WO2011010683A1 - Wafer conveying method and wafer conveying device - Google Patents

Wafer conveying method and wafer conveying device Download PDF

Info

Publication number
WO2011010683A1
WO2011010683A1 PCT/JP2010/062303 JP2010062303W WO2011010683A1 WO 2011010683 A1 WO2011010683 A1 WO 2011010683A1 JP 2010062303 W JP2010062303 W JP 2010062303W WO 2011010683 A1 WO2011010683 A1 WO 2011010683A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
liquid
wafers
ejecting
face
Prior art date
Application number
PCT/JP2010/062303
Other languages
French (fr)
Japanese (ja)
Inventor
寛高 宮井
茂雄 山本
浩成 關目
弘一 富田
正敬 原
Original Assignee
株式会社住友金属ファインテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009173508A external-priority patent/JP2011029401A/en
Priority claimed from JP2009173210A external-priority patent/JP2011029390A/en
Priority claimed from JP2009211484A external-priority patent/JP2011061120A/en
Application filed by 株式会社住友金属ファインテック filed Critical 株式会社住友金属ファインテック
Priority to KR1020117029322A priority Critical patent/KR101370578B1/en
Priority to CN201080033609.9A priority patent/CN102473666B/en
Publication of WO2011010683A1 publication Critical patent/WO2011010683A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • H01L21/6779Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks the workpieces being stored in a carrier, involving loading and unloading

Definitions

  • the present invention relates to a wafer transfer method and a wafer transfer apparatus for transferring, for example, semiconductor wafers used for a solar cell material one by one.
  • FIG. 27 shows a cutting process using a wire saw device in the manufacture of a semiconductor wafer (see, for example, Patent Document 1).
  • the wire saw apparatus 900 shown in the figure includes four guide rollers 903 and wires 904, and is an apparatus for cutting the semiconductor material 902 into a wafer shape.
  • the wire 904 is, for example, a plated piano wire, is wound around four guide rollers 903, and is sent in the direction indicated by the arrow.
  • the semiconductor material 902 is pressed against the wire 904 in a state where the semiconductor material 902 is bonded to a holding member 901 made of glass, for example, with an adhesive.
  • the wire 904 reaches the holding member 901 beyond the semiconductor material 902, the cutting of the semiconductor material 902 is completed. By this cutting, a plurality of wafers are obtained in a state where the respective edges are joined to the holding member 901.
  • the wafer is immersed in a solution that dissolves the cleaning liquid and the adhesive for the purpose of cleaning the cutting powder and peeling from the holding member 901.
  • the wafers are wet by these liquids, the wafers that are adjacent to each other are likely to stick to each other. For this reason, it is not easy to separate the wafers one by one. For example, an operator is forced to manually pick up the semiconductor wafers one by one.
  • the present invention has been conceived under the circumstances described above.
  • a wafer transfer method and wafer transfer capable of separating semiconductor wafers one by one after being cut by a wire saw without human intervention.
  • An object is to provide an apparatus.
  • the gap is formed between the plurality of wafers stacked in the liquid toward the end face of the plurality of wafers in order to create a gap between the wafers.
  • the step of ejecting the liquid includes a first step of ejecting the liquid toward the center of the end surface in the extending direction of the end surface of the wafer.
  • the step of ejecting the liquid includes the first step of ejecting the liquid from the position overlapping the end surface toward the end surface in the extending direction of the end surface of the wafer. A different second step is further included.
  • the direction in which the liquid is ejected in the first step is the same as the direction in which the liquid is ejected in the second step.
  • the liquid ejected in the first and second steps is ejected from the same position in the wafer stacking direction.
  • the step of ejecting the liquid further includes a third step of ejecting the liquid from the outside of the end surface in the direction in which the end surface of the wafer extends toward the end surface.
  • the liquid in the third step, is ejected toward the upper side of the uppermost wafer.
  • the liquid ejected in the first step is ejected from a position lower than a position where the liquid is ejected in the third step.
  • the liquid in the step of ejecting the liquid, is ejected in a flat shape along the wafer stacking direction.
  • the step of ejecting the liquid is continuously performed before and after the step of picking up the wafer.
  • the top wafer among the plurality of wafers is sucked in an in-plane direction while the top wafer is sucked, and the wafer is sequentially moved from the top wafer.
  • the method further includes a step of transporting the wafer.
  • the suction slide means a pair of rollers spaced apart from each other and an endless belt that is wound around the pair of rollers and has a suction section provided with a plurality of holes. And a decompression means capable of decompressing the space surrounded by the endless belt.
  • the wafer suction surface of the suction slide means is inclined so as to be higher as it goes to the front side in the sliding direction of the wafer, and the uppermost wafer is the wafer suction surface. Is directly facing.
  • the liquid in the step of ejecting the liquid, is ejected from the front side of the wafer in the sliding direction with respect to the plurality of wafers.
  • the liquid is directed from the separation nozzle disposed on the front side in the wafer sliding direction with respect to the plurality of wafers toward the end surface of the wafer adsorbed by the adsorption slide means. Erupt.
  • the method further includes a liquid temperature adjusting step of measuring the temperature of the liquid and heating the liquid so that the measured temperature falls within a predetermined temperature range.
  • the predetermined temperature range is 30 to 50 degrees.
  • the wafer transfer apparatus provided by the second aspect of the present invention is configured to eject any of the liquids toward the end surfaces of the plurality of wafers stacked in the liquid, thereby allowing any one of the plurality of wafers to be in contact with each other. And at least one liquid ejecting means for generating a gap in the wafer and wafer receiving means capable of receiving at least the uppermost wafer among the plurality of wafers in the state in which the gap is generated.
  • the at least one liquid ejecting means includes first liquid ejecting means for ejecting the liquid toward the center of the end face in the extending direction of the end face of the wafer.
  • the at least one liquid ejecting means is disposed at a position overlapping the end face in the extending direction of the end face and ejects the liquid toward the end face.
  • Second liquid ejecting means different from the ejecting means is further included.
  • each of the first and second liquid ejecting means ejects the liquid in the same direction.
  • the first liquid ejecting means and the second liquid ejecting means are located in the same direction in the wafer stacking direction.
  • the at least one liquid ejecting means further includes third liquid ejecting means for ejecting the liquid from the outside of the end face in the extending direction of the end face toward the end face.
  • the third liquid ejecting means further ejects the liquid toward the upper side of the uppermost wafer.
  • the first liquid ejecting means is positioned lower than the third liquid ejecting means.
  • any one of the at least one liquid ejecting means ejects the liquid having a flat shape along the wafer stacking direction.
  • the wafer receiving means includes suction slide means for sliding the wafer in the in-plane direction with the uppermost one of the plurality of wafers being sucked.
  • the suction slide means includes a pair of rollers spaced apart from each other and an endless belt wrapped around the pair of rollers, and the endless belt is surrounded by the endless belt.
  • a plurality of holes connected to a space that can be decompressed are provided.
  • the at least one liquid ejecting means is arranged on the front side in the sliding direction of the wafer with respect to the plurality of wafers.
  • the separation nozzle is disposed on the front side in the wafer sliding direction with respect to the plurality of wafers and ejects the liquid toward the end surface of the wafer sucked by the suction slide means. Is further provided.
  • the suction slide means is arranged such that the wafer suction surface becomes higher as the wafer slide surface moves forward in the sliding direction, and the plurality of wafers are positioned relative to the wafer suction surface. So that they face each other.
  • the heating means for heating the liquid the temperature measuring means for measuring the temperature of the liquid, and the temperature measured by the temperature measuring means within a predetermined temperature range.
  • the heating means is a heater immersed in the liquid.
  • FIG. 1 is an overall schematic diagram showing a wafer transfer apparatus according to a first embodiment of the present invention. It is principal part sectional drawing which shows the wafer conveyance apparatus shown in FIG. It is the principal part perspective view which looked at the adsorption conveyor of the wafer conveyance apparatus shown in FIG. 1 from diagonally downward. It is principal part sectional drawing which shows the process of levitating a wafer in the wafer conveyance method which concerns on this invention.
  • FIG. 4 is a perspective view of essential parts similar to FIG. 3, showing a step of floating the wafer in the wafer transfer method according to the present invention.
  • FIG. 4 is a perspective view of essential parts similar to FIG. 3, showing a process for adsorbing a wafer in the wafer transfer method according to the present invention.
  • FIG. 4 is a perspective view of essential parts similar to FIG. 3, showing a step of sliding the wafer in the wafer transfer method according to the present invention.
  • the wafer conveyance method which concerns on this invention it is principal part sectional drawing which shows the process of delivering a wafer to a relay conveyor. It is a principal part top view which shows the wafer conveyance apparatus based on 2nd Embodiment of this invention.
  • FIG. 1 is an overall schematic diagram illustrating an example of a wafer transfer apparatus according to the present invention. It is principal part sectional drawing which shows the wafer conveyance apparatus shown in FIG.
  • FIG. 14 is a perspective view showing only a part of the configuration of the wafer transfer apparatus shown in FIG. 13. It is principal part sectional drawing in alignment with the XVI-XVI line
  • FIG. 19 is a perspective view of essential parts similar to FIG. 18, showing a step of floating a wafer in the wafer transfer method according to the present invention.
  • FIG. 19 is a main part perspective view similar to FIG. 18 showing a process of sucking a wafer in the wafer conveyance method according to the present invention.
  • the wafer conveyance method concerning this invention, it is principal part sectional drawing which shows the process of adsorb
  • sucking a wafer sucking a wafer.
  • sucking a wafer it is principal part sectional drawing which shows the process of sliding a wafer in the wafer conveyance method which concerns on this invention.
  • FIG. 1 shows a wafer transfer apparatus according to the first embodiment of the present invention.
  • the wafer transfer apparatus 10 of this embodiment includes a wafer tank 1, a suction conveyor 2, a nozzle 31, a sponge roller 32, a heater 41, a temperature sensor 42, a heater control unit 43, a relay conveyor 5, a loading conveyor 6, and a stacker 7. ing.
  • the wafer tank 1 is formed in a container shape that opens upward in the vertical direction, and accommodates a plurality of wafers 90 in a state of being immersed in a predetermined liquid 91.
  • the plurality of wafers 90 are placed in the liquid 91 in a state where they are stacked up and down, and are inclined at a predetermined angle with respect to the liquid surface 92 of the liquid 91.
  • the liquid 91 is, for example, water in which an appropriate amount of a surfactant is mixed.
  • the number of these wafers 90 is about 1000, for example.
  • the outer shape is 156 mm square and the thickness is 0.14 to 0.18 mm.
  • the plurality of wafers 90 are stacked so that the upper surface of the wafer 90 is parallel to a wafer suction surface 223 of the suction conveyor 2 described later.
  • the distance between the upper surface of the uppermost wafer 90 and the wafer suction surface 223 of the suction conveyor 2 is, for example, about 30 mm.
  • the plurality of wafers 90 are stacked, for example, on the left side of the wafer tank 1 in the figure, and then sent to the right part of the wafer tank 1 in the figure by the conveyor 11.
  • the plurality of wafers 90 that have been sent are handled by the lifter 12 so as to be movable up and down.
  • the lifter 12 can be raised and lowered with an accuracy corresponding to at least the thickness of one wafer 90 by, for example, a servo motor (not shown).
  • the suction conveyor 2 corresponds to an example of the suction slide means referred to in the present invention, and is provided in a position where the lower part of the wafer tank 1 is immersed in the liquid 91. As shown in FIG. 2, the suction conveyor 2 includes a pair of rollers 21, a pair of endless belts 22, and a vacuum box 23.
