WO2011011914A1 - 无色光交换设备及方法 - Google Patents

无色光交换设备及方法 Download PDF

Info

Publication number
WO2011011914A1
WO2011011914A1 PCT/CN2009/072962 CN2009072962W WO2011011914A1 WO 2011011914 A1 WO2011011914 A1 WO 2011011914A1 CN 2009072962 W CN2009072962 W CN 2009072962W WO 2011011914 A1 WO2011011914 A1 WO 2011011914A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
output
array
optical cross
optical
Prior art date
Application number
PCT/CN2009/072962
Other languages
English (en)
French (fr)
Inventor
张光勇
申书强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES09847700.3T priority Critical patent/ES2667802T3/es
Priority to CN200980114486.9A priority patent/CN102439993B/zh
Priority to PCT/CN2009/072962 priority patent/WO2011011914A1/zh
Priority to EP09847700.3A priority patent/EP2434774B1/en
Publication of WO2011011914A1 publication Critical patent/WO2011011914A1/zh
Priority to US13/306,375 priority patent/US8494316B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/02122Colourless, directionless or contentionless [CDC] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0015Construction using splitting combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)
    • H04Q2011/003Construction using free space propagation (e.g. lenses, mirrors) using switches based on microelectro-mechanical systems [MEMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches

