WO2015090073A1 - 光交换架构 - Google Patents

光交换架构 Download PDF

Info

Publication number
WO2015090073A1
WO2015090073A1 PCT/CN2014/083895 CN2014083895W WO2015090073A1 WO 2015090073 A1 WO2015090073 A1 WO 2015090073A1 CN 2014083895 W CN2014083895 W CN 2014083895W WO 2015090073 A1 WO2015090073 A1 WO 2015090073A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical
wavelength conversion
module
optical signal
Prior art date
Application number
PCT/CN2014/083895
Other languages
English (en)
French (fr)
Inventor
蒋臣迪
耿东玉
赵星
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015090073A1 publication Critical patent/WO2015090073A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0018Construction using tunable transmitters or receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/005Arbitration and scheduling

Definitions

  • the present invention relates to the field of communications, and in particular, to an optical switching architecture. Background technique
  • the optical switching architecture is used to exchange optical signals between different dimensions. It is the core module in the optical network switching system. The performance of the optical switching system determines the service capabilities of the entire optical network switching system.
  • the latter C stands for Contentionless: Contentionless refers to the ability to simultaneously send and receive the same wavelength from different dimensional directions.
  • FIG. 1 a schematic structural diagram of an existing optical switching architecture of a three-dimensional ROADM (the full name of the ODAM in English is called an econfigurable Optical Add-Drop Multiplexer).
  • the RODAM architecture includes: a cross module 110 and three upper and lower wave modules 120 connected to the cross module 110.
  • the cross-module 110 includes three sets of input and output terminals of different dimensions, each of which is a splitter Splitterlll and each output is WSS112 (WSS English full name is Wavelength Selective Switch, Chinese full name is wavelength selective switch).
  • WSS112 Wavelength Selective Switch
  • Each dimension is provided with a separate upper and lower wave module 120, and the crossover module 110 is respectively connected to the upper and lower wave modules 120 of the respective dimensions through optical fibers.
  • the upper and lower wave modules 120 corresponding to the respective dimensions include a waveguide array grating AWG121, a transmitter TX122, and a receiver RX123.
  • WSS112 for each dimension The port is connected to the waveguide array grating AWG121 for uploading the optical signal that needs to be sent to the cross module 110 in the local dimension to the cross module 110, and the cylinder is called "upper wave”; the splitter Splitterlll of each dimension separates a port and a waveguide
  • the array grating AWGs 121 are connected for downloading optical signals sent from the cross-module 110 to the local dimension to a local dimension, which is referred to as a "lower wave.”
  • the waveguide array grating AWG121 for the upper wave is connected to the transmitter TX122, and the waveguide array grating AWG121 for the lower wave is connected to the receiver RX123.
  • the local dimension is the physical area where the optical switching fabric is located.
  • the existing ROADM architecture has at least the following problems:
  • the existing RODAM architecture uses a waveguide array grating AWG for both upper and lower waves.
  • each of the uplink ports connected to the transmitter TX in the waveguide array grating AWG can only be fixed.
  • the port port is fixed to the wavelength and cannot transmit and receive different wavelengths, so the wavelength independence is not satisfied.
  • each dimension is equipped with a separate upper and lower wave module, which allows the upper and lower waves of each upper and lower wave module to be dispatched only to the dimension connected to itself, but not to other dimensions, so the direction is not satisfied. Irrelevant '1 ⁇ born. Summary of the invention
  • the embodiment of the present invention provides an optical switching architecture.
  • the technical solution is as follows:
  • an optical switching architecture includes: a cross module and an upper and lower wave module connected to the cross module;
  • the cross module includes n groups of input ends and outputs belonging to different dimensions, n ⁇ 2;
  • the up-and-down wave module includes a first optical switch unit connected to the input end and the output end, at least one transmitter connected to the first optical switch unit, and a first optical switch unit At least one receiver;
  • the first optical switch unit is configured to exchange, in a single optical switching process, an optical signal sent by a transmitter of a local dimension to a target dimension to an output of the target dimension; and/or, in a single time During the optical switching process, an optical signal input to an input of one dimension of the cross-module to a local dimension is exchanged to any one of the at least one receiver for reception;
  • the target dimension is any one of the cross modules.
  • a single transmitter in the up-and-down wave module is directly connected to a single input port of the first optical switch unit;
  • the upper and lower wave modules further include a multiplexer, and the plurality of transmitters in the upper and lower wave modules pass through the multiplexer and the single optical switch unit Input ports are connected;
  • the multiplexer is configured to multiplex optical signals of a single wavelength form that need to be sent to the same target dimension by the plurality of transmitters to obtain an optical signal in a wavelength multiplexed form.
  • a single output port of the first optical switch unit is directly connected to a single receiver in the upper and lower wave modules;
  • the upper and lower wave modules further include a demultiplexer, wherein a single output port of the first optical switch unit passes through the demultiplexer and the upper and lower wave modules Multiple receivers connected;
  • the demultiplexer is configured to demultiplex an optical signal of a wavelength multiplexing form input to a local dimension of the input end of the cross module to obtain an optical signal of a single wavelength form, and each single wavelength The form of the optical signal is input to a receiver, respectively.
  • a single output port of the first optical switch unit is directly connected to a single output of the cross module
  • the upper and lower wave modules further include a multiplexer, and the plurality of output ports of the first optical switch unit are connected to the output ends of the same dimension through the multiplexer;
  • the multiplexer is configured to output a plurality of output ports of the first optical switch unit to the plurality of optical signals of the same dimension to obtain an optical signal in a wavelength multiplexed form.
  • the optical switching architecture further includes: a wavelength conversion module, the wavelength conversion module is connected to the cross module, or the wavelength conversion module is connected to the cross module and the upper and lower wave modules;
  • the wavelength conversion module is configured to: when there are wavelength conflicts in which at least two optical signals originating from different dimensions and need to be exchanged to the same target dimension at the same time, the at least two lights colliding with the wavelength All of the signals are wavelength-converted to obtain at least two optical signals that do not conflict with each other, and then output to the target dimension, or a portion of the at least two optical signals whose wavelengths collide are wavelength-converted to obtain a partial optical signal. Outputting to the target dimension, the wavelength between the partial optical signal and the optical signal not subjected to wavelength conversion does not conflict with each other;
  • the different dimensions include the local dimension and each of the cross-over modules.
  • the wavelength conversion module includes: a wavelength conversion unit and a second light connected to the wavelength conversion unit Switch unit
  • the wavelength conversion unit is previously switched to the target dimension of the cross module
  • the second optical switch unit When the input port of the second optical switch unit is connected to the wavelength conversion unit and the output port of the second optical switch unit is connected to the output ends of the respective dimensions of the cross module, the second optical switch unit And switching, to all of the at least two optical signals of the wavelength conflict, wavelength conversion from the wavelength conversion unit to a target dimension of the cross module;
  • An input port of the second optical switch unit is connected to an input end of each dimension of the cross module and the wavelength conversion unit, and an output port of the second optical switch unit and the wavelength conversion unit and the When the outputs of the respective dimensions of the cross module are connected, the second optical switch unit is configured to pass all or part of the at least two optical signals of the wavelength conflict before or from the wavelength conversion unit. Converting the target unit to the target dimension of the cross module after performing wavelength conversion;
  • the wavelength conversion unit is configured to perform wavelength conversion on all of the at least two optical signals that conflict with the wavelengths to obtain at least two optical signals whose wavelengths do not conflict with each other, or at least two optical signals that conflict with the wavelengths
  • the portion of the wavelength is converted to obtain a partial optical signal, and the wavelength between the partial optical signal and the optical signal not subjected to wavelength conversion does not conflict with each other.
  • the wavelength conversion unit includes: n wavelength conversion paths, each of the wavelength conversion paths includes sequentially connected 1 demultiplexer, at least 2 wavelength conversion components and 1 multiplexer;
  • a demultiplexer in each wavelength conversion path when an optical signal input to the wavelength conversion path and having a wavelength collision is an optical signal in a wavelength multiplexing form, the wavelength multiplexing form
  • the optical signal is demultiplexed to obtain an optical signal in a single wavelength form, and the optical signals in each single wavelength form are respectively input to one wavelength conversion component;
  • a wavelength conversion component in each wavelength conversion path configured to convert the optical signal of the single wavelength form demultiplexed by the connected demultiplexer into a single wavelength form with no wavelength conflict by a predetermined wavelength conversion manner
  • a multiplexer in each wavelength conversion path configured to multiplex the optical signals of the single wavelength form in which the wavelengths are not collided after being converted by the wavelength conversion component, to obtain a wavelength multiplexing form in which the wavelengths do not conflict Light signal
  • the wavelength conversion mode is in the form of light/electricity/light; or the wavelength conversion mode is in the form of light/light.
  • the first optical switch unit and the second optical switch unit are the same optical switch
  • the first optical switch unit is an optical switch
  • the second optical switch unit is another optical switch
  • the first optical switch unit includes two optical switches independent of each other, wherein one optical switch is used to exchange an optical signal of a transmitter of a local dimension to a target dimension to the target in a single optical switching process. At the output of the target dimension, another optical switch is used to switch the input of one dimension of the cross-module to the optical signal of the local dimension to any of the at least one receiver in a single optical switching process One receives it.
  • the optical switch is an optical switch based on a MEMS structure; or, the optical switch is based on a PLC structure The optical switch; or, the optical switch is an optical switch based on a silicon optical cross structure.
  • the wavelength conversion module includes: a wavelength conversion unit and a second disposed inside the wavelength conversion unit Optical switch unit;
  • the wavelength conversion unit is configured to: when there are wavelength conflicts of at least two optical signals that are derived from different dimensions and need to be exchanged to the same target dimension at the same time, all of the at least two optical signals that are in conflict with the wavelength are wavelength Converting to obtain at least two optical signals whose wavelengths do not conflict with each other, or Part of the at least two optical signals whose wavelengths collide are wavelength-converted to obtain a partial optical signal, and the wavelengths between the partial optical signals and the optical signals that are not wavelength-converted do not conflict with each other;
  • the second optical switch unit is configured to exchange all or part of the at least two optical signals of the wavelength conflicts into a target dimension of the cross module when entering the wavelength conversion unit for wavelength conversion.
  • the wavelength conversion unit includes: n wavelength conversion paths, each wavelength conversion path includes one solution a multiplexer, at least two wavelength conversion components, and one multiplexer, wherein the demultiplexer in each wavelength conversion path is connected to the at least two wavelength conversion components through the second optical switch unit, Said at least two wavelength conversion components are connected to the multiplexer;
  • a demultiplexer in each wavelength conversion path configured to: when an optical signal input to the wavelength conversion path that has a wavelength collision occurs is an optical signal in a wavelength multiplexing form, the wavelength multiplexed form of light Signal demultiplexing to obtain an optical signal in the form of a single wavelength;
  • the second optical switch unit is configured to transmit, in the single wavelength form, the optical signal in the single wavelength form that is demultiplexed by the connected demultiplexer to a single wavelength form of light in the same target dimension in the cross module Signaling to any one of the wavelength conversion components connected to the multiplexer corresponding to the target dimension;
  • a wavelength conversion component in each wavelength conversion path configured to convert the optical signal of the single wavelength form to which the connected second optical switching unit is switched to a single wavelength form in which wavelengths do not conflict by a predetermined wavelength conversion manner Optical signal
  • a multiplexer in each wavelength conversion path configured to multiplex the optical signals of the single wavelength form in which the wavelengths are not collided after being converted by the wavelength conversion component, to obtain a wavelength multiplexing form in which the wavelengths do not conflict Optical signal, and outputting the optical signal in wavelength-multiplexed form that does not conflict with the wavelength to the target dimension;
  • the wavelength conversion mode is in the form of light/electricity/light; or the wavelength conversion mode is in the form of light/light.
  • the wavelength conversion unit includes: n wavelength conversion paths, each of the wavelength conversion paths includes one a demultiplexer, at least two wavelength conversion components, and one multiplexer, wherein the demultiplexer in each wavelength conversion path is connected to the at least two wavelength conversion components, the at least two wavelength conversion components Connecting to the multiplexer through the second optical switch unit; a demultiplexer in each wavelength conversion path, configured to: when an optical signal input to the wavelength conversion path that has a wavelength collision occurs is an optical signal in a wavelength multiplexing form, the wavelength multiplexed form of light Signal demultiplexing to obtain an optical signal in the form of a single wavelength;
  • a wavelength conversion component in each wavelength conversion path configured to convert the optical signal of the single wavelength form demultiplexed by the connected demultiplexer into a single wavelength form with no wavelength conflict by a predetermined wavelength conversion manner
  • the second optical switch unit is configured to send, in the optical signal of a single wavelength form that does not conflict with wavelengths converted by the connected wavelength conversion component, to a single wavelength that does not conflict with wavelengths of the same target dimension in the cross module a form of optical signal exchange to a multiplexer corresponding to the target dimension; a multiplexer in each wavelength conversion path, the wavelengths to which the connected second optical switch unit is switched do not conflict Optical signals in a single wavelength form are multiplexed to obtain optical signals in wavelength-multiplexed form in which the wavelengths do not collide, and optical signals in wavelength-multiplexed form in which the wavelengths do not collide are output to the target dimension;
  • the wavelength conversion mode is in the form of light/electricity/light; or the wavelength conversion mode is in the form of light/light.
  • the wavelength conversion module includes: n wavelength conversion paths, each wavelength conversion path includes one demultiplexer connected in sequence, at least 2 Photoelectric conversion unit, electric switch, at least 2 electro-optical conversion units and 1 multiplexer;
  • a demultiplexer in each wavelength conversion path configured to: when an optical signal input to the wavelength conversion path that has a wavelength collision occurs is an optical signal in a wavelength multiplexing form, the wavelength multiplexed form of light Signal demultiplexing to obtain an optical signal in the form of a single wavelength;
  • a photoelectric conversion unit in each wavelength conversion path configured to convert the optical signal of the single wavelength form demultiplexed by the connected demultiplexer into a corresponding electrical signal
  • the electrical switch is configured to exchange, in an electrical signal converted by the connected photoelectric conversion unit, an electrical signal that needs to be sent to the same target dimension in the cross module to be connected to a multiplexer corresponding to the target dimension.
  • the electro-optical conversion unit In the electro-optical conversion unit;
  • An electro-optical conversion unit in each wavelength conversion path configured to convert the electrical signal to which the connected electrical switch is switched into an optical signal in a single wavelength form that does not conflict with wavelengths;
  • a multiplexer in each wavelength conversion path for converting the connected electro-optical conversion unit Optical signals of a single wavelength form in which the wavelengths do not collide are multiplexed to obtain optical signals of wavelength multiplexing forms whose wavelengths do not collide, and output optical signals of wavelength multiplexing forms whose wavelengths do not collide are output to the target Dimensions.
  • the input port of the second optical switch unit and the input of each dimension of the cross module The input port of the second optical switch unit is connected to the wavelength conversion unit and the output port of the second optical switch unit is connected to the output ends of the wavelength conversion unit and the cross-module At least one delay line is also provided between the output port and the output port.
  • the wavelength conversion unit includes: n wavelength conversion paths, each wavelength conversion path includes at least two wavelength conversion components and one multiplexer connected in sequence, or each wavelength conversion path includes one solution connected in sequence a multiplexer, at least two wavelength conversion components, and one multiplexer;
  • the second optical switch unit is configured to: when a single input terminal in the crossover module exchanges an optical signal with a wavelength collision in a target dimension to an optical signal in a single wavelength form, the single wavelength form in which the wavelength conflict occurs
  • the optical signal is directly switched to the wavelength conversion component; or, the optical signal for wavelength collision in the target dimension is switched to a single optical signal in the target dimension, and the optical signal is in the wavelength multiplexing form and is not occupied.
  • the demultiplexer the optical signal in the form of wavelength multiplexing in which wavelength collision occurs is switched to the unmultiplexed demultiplexer; or, for a single input in the cross module
  • the wavelength-multiplexed optical signal in the wavelength-disappearing manner is generated by the delay line Delaying to the demultiplexer exchanged to the de-occupied when the demultiplexer is de-occupied;
  • Each demultiplexer is configured to demultiplex the optical signal of the wavelength-multiplexed form in which the wavelength interference is switched to the connected second optical switch unit to obtain an optical signal in a single wavelength form;
  • Each wavelength conversion component is configured to convert the optical signal of the single wavelength form demultiplexed by the demultiplexer to which the connected second optical switch unit is connected or connected by a predetermined wavelength conversion manner Optical signals in the form of a single wavelength that does not conflict with wavelengths;
  • Each multiplexer is configured to multiplex the optical signals of the single wavelength form in which the wavelengths are not collided after the converted wavelength conversion component is connected to obtain optical signals in a wavelength multiplexing manner in which the wavelengths do not conflict.
  • the wavelength conversion mode is a form of light/electricity/light; or, the wavelength conversion mode is a form of light/light.
  • the ninth possible implementation manner of the first aspect, the tenth possible implementation manner of the first aspect, the eleventh possible implementation manner of the first aspect, the twelfth possible implementation manner of the first aspect The thirteenth possible implementation manner of the first aspect, or the fourteenth possible implementation manner of the first aspect,
  • Each input end of the cross module is a wavelength selective switch and each output is also a wavelength selective switch;
  • each input end of the cross module is a splitter and each output is a wavelength selective switch; or, each input of the cross module is a wavelength selective switch and each output is a combiner; or Each input end of the cross module is an arbitrary wavelength filter and each output end is a wavelength selective switch;
  • each input of the cross module is an arbitrary wavelength filter and each output is a combiner.
  • a transmitter of the local dimension needs to transmit an optical signal to the target dimension to the output of the target dimension through the first optical switch unit, and/or the cross module
  • the input of one dimension of the input is input to the local dimension of the optical signal exchange to at least one Any one of the receivers performs reception; solves the problem that the optical switching architecture provided by the prior art does not satisfy the wavelength independence and the direction independence; since the input port and the output port of the first optical switch unit are not fixed in wavelength selection, the same The input port or the output port can transmit and receive optical signals of different wavelengths, thereby achieving the effect of making the optical switching architecture satisfy the wavelength independence; in addition, since the first optical switching unit can exchange optical signals from the same transmitter to different dimensions, And/or, optical signals from the same dimension are exchanged to different receivers, so that the optical switching architecture is made to satisfy the direction independence and the wavelength scheduling is more flexible.
  • multiple optical signals in a single wavelength form that need to be uploaded to the same target dimension are multiplexed by connecting a single input port of the first optical switch unit to multiple transmitters through a multiplexer.
  • the optical signal in the form of wavelength multiplexing is then uploaded to the target dimension, so that the number of input ports connected to the transmitter and the corresponding output ports in the first optical switch unit is equal to or slightly larger than the number of dimensions in the cross module. The need for the number of ports of the first optical switch unit is greatly reduced.
  • the optical signal in the wavelength multiplexing form that needs to be downloaded to the local dimension is demultiplexed into several by connecting the output port in the first optical switch unit to the receiver through the demultiplexer.
  • the optical signals in a single wavelength form are then downloaded to different receivers in the local dimension, and the received optical signals can be received according to the granularity of a single wavelength, so that the wavelength scheduling is more flexible.
  • a third possible implementation by connecting a plurality of output ports of the first optical switch unit to the output of one dimension of the cross module through the multiplexer, multiple single wavelength forms that need to be uploaded to the same target dimension
  • the optical signal is multiplexed into an optical signal of one wavelength multiplexing mode and then uploaded to the output end of the target dimension, so that the number of uplink ports connected to the first optical switching unit in the output end of one dimension in the cross module is one. Or slightly more than one, which greatly reduces the need for the number of ports at the output of the crossover module.
  • the wavelength conversion module is capable of wavelength-converting all or part of optical signals from different wavelengths to obtain wavelengths.
  • the conflicting optical signal makes the optical switching architecture satisfy the wavelength independence and direction independence, and satisfies the wavelength conflict independence; and solves the problem that the optical switching architecture provided by the background technology cannot completely realize the switching characteristic of the CDC;
  • the optical switching architecture fully realizes the switching characteristics of the CDC, and the wavelength scheduling is more flexible and the wavelength utilization ratio is higher.
  • the connection manner between the second optical switch unit and the wavelength conversion unit is more flexible.
  • the connection manner between the modules, the units, and the devices of the entire optical switch fabric is more flexible.
  • the number of ports of the optical switch and each A variety of implementations have been fully considered. When the number of ports of a single optical switch is large, a scheme in which the first optical switch unit and the second optical switch unit are integrated may be adopted; when the number of ports of the single optical switch is small or when subsequent expansion is required, the first optical switch unit and the first optical switch unit may be used.
  • the solution for splitting the second optical switch unit can even adopt a scheme of splitting the first optical switch unit into two optical switches, thereby realizing the applicability of the optical switch architecture to optical switches of different ports and subsequent expansion and expansion. Convenience, without the pressure on the port of the optical switch.
  • the optical signal in which the wavelength collision occurs is an optical signal in the wavelength multiplexing form
  • only the optical signal in the wavelength multiplexing form can be implemented.
  • the overall scheduling of the granularity is different.
  • the optical signal granularity in a single wavelength form is realized while completing the wavelength conversion.
  • the ability to perform arbitrary scheduling further improves the flexibility of wavelength scheduling.
  • FIG. 1 is a schematic structural diagram of a conventional three-dimensional ROADM optical switching architecture
  • FIG. 2 is a schematic structural diagram of an optical switch fabric according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an optical switch fabric according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an optical switch fabric according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical switch fabric according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical switch fabric according to another embodiment of the present invention.
  • FIG. 7A is a schematic structural diagram of an optical switch fabric according to another embodiment of the present invention.
  • FIG. 7B is a schematic structural diagram of an optical switch fabric according to another embodiment of the present invention.
  • FIG. 7C is a schematic structural diagram of an optical switch fabric according to another embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of an optical switch fabric according to another embodiment of the present invention
  • FIG. 8B is a schematic structural diagram of a wavelength conversion module of an optical switch fabric according to an embodiment of the present invention
  • 8C is a schematic structural diagram of a wavelength conversion module of an optical switching architecture according to another embodiment of the present invention.
  • 8D is a schematic structural diagram of a wavelength conversion component in an optical switching architecture according to some embodiments of the present invention.
  • 8E is a schematic structural diagram of a wavelength conversion component in an optical switching architecture according to some embodiments of the present invention.
  • 8F is a schematic structural diagram of a wavelength conversion module of an optical switching architecture according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical switch fabric according to another embodiment of the present invention. detailed description
  • the optical switching architecture includes: a cross module 20 and an up and down wave module 40 coupled to the cross module 20.
  • the cross module 20 includes n sets of inputs and outputs belonging to different dimensions, n ⁇ 2.
  • the up-and-down wave module 40 includes a first optical switch unit 410 connected to the input end and the output end, at least one transmitter 420 connected to the first optical switch unit 410, and at least one receiver 430 connected to the first optical switch unit 410. .
  • a first optical switch unit 410 configured to exchange, in a single optical switching process, an optical signal sent by a transmitter 420 of a local dimension to a target dimension to an output of the target dimension; and/or, in a single optical switching In the process, the input of one dimension of the cross-module 20 is input to the optical signal of the local dimension to any one of the at least one receiver 430 for reception.
  • the target dimension is any one of the cross modules 20.
  • the optical switching architecture provided in this embodiment solves the problem that the optical switching architecture provided by the prior art does not satisfy the wavelength independence and the direction independence.
  • the input port and the output port of the first optical switch unit are not fixed in wavelength selection.
  • the same input port or output port can transmit and receive optical signals of different wavelengths, so that the optical switching architecture can achieve the effect of wavelength independence; in addition, due to the first optical switch
  • the unit can exchange optical signals from the same transmitter to different dimensions, and/or exchange optical signals from the same dimension to different receivers, so that the optical switching architecture is made to satisfy the direction independence and the wavelength scheduling is more Flexible effect.
  • FIG. 3 a schematic structural diagram of an optical switching architecture according to another embodiment of the present invention is shown.
  • the optical switching architecture includes: a cross module 20, an up-and-down wave module 40, and a wavelength conversion module 60.
  • the cross module 20 includes n sets of inputs and outputs belonging to different dimensions, n ⁇ 2.
  • the cross module 20 is connected to the upper and lower wave modules 40.
  • the up-and-down wave module 40 includes a first optical switch unit 410 connected to the input end and the output end, at least one transmitter 420 connected to the first optical switch unit 410, and at least one receiver 430 connected to the first optical switch unit 410. .
  • a first optical switch unit 410 configured to exchange, in a single optical switching process, an optical signal sent by a transmitter 420 of a local dimension to a target dimension to an output of the target dimension; and/or, in a single optical switching In the process, the input of one dimension of the cross-module 20 is input to the optical signal of the local dimension to any one of the at least one receiver 430 for reception.
  • the target dimension is any one of the cross modules 20.
  • the wavelength conversion module 60 is configured to: when there are wavelength conflicts of at least two optical signals originating from different dimensions and need to be exchanged to the same target dimension at the same time, wavelength conversion is performed on all of the at least two optical signals having wavelength conflicts to obtain a wavelength At least two optical signals that do not conflict with each other are output to the target dimension, or a portion of the at least two optical signals whose wavelengths collide are wavelength-converted to obtain a partial optical signal, which is then output to the target dimension, and some of the optical signals are not wavelength-converted The wavelengths between the optical signals do not conflict with each other.