  • the pair of rollers 21 are spaced apart from each other in parallel and at least one of them is connected to a drive source such as a servo motor (not shown).
  • a drive source such as a servo motor (not shown).
  • the roller 21 shown in FIG. 2 is rotated counterclockwise in the drawing.
  • the pair of endless belts 22 are, for example, rubber belt-like belts that are annular, and are wound around the pair of rollers 21. As shown in FIG. 3, the pair of endless belts 22 are spaced apart from each other in parallel. As shown in FIGS. 2 and 3, a plurality of holes 222 are formed in the suction section 221 that is a part of the endless belt 22 in the circumferential direction. Each hole 222 penetrates the endless belt 22 in the thickness direction, and allows liquid 91 and air to pass therethrough. In the present embodiment, the circumferential dimension of the suction section 221 is substantially the same as the circumferential dimension of the wafer 90.
  • the vacuum box 23 is disposed in the inner space of the endless belt 22, and is a box made of, for example, SUS having a rectangular cross section.
  • the dimension in the height direction of the vacuum box 23 is substantially the same as the interval between the inner sides of the endless belt 22. For this reason, the endless belt 22 slides along the upper and lower surfaces of the vacuum box 23.
  • Each endless belt 22 is rotated in the direction of the arrow (counterclockwise) in FIG. That is, when the roller 21 is driven to rotate, a portion (wafer suction surface 223) of the endless belt 22 positioned below the vacuum box 23 slides from the left to the right in the drawing.
  • the vacuum box 23 has three compartments 231, 232 and 233. These compartments 231, 232 and 233 are arranged along the direction in which the pair of rollers 21 are separated. A plurality of holes 235 are formed in the vacuum box 23. The plurality of holes 235 are provided in the lower portion of the vacuum box 23. In the present embodiment, the plurality of holes 235 are provided in substantially the entire lower portion of the vacuum box 23.
  • the compartments 231, 232, and 233 are each provided with an air inlet 234.
  • the suction conveyor 2 is inclined slightly with respect to the liquid surface 92 of the liquid 91. More specifically, the suction conveyor 2 is inclined so that the right end is higher than the left end.
  • a pump 26 is connected to the intake port 234 via a hose 24, a valve unit 27, and a dehydration tank 25.
  • the hose 24 is a flexible piping component made of resin, for example.
  • the valve unit 27 can switch which of the compartments 231, 232, and 233 is connected to the pump 26.
  • the dehydration tank 25 is for separating the liquid 91 from the air sucked through the vacuum box 23.
  • the pump 26 is a depressurization source for depressurizing the space in the vacuum box 23 accommodated in the endless belt 22 to such an extent that the wafer 90 can be adsorbed by the adsorption conveyor 2.
  • the nozzle 31 is a component from which the liquid 91 is discharged, and generates a jet of the liquid 91.
  • a discharge pump (not shown) is connected to the nozzle 31 via a pipe (not shown).
  • the nozzle 31 is disposed on the right side of the plurality of stacked wafers 90 in the drawing, and the liquid 91 is directed toward the end surfaces of the plurality of wafers 90. It is provided in a posture to erupt. More specifically, as shown in FIG. 3, the position where the jet flow from the nozzle 31 hits the end surface of the wafer 90 is a position corresponding to several sheets (about 5 to 6 sheets) from the top in the height direction. Yes, approximately in the center in the depth direction.
  • the flow rate of the liquid 91 discharged from the nozzle 31 is, for example, about 9 L / min.
  • the sponge roller 32 is a roller whose surface is made of sponge.
  • the sponge roller 32 is disposed rightward in the drawing with respect to the stacked wafers 90 just below the suction conveyor 2.
  • the sponge roller 32 is connected to a motor (not shown), for example, and is rotatable.
  • the sponge roller 32 is fixed to the suction conveyor 2 by a bracket.
  • the heater 41 is immersed in the liquid 91 and is disposed, for example, near the wall surface of the wafer tank 1.
  • a liquid heating one is used as the heater 41.
  • the heater 41 is connected to the heater control unit 43 via a cable, and its driving is controlled by an electric signal from the heater control unit 43.
  • a stirring blade (not shown) for stirring the liquid 91 in the wafer tank 1 may be provided in the vicinity of the heater 41. In this case, the temperature of the liquid 91 can be quickly raised by the operation of the stirring blade, and the temperature of the entire liquid 91 can be made uniform.
  • the temperature sensor 42 is immersed in the liquid 91 and is disposed, for example, near the wall surface of the wafer tank 1.
  • a thermistor for measuring a liquid temperature can be employed.
  • An output signal from the temperature sensor 42 is transmitted to the heater control unit 43 via a cable.
  • the heater control unit 43 is for supplying driving power to the heater 41, and is provided outside the wafer tank 1.
  • the heater control unit 43 includes a control circuit that controls driving of the heater 41 in accordance with an electrical signal from the temperature sensor 42. Examples of the control by the heater control unit 43 include so-called feedback control that controls the driving of the heater 41 so that the temperature measured by the temperature sensor 42 falls within a predetermined temperature range.
  • the relay conveyor 5 is disposed above the liquid level 92 on the downstream side of the suction conveyor 2.
  • the relay conveyor 5 receives the wafer 90 sucked by the procedure described later from the suction conveyor 2.
  • the loading conveyor 6 is arranged on the downstream side of the relay conveyor 5.
  • the loading conveyor 6 is used to load the wafer 90 received from the relay conveyor 5 into the stacker 7.
  • the stacker 7 is for storing a plurality of wafers 90 one by one, and has a plurality of pockets 71 arranged in parallel to each other in the vertical direction.
  • the wafer 90 is sent from the loading conveyor 6, the wafer 90 is loaded into a pocket 71.
  • the stacker 7 is raised by one step of the pocket 71 by lifting means (not shown). As a result, the next wafer 90 can be loaded.
  • the suction section 221 of the endless belt 22 is positioned immediately above the stacked wafers 90.
  • the adsorption section 221 is at this position, the plurality of holes 235 of the vacuum box 23 provided in the compartments 231 and 232 overlap the adsorption section 221.
  • the valve unit 27 by switching the valve unit 27, the compartments 231 and 232 and the pump 26 are connected, and the compartment 233 and the pump 26 are shut off.
  • the pump 26 is driven, and the internal pressure of the compartments 231 and 232 is set to a negative pressure.
  • the temperature of the liquid 91 is set to about 30 to 50 degrees in advance by driving the heater 41.
  • the liquid 91 is ejected from the nozzle 31 toward the end surface of the wafer 90 at a predetermined discharge pressure (see FIG. 3).
  • the liquid 91 penetrates between the wafers 90 at a portion where the liquid 91 is sprayed by the discharge pressure from the nozzle 31.
  • the plurality of wafers 90 including the uppermost wafer 90 are lifted so that a gap is generated between them.
  • the uppermost wafer 90 is close to the suction section 221 (wafer suction surface 223) of the endless belt 22.
  • guides (not shown) for moving the wafer 90 up and down along a direction perpendicular to the in-plane direction are provided at appropriate positions around the stacked wafers 90.
  • the ejection of the liquid 91 from the nozzle 31 is stopped, and the endless belt 22 is rotated counterclockwise by driving the roller 21 as shown in FIGS.
  • the attracted wafer 90 is slid rightward in the figure.
  • the sponge roller 32 is rotated counterclockwise.
  • the slidable wafer 90 passes through the sponge roller 32 in order from the tip while contacting the wafer 90.
  • a resistance force is applied to the wafer 90 in the direction opposite to the sliding direction. If two wafers 90 that were positioned at the uppermost position and the wafer 90 that was immediately below the uppermost wafer 90 were mistakenly taken, the lower wafer 90 can be removed by this resistance force.
  • the surfactant mixed in the liquid 91 favorably promotes the penetration of the liquid 91 between the two wafers 90.
  • the suction section 221 moves from a position overlapping the compartments 231 and 232 to a position overlapping the compartments 232 and 233.
  • the valve unit 27 by switching the valve unit 27, the compartments 232 and 233 and the pump 26 are connected, and the compartment 231 and the pump 26 are shut off.
  • the internal pressure of the compartments 232 and 233 becomes negative, and the compartment 231 is released from the state where the internal pressure becomes a strong negative pressure.
  • the endless belt 22 is further rotated. Then, the sucked wafer 90 slides further to the right and is delivered to the relay conveyor 5. In the state shown in the figure, the adsorption section 221 overlaps only the compartment 233. At this time, by switching the valve unit 27, the compartment 233 and the pump 26 are connected, and the compartments 231 and 232 and the pump 26 are shut off.
  • the wafer 90 is loaded into the stacker 7 via the relay conveyor 5 and the loading conveyor 6.
  • the suction conveyor 2 is brought into the state shown in FIG. 4 again by rotating the endless belt 22 and switching the valve unit 27.
  • the lifter 12 raises the stacked wafers 90 by a height corresponding to the thickness of the single wafer 90, so that the next wafer 90 can be adsorbed.
  • a plurality of stacked wafers 90 can be transferred one by one and loaded into the stacker 7.
  • the plurality of wafers 90 are in a wet state because, for example, a cutting process using a wire saw is followed by a cleaning process and an adhesive dissolving process.
  • these wet wafers 90 are placed in the atmosphere, they stick to each other and it is difficult to separate them one by one.
  • the liquid 91 in which the plurality of wafers 90 are immersed is heated by the heater 41 and has a temperature higher than room temperature.
  • the viscosity of the liquid 91 is lower than that before the heating, and the penetration of the liquid 91 between the adjacent wafers 90 is promoted.
  • the wafer 90 positioned at the uppermost position among the plurality of wafers 90 can be easily separated from the wafer 90 adjacent immediately below the wafer 90, and the uppermost wafer 90 can be picked up appropriately.
  • the driving of the heater 41 is controlled by the heater control unit 43 in accordance with the temperature of the liquid 91 (measured temperature by the temperature sensor 42). For this reason, the temperature of the liquid 91 can be maintained in a desired temperature range in the work process of sequentially picking up the wafers 90 from the liquid 91.
  • the liquid 91 is ejected onto the end surfaces of the wafers 90, thereby interposing between the plurality of wafers 90 including the uppermost wafer 90.
  • a gap is created. That is, since there is a gap between the uppermost wafer 90 and the wafer 90 immediately below the uppermost wafer 90, the state in which the wafers 90 are stuck together is eliminated, and the wafer 90 positioned at the uppermost position is appropriately sucked by the conveyor. 2 can be adsorbed.
  • the liquid 91 in which the plurality of wafers 90 are immersed is in a state where the viscosity is lowered by being heated, the liquid 91 easily enters between the wafers 90. This and the liquid ejection to the end face of the wafer 90 tend to cause a gap between the wafers 90.
  • the suction conveyor 2 that slides the wafer 90 If the suction conveyor 2 that slides the wafer 90 is used, the sucked wafers 90 can be smoothly retracted from directly above the plurality of stacked wafers 90. At this time, there is little possibility that the plurality of wafers 90 are greatly disturbed.
  • the plurality of wafers 90 are stacked so that the upper surface of the wafer 90 is parallel to the wafer suction surface 223 of the suction conveyor 2. For this reason, the suction force by the suction conveyor 2 acts substantially evenly on the entire surface of the uppermost wafer 90 that has been lifted by the liquid jet from the nozzle 31. Such a configuration is suitable for accurately adsorbing the wafer 90 at the uppermost position. Further, since the wafer suction surface 223 is inclined so that the front side in the sliding direction of the wafer 90 (right side in the figure) is higher, it is suitable for efficiently transporting the wafer 90 in a short movement process.