Definitions

  • the present invention relates to optical communication technologies, and in particular, to a colorless (co lor les s ) optical switching device and method. Background technique
  • the optical network is the mesh (MESH) network.
  • the node dimension in the optical network is more than 4 dimensions.
  • the dimension of the node in the optical network will evolve from 2 to 3 dimensions to 4 to 5 dimensions, and even more. High dimensionality. This requires better optical switching technology to support.
  • the optical switching granularity is mainly based on wavelength switching, and the optical switching device is required to have a 100% upload/download capability, that is, the ratio of the number of wavelengths required to be uploaded or downloaded to the number of wavelengths input by the optical switching device reaches 100. %.
  • colorlessness is also an important requirement for optical switching equipment. Colorlessness means that an optical switching device can exchange light of various wavelengths, instead of only exchanging light of certain wavelengths.
  • FIG. 5 is a schematic structural diagram of an optical switching device in the prior art.
  • the working principle of the device is as follows: part of the light is outputted to the local device through the optical splitter 31, and other light that needs to pass through passes through the wavelength blocker (Wave leng th Blocker (abbreviated as WB) 32 implements wavelength selection; the split for downloading to local light is input to the tunable filter array 34 through the beam splitter 33, and the output port of the tunable filter array 34 can selectively implement light of any wavelength. Download.
  • the beam splitter 33 can be a 1 XN beam splitter that splits a beam of light into N beams of light.
  • the light to be uploaded is combined into a beam of light by a beam splitter 35, and the synthesized light is input to the beam splitter 36, and is concentrated by the light output after passing through the WB32, and the light which has passed through the beam splitter 36 is synthesized by the combiner 37.
  • the optical switching device provided in Figure 5 has a colorless characteristic, and the waves that need to be uploaded pass through the combiner to achieve colorless uploading of light of various wavelengths.
  • the problem with the optical switching device of Figure 5 is that the tunable filter has a large insertion loss and is costly. Summary of the invention
  • the embodiments of the present invention provide a colorless optical switching device and method for the problems existing in the prior art, which can realize colorless optical switching, reduce cost, and have small insertion loss.
  • the embodiment of the invention provides a colorless optical switching device, including:
  • the first optical intersection unit is configured to receive the plurality of single wavelengths demultiplexed by the demultiplexer Light, and outputting the plurality of single-wavelength light from the target port;
  • An optical switch array configured to receive a plurality of single-wavelength lights output by the first optical cross unit, and download the light that needs to be downloaded among the plurality of single-wavelength lights output by the first optical cross unit to a local node, Receiving the light uploaded by the local node, and outputting the light that needs to be punched through the plurality of single-wavelength lights output by the first optical cross unit and the light uploaded by the local node;
  • a combiner for synthesizing the light outputted from the optical switch array.
  • the embodiment of the invention further provides a colorless optical switching method, including:
  • the light output from the optical switch array is combined using a combiner.
  • the optical switching device provided by the embodiment of the present invention can output light of any wavelength from any port of the first optical cross unit through the first optical cross unit and the optical switch array, and has colorless characteristics, low insertion loss, and low cost.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of an optical switching device according to the present invention.
  • FIG. 2 is a schematic diagram showing a transmission path of light of each wavelength in FIG. 1;
  • Embodiment 2 is a schematic structural view of Embodiment 2 of an optical switching device according to the present invention.
  • FIG. 5 is a schematic structural diagram of an optical switching device in the prior art. detailed description
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of an optical switching device according to the present invention.
  • the optical switching device includes a demultiplexer 11, a first optical cross unit 12, an optical switch array 13, and a combiner 14, and a first optical cross unit 12. Connected to the demultiplexer 11 and the optical switch array 13, respectively, the optical switch array 13 and the combiner 14 are connected.
  • the demultiplexer 11 is configured to demultiplex the input plurality of wavelengths of light into a plurality of single-wavelength lights;
  • the first optical cross unit 12 is configured to receive the plurality of singles demultiplexed by the demultiplexer 11.
  • the optical switch array 13 is configured to receive a plurality of single-wavelength lights output by the first optical cross unit 12, and output the plurality of first optical cross-units 12
  • the light that needs to be downloaded in the single-wavelength light is downloaded to the local node, receives the light uploaded by the local node, and outputs the light that needs to be punched through the light of the plurality of single-wavelength lights output by the first optical cross unit 12 and the light output by the local node.
  • the combiner 14 is for combining the light outputted from the optical switch array 13.
  • light of a plurality of wavelengths is usually combined by a multiplexer to be transmitted through the same optical fiber, and then the multi-wavelength light is demultiplexed into a plurality of single-wavelength lights by a demultiplexer.
  • the optical cross unit is a non-blocking switch that can exchange light at any input port and any output port, and has bit, protocol and wavelength transparency.
  • the optical cross unit can be a 3D MEMS (Micro - Electro - Mechanica l Sys tems, referred to as brain S) optical switch.
  • the optical switch array is composed of multiple optical switches, and the optical switch can be a 2x2 optical switch, 4x4
  • the optical switch, etc., which type of optical switch can be used can be determined according to the actual situation in the optical communication network.
  • the optical switching device shown in FIG. 1 may further include a first control unit 15 connected to the first optical cross unit 12 and the optical switch array 13 respectively, and the first control unit 15 is configured to cross the first light.
  • the unit 12 sends the first control information, and sends the second control information to the optical switch array 13.
  • the first control information is the target port information that the plurality of single-wavelength lights need to be output in the first optical cross unit 12, and the second
  • the control information includes information of the light that needs to be downloaded among the plurality of single-wavelength lights, port information of the optical switch array 13 that downloads the light that needs to be downloaded among the plurality of single-wavelength lights to the local node, and the optical switch array.
  • the port information of the light uploaded by the local node, the port information of the light output of the plurality of unicast long lights, and the port information of the light output by the local node are received.
  • the first control unit 15 will send the first control information and the second control information to the first optical cross unit 12 and the optical switch array 13 respectively, so that the plurality of wavelengths in the first optical cross unit 12 and the optical switch array 13 can be controlled. Transmission of light.
  • the working principle of the optical switching device shown in FIG. 1 is:
  • the demultiplexer demultiplexes light of multiple wavelengths into multiple single-wavelength lights, and the first optical cross-unit receives multiple single wavelengths output by the demultiplexer.
  • Light, and under the control of the first control unit, output multiple single-wavelength light from the target port, and the target port is required by the first control unit to output multiple single-wavelength light in the first optical cross-unit
  • the optical switch array receives a plurality of single-wavelength lights output by the first optical cross unit under the control of the first control unit, and the plurality of single-wavelength lights output by the first optical cross unit are required to be downloaded.
  • the combiner outputs the optical switch array output Light synthesis of wavelengths.
  • FIG. 2 is a schematic diagram of a transmission path of light of each wavelength in FIG. 1.
  • light having a wavelength of ⁇ demultiplexed by a demultiplexer, is emitted from a target port in the first optical cross unit.
  • the light of wavelength ⁇ is the light uploaded by the local node, and the light of the wavelength is the light that needs to be punched through, the wave