  • the different dimensions include the respective dimensions in the cross module 20; when the wavelength conversion module 60 is connected to the cross module 20 and the upper and lower wave modules 40 (not shown) Shown), the different dimensions include the local dimensions and the various dimensions in the cross module 20.
  • the optical switching architecture provided in this embodiment, by connecting a single input port of the first optical switch unit to multiple transmitters through a multiplexer, will need to upload optical signals of multiple single wavelength forms to the same target dimension.
  • the optical signals are multiplexed into one wavelength multiplexing mode and then uploaded to the target dimension, so that the number of input ports connected to the transmitter and the corresponding output ports in the first optical switching unit are equal to or slightly larger than the number of dimensions in the cross module. Yes, the need for the number of ports of the first optical switch unit is greatly reduced.
  • FIG. 4 a schematic structural diagram of an optical switching architecture according to another embodiment of the present invention is shown.
  • the optical switching architecture includes: a cross module 20, an upper and lower wave module 40 connected to the cross module 20, and a wavelength conversion module 60.
  • the cross module 20 includes n sets of inputs and outputs belonging to different dimensions, n ⁇ 2.
  • each dimension of the cross module 20 is connected to a part of the ports and connected to the outputs of all the other dimensions, and is used to exchange the optical signals of the input terminals of the cross-module 20 to the output of the target dimension of the cross-module 20 to realize different dimensions. Inter-wavelength exchange.
  • the input end of each dimension of the cross module 20 is connected to another portion of the port and is connected to the input port 411 of the first optical switch unit 410 for downloading the optical signal in the cross module 20 to the local dimension for reception.
  • the input port of each dimension of the cross module 20 further separates a part of the port and is connected to the wavelength conversion module 60, and the part port is used to download the optical signal of the wavelength conflict in the cross module 20 to the local dimension for wavelength conversion. This part of the port is also called the downstream port. Therefore, the downstream port of the input of each dimension of the cross module 20 refers to the port that downloads the optical signal in the cross module 20 to the local dimension for reception or wavelength conversion.
  • the output of each dimension of the cross module 20 is separated from a portion of the port and is connected to the output port 412 of the first optical switch unit 410.
  • the partial port is used to upload the optical signal of the local dimension to the cross module 20, which is called the upper port.
  • Wave port the output of each dimension of the cross module 20 is separated from another port and is connected to a wavelength conversion module 60 for uploading the wavelength converted optical signal to the cross module 20, and the other port is also It is called the upper wave port. Therefore, the upstream port of the output of each dimension of the cross module 20 refers to a port that uploads a local-dimension optical signal or a wavelength-converted optical signal to the cross-module 20.
  • the up-and-down wave module 40 includes a first optical switch unit 410 connected to the input end and the output end, at least one transmitter 420 connected to the first optical switch unit 410, and at least one receiver 430 connected to the first optical switch unit 410. .
  • a first optical switch unit 410 configured to exchange, in a single optical switching process, an optical signal sent by a transmitter 420 of a local dimension to a target dimension to an output of the target dimension; and/or, in a single optical switching
  • the input of one dimension of the cross-module 20 is input to the optical signal of the local dimension to any one of the at least one receiver 430 for reception.
  • the target dimension is any one of the cross modules 20.
  • a portion of the input port 411 of the first optical switch unit 410 is coupled to the input of each dimension of the cross-module 20; another portion of the input port 411 is coupled to the transmitter 420 of the local dimension.
  • First light A portion of the output port 412 of the off unit 410 is coupled to the output of each dimension of the cross module 20, and another portion of the output port 412 is coupled to the receiver 430 of the local dimension.
  • the wavelength conversion module 60 is configured to: when there are wavelength conflicts of at least two optical signals originating from different dimensions and need to be exchanged to the same target dimension at the same time, wavelength conversion is performed on all of the at least two optical signals having wavelength conflicts to obtain a wavelength At least two optical signals that do not conflict with each other are output to the target dimension, or a portion of the at least two optical signals whose wavelengths collide are wavelength-converted to obtain a partial optical signal, which is then output to the target dimension, and some of the optical signals are not wavelength-converted The wavelengths between the optical signals do not conflict with each other.
  • the first dimension is northward
  • the second dimension is westward
  • the third dimension is eastward.
  • DWDM Dense Wavelength Division Multiplexing
  • the wavelengths that need to be downloaded to the local dimension may be downloaded to the first optical switch unit 410 through the lower wave port in the input of each dimension in the cross module 20. After being exchanged by the first optical switch unit 410, reception is performed by any different receiver 430. Similarly, the wavelength uploaded from the local dimension is sent by the transmitter 420, and after being exchanged by the first optical switch unit 410, can be uploaded to the output of the target dimension in the cross module 20, which is the cross-module 20 Any one dimension.
  • the optical switching node When the wavelength of the DWDM signal enters the optical switching node, when some wavelengths of the DWDM signal wavelengths collide with the wavelengths of the DWDM signals of other paths, then all the optical signals with wavelength collisions in the wavelength of the DWDM signal pass through.
  • the lower wave port for wavelength conversion in the output of each dimension enters the wavelength conversion module 60 for wavelength conversion and then switches to the output of the target dimension in the cross module 20.
  • the optical signals of wavelengths ⁇ 1, ⁇ 6, and ⁇ 15 need to be switched to the north direction, but the west-direction wavelengths are ⁇ 1, ⁇ 6, and ⁇ 15.
  • the optical signal also needs to be switched to the north, and then a wavelength collision occurs.
  • the optical signals of wavelengths ⁇ 1, ⁇ 6, and ⁇ 15 of one dimension in the east and west directions cannot be directly exchanged to the north direction, and must be converted into optical signals whose wavelengths do not conflict by the wavelength conversion module 60, such as: wavelengths of ⁇ 2, ⁇ 7, ⁇ 16
  • the optical signal is then switched to the north.
  • the optical signals of wavelengths ⁇ 1, ⁇ 6, and ⁇ 15 in both the east and west directions may be simultaneously wavelength-converted.
  • the wavelength conversion module 60 when the wavelength conversion module 60 is connected to the cross module 20, the wavelength conversion module 60 can source all or part of the optical signals originating from the wavelength conflicts of the respective dimensions in the cross module 20. Wavelength conversion is performed to obtain optical signals whose wavelengths do not conflict with each other.
  • the optical signals between the dimensions of the cross module 20 may have wavelength conflicts
  • the optical signals transmitted by the respective transmitters of the local dimension may also have wavelength conflicts
  • the optical signals between the local dimensions and the dimensions of the cross module 20 may also be possible. A wavelength conflict has occurred.
  • the wavelength conversion module 60 can be connected to both the cross module 20 and the upper and lower wave modules 40 (not shown), and all or part of the wavelength conversion module 60 can perform wavelength conversion to obtain light whose wavelengths do not conflict with each other.
  • signal. 4 is only exemplified by the connection of the wavelength conversion module 60 and the cross module 20, which is not specifically limited.
  • the present embodiment is exemplified only by the optical switching architecture including the cross module 20, the upper and lower wave module 40, and the wavelength conversion module 60.
  • This embodiment is a more preferred embodiment.
  • the optical switching architecture may also include only the cross module 20 and the upper and lower wave modules 40, which are not specifically limited.
  • the input port 411 and the output port 412 of the first optical switch unit 410 are not fixed in wavelength selection.
  • the same input port 411 can transmit and receive optical signals with a wavelength of ⁇ ,, and can also transmit and receive wavelengths. It is an optical signal of ⁇ 2, and thus the optical switching architecture provided by this embodiment satisfies the wavelength independence.
  • the first optical switch unit 410 can exchange the optical signals of the respective transmitters 420 to the output of any dimension of the cross-module 20; it is also possible to input the input of any dimension of the cross-module 20 to the optical signal of the local dimension to Any one of the n receivers 430 performs reception, and thus the optical switching architecture provided by this embodiment satisfies the direction independence.
  • the wavelength conversion module 60 converts the optical signals of the wavelength-interactive collisions in which the input ends of the respective dimensions of the cross-module 20 are switched to the target dimension into optical signals whose wavelengths do not collide, the output is output to the target dimension of the cross-module 20, so this embodiment
  • the optical switching architecture provided satisfies wavelength conflict independence.
  • the optical switching architecture provided by the embodiment fully implements the switching feature of the CDC, and solves the problem that the optical switching architecture provided by the background technology cannot completely realize the switching characteristic of the CDC; and the optical switching architecture fully realizes the switching characteristic of the CDC. And the wavelength scheduling is more flexible and the wavelength utilization is higher.
  • the up-and-down wave module 40 further includes two other implementation manners. The following two In the embodiment, two different implementations of the upper and lower wave modules 40 are separately introduced and described.
  • FIG. 5 it is a schematic structural diagram of an optical switch fabric according to another embodiment of the present invention.
  • the optical switching architecture includes: a cross module 20, an upper and lower wave module 40 connected to the cross module 20, and a wavelength conversion module 60.
  • the cross module 20 includes three sets of input terminals 210 and outputs 220 belonging to different dimensions.
  • the connection manner of the input terminal 210 and the output terminal 220 can be referred to the embodiment shown in FIG.
  • the upper and lower wave module 40 includes a first optical switch unit connected to the input end 210 and the output end 220
  • the up-and-down wave module 40 further includes three multiplexers 440 and three demultiplexers 450.
  • a portion of the input port 411 of the first optical switch unit 410 is directly coupled to the transmitter 420 of the local dimension, and a portion of the output port 412 of the first optical switch unit 410 is coupled to the three multiplexers 440.
  • the multiplexer 440 is configured to output the plurality of output ports 412 of the first optical switch unit 410 to a plurality of optical signals of the same dimension for multiplexing to obtain optical signals in a wavelength multiplexed form.
  • the plurality of output ports in the first optical switch unit 410 are part of all the output ports 412 connected to the three multiplexers 440, and the partial output ports 412 correspond to the same dimension. In practical applications, different numbers of output ports 412 can be assigned to multiplexers 440 of corresponding dimensions according to different wavelength requirements for each dimension.
  • the local dimension has three transmitters 420 and the three transmitters 420 respectively transmit optical signals in the form of single wavelengths of wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 into the northbound output 220 of the crossover module 20.
  • the signal flow direction can be expressed as:
  • the local three transmitters 420 respectively transmit optical signals in the form of single wavelengths of wavelengths ⁇ 1, ⁇ 2 and ⁇ 3 ⁇ optical signals of single wavelength in the wavelengths of ⁇ 1, ⁇ 2 and ⁇ 3 pass through the first optical switching unit
  • the input port 411 of 410 ⁇ the optical signal of the single wavelength form having the wavelengths of ⁇ 1, ⁇ 2 and ⁇ 3 passes through the output port 412 of the first optical switching unit 410 ⁇ the multiplexer 440 connected to the north output terminal 220 to have the wavelengths ⁇ 1, ⁇ 2 and
  • the optical signal of the single wavelength form of ⁇ 3 is multiplexed into an optical signal of one wavelength multiplexing form ⁇ the optical signal of one wavelength multiplexing form enters the north direction output terminal 2
  • the other part of the input port 411 of the first optical switch unit 410 is connected to the input end 210 of each dimension of the cross module 20, and the three output ports 412 of the first optical switch unit 410 respectively have three solutions.
  • Multiplexers 450 are coupled, and each demultiplexer 450 is also coupled to at least two receivers 430.
  • the demultiplexer 450 is configured to demultiplex the optical signal of the wavelength multiplexing form input to the local dimension of the input terminal 210 of the one-dimension of the cross module 20 to obtain an optical signal of a single wavelength form, and each single wavelength form
  • the optical signals are input to a receiver 430, respectively.
  • the demultiplexer 450 is configured to demultiplex the optical signal in the wavelength multiplexing form of each dimension in the cross module 20 that needs to be downloaded to the local dimension to obtain an optical signal in a single wavelength form, and then download the optical signal to the local dimension.
  • Different receivers 430 Different receivers 430.
  • an optical signal in the form of wavelength multiplexing comprising wavelengths ⁇ 1, ⁇ 2 and ⁇ 3 is input to the local dimension via the east input 210 of the cross-module 20.
  • the signal flow direction can be expressed as: all the optical signals in the wavelength multiplexing form including the wavelengths ⁇ 1, ⁇ 2 and ⁇ 3 enter the east input end 210 ⁇ —the optical signals of the wavelength multiplexing form having the wavelengths of ⁇ 1, ⁇ 2 and ⁇ 3
  • the input port 411 of an optical switch unit 410 ⁇ an optical signal in the form of wavelength multiplexing including wavelengths ⁇ 1, ⁇ 2 and ⁇ 3 passes through the output port 412 of the first optical switch unit 410 ⁇ the path includes wavelengths ⁇ 1, ⁇ 2 and ⁇ 3
  • the wavelength-multiplexed optical signal is demultiplexed by the demultiplexer 450 into optical signals of three wavelengths of ⁇ 1, ⁇ 2, and ⁇ 3, respectively, in the form of single wavelengths of ⁇ 1, ⁇ 2, and ⁇ 3, respectively.
  • the wavelength conversion module 60 is configured to: when there are wavelength conflicts of at least two optical signals originating from different dimensions and need to be exchanged to the same target dimension at the same time, wavelength conversion is performed on all of the at least two optical signals having wavelength conflicts to obtain a wavelength At least two optical signals that do not conflict with each other are output to the target dimension, or a portion of the at least two optical signals whose wavelengths collide are wavelength-converted to obtain a partial optical signal, which is then output to the target dimension, and some of the optical signals are not wavelength-converted The wavelengths between the optical signals do not conflict with each other.
  • the present embodiment is only illustrated by the optical switching architecture including the cross module 20, the upper and lower wave module 40, and the wavelength conversion module 60. This embodiment is a more preferred embodiment. In other possible embodiments, the optical switching architecture may also include only the cross module 20 and the upper and lower wave modules 40, which are not specifically limited.
  • the optical switching architecture provided in this embodiment adds a first optical switch unit to the optical switch fabric, and sends a transmitter of the local dimension to the target dimension by using the first optical switch unit. Outputting to the output of the target dimension, and/or switching the input of one dimension of the cross-module to the local dimension to any one of the at least one receiver for reception; solving the optical switching architecture provided by the background art The problem of wavelength independence and direction independence is not satisfied; since the input port and the output port of the first optical switch unit are not fixed in wavelength selection, the same input port or output port can transmit and receive optical signals of different wavelengths, so that optical switching is achieved.
  • the architecture meets wavelength independence Sexual effect; in addition, since the first optical switch unit can exchange optical signals from the same transmitter to different dimensions, and/or exchange optical signals from the same dimension to different receivers,
  • the optical switching architecture satisfies the direction-independent and more flexible wavelength scheduling.
  • the optical switching architecture provided in this embodiment demultiplexes the optical signal in the wavelength multiplexing form that needs to be downloaded to the local dimension into several by connecting the output port in the first optical switch unit to the receiver through the demultiplexer.
  • the optical signal in the form of a single wavelength is then downloaded to a different receiver in the local dimension, and the received optical signal can be received according to the granularity of a single wavelength, so that the wavelength scheduling is more flexible.
  • the optical switching architecture provided by this embodiment connects multiple output ports of the first optical switch unit to the output end of one dimension of the cross module through the multiplexer, and needs to be uploaded to multiple single wavelength forms of the same target dimension.
  • the optical signal is multiplexed into an optical signal of one wavelength multiplexing form and then uploaded to the output end of the target dimension, so that the number of uplink ports connected to the first optical switching unit in the output end of one dimension in the cross module is one or A little more than one can greatly reduce the need for the number of ports at the output of the crossover module.
  • FIG. 6 a schematic structural diagram of an optical switching architecture according to another embodiment of the present invention is shown.
  • the embodiment provides a three-dimensional optical switching architecture including a first dimension, a second dimension, and a third dimension.
  • the optical switching architecture includes: a cross module 20, an upper and lower wave module 40 connected to the crossover module 20, and a wavelength conversion module 60.
  • the cross module 20 includes three sets of input terminals 210 and outputs 220 belonging to different dimensions.
  • the connection manner of the input terminal 210 and the output terminal 220 can be referred to the embodiment shown in FIG.
  • the up-and-down wave module 40 includes a first optical switch unit 410 connected to the input end 210 and the output end 220, at least one transmitter 420 connected to the first optical switch unit 410, and at least one receiving connected to the first optical switch unit 410.
  • Machine 430 The up-and-down wave module 40 further includes three multiplexers 440 and three demultiplexers 450.
  • the input port 411 of the first optical switch unit 410 for receiving the optical signal transmitted by each of the transmitters 420 is not directly connected to the transmitter 420, but a single input port 411 is passed.
  • a multiplexer 440 is coupled to the plurality of transmitters 420.
  • the multiplexer 440 is configured to multiplex optical signals of a single wavelength form transmitted by the plurality of transmitters 420 to the same target dimension to obtain optical signals in a wavelength multiplexed form.
  • the input port 411 of the first optical switch unit 410 has been transmitted by the multiplexer 440 to the optical signal of the single wavelength form of the same target dimension The multiplexing, so the output port 412 of the first optical switch unit 420 is directly connected to the output 220 of each dimension in the crossover module 20.
  • the local dimension has three transmitters 420 and the three transmitters 420 respectively transmit optical signals in the form of single wavelengths of wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 into the northbound output 220 of the crossover module 20.
  • the signal flow direction can be expressed as: three transmitters 420 of the local dimension respectively transmit optical signals in the form of single wavelengths of wavelengths ⁇ 1, ⁇ 2 and ⁇ 3 ⁇ multiplexers 440 connected to three transmitters 420 have wavelengths of ⁇ ⁇ , ⁇ 2 and
  • the optical signal of the single wavelength form of ⁇ 3 is multiplexed into an optical signal of one wavelength multiplexing mode ⁇ the optical signal of one wavelength multiplexing form passes through the input port 411 of the first optical switching unit 410 ⁇ the optical signal of one wavelength multiplexing form passes through The optical signal of the output port 412 ⁇ way wavelength multiplexing form of an optical switch unit 410 enters the northward output terminal 220.
  • the wavelength conversion module 60 is configured to: when there are wavelength conflicts of at least two optical signals originating from different dimensions and need to be exchanged to the same target dimension at the same time, wavelength conversion is performed on all of the at least two optical signals having wavelength conflicts to obtain a wavelength At least two optical signals that do not conflict with each other are output to the target dimension, or a portion of the at least two optical signals whose wavelengths collide are wavelength-converted to obtain a partial optical signal, which is then output to the target dimension, and some of the optical signals are not wavelength-converted The wavelengths between the optical signals do not conflict with each other.
  • the present embodiment is only illustrated by the optical switching architecture including the cross module 20, the upper and lower wave module 40, and the wavelength conversion module 60. This embodiment is a more preferred embodiment. In other possible embodiments, the optical switching architecture may also include only the cross module 20 and the upper and lower wave modules 40, which are not specifically limited.
  • the optical switching architecture uses a first optical switch unit to transmit an optical signal of a transmitter of a local dimension to a target dimension to an output of the target dimension, and/or a crossover module.
  • the input of one dimension of the input to the local dimension is exchanged to any one of the at least one receiver for reception; solving the problem that the optical switching architecture provided by the prior art does not satisfy the wavelength independence and the direction independence;
  • the input port and the output port of an optical switch unit are not fixed in wavelength selection, and the same input port or output port can transmit and receive optical signals of different wavelengths, thereby achieving the effect of making the optical switch architecture satisfy wavelength independence;
  • the switching unit can exchange optical signals from the same transmitter to different dimensions, and/or exchange optical signals from the same dimension to different receivers, so that the optical switching architecture is made to satisfy the direction independence and the wavelength scheduling More flexible effects.
  • the optical switching architecture provided in this embodiment by connecting a single input port of the first optical switch unit to multiple transmitters through a multiplexer, will need to be uploaded to multiple single wavelength forms of the same target dimension.
  • the optical signal is multiplexed into an optical signal of one wavelength multiplexing mode and then uploaded to the target dimension, so that the number of input ports connected to the transmitter and the corresponding output ports in the first optical switching unit are equal to or slightly larger than the dimension in the cross module.
  • the number can be reduced, greatly reducing the need for the number of ports of the first optical switch unit.
  • different embodiments shown in FIG. 5 or FIG. 6 can be selected according to requirements.
  • the wavelength conversion module 60 includes two types of implementations.
  • the wavelength conversion module 60 includes two independent units of the wavelength conversion unit 610 and the second optical switch unit 620, and there are three different connection manners between the wavelength conversion unit 610 and the second optical switch unit 620.
  • the independent second optical switch unit 620 is not included in the wavelength conversion module 60, and the second optical switch unit 620 is directly integrated into the interior of the wavelength conversion unit 610.
  • Figures 7A/7B/7C a first type of implementation of the wavelength conversion module 60 will be described and illustrated in detail.
  • Figures 8A/8B/8C/8F a second type of implementation of the wavelength conversion module 60 will be described and illustrated in detail.
  • the optical switching architecture includes: a cross module 20, an upper and lower wave module 40 connected to the cross module 20, and a wavelength conversion module 60.
  • the cross module 20 includes n sets of inputs 210 and outputs 220 belonging to different dimensions.
  • the cross module 20 is used to switch the optical signals of the various dimensional inputs 210 in the crossover module 20 to the output 220 of the target dimension of the crossover module 20.
  • the connection manner of the input terminal 210 and the output terminal 220 can be referred to the embodiment shown in FIG.
  • the up-and-down wave module 40 includes a first optical switch unit 410 connected to the input end 210 and the output end 220, at least one transmitter 420 connected to the first optical switch unit 410, and at least one receiving connected to the first optical switch unit 410.
  • Machine 430 The up-and-down wave module 40 includes a first optical switch unit 410 connected to the input end 210 and the output end 220, at least one transmitter 420 connected to the first optical switch unit 410, and at least one receiving connected to the first optical switch unit 410.
  • Machine 430 is a first optical switch unit 410 connected to the input end 210 and the output end 220, at least one transmitter 420 connected to the first optical switch unit 410, and at least one receiving connected to the first optical switch unit 410.
  • the first optical switch unit 410 is configured to exchange, in a single optical switching process, an optical signal sent by a transmitter 420 of a local dimension to a target dimension to an output of the target dimension; and/or, in a single optical switching process
  • the optical signal input to the input of one dimension of the cross-module 20 to the local dimension is exchanged to any one of the at least one receiver 430 for reception.
  • the target dimension is any one of the cross modules 20.
  • the connection manner of the first optical switch unit 410, the at least one transmitter 420, and the at least one receiver 430 may be referred to the embodiment shown in FIG. 4/FIG. 5/FIG. 6, or any other connection manner.
  • the wavelength conversion module 60 is configured to exist from different dimensions and needs to be exchanged to the same time at the same time.
  • all of the at least two optical signals that are in conflict with each other are wavelength-converted to obtain at least two optical signals that do not conflict with each other, and then output to the target dimension, or the wavelength conflicts.
  • a portion of the at least two optical signals is wavelength-converted to obtain a partial optical signal, which is then output to a target dimension, and the wavelength between the partial optical signal and the optical signal that is not wavelength-converted does not conflict with each other.
  • the wavelength conversion module 60 includes: a wavelength conversion unit 610 and a second optical switch unit 620 connected to the wavelength conversion unit 610.
  • the wavelength conversion unit 610 is configured to perform wavelength conversion on all of the at least two optical signals whose wavelengths collide, to obtain at least two optical signals whose wavelengths do not conflict with each other, or to perform wavelengths on at least two of the at least two optical signals whose wavelengths collide A partial optical signal is obtained, and the wavelength between the partial optical signal and the optical signal not subjected to wavelength conversion does not conflict with each other.
  • the wavelength conversion unit 610 includes: n wavelength conversion paths, each wavelength conversion path includes one demultiplexer 613, at least two wavelength conversion components 614, and one multiplexer 615 connected in sequence.
  • the demultiplexer 613 in each wavelength conversion path is configured to decompose the optical signal in the wavelength multiplexing form when an optical signal that is input to the wavelength conversion path and has a wavelength collision is an optical signal in a wavelength multiplexing form An optical signal in the form of a single wavelength is obtained, and each optical signal in the form of a single wavelength is input to one wavelength conversion component 614, respectively.
  • the wavelength conversion component 614 in each wavelength conversion path is configured to convert the optical signal of the single wavelength demultiplexed by the connected demultiplexer 613 into a light signal of a single wavelength form whose wavelength does not conflict by a predetermined wavelength conversion manner.
  • the wavelength conversion can be in the form of light/electricity/light or in the form of light/light.
  • the form of light/electricity/light means that the optical signal with wavelength collision first undergoes photoelectric conversion to obtain an electrical signal, and then drives the tunable laser according to actual needs, and modulates the electrical signal to corresponding wavelengths to obtain the desired wavelength without conflict.
  • Light signal can also be achieved in the form of light/light conversion. For example, by using the non-linear effect of SOA (Semiconductor Optical Amplifier), optical signals with wavelength collisions can be directly converted into optical signals with the desired wavelengths that do not conflict.
  • SOA semiconductor Optical Amplifier
  • the multiplexer 615 in each of the wavelength conversion paths is configured to multiplex the optical signals of the single wavelength form in which the wavelengths converted by the connected wavelength conversion components 614 are not collided to obtain optical signals of wavelength multiplexing in which the wavelengths do not collide.
  • the multiplexer 615 is capable of multiplexing a plurality of optical signals in a single wavelength form into one optical signal in a wavelength multiplexed form including a plurality of wavelengths.
  • FIG. 7A shows a first connection manner of the second optical switch unit 620 and the wavelength conversion unit 610.
  • the input ports of each demultiplexer 613 of the wavelength conversion unit 610 are connected to the input 210 of one dimension of the cross module 20, respectively.
  • the input port 621 of the second optical switch unit 620 is coupled to the output port of the multiplexer 615 of the wavelength conversion unit 610, and the output port 622 of the second optical switch unit 620 is coupled to the output 220 of each dimension of the cross-module 20.
  • the second optical switch unit 620 is configured to switch all or part of the wavelength conflicting at least two optical signals to the target dimension of the cross module 20 after wavelength conversion from the wavelength conversion unit 610.
  • FIG. 7B shows a second connection manner of the second optical switch unit 620 and the wavelength conversion unit 610.
  • the input port 621 of the second optical switch unit 620 is connected to the input 210 of each dimension in the crossover module 20 and the output port 622 of the second optical switch unit 620 is connected to the input port of the demultiplexer 613 in the wavelength conversion unit 610.
  • Each multiplexer 615 of the wavelength conversion unit 610 is connected to an output 220 of one dimension of the cross module 20, respectively.
  • the second optical switch unit 620 is for exchanging all or a portion of the at least two optical signals having wavelength collisions to the target dimension of the cross module 20 before entering the wavelength conversion unit 610.