  • the nozzle 31 is arranged on the front side in the sliding direction of the wafer 90 (right side in the figure) with respect to the plurality of wafers 90, and ejects the liquid 91 toward the end face of the stacked wafers 90. That is, the liquid 91 is ejected from the nozzle 31 in the direction opposite to the sliding direction of the wafer 90. Thereby, it is possible to prevent the wafer 90 immediately below the wafer 90 positioned at the top from being mistakenly carried.
  • compartments 231, 232, and 233 those that do not overlap with the adsorption section 221 are sequentially blocked from the pump 26, so that a wafer 90 other than the wafer 90 that is to be adsorbed by a portion other than the adsorption section 221 is erroneously adsorbed. Can be prevented.
  • FIG. 11 and 12 show a wafer transfer apparatus according to the second embodiment of the present invention.
  • the configuration shown in the drawing is different from the above-described embodiment in that it further includes two nozzles 8 for separation, and the other configurations are the same as those in the above-described embodiment and are not shown. .
  • the nozzles 8 are provided on both sides across the direction in which the uppermost wafer 90 indicated by the arrow in the figure is conveyed.
  • the jet flow from the nozzle 8 is discharged toward the end surface of the wafer 90 that is levitated by the jet flow from the nozzle 31.
  • the liquid 91 can enter between them by the jet flow from the nozzle 8. is there.
  • separation between the uppermost wafer 90 and the second wafer 90 can be promoted. Therefore, when the uppermost wafer 90 is lifted by the jet flow of the nozzle 31 described above, it is possible to prevent the second wafer 90 from being erroneously lifted in a state of sticking to the uppermost wafer 90. it can.
  • FIG. 13 shows a wafer transfer apparatus according to the third embodiment of the present invention.
  • the wafer transfer apparatus 10 of this embodiment includes a wafer tank 1, a suction conveyor 2, a plurality of nozzles 31, a sponge roller 32, a heater 41, a temperature sensor 42, a heater control unit 43, a relay conveyor 5, a loading conveyor 6, a stacker 7, A mounting table 81 and a support member 82 are provided.
  • the wafer tank 1 is formed in a container shape that opens upward in the vertical direction, and accommodates a plurality of wafers 90 in a state of being immersed in a predetermined liquid 91.
  • the plurality of wafers 90 are mounted on a mounting table 81 to be described later and guided by a support member 82.
  • the plurality of wafers 90 are placed in the liquid 91 in a state where they are stacked up and down, and are inclined at a predetermined angle with respect to the liquid surface 92 of the liquid 91.
  • the liquid 91 is, for example, water in which an appropriate amount of a surfactant is mixed.
  • the number of these wafers 90 is about 1000, for example.
  • the outer shape is 156 mm square and the thickness is 0.14 to 0.18 mm.
  • the plurality of wafers 90 are stacked so that the upper surface of the wafer 90 is parallel to a wafer suction surface 223 of the suction conveyor 2 described later.
  • the distance between the upper surface of the uppermost wafer 90 and the wafer suction surface 223 of the suction conveyor 2 is, for example, 15 to 35 mm.
  • FIG. 15 is a perspective view showing only the mounting table 81 and the support member 82 in a partially transparent manner.
  • FIG. 16 is a cross-sectional view of a principal part taken along line XVI-XVI in FIG.
  • FIG. 17 shows a plan view seen from the upper side of FIG.
  • the mounting table 81 is for mounting a plurality of wafers 90.
  • the mounting table 81 is made of, for example, vinyl chloride resin or glass epoxy resin.
  • the mounting table 81 includes a bottom base portion 811, a pair of plate-like members 812 and 813, and an auxiliary support member 814.
  • the bottom portion 811 has a square flat plate shape.
  • the outer shape of the base portion 811 is approximately the same size as the wafer 90 and has a thickness of, for example, 10 mm.
  • Each of the pair of plate-like members 812 and 813 and the auxiliary support member 814 is erected upward from the bottom base portion 811 in FIGS. 15 and 16.
  • the pair of plate-like members 812 and 813 and the auxiliary support member 814 are arranged in parallel to each other and have a long plate shape extending along the x1-x2 direction.
  • the pair of plate-like members 812 and 813 and the auxiliary support member 814 are all for supporting the wafer 90. Even if only a pair of plate-like members 812 and 813 is disposed, a plurality of wafers 90 can be supported. However, by further disposing the auxiliary support member 814, the wafer 90 can be prevented from being bent downward.
  • the dimensions of the pair of plate-like members 812 and 813 and the auxiliary support member 814 are, for example, a long side of 156 mm, a short side of 15 to 35 mm, and a thickness of 2 to 10 mm.
  • two spaces 815 are formed by being sandwiched between the bottom portion 811, the pair of plate-like members 812 and 813, and the auxiliary support member 814.
  • the space 815 penetrates in the x1-x2 direction. Further, the space 815 is exposed toward the side opposite to the base portion 811, that is, the side on which the wafer 90 is placed.
  • the support member 82 is for guiding the plurality of wafers 90 so that the plurality of wafers 90 are not displaced.
  • the support member 82 is connected to the mounting table 81.
  • the support member 82 is made of, for example, glass epoxy resin or stainless steel. As shown in FIGS. 15 to 17, the support member 82 includes a pair of movement restricting portions 821, 822 and movement restricting portions 823, 824. All of the movement restricting portions 821 and 822 are arranged on the direction x1 side with respect to the plurality of wafers 90. By thus disposing the movement restricting portions 821 and 822, the movement of the plurality of wafers 90 in the direction x1 is restricted.
  • the movement restricting portions 821 and 822 have a long plate shape extending along the stacking direction of the wafers 90.
  • the movement restricting portions 821 and 822 are separated from each other, and the separation distance L1 is, for example, 101 to 140 mm. Further, the separation distance is smaller than the width of the wafer 90.
  • the movement restricting portion 823 is disposed on the direction y1 side with respect to the plurality of wafers 90, and the movement restricting portion 824 is disposed on the direction y2 side with respect to the plurality of wafers 90. Since the movement restricting portions 823 and 824 are arranged in this way, the movement of the plurality of wafers 90 in the y1-y2 direction is restricted.
  • the movement restricting portions 823 and 824 have a long plate shape extending along the stacking direction of the wafers 90.
  • the movement restricting portion 823 is integrally formed with the movement restricting portion 821, and the movement restricting portion 824 is integrally formed with the movement restricting portion 824.
  • the plurality of wafers 90 are, for example, stacked on the table 81 on the left side of the wafer tank 1 in FIG. 13 and guided by the support member 82, and are sent to the right part of the wafer tank 1 in the drawing by the conveyor 11.
  • the lifter 12 can be raised and lowered with an accuracy corresponding to at least the thickness of one wafer 90 by, for example, a servo motor (not shown). As the lifter 12 moves up and down, the table 81, the support member 82, and the wafer 90 move up and down.
  • the suction conveyor 2 corresponds to an example of the suction slide means referred to in the present invention, and is provided in a position where the lower part of the wafer tank 1 is immersed in the liquid 91. As shown in FIG. 17, the size L2 of the suction conveyor 2 in the y1-y2 direction is smaller than the separation distance L1 between the movement restricting portions 821 and 822, for example, 100 mm. As shown in FIG. 14, the suction conveyor 2 includes a pair of rollers 21, a pair of endless belts 22, and a vacuum box 23.
  • the pair of rollers 21 are spaced apart from each other in parallel and at least one of them is connected to a drive source such as a servo motor (not shown).
  • a drive source such as a servo motor (not shown).
  • the roller 21 shown in FIG. 14 is rotated counterclockwise in the drawing.
  • the pair of endless belts 22 are, for example, rubber belt-like belts that are annular, and are wound around the pair of rollers 21. As shown in FIG. 18, the pair of endless belts 22 are spaced apart from each other in parallel. As shown in FIG. 14 and FIG. 18, a plurality of holes 222 are formed in the suction section 221 that is a part in the circumferential direction of each endless belt 22. Each hole 222 penetrates the endless belt 22 in the thickness direction, and allows liquid 91 and air to pass therethrough. In the present embodiment, the circumferential dimension of the suction section 221 is substantially the same as the circumferential dimension of the wafer 90.
  • the vacuum box 23 is disposed in the inner space of the endless belt 22 and is a box made of, for example, SUS having a rectangular cross section.
  • the dimension in the height direction of the vacuum box 23 is substantially the same as the interval between the inner sides of the endless belt 22. For this reason, the endless belt 22 slides along the upper and lower surfaces of the vacuum box 23.
  • Each endless belt 22 is rotated in the direction of the arrow in FIG. That is, when the roller 21 is driven to rotate, a portion (wafer suction surface 223) of the endless belt 22 positioned below the vacuum box 23 slides from the left to the right in the drawing.
  • the vacuum box 23 has three compartments 231, 232 and 233. These compartments 231, 232 and 233 are arranged along the direction in which the pair of rollers 21 are separated. A plurality of holes 235 are formed in the vacuum box 23. The plurality of holes 235 are provided in the lower portion of the vacuum box 23. In the present embodiment, the plurality of holes 235 are provided in substantially the entire lower portion of the vacuum box 23.
  • the compartments 231, 232, and 233 are each provided with an air inlet 234.
  • the suction conveyor 2 is inclined slightly with respect to the liquid surface 92 of the liquid 91. More specifically, the suction conveyor 2 is inclined so that the right end is higher than the left end.
  • a pump 26 is connected to the intake port 234 via a hose 24, a valve unit 27, and a dehydration tank 25.
  • the hose 24 is a flexible piping component made of resin, for example.
  • the valve unit 27 can switch which of the compartments 231, 232, and 233 is connected to the pump 26.
  • the dehydration tank 25 is for separating the liquid 91 from the air sucked through the vacuum box 23.
  • the pump 26 is a depressurization source for depressurizing the space in the vacuum box 23 accommodated in the endless belt 22 to such an extent that the wafer 90 can be adsorbed by the adsorption conveyor 2.
  • the plurality of nozzles 31 are components for discharging the liquid 91 and cause a jet of the liquid 91 to be generated.
  • Each of these nozzles 31 is connected to a discharge pump (not shown) via a pipe (not shown).
  • the nozzle 31 is disposed on the right side of the plurality of stacked wafers 90 in the drawing, and the liquid is directed toward the end surfaces 93 of the plurality of wafers 90.
  • 91 is provided in a posture for jetting.
  • Each of the nozzles 31 can eject a liquid 91 having a flat shape in the stacking direction of the wafer 90 (not shown).
  • the flow rate of the liquid 91 discharged from the nozzle 31 is, for example, about 9 L / min.
  • the nozzle 311 is arranged at the center in the y1-y2 direction
  • the nozzle 312 is adjacent to the nozzle 311
  • the nozzle 313 is arranged at the outermost side in the y1-y2 direction.
  • the nozzle 311 ejects the liquid 91 toward the center of the end surface 93 of the wafer Wf in the y1-y2 direction (the direction in which the end surface 93 of the wafer 90 extends).
  • the position where the jet flow from the nozzle 311 hits the end surface 93 of the wafer 90 is a position corresponding to several sheets (about 5 to 6 sheets) from the uppermost one of the plurality of wafers 90.
  • the direction in which the nozzle 311 ejects the liquid 91 coincides with the direction x1.
