途。
12. 权利要求 1 - 6中任一项所述的水痘病毒的 DNA在制备表达 载体中的用途。
13. 一种表达载体, 其由 BAC和插入到 BAC中的权利要求 1 - 6 中任一项所述的水痘病毒的 DNA组成。
14. 一种表达载体,其为权利要求 1 - 6中任一项所述的水痘病 毒的 DM。
15. 一种重组载体, 其含有权利要求 13或 14所述的表达载体 以及插入的外源基因。
16. 一种重组细胞,其含有权利要求 13或 14所述的表达载体、 或者权利要求 15所述的重组载体。
17. 根据权利要求 16所述的重组细胞, 其中, 所用的宿主细胞 选自如下细胞: MRC-5、 Mewo、 ARPE、 2BS、 WI-38 > 以及 KMB17。
18. 一种预防水痘和 /或带状疱疹的方法, 包括给予患者接种有 效量的权利要求 10所述的疫苗的步骤。
PCT/CN2010/001139 2009-07-28 2010-07-27 Orf7缺陷型水痘病毒、含有该病毒的疫苗及应用 WO2011011971A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201080033216.8A CN102666842B (zh) 2009-07-28 2010-07-27 Orf7缺陷型水痘病毒、含有该病毒的疫苗及应用
AU2010278594A AU2010278594B2 (en) 2009-07-28 2010-07-27 ORF7 deficient varicella virus, vaccine comprising the virus and use thereof
JP2012521930A JP5767635B2 (ja) 2009-07-28 2010-07-27 Orf7欠損水痘ウイルス、該ウイルスを含むワクチン、及びその使用
US13/387,359 US9885020B2 (en) 2009-07-28 2010-07-27 ORF7 deficient varicella virus, vaccine comprising the virus and use thereof
EP10803804.3A EP2460878B1 (en) 2009-07-28 2010-07-27 Orf7 deficient varicella virus, vaccine comprising the virus and use thereof
CA2768887A CA2768887C (en) 2009-07-28 2010-07-27 Orf7 deficient varicella virus, vaccine comprising the virus and use thereof
US15/865,540 US10752885B2 (en) 2009-07-28 2018-01-09 ORF7 deficient varicella virus, vaccine comprising the virus and use thereof
US16/847,360 US11220673B2 (en) 2009-07-28 2020-04-13 ORF7 deficient varicella virus, vaccine comprising the virus and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910157387.0 2009-07-28
CN2009101573870A CN101967466A (zh) 2009-07-28 2009-07-28 Orf7缺陷型水痘病毒株、含有该毒株的疫苗及其应用

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/387,359 A-371-Of-International US9885020B2 (en) 2009-07-28 2010-07-27 ORF7 deficient varicella virus, vaccine comprising the virus and use thereof
US15/865,540 Division US10752885B2 (en) 2009-07-28 2018-01-09 ORF7 deficient varicella virus, vaccine comprising the virus and use thereof

Publications (1)

Publication Number Publication Date
WO2011011971A1 true WO2011011971A1 (zh) 2011-02-03

Family

ID=43528721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001139 WO2011011971A1 (zh) 2009-07-28 2010-07-27 Orf7缺陷型水痘病毒、含有该病毒的疫苗及应用

Country Status (7)

Country Link
US (3) US9885020B2 (zh)
EP (1) EP2460878B1 (zh)
JP (1) JP5767635B2 (zh)
CN (3) CN101967466A (zh)
AU (1) AU2010278594B2 (zh)
CA (1) CA2768887C (zh)
WO (1) WO2011011971A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967466A (zh) 2009-07-28 2011-02-09 新泽西医学院 Orf7缺陷型水痘病毒株、含有该毒株的疫苗及其应用
CN113683704B (zh) * 2021-07-28 2023-05-30 安徽智飞龙科马生物制药有限公司 一种水痘-带状疱疹病毒r-gE融合蛋白、重组水痘-带状疱疹疫苗及其制备方法和应用
CN113755494B (zh) * 2021-08-11 2023-04-07 西北工业大学 一种抗水痘-带状疱疹病毒的siRNAs及其应用
CN113789326B (zh) * 2021-08-11 2023-04-07 西北工业大学 一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和应用
JP7383855B2 (ja) 2021-12-28 2023-11-21 株式会社九州ハイテック 無機質ガラスコーティング剤

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985615A (en) 1974-03-12 1976-10-12 Research Foundation For Microbial Diseases Of Osaka University Process for preparing live varicella vaccines
US4000256A (en) 1975-04-30 1976-12-28 Merck & Co., Inc. Varicella vaccine and process for its preparation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100350169B1 (ko) * 1992-06-04 2004-05-20 머크 앤드 캄파니 인코포레이티드 약독화된바리셀라조스터바이러스백신의제조방법,및이를위한세포의단층배양방법및조성물
JP3946045B2 (ja) * 2000-01-31 2007-07-18 財団法人阪大微生物病研究会 弱毒生水痘ワクチンの品質管理方法
AU2003295398A1 (en) * 2002-11-05 2004-06-07 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Safer attenuated virus vaccines with missing or diminished latency of infection
CA2558586A1 (en) * 2004-03-05 2005-09-15 The Research Foundation For Microbial Diseases Of Osaka University Recombinant varicella-zoster virus
WO2007060725A1 (ja) * 2005-11-24 2007-05-31 The Research Foundation For Microbial Diseases Of Osaka University 組換え多価ワクチン
CN100513559C (zh) * 2006-05-29 2009-07-15 北京生物制品研究所 新的水痘病毒毒株、水痘减毒活疫苗及其制备方法
CN101967466A (zh) 2009-07-28 2011-02-09 新泽西医学院 Orf7缺陷型水痘病毒株、含有该毒株的疫苗及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985615A (en) 1974-03-12 1976-10-12 Research Foundation For Microbial Diseases Of Osaka University Process for preparing live varicella vaccines
US4000256A (en) 1975-04-30 1976-12-28 Merck & Co., Inc. Varicella vaccine and process for its preparation