  • FIG. 7C shows a third connection mode of the second optical switch unit 620 and the wavelength conversion unit 610.
  • the input port 621 of the second optical switch unit 620 is connected to the input terminal 210 of each dimension in the crossover module 20 and the output port of the multiplexer 615 in the wavelength conversion unit 610, and the output port 622 of the second optical switch unit 620 is The input port of the demultiplexer 613 in the wavelength conversion unit 610 and the output terminal 220 of each dimension in the crossover module 20 are connected.
  • the second optical switch unit 620 is configured to switch all or a portion of the at least two optical signals of the wavelength conflict to the target dimension of the cross module 20 before entering the wavelength conversion unit 610 or after wavelength conversion from the wavelength conversion unit 610.
  • the first dimension is northward
  • the second dimension is westward
  • the third dimension is eastward.
  • the optical signal in which the wavelength collision occurs is wavelength-converted, it is in the third connection mode of the second optical switch unit 620 and the wavelength conversion unit 610 shown in FIG. 7C.
  • the wavelength conversion unit 610 needs to be converted into optical signals whose wavelengths do not conflict, such as: ⁇ 2, ⁇ 7, ⁇ 16 The optical signal is then switched to the north.
  • the signal flow direction can be expressed as: the east input 210 ⁇ the input port 621 a of the second optical switch unit 620 ⁇ the output port 622 b of the second optical switch unit 620 ⁇ the demultiplexer 613 ⁇ the wavelength conversion unit 610 in the wavelength conversion unit 610 In the wavelength conversion component 614 ⁇ the multiplexer 615 ⁇ in the wavelength conversion unit 610
  • the input port 6211) of the two-light switch unit 620 ⁇ the output port 622a of the second optical switch unit 620 ⁇ the north-direction output terminal 220.
  • the first optical switch unit and the second optical switch unit may be the same optical switch; or the first optical switch unit may be an optical switch,
  • the two optical switch unit is another optical switch;
  • the first optical switch unit can also be split into two independent optical switches, wherein one optical switch is used to send one of the local dimensions in a single optical switching process.
  • the optical signal that needs to be sent to the target dimension is switched to the output of the target dimension, and the other optical switch is used to convert the input of one dimension of the cross-module into the optical signal of the local dimension in a single optical switching process to Any one of the at least one receiver performs reception.
  • any one of the optical switches may be combined with the second optical switch unit to form an optical switch.
  • two or more optical switches can be combined into one optical switch.
  • the second optical switch unit 620 and the first optical switch unit 410 are the same optical switch, the second optical switch unit 620 and the cross-module 20
  • the input port 621a connected to the input terminal 210 of any dimension and the input port 411 connected to the input terminal 210 of the dimension in the first optical switch unit 410 can be functionally mixed with each other, so one input port of the second optical switch unit 620
  • the 621a and the one input port 411 of the first optical switch unit 410 can share the same input port on the optical switch.
  • the present embodiment is exemplified by the input port 621a of the second optical switch unit 620 and the input port 411 of the first optical switch unit 410 as two separate input ports, which are not specifically limited.
  • the output port 622a of the second optical switch unit 620 connected to the output terminal 220 of any dimension of the cross module 20 and the output port 412 of the first optical switch unit 410 connected to the output terminal 220 of the dimension are functional.
  • the upper output port 622a of the second optical switch unit 620 and the one output port 412 of the first optical switch unit 410 can share the same output port on the optical switch.
  • the present embodiment is exemplified by the output port 622a of the second optical switch unit 620 and the output port 412 of the first optical switch unit 410.
  • the optical switch may be an optical switch based on a MEMS structure, an optical switch based on a PLC structure, or an optical switch based on a silicon optical cross structure. In practical applications, it is possible to select a suitable optical switch according to actual needs.
  • the optical switching architecture provided in this embodiment adds the first in the optical switching architecture.
  • the optical switch unit converts, by the first optical switch unit, an optical signal sent by a transmitter of the local dimension to the target dimension to an output of the target dimension, and/or inputs an input of one dimension of the cross module to the local
  • the optical signal of the dimension is exchanged to any one of the at least one receiver for receiving; solving the problem that the optical switching architecture provided by the prior art does not satisfy the wavelength independence and the direction independence; due to the input port and the output port of the first optical switch unit
  • the wavelength selection is not fixed, and the same input port or output port can transmit and receive optical signals of different wavelengths, so that the optical switching architecture can achieve the effect of wavelength independence; in addition, since the first optical switching unit can be from the same transmitter
  • the optical signals are switched to different dimensions, and/or optical signals from the same dimension are switched to different receivers, so that the optical switching architecture is made to satisfy the direction independence and the wavelength scheduling is more flexible.
  • the optical switching architecture provided in this embodiment further changes the connection manner between the second optical switch unit and the wavelength conversion unit, so that the connection manner between the modules, the units, and the devices of the entire optical switching architecture is more flexible.
  • the optical switching architecture provided by the embodiment further includes the splitting and integration of the first optical switch unit and the second optical switch unit, and the splitting and integration of the first optical switch unit, the number of ports of the optical switch, and each
  • a variety of implementations have been fully considered.
  • a scheme in which the first optical switch unit and the second optical switch unit are integrated may be adopted; when the number of ports of the single optical switch is small or when subsequent expansion is required, the first optical switch unit and the first optical switch unit may be used.
  • the solution for splitting the second optical switch unit can even adopt a scheme of splitting the first optical switch unit into two optical switches, thereby realizing the applicability of the optical switch architecture to optical switches of different ports and subsequent expansion and expansion. Convenience, without the pressure on the port of the optical switch.
  • a second type of implementation of wavelength conversion module 60 will be described and illustrated in detail.
  • the optical switching architecture includes: a cross module 20, an upper and lower wave module 40 connected to the cross module 20, and a wavelength conversion module 60.
  • the cross module 20 includes n sets of inputs 210 and outputs 220 belonging to different dimensions.
  • the cross module 20 is used to switch the optical signals of the various dimensional inputs 210 in the crossover module 20 to the output 220 of the target dimension of the crossover module 20.
  • the connection manner of the input terminal 210 and the output terminal 220 can be referred to the embodiment shown in FIG.
  • the upper and lower wave module 40 includes a first optical switch unit connected to the input end 210 and the output end 220 410. At least one transmitter 420 connected to the first optical switch unit 410 and at least one receiver 430 connected to the first optical switch unit 410.
  • the first optical switch unit 410 is configured to exchange, in a single optical switching process, an optical signal sent by a transmitter 420 of a local dimension to a target dimension to an output of the target dimension; and/or, in a single optical switching process
  • the optical signal input to the input of one dimension of the cross-module 20 to the local dimension is exchanged to any one of the at least one receiver 430 for reception.
  • the target dimension is any one of the cross modules 20.
  • the connection manner of the first optical switch unit 410, the at least one transmitter 420, and the at least one receiver 430 may be referred to the embodiment shown in FIG. 4/FIG. 5/FIG. 6, or any other connection manner.
  • the wavelength conversion module 60 is configured to: when there are wavelength conflicts of at least two optical signals originating from different dimensions and need to be exchanged to the same target dimension at the same time, wavelength conversion is performed on all of the at least two optical signals having wavelength conflicts to obtain a wavelength At least two optical signals that do not conflict with each other are output to the target dimension, or a portion of the at least two optical signals whose wavelengths collide are wavelength-converted to obtain a partial optical signal, which is then output to the target dimension, and some of the optical signals are not wavelength-converted The wavelengths between the optical signals do not conflict with each other.
  • the wavelength conversion module 60 includes: a wavelength conversion unit 610 and a second optical switch unit 620 disposed inside the wavelength conversion unit 610.
  • the wavelength conversion unit 610 is configured to: when there are wavelength conflicts of at least two optical signals that are derived from different dimensions and need to be exchanged to the same target dimension at the same time, perform wavelength conversion on all of the at least two optical signals with wavelength conflicts to obtain a wavelength At least two optical signals that do not conflict with each other are output to the target dimension, or a portion of the at least two optical signals whose wavelengths collide are wavelength-converted to obtain a partial optical signal, which is then output to the target dimension, and some of the optical signals are not wavelength-converted The wavelengths between the optical signals do not conflict with each other.
  • the wavelength conversion unit 610 includes: n wavelength conversion paths, each of which includes a demultiplexer 613, at least two wavelength conversion components 614, and a multiplexer 615.
  • the second optical switch unit 320 has the following two possible connections with the demultiplexer 613, the wavelength conversion component 614, and the multiplexer 615 in each wavelength conversion path:
  • the demultiplexer 613 in each wavelength conversion path is connected to at least two wavelength conversion components 614 through the second optical switching unit 620, and at least two wavelength conversion components. 614 is coupled to multiplexer 615.
  • the demultiplexer 613 in each wavelength conversion path is configured to transmit a wavelength-multiplexed optical signal when an optical signal that is input to the wavelength conversion path and has a wavelength collision is an optical signal in a wavelength multiplexing form.
  • the number is demultiplexed to obtain an optical signal in the form of a single wavelength.
  • the second optical switch unit 620 is configured to exchange, in the optical signal of a single wavelength form, which is demultiplexed by the connected demultiplexer 613, an optical signal of a single wavelength form that needs to be sent to the same target dimension in the cross module 20 to the target
  • the multiplexer 615 corresponding to the dimension is connected to any one of the wavelength conversion components 614.
  • the wavelength conversion component 614 in each wavelength conversion path is configured to convert the optical signal of the single wavelength form to which the connected second optical switching unit 620 is switched into a light signal of a single wavelength form whose wavelength does not conflict by a predetermined wavelength conversion manner. .
  • the multiplexer 615 in each wavelength conversion path is configured to multiplex the optical signals of the single wavelength form whose wavelengths are not collided after the converted wavelength conversion component 614 is converted to obtain optical signals of wavelength multiplexing forms whose wavelengths do not conflict,
  • the optical signals in wavelength-multiplexed form in which the wavelengths do not collide are output to the target dimension.
  • the demultiplexer 613 in each wavelength conversion path is connected to at least two wavelength conversion components 614, and at least two wavelength conversion components 614 pass through the second optical switch unit.
  • 620 is coupled to multiplexer 615.
  • the demultiplexer 613 in each wavelength conversion path is configured to decompose the optical signal in the wavelength multiplexing form when an optical signal that is input to the wavelength conversion path and has a wavelength collision is an optical signal in a wavelength multiplexing form Use to obtain an optical signal in the form of a single wavelength.
  • the wavelength conversion component 614 in each wavelength conversion path is configured to convert the optical signal of a single wavelength form demultiplexed by the connected demultiplexer 613 into a light of a single wavelength form whose wavelength does not conflict by a predetermined wavelength conversion manner. signal.
  • the second optical switch unit 620 is configured to transmit, in the optical signal of a single wavelength form in which the wavelengths converted by the connected wavelength conversion component 614 are not collided, to a single wavelength form of light that does not conflict with the wavelength of the same target dimension in the cross module 20
  • the signal is switched to a multiplexer 615 corresponding to the target dimension.
  • the multiplexer 615 in each of the wavelength conversion paths is configured to multiplex the optical signals of the single wavelength form in which the wavelengths that are not collided by the connected second optical switching unit 620 are multiplexed to obtain light of a wavelength multiplexing form whose wavelengths do not conflict.
  • the signal, and the optical signal of the wavelength multiplexing form whose wavelengths do not conflict are output to the target dimension.
  • the second optical switch unit 620 since the second optical switch unit 620 and the wavelength conversion unit 610 are separated, the second optical switch unit 620 is limited to optical signals of all wavelengths between the dimensions.
  • the overall selection is that the optical signals of all wavelengths of a certain dimension can only be selected to the target dimension after completing the wavelength conversion, and the optical signals of the single wavelength form cannot be arbitrarily dimensioned. Choose.
  • the second optical switch unit 620 is disposed between the demultiplexer 613 and the multiplexer 615, and realizes optical signal of a single wavelength form at the same time of completing wavelength conversion.
  • the demultiplexer 613 demultiplexes the optical signal in the form of wavelength multiplexing into two paths. They are an optical signal of a single wavelength of wavelength ⁇ ⁇ and an optical signal of a single wavelength of wavelength ⁇ 2 , respectively.
  • an optical signal of a single wavelength having a wavelength of ⁇ ⁇ needs to be switched to the north direction, and an optical signal of a single wavelength having a wavelength of ⁇ 2 needs to be exchanged to the west direction.
  • the demultiplexer 613 demultiplexes the optical signal in the wavelength multiplexing form into two wavelengths respectively.
  • an optical signal of a single wavelength having a wavelength of ⁇ 3 needs to be exchanged to the north direction
  • an optical signal of a single wavelength having a wavelength of ⁇ 4 needs to be exchanged to the east. Since the optical signal of a single wavelength form having a wavelength of ⁇ ⁇ and the optical signal of a single wavelength of the wavelength ⁇ 3 need to be exchanged to the north direction, the second optical switching unit 620 can transmit the optical signal of a single wavelength form having a wavelength of ⁇ ⁇ and a wavelength of The optical signals of the single wavelength form of ⁇ 3 are respectively switched to the wavelength conversion component 614 connected to the multiplexer 615 corresponding to the north direction dimension for wavelength conversion.
  • an optical signal of a single wavelength of wavelength ⁇ ⁇ and an optical signal of a single wavelength of wavelength ⁇ 33 are respectively obtained, and the multiplexer 615 corresponding to the north dimension can emit light of a single wavelength of wavelength ⁇ ⁇ .
  • the signal and the optical signal of the single wavelength form having a wavelength of ⁇ 33 are multiplexed into an optical signal of one wavelength multiplexing form and then transmitted to the output terminal 220 of the north direction dimension.
  • the wavelength conversion component 614 can implement wavelength conversion in the form of light/electricity/light (0/ ⁇ /0), as shown in FIG. 8D; the wavelength conversion component 614 can also be implemented by light/light (0/0). Wavelength conversion, as shown in Figure 8 ⁇ .
  • the wavelength conversion component 614 implements wavelength conversion in the form of light/electricity/light (0/ ⁇ /0)
  • the wavelength conversion component 614 includes a photoelectric conversion unit 616 and an electro-optical conversion unit 617.
  • the wavelength conversion module 60 includes: n wavelength conversion paths, each of the wavelength conversion paths includes one demultiplexer 613, at least two photoelectric conversion units 616, an electric switch 640, and at least two electro-optical conversion units 617 connected in sequence. And a multiplexer 615.
  • the demultiplexer 613 in each wavelength conversion path is configured to decompose the optical signal in the wavelength multiplexing form when an optical signal that is input to the wavelength conversion path and has a wavelength collision is an optical signal in a wavelength multiplexing form Use to obtain an optical signal in the form of a single wavelength.
  • the photoelectric conversion unit 616 in each wavelength conversion path is configured to convert the optical signal of a single wavelength form demultiplexed by the connected demultiplexer 613 into a corresponding electrical signal.
  • the electrical switch 640 is configured to exchange electrical signals that need to be sent to the same target dimension in the cross module 20 in the electrical signals converted by the connected photoelectric conversion unit 616 to the electro-optical conversion unit 617 connected to the multiplexer 615 corresponding to the target dimension. in.
  • the electro-optical conversion unit 617 in each wavelength conversion path is used to convert the electrical signal to which the connected electrical switch 640 is switched into an optical signal in the form of a single wavelength whose wavelength does not conflict.
  • each wavelength conversion path for multiplexing the optical signals of a single wavelength form whose wavelengths do not collide with the connected electro-optical conversion unit 617 are multiplexed to obtain optical signals of wavelength multiplexing forms whose wavelengths do not conflict, and the wavelengths
  • the optical signals in the form of wavelength collisions that do not collide are output to the target dimension.
  • the optical switching architecture provided in this embodiment adds a first optical switch unit to the optical switch fabric, and sends a transmitter of the local dimension to the target dimension by using the first optical switch unit. Outputting to the output of the target dimension, and/or switching the input of one dimension of the cross-module to the local dimension to any one of the at least one receiver for reception; solving the optical switching architecture provided by the background art The problem of wavelength independence and direction independence is not satisfied; since the input port and the output port of the first optical switch unit are not fixed in wavelength selection, the same input port or output port can transmit and receive optical signals of different wavelengths, so that optical switching is achieved.
  • the architecture satisfies the effect of wavelength independence; in addition, since the first optical switching unit can exchange optical signals from the same transmitter to different dimensions, and/or exchange optical signals from the same dimension to different receivers, So it is achieved that the optical switching architecture satisfies the direction independence and wavelength scheduling Flexible effect.
  • the optical switching architecture provided by the embodiment further comprises: setting the second optical switch unit or the electrical switch between the demultiplexer and the multiplexer of the wavelength conversion module to realize the light in a single wavelength form while completing the wavelength conversion.
  • the signal granularity performs arbitrary scheduling functions, which further improves the flexibility of wavelength scheduling.
  • FIG. 9 a schematic structural diagram of an optical switching architecture according to another embodiment of the present invention is shown.
  • at least one delay line 650 is further disposed between the input port 621 and the output port 622 of the second optical switch unit 620.
  • the optical switching architecture includes: a cross module 20, an upper and lower wave module 40 connected to the cross module 20, and a wavelength conversion module 60.
  • the cross module 20 includes n sets of input terminals 210 and outputs 220 belonging to different dimensions, n ⁇ 2.
  • the connection manner of the input terminal 210 and the output terminal 220 can be referred to the embodiment shown in FIG. 4.
  • the up-and-down wave module 40 includes a first optical switch unit 410 connected to the input end 210 and the output end 220, at least one transmitter 420 connected to the first optical switch unit 410, and at least one receiving connected to the first optical switch unit 410.
  • Machine 430 The up-and-down wave module 40 includes a first optical switch unit 410 connected to the input end 210 and the output end 220, at least one transmitter 420 connected to the first optical switch unit 410, and at least one receiving connected to the first optical switch unit 410.
  • Machine 430 is a first optical switch unit 410 connected to the input end 210 and the output end 220, at least one transmitter 420 connected to the first optical switch unit 410, and at least one receiving connected to the first optical switch unit 410.
  • the first optical switch unit 410 is configured to exchange, in a single optical switching process, an optical signal sent by a transmitter 420 of a local dimension to a target dimension to an output of the target dimension; and/or, in a single optical switching process
  • the optical signal input to the input of one dimension of the cross-module 20 to the local dimension is exchanged to any one of the at least one receiver 430 for reception.
  • the target dimension is any one of the cross modules 20.
  • the connection manner of the first optical switch unit 410, the at least one transmitter 420, and the at least one receiver 430 may be referred to the embodiment shown in FIG. 4/FIG. 5/FIG. 6, or any other connection manner.
  • the up-and-down wave module 40 also includes a plurality of multiplexers 440 and a plurality of demultiplexers 450.
  • a single input port of the first optical switch unit 410 is coupled to a plurality of transmitters 420 via a multiplexer 440.
  • a single output port of the first optical switch unit 410 is coupled to a plurality of receivers 430 via a demultiplexer 450.
  • the wavelength conversion module 60 is configured to convert the optical signals of the wavelengths of the intersections of the respective dimensions of the cross-module 20 to the target dimension to be converted into optical signals of non-conflicting wavelengths, and then output to the target dimension of the cross-module 20.
  • the wavelength conversion module 60 includes: a wavelength conversion unit 610 and a second optical switch unit 620.
  • the wavelength conversion unit 610 is configured to: when there are wavelength conflicts of at least two optical signals that are derived from different dimensions and need to be exchanged to the same target dimension at the same time, perform wavelength conversion on all of the at least two optical signals with wavelength conflicts to obtain a wavelength At least two optical signals that do not conflict with each other are output to the target dimension, or a portion of the at least two optical signals whose wavelengths collide are wavelength-converted to obtain a partial optical signal, which is then output to the target dimension, and some of the optical signals are not wavelength-converted The wavelengths between the optical signals do not conflict with each other.
  • the wavelength conversion unit 610 includes: n wavelength conversion paths, each of the wavelength conversion paths includes at least two wavelength conversion components 614 and one multiplexer 615 connected in sequence, or each The wavelength conversion path includes 1 demultiplexer 613, at least 2 wavelength conversion components 614, and 1 multiplexer 615 connected in series.
  • the input port of the second optical switch unit 620 is connected to the input terminal 210 and the wavelength conversion unit 610 of each dimension of the cross module 20 and the output port and the wavelength conversion unit of the second optical switch unit 620
  • the outputs 610 of the respective dimensions of the 610 and the cross module 20 are connected.
  • the second optical switch unit 620 is configured to directly switch the optical signal of the single-wavelength form to the target dimension when the optical signal of the wavelength difference of the target dimension includes the optical signal of a single wavelength form, and directly collide the optical signal of the single wavelength form that collides directly Switching to the wavelength conversion component 614; or, for a single input 210 in the crossover module 20 to switch to an optical signal in the target dimension where the wavelength conflict occurs is an optical signal in wavelength-multiplexed form and there is an unoccupied demultiplexer
  • an optical signal in the form of a wavelength-multiplexed wavelength multiplexing occurs to the unoccupied demultiplexer 613; or, when the single and demultiplexer 613 in the cross-over module 20 is fully occupied
  • the delay line 650 delays the optical signal in the wavelength-multiplexed form in which the wavelength collision occurs until the demultiplexer 613 is de-occupied, and switches to the de-multiplexer 613.
  • Each of the demultiplexers 613 is configured to demultiplex the optical signals of the wavelength-multiplexed form in which the wavelengths of the adjacent optical switching units 620 are switched to obtain a single-wavelength optical signal.
  • Each wavelength conversion component 614 is configured to convert the optical signal of a single wavelength form demultiplexed by the connected second optical switch unit 620 or the connected demultiplexer 613 into a wavelength by a predetermined wavelength conversion method. Conflicting light signals in the form of a single wavelength.
  • Each of the multiplexers 615 is configured to multiplex optical signals of a single wavelength form in which the wavelengths converted by the connected wavelength conversion components 614 are not collided to obtain optical signals of wavelength multiplexing forms whose wavelengths do not conflict.
  • the wavelength converting unit 610 includes a demultiplexer 613.
  • the delay line 650 works as follows: When a certain time, two or more of the n dimensions in the cross module 20 have wavelength conflicts, and the optical signal with wavelength collision occurs in a wavelength multiplexing form. In the case of the optical signal, the optical signal with a wavelength collision first enters the demultiplexer 613, is demultiplexed by the demultiplexer 613, and enters the wavelength conversion unit 610 for wavelength conversion; the optical signals of the remaining dimensions that have conflicting wavelengths enter the delay.
  • Line 650 waits; the optical network system monitors whether the demultiplexer 613 is occupied in real time; if the demultiplexer 613 is occupied, the optical signals of the remaining dimensions that have wavelength collisions continue to wait in the delay line 650; When the multiplexer 613 is not occupied, the next optical signal having the wavelength collision is released to the demultiplexer 613, demultiplexed by the demultiplexer 613, and then entered into the wavelength conversion unit 610 for wavelength conversion. It should be noted that the length of multiple delay lines can be designed according to certain rules, and the selection of optical switches can achieve different delay times.
  • an optical signal of one dimension including wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 enters the optical switching architecture and requires wavelength conversion
  • an optical signal of the other dimension including wavelengths ⁇ 4, ⁇ 5, and ⁇ 6 is also Entering the optical switching architecture and requiring wavelength conversion.
  • the delay line first releases the optical signals of one dimension including the wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 into the demultiplexer, demultiplexed by the demultiplexer, and then enters the wavelength conversion unit for wavelength conversion; another dimension of light with wavelength conflict occurs
  • the signal enters the delay line and waits in a loop, waiting for the demultiplexer to de-occupy.
  • the optical network system monitors whether the demultiplexer is occupied in real time.
  • the optical signal of the other dimension including the wavelengths ⁇ 4, ⁇ 5 and ⁇ 6 is released to the demultiplexer, and the solution is solved. After multiplexing, the multiplexer enters the wavelength conversion unit for wavelength conversion. Otherwise, the optical signal of the other dimension containing the wavelengths ⁇ 4, ⁇ 5 and ⁇ 6 continues to circulate in the delay line until the demultiplexer is decommissioned.
  • the wavelength conversion mode is a form of light/electricity/light; or, the wavelength conversion mode is a form of light/light.
  • the optical switching architecture provided in this embodiment adds a first optical switch unit to the optical switch fabric, and sends a transmitter of the local dimension to the target dimension by using the first optical switch unit. Outputting to the output of the target dimension, and/or switching the input of one dimension of the cross-module to the local dimension to any one of the at least one receiver for reception; solving the optical switching architecture provided by the background art The problem of wavelength independence and direction independence is not satisfied; since the input port and the output port of the first optical switch unit are not fixed in wavelength selection, the same input port or output port can transmit and receive optical signals of different wavelengths, so that optical switching is achieved.
  • the architecture satisfies the effect of wavelength independence; in addition, since the first optical switching unit can exchange optical signals from the same transmitter to different dimensions, and/or exchange optical signals from the same dimension to different receivers, So it is achieved that the optical switching architecture satisfies the direction independence and wavelength scheduling Flexible effect.
  • the optical switching architecture provided in this embodiment can achieve the effect of performing optical switching when wavelength conflicts occur simultaneously in multiple dimensions after adding the delay line, and reduces the number of demultiplexers in the wavelength conversion module, thereby saving cost. It should be noted that there are many different implementations of the input and output of the cross module.
  • each input end of the cross module is a wavelength selective switch WSS and each output is also a wavelength selective switch WSS; or, each input of the cross module is a splitter Splitter and Each output is a wavelength selective switch wss; or, each input of the cross module is a wavelength selective switch WSS and each output is a combiner; or, each input of the cross module is an arbitrary wavelength filter and each The output is a wavelength selective switch WSS; or, each input of the cross module is an arbitrary wavelength filter and each output is a combiner.
  • the input end of the cross module uses an arbitrary wavelength filter, which can realize the function of the wavelength selective switch wss, and can filter out the optical signal of any wavelength in the optical signal of one DWDM wavelength multiplexing form from any output port thereof; Attenuate the filtered wavelength signal as required to perform channel equalization. If each input of the cross-module in the optical switching architecture is an arbitrary wavelength filter, it can filter out unnecessary optical signals entering the optical switching architecture of the optical signals in the form of DWDM wavelength multiplexing.
  • the output of the crossover module uses a combiner to implement the function of the wavelength selective switch WSS, which can combine optical signals of different wavelengths in a single wavelength form into optical signals of one wavelength multiplexing form.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