  • the long light is the light that needs to be downloaded to the local node, and the light of the sum of the wavelengths is output from the optical switch array and then synthesized by the combiner.
  • the number of optical switches in the optical switch array shown in FIG. 2 can be increased, for example, 8 2 2 2 is required when uploading and downloading of 8 wavelengths of light is required.
  • the optical switch if you need to upload and download 16-wavelength light, you only need to add another 8 2 X 2 optical switches.
  • the optical switch array provided in the embodiments of the present invention has reconfigurability and is easy to expand.
  • the optical switching device provided by the first embodiment of the present invention can output light of any wavelength from any port of the first optical cross unit through the first optical cross unit and the optical switch array, and can upload light of any wavelength through any port of the optical switch array. It is capable of downloading light of any wavelength from any port of the optical switch array, has colorless characteristics, and has low insertion loss and low cost compared with the tunable filter of the prior art.
  • the port in the optical switch array is used as a port for uploading light and downloading off, without increasing the uploading and downloading of the light by adding the port of the first optical cross unit, reducing the first The number of ports in the optical cross unit reduces the cost. Also, it is reconfigurable and easy to expand.
  • FIG. 3 is a schematic structural diagram of Embodiment 2 of the optical switching device of the present invention.
  • the optical switch array 13 includes a first sub-array.
  • the first sub-array 1 31 is configured to receive a plurality of single-wavelength lights output by the first optical cross-unit 12, and the first optical cross-unit
  • the light to be downloaded from the plurality of single-wavelength lights outputted by the 12 is downloaded to the local node, and the light that needs to be punched through the plurality of single-wavelength lights output by the first optical cross unit 12 is input to the second sub-array 1 32;
  • the two sub-arrays 1 32 are configured to receive the light that needs to be punched through the plurality of single-wavelength lights output by the first sub-array 1 31, receive the light uploaded by the local node, and transmit the light that needs to be punched through the plurality of single-wavelength lights and the local
  • the optical output of the node is used to receive the light that needs to
  • the optical switching device shown in FIG. 3 may further include a second control unit 16 connected to the first optical cross unit 12, the first sub-array 131, the second sub-array 132, and the second optical cross unit 133, respectively. And sending the third control information to the first optical cross unit 12, transmitting the fourth control information to the first sub-array 131, transmitting the fifth control information to the second sub-array 132, and sending the sixth control information to the second optical cross.
  • the third control information is target port information that needs to be outputted by the plurality of single-wavelength lights in the first optical cross unit 12, and the fourth control information includes information of light that needs to be downloaded among the plurality of single-wavelength lights, In the first sub-array 131, the port information of the plurality of single-wavelength lights that are to be downloaded to the local node and the port information of the plurality of single-wavelength lights in the first sub-array 131 that need to be punched through,
  • the fifth control information is port information including light output that needs to be punched through among the plurality of single-wavelength lights in the second sub-array 132, port information of the second sub-array 132 receiving light uploaded by the local node, and the second sub-array 132, the port information of the light output uploaded by the local node, the sixth control information includes port information of the light output to be punched through the plurality of single-wavelength lights in the second optical cross unit 133, and the second optical cross unit 133 Port information for the light output uploaded by the
  • the first sub-array 131 may be an array of a plurality of 1 x 2 optical switches, the second sub-array
  • 132 can be an array of a plurality of 2 X 1 optical switches.
  • the working principle of the optical switching device shown in FIG. 3 is: the input light is demultiplexed by a demultiplexer and is called multiple single-wavelength lights, for example, wavelengths of ⁇ , ⁇ , ⁇ , ..., respectively.
  • the first sub-array downloads the light that needs to be downloaded (for example, the light of the wavelength) to the local node, and inputs the remaining light that needs to be punched into the second sub-array;
  • the array receives the light uploaded by the local node (for example, the light of the wavelength), and the second sub-array outputs the light uploaded by the local node and the light that needs to be punched through (for example, the light of the wavelength ⁇ ) to the second optical cross unit; the light of each wavelength
  • the second optical cross unit can be selected again, for example, can be selected to be output from a different target port; the combiner combines the light output by the second optical cross unit.
  • the combiner may be a coupler or a multiplexer. Coupler
  • the port is not required for wavelength, that is, each port of the coupler can input light of any wavelength within the acceptable wavelength range of the coupler, and the port of the multiplexer has specific requirements for wavelength, that is, the multiplexer Each port can only input light of a specific wavelength.
  • the combiner may be a coupler, and light output from the 2 X 2 optical switch may be directly input to the combiner.
  • the combiner shown in FIG. 3 may be a multiplexer, the second optical cross unit is disposed between the second sub-array and the combiner, and the light output from the second sub-array may be selected by the second optical cross unit.
  • the wavelength of the output light of the second optical cross unit can be made to correspond to the port of the combiner, thereby achieving optical switching.
  • the optical switching device shown in FIG. 3 adopts a second optical cross unit and a multiplexer combination to output the light outputted in the second sub-array, and directly adopts a coupler in the optical switching device shown in FIG. 2 to 2 2 2 2
  • the insertion loss is small compared to the light output scheme of the optical switch.
  • the optical switching device shown in Fig. 3 can also meet the needs by expanding the first sub-array and the second sub-array when the number of wavelengths to be uploaded and downloaded is increased.
  • the local node in the embodiments of the present invention refers to a node in the optical network where the optical switching device is disposed, and the node provided with the optical switching device can implement uploading and downloading of lights of various wavelengths.
  • FIG. 4 is a flowchart of Embodiment 1 of a colorless optical switching method according to the present invention, including:
  • Step 101 Demultiplexing the input multiple wavelengths of light into a plurality of single wavelength lights by using a demultiplexer
  • Step 102 Receive, by using a first optical cross unit, the plurality of single wavelength lights, and output a plurality of single wavelength lights from a target port in the first optical cross unit;
  • Step 103 Receive, by using an optical switch array, a plurality of single-wavelength lights output by the first optical cross unit, and download the light that needs to be downloaded among the plurality of single-wavelength lights output by the first optical cross unit to the local node, and receive the local node.
  • Step 104 Synthesize light outputted by the optical switch array by using a combiner.
  • the step 103 may specifically include:
  • Step 1031 The first sub-array in the optical switch array receives the plurality of outputs of the first optical cross unit The single-wavelength light downloads the light to be downloaded from the plurality of single-wavelength lights output by the first optical cross unit to the local node, and inputs the light that needs to be punched through the plurality of single-wavelength lights output by the first optical cross unit a second sub-array into the optical switch array;
  • Step 1 032 The second sub-array receives the light that needs to be punched through the plurality of unicast long lights output by the first sub-array, receives the light uploaded by the local node, and transmits the light that needs to be punched through the plurality of single-wavelength lights and the local The light output uploaded by the node;
  • Step 1 033 The second optical cross unit in the optical switch array receives the light that needs to be punched through the plurality of single-wavelength lights output by the second sub-array and the light uploaded by the local node, and needs to punch through the plurality of single-wavelength lights.
  • the light and the light uploaded by the local node are output from the target port in the second optical cross unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Description