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Requirement for Varicella Vaccine (Live) Adopted 1984", WHO TECHNICAL REPORT SERIES, 1985, pages 102 - 104
J. SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", SCIENCE PRESS
JENNIFER F.M., JOURNAL OF VIROLOGY, September 1995 (1995-09-01), pages 5236 - 5242
LANCET, vol. 2, 1974, pages 1288 - 1290
SCHMID D.S ET AL.: "Impact of varicella vaccine on varicella-zoster virus dynamics", CLINICAL MICROBIOLOGY REVIEWS, January 2010 (2010-01-01), pages 202 - 217
See also references of EP2460878A4
TAKAHASHI M; OTSUKA T; OKUNO Y ET AL.: "Live vaccine used to prevent the spread of varicella in children in hospital", LANCET, vol. 2, 1974, pages 1288 - 90
ZHANG ET AL., JOURNAL OF VIROLOGY, September 2007 (2007-09-01), pages 9024 - 9033
ZHANQ Z. ET AL.: "A highly efficient protocol of generating and analyzing VZV ORF deletion mutants based on a newly developed luciferase VZV BAC system.", JOURNAL OF VIROLOGICAL METHODS., vol. 148, no. 1-2, 22 January 2008 (2008-01-22), pages 197 - 204, XP022487610 *

Also Published As

Publication number Publication date
EP2460878A9 (en) 2012-08-22
JP2013500024A (ja) 2013-01-07
EP2460878B1 (en) 2015-03-25
CN105770886B (zh) 2017-11-28
US20200277577A1 (en) 2020-09-03
CA2768887C (en) 2017-05-09
JP5767635B2 (ja) 2015-08-19
CN101967466A (zh) 2011-02-09
EP2460878A1 (en) 2012-06-06
EP2460878A4 (en) 2013-01-09
CN105770886A (zh) 2016-07-20
US20130295124A1 (en) 2013-11-07
CN102666842B (zh) 2016-03-02
US10752885B2 (en) 2020-08-25
CA2768887A1 (en) 2011-02-03
CN102666842A (zh) 2012-09-12
US11220673B2 (en) 2022-01-11
US9885020B2 (en) 2018-02-06
US20180208905A1 (en) 2018-07-26
AU2010278594B2 (en) 2016-01-28
AU2010278594A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
US11220673B2 (en) ORF7 deficient varicella virus, vaccine comprising the virus and use thereof
CN110628730B (zh) 表达猪繁殖与呼吸综合征病毒gp蛋白的重组猪伪狂犬病病毒及应用
CN111019910B (zh) F基因型腮腺炎病毒减毒株及构建方法和应用
WO2022218325A1 (zh) 一种基因缺失的减毒非洲猪瘟病毒毒株及其构建方法和应用
PT2753364T (pt) Citomegalovirus de replicação condicional como uma vacina para cmv
CN113528466A (zh) 包含外源抗原的人巨细胞病毒
CN110951699B (zh) 表达犬瘟热病毒结构蛋白的重组狂犬病病毒及其应用
CN111748563A (zh) 非洲猪瘟基因缺失弱毒株的构建及其作为疫苗的应用
Su et al. A recombinant field strain of Marek's disease (MD) virus with reticuloendotheliosis virus long terminal repeat insert lacking the meq gene as a vaccine against MD
CN106939320B (zh) 一种伪狂犬病毒js-2012株感染性克隆质粒、构建方法与应用
FR2968672A1 (fr) Construction des souches vaccinales sc9-1 et sc9-2 de virus recombinant de la maladie de marek et leur utilisation
CN114292823A (zh) 携带基因VII型新城疫病毒F和HN基因的重组LaSota疫苗株及其构建方法和应用
CN107158369B (zh) 一种使用构建的基因vii型新城疫病毒弱毒株制备的疫苗
CN112538464A (zh) 血清4型禽腺病毒反向遗传疫苗株rHN20及其构建方法和应用
CN114657154B (zh) 一种羊传染性脓疱病毒减毒株的制备方法及其应用
CN107058244B (zh) 一种p蛋白突变构建的基因vii型新城疫病毒弱毒株
WO2022103870A1 (en) SARS-CoV-2 VACCINES USING A LIVE ATTENUATED VIRUS
CN112546215A (zh) 血清4型禽腺病毒灭活疫苗及其制备方法和应用
CN113151193B (zh) 血清4型禽腺病毒反向遗传疫苗株rR188I及其构建方法和应用
US20240226283A9 (en) Vaccination of hematopoietic stem cell donors with cytomegalovirus triplex composition
RU2777400C2 (ru) Рекомбинантные непатогенные конструкции вируса болезни марека, кодирующие антигены вируса инфекционного ларинготрахеита и вируса инфекционного бурсита
CN107177560B (zh) 一种构建的基因vii型新城疫病毒弱毒株
CN107418973B (zh) 一种基因vii型新城疫病毒弱毒株的构建方法
CN118325854A (zh) 表达varIBDV VP2基因的重组Meq基因缺失马立克氏病病毒株及其构建方法与应用
CN115896040A (zh) 鸡传染性贫血病毒双拷贝感染性克隆及其应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033216.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10803804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2768887

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012521930

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1249/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010278594

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010803804

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010278594

Country of ref document: AU

Date of ref document: 20100727

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13387359

Country of ref document: US