  • the nozzle 312 is disposed at a position overlapping the end surface 93 of the wafer 90 in the y1-y2 direction. Further, as shown in FIG.
  • the nozzle 312 is disposed in the same direction as the nozzle 311 in the stacking direction of the wafer 90.
  • the nozzle 312 ejects the liquid 91 toward a portion near one end of the end surface 93 of the wafer 90.
  • the position at which the jet flow from the nozzle 312 hits the end surface 93 of the wafer 90 is a position of several sheets (about 5 to 6 sheets) from the uppermost one of the plurality of wafers 90.
  • the direction in which the nozzle 312 ejects the liquid 91 also coincides with the direction x1.
  • the nozzle 313 is disposed outside the end face 93 of the wafer 90 in the y1-y2 direction. As shown in FIG. 16, the nozzle 313 is arranged higher than the nozzles 311 and 312 in the stacking direction of the wafer 90. The nozzle 313 ejects the liquid 91 slightly upward toward one end of the end surface 93 of the wafer 90. Preferably, the nozzle 313 may eject the liquid 91 toward the upper side of the uppermost one of the plurality of wafers 90 and so that the jet flow from the nozzle 313 reaches the adsorption conveyor 2. The ejection direction of the liquid 91 by the nozzle 313 is at an angle of, for example, 15 to 20 degrees with respect to the in-plane direction of the wafer 90.
  • the sponge roller 32 is a roller whose surface is made of sponge.
  • the sponge roller 32 is disposed rightward in the drawing with respect to the stacked wafers 90 just below the suction conveyor 2.
  • the sponge roller 32 is connected to a motor (not shown), for example, and is rotatable.
  • the sponge roller 32 is fixed to the suction conveyor 2 by a bracket.
  • the heater 41 is immersed in the liquid 91 and is disposed, for example, near the wall surface of the wafer tank 1.
  • a liquid heating one is used as the heater 41.
  • the heater 41 is connected to the heater control unit 43 via a cable, and its driving is controlled by an electric signal from the heater control unit 43.
  • the temperature sensor 42 is immersed in the liquid 91 and is disposed, for example, near the wall surface of the wafer tank 1.
  • a thermistor for measuring a liquid temperature can be employed.
  • An output signal from the temperature sensor 42 is transmitted to the heater control unit 43 via a cable.
  • the heater control unit 43 is for supplying driving power to the heater 41, and is provided outside the wafer tank 1.
  • the heater control unit 43 includes a control circuit that controls driving of the heater 41 in accordance with an electrical signal from the temperature sensor 42. Examples of the control by the heater control unit 43 include so-called feedback control that controls the driving of the heater 41 so that the temperature measured by the temperature sensor 42 falls within a predetermined temperature range.
  • the relay conveyor 5 is disposed above the liquid level 92 on the downstream side of the suction conveyor 2.
  • the relay conveyor 5 receives the wafer 90 sucked by the procedure described later from the suction conveyor 2.
  • the loading conveyor 6 is arranged on the downstream side of the relay conveyor 5.
  • the loading conveyor 6 is used to load the wafer 90 received from the relay conveyor 5 into the stacker 7.
  • the stacker 7 is for storing a plurality of wafers 90 one by one, and has a plurality of pockets 71 arranged in parallel to each other in the vertical direction.
  • the wafer 90 is sent from the loading conveyor 6, the wafer 90 is loaded into a pocket 71.
  • the stacker 7 is raised by one step of the pocket 71 by lifting means (not shown). As a result, the next wafer 90 can be loaded.
  • FIG. 19 to FIG. 25 the table 81 and the support member 82 are not shown for convenience of understanding. However, in reality, a plurality of wafers 90 are mounted on the table 81 and guided to the support member 82. The following steps are performed as they are.
  • the suction section 221 of the endless belt 22 is positioned immediately above the stacked wafers 90.
  • the distance between the upper surface of the uppermost wafer 90 and the wafer suction surface 223 of the suction conveyor 2 is, for example, 15 to 35 mm.
  • the suction section 221 is in this position, the one provided in the compartments 231 and 232 of the plurality of holes 235 of the vacuum box 23 overlaps the suction section 221.
  • the valve unit 27 the compartments 231 and 232 and the pump 26 are connected, and the compartment 233 and the pump 26 are shut off.
  • the pump 26 is driven, and the internal pressure of the compartments 231 and 232 is set to a negative pressure.
  • the temperature of the liquid 91 is set to about 30 to 50 degrees in advance by driving the heater 41.
  • the liquid 91 is ejected from the plurality of nozzles 31 toward the end surface 93 of the wafer 90 at a predetermined discharge pressure (see FIGS. 16 to 18). Due to the discharge pressure from the nozzle 31, the liquid 91 enters between the wafers 90 or on the uppermost part of the wafer 90 at a part where the liquid 91 is sprayed. Then, as shown in FIG. 20, the plurality of wafers 90 including the uppermost wafer 90 are lifted so that a gap is formed between them. The uppermost wafer 90 is close to the suction section 221 (wafer suction surface 223) of the endless belt 22.
  • the endless belt 22 is rotated counterclockwise by driving the roller 21.
  • the attracted wafer 90 is slid rightward in the figure.
  • the sponge roller 32 is rotated counterclockwise.
  • the slidable wafer 90 passes through the sponge roller 32 in order from the tip while contacting the wafer 90.
  • a resistance force is applied to the wafer 90 in the direction opposite to the sliding direction. If two wafers 90 that were positioned at the uppermost position and the wafer 90 that was immediately below the uppermost wafer 90 were mistakenly taken, the lower wafer 90 can be removed by this resistance force.
  • the surfactant mixed in the liquid 91 favorably promotes the penetration of the liquid 91 between the two wafers 90.
  • the ejection of the liquid 91 from the nozzle 31 is stopped, but the following series of steps may be continued without stopping the ejection of the liquid 91 from the nozzle 31.
  • the suction section 221 moves from a position overlapping the compartments 231 and 232 to a position overlapping the compartments 232 and 233.
  • the valve unit 27 by switching the valve unit 27, the compartments 232 and 233 and the pump 26 are connected, and the compartment 231 and the pump 26 are shut off.
  • the internal pressure of the compartments 232 and 233 becomes negative, and the compartment 231 is released from the state where the internal pressure becomes a strong negative pressure.
  • the endless belt 22 is further rotated. Then, the sucked wafer 90 slides further to the right and is delivered to the relay conveyor 5. In the state shown in the figure, the adsorption section 221 overlaps only the compartment 233. At this time, by switching the valve unit 27, the compartment 233 and the pump 26 are connected, and the compartments 231 and 232 and the pump 26 are shut off.
  • the wafer 90 is loaded into the stacker 7 via the relay conveyor 5 and the loading conveyor 6.
  • the suction conveyor 2 is brought into the state shown in FIG. 19 again by rotating the endless belt 22 and switching the valve unit 27.
  • the lifter 12 raises the stacked wafers 90 by a height corresponding to the thickness of the single wafer 90, so that the next wafer 90 can be adsorbed.
  • a plurality of stacked wafers 90 can be transferred one by one and loaded into the stacker 7.
  • the number of wafers 90 mounted on the mounting table 81 is about several.
  • the liquid 91 ejected from the nozzle 31 toward the end surface 93 of the wafer 90 also enters the space 815 of the mounting table 81 on which the wafer 90 is placed. Therefore, even if there are several wafers 90, they are lifted up so that a gap is generated between them. Thereafter, almost all the wafers 90 mounted on the mounting table 81 can be loaded into the stacker 7 through the same process as described above.
  • the plurality of wafers 90 are in a wet state because, for example, a cutting process using a wire saw is followed by a cleaning process and an adhesive dissolving process. When these wet wafers 90 are placed in the atmosphere, they stick to each other and it is difficult to separate them one by one.
  • the plurality of wafers 90 stacked in the liquid 91 the plurality of wafers 90 including the uppermost wafer 90 is ejected by ejecting the liquid 91 onto the end surfaces 93 of the wafers 90. A gap is created between the two.
  • the nozzle 31 is arranged as shown in FIGS. 16 and 17 and the direction of the liquid 91 ejected from the nozzle 31 is adjusted, so that a gap is formed between the plurality of wafers 90. It is easy to cause.
  • the present embodiment it is easier to create a gap between more wafers 90 than in the case where the nozzle 311 is not provided, and the wafers 90 can be floated faster. I was able to.
  • the plurality of wafers 90 can be floated more reliably than in the case where the nozzle 312 or the nozzle 313 is not provided.
  • nozzles 311, 312, and 313 it is not always necessary to dispose any of the nozzles 311, 312, and 313 as the nozzle 31.
  • the nozzle 31 only the nozzles 311 and 312 may be arranged, only the nozzles 311 and 313 may be arranged, or only the nozzles 312 and 313 may be arranged.
  • only the nozzle 311, only the nozzle 312, or only the nozzle 313 may be disposed as the nozzle 31.
  • All the nozzles 31 can eject a liquid 91 having a flat shape in the stacking direction of the wafers 90. This also facilitates the formation of a gap between the plurality of wafers 90.
  • the plurality of wafers 90 are guided by the support member 82.
  • the movement of the plurality of wafers 90 in the direction x1 is restricted by the pair of movement restricting portions 821 and 822. Therefore, even if the liquid 91 is ejected from the nozzle 31 toward the direction x1 with respect to the wafer 90, there is little possibility that the wafer 90 is displaced in the direction x1 due to the force of the liquid 91.
  • Such a configuration is suitable for accurately adsorbing the wafer 90 at the uppermost position.
  • the movement of the wafer 90 in the direction y1 and the direction y2 is restricted by the pair of movement restriction parts 823 and 824.
  • the pair of movement restricting portions 821 and 822 is an example of a separate plate-like member, but the pair of movement restricting portions 821 and 822 are two portions of an integral member. It doesn't matter.
  • the size L2 of the suction conveyor 2 in the y1-y2 direction is smaller than the separation distance L1 between the movement restricting portions 821 and 822. Therefore, as illustrated in FIG. 26, the suction conveyor 2 can move in the stacking direction of the plurality of wafers 90 without being obstructed by the movement restricting portions 821 and 822. This is suitable for bringing the suction conveyor 2 closer to the uppermost one of the plurality of wafers 90. For this reason, the uppermost wafer 90 is more easily sucked by the suction conveyor 2.
  • the suction conveyor 2 that slides the wafer 90 If the suction conveyor 2 that slides the wafer 90 is used, the sucked wafers 90 can be smoothly retracted from directly above the plurality of stacked wafers 90. At this time, there is little possibility that the plurality of wafers 90 are greatly disturbed.
  • the plurality of wafers 90 are stacked so that the upper surface of the wafer 90 is parallel to the wafer suction surface 223 of the suction conveyor 2. For this reason, the suction force by the suction conveyor 2 acts substantially evenly on the entire surface of the uppermost wafer 90 that has been lifted by the liquid jet from the nozzle 31. Such a configuration is suitable for accurately adsorbing the wafer 90 at the uppermost position. Further, since the wafer suction surface 223 is inclined so that the front side in the sliding direction of the wafer 90 (right side in the figure) is higher, it is suitable for efficiently transporting the wafer 90 in a short movement process.