无色光交换设备及方法 技术领域
本发明涉及光通信技术, 尤其涉及一种无色( co lor les s )光交换设备及 方法。 背景技术
光网络的发展趋势是网状(MESH ) 网络, 目前光网络中的节点维数多在 4维以下, 未来光网络中节点的维数将从 2 ~ 3维演进到 4 ~ 5维, 甚至更高 的维数。 这就需要更好的光交换技术来支持。
目前, 光交换的粒度以波长交换为主, 要求光交换设备具有 100%的上载 /下载(Add/Drop )能力, 即要求上载或下载的波长数与光交换设备输入的波 长数之比达到 100%。 并且, 无色性也是对于光交换设备的一个重要的要求。 无色性是指光交换设备能够实现各种波长的光的交换, 而不是只能实现某些 特定波长的光的交换。
如图 5所示为现有技术中一种光交换设备结构示意图, 该设备的工作原 理为: 通过分光器 31分出部分光下载到本地, 其他需要穿通的光通过波长阻 塞器(Wave leng th Blocker , 简称 WB ) 32实现波长选择; 分出的用于下载到 本地光通过分光器 33输入到可调谐滤波器阵列 34 , 可调谐滤波器阵列 34的 输出端口可以选择性地实现任意波长的光的下载。 分光器 33可以是一个 1 X N分光器, 即将一束光分解成 N束光。 需要上载的光通过一个分光器 35合成 一束光, 合成的光输入到分光器 36 , 与穿通 WB32后输出的光汇聚, 经过分 光器 36之后的光经过合波器 37合成。 图 5中提供的光交换设备具有无色特 性, 需要上载的波通过合波器实现各种波长的光的无色上载。 图 5的光交换 设备存在的问题是: 可调谐滤波器的插入损耗较大, 并且成本高。 发明内容
本发明实施例针对现有技术中存在的问题, 提供一种无色光交换设备及 方法, 能够实现无色光交换, 减小成本, 并且插入损耗小。
本发明实施例提供了一种无色光交换设备, 包括:
解复用器, 用于将输入的多个波长的光解复用成多个单波长的光; 第一光交叉单元, 用于接收所述解复用器解复用成的多个单波长的光, 并将所述多个单波长的光从目标端口输出;
光开关阵列, 用于接收所述第一光交叉单元输出的多个单波长的光, 将 所述第一光交叉单元输出的多个单波长的光中需要被下载的光下载到本地节 点, 接收所述本地节点上载的光, 并将所述第一光交叉单元输出的多个单波 长的光中需要穿通的光和所述本地节点上载的光输出;
合波器, 用于将所述光开关阵列中输出的光合成。
本发明实施例还提供了一种无色光交换方法, 包括:
采用解复用器将输入的多个波长的光解复用成多个单波长的光; 采用第一光交叉单元接收所述多个单波长的光, 并将所述多个单波长的 光从所述第一光交叉单元中的目标端口输出;
采用光开关阵列接收所述第一光交叉单元输出的多个单波长的光, 将所 述第一光交叉单元输出的多个单波长的光中需要被下载的光下载到本地节 点, 接收本地节点上载的光, 并将所述第一光交叉单元输出的多个单波长的 光中需要穿通的光和所述本地节点上载的光输出;
采用合波器将所述光开关阵列输出的光合成。
本发明实施例提供的光交换设备, 通过第一光交叉单元和光开关阵列, 能够将任意波长的光从第一光交叉单元的任意端口输出, 具备无色特性, 插 入损耗小, 成本氐。
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 附图说明
图 1所示为本发明光交换设备实施例一结构示意图;
图 2所示为图 1中各个波长的光的传输路径示意图;
图 3所示为本发明光交换设备实施例二结构示意图;
图 4所示为本发明无色光交换方法实施例一流程图;
图 5所示为现有技术中一种光交换设备结构示意图。 具体实施方式
如图 1所示为本发明光交换设备实施例一结构示意图, 该光交换设备包 括解复用器 11、 第一光交叉单元 12、 光开关阵列 13和合波器 14 , 第一光交 叉单元 12分别与解复用器 11和光开关阵列 13连接, 光开关阵列 13和合波 器 14连接。 其中, 解复用器 11用于将输入的多个波长的光解复用成多个单 波长的光; 第一光交叉单元 12用于接收解复用器 11解复用成的多个单波长 的光, 并将多个单波长的光从目标端口输出; 光开关阵列 13用于接收第一光 交叉单元 12输出的多个单波长的光, 将第一光交叉单元 12输出的多个单波 长的光中需要被下载的光下载到本地节点, 接收本地节点上载的光, 并将第 一光交叉单元 12 输出的多个单波长的光中需要穿通的光和本地节点上载的 光输出; 合波器 14用于将光开关阵列 13中输出的光合成。
在光通信领域中, 通常将多个波长的光通过复用器组合成在一起通过同 一根光纤传输, 然后由解复用器将多波长的光解复用成多个单波长的光。