本发明公开了一种光交换架构,属于通信领域。所述光交换架构包括:交叉模块以及与交叉模块相连的上下波模块;交叉模块,包括n组属于不同维度的输入端和输出端;上下波模块,包括与输入端和输出端相连的第一光开关单元、与第一光开关单元相连的发送机和接收机。本发明通过在光交换架构中添加了第一光开关单元;解决了背景技术提供的光交换架构不满足波长无关性和方向无关性的问题;达到了使光交换架构满足波长无关性和方向无关性,且波长调度更灵活的效果。

Description

说 明 书 光交换架构 本申请要求于 2013 年 12 月 19 日提交中国专利局、 申请号为 201310704357.3、 发明名称为 "光交换架构" 的中国专利申请的优先权, 其全 部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 特别涉及一种光交换架构。 背景技术
光交换架构用于在不同维度间进行光信号的交换, 是光网络交换系统中的 核心模块, 其性能的优劣决定着整个光网络交换系统的业务能力。
由于光波分复用技术的成熟,传输容量的迅速增长给光网络交换系统发展 带来的压力和动力, 通信网中光网络交换系统的规模越来越大, 运行速率越来 越高。 从整个光网络交换技术的发展趋势来看, 未来的光交换架构需要实现 CDC的交换特性。 第一个 C代表 Colorless (波长无关性): Colorless是指同一 上下路端口可以收发不同波长的特性; D 代表 Directionless (方向无关性): Directionless是指同一上下路端口可以重构到不同维度方向的特性; 后一个 C 代表 Contentionless (波长冲突无关性): Contentionless是指能够同时收发来自 于不同维度方向的相同波长。
参考图 1, 其示出了现有的一种三维的 ROADM ( ODAM的英文全称为 econfigurable Optical Add-Drop Multiplexer, 中文全称为可重构的光分插复用 器) 光交换架构的结构示意图。 该 RODAM架构包括: 交叉模块 110和与交叉 模块 110相连的 3个上下波模块 120。 交叉模块 110包括 3组属于不同维度的 输入端和输出端, 每个输入端为分离器 Splitterlll 且每个输出端为 WSS112 (WSS的英文全称为 Wavelength Selective Switch,中文全称为波长选择开关)。 每个维度都配有单独的上下波模块 120, 交叉模块 110通过光纤分别与各个维 度的上下波模块 120连接。各个维度所对应的上下波模块 120包括波导阵列光 栅 AWG121、 发送机 TX122和接收机 RX123。 每个维度的 WSS112分出一个 端口与波导阵列光栅 AWG121相连, 用于将本地维度需要发送到交叉模块 110 中的光信号上载至交叉模块 110, 筒称为 "上波"; 每个维度的分离器 Splitterlll 分出一个端口与波导阵列光栅 AWG121相连,用于将从交叉模块 110发送至本 地维度的光信号下载到本地维度, 筒称为 "下波"。 用于上波的波导阵列光栅 AWG121 与发送机 TX122相连, 用于下波的波导阵列光栅 AWG121 与接收机 RX123相连。 其中, 本地维度即为该光交换架构所处的物理区域。
现有的这种 ROADM架构至少存在以下问题:
第一, 现有的 RODAM架构上波和下波都用波导阵列光栅 AWG, 当波导 阵列光栅 AWG与发送机相连时, 波导阵列光栅 AWG中与发送机 TX相连的 每个上路端口只能发送固定的同一波长; 当波导阵列光栅 AWG与接收机 RX 相连时, 波导阵列光栅 AWG中与接收机 RX相连的每个下路端口只能接收固 定的同一波长, 这使得每个上路端口和每个下路端口对波长固定, 无法收发不 同波长, 所以不满足波长无关性;
第二, 每个维度都配有单独的上下波模块, 这使得每个上下波模块的上波 和下波只能调度到与自身相连的维度, 而不能调度到其它的维度, 所以不满足 方向无关' 1·生。 发明内容
为了解决现有光交换架构不满足波长无关性和方向无关性的问题, 本发明 实施例提供了一种光交换架构。 所述技术方案如下:
第一方面, 提供了一种光交换架构, 所述光交换架构包括: 交叉模块以及 与所述交叉模块相连的上下波模块;
所述交叉模块, 包括 n组属于不同维度的输入端和输出端, n≥2 ;
所述上下波模块, 包括与所述输入端和所述输出端相连的第一光开关单 元、 与所述第一光开关单元相连的至少一个发送机和与所述第一光开关单元相 连的至少一个接收机;
所述第一光开关单元, 用于在单次光交换过程中, 将本地维度的一个发送 机需要发送至目标维度的光信号交换至所述目标维度的输出端; 和 /或,在单次 光交换过程中, 将所述交叉模块中的一个维度的输入端输入至本地维度的光信 号交换至所述至少一个接收机中的任意一个进行接收;
其中, 所述目标维度为所述交叉模块中的任意一个维度。 在第一方面的第一种可能的实施方式中,
所述上下波模块中的单个发送机直接与所述第一光开关单元的单个输入 端口相连; 或者,
在所述发送机为至少两个时, 所述上下波模块中还包括复用器, 所述上下 波模块中的多个发送机通过所述复用器与所述第一光开关单元的单个输入端 口相连;
所述复用器, 用于对所述多个发送机需要发送至同一目标维度的单一波长 形式的光信号进行复用得到波长复用形式的光信号。
结合第一方面, 在第一方面的第二种可能的实施方式中,
所述第一光开关单元的单个输出端口直接与所述上下波模块中的单个接 收机相连; 或者,
在所述接收机为至少两个时, 所述上下波模块中还包括解复用器, 所述第 一光开关单元的单个输出端口通过所述解复用器与所述上下波模块中的多个 接收机相连;
所述解复用器, 用于对所述交叉模块的一个维度的输入端输入至本地维度 的波长复用形式的光信号进行解复用得到单一波长形式的光信号, 并将每个单 一波长形式的光信号分别输入一个接收机。
结合第一方面, 在第一方面的第三种可能的实施方式中,
所述第一光开关单元的单个输出端口直接与所述交叉模块的单个输出端 相连; 或者,
所述上下波模块中还包括复用器, 所述第一光开关单元中的多个输出端口 通过所述复用器与同一维度的输出端相连;
所述复用器, 用于将所述第一光开关单元中的多个输出端口输出至所述同 一维度的多个光信号进行复用得到波长复用形式的光信号。
结合第一方面、 第一方面的第一种可能的实施方式、 第一方面的第二种可 能的实施方式或者第一方面的第三种可能的实施方式, 在第一方面的第四种可 能的实施方式中, 所述光交换架构还包括: 波长转换模块, 所述波长转换模块 与所述交叉模块相连, 或者所述波长转换模块与所述交叉模块和所述上下波模 块均相连;
所述波长转换模块, 用于存在来源于不同维度且需要在同一时刻交换至同 一目标维度的至少两个光信号发生波长冲突时, 将所述波长冲突的至少两个光 信号中的全部进行波长转换得到波长互不冲突的至少两个光信号后输出至所 述目标维度, 或, 将所述波长冲突的至少两个光信号中的部分进行波长转换得 到部分光信号后输出至所述目标维度, 所述部分光信号与未进行波长转换的光 信号之间的波长互不冲突;
所述不同维度包括所述本地维度和所述交叉模块中的各个维度。
结合第一方面的第四种可能的实施方式, 在第一方面的第五种可能的实施 方式中, 所述波长转换模块, 包括: 波长转换单元和与所述波长转换单元相连 的第二光开关单元;
在所述第二光开关单元的输入端口与所述交叉模块中的各个维度的输入 端相连且所述第二光开关单元的输出端口与所述波长转换单元相连时, 所述第 入所述波长转换单元之前交换至所述交叉模块的目标维度;
在所述第二光开关单元的输入端口与所述波长转换单元相连且所述第二 光开关单元的输出端口与所述交叉模块的各个维度的输出端相连时, 所述第二 光开关单元用于将所述波长冲突的至少两个光信号中的全部或者部分从所述 波长转换单元进行波长转换之后交换至所述交叉模块的目标维度;
在所述第二光开关单元的输入端口与所述交叉模块的各个维度的输入端 和所述波长转换单元均相连且所述第二光开关单元的输出端口与所述波长转 换单元和所述交叉模块的各个维度的输出端均相连时, 所述第二光开关单元用 于将所述波长冲突的至少两个光信号中的全部或者部分在进入所述波长转换 单元之前或从所述波长转换单元进行波长转换之后交换至所述交叉模块的目 标维度;
所述波长转换单元, 用于将所述波长冲突的至少两个光信号中的全部进行 波长转换得到波长互不冲突的至少两个光信号, 或, 将所述波长冲突的至少两 个光信号中的部分进行波长转换得到部分光信号, 所述部分光信号与未进行波 长转换的光信号之间的波长互不冲突。
结合第一方面的第五种可能的实施方式, 在第一方面的第六种可能的实施 方式中, 所述波长转换单元, 包括: n个波长转换通路, 每个波长转换通路包 括依次相连的 1个解复用器、 至少 2个波长转换组件和 1个复用器;
每个波长转换通路中的解复用器, 用于在输入至所述波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将所述波长复用形式的 光信号解复用得到单一波长形式的光信号, 并将每个单一波长形式的光信号分 别输入至 1个波长转换组件;
每个波长转换通路中的波长转换组件, 用于将相连的所述解复用器解复用 后的所述单一波长形式的光信号通过预定的波长转换方式转换为波长不冲突 的单一波长形式的光信号;
每个波长转换通路中的复用器, 用于将相连的所述波长转换组件转换后的 所述波长不冲突的单一波长形式的光信号进行复用得到所述波长不冲突的波 长复用形式的光信号;
其中, 所述波长转换方式为光 /电 /光的形式; 或, 所述波长转换方式为光 / 光的形式。
结合第一方面的第五种可能的实施方式, 在第一方面的第七种可能的实施 方式中,
所述第一光开关单元和所述第二光开关单元为同一个光开关;
或,
所述第一光开关单元为一个光开关, 所述第二光开关单元为另一个光开 关;
或,
所述第一光开关单元包括相互独立的两个光开关, 其中, 一个光开关用于 在单次光交换过程中, 将本地维度的一个发送机需要发送至目标维度的光信号 交换至所述目标维度的输出端, 另一个光开关用于在单次光交换过程中, 将所 述交叉模块中的一个维度的输入端输入至本地维度的光信号交换至所述至少 一个接收机中的任意一个进行接收。
结合第一方面的第七种可能的实施方式, 在第一方面的第八种可能的实施 方式中, 所述光开关是基于 MEMS结构的光开关; 或, 所述光开关是基于 PLC 结构的光开关; 或, 所述光开关是基于硅光光交叉结构的光开关。
结合第一方面的第四种可能的实施方式, 在第一方面的第九种可能的实施 方式中, 所述波长转换模块, 包括: 波长转换单元和设置在所述波长转换单元 内部的第二光开关单元;
所述波长转换单元, 用于存在来源于不同维度且需要在同一时刻交换至同 一目标维度的至少两个光信号发生波长冲突时, 将所述波长冲突的至少两个光 信号中的全部进行波长转换得到波长互不冲突的至少两个光信号, 或, 将所述 波长冲突的至少两个光信号中的部分进行波长转换得到部分光信号, 所述部分 光信号与未进行波长转换的光信号之间的波长互不冲突;
所述第二光开关单元, 用于将所述波长冲突的至少两个光信号中的全部或 部分在进入所述波长转换单元中进行波长转换时交换至所述交叉模块的目标 维度。
结合第一方面的第九种可能的实施方式, 在第一方面的第十种可能的实施 方式中, 所述波长转换单元, 包括: n个波长转换通路, 每个波长转换通路包 括 1个解复用器、 至少 2个波长转换组件和 1个复用器, 每个波长转换通路中 的所述解复用器通过所述第二光开关单元与所述至少 2个波长转换组件相连, 所述至少 2个波长转换组件与所述复用器相连;
每个波长转换通路中的解复用器, 用于在输入至所述波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将所述波长复用形式的 光信号解复用得到单一波长形式的光信号;
所述第二光开关单元, 用于将相连的所述解复用器解复用后的所述单一波 长形式的光信号中需要发送至所述交叉模块中同一目标维度的单一波长形式 的光信号交换至与所述目标维度所对应的复用器相连的任意一个波长转换组 件中;
每个波长转换通路中的波长转换组件, 用于将相连的所述第二光开关单元 交换至的所述单一波长形式的光信号通过预定的波长转换方式转换为波长不 冲突的单一波长形式的光信号;
每个波长转换通路中的复用器, 用于将相连的所述波长转换组件转换后的 所述波长不冲突的单一波长形式的光信号进行复用得到所述波长不冲突的波 长复用形式的光信号, 并将所述波长不冲突的波长复用形式的光信号输出至所 述目标维度;
其中, 所述波长转换方式为光 /电 /光的形式; 或, 所述波长转换方式为光 / 光的形式。
结合第一方面的第九种可能的实施方式, 在第一方面的第十一种可能的实 施方式中, 所述波长转换单元, 包括: n个波长转换通路, 每个波长转换通路 包括 1个解复用器、 至少 2个波长转换组件和 1个复用器, 每个波长转换通路 中的所述解复用器与所述至少 2个波长转换组件相连, 所述至少 2个波长转换 组件通过所述第二光开关单元与所述复用器相连; 每个波长转换通路中的解复用器, 用于在输入至所述波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将所述波长复用形式的 光信号解复用得到单一波长形式的光信号;
每个波长转换通路中的波长转换组件, 用于将相连的所述解复用器解复用 后的所述单一波长形式的光信号通过预定的波长转换方式转换为波长不冲突 的单一波长形式的光信号;
所述第二光开关单元, 用于将相连的所述波长转换组件转换后的波长不冲 突的单一波长形式的光信号中需要发送至所述交叉模块中同一目标维度的波 长不冲突的单一波长形式的光信号交换至与所述目标维度所对应的复用器; 每个波长转换通路中的复用器, 用于将相连的所述第二光开关单元交换至 的所述波长不冲突的单一波长形式的光信号进行复用得到所述波长不冲突的 波长复用形式的光信号, 并将所述波长不冲突的波长复用形式的光信号输出至 所述目标维度;
其中, 所述波长转换方式为光 /电 /光的形式; 或, 所述波长转换方式为光 / 光的形式。
结合第一方面、 第一方面的第一种可能的实施方式、 第一方面的第二种可 能的实施方式、 第一方面的第三种可能的实施方式或者第一方面的第四种可能 的实施方式, 在第一方面的第十二种可能的实施方式中, 所述波长转换模块, 包括: n个波长转换通路, 每个波长转换通路包括依次相连的 1个解复用器、 至少 2个光电转换单元、 电开关、 至少 2个电光转换单元和 1个复用器;
每个波长转换通路中的解复用器, 用于在输入至所述波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将所述波长复用形式的 光信号解复用得到单一波长形式的光信号;
每个波长转换通路中的光电转换单元, 用于将相连的所述解复用器解复用 后的所述单一波长形式的光信号转换为对应的电信号;
所述电开关, 用于将相连的所述光电转换单元转换后的电信号中需要发送 至所述交叉模块中同一目标维度的电信号交换至与所述目标维度所对应的复 用器相连的电光转换单元中;
每个波长转换通路中的电光转换单元, 用于将相连的所述电开关交换至的 所述电信号转换为波长不冲突的单一波长形式的光信号;
每个波长转换通路中的复用器, 用于将相连的所述电光转换单元转换到的 所述波长不冲突的单一波长形式的光信号进行复用得到所述波长不冲突的波 长复用形式的光信号, 并将所述波长不冲突的波长复用形式的光信号输出至所 述目标维度。
结合第一方面的第五种可能的实施方式, 在第一方面的第十三种可能的实 施方式中, 在所述第二光开关单元的输入端口与所述交叉模块的各个维度的输 入端和所述波长转换单元均相连且所述第二光开关单元的输出端口与所述波 长转换单元和所述交叉模块的各个维度的输出端均相连时, 所述第二光开关单 元的输入端口和输出端口之间还设置有至少 1条延迟线,
所述波长转换单元, 包括: n个波长转换通路, 每个波长转换通路包括依 次相连的至少 2个波长转换组件和 1个复用器, 或者, 每个波长转换通路包括 依次相连的 1个解复用器、 至少 2个波长转换组件和 1个复用器;
所述第二光开关单元, 用于在所述交叉模块中的单个输入端交换至目标维 度的发生波长冲突的光信号为单一波长形式的光信号时, 将所述发生波长冲突 的单一波长形式的光信号直接交换至所述波长转换组件; 或者, 用于在所述交 叉模块中的单个输入端交换至目标维度中发生波长冲突的光信号为波长复用 形式的光信号且存在未被占用的所述解复用器时, 将所述发生波长冲突的波长 复用形式的光信号交换至未被占用的所述解复用器; 或者, 用于在所述交叉模 块中的单个输入端交换至目标维度中发生波长冲突的光信号为波长复用形式 的光信号且所述解复用器全被占用时, 通过所述延迟线将所述发生波长冲突的 波长复用形式的光信号延迟至存在所述解复用器解除占用时, 交换至解除占用 的所述解复用器;
每个解复用器, 用于将相连的所述第二光开关单元交换至的所述发生波长 冲突的波长复用形式的光信号进行解复用得到单一波长形式的光信号;
每个波长转换组件, 用于将相连的所述第二光开关单元交换至的或者相连 的所述解复用器解复用后的所述单一波长形式的光信号通过预定的波长转换 方式转换为波长不冲突的单一波长形式的光信号;
每个复用器, 用于将相连的所述波长转换组件转换后的所述波长不冲突的 单一波长形式的光信号进行复用得到所述波长不冲突的波长复用形式的光信 其中, 所述波长转换方式为光 /电 /光的形式; 或, 所述波长转换方式为光 / 光的形式。 结合第一方面、 第一方面的第一种可能的实施方式、 第一方面的第二种可 能的实施方式、 第一方面的第三种可能的实施方式、 第一方面的第四种可能的 实施方式、 第一方面的第五种可能的实施方式、 第一方面的第六种可能的实施 方式、第一方面的第七种可能的实施方式、第一方面的第八种可能的实施方式、 第一方面的第九种可能的实施方式、 第一方面的第十种可能的实施方式、 第一 方面的第十一种可能的实施方式、 第一方面的第十二种可能的实施方式或者第 一方面的第十三种可能的实施方式, 在第一方面的第十四种可能的实施方式 中, 所述交叉模块的每个维度的输入端分出一部分端口与其它维度的输出端相 连; 用于将所述交叉模块各维度输入端的光信号交换至所述交叉模块的目标维 度的输出端。
结合第一方面、 第一方面的第一种可能的实施方式、 第一方面的第二种可 能的实施方式、 第一方面的第三种可能的实施方式、 第一方面的第四种可能的 实施方式、 第一方面的第五种可能的实施方式、 第一方面的第六种可能的实施 方式、第一方面的第七种可能的实施方式、第一方面的第八种可能的实施方式、 第一方面的第九种可能的实施方式、 第一方面的第十种可能的实施方式、 第一 方面的第十一种可能的实施方式、 第一方面的第十二种可能的实施方式、 第一 方面的第十三种可能的实施方式或者第一方面的第十四种可能的实施方式, 在 第一方面的第十五种可能的实施方式中,
所述交叉模块的每个输入端为波长选择开关且每个输出端也为波长选择 开关;
或, 所述交叉模块的每个输入端为分离器且每个输出端为波长选择开关; 或, 所述交叉模块的每个输入端为波长选择开关且每个输出端为合波器; 或, 所述交叉模块的每个输入端为任意波长滤波器且每个输出端为波长选 择开关;
或, 所述交叉模块的每个输入端为任意波长滤波器且每个输出端为合波 器。 本发明实施例提供的技术方案带来的有益效果是:
通过在光交换架构中添加了第一光开关单元, 通过第一光开关单元将本地 维度的一个发送机需要发送至目标维度的光信号交换至目标维度的输出端, 和 /或,将交叉模块中的一个维度的输入端输入至本地维度的光信号交换至至少一 个接收机中的任意一个进行接收; 解决了背景技术提供的光交换架构不满足波 长无关性和方向无关性的问题; 由于第一光开关单元的输入端口和输出端口对 波长选择不固定, 同一输入端口或者输出端口能够收发不同波长的光信号, 所 以达到了使光交换架构满足波长无关性的效果; 另外, 由于第一光开关单元能 够将来自于同一发送机的光信号交换至不同维度, 和 /或, 将来自于同一维度的 光信号交换至不同的接收机, 所以达到了使光交换架构满足方向无关性且波长 调度更灵活的效果。
在第一种可能的实现方式中, 通过将第一光开关单元的单个输入端口通过 复用器与多个发送机相连, 将需要上载至同一目标维度的多个单一波长形式的 光信号复用成一路波长复用形式的光信号后再上载至目标维度, 使得第一光开 关单元中与发送机相连的输入端口以及相应的输出端口的数量等于或略大于 交叉模块中的维度数即可, 大大減少了对第一光开关单元的端口数量的需求。
在第二种可能的实施方式中, 通过将第一光开关单元中的输出端口通过解 复用器与接收机相连, 将需要下载到本地维度的波长复用形式的光信号解复用 为若干个单一波长形式的光信号后再下载到本地维度的不同的接收机中, 能够 对接收到的光信号按照单一波长的粒度来接收, 使得波长调度更加灵活。
在第三种可能的实现方式中, 通过将第一光开关单元的多个输出端口通过 复用器与交叉模块中一个维度的输出端相连, 将需要上载至同一目标维度的多 个单一波长形式的光信号复用成一路波长复用形式的光信号后再上载至目标 维度的输出端, 使得交叉模块中一个维度的输出端中与第一光开关单元相连的 上波端口的数量为 1个或者略大于 1个即可, 大大減少了对交叉模块中的输出 端的端口数量的需求。
在第四种可能的实施方式中, 通过在光交换架构中添加了波长转换模块, 由于波长转换模块能够将来自于不同维度的波长冲突的光信号中的全部或者 部分进行波长转换得到波长互不冲突的光信号, 所以使得光交换架构在满足波 长无关性和方向无关性的基础上, 还满足了波长冲突无关性; 解决了背景技术 提供的光交换架构完全无法实现 CDC 的交换特性的问题; 达到了使光交换架 构完全实现 CDC的交换特性, 且波长调度更灵活, 波长利用率更高的效果。
在第五种可能的实现方式中, 通过改变第二光开关单元与波长转换单元之 间的连接方式, 使得整个光交换架构各个模块、 单元以及器件之间的连接方式 更加灵活多变。 在第七种可能的实施方式中, 通过将第一光开关单元和第二光开关单元的 拆分与整合, 以及对第一光开关单元的拆分与整合, 对光开关的端口数量和各 种不同的实现方式做了充分的考虑。在单个光开关的端口数量较多时可以采用 第一光开关单元和第二光开关单元整合的方案; 在单个光开关的端口数量较少 时或者需要后续扩展时, 可以采用第一光开关单元和第二光开关单元拆分的方 案, 甚至还可以采用将第一光开关单元继续拆分为两个光开关的方案, 实现了 光交换架构对不同端口数量的光开关的适用性以及后续扩容升级的便捷性, 而 不会给光开关带来端口上的压力。
在第九至第十二种可能的实施方式中, 与第五种可能的实现方式中在发生 波长冲突的光信号是波长复用形式的光信号时, 只能够实现波长复用形式的光 信号粒度的整体调度不同的是, 通过将第二光开关单元或者电开关设置于波长 转换模块的解复用器和复用器之间, 在完成波长转换的同时实现在单一波长形 式的光信号粒度进行任意调度的功能, 进一步提高了波长调度的灵活性。