  • the nozzle 31 is disposed on the front side of the wafer 90 in the sliding direction (right side in the drawing) with respect to the plurality of wafers 90, and ejects the liquid 91 toward the end surface 93 of the stacked wafers 90. That is, the liquid 91 is ejected from the nozzle 31 in the direction opposite to the sliding direction of the wafer 90. Therefore, although the wafer 90 located at the uppermost position receives a force that moves forward in the sliding direction from the suction conveyor 2, the wafer 90 immediately below the wafer 90 located at the uppermost position is ejected from the nozzle 31. The liquid 91 receives a force in the direction opposite to the sliding direction. Thereby, it is possible to prevent the wafer 90 immediately below the wafer 90 positioned at the top from being mistakenly carried.
  • the liquid 91 in which the plurality of wafers 90 are immersed is heated by the heater 41 and is set to a temperature higher than room temperature. Since the liquid 91 has a property that its viscosity decreases when heated, it is promoted that the liquid 91 enters between adjacent wafers 90. As a result, the wafer 90 positioned at the uppermost position among the plurality of wafers 90 can be easily separated from the wafer 90 adjacent immediately below the wafer 90, and the uppermost wafer 90 can be picked up appropriately.
  • compartments 231, 232, and 233 those that do not overlap with the adsorption section 221 are sequentially blocked from the pump 26, so that the wafer 90 other than the wafer Wf to be adsorbed by a part other than the adsorption section 221 is erroneously adsorbed. Can be prevented.
  • a space 815 is formed in the mounting table 81.
  • the wafer 90 positioned at the uppermost position is Can maintain a floating state. Therefore, it is not necessary to lift the wafer 90 again after returning to the state where the wafer 90 is not lifted. As a result, the efficiency of the wafer transfer process can be improved.
  • the wafer transfer method and the wafer transfer apparatus according to the present invention are not limited to the above-described embodiments.
  • the specific configurations of the wafer transfer method and the wafer transfer apparatus according to the present invention can be varied in design in various ways.

Abstract

A wafer conveying method is provided with: a step which, in order to produce a gap between any adjacent wafers (90) among wafers (90) stacked on one another in liquid, discharges the liquid toward the end surfaces of the wafers (90); and a step which picks up at least the uppermost-located wafer (90) among the wafers (90) with the gap produced. The configuration enables the wafers (90) to be separated one by one without using manpower after cutting, for example, by wire saws.

Description

ウエハ搬送方法およびウエハ搬送装置Wafer transfer method and wafer transfer apparatus
 本発明は、たとえば太陽電池の材料に用いられる半導体ウエハを1枚ずつ搬送するウエハ搬送方法およびウエハ搬送装置に関する。 The present invention relates to a wafer transfer method and a wafer transfer apparatus for transferring, for example, semiconductor wafers used for a solar cell material one by one.
 図27は、半導体ウエハの製造におけるワイヤソー装置を用いた切断工程を示している(たとえば特許文献1参照)。同図に示されたワイヤソー装置900は、4つのガイドローラ903およびワイヤ904を備えており、半導体材料902をウエハ状に切断する装置である。ワイヤ904は、たとえばメッキが施されたピアノ線であり、4つのガイドローラ903に掛け回されており、図示された矢印の方向に送られる。半導体材料902は、たとえばガラスからなる保持部材901に接着剤によって接合された状態で、ワイヤ904に押し付けられる。ワイヤ904が半導体材料902を超えて保持部材901に到達すると、半導体材料902の切断が完了する。この切断により、保持部材901に各々の端縁が接合された状態で、複数枚のウエハが得られる。 FIG. 27 shows a cutting process using a wire saw device in the manufacture of a semiconductor wafer (see, for example, Patent Document 1). The wire saw apparatus 900 shown in the figure includes four guide rollers 903 and wires 904, and is an apparatus for cutting the semiconductor material 902 into a wafer shape. The wire 904 is, for example, a plated piano wire, is wound around four guide rollers 903, and is sent in the direction indicated by the arrow. The semiconductor material 902 is pressed against the wire 904 in a state where the semiconductor material 902 is bonded to a holding member 901 made of glass, for example, with an adhesive. When the wire 904 reaches the holding member 901 beyond the semiconductor material 902, the cutting of the semiconductor material 902 is completed. By this cutting, a plurality of wafers are obtained in a state where the respective edges are joined to the holding member 901.
 しかしながら、切断を終えた後には、最終的に上記ウエハを1枚1枚分離した状態にする必要がある。この分離作業に先立って、切断粉の洗浄や、保持部材901からの剥離を目的として、上記ウエハは、洗浄液や接着剤を溶解する溶液に漬けられる。これらの液体によって上記ウエハがウエットの状態になると、となり合う上記ウエハどうしが張り付いてしまいやすい。このようなことでは、上記ウエハを1枚1枚分離した状態とすることは容易ではなく、たとえば作業者が手作業によって上記半導体ウエハを1枚ずつ取り上げるといった作業が強いられていた。 However, after finishing the cutting, it is necessary to finally separate the wafers one by one. Prior to the separation operation, the wafer is immersed in a solution that dissolves the cleaning liquid and the adhesive for the purpose of cleaning the cutting powder and peeling from the holding member 901. When the wafers are wet by these liquids, the wafers that are adjacent to each other are likely to stick to each other. For this reason, it is not easy to separate the wafers one by one. For example, an operator is forced to manually pick up the semiconductor wafers one by one.
特開2007-160431号公報JP 2007-160431 A
 本発明は、上記した事情のもとで考え出されたものであって、たとえばワイヤソーによる切断の後に、人手を介することなく半導体ウエハを1枚ずつ分離することが可能なウエハ搬送方法およびウエハ搬送装置を提供することをその課題とする。 The present invention has been conceived under the circumstances described above. For example, a wafer transfer method and wafer transfer capable of separating semiconductor wafers one by one after being cut by a wire saw without human intervention. An object is to provide an apparatus.
 本発明の第1の側面によって提供されるウエハ搬送方法は、液体中に積層された複数枚のウエハどうしの間のいずれかに隙間を生じさせるべく、上記複数枚のウエハの端面に向けて上記液体を噴出する工程と、上記隙間を生じさせた状態で、上記複数枚のウエハのうち少なくとも最上位に位置するウエハを取り上げる工程と、を備える。 In the wafer transfer method provided by the first aspect of the present invention, the gap is formed between the plurality of wafers stacked in the liquid toward the end face of the plurality of wafers in order to create a gap between the wafers. A step of ejecting liquid, and a step of picking up at least the uppermost wafer among the plurality of wafers in a state where the gap is generated.
 本発明の好ましい実施の形態においては、上記液体を噴出する工程は、上記ウエハの上記端面の延びる方向における上記端面の中央に向けて上記液体を噴出する第1の工程を含む。 In a preferred embodiment of the present invention, the step of ejecting the liquid includes a first step of ejecting the liquid toward the center of the end surface in the extending direction of the end surface of the wafer.
 本発明の好ましい実施の形態においては、上記液体を噴出する工程は、上記ウエハの上記端面の延びる方向において上記端面と重なる位置から上記端面に向けて上記液体を噴出する、上記第1の工程と異なる第2の工程をさらに含む。 In a preferred embodiment of the present invention, the step of ejecting the liquid includes the first step of ejecting the liquid from the position overlapping the end surface toward the end surface in the extending direction of the end surface of the wafer. A different second step is further included.
 本発明の好ましい実施の形態においては、上記第1の工程における上記液体を噴出する方向と、上記第2の工程における上記液体を噴出する方向とは同一である。 In a preferred embodiment of the present invention, the direction in which the liquid is ejected in the first step is the same as the direction in which the liquid is ejected in the second step.
 本発明の好ましい実施の形態においては、上記第1および第2の工程において噴出される上記液体は、上記ウエハの積層方向において同じ位置から噴出される。 In a preferred embodiment of the present invention, the liquid ejected in the first and second steps is ejected from the same position in the wafer stacking direction.
 本発明の好ましい実施の形態においては、上記液体を噴出する工程は、上記ウエハの上記端面の延びる方向における上記端面の外側から上記端面に向けて上記液体を噴出する第3の工程をさらに含む。 In a preferred embodiment of the present invention, the step of ejecting the liquid further includes a third step of ejecting the liquid from the outside of the end surface in the direction in which the end surface of the wafer extends toward the end surface.
 本発明の好ましい実施の形態においては、上記第3の工程においては、上記最上位に位置するウエハの上側に向けて上記液体を噴出する。 In a preferred embodiment of the present invention, in the third step, the liquid is ejected toward the upper side of the uppermost wafer.
 本発明の好ましい実施の形態においては、上記ウエハの積層方向において、上記第1の工程において噴出される上記液体を、上記第3の工程において上記液体が噴出される位置より低い位置から噴出する。 In a preferred embodiment of the present invention, in the wafer stacking direction, the liquid ejected in the first step is ejected from a position lower than a position where the liquid is ejected in the third step.
 本発明の好ましい実施の形態においては、上記液体を噴出する工程においては、上記ウエハの積層方向に沿う扁平な形状で上記液体を噴出する。 In a preferred embodiment of the present invention, in the step of ejecting the liquid, the liquid is ejected in a flat shape along the wafer stacking direction.
 本発明の好ましい実施の形態においては、上記液体を噴出する工程は、上記ウエハを取り上げる工程の前後にわたって継続して実行されている。 In a preferred embodiment of the present invention, the step of ejecting the liquid is continuously performed before and after the step of picking up the wafer.
 本発明の好ましい実施の形態においては、上記複数枚のウエハのうち最上位にあったものを吸着した状態でこのウエハをその面内方向にスライドさせる吸着スライド手段によって、上記最上位のウエハから順に上記ウエハを搬送する工程をさらに備える。 In a preferred embodiment of the present invention, the top wafer among the plurality of wafers is sucked in an in-plane direction while the top wafer is sucked, and the wafer is sequentially moved from the top wafer. The method further includes a step of transporting the wafer.
 本発明の好ましい実施の形態においては、上記吸着スライド手段として、互いに離間した1対のローラと、上記1対のローラに掛け回されており、複数の孔が設けられた吸着区間を有する無端ベルトと、上記無端ベルトに囲まれた空間を減圧しうる減圧手段と、を備えた吸着コンベアを用いる。 In a preferred embodiment of the present invention, as the suction slide means, a pair of rollers spaced apart from each other and an endless belt that is wound around the pair of rollers and has a suction section provided with a plurality of holes. And a decompression means capable of decompressing the space surrounded by the endless belt.
 本発明の好ましい実施の形態においては、上記吸着スライド手段におけるウエハ吸着面は、ウエハのスライド方向前方側に向かうにつれて上位となるように傾斜しており、上記最上位のウエハは、上記ウエハ吸着面に対して正対している。 In a preferred embodiment of the present invention, the wafer suction surface of the suction slide means is inclined so as to be higher as it goes to the front side in the sliding direction of the wafer, and the uppermost wafer is the wafer suction surface. Is directly facing.
 本発明の好ましい実施の形態においては、上記液体を噴出する工程においては、上記複数枚のウエハに対して上記ウエハのスライド方向前方側から上記液体を噴出する。 In a preferred embodiment of the present invention, in the step of ejecting the liquid, the liquid is ejected from the front side of the wafer in the sliding direction with respect to the plurality of wafers.
 本発明の好ましい実施の形態においては、上記複数枚のウエハに対してウエハのスライド方向前方側に配置された分離用ノズルから、上記吸着スライド手段によって吸着されたウエハの端面に向けて、上記液体を噴出させる。 In a preferred embodiment of the present invention, the liquid is directed from the separation nozzle disposed on the front side in the wafer sliding direction with respect to the plurality of wafers toward the end surface of the wafer adsorbed by the adsorption slide means. Erupt.