光交叉单元是一种无阻塞开关, 可以实现光在任意输入端口和任意输出 端口的交换, 具有比特、 协议及波长透明性, 本发明实施例中光交叉单元可 以是 3D微机电系统(Micro - Electro - Mechanica l Sys tems , 简称腦 S ) 光 开关。
光开关阵列是由多个光开关组成的, 光开关可以是 2x2 的光开关、 4x4 的光开关等, 具体采用何种类型的光开关可以根据光通信网络中的实际情况 决定。
图 1所示的光交换设备还可以包括一个第一控制单元 15 , 第一控制单元 15分别与第一光交叉单元 12和光开关阵列 1 3连接, 第一控制单元 15用于 向第一光交叉单元 12发送第一控制信息, 并向光开关阵列 1 3发送第二控制 信息,第一控制信息为多个单波长的光在第一光交叉单元 12中需要被输出的 目标端口信息, 第二控制信息包括所述多个单波长的光中需要被下载的光的 信息、光开关阵列 1 3中将多个单波长的光中需要被下载的光下载到本地节点 的端口信息、 光开关阵列 1 3接收本地节点上载的光的端口信息、 光开关阵列 1 3将多个单播长的光中需要穿通的光输出的端口信息以及将本地节点上载的 光输出的端口信息。
第一控制单元 15 将分别将第一控制信息和第二控制信息发送给第一光 交叉单元 12和光开关阵列 1 3 , 就能够控制第一光交叉单元 12和光开关阵列 1 3中多个波长的光的传输。
图 1所示的光交换设备的工作原理为: 解复用器将多个波长的光解复用 成多个单波长的光, 第一光交叉单元接收解复用器输出的多个单波长的光, 并在第一控制单元的控制下, 将多个单波长的光从目标端口输出, 目标端口 为第一控制单元确定的在第一光交叉单元中需要将多个单波长的光输出的端 口; 光开关阵列在第一控制单元的控制下, 接收第一光交叉单元输出的多个 单波长的光, 将第一光交叉单元输出的多个单波长的光中需要被下载的光下 载到本地节点, 接收本地节点上载的光, 并将第一光交叉单元输出的多个单 波长的光中需要穿通的光和本地节点上载的光输出; 合波器将光开关阵列输 出的各个波长的光合成。
如图 2所示为图 1中各个波长的光的传输路径示意图, 图 2中, 经过解 复用器解复用后的波长分别为 ^、 的光从第一光交叉单元中的目标端口射 出, 波长为 ^的光是本地节点上载的光, 波长为 的光是需要穿通的光, 波 长为 的光是需要被下载到本地节点的光, 波长为 和 的光从光开关阵列 中输出后被合波器合成。
当需要上载或下载的光的波长的数目增多时, 可以增加图 2所示的光开 关阵列中光开关的数目, 例如, 当需要实现 8波长的光的上载和下载时需要 8个 2 X 2的光开关, 如果需要实现 16波长的光的上载和下载时, 只需增加 另外 8个 2 X 2光开关即可。本发明实施例中提供的光开关阵列具备可重构性, 易于扩展。
本发明实施例一提供的光交换设备, 通过第一光交叉单元和光开关阵列 能够将任意波长的光从第一光交叉单元的任意端口输出, 能够通过光开关阵 列的任意端口上载任意波长的光, 能够从光开关阵列的任意端口下载任意波 长的光, 具备无色特性, 并且与现有技术中的可调谐滤波器相比, 插入损耗 小, 成本低。 本发明实施例一中, 将光开关阵列中的端口作为用于上载光和 下载关的端口, 而不需要通过增加第一光交叉单元的端口来实现光的上载和 下载, 减小了第一光交叉单元的端口数量, 降低了成本。 并且, 具备可重构 型, 易于扩展。
如图 3所示为本发明光交换设备实施例二结构示意图, 该实施例二与图 1所示的实施例的区别之处在于: 实施例二中, 光开关阵列 1 3包括第一子阵 列 1 31、 第二子阵列 1 32和第二光交叉单元 1 33 , 其中, 第一子阵列 1 31用于 接收第一光交叉单元 12输出的多个单波长的光, 将第一光交叉单元 12输出 的多个单波长的光中需要被下载的光下载到本地节点, 将第一光交叉单元 12 输出的多个单波长的光中需要穿通的光输入到第二子阵列 1 32 ; 第二子阵列 1 32用于接收第一子阵列 1 31输出的多个单波长的光中需要穿通的光, 接收 本地节点上载的光, 并将多个单波长的光中需要穿通的光和本地节点上载的 光输出; 第二光交叉单元 1 33用于接收第二子阵列 1 32输出的多个单波长的 光中需要穿通的光和本地节点上载的光, 并将多个单波长的光中需要穿通的 光和本地节点上载的光从目标端口输出。 