在第十三种可能的实施方式中, 通过在第二光开关单元中加入延迟线, 满 足了在多个维度同时发生波长冲突时仍能实现光交换的效果, 并且減少了波长 转换模块中解复用器的数量, 节约成本。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以才艮据这些附图获得其他的附图。
图 1是现有的一种三维的 ROADM光交换架构的结构示意图;
图 2是本发明一个实施例提供的光交换架构的结构示意图;
图 3是本发明另一实施例提供的光交换架构的结构示意图;
图 4是本发明另一实施例提供的光交换架构的结构示意图;
图 5是本发明另一实施例提供的光交换架构的结构示意图;
图 6是本发明另一实施例提供的光交换架构的结构示意图;
图 7A是本发明另一实施例提供的光交换架构的结构示意图;
图 7B是本发明另一实施例提供的光交换架构的结构示意图;
图 7C是本发明另一实施例提供的光交换架构的结构示意图; 图 8A是本发明另一实施例提供的光交换架构的结构示意图; 图 8B是本发明一个实施例提供的光交换架构的波长转换模块的结构示意 图;
图 8C是本发明另一实施例提供的光交换架构的波长转换模块的结构示意 图;
图 8D是本发明部分实施例提供的光交换架构中的波长转换组件所涉及的 结构示意图;
图 8E是本发明部分实施例提供的光交换架构中的波长转换组件所涉及的 结构示意图;
图 8F 是本发明另一实施例提供的光交换架构的波长转换模块的结构示意 图;
图 9是本发明另一实施例提供的光交换架构的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。
参考图 2, 其示出了本发明一个实施例提供的光交换架构的结构示意图。 该光交换架构包括: 交叉模块 20以及与交叉模块 20相连的上下波模块 40。
交叉模块 20, 包括 n组属于不同维度的输入端和输出端, n≥2。
上下波模块 40, 包括与输入端和输出端相连的第一光开关单元 410、 与第 一光开关单元 410相连的至少一个发送机 420和与第一光开关单元 410相连的 至少一个接收机 430。
第一光开关单元 410, 用于在单次光交换过程中, 将本地维度的一个发送 机 420需要发送至目标维度的光信号交换至目标维度的输出端; 和 /或,在单次 光交换过程中, 将交叉模块 20 中的一个维度的输入端输入至本地维度的光信 号交换至至少一个接收机 430中的任意一个进行接收。
其中, 目标维度为交叉模块 20中的任意一个维度。
综上, 本实施例提供的光交换架构解决了背景技术提供的光交换架构不满 足波长无关性和方向无关性的问题; 由于第一光开关单元的输入端口和输出端 口对波长选择不固定, 同一输入端口或者输出端口能够收发不同波长的光信 号, 所以达到了使光交换架构满足波长无关性的效果; 另外, 由于第一光开关 单元能够将来自于同一发送机的光信号交换至不同维度, 和 /或, 将来自于同一 维度的光信号交换至不同的接收机, 所以达到了使光交换架构满足方向无关性 且波长调度更灵活的效果。 参考图 3, 其示出了本发明另一实施例提供的光交换架构的结构示意图。 该光交换架构包括: 交叉模块 20、 上下波模块 40和波长转换模块 60。
交叉模块 20, 包括 n组属于不同维度的输入端和输出端, n≥2。
交叉模块 20与上下波模块 40相连。
上下波模块 40, 包括与输入端和输出端相连的第一光开关单元 410、 与第 一光开关单元 410相连的至少一个发送机 420和与第一光开关单元 410相连的 至少一个接收机 430。
第一光开关单元 410, 用于在单次光交换过程中, 将本地维度的一个发送 机 420需要发送至目标维度的光信号交换至目标维度的输出端; 和 /或,在单次 光交换过程中, 将交叉模块 20 中的一个维度的输入端输入至本地维度的光信 号交换至至少一个接收机 430中的任意一个进行接收。
其中, 目标维度为交叉模块 20中的任意一个维度。
波长转换模块 60,用于存在来源于不同维度且需要在同一时刻交换至同一 目标维度的至少两个光信号发生波长冲突时, 将波长冲突的至少两个光信号中 的全部进行波长转换得到波长互不冲突的至少两个光信号后输出至目标维度, 或, 将波长冲突的至少两个光信号中的部分进行波长转换得到部分光信号后输 出至目标维度, 部分光信号与未进行波长转换的光信号之间的波长互不冲突。
如图 3所示, 当波长转换模块 60与交叉模块 20相连时, 不同维度包括交 叉模块 20中的各个维度; 当波长转换模块 60与交叉模块 20和上下波模块 40 均相连时(图中未示出),不同维度包括本地维度和交叉模块 20中的各个维度。
综上, 本实施例提供的光交换架构, 通过将第一光开关单元的单个输入端 口通过复用器与多个发送机相连, 将需要上载至同一目标维度的多个单一波长 形式的光信号复用成一路波长复用形式的光信号后再上载至目标维度, 使得第 一光开关单元中与发送机相连的输入端口以及相应的输出端口的数量等于或 略大于交叉模块中的维度数即可, 大大減少了对第一光开关单元的端口数量的 需求。 参考图 4, 其示出了本发明另一实施例提供的光交换架构的结构示意图。 该光交换架构, 包括: 交叉模块 20、 与交叉模块 20相连的上下波模块 40以及 波长转换模块 60。
交叉模块 20, 包括 n组属于不同维度的输入端和输出端, n≥2。
交叉模块 20 的每个维度的输入端分出一部分端口与其它所有维度的输出 端相连, 用于将交叉模块 20各个维度输入端的光信号交换至交叉模块 20的目 标维度的输出端, 实现不同维度间的波长交换。 交叉模块 20 的每个维度的输 入端分出另一部分端口与第一光开关单元 410的输入端口 411相连, 用于将交 叉模块 20 中的光信号下载到本地维度进行接收, 该另一部分端口称为下波端 口; 交叉模块 20的每个维度的输入端还分出一部分端口与波长转换模块 60相 连, 该部分端口用于将交叉模块 20 中发生波长冲突的光信号下载到本地维度 进行波长转换, 该部分端口也称为下波端口。 因此, 交叉模块 20 的每个维度 的输入端的下波端口是指将交叉模块 20 中的光信号下载到本地维度进行接收 或者进行波长转换的端口。
交叉模块 20 的每个维度的输出端分出一部分端口与第一光开关单元 410 的输出端口 412 相连, 该部分端口用于将本地维度的光信号上载至交叉模块 20 , 该部分端口称为上波端口; 交叉模块 20 的每个维度的输出端分出另一部 分端口与波长转换模块 60相连, 该另一部分端口用于将经波长转换后的光信 号上载至交叉模块 20, 该另一部分端口也称为上波端口。 因此, 交叉模块 20 的每个维度的输出端的上波端口是指将本地维度的光信号或者经波长转换后 的光信号上载至交叉模块 20的端口。
上下波模块 40, 包括与输入端和输出端相连的第一光开关单元 410、 与第 一光开关单元 410相连的至少一个发送机 420和与第一光开关单元 410相连的 至少一个接收机 430。
第一光开关单元 410, 用于在单次光交换过程中, 将本地维度的一个发送 机 420需要发送至目标维度的光信号交换至目标维度的输出端; 和 /或,在单次 光交换过程中, 将交叉模块 20 中的一个维度的输入端输入至本地维度的光信 号交换至至少一个接收机 430中的任意一个进行接收。 其中, 目标维度为交叉 模块 20中的任意一个维度。
第一光开关单元 410的一部分输入端口 411 与交叉模块 20的各个维度的 输入端相连; 另一部分输入端口 411与本地维度的发送机 420相连。 第一光开 关单元 410的一部分输出端口 412与交叉模块 20的各个维度的输出端相连, 另一部分输出端口 412与本地维度的接收机 430相连。
波长转换模块 60,用于存在来源于不同维度且需要在同一时刻交换至同一 目标维度的至少两个光信号发生波长冲突时, 将波长冲突的至少两个光信号中 的全部进行波长转换得到波长互不冲突的至少两个光信号后输出至目标维度, 或, 将波长冲突的至少两个光信号中的部分进行波长转换得到部分光信号后输 出至目标维度, 部分光信号与未进行波长转换的光信号之间的波长互不冲突。
在本实施例中, 以 n=3来举例说明, 也即本实施例提供一包含第一维度、 第二维度和第三维度的三维光交换架构。 结合参考图 4,假设第一维度为北向、 第二维度为西向且第三维度为东向。当一路 DWDM(Dense Wavelength Division Multiplexing, 密集波分复用) 信号波长进入该光交换节点时, 可以通过交叉模 块 20 中不同维度间的输入端和输出端之间的互联, 直接把信号波长交换到目 标维度上。
当该路 DWDM信号波长中有些波长需要下载到本地维度时, 则可以通过 交叉模块 20 中各维度的输入端中的下波端口将需要下载到本地维度的波长下 载到第一光开关单元 410上, 通过第一光开关单元 410的交换之后, 由任意不 同的接收机 430进行接收。 同理, 从本地维度上载的波长由发送机 420发出, 再通过第一光开关单元 410 的交换之后, 可以上载到交叉模块 20 中的目标维 度的输出端, 该目标维度为交叉模块 20中的任意一个维度。
当该路 DWDM信号波长进入该光交换节点时, 该路 DWDM信号波长中 某些波长与其它路的 DWDM信号波长发生了波长冲突时, 那么该路 DWDM 信号波长中所有发生波长冲突的光信号通过各维度的输出端中用于波长转换 的下波端口, 进入波长转换模块 60进行波长转换, 然后再交换到交叉模块 20 中的目标维度的输出端。 以该三维光交换架构为例, 当一路 80 波的光信号从 东向进入时, 其中, 波长 λ1, λ6, λ15的光信号需要交换到北向, 但是此时西 向的波长为 λ1, λ6, λ15的光信号也需要交换到北向, 那么此时就发生了波长 冲突。 东向和西向中的一个维度的波长为 λ1, λ6, λ15的光信号不能直接交换 到北向,必须经过波长转换模块 60转换成波长不冲突的光信号,如:波长为 λ2, λ7, λ16 的光信号后再交换到北向。 当然, 在另一种可能的实现方式中, 也可 以同时将东向和西向两个维度的波长为 λ1, λ6, λ15的光信号均进行波长转换。 但从成本和实现复杂度考虑, 只需将一个维度的波长为 λ1, λ6, λ15的光信号 进行波长转换即可。
需要说明的是, 如图 4所示, 当波长转换模块 60与交叉模块 20相连时, 波长转换模块 60能够将来源于交叉模块 20中的各个维度的发生波长冲突的光 信号中的全部或者部分进行波长转换得到波长互不冲突的光信号。 另外, 由于 除了交叉模块 20 的维度间的光信号可能发生波长冲突之外, 本地维度的各个 发送机发送的光信号也有可能发生波长冲突, 本地维度与交叉模块 20 的维度 间的光信号也有可能发生波长冲突。 为了解决上述问题, 可以将波长转换模块 60 与交叉模块 20 和上下波模块 40 均相连 (图中未示出), 波长转换模块 60 号中的全部或者部分进行波长转换得到波长互不冲突的光信号。 图 4仅以波长 转换模块 60与交叉模块 20相连来举例说明, 对此不作具体限定。
还需要说明的是, 本实施例仅以光交换架构同时包括交叉模块 20、 上下波 模块 40和波长转换模块 60来举例说明, 本实施例为较为优选的实施例。 在其 它可能的实施例中, 光交换架构也可以只包括交叉模块 20和上下波模块 40, 对此不作具体限定。
本实施例提供的光交换架构, 由于第一光开关单元 410的输入端口 411和 输出端口 412对波长的选择不固定, 比如同一个输入端口 411能够收发波长为 λΐ 的光信号, 也能够收发波长为 λ2的光信号, 因此本实施例提供的光交换架 构满足波长无关性。 由于第一光开关单元 410能够将各个发送机发送 420的光 信号交换至交叉模块 20的任意维度的输出端; 还能够将交叉模块 20的任意维 度的输入端输入至本地维度的光信号交换至 η个接收机 430中的任意一个进行 接收, 因此本实施例提供的光交换架构满足方向无关性。 由于波长转换模块 60 将交叉模块 20 的各个维度的输入端交换至目标维度的发生波长冲突的光信号 转换为波长互不冲突的光信号后, 输出至交叉模块 20 的目标维度, 因此本实 施例提供的光交换架构满足波长冲突无关性。
综上, 本实施例提供的光交换架构完全实现了 CDC 的交换特性, 解决了 背景技术提供的光交换架构完全无法实现 CDC 的交换特性的问题; 达到了使 光交换架构完全实现 CDC 的交换特性, 且波长调度更灵活, 波长利用率更高 的效果。 在本发明实施例中, 上下波模块 40 还包括另外两种实现方式。 下面两个 实施例中, 分别对上下波模块 40 的另外两种不同实现方式进行详细介绍和说 明。
参考图 5, 其示出了本发明另一实施例提供的光交换架构的结构示意图。 本实施例中, 以 n=3来举例说明, 也即本实施例提供一包含第一维度、 第二维 度和第三维度的三维光交换架构。 结合参考图 5, 假设第一维度为北向、 第二 维度为西向且第三维度为东向。 该光交换架构, 包括: 交叉模块 20、 与交叉模 块 20相连的上下波模块 40以及波长转换模块 60。
交叉模块 20, 包括 3组属于不同维度的输入端 210和输出端 220。 其中, 输入端 210和输出端 220的连接方式可以参考图 4所示实施例。
上下波模块 40, 包括与输入端 210和输出端 220相连的第一光开关单元
410、 与第一光开关单元 410相连的至少一个发送机 420和与第一光开关单元 410相连的至少一个接收机 430。
与图 4所示实施例不同的是, 在本实施例中, 上下波模块 40还包括 3个 复用器 440和 3个解复用器 450。
第一光开关单元 410的一部分输入端口 411 直接与本地维度的发送机 420 相连, 第一光开关单元 410的一部分输出端口 412与 3个复用器 440相连。 复 用器 440用于将第一光开关单元 410中的多个输出端口 412输出至同一维度的 多个光信号进行复用得到波长复用形式的光信号。 其中, 第一光开关单元 410 中的多个输出端口为与 3个复用器 440相连的所有输出端口 412中的一部分, 且该部分输出端口 412对应于同一维度。 在实际应用中, 可以根据每个维度不 同的波长需求量,分配不同数量的输出端口 412与对应维度的复用器 440相连。
比如, 当本地维度有三个发送机 420且该三个发送机 420分别发送波长为 λ1, λ2和 λ3的单一波长形式的光信号进入交叉模块 20的北向输出端 220时。 信号流向可以表示为: 本地的三个发送机 420分别发送波长为 λ1, λ2和 λ3的 单一波长形式的光信号→波长为 λ1, λ2和 λ3的单一波长形式的光信号经过第 一光开关单元 410的输入端口 411→波长为 λ1, λ2和 λ3的单一波长形式的光 信号经过第一光开关单元 410的输出端口 412→与北向输出端 220相连的复用 器 440将波长为 λ1, λ2和 λ3的单一波长形式的光信号复用为一路波长复用形 式的光信号→一路波长复用形式的光信号进入北向输出端 220。
第一光开关单元 410的另一部分输入端口 411 与交叉模块 20 的各个维度 的输入端 210相连, 第一光开关单元 410中的 3个输出端口 412分别与 3个解 复用器 450相连, 每个解复用器 450还与至少两个接收机 430相连。 解复用器 450用于对交叉模块 20的一个维度的输入端 210输入至本地维度的波长复用形 式的光信号进行解复用得到单一波长形式的光信号, 并将每个单一波长形式的 光信号分别输入一个接收机 430。 换句话说, 解复用器 450用于将交叉模块 20 中每个维度的需要下载到本地维度的波长复用形式的光信号进行解复用得到 单一波长形式的光信号后再下载到本地维度的不同的接收机 430中。
比如, 一路包含波长为 λ1, λ2和 λ3的波长复用形式的光信号经过交叉模 块 20 的东向输入端 210输入至本地维度时。 信号流向可以表示为: 一路包含 波长为 λ1, λ2和 λ3的波长复用形式的光信号进入东向输入端 210→—路包含 波长为 λ1, λ2和 λ3的波长复用形式的光信号经过第一光开关单元 410的输入 端口 411→一路包含波长为 λ1, λ2和 λ3 的波长复用形式的光信号经过第一光 开关单元 410的输出端口 412→—路包含波长为 λ1, λ2和 λ3的波长复用形式 的光信号经解复用器 450解复用为三路波长分别为 λ1, λ2和 λ3的单一波长形 式的光信号→三路波长分别为 λ1, λ2和 λ3的单一波长形式的光信号由本地维 度 3个不同的接收机 430接收。
波长转换模块 60,用于存在来源于不同维度且需要在同一时刻交换至同一 目标维度的至少两个光信号发生波长冲突时, 将波长冲突的至少两个光信号中 的全部进行波长转换得到波长互不冲突的至少两个光信号后输出至目标维度, 或, 将波长冲突的至少两个光信号中的部分进行波长转换得到部分光信号后输 出至目标维度, 部分光信号与未进行波长转换的光信号之间的波长互不冲突。
需要说明的是, 本实施例仅以光交换架构同时包括交叉模块 20、 上下波模 块 40和波长转换模块 60来举例说明, 本实施例为较为优选的实施例。 在其它 可能的实施例中, 光交换架构也可以只包括交叉模块 20和上下波模块 40, 对 此不作具体限定。
综上所述, 本实施例提供的光交换架构, 通过在光交换架构中添加了第一 光开关单元, 通过第一光开关单元将本地维度的一个发送机需要发送至目标维 度的光信号交换至目标维度的输出端, 和 /或, 将交叉模块中的一个维度的输入 端输入至本地维度的光信号交换至至少一个接收机中的任意一个进行接收; 解 决了背景技术提供的光交换架构不满足波长无关性和方向无关性的问题; 由于 第一光开关单元的输入端口和输出端口对波长选择不固定, 同一输入端口或者 输出端口能够收发不同波长的光信号, 所以达到了使光交换架构满足波长无关 性的效果; 另外, 由于第一光开关单元能够将来自于同一发送机的光信号交换 至不同维度, 和 /或, 将来自于同一维度的光信号交换至不同的接收机, 所以达 到了使光交换架构满足方向无关性且波长调度更灵活的效果。
本实施例提供的光交换架构, 通过将第一光开关单元中的输出端口通过解 复用器与接收机相连, 将需要下载到本地维度的波长复用形式的光信号解复用 为若干个单一波长形式的光信号后再下载到本地维度的不同的接收机中, 能够 对接收到的光信号按照单一波长的粒度来接收, 使得波长调度更加灵活。
本实施例提供的光交换架构, 通过将第一光开关单元的多个输出端口通过 复用器与交叉模块中一个维度的输出端相连, 将需要上载至同一目标维度的多 个单一波长形式的光信号复用成一路波长复用形式的光信号后再上载至目标 维度的输出端, 使得交叉模块中一个维度的输出端中与第一光开关单元相连的 上波端口的数量为 1个或者略大于 1个即可, 大大減少了对交叉模块中的输出 端的端口数量的需求。 参考图 6, 其示出了本发明另一实施例提供的光交换架构的结构示意图。 本实施例中, 仍然以 n=3来举例说明, 也即本实施例提供一包含第一维度、 第 二维度和第三维度的三维光交换架构。 结合参考图 6, 假设第一维度为北向、 第二维度为西向且第三维度为东向。 该光交换架构, 包括: 交叉模块 20、 与交 叉模块 20相连的上下波模块 40以及波长转换模块 60。
交叉模块 20, 包括 3组属于不同维度的输入端 210和输出端 220。 其中, 输入端 210和输出端 220的连接方式可以参考图 4所示实施例。
上下波模块 40, 包括与输入端 210和输出端 220相连的第一光开关单元 410、 与第一光开关单元 410相连的至少一个发送机 420和与第一光开关单元 410相连的至少一个接收机 430。 上下波模块 40, 还包括 3个复用器 440和 3 个解复用器 450。
但与图 5所示实施例不同的是, 第一光开关单元 410中用于接收各个发送 机 420发送的光信号的输入端口 411并没有直接和发送机 420相连, 而是单个 输入端口 411通过一个复用器 440与多个发送机 420相连。 复用器 440用于对 多个发送机 420发送至同一目标维度的单一波长形式的光信号进行复用得到波 长复用形式的光信号。 同时, 由于第一光开关单元 410的输入端口 411 已经通 过复用器 440将发送机 420发送至同一目标维度的单一波长形式的光信号进行 了复用, 所以第一光开关单元 420的输出端口 412就直接和交叉模块 20 中各 个维度的输出端 220相连。
比如, 当本地维度有三个发送机 420且该三个发送机 420分别发送波长为 λ1, λ2和 λ3的单一波长形式的光信号进入交叉模块 20的北向输出端 220时。 信号流向可以表示为:本地维度的三个发送机 420分别发送波长为 λ1,λ2和 λ3 的单一波长形式的光信号→与三个发送机 420相连的复用器 440将波长为 λΐ, λ2和 λ3 的单一波长形式的光信号复用为一路波长复用形式的光信号→一路波 长复用形式的光信号经过第一光开关单元 410的输入端口 411→一路波长复用 形式的光信号经过第一光开关单元 410的输出端口 412→—路波长复用形式的 光信号进入北向输出端 220。
波长转换模块 60,用于存在来源于不同维度且需要在同一时刻交换至同一 目标维度的至少两个光信号发生波长冲突时, 将波长冲突的至少两个光信号中 的全部进行波长转换得到波长互不冲突的至少两个光信号后输出至目标维度, 或, 将波长冲突的至少两个光信号中的部分进行波长转换得到部分光信号后输 出至目标维度, 部分光信号与未进行波长转换的光信号之间的波长互不冲突。
需要说明的是, 本实施例仅以光交换架构同时包括交叉模块 20、 上下波模 块 40和波长转换模块 60来举例说明, 本实施例为较为优选的实施例。 在其它 可能的实施例中, 光交换架构也可以只包括交叉模块 20和上下波模块 40, 对 此不作具体限定。
综上所述, 本实施例提供的光交换架构, 通过第一光开关单元将本地维度 的一个发送机需要发送至目标维度的光信号交换至目标维度的输出端, 和 /或, 将交叉模块中的一个维度的输入端输入至本地维度的光信号交换至至少一个 接收机中的任意一个进行接收; 解决了背景技术提供的光交换架构不满足波长 无关性和方向无关性的问题; 由于第一光开关单元的输入端口和输出端口对波 长选择不固定, 同一输入端口或者输出端口能够收发不同波长的光信号, 所以 达到了使光交换架构满足波长无关性的效果; 另外, 由于第一光开关单元能够 将来自于同一发送机的光信号交换至不同维度, 和 /或, 将来自于同一维度的光 信号交换至不同的接收机, 所以达到了使光交换架构满足方向无关性且波长调 度更灵活的效果。
本实施例提供的光交换架构, 通过将第一光开关单元的单个输入端口通过 复用器与多个发送机相连, 将需要上载至同一目标维度的多个单一波长形式的 光信号复用成一路波长复用形式的光信号后再上载至目标维度, 使得第一光开 关单元中与发送机相连的输入端口以及相应的输出端口的数量等于或略大于 交叉模块中的维度数即可, 大大減少了对第一光开关单元的端口数量的需求。 在实际应用中, 可以根据需求选择图 5或者图 6所示的不同的实施例。 在本发明实施例中, 波长转换模块 60 包括两类实现方式。 在第一类实现 方式中, 波长转换模块 60 包括波长转换单元 610和第二光开关单元 620两个 独立的单元, 且波长转换单元 610和第二光开关单元 620之间有三种不同的连 接方式; 在第二类实现方式中, 波长转换模块 60 中不包括独立的第二光开关 单元 620, 而将第二光开关单元 620直接整合至波长转换单元 610的内部。 在 图 7A/7B/7C所示的实施例中,将对波长转换模块 60的第一类实现方式进行详 细介绍和说明。 在图 8A/8B/8C/8F所示的实施例中, 将对波长转换模块 60 的 第二类实现方式进行详细介绍和说明。
参考图 7A/7B/7C , 其示出了本发明另一实施例提供的光交换架构的结构 示意图。 该光交换架构, 包括: 交叉模块 20、 与交叉模块 20相连的上下波模 块 40以及波长转换模块 60。
交叉模块 20, 包括 n组属于不同维度的输入端 210和输出端 220。 交叉模 块 20用于将交叉模块 20 中各个维度输入端 210 的光信号交换至交叉模块 20 的目标维度的输出端 220。 其中, 输入端 210和输出端 220的连接方式可以参 考图 4所示实施例。
上下波模块 40, 包括与输入端 210和输出端 220相连的第一光开关单元 410、 与第一光开关单元 410相连的至少一个发送机 420和与第一光开关单元 410相连的至少一个接收机 430。
第一光开关单元 410用于在单次光交换过程中, 将本地维度的一个发送机 420需要发送至目标维度的光信号交换至目标维度的输出端; 和 /或, 在单次光 交换过程中, 将交叉模块 20 中的一个维度的输入端输入至本地维度的光信号 交换至至少一个接收机 430中的任意一个进行接收。 其中, 目标维度为交叉模 块 20 中的任意一个维度。 其中, 第一光开关单元 410、 至少一个发送机 420 和至少一个接收机 430的连接方式可以参考图 4/图 5/图 6所示实施例, 或者其 它任何的连接方式。
波长转换模块 60,用于存在来源于不同维度且需要在同一时刻交换至同一 目标维度的至少两个光信号发生波长冲突时, 将波长冲突的至少两个光信号中 的全部进行波长转换得到波长互不冲突的至少两个光信号后输出至目标维度, 或, 将波长冲突的至少两个光信号中的部分进行波长转换得到部分光信号后输 出至目标维度, 部分光信号与未进行波长转换的光信号之间的波长互不冲突。
波长转换模块 60, 包括: 波长转换单元 610和与波长转换单元 610相连的 第二光开关单元 620。
波长转换单元 610, 用于将波长冲突的至少两个光信号中的全部进行波长 转换得到波长互不冲突的至少两个光信号, 或, 将波长冲突的至少两个光信号 中的部分进行波长转换得到部分光信号, 该部分光信号与未进行波长转换的光 信号之间的波长互不冲突。
具体来讲, 波长转换单元 610, 包括: n 个波长转换通路, 每个波长转换 通路包括依次相连的 1个解复用器 613、 至少 2个波长转换组件 614和 1个复 用器 615。
每个波长转换通路中的解复用器 613, 用于在输入至波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将波长复用形式的光信 号解复用得到单一波长形式的光信号, 并将每个单一波长形式的光信号分别输 入至 1个波长转换组件 614。
每个波长转换通路中的波长转换组件 614, 用于将相连的解复用器 613解 复用后的单一波长的光信号通过预定的波长转换方式转换为波长不冲突的单 一波长形式的光信号。 波长转换的方式可以是光 /电 /光的形式, 也可以是光 /光 的形式。 光 /电 /光的形式是指, 发生波长冲突的光信号先进行光电转换得到电 信号, 再根据实际需求, 驱动可调激光器, 把电信号调制到对应的其他波长得 到所需的波长不冲突的光信号。 波长转换也可以用光 /光转换的形式来实现。例 如: 通过利用 SOA ( Semiconductor Optical Amplifier, 半导体光放大器) 的非 线性效应, 可以把发生波长冲突的光信号直接转换成所需的波长不冲突的光信 号。
每个波长转换通路中的复用器 615, 用于将相连的波长转换组件 614转换 后的波长不冲突的单一波长形式的光信号进行复用得到波长不冲突的波长复 用形式的光信号。 复用器 615能够把若干路单一波长形式的光信号复用为一路 包含多个波长的波长复用形式的光信号。
第二光开关单元 620 与波长转换单元 610 之间有如下三种不同的连接方 式:
参考图 7A,图 7A示出了第二光开关单元 620和波长转换单元 610的第一 种连接方式。 波长转换单元 610的每个解复用器 613的输入端口分别与交叉模 块 20 中的一个维度的输入端 210相连。 第二光开关单元 620 的输入端口 621 与波长转换单元 610中复用器 615的输出端口相连、 第二光开关单元 620的输 出端口 622与交叉模块 20的各个维度的输出端 220相连。第二光开关单元 620 用于将波长冲突的至少两个光信号中的全部或者部分从波长转换单元 610进行 波长转换之后交换至交叉模块 20的目标维度。
参考图 7B, 图 7B示出了第二光开关单元 620和波长转换单元 610的第二 种连接方式。 第二光开关单元 620的输入端口 621 与交叉模块 20 中的各个维 度的输入端 210相连且第二光开关单元 620 的输出端口 622 与波长转换单元 610 中的解复用器 613 的输入端口相连, 波长转换单元 610 的每个复用器 615 分别与交叉模块 20 中的一个维度的输出端 220相连。 第二光开关单元 620用 于将波长冲突的至少两个光信号中的全部或者部分在进入波长转换单元 610之 前交换至交叉模块 20的目标维度。
参考图 7C, 图 7C示出了第二光开关单元 620和波长转换单元 610的第三 种连接方式。 第二光开关单元 620的输入端口 621 与交叉模块 20 中的各个维 度的输入端 210和波长转换单元 610中的复用器 615的输出端口均相连, 第二 光开关单元 620的输出端口 622与波长转换单元 610中的解复用器 613的输入 端口和交叉模块 20 中的各个维度的输出端 220均相连。 第二光开关单元 620 用于将波长冲突的至少两个光信号中的全部或者部分在进入波长转换单元 610 之前或从波长转换单元 610进行波长转换之后交换至交叉模块 20的目标维度。
结合参考图 7C, 以一包含第一维度、 第二维度和第三维度的三维光交换 架构为例, 假设第一维度为北向、 第二维度为西向且第三维度为东向。 在将发 生波长冲突的光信号进行波长转换时, 在图 7C所示的第二光开关单元 620和 波长转换单元 610的第三种连接方式中。 当东向的波长为 λ1, λ6, λ15的光信 号要交换到北向时发生了波长冲突, 就需要经过波长转换单元 610转换成波长 不冲突的光信号, 如: 波长为 λ2, λ7, λ16的光信号后再交换到北向。 信号流 向可以表示为: 东向输入端 210→第二光开关单元 620的输入端口 621a→第二 光开关单元 620的输出端口 622b→波长转换单元 610中的解复用器 613→波长 转换单元 610 中的波长转换组件 614→波长转换单元 610 中的复用器 615→第 二光开关单元 620 的输入端口 6211)→第二光开关单元 620 的输出端口 622a→ 北向输出端 220。
需要补充说明的一点是, 在上述三种连接方式的不同实现方案中, 第一光 开关单元和第二光开关单元可以是同一个光开关; 也可以第一光开关单元为一 个光开关, 第二光开关单元为另一个光开关; 还可以将第一光开关单元拆分为 相互独立的两个光开关, 其中, 一个光开关用于在单次光交换过程中, 将本地 维度的一个发送机需要发送至目标维度的光信号交换至目标维度的输出端, 另 一个光开关用于在单次光交换过程中, 将交叉模块中的一个维度的输入端输入 至本地维度的光信号交换至至少一个接收机中的任意一个进行接收。 进一步 地, 当第一光开关单元拆分为相互独立的两个光开关时, 其中任意一个光开关 也可以和第二光开关单元合并成为一个光开关。 在实际应用中, 当单个光开关 的端口数量能够满足要求时, 可以将两个或者两个以上光开关合并成一个光开 关。
还需要补充说明的一点是, 在图 7C所示实现方式中, 由于第二光开关单 元 620与第一光开关单元 410为同一个光开关, 第二光开关单元 620中与交叉 模块 20 中的任一维度的输入端 210相连的输入端口 621a与第一光开关单元 410中与该维度的输入端 210相连的输入端口 411在功能上能够互相混用, 所 以第二光开关单元 620 的一个输入端口 621a与第一光开关单元 410 的一个输 入端口 411能够共用光开关上的同一输入端口。 本实施例仅以第二光开关单元 620的输入端口 621a与第一光开关单元 410的输入端口 411为两个分开的输入 端口来举例说明, 对此不作具体限定。 同样地, 第二光开关单元 620中与交叉 模块 20 中的任一维度的输出端 220相连的输出端口 622a与第一光开关单元 410中与该维度的输出端 220相连的输出端口 412在功能上能够互相混用, 所 以第二光开关单元 620 的一个输出端口 622a与第一光开关单元 410 的一个输 出端口 412能够共用光开关上的同一输出端口。 本实施例仅以第二光开关单元 620的输出端口 622a与第一光开关单元 410的输出端口 412为分开的输出端口 来举例说明, 对此不作具体限定。
还需要说明的是, 光开关可以是基于 MEMS 结构的光开关, 也可以是基 于 PLC 结构的光开关, 还可以是基于硅光光交叉结构的光开关。 在实际应用 中, 可以才艮据实际需求选定合适的光开关。
综上所述, 本实施例提供的光交换架构, 通过在光交换架构中添加了第一 光开关单元, 通过第一光开关单元将本地维度的一个发送机需要发送至目标维 度的光信号交换至目标维度的输出端, 和 /或, 将交叉模块中的一个维度的输入 端输入至本地维度的光信号交换至至少一个接收机中的任意一个进行接收; 解 决了背景技术提供的光交换架构不满足波长无关性和方向无关性的问题; 由于 第一光开关单元的输入端口和输出端口对波长选择不固定, 同一输入端口或者 输出端口能够收发不同波长的光信号, 所以达到了使光交换架构满足波长无关 性的效果; 另外, 由于第一光开关单元能够将来自于同一发送机的光信号交换 至不同维度, 和 /或, 将来自于同一维度的光信号交换至不同的接收机, 所以达 到了使光交换架构满足方向无关性且波长调度更灵活的效果。
本实施例提供的光交换架构, 还通过改变第二光开关单元与波长转换单元 之间的连接方式, 使得整个光交换架构各个模块、 单元以及器件之间的连接方 式更加灵活多变。
本实施例提供的光交换架构, 还通过将第一光开关单元和第二光开关单元 的拆分与整合, 以及对第一光开关单元的拆分与整合, 对光开关的端口数量和 各种不同的实现方式做了充分的考虑。在单个光开关的端口数量较多时可以采 用第一光开关单元和第二光开关单元整合的方案; 在单个光开关的端口数量较 少时或者需要后续扩展时, 可以采用第一光开关单元和第二光开关单元拆分的 方案, 甚至还可以采用将第一光开关单元继续拆分为两个光开关的方案, 实现 了光交换架构对不同端口数量的光开关的适用性以及后续扩容升级的便捷性, 而不会给光开关带来端口上的压力。 在图 8A/8B/8C/8F所示的实施例中, 将对波长转换模块 60 的第二类实现 方式进行详细介绍和说明。
参考图 8A/8B/8C/8F , 其示出了本发明另一实施例提供的光交换架构的结 构示意图。 该光交换架构, 包括: 交叉模块 20、 与交叉模块 20相连的上下波 模块 40以及波长转换模块 60。
交叉模块 20, 包括 n组属于不同维度的输入端 210和输出端 220。 交叉模 块 20用于将交叉模块 20 中各个维度输入端 210 的光信号交换至交叉模块 20 的目标维度的输出端 220。 其中, 输入端 210和输出端 220的连接方式可以参 考图 4所示实施例。
上下波模块 40, 包括与输入端 210和输出端 220相连的第一光开关单元 410、 与第一光开关单元 410相连的至少一个发送机 420和与第一光开关单元 410相连的至少一个接收机 430。
第一光开关单元 410用于在单次光交换过程中, 将本地维度的一个发送机 420需要发送至目标维度的光信号交换至目标维度的输出端; 和 /或, 在单次光 交换过程中, 将交叉模块 20 中的一个维度的输入端输入至本地维度的光信号 交换至至少一个接收机 430中的任意一个进行接收。 其中, 目标维度为交叉模 块 20 中的任意一个维度。 其中, 第一光开关单元 410、 至少一个发送机 420 和至少一个接收机 430的连接方式可以参考图 4/图 5/图 6所示实施例, 或者其 它任何的连接方式。
波长转换模块 60,用于存在来源于不同维度且需要在同一时刻交换至同一 目标维度的至少两个光信号发生波长冲突时, 将波长冲突的至少两个光信号中 的全部进行波长转换得到波长互不冲突的至少两个光信号后输出至目标维度, 或, 将波长冲突的至少两个光信号中的部分进行波长转换得到部分光信号后输 出至目标维度, 部分光信号与未进行波长转换的光信号之间的波长互不冲突。
波长转换模块 60, 包括: 波长转换单元 610 和设置在波长转换单元 610 内部的第二光开关单元 620。
波长转换单元 610, 用于存在来源于不同维度且需要在同一时刻交换至同 一目标维度的至少两个光信号发生波长冲突时, 将波长冲突的至少两个光信号 中的全部进行波长转换得到波长互不冲突的至少两个光信号后输出至目标维 度, 或, 将波长冲突的至少两个光信号中的部分进行波长转换得到部分光信号 后输出至目标维度, 部分光信号与未进行波长转换的光信号之间的波长互不冲 突。
波长转换单元 610, 包括: n 个波长转换通路, 每个波长转换通路包括 1 个解复用器 613、 至少 2个波长转换组件 614和 1个复用器 615。
第二光开关单元 320与每个波长转换通路中的解复用器 613、 波长转换组 件 614和复用器 615有如下两种可能的连接方式:
结合参考图 8B, 在第一种可能的连接方式中, 每个波长转换通路中的解 复用器 613通过第二光开关单元 620与至少 2个波长转换组件 614相连, 至少 2个波长转换组件 614与复用器 615相连。
每个波长转换通路中的解复用器 613, 用于在输入至波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将波长复用形式的光信 号解复用得到单一波长形式的光信号。
第二光开关单元 620, 用于将相连的解复用器 613解复用后的单一波长形 式的光信号中需要发送至交叉模块 20 中同一目标维度的单一波长形式的光信 号交换至与目标维度所对应的复用器 615 相连的任意一个波长转换组件 614 中。
每个波长转换通路中的波长转换组件 614, 用于将相连的第二光开关单元 620 交换至的单一波长形式的光信号通过预定的波长转换方式转换为波长不冲 突的单一波长形式的光信号。
每个波长转换通路中的复用器 615, 用于将相连的波长转换组件 614转换 后的波长不冲突的单一波长形式的光信号进行复用得到波长不冲突的波长复 用形式的光信号, 并将波长不冲突的波长复用形式的光信号输出至目标维度。
结合参考图 8C, 在第二种可能的连接方式中, 每个波长转换通路中的解 复用器 613与至少 2个波长转换组件 614相连, 至少 2个波长转换组件 614通 过第二光开关单元 620与复用器 615相连。
每个波长转换通路中的解复用器 613, 用于在输入至波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将波长复用形式的光信 号解复用得到单一波长形式的光信号。
每个波长转换通路中的波长转换组件 614, 用于将相连的解复用器 613解 复用后的单一波长形式的光信号通过预定的波长转换方式转换为波长不冲突 的单一波长形式的光信号。
第二光开关单元 620, 用于将相连的波长转换组件 614转换后的波长不冲 突的单一波长形式的光信号中需要发送至交叉模块 20 中同一目标维度的波长 不冲突的单一波长形式的光信号交换至与目标维度所对应的复用器 615。
每个波长转换通路中的复用器 615, 用于将相连的第二光开关单元 620交 换至的波长不冲突的单一波长形式的光信号进行复用得到波长不冲突的波长 复用形式的光信号, 并将波长不冲突的波长复用形式的光信号输出至目标维 度。
在上述图 7A、 图 7B和图 7C所示的实施例中, 由于第二光开关单元 620 和波长转换单元 610是分离的, 第二光开关单元 620仅限于对维度间的所有波 长的光信号进行整体选择, 即某一维度的所有波长的光信号完成波长转换后只 能整体选择至目标维度, 无法做到对单一波长形式的光信号任意地进行维度的 选择。
而在图 8B和图 8C所示的实施例中, 将第二光开关单元 620设置于解复 用器 613和复用器 615之间, 在完成波长转换的同时实现单一波长形式的光信 号任意地进行维度的选择。
结合参考图 8A, 以一包含第一维度、 第二维度和第三维度的三维光交换 架构为例, 假设第一维度为北向、 第二维度为西向且第三维度为东向。 当东向 的一路包含 λΐ和 λ2的发生波长冲突的波长复用形式的光信号经过该波长转换 模块 60 时, 解复用器 613将此路波长复用形式的光信号解复用为两路分别为 波长为 λΐ 的单一波长形式的光信号和波长为 λ2的单一波长形式的光信号。 其 中, 波长为 λΐ 的单一波长形式的光信号需要交换至北向, 波长为 λ2的单一波 长形式的光信号需要交换至西向。 此时, 西向的一路包含 λ3和 λ4的波长复用 形式的光信号经过该波长转换模块 60 时, 解复用器 613将此路波长复用形式 的光信号解复用为两路分别为波长为 λ3 的单一波长形式的光信号和波长为 λ4 的单一波长形式的光信号。 其中, 波长为 λ3 的单一波长形式的光信号需要交 换至北向,波长为 λ4的单一波长形式的光信号需要交换至东向。由于波长为 λΐ 的单一波长形式的光信号和波长为 λ3 的单一波长形式的光信号都需要交换至 北向, 第二光开关单元 620就能够将波长为 λΐ 的单一波长形式的光信号和波 长为 λ3 的单一波长形式的光信号分别交换至与北向维度所对应的复用器 615 相连的波长转换组件 614中进行波长转换。 假设经转换后分别得到波长为 λΐΐ 的单一波长形式的光信号和波长为 λ33的单一波长形式的光信号, 与北向维度 所对应的复用器 615 就能够将波长为 λΐΐ 的单一波长形式的光信号和波长为 λ33 的单一波长形式的光信号复用为一路波长复用形式的光信号后发送至北向 维度的输出端 220。
其中,波长转换组件 614可以通过光 /电 /光(0/Ε/0) 的形式实现波长转换, 如图 8D所示; 波长转换组件 614也可以通过光 /光 (0/0) 的形式实现波长转 换, 如图 8Ε所示。 当波长转换组件 614通过光 /电 /光 (0/Ε/0) 的形式实现波 长转换时, 波长转换组件 614包括光电转换单元 616和电光转换单元 617。
参考图 8F, 当信号选择发生在光 /电 (0/E) 和电 /光 (E/0) 之间时, 需要 使用电开关 640。 此时波长转换模块 60包括: n个波长转换通路, 每个波长转 换通路包括依次相连的 1 个解复用器 613、 至少 2个光电转换单元 616、 电开 关 640、 至少 2个电光转换单元 617和 1个复用器 615。 每个波长转换通路中的解复用器 613, 用于在输入至波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将波长复用形式的光信 号解复用得到单一波长形式的光信号。
每个波长转换通路中的光电转换单元 616, 用于将相连的解复用器 613解 复用后的单一波长形式的光信号转换为对应的电信号。
电开关 640, 用于将相连的光电转换单元 616转换后的电信号中需要发送 至交叉模块 20 中同一目标维度的电信号交换至与目标维度所对应的复用器 615相连的电光转换单元 617中。
每个波长转换通路中的电光转换单元 617, 用于将相连的电开关 640交换 至的电信号转换为波长不冲突的单一波长形式的光信号。
每个波长转换通路中的 615, 用于将相连的电光转换单元 617转换到的波 长不冲突的单一波长形式的光信号进行复用得到波长不冲突的波长复用形式 的光信号, 并将波长不冲突的波长复用形式的光信号输出至目标维度。
综上所述, 本实施例提供的光交换架构, 通过在光交换架构中添加了第一 光开关单元, 通过第一光开关单元将本地维度的一个发送机需要发送至目标维 度的光信号交换至目标维度的输出端, 和 /或, 将交叉模块中的一个维度的输入 端输入至本地维度的光信号交换至至少一个接收机中的任意一个进行接收; 解 决了背景技术提供的光交换架构不满足波长无关性和方向无关性的问题; 由于 第一光开关单元的输入端口和输出端口对波长选择不固定, 同一输入端口或者 输出端口能够收发不同波长的光信号, 所以达到了使光交换架构满足波长无关 性的效果; 另外, 由于第一光开关单元能够将来自于同一发送机的光信号交换 至不同维度, 和 /或, 将来自于同一维度的光信号交换至不同的接收机, 所以达 到了使光交换架构满足方向无关性且波长调度更灵活的效果。
本实施例提供的光交换架构, 还通过将第二光开关单元或者电开关设置于 波长转换模块的解复用器和复用器之间, 在完成波长转换的同时实现在单一波 长形式的光信号粒度进行任意调度的功能, 进一步提高了波长调度的灵活性。 参考图 9, 其示出了本发明另一实施例提供的光交换架构的结构示意图。 在本实施例中, 在第二光开关单元 620的输入端口 621和输出端口 622之间还 设置有至少 1条延迟线 650。 该光交换架构, 包括: 交叉模块 20、 与交叉模块 20相连的上下波模块 40以及波长转换模块 60。 交叉模块 20, 包括 n组属于不同维度的输入端 210和输出端 220, n≥2。 其中, 输入端 210和输出端 220的连接方式可以参考图 4所示实施例。
上下波模块 40, 包括与输入端 210和输出端 220相连的第一光开关单元 410、 与第一光开关单元 410相连的至少一个发送机 420和与第一光开关单元 410相连的至少一个接收机 430。