 本発明の好ましい実施の形態においては、上記液体の温度を測定し、この測定温度が所定の温度範囲となるように上記液体を加熱する液体温度調整工程をさらに含む。 In a preferred embodiment of the present invention, the method further includes a liquid temperature adjusting step of measuring the temperature of the liquid and heating the liquid so that the measured temperature falls within a predetermined temperature range.
 本発明の好ましい実施の形態においては、上記所定の温度範囲は、30~50度である。 In a preferred embodiment of the present invention, the predetermined temperature range is 30 to 50 degrees.
 本発明の第2の側面によって提供されるウエハ搬送装置は、液体中に積層された複数枚のウエハの端面に向けて上記液体を噴出することにより、上記複数枚のウエハどうしの間のいずれかに隙間を生じさせる少なくとも1つの液体噴出手段と、上記隙間を生じさせた状態において、上記複数枚のウエハのうち少なくとも最上位に位置するウエハを受け取り可能なウエハ受け取り手段と、を備える。 The wafer transfer apparatus provided by the second aspect of the present invention is configured to eject any of the liquids toward the end surfaces of the plurality of wafers stacked in the liquid, thereby allowing any one of the plurality of wafers to be in contact with each other. And at least one liquid ejecting means for generating a gap in the wafer and wafer receiving means capable of receiving at least the uppermost wafer among the plurality of wafers in the state in which the gap is generated.
 本発明の好ましい実施の形態においては、上記少なくとも1つの液体噴出手段は、上記ウエハの上記端面の延びる方向における上記端面の中央に向けて上記液体を噴出する第1の液体噴出手段を含む。 In a preferred embodiment of the present invention, the at least one liquid ejecting means includes first liquid ejecting means for ejecting the liquid toward the center of the end face in the extending direction of the end face of the wafer.
 本発明の好ましい実施の形態においては、上記少なくとも1つの液体噴出手段は、上記端面の延びる方向において上記端面と重なる位置に配置され且つ上記端面に向けて上記液体を噴出する、上記第1の液体噴出手段と異なる第2の液体噴出手段をさらに含む。 In a preferred embodiment of the present invention, the at least one liquid ejecting means is disposed at a position overlapping the end face in the extending direction of the end face and ejects the liquid toward the end face. Second liquid ejecting means different from the ejecting means is further included.
 本発明の好ましい実施の形態においては、上記第1および第2の液体噴出手段はいずれも同一の方向に向かって上記液体を噴出する。 In a preferred embodiment of the present invention, each of the first and second liquid ejecting means ejects the liquid in the same direction.
 本発明の好ましい実施の形態においては、上記ウエハの積層方向において、上記第1の液体噴出手段と上記第2の液体噴出手段とは、同位に位置する。 In a preferred embodiment of the present invention, the first liquid ejecting means and the second liquid ejecting means are located in the same direction in the wafer stacking direction.
 本発明の好ましい実施の形態においては、上記少なくとも1つの液体噴出手段は、上記端面の延びる方向における上記端面の外側から上記端面に向けて上記液体を噴出する第3の液体噴出手段をさらに含む。 In a preferred embodiment of the present invention, the at least one liquid ejecting means further includes third liquid ejecting means for ejecting the liquid from the outside of the end face in the extending direction of the end face toward the end face.
 本発明の好ましい実施の形態においては、上記第3の液体噴出手段はさらに、上記最上位に位置するウエハの上側に向けて上記液体を噴出する。 In a preferred embodiment of the present invention, the third liquid ejecting means further ejects the liquid toward the upper side of the uppermost wafer.
 本発明の好ましい実施の形態においては、上記ウエハの積層方向において、上記第1の液体噴出手段は、上記第3の液体噴出手段より低位に位置する。 In a preferred embodiment of the present invention, in the wafer stacking direction, the first liquid ejecting means is positioned lower than the third liquid ejecting means.
 本発明の好ましい実施の形態においては、上記少なくとも1つの液体噴出手段のいずれかは、上記ウエハの積層方向に沿って扁平な形状の上記液体を噴出する。 In a preferred embodiment of the present invention, any one of the at least one liquid ejecting means ejects the liquid having a flat shape along the wafer stacking direction.
 本発明の好ましい実施の形態においては、上記ウエハ受け取り手段は、上記複数枚のウエハのうち最上位にあるものを吸着した状態で、このウエハをその面内方向にスライドさせる吸着スライド手段を含む。 In a preferred embodiment of the present invention, the wafer receiving means includes suction slide means for sliding the wafer in the in-plane direction with the uppermost one of the plurality of wafers being sucked.
 本発明の好ましい実施の形態においては、上記吸着スライド手段は、互いに離間した一対のローラと、上記一対のローラにかけまわされた無端ベルトとを備え、上記無端ベルトには、上記無端ベルトに囲まれ且つ減圧されうる空間とつながる複数の孔が設けられている。 In a preferred embodiment of the present invention, the suction slide means includes a pair of rollers spaced apart from each other and an endless belt wrapped around the pair of rollers, and the endless belt is surrounded by the endless belt. A plurality of holes connected to a space that can be decompressed are provided.
 本発明の好ましい実施の形態においては、上記少なくとも1つの液体噴出手段は、上記複数のウエハに対して上記ウエハのスライド方向前方側に配置されている。 In a preferred embodiment of the present invention, the at least one liquid ejecting means is arranged on the front side in the sliding direction of the wafer with respect to the plurality of wafers.
 本発明の好ましい実施の形態においては、上記複数枚のウエハに対してウエハのスライド方向前方側に配置され、上記吸着スライド手段によって吸着されたウエハの端面に向けて上記液体を噴出する分離用ノズルをさらに備える。 In a preferred embodiment of the present invention, the separation nozzle is disposed on the front side in the wafer sliding direction with respect to the plurality of wafers and ejects the liquid toward the end surface of the wafer sucked by the suction slide means. Is further provided.
 本発明の好ましい実施の形態においては、上記吸着スライド手段は、ウエハ吸着面がウエハのスライド方向前方側に向かうにつれて上位となるように配置され、上記複数枚のウエハは、上記ウエハ吸着面に対して正対するように配置される。 In a preferred embodiment of the present invention, the suction slide means is arranged such that the wafer suction surface becomes higher as the wafer slide surface moves forward in the sliding direction, and the plurality of wafers are positioned relative to the wafer suction surface. So that they face each other.
 本発明の好ましい実施の形態においては、上記液体を加熱する加熱手段と、上記液体の温度を測定する温度測定手段と、上記温度測定手段による上記液体の測定温度が所定の温度範囲となるように上記加熱手段の駆動を制御する制御手段と、をさらに備える。 In a preferred embodiment of the present invention, the heating means for heating the liquid, the temperature measuring means for measuring the temperature of the liquid, and the temperature measured by the temperature measuring means within a predetermined temperature range. Control means for controlling driving of the heating means.
 本発明の好ましい実施の形態においては、上記加熱手段は、上記液体に浸かったヒータである。 In a preferred embodiment of the present invention, the heating means is a heater immersed in the liquid.
 本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.
本発明の第1実施形態に基づくウエハ搬送装置を示す全体概略図である。1 is an overall schematic diagram showing a wafer transfer apparatus according to a first embodiment of the present invention. 図1に示すウエハ搬送装置を示す要部断面図である。It is principal part sectional drawing which shows the wafer conveyance apparatus shown in FIG. 図1に示すウエハ搬送装置の吸着コンベアを斜め下方から見た要部斜視図である。It is the principal part perspective view which looked at the adsorption conveyor of the wafer conveyance apparatus shown in FIG. 1 from diagonally downward. 本発明に係るウエハ搬送方法において、ウエハを浮上させる工程を示す要部断面図である。It is principal part sectional drawing which shows the process of levitating a wafer in the wafer conveyance method which concerns on this invention. 本発明に係るウエハ搬送方法において、ウエハを浮上させる工程を示す、図3と同様の要部斜視図である。FIG. 4 is a perspective view of essential parts similar to FIG. 3, showing a step of floating the wafer in the wafer transfer method according to the present invention. 本発明に係るウエハ搬送方法において、ウエハを吸着する工程を示す、図3と同様の要部斜視図である。FIG. 4 is a perspective view of essential parts similar to FIG. 3, showing a process for adsorbing a wafer in the wafer transfer method according to the present invention. 本発明に係るウエハ搬送方法において、ウエハを吸着する工程を示す要部断面図である。In the wafer conveyance method concerning this invention, it is principal part sectional drawing which shows the process of adsorb | sucking a wafer. 本発明に係るウエハ搬送方法において、ウエハをスライドさせる工程を示す要部断面図である。It is principal part sectional drawing which shows the process of sliding a wafer in the wafer conveyance method which concerns on this invention. 本発明に係るウエハ搬送方法において、ウエハをスライドさせる工程を示す、図3と同様の要部斜視図である。FIG. 4 is a perspective view of essential parts similar to FIG. 3, showing a step of sliding the wafer in the wafer transfer method according to the present invention. 本発明に係るウエハ搬送方法において、ウエハを中継コンベアに受け渡す工程を示す要部断面図である。In the wafer conveyance method which concerns on this invention, it is principal part sectional drawing which shows the process of delivering a wafer to a relay conveyor. 本発明の第2実施形態に基づくウエハ搬送装置を示す要部平面図である。It is a principal part top view which shows the wafer conveyance apparatus based on 2nd Embodiment of this invention. 本発明の第2実施形態に基づくウエハ搬送装置を示す要部側面図である。It is a principal part side view which shows the wafer conveyance apparatus based on 2nd Embodiment of this invention. 本発明に係るウエハ搬送装置の一例を示す全体概略図である。1 is an overall schematic diagram illustrating an example of a wafer transfer apparatus according to the present invention. 図13に示すウエハ搬送装置を示す要部断面図である。It is principal part sectional drawing which shows the wafer conveyance apparatus shown in FIG. 図13に示したウエハ搬送装置の一部の構成のみを示す斜視図である。FIG. 14 is a perspective view showing only a part of the configuration of the wafer transfer apparatus shown in FIG. 13. 図13のXVI-XVI線に沿う要部断面図である。It is principal part sectional drawing in alignment with the XVI-XVI line | wire of FIG. 図16の上側からみた平面図である。It is the top view seen from the upper side of FIG. 図13に示すウエハ搬送装置の吸着コンベアの要部斜視図である。It is a principal part perspective view of the suction conveyor of the wafer conveyance apparatus shown in FIG. 本発明に係るウエハ搬送方法において、ウエハを浮上させる工程を示す要部断面図である。It is principal part sectional drawing which shows the process of levitating a wafer in the wafer conveyance method which concerns on this invention. 本発明に係るウエハ搬送方法において、ウエハを浮上させる工程を示す、図18と同様の要部斜視図である。FIG. 19 is a perspective view of essential parts similar to FIG. 18, showing a step of floating a wafer in the wafer transfer method according to the present invention. 本発明に係るウエハ搬送方法において、ウエハを吸着する工程を示す、図18と同様の要部斜視図である。FIG. 19 is a main part perspective view similar to FIG. 18 showing a process of sucking a wafer in the wafer conveyance method according to the present invention. 本発明に係るウエハ搬送方法において、ウエハを吸着する工程を示す要部断面図である。In the wafer conveyance method concerning this invention, it is principal part sectional drawing which shows the process of adsorb | sucking a wafer. 本発明に係るウエハ搬送方法において、ウエハをスライドさせる工程を示す要部断面図である。It is principal part sectional drawing which shows the process of sliding a wafer in the wafer conveyance method which concerns on this invention. 本発明に係るウエハ搬送方法において、ウエハをスライドさせる工程を示す要部斜視図である。It is a principal part perspective view which shows the process of sliding a wafer in the wafer conveyance method which concerns on this invention. 本発明に係るウエハ搬送方法において、ウエハを中継コンベアに受け渡す工程を示す要部断面図である。In the wafer conveyance method which concerns on this invention, it is principal part sectional drawing which shows the process of delivering a wafer to a relay conveyor. 本発明にかかるウエハ搬送方法における最終工程を示す要部断面図である。It is principal part sectional drawing which shows the last process in the wafer conveyance method concerning this invention. ワイヤソー装置を用いた半導体材料の切断工程を示す斜視図である。It is a perspective view which shows the cutting process of the semiconductor material using a wire saw apparatus.