图 3所示的光交换设备还可以包括第二控制单元 16, 第二控制单元 16 分别与第一光交叉单元 12、 第一子阵列 131、 第二子阵列 132和第二光交叉 单元 133连接, 用于发送第三控制信息给第一光交叉单元 12, 发送第四控制 信息给第一子阵列 131, 发送第五控制信息给第二子阵列 132, 发送第六控制 信息给第二光交叉单元 133, 第三控制信息为多个单波长的光在第一光交叉 单元 12中需要被输出的目标端口信息,第四控制信息包括多个单波长的光中 需要被下载的光的信息、 第一子阵列 131 中将多个单波长的光中需要被下载 的光下载到本地节点的端口信息以及第一子阵列 131 中多个单波长的光中需 要穿通的光输出的端口信息, 第五控制信息为包括第二子阵列 132 中多个单 波长的光中需要穿通的光输出的端口信息、 第二子阵列 132 中接收本地节点 上载的光的端口信息以及第二子阵列 132 中将本地节点上载的光输出的端口 信息, 第六控制信息包括第二光交叉单元 133 中将多个单波长的光中要穿通 的光输出的端口信息以及第二光交叉单元 133 中将本地节点上载的光输出的 端口信息。
第一子阵列 131 可以是由多个 1 x 2 的光开关组成的阵列, 第二子阵列
132可以是由多个 2 X 1的光开关组成的阵列。
如图 3所示的光交换设备的工作原理为: 输入的光经过解复用器解复用 后称为多个单波长的光, 例如分别是波长为 ^、 ^、 ^、 ……、 的光, 在 第二控制单元的控制下, 第一子阵列将需要下载的光(例如波长为 的光) 下载到本地节点, 将其余需要穿通的光的输入到第二子阵列中; 第二子阵列 接收本地节点上载的光(例如波长为 的光) , 第二子阵列将本地节点上载 的光与需要穿通的光(例如波长为 ^的光)输出到第二光交叉单元; 各个波 长的光在第二光交叉单元可以再次被选择, 例如, 可以被选择从不同的目标 端口输出; 合波器将第二光交叉单元输出的光合成。
本发明实施例中, 合波器可以是耦合器( Coupler )或复用器。 耦合器的 端口对于波长没有要求, 也就是说耦合器的各个端口可以输入耦合器可接受 的波长范围内的任意波长的光, 而复用器的端口对于波长有特定的要求, 也 就是说复用器的各个端口只能输入特定波长的光。图 2所示的光交换设备中, 合波器可以是耦合器, 从 2 X 2光开关中输出的光可以直接输入到合波器中。 图 3所示的合波器可以是复用器, 第二光交叉单元设置在第二子阵列和合波 器之间, 从第二子阵列输出的光可以通过第二光交叉单元选择输出端口, 使 得第二光交叉单元输出光的波长能够与合波器的端口对应,从而实现光交换。
图 3所示的光交换设备, 采用第二光交叉单元和复用器组合来将第二子 阵列中输出的光输出,与图 2所示的光交换设备中直接采用耦合器将 2 X 2光 开关中输出的光输出的方案相比, 插入损耗小。
图 3所示的光交换设备, 当需要上载和下载的波长数增多时, 也可以通 过扩展第一子阵列和第二子阵列来满足需要。
本发明各实施例中的本地节点是指光网络中的设置有光交换设备的节 点, 设置有光交换设备的节点可以实现各种波长的光的上载和下载。
如图 4所示为本发明无色光交换方法实施例一流程图, 包括:
步骤 101、 采用解复用器将输入的多个波长的光解复用成多个单波长的 光;
步骤 102、 采用第一光交叉单元接收所述多个单波长的光, 并将多个单 波长的光从第一光交叉单元中的目标端口输出;
步骤 103、 采用光开关阵列接收第一光交叉单元输出的多个单波长的光, 将第一光交叉单元输出的多个单波长的光中需要被下载的光下载到本地节 点, 接收本地节点上载的光, 并将第一光交叉单元输出的多个单波长的光中 需要穿通的光和本地节点上载的光输出;
步骤 104、 采用合波器将光开关阵列输出的光合成。
其中, 步骤 103具体可以包括:
步骤 1031、 光开关阵列中的第一子阵列接收第一光交叉单元输出的多个 单波长的光, 将第一光交叉单元输出的多个单波长的光中需要被下载的光下 载到本地节点, 将第一光交叉单元输出的多个单波长的光中需要穿通的光输 入到光开关阵列中的第二子阵列;
步骤 1 032、 第二子阵列接收第一子阵列输出的多个单播长的光中需要穿 通的光, 接收本地节点上载的光, 并将多个单波长的光中需要穿通的光和本 地节点上载的光输出;
步骤 1 033、 光开关阵列中的第二光交叉单元接收第二子阵列输出的多个 单波长的光中需要穿通的光和本地节点上载的光, 并将多个单波长的光中需 要穿通的光和本地节点上载的光从第二光交叉单元中的目标端口输出。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非对其进 行限制, 尽管参照较佳实施例对本发明进行了详细的说明, 本领域的普通技 术人员应当理解: 其依然可以对本发明的技术方案进行修改或者等同替换, 而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的 4青神和范围。