第一光开关单元 410用于在单次光交换过程中, 将本地维度的一个发送机 420需要发送至目标维度的光信号交换至目标维度的输出端; 和 /或, 在单次光 交换过程中, 将交叉模块 20 中的一个维度的输入端输入至本地维度的光信号 交换至至少一个接收机 430中的任意一个进行接收。 其中, 目标维度为交叉模 块 20 中的任意一个维度。 其中, 第一光开关单元 410、 至少一个发送机 420 和至少一个接收机 430的连接方式可以参考图 4/图 5/图 6所示实施例, 或者其 它任何的连接方式。
上下波模块 40, 还包括若干个复用器 440和若干个解复用器 450。 第一光 开关单元 410的单个输入端口通过复用器 440与多个发送机 420相连。 第一光 开关单元 410的单个输出端口通过解复用器 450与多个接收机 430相连。
波长转换模块 60, 用于将交叉模块 20的各个维度的输入端交换至目标维 度的发生波长冲突的光信号转换为波长不冲突的光信号后,输出至交叉模块 20 的目标维度。
波长转换模块 60, 包括: 波长转换单元 610和第二光开关单元 620。
波长转换单元 610, 用于存在来源于不同维度且需要在同一时刻交换至同 一目标维度的至少两个光信号发生波长冲突时, 将波长冲突的至少两个光信号 中的全部进行波长转换得到波长互不冲突的至少两个光信号后输出至目标维 度, 或, 将波长冲突的至少两个光信号中的部分进行波长转换得到部分光信号 后输出至目标维度, 部分光信号与未进行波长转换的光信号之间的波长互不冲 突。
与前述各个实施例不同的是, 波长转换单元 610, 包括: n 个波长转换通 路, 每个波长转换通路包括依次相连的至少 2个波长转换组件 614和 1个复用 器 615, 或者, 每个波长转换通路包括依次相连的 1 个解复用器 613、 至少 2 个波长转换组件 614和 1个复用器 615。
第二光开关单元 620 的输入端口与交叉模块 20 的各个维度的输入端 210 和波长转换单元 610均相连且第二光开关单元 620的输出端口与波长转换单元 610和交叉模块 20的各个维度的输出端 220均相连。
第二光开关单元 620,用于在交叉模块 20中的单个输入端 210交换至目标 维度的发生波长冲突的光信号包括单一波长形式的光信号时, 将发生冲突的单 一波长形式的光信号直接交换至波长转换组件 614 ; 或者, 用于在交叉模块 20 中的单个输入端 210交换至目标维度中发生波长冲突的光信号为波长复用形式 的光信号且存在未被占用的解复用器 613时, 将发生波长冲突的波长复用形式 的光信号交换至未被占用的解复用器 613 ; 或者, 用于在交叉模块 20中的单个 且解复用器 613全被占用时, 通过延迟线 650将发生波长冲突的波长复用形式 的光信号延迟至存在解复用器 613 解除占用时, 交换至解除占用的解复用器 613 ο
每个解复用器 613, 用于将相连的第二光开关单元 620交换至的发生波长 冲突的波长复用形式的光信号进行解复用得到单一波长形式的光信号。
每个波长转换组件 614, 用于将相连的第二光开关单元 620交换至的或者 相连的解复用器 613解复用后的单一波长形式的光信号通过预定的波长转换方 式转换为波长不冲突的单一波长形式的光信号。
每个复用器 615, 用于将相连的波长转换组件 614转换后的波长不冲突的 单一波长形式的光信号进行复用得到波长不冲突的波长复用形式的光信号。
在本实施例中, 假设 a=l, 也即波长转换单元 610包含一个解复用器 613。 此时, 延迟线 650的工作方式如下: 当某一时刻, 交叉模块 20 中的 n个维度 中有两个或者两个以上的维度发生波长冲突, 且发生波长冲突的光信号为波长 复用形式的光信号时, 一路发生波长冲突的光信号首先进入解复用器 613, 经 解复用器 613解复用后进入波长转换单元 610进行波长转换; 其余维度的发生 波长冲突的光信号进入延迟线 650等候; 光网络系统会实时监测解复用器 613 是否被占用; 若解复用器 613被占用, 则将其余维度的发生波长冲突的光信号 继续在延迟线 650中循环等候; 若解复用器 613没有被占用, 则把下一发生波 长冲突的光信号释放到解复用器 613中, 经解复用器 613解复用后进入波长转 换单元 610进行波长转换。 需要说明的是, 多根延迟线的长度可以按照一定的 规则进行设计, 通过光开关的选择, 以达到不同的延迟时间。
比如, 当一个维度的一路包含波长 λ1、 λ2和 λ3的光信号进入该光交换架 构且需要进行波长转换时, 另一维度的一路包含波长 λ4、 λ5和 λ6的光信号也 进入该光交换架构且需要进行波长转换。延迟线将一个维度的包含波长 λ1、 λ2 和 λ3 的光信号首先释放进入解复用器, 经解复用器解复用后进入波长转换单 元进行波长转换; 另一维度的发生波长冲突的光信号进入延迟线中循环等候, 等待解复用器解除占用。 光网络系统会实时监测解复用器是否被占用, 当解复 用器没有被占用时, 则把另一维度的包含波长 λ4、 λ5和 λ6的光信号释放到解 复用器中, 经解复用器解复用后进入波长转换单元进行波长转换。 否则, 另一 维度的包含波长 λ4、 λ5和 λ6的光信号继续在延迟线中循环等候, 直至解复用 器解除占用。
其中, 波长转换方式为光 /电 /光的形式; 或, 波长转换方式为光 /光的形式。 当然, 若某一时刻, 交叉模块 20 中的 η个维度中有两个或者两个以上的 维度发生波长冲突, 且发生波长冲突的光信号为单一波长形式的光信号时, 发 生波长冲突的光信号无需进入延迟线 650中循环等候, 该发生波长冲突的光信 号直接经过第二光开关单元 620交换至相连的波长转换组件 614中进行波长转 换。
综上所述, 本实施例提供的光交换架构, 通过在光交换架构中添加了第一 光开关单元, 通过第一光开关单元将本地维度的一个发送机需要发送至目标维 度的光信号交换至目标维度的输出端, 和 /或, 将交叉模块中的一个维度的输入 端输入至本地维度的光信号交换至至少一个接收机中的任意一个进行接收; 解 决了背景技术提供的光交换架构不满足波长无关性和方向无关性的问题; 由于 第一光开关单元的输入端口和输出端口对波长选择不固定, 同一输入端口或者 输出端口能够收发不同波长的光信号, 所以达到了使光交换架构满足波长无关 性的效果; 另外, 由于第一光开关单元能够将来自于同一发送机的光信号交换 至不同维度, 和 /或, 将来自于同一维度的光信号交换至不同的接收机, 所以达 到了使光交换架构满足方向无关性且波长调度更灵活的效果。
本实施例提供的光交换架构, 加入延迟线之后, 能满足在多个维度同时发 生波长冲突时仍能实现光交换的效果, 并且減少了波长转换模块中解复用器的 数量, 节约成本。 需要说明的是,交叉模块的输入端和输出端有多种不同的实现方式。也即, 在上述任一实施例中, 交叉模块的每个输入端为波长选择开关 WSS且每个输 出端也为波长选择开关 WSS ; 或, 交叉模块的每个输入端为分离器 Splitter且 每个输出端为波长选择开关 wss ; 或, 交叉模块的每个输入端为波长选择开关 WSS且每个输出端为合波器; 或, 交叉模块的每个输入端为任意波长滤波器且 每个输出端为波长选择开关 WSS ; 或, 交叉模块的每个输入端为任意波长滤波 器且每个输出端为合波器。
交叉模块的输入端使用任意波长滤波器, 既能够实现波长选择开关 wss 的功能, 又能够将一路 DWDM波长复用形式的光信号中任意波长的光信号, 从其任意输出端口滤出; 并能够按要求衰減滤出的波长信号, 进行通道均衡。 如果光交换架构中交叉模块的每个输入端为任意波长滤波器, 则其可以滤出一 些 DWDM波长复用形式的光信号中进入该光交换架构的不必要的光信号。 交 叉模块的输出端使用合波器能够实现波长选择开关 WSS 的功能, 能够把不同 波长的单一波长形式的光信号复合成一路波长复用形式的光信号。 应当理解的是, 在本文中使用的, 除非上下文清楚地支持例外情况, 单数 形式"一个" ("a"、 "an,,、 "the") 旨在也包括复数形式。 还应当理解的是, 在本 文中使用的"和 /或"是指包括一个或者一个以上相关联地列出的项目的任意和 所有可能组合。 上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步驟可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘 或光盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种光交换架构, 其特征在于, 所述光交换架构包括: 交叉模块以及与 所述交叉模块相连的上下波模块;
所述交叉模块, 包括 n组属于不同维度的输入端和输出端, n≥2 ;
所述上下波模块, 包括与所述输入端和所述输出端相连的第一光开关单元、 与所述第一光开关单元相连的至少一个发送机和与所述第一光开关单元相连的 至少一个接收机;
所述第一光开关单元, 用于在单次光交换过程中, 将本地维度的一个发送 机需要发送至目标维度的光信号交换至所述目标维度的输出端; 和 /或, 在单次 光交换过程中, 将所述交叉模块中的一个维度的输入端输入至本地维度的光信 号交换至所述至少一个接收机中的任意一个进行接收;
其中, 所述目标维度为所述交叉模块中的任意一个维度。
2、 根据权利要求 1所述的光交换架构, 其特征在于,
所述上下波模块中的单个发送机直接与所述第一光开关单元的单个输入端 口相连; 或者,
在所述发送机为至少两个时, 所述上下波模块中还包括复用器, 所述上下 波模块中的多个发送机通过所述复用器与所述第一光开关单元的单个输入端口 相连;
所述复用器, 用于对所述多个发送机需要发送至同一目标维度的单一波长 形式的光信号进行复用得到波长复用形式的光信号。
3、 根据权利要求 1所述的光交换架构, 其特征在于,
所述第一光开关单元的单个输出端口直接与所述上下波模块中的单个接收 机相连; 或者,
在所述接收机为至少两个时, 所述上下波模块中还包括解复用器, 所述第 一光开关单元的单个输出端口通过所述解复用器与所述上下波模块中的多个接 收机相连;
所述解复用器, 用于对所述交叉模块的一个维度的输入端输入至本地维度 的波长复用形式的光信号进行解复用得到单一波长形式的光信号, 并将每个单 一波长形式的光信号分别输入一个接收机
4、 根据权利要求 1所述的光交换架构, 其特征在于,
所述第一光开关单元的单个输出端口直接与所述交叉模块的单个输出端相 连; 或者,
所述上下波模块中还包括复用器, 所述第一光开关单元中的多个输出端口 通过所述复用器与同一维度的输出端相连;
所述复用器, 用于将所述第一光开关单元中的多个输出端口输出至所述同 一维度的多个光信号进行复用得到波长复用形式的光信号。
5、 根据权利要求 1至 4任一所述的光交换架构, 其特征在于, 所述光交换 架构还包括: 波长转换模块, 所述波长转换模块与所述交叉模块相连, 或者所 述波长转换模块与所述交叉模块和所述上下波模块均相连;
所述波长转换模块, 用于存在来源于不同维度且需要在同一时刻交换至同 一目标维度的至少两个光信号发生波长冲突时, 将所述波长冲突的至少两个光 信号中的全部进行波长转换得到波长互不冲突的至少两个光信号后输出至所述 目标维度, 或, 将所述波长冲突的至少两个光信号中的部分进行波长转换得到 部分光信号后输出至所述目标维度, 所述部分光信号与未进行波长转换的光信 号之间的波长互不冲突;
所述不同维度包括所述本地维度和所述交叉模块中的各个维度。
6、 根据权利要求 5所述的光交换架构, 其特征在于, 所述波长转换模块, 包括: 波长转换单元和与所述波长转换单元相连的第二光开关单元;
在所述第二光开关单元的输入端口与所述交叉模块中的各个维度的输入端 相连且所述第二光开关单元的输出端口与所述波长转换单元相连时, 所述第二 光开关单元用于将所述波长冲突的至少两个光信号中的全部或者部分在进入所 述波长转换单元之前交换至所述交叉模块的目标维度;
在所述第二光开关单元的输入端口与所述波长转换单元相连且所述第二光 开关单元的输出端口与所述交叉模块的各个维度的输出端相连时, 所述第二光 开关单元用于将所述波长冲突的至少两个光信号中的全部或者部分从所述波长 转换单元进行波长转换之后交换至所述交叉模块的目标维度; 在所述第二光开关单元的输入端口与所述交叉模块的各个维度的输入端和 所述波长转换单元均相连且所述第二光开关单元的输出端口与所述波长转换单 元和所述交叉模块的各个维度的输出端均相连时, 所述第二光开关单元用于将 所述波长冲突的至少两个光信号中的全部或者部分在进入所述波长转换单元之 前或从所述波长转换单元进行波长转换之后交换至所述交叉模块的目标维度; 所述波长转换单元, 用于将所述波长冲突的至少两个光信号中的全部进行 波长转换得到波长互不冲突的至少两个光信号, 或, 将所述波长冲突的至少两 个光信号中的部分进行波长转换得到部分光信号, 所述部分光信号与未进行波 长转换的光信号之间的波长互不冲突。
7、 根据权利要求 6所述的光交换架构, 其特征在于, 所述波长转换单元, 包括: n个波长转换通路, 每个波长转换通路包括依次相连的 1个解复用器、 至 少 2个波长转换组件和 1个复用器;
每个波长转换通路中的解复用器, 用于在输入至所述波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将所述波长复用形式的 光信号解复用得到单一波长形式的光信号, 并将每个单一波长形式的光信号分 别输入至 1个波长转换组件;
每个波长转换通路中的波长转换组件, 用于将相连的所述解复用器解复用 后的所述单一波长形式的光信号通过预定的波长转换方式转换为波长不冲突的 单一波长形式的光信号;
每个波长转换通路中的复用器, 用于将相连的所述波长转换组件转换后的 所述波长不冲突的单一波长形式的光信号进行复用得到所述波长不冲突的波长 复用形式的光信号;
其中, 所述波长转换方式为光 /电 /光的形式; 或, 所述波长转换方式为光 / 光的形式。
8、 根据权利要求 6所述的光交换架构, 其特征在于,
所述第一光开关单元和所述第二光开关单元为同一个光开关;
或,
所述第一光开关单元为一个光开关, 所述第二光开关单元为另一个光开关; 或, 所述第一光开关单元包括相互独立的两个光开关, 其中, 一个光开关用于 在单次光交换过程中, 将本地维度的一个发送机需要发送至目标维度的光信号 交换至所述目标维度的输出端, 另一个光开关用于在单次光交换过程中, 将所 述交叉模块中的一个维度的输入端输入至本地维度的光信号交换至所述至少一 个接收机中的任意一个进行接收。
9、 根据权利要求 8 所述的光交换架构, 其特征在于, 所述光开关是基于 MEMS结构的光开关; 或, 所述光开关是基于 PLC结构的光开关; 或, 所述光 开关是基于硅光光交叉结构的光开关。
10、 根据权利要求 5所述的光交换架构, 其特征在于, 所述波长转换模块, 包括: 波长转换单元和设置在所述波长转换单元内部的第二光开关单元;
所述波长转换单元, 用于存在来源于不同维度且需要在同一时刻交换至同 一目标维度的至少两个光信号发生波长冲突时, 将所述波长冲突的至少两个光 信号中的全部进行波长转换得到波长互不冲突的至少两个光信号, 或, 将所述 波长冲突的至少两个光信号中的部分进行波长转换得到部分光信号, 所述部分 光信号与未进行波长转换的光信号之间的波长互不冲突;
所述第二光开关单元, 用于将所述波长冲突的至少两个光信号中的全部或 部分在进入所述波长转换单元中进行波长转换时交换至所述交叉模块的目标维 度。
11、 根据权利要求 10所述的光开关架构, 其特征在于, 所述波长转换单元, 包括: n个波长转换通路, 每个波长转换通路包括 1个解复用器、 至少 2个波长 转换组件和 1 个复用器, 每个波长转换通路中的所述解复用器通过所述第二光 开关单元与所述至少 2个波长转换组件相连, 所述至少 2个波长转换组件与所 述复用器相连;
每个波长转换通路中的解复用器, 用于在输入至所述波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将所述波长复用形式的 光信号解复用得到单一波长形式的光信号;
所述第二光开关单元, 用于将相连的所述解复用器解复用后的所述单一波 长形式的光信号中需要发送至所述交叉模块中同一目标维度的单一波长形式的 光信号交换至与所述目标维度所对应的复用器相连的任意一个波长转换组件 中;
每个波长转换通路中的波长转换组件, 用于将相连的所述第二光开关单元 交换至的所述单一波长形式的光信号通过预定的波长转换方式转换为波长不冲 突的单一波长形式的光信号;
每个波长转换通路中的复用器, 用于将相连的所述波长转换组件转换后的 所述波长不冲突的单一波长形式的光信号进行复用得到所述波长不冲突的波长 复用形式的光信号, 并将所述波长不冲突的波长复用形式的光信号输出至所述 目标维度;
其中, 所述波长转换方式为光 /电 /光的形式; 或, 所述波长转换方式为光 / 光的形式。
12、 根据权利要求 10所述的光交换架构, 其特征在于, 所述波长转换单元, 包括: n个波长转换通路, 每个波长转换通路包括 1个解复用器、 至少 2个波长 转换组件和 1 个复用器, 每个波长转换通路中的所述解复用器与所述至少 2个 波长转换组件相连, 所述至少 2 个波长转换组件通过所述第二光开关单元与所 述复用器相连;
每个波长转换通路中的解复用器, 用于在输入至所述波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将所述波长复用形式的 光信号解复用得到单一波长形式的光信号;
每个波长转换通路中的波长转换组件, 用于将相连的所述解复用器解复用 后的所述单一波长形式的光信号通过预定的波长转换方式转换为波长不冲突的 单一波长形式的光信号;
所述第二光开关单元, 用于将相连的所述波长转换组件转换后的波长不冲 突的单一波长形式的光信号中需要发送至所述交叉模块中同一目标维度的波长 不冲突的单一波长形式的光信号交换至与所述目标维度所对应的复用器;
每个波长转换通路中的复用器, 用于将相连的所述第二光开关单元交换至 的所述波长不冲突的单一波长形式的光信号进行复用得到所述波长不冲突的波 长复用形式的光信号, 并将所述波长不冲突的波长复用形式的光信号输出至所 述目标维度;
其中, 所述波长转换方式为光 /电 /光的形式; 或, 所述波长转换方式为光 / 光的形式。
13、 根据权利要求 1 至 5任一所述的光交换架构, 其特征在于, 所述波长 转换模块, 包括: n个波长转换通路, 每个波长转换通路包括依次相连的 1个解 复用器、 至少 2个光电转换单元、 电开关、 至少 2个电光转换单元和 1 个复用 器;
每个波长转换通路中的解复用器, 用于在输入至所述波长转换通路中的发 生波长冲突的一个光信号为波长复用形式的光信号时, 将所述波长复用形式的 光信号解复用得到单一波长形式的光信号;
每个波长转换通路中的光电转换单元, 用于将相连的所述解复用器解复用 后的所述单一波长形式的光信号转换为对应的电信号;
所述电开关, 用于将相连的所述光电转换单元转换后的电信号中需要发送 至所述交叉模块中同一目标维度的电信号交换至与所述目标维度所对应的复用 器相连的电光转换单元中;
每个波长转换通路中的电光转换单元, 用于将相连的所述电开关交换至的 所述电信号转换为波长不冲突的单一波长形式的光信号;
每个波长转换通路中的复用器, 用于将相连的所述电光转换单元转换到的 所述波长不冲突的单一波长形式的光信号进行复用得到所述波长不冲突的波长 复用形式的光信号, 并将所述波长不冲突的波长复用形式的光信号输出至所述 目标维度。
14、 根据权利要求 6 所述的光交换架构, 其特征在于, 在所述第二光开关 单元的输入端口与所述交叉模块的各个维度的输入端和所述波长转换单元均相 连且所述第二光开关单元的输出端口与所述波长转换单元和所述交叉模块的各 个维度的输出端均相连时, 所述第二光开关单元的输入端口和输出端口之间还 设置有至少 1条延迟线,
所述波长转换单元, 包括: n个波长转换通路, 每个波长转换通路包括依次 相连的至少 2个波长转换组件和 1 个复用器, 或者, 每个波长转换通路包括依 次相连的 1个解复用器、 至少 2个波长转换组件和 1个复用器;
所述第二光开关单元, 用于在所述交叉模块中的单个输入端交换至目标维 度的发生波长冲突的光信号为单一波长形式的光信号时, 将所述发生波长冲突 的单一波长形式的光信号直接交换至所述波长转换组件; 或者, 用于在所述交 叉模块中的单个输入端交换至目标维度中发生波长冲突的光信号为波长复用形 式的光信号且存在未被占用的所述解复用器时, 将所述发生波长冲突的波长复 用形式的光信号交换至未被占用的所述解复用器; 或者, 用于在所述交叉模块 中的单个输入端交换至目标维度中发生波长冲突的光信号为波长复用形式的光 信号且所述解复用器全被占用时, 通过所述延迟线将所述发生波长冲突的波长 复用形式的光信号延迟至存在所述解复用器解除占用时, 交换至解除占用的所 述解复用器;
每个解复用器, 用于将相连的所述第二光开关单元交换至的所述发生波长 冲突的波长复用形式的光信号进行解复用得到单一波长形式的光信号;
每个波长转换组件, 用于将相连的所述第二光开关单元交换至的或者相连 的所述解复用器解复用后的所述单一波长形式的光信号通过预定的波长转换方 式转换为波长不冲突的单一波长形式的光信号;
每个复用器, 用于将相连的所述波长转换组件转换后的所述波长不冲突的 单一波长形式的光信号进行复用得到所述波长不冲突的波长复用形式的光信 其中, 所述波长转换方式为光 /电 /光的形式; 或, 所述波长转换方式为光 / 光的形式。
15、 根据权利要求 1至 14任一所述的光交换架构, 其特征在于, 所述交叉 模块的每个维度的输入端分出一部分端口与其它维度的输出端相连; 用于将所 述交叉模块各维度输入端的光信号交换至所述交叉模块的目标维度的输出端。
16、 根据权利要求 1至 15任一所述的光交换结构, 其特征在于,
所述交叉模块的每个输入端为波长选择开关且每个输出端也为波长选择开 关;
或, 所述交叉模块的每个输入端为分离器且每个输出端为波长选择开关; 或, 所述交叉模块的每个输入端为波长选择开关且每个输出端为合波器; 或, 所述交叉模块的每个输入端为任意波长滤波器且每个输出端为波长选 择开关;
或, 所述交叉模块的每个输入端为任意波长滤波器且每个输出端为合波器。
PCT/CN2014/083895 2013-12-19 2014-08-07 光交换架构 WO2015090073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310704357.3A CN104734799B (zh) 2013-12-19 2013-12-19 光交换架构
CN201310704357.3 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015090073A1 true WO2015090073A1 (zh) 2015-06-25