 以下、本発明の好ましい実施の形態につき、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
 図1は、本発明の第1実施形態に基づくウエハ搬送装置を示している。本実施形態のウエハ搬送装置10は、ウエハ槽1、吸着コンベア2、ノズル31、スポンジローラ32、ヒータ41、温度センサ42、ヒータ制御部43、中継コンベア5、装填コンベア6、およびスタッカ7を備えている。 FIG. 1 shows a wafer transfer apparatus according to the first embodiment of the present invention. The wafer transfer apparatus 10 of this embodiment includes a wafer tank 1, a suction conveyor 2, a nozzle 31, a sponge roller 32, a heater 41, a temperature sensor 42, a heater control unit 43, a relay conveyor 5, a loading conveyor 6, and a stacker 7. ing.
 ウエハ槽1は、鉛直方向上方が開口する容器状とされており、複数枚のウエハ90を、所定の液体91に浸した状態で収容するためのものである。複数枚のウエハ90は、上下に積み上げられた状態で液体91内につけられており、液体91の液面92に対して所定の角度傾斜した姿勢とされている。液体91は、たとえば水に適量の界面活性剤が混入されたものである。これらウエハ90の枚数は、たとえば1000枚程度である。ウエハ90の寸法の一例を挙げると、外形が156mm角であって、厚さが0.14~0.18mmである。複数枚のウエハ90は、その最上位に位置するものの上面が後述する吸着コンベア2のウエハ吸着面223と平行となるように積み上げられている。最上位のウエハ90の上面と吸着コンベア2のウエハ吸着面223との距離は、たとえば約30mmとされる。 The wafer tank 1 is formed in a container shape that opens upward in the vertical direction, and accommodates a plurality of wafers 90 in a state of being immersed in a predetermined liquid 91. The plurality of wafers 90 are placed in the liquid 91 in a state where they are stacked up and down, and are inclined at a predetermined angle with respect to the liquid surface 92 of the liquid 91. The liquid 91 is, for example, water in which an appropriate amount of a surfactant is mixed. The number of these wafers 90 is about 1000, for example. As an example of the dimensions of the wafer 90, the outer shape is 156 mm square and the thickness is 0.14 to 0.18 mm. The plurality of wafers 90 are stacked so that the upper surface of the wafer 90 is parallel to a wafer suction surface 223 of the suction conveyor 2 described later. The distance between the upper surface of the uppermost wafer 90 and the wafer suction surface 223 of the suction conveyor 2 is, for example, about 30 mm.
 複数枚のウエハ90は、たとえばウエハ槽1の図中左方において積み上げられた後に、コンベア11によってウエハ槽1の図中右方部分に送られてくる。送られてきた複数枚のウエハ90は、たとえばリフタ12によって昇降可能にハンドリングされる。リフタ12は、たとえばサーボモータ(図示略)によって、少なくともウエハ90の1枚分の厚さに相当する精度で昇降自在とされている。 The plurality of wafers 90 are stacked, for example, on the left side of the wafer tank 1 in the figure, and then sent to the right part of the wafer tank 1 in the figure by the conveyor 11. The plurality of wafers 90 that have been sent are handled by the lifter 12 so as to be movable up and down. The lifter 12 can be raised and lowered with an accuracy corresponding to at least the thickness of one wafer 90 by, for example, a servo motor (not shown).
 吸着コンベア2は、本発明で言う吸着スライド手段の一例に相当し、ウエハ槽1内においてその下方部分が液体91に漬かる位置に設けられている。図2に示すように、吸着コンベア2は、1対のローラ21、1対の無端ベルト22、およびバキュームボックス23を備えている。 The suction conveyor 2 corresponds to an example of the suction slide means referred to in the present invention, and is provided in a position where the lower part of the wafer tank 1 is immersed in the liquid 91. As shown in FIG. 2, the suction conveyor 2 includes a pair of rollers 21, a pair of endless belts 22, and a vacuum box 23.
 1対のローラ21は、互いに離間して平行配置されており、少なくともいずれかがサーボモータ(図示略)などの駆動源に連結されている。本実施形態では、図2に示されたローラ21は、図中の反時計回りに回転させられる。 The pair of rollers 21 are spaced apart from each other in parallel and at least one of them is connected to a drive source such as a servo motor (not shown). In the present embodiment, the roller 21 shown in FIG. 2 is rotated counterclockwise in the drawing.
 1対の無端ベルト22は、環状とされたたとえばゴム製の帯状ベルトであり、1対のローラ21に掛け回されている。図3に示すように、1対の無端ベルト22は、互いに平行に離間配置されている。図2および図3に示すように、各無端ベルト22のうちその周回方向の一部分である吸着区間221には、複数の孔222が形成されている。各孔222は、無端ベルト22をその厚さ方向に貫通しており、液体91や空気が通過可能となっている。本実施形態においては、吸着区間221の周回方向寸法は、ウエハ90の周回方向寸法とほぼ同じとされている。 The pair of endless belts 22 are, for example, rubber belt-like belts that are annular, and are wound around the pair of rollers 21. As shown in FIG. 3, the pair of endless belts 22 are spaced apart from each other in parallel. As shown in FIGS. 2 and 3, a plurality of holes 222 are formed in the suction section 221 that is a part of the endless belt 22 in the circumferential direction. Each hole 222 penetrates the endless belt 22 in the thickness direction, and allows liquid 91 and air to pass therethrough. In the present embodiment, the circumferential dimension of the suction section 221 is substantially the same as the circumferential dimension of the wafer 90.
 図2に示すように、バキュームボックス23は、無端ベルト22の内側空間に配置されており、断面矩形状のたとえばSUS製の箱である。バキュームボックス23の高さ方向寸法は、無端ベルト22の内側どうしの間隔とほぼ同じとなっている。このため、バキュームボックス23の上下面に沿って、無端ベルト22が摺動する。各無端ベルト22は、ローラ21の駆動によって、図2における矢印方向(反時計回り)に周回させられる。すなわち、ローラ21が回転駆動すると、無端ベルト22のうちバキュームボックス23に対して下側に位置する部分(ウエハ吸着面223)は、図中左方から右方に向けてスライドする。 As shown in FIG. 2, the vacuum box 23 is disposed in the inner space of the endless belt 22, and is a box made of, for example, SUS having a rectangular cross section. The dimension in the height direction of the vacuum box 23 is substantially the same as the interval between the inner sides of the endless belt 22. For this reason, the endless belt 22 slides along the upper and lower surfaces of the vacuum box 23. Each endless belt 22 is rotated in the direction of the arrow (counterclockwise) in FIG. That is, when the roller 21 is driven to rotate, a portion (wafer suction surface 223) of the endless belt 22 positioned below the vacuum box 23 slides from the left to the right in the drawing.
 バキュームボックス23は、3つの区画室231,232,233を有する。これらの区画室231,232,233は、1対のローラ21が離間する方向に沿って並べられている。バキュームボックス23には、複数の孔235が形成されている。複数の孔235は、バキュームボックス23の下側部分に設けられており、本実施形態においては、バキュームボックス23の下側部分のほぼ全面に設けられている。区画室231,232,233には、それぞれ吸気口234が設けられている。 The vacuum box 23 has three compartments 231, 232 and 233. These compartments 231, 232 and 233 are arranged along the direction in which the pair of rollers 21 are separated. A plurality of holes 235 are formed in the vacuum box 23. The plurality of holes 235 are provided in the lower portion of the vacuum box 23. In the present embodiment, the plurality of holes 235 are provided in substantially the entire lower portion of the vacuum box 23. The compartments 231, 232, and 233 are each provided with an air inlet 234.
 図2によく表れているように、吸着コンベア2は、液体91の液面92に対して若干傾いた姿勢とされている。より具体的には、吸着コンベア2の右端が左端よりも上位となるように傾斜している。 As clearly shown in FIG. 2, the suction conveyor 2 is inclined slightly with respect to the liquid surface 92 of the liquid 91. More specifically, the suction conveyor 2 is inclined so that the right end is higher than the left end.
 吸気口234には、ホース24、バルブユニット27、脱水槽25を介してポンプ26が接続されている。ホース24は、たとえば樹脂からなる可撓性を有する配管部品である。バルブユニット27は、区画室231,232,233ののうちいずれをポンプ26と接続するかを切替可能とされている。脱水槽25は、バキュームボックス23を介して吸引した空気から液体91を分離するためのものである。ポンプ26は、吸着コンベア2によってウエハ90を吸着することが可能な程度に、無端ベルト22に収容された格好となっているバキュームボックス23内の空間を減圧するための減圧源である。 A pump 26 is connected to the intake port 234 via a hose 24, a valve unit 27, and a dehydration tank 25. The hose 24 is a flexible piping component made of resin, for example. The valve unit 27 can switch which of the compartments 231, 232, and 233 is connected to the pump 26. The dehydration tank 25 is for separating the liquid 91 from the air sucked through the vacuum box 23. The pump 26 is a depressurization source for depressurizing the space in the vacuum box 23 accommodated in the endless belt 22 to such an extent that the wafer 90 can be adsorbed by the adsorption conveyor 2.
 ノズル31は、液体91が吐出される部品であり、液体91の噴流を生じさせる。このノズル31には、配管(図示略)を介して吐出ポンプ(図示略)が接続されている。本実施形態においては、図2に示すように、ノズル31は、積み上げられた複数枚のウエハ90に対して図中右方に配置されており、複数枚のウエハ90の端面に向けて液体91を噴出させる姿勢で設けられている。より具体的には、図3に示すように、ノズル31からの噴流がウエハ90端面に当たる位置としては、高さ方向においては最上位のものから数枚分(5~6枚程度)の位置であり、奥行き方向においては略中央位置である。ノズル31から吐出される液体91の流量は、たとえば9L/min程度である。 The nozzle 31 is a component from which the liquid 91 is discharged, and generates a jet of the liquid 91. A discharge pump (not shown) is connected to the nozzle 31 via a pipe (not shown). In the present embodiment, as shown in FIG. 2, the nozzle 31 is disposed on the right side of the plurality of stacked wafers 90 in the drawing, and the liquid 91 is directed toward the end surfaces of the plurality of wafers 90. It is provided in a posture to erupt. More specifically, as shown in FIG. 3, the position where the jet flow from the nozzle 31 hits the end surface of the wafer 90 is a position corresponding to several sheets (about 5 to 6 sheets) from the top in the height direction. Yes, approximately in the center in the depth direction. The flow rate of the liquid 91 discharged from the nozzle 31 is, for example, about 9 L / min.
 スポンジローラ32は、表面部分がスポンジからなるローラである。スポンジローラ32は、吸着コンベア2の直下において、積み上げられた複数枚のウエハ90に対して図中右方に配置されている。スポンジローラ32は、図示しないたとえばモータに連結されており、回転可能とされている。本実施形態においては、スポンジローラ32は、ブラケットによって吸着コンベア2に対して固定されている。 The sponge roller 32 is a roller whose surface is made of sponge. The sponge roller 32 is disposed rightward in the drawing with respect to the stacked wafers 90 just below the suction conveyor 2. The sponge roller 32 is connected to a motor (not shown), for example, and is rotatable. In the present embodiment, the sponge roller 32 is fixed to the suction conveyor 2 by a bracket.
 図1に示すように、ヒータ41は、液体91に漬かっており、たとえばウエハ槽1の壁面付近に配置されている。このヒータ41としては、液体加熱用のものが用いられる。ヒータ41が駆動すると、液体91が加熱されて当該液体91の温度が上昇する。ヒータ41は、ケーブルを介してヒータ制御部43につながっており、ヒータ制御部43からの電気信号によってその駆動が制御される。なお、たとえば、ウエハ槽1内の液体91を攪拌するための攪拌翼(図示略)をヒータ41の近傍に設けてもよい。この場合、上記攪拌翼の作動により、液体91の温度を速やかに上昇させることができるとともに、液体91全体の温度の均一化を図ることができる。 As shown in FIG. 1, the heater 41 is immersed in the liquid 91 and is disposed, for example, near the wall surface of the wafer tank 1. As the heater 41, a liquid heating one is used. When the heater 41 is driven, the liquid 91 is heated and the temperature of the liquid 91 rises. The heater 41 is connected to the heater control unit 43 via a cable, and its driving is controlled by an electric signal from the heater control unit 43. For example, a stirring blade (not shown) for stirring the liquid 91 in the wafer tank 1 may be provided in the vicinity of the heater 41. In this case, the temperature of the liquid 91 can be quickly raised by the operation of the stirring blade, and the temperature of the entire liquid 91 can be made uniform.
 温度センサ42は、液体91に漬かっており、たとえばウエハ槽1の壁面付近に配置されている。温度センサ42としては、たとえば液温測定用のサーミスタを採用することができる。温度センサ42からの出力信号は、ケーブルを介してヒータ制御部43に伝送される。 The temperature sensor 42 is immersed in the liquid 91 and is disposed, for example, near the wall surface of the wafer tank 1. As the temperature sensor 42, for example, a thermistor for measuring a liquid temperature can be employed. An output signal from the temperature sensor 42 is transmitted to the heater control unit 43 via a cable.
 ヒータ制御部43は、ヒータ41に駆動電力を供給するためのものであり、ウエハ槽1の外部に設けられている。ヒータ制御部43は、温度センサ42からの電気信号に応じてヒータ41の駆動を制御する制御回路を備える。ヒータ制御部43による制御としては、たとえば温度センサ42での測定温度が所定の温度範囲となるようにヒータ41の駆動を制御する、いわゆるフィードバック制御が挙げられる。 The heater control unit 43 is for supplying driving power to the heater 41, and is provided outside the wafer tank 1. The heater control unit 43 includes a control circuit that controls driving of the heater 41 in accordance with an electrical signal from the temperature sensor 42. Examples of the control by the heater control unit 43 include so-called feedback control that controls the driving of the heater 41 so that the temperature measured by the temperature sensor 42 falls within a predetermined temperature range.
 中継コンベア5は、吸着コンベア2の下流側において、液面92の上方に配置されている。中継コンベア5は、後述する手順によって吸着されたウエハ90を吸着コンベア2から受け渡される。 The relay conveyor 5 is disposed above the liquid level 92 on the downstream side of the suction conveyor 2. The relay conveyor 5 receives the wafer 90 sucked by the procedure described later from the suction conveyor 2.
 装填コンベア6は、中継コンベア5の下流側に配置されている。装填コンベア6は、中継コンベア5から受け取ったウエハ90を、スタッカ7へと装填するのに用いられる。 The loading conveyor 6 is arranged on the downstream side of the relay conveyor 5. The loading conveyor 6 is used to load the wafer 90 received from the relay conveyor 5 into the stacker 7.
 スタッカ7は、複数枚のウエハ90を1枚ずつ格納するためのものであり、鉛直方向に互いに平行に配列された複数のポケット71を有している。装填コンベア6からウエハ90が送られてくると、このウエハ90があるポケット71に装填される。すると、図示しない昇降手段によってスタッカ7はポケット71の一段分だけ上昇される。これにより、次のウエハ90を装填可能な状態となる。 The stacker 7 is for storing a plurality of wafers 90 one by one, and has a plurality of pockets 71 arranged in parallel to each other in the vertical direction. When the wafer 90 is sent from the loading conveyor 6, the wafer 90 is loaded into a pocket 71. Then, the stacker 7 is raised by one step of the pocket 71 by lifting means (not shown). As a result, the next wafer 90 can be loaded.
 次に、本発明に係るウエハ搬送方法の一例について、図4~図10を参照しつつ以下に説明する。 Next, an example of a wafer transfer method according to the present invention will be described below with reference to FIGS.
 まず、図4に示すように、無端ベルト22の吸着区間221を、積み上げられたウエハ90の直上に位置させる。吸着区間221がこの位置にあるときは、バキュームボックス23の複数の孔235のうち区画室231,232に設けられものが、吸着区間221と重なっている。また、このときバルブユニット27を切り替えることにより、区画室231,232とポンプ26とを接続し、区画室233とポンプ26とを遮断する。これとともに、ポンプ26を駆動させ、区画室231,232の内圧を負圧とする。ここで、ヒータ41を駆動することにより、あらかじめ液体91の温度を30~50度程度にしておく。 First, as shown in FIG. 4, the suction section 221 of the endless belt 22 is positioned immediately above the stacked wafers 90. When the adsorption section 221 is at this position, the plurality of holes 235 of the vacuum box 23 provided in the compartments 231 and 232 overlap the adsorption section 221. At this time, by switching the valve unit 27, the compartments 231 and 232 and the pump 26 are connected, and the compartment 233 and the pump 26 are shut off. At the same time, the pump 26 is driven, and the internal pressure of the compartments 231 and 232 is set to a negative pressure. Here, the temperature of the liquid 91 is set to about 30 to 50 degrees in advance by driving the heater 41.
 次いで、ノズル31からウエハ90の端面に向けて所定の吐出圧力で液体91を噴出する(図3参照)。ノズル31からの吐出圧力によって、液体91が噴き付けられる部位において、ウエハ90どうしの間に液体91が侵入する。そうすると、図5に示すように、最上位のウエハ90を含む複数枚のウエハ90は、互いの間に隙間が生じるように浮き上がる。そして、最上位のウエハ90は、無端ベルト22の吸着区間221(ウエハ吸着面223)に近接する。なお、積み上げられたウエハ90の周囲の適所には、ウエハ90をその面内方向に垂直な方向に沿って上下動させるためのガイド(図示略)が設けられている。 Next, the liquid 91 is ejected from the nozzle 31 toward the end surface of the wafer 90 at a predetermined discharge pressure (see FIG. 3). The liquid 91 penetrates between the wafers 90 at a portion where the liquid 91 is sprayed by the discharge pressure from the nozzle 31. Then, as shown in FIG. 5, the plurality of wafers 90 including the uppermost wafer 90 are lifted so that a gap is generated between them. The uppermost wafer 90 is close to the suction section 221 (wafer suction surface 223) of the endless belt 22. Note that guides (not shown) for moving the wafer 90 up and down along a direction perpendicular to the in-plane direction are provided at appropriate positions around the stacked wafers 90.
 吸着コンベア2において、区画室231,232の内圧が負圧であることから、吸着区間221の直下近傍にある最上位のウエハ90が上方に引き寄せられる。そして、図6および図7に示すように、最上位のウエハ90が吸着区間221に吸着される。 In the suction conveyor 2, since the internal pressure of the compartments 231 and 232 is negative, the uppermost wafer 90 in the vicinity immediately below the suction section 221 is drawn upward. Then, as shown in FIGS. 6 and 7, the uppermost wafer 90 is sucked into the suction section 221.
 次いで、ノズル31からの液体91の噴出を停止し、図8および図9に示すように、ローラ21を駆動することにより無端ベルト22を反時計回りに周回させる。これにより、吸着されたウエハ90が図中右方にスライドされる。このとき、スポンジローラ32を反時計回りに回転させておく。すると、スライドするウエハ90は、その先端から順にスポンジローラ32の上方をこれに接しながら通過する。これにより、ウエハ90にはスライド方向と反対方向に向けて抵抗力が付与される。仮に、最上位に位置していたウエハ90とその直下にあったウエハ90とが、誤って2枚取りされた場合、この抵抗力によって下方のウエハ90を取り除くことができる。さらに、液体91に混入された界面活性剤は、2枚のウエハ90どうしの間に液体91が侵入することを好適に促進する。 Next, the ejection of the liquid 91 from the nozzle 31 is stopped, and the endless belt 22 is rotated counterclockwise by driving the roller 21 as shown in FIGS. Thereby, the attracted wafer 90 is slid rightward in the figure. At this time, the sponge roller 32 is rotated counterclockwise. Then, the slidable wafer 90 passes through the sponge roller 32 in order from the tip while contacting the wafer 90. As a result, a resistance force is applied to the wafer 90 in the direction opposite to the sliding direction. If two wafers 90 that were positioned at the uppermost position and the wafer 90 that was immediately below the uppermost wafer 90 were mistakenly taken, the lower wafer 90 can be removed by this resistance force. Further, the surfactant mixed in the liquid 91 favorably promotes the penetration of the liquid 91 between the two wafers 90.
 無端ベルト22が周回すると、吸着区間221が区画室231,232と重なる位置から区画室232,233と重なる位置へと移動する。このときには、図8によく表れているように、バルブユニット27を切り替えることにより、区画室232,233とポンプ26とを接続し、区画室231とポンプ26とを遮断する。これにより、区画室232,233の内圧が負圧となり、区画室231はその内圧が強い負圧となる状態から解除される。 When the endless belt 22 circulates, the suction section 221 moves from a position overlapping the compartments 231 and 232 to a position overlapping the compartments 232 and 233. At this time, as clearly shown in FIG. 8, by switching the valve unit 27, the compartments 232 and 233 and the pump 26 are connected, and the compartment 231 and the pump 26 are shut off. As a result, the internal pressure of the compartments 232 and 233 becomes negative, and the compartment 231 is released from the state where the internal pressure becomes a strong negative pressure.
 次いで、図10に示すように、さらに無端ベルト22を周回させる。すると、吸着されたウエハ90は、さらに右方へとスライドし、中継コンベア5へと受け渡される。図示された状態においては、吸着区間221は区画室233のみと重なっている。このときには、バルブユニット27を切り替えることにより、区画室233とポンプ26とを接続し、区画室231,232とポンプ26とを遮断する。 Next, as shown in FIG. 10, the endless belt 22 is further rotated. Then, the sucked wafer 90 slides further to the right and is delivered to the relay conveyor 5. In the state shown in the figure, the adsorption section 221 overlaps only the compartment 233. At this time, by switching the valve unit 27, the compartment 233 and the pump 26 are connected, and the compartments 231 and 232 and the pump 26 are shut off.
 この後は、中継コンベア5、装填コンベア6を経由して、ウエハ90がスタッカ7に装填される。一方、吸着コンベア2は、無端ベルト22をさらに周回させるとともに、バルブユニット27を切り替えることにより、再び図4に示す状態となる。そして、リフタ12が、積み上げられた複数枚のウエハ90をその一枚分の厚さに