Claims

权 利 要 求 书
1、 一种无色光交换设备, 其特征在于, 包括:
解复用器, 用于将输入的多个波长的光解复用成多个单波长的光; 第一光交叉单元, 用于接收所述解复用器解复用成的多个单波长的光, 并将所述多个单波长的光从目标端口输出;
光开关阵列, 用于接收所述第一光交叉单元输出的多个单波长的光, 将 所述第一光交叉单元输出的多个单波长的光中需要被下载的光下载到本地节 点, 接收所述本地节点上载的光, 并将所述第一光交叉单元输出的多个单波 长的光中需要穿通的光和所述本地节点上载的光输出;
合波器, 用于将所述光开关阵列中输出的光合成。
2、 根据权利要求 1所述的设备, 其特征在于, 还包括第一控制单元, 分 别与所述第一光交叉单元和光开关阵列连接, 用于向所述第一光交叉单元发 送第一控制信息, 并向所述第二光交叉单元发送第二控制信息, 所述第一控 制信息为所述多个单波长的光在所述第一光交叉单元中需要被输出的目标端 口信息, 第二控制信息包括所述多个单波长的光中需要被下载的光的信息、 所述光开关阵列中将多个单波长的光中需要被下载的光下载到本地节点的端 口信息、 所述光开关阵列接收本地节点上载的光的端口信息、 所述光开关阵 列将所述多个单播长的光中需要穿通的光输出的端口信息以及将本地节点上 载的光输出的端口信息。
3、 根据权利要求 2所述的设备, 其特征在于, 所述合波器为耦合器。
4、 根据权利要求 1所述的设备, 其特征在于, 所述光开关阵列包括第一 子阵列、 第二子阵列和第二光交叉单元;
所述第一子阵列用于接收所述第一光交叉单元输出的多个单波长的光, 将所述第一光交叉单元输出的多个单波长的光中需要被下载的光下载到所述 本地节点, 将所述第一光交叉单元输出的多个单波长的光中需要穿通的光输 入到所述第二子阵列; 所述第二子阵列用于接收所述第一子阵列输出的所述多个单波长的光中 需要穿通的光, 接收所述本地节点上载的光, 并将所述多个单波长的光中需 要穿通的光和所述本地节点上载的光输出;
所述第二光交叉单元用于接收所述第二子阵列输出的所述多个单波长的 光中需要穿通的光和所述本地节点上载的光, 并将所述多个单波长的光中需 要穿通的光和所述本地节点上载的光从目标端口输出。
5、 根据权利要求 4所述的设备, 其特征在于, 还包括第二控制单元, 分 别与所述第一光交叉单元、 第一子阵列、 第二子阵列和第二光交叉单元连接, 用于发送第三控制信息给所述第一光交叉单元, 发送第四控制信息给所述第 一子阵列, 发送第五控制信息给所述第二子阵列, 发送第六控制信息给所述 第二光交叉单元, 所述第三控制信息为所述多个单波长的光在所述第一光交 叉单元中需要被输出的目标端口信息, 所述第四控制信息包括多个单波长的 光中需要被下载的光的信息、 所述第一子阵列中将所述多个单波长的光中需 要被下载的光下载到本地节点的端口信息以及所述第一子阵列中多个单波长 的光中需要穿通的光输出的端口信息, 所述第五控制信息包括所述第二子阵 列中多个单波长的光中需要穿通的光输出的端口信息、 所述第二子阵列中接 收本地节点上载的光的端口信息以及所述第二子阵列中将本地节点上载的光 输出的端口信息, 所述第六控制信息包括所述第二光交叉单元中将多个单波 长的光中要穿通的光输出的端口信息以及所述第二光交叉单元中将本地节点 上载的光输出的端口信息。
6、 根据权利要求 5所述的设备, 其特征在于, 所述合波器为复用器。
7、 根据权利要求 6所述的设备, 其特征在于, 所述第一光交叉单元和第 二光交叉单元为 3D MEMS光开关。
8、 一种无色光交换方法, 其特征在于, 包括:
采用解复用器将输入的多个波长的光解复用成多个单波长的光; 采用第一光交叉单元接收所述多个单波长的光, 并将所述多个单波长的 光从所述第一光交叉单元中的目标端口输出;
采用光开关阵列接收所述第一光交叉单元输出的多个单波长的光, 将所 述第一光交叉单元输出的多个单波长的光中需要被下载的光下载到本地节 点, 接收本地节点上载的光, 并将所述第一光交叉单元输出的多个单波长的 光中需要穿通的光和所述本地节点上载的光输出;
采用合波器将所述光开关阵列输出的光合成。
9、 根据权利要求 8所述的方法, 其特征在于, 所述采用光开关阵列接收 所述第一光交叉单元输出的多个单波长的光, 将所述第一光交叉单元输出的 多个单波长的光中需要被下载的光下载到本地节点,接收本地节点上载的光, 并将所述第一光交叉单元输出的多个单波长的光中需要穿通的光和所述本地 节点上载的光输出具体包括:
所述光开关阵列中的第一子阵列接收所述第一光交叉单元输出的多个单 波长的光, 将所述第一光交叉单元输出的多个单波长的光中需要被下载的光 下载到所述本地节点, 将所述第一光交叉单元输出的多个单波长的光中需要 穿通的光输入到所述光开关阵列中的第二子阵列;
所述第二子阵列接收所述第一子阵列输出的所述多个单播长的光中需要 穿通的光, 接收所述本地节点上载的光, 并将所述多个单波长的光中需要穿 通的光和所述本地节点上载的光输出;
所述光开关阵列中的第二光交叉单元接收所述第二子阵列输出的所述多 个单波长的光中需要穿通的光和所述本地节点上载的光, 并将所述多个单波 长的光中需要穿通的光和所述本地节点上载的光从所述第二光交叉单元中的 目标端口输出。
PCT/CN2009/072962 2009-07-28 2009-07-28 无色光交换设备及方法 WO2011011914A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES09847700.3T ES2667802T3 (es) 2009-07-28 2009-07-28 Aparato y procedimiento para conmutador óptico incoloro
CN200980114486.9A CN102439993B (zh) 2009-07-28 2009-07-28 无色光交换设备及方法
PCT/CN2009/072962 WO2011011914A1 (zh) 2009-07-28 2009-07-28 无色光交换设备及方法
EP09847700.3A EP2434774B1 (en) 2009-07-28 2009-07-28 Apparatus and method for colorless optical switch
US13/306,375 US8494316B2 (en) 2009-07-28 2011-11-29 Device and method for colorless optical switching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/072962 WO2011011914A1 (zh) 2009-07-28 2009-07-28 无色光交换设备及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/306,375 Continuation US8494316B2 (en) 2009-07-28 2011-11-29 Device and method for colorless optical switching

Publications (1)

Publication Number Publication Date
WO2011011914A1 true WO2011011914A1 (zh) 2011-02-03

Family

ID=43528687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072962 WO2011011914A1 (zh) 2009-07-28 2009-07-28 无色光交换设备及方法

Country Status (5)