Family

ID=53402068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083895 WO2015090073A1 (zh) 2013-12-19 2014-08-07 光交换架构

Country Status (2)

Country Link
CN (1) CN104734799B (zh)
WO (1) WO2015090073A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647926B (zh) * 2016-05-05 2019-01-11 中華電信股份有限公司 Intelligent multi-wavelength dynamic optical delay buffer control device
US10476624B2 (en) 2017-04-21 2019-11-12 Lumentum Operations Llc Colorless, directionless, contentionless optical network using MXN wavelength selective switches
US10028040B1 (en) * 2017-04-21 2018-07-17 Lumentum Operations Llc Colorless, directionless, contentionless optical network using MxN wavelength selective switches
CN107094270A (zh) * 2017-05-11 2017-08-25 中国科学院计算技术研究所 可重构的互连系统及其拓扑构建方法
CN110208904B (zh) * 2018-02-28 2022-02-18 华为技术有限公司 光波导装置
CN110708254B (zh) * 2018-07-09 2023-04-18 华为技术有限公司 一种业务处理方法、控制设备及存储介质
CN113364552B (zh) * 2020-03-06 2023-03-03 华为技术有限公司 一种可重构光分插复用器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0898440A2 (en) * 1997-08-21 1999-02-24 Jds Fitel Inc. Optical switch module
CN1547337A (zh) * 2003-12-04 2004-11-17 上海交通大学 支持链路管理协议的智能波长路由光网络节点结构
CN101742363A (zh) * 2008-11-20 2010-06-16 华为技术有限公司 一种光交换的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2387181A1 (en) * 2010-05-11 2011-11-16 Intune Networks Limited Control layer for multistage optical burst switching system and method
WO2014019221A1 (zh) * 2012-08-03 2014-02-06 华为技术有限公司 一种数据交换方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0898440A2 (en) * 1997-08-21 1999-02-24 Jds Fitel Inc. Optical switch module
CN1547337A (zh) * 2003-12-04 2004-11-17 上海交通大学 支持链路管理协议的智能波长路由光网络节点结构
CN101742363A (zh) * 2008-11-20 2010-06-16 华为技术有限公司 一种光交换的方法和装置

Also Published As

Publication number Publication date
CN104734799A (zh) 2015-06-24
CN104734799B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
WO2015090073A1 (zh) 光交换架构
JP6060648B2 (ja) 光ドロップ装置、光アド装置および光アド/ドロップ装置
US9172488B2 (en) Optical terminating apparatus for optical path network
JP6342894B2 (ja) 光クロスコネクト装置
US20160269809A1 (en) Optical network switching device
JP5410620B2 (ja) 波長分割多重光ネットワークの要素
WO2020125768A1 (zh) 路由合波器、路由合波方法、波分路由方法及网络系统
WO2008060007A1 (en) Multi-degree cross-connector system, operating method and optical communication network using the same
JP5975300B2 (ja) 空間スイッチ装置
WO2014155033A1 (en) Optical switch
JP5273679B2 (ja) 光通信ネットワーク用ノード装置のルーティング方法および光通信ネットワーク用ノード装置
WO2014050064A1 (ja) 光分岐結合装置及び光分岐結合方法
JP4852491B2 (ja) 光クロスコネクトスイッチ機能部及び光クロスコネクト装置
JP3863134B2 (ja) 光回線分配システム
US20040208540A1 (en) Node and wavelength division multiplexing ring network
JP5622197B2 (ja) 光パスネットワークの階層型光パスクロスコネクト装置
CN115499728A (zh) 一种全光交换系统及全光交换方法
JP3703018B2 (ja) スター型光ネットワーク
JP5340368B2 (ja) 光中継装置
CN101304294A (zh) 无阻光网络装置及光网络节点端到端业务无阻交叉方法
WO2024033995A1 (ja) 光通信装置及び光通信方法
JP5858474B2 (ja) 光可変フィルタおよび光可変フィルタを用いた光信号終端装置
JP5340369B2 (ja) 光中継装置
JP2000206362A (ja) 光ADM(Add/DropMultiplexing)ノ―ド装置
JP2000236303A (ja) 光伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872542

Country of ref document: EP

Kind code of ref document: A1