Country Link
US (1) US8494316B2 (zh)
EP (1) EP2434774B1 (zh)
CN (1) CN102439993B (zh)
ES (1) ES2667802T3 (zh)
WO (1) WO2011011914A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105282632A (zh) * 2015-11-16 2016-01-27 无锡路通视信网络股份有限公司 光混合器、docsis3.0以上系统上行链路及消除其光差拍干扰方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107061A1 (ja) * 2009-03-18 2010-09-23 日本電気株式会社 光伝送装置、運用波長数制限方法及びプログラム
CN101610129B (zh) * 2009-07-09 2012-10-10 中兴通讯股份有限公司 实现完全无阻的波长无关性的可重构光分插复用装置
WO2011011914A1 (zh) * 2009-07-28 2011-02-03 华为技术有限公司 无色光交换设备及方法
CN103873833B (zh) * 2012-12-10 2017-06-20 常州华龙通信科技有限公司 数字视频光交换传输平台

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054572A2 (en) * 1999-04-27 2000-11-22 Fujitsu Limited Optical cross connect apparatus and optical network
WO2004028197A2 (en) * 2002-09-20 2004-04-01 The Research Foundation Of The State University Of New York At Buffalo Efficient optical network design using multi-granular optical cross-connects with wavelength band switching
CN1901416A (zh) * 2006-07-24 2007-01-24 重庆邮电大学 一种新型多层多粒度光交叉连接结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2358386A1 (en) * 1998-12-30 2000-07-13 Emilio Casaccia Wavelength-modular optical cross-connect switch
GB0007552D0 (en) * 2000-03-28 2000-05-17 Iltron Limited A fully reconfigurable regenerative optical add-drop multiplexer
US20050281558A1 (en) 2004-06-18 2005-12-22 Nec Laboratories America, Inc. Flexible band tunable add/drop multiplexer and modular optical node architecture
FR2879864B1 (fr) * 2004-12-22 2007-03-09 Cit Alcatel Dispositif de commutation optique semi-transparent reconfigurable
US7983560B2 (en) 2005-10-11 2011-07-19 Dynamic Method Enterprises Limited Modular WSS-based communications system with colorless add/drop interfaces
US7751714B2 (en) 2006-04-20 2010-07-06 Nec Laboratories America, Inc. Centralized resource management in wavelength selective switch based wavelength cross connect systems
US8649370B2 (en) * 2007-05-17 2014-02-11 Ciena Corporation Systems and methods for programming connections through a multi-stage switch fabric with blocking recovery, background rebalancing, and rollback
WO2011011914A1 (zh) * 2009-07-28 2011-02-03 华为技术有限公司 无色光交换设备及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054572A2 (en) * 1999-04-27 2000-11-22 Fujitsu Limited Optical cross connect apparatus and optical network
WO2004028197A2 (en) * 2002-09-20 2004-04-01 The Research Foundation Of The State University Of New York At Buffalo Efficient optical network design using multi-granular optical cross-connects with wavelength band switching
CN1901416A (zh) * 2006-07-24 2007-01-24 重庆邮电大学 一种新型多层多粒度光交叉连接结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"International Conference on Photonics in Switching, Aug. 2008", article MITSUI, SHINICHI ET AL.: "Hierarchical Optical Path Cross-Connect Node Architecture Using WSS/WBSS", XP031443885 *
ZHANG, YU ET AL.: "Research on Multi-Granularity Optical Cross-Connect", ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS PEKINENSIS., vol. 43, no. 1, January 2007 (2007-01-01), pages 72 - 77, XP008150877 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105282632A (zh) * 2015-11-16 2016-01-27 无锡路通视信网络股份有限公司 光混合器、docsis3.0以上系统上行链路及消除其光差拍干扰方法

Also Published As

Publication number Publication date
CN102439993A (zh) 2012-05-02
US8494316B2 (en) 2013-07-23
EP2434774A1 (en) 2012-03-28
ES2667802T3 (es) 2018-05-14
US20120070114A1 (en) 2012-03-22
CN102439993B (zh) 2014-08-20
EP2434774A4 (en) 2012-09-26
EP2434774B1 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
JP4382635B2 (ja) 光伝送装置
JP6342894B2 (ja) 光クロスコネクト装置
US20080118245A1 (en) Optical node for mesh-type WDM optical network
WO2011011914A1 (zh) 无色光交换设备及方法
JP2008252664A (ja) 光クロスコネクト装置および光信号の方路選択方法
WO2015090073A1 (zh) 光交换架构
JP2011040997A (ja) 光波長多重伝送システム
US9515766B2 (en) Node apparatus
US8406625B2 (en) Apparatus and method for cross-connecting optical path in wavelength division multiplexing system
JP6622113B2 (ja) 光クロスコネクト装置及びモジュール
JP6510444B2 (ja) 波長クロスコネクト装置及びモジュール
JP6510443B2 (ja) 波長クロスコネクト装置
JP4852491B2 (ja) 光クロスコネクトスイッチ機能部及び光クロスコネクト装置
US9025915B2 (en) Method and module for switching optical signals having different modes of propagation
WO2017041222A1 (zh) 一种wdm系统中的oadm节点及方法
JP2013085011A (ja) 光パスクロスコネクト装置
JP5450274B2 (ja) 光経路制御方法
CN115499728A (zh) 一种全光交换系统及全光交换方法
JP5622197B2 (ja) 光パスネットワークの階層型光パスクロスコネクト装置
JP5276045B2 (ja) 波長選択スイッチ
JP6387331B2 (ja) 波長選択切換装置
US20040218926A1 (en) Optical add/drop multiplexer
KR100594736B1 (ko) 파장선택 스위치 및 파장선택 방법
CN115755280A (zh) 一种波长选择开关和光交换设备、系统
JP2005010785A (ja) 循環器と反射器を用いた光分岐/結合器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114486.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847700

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009847700

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4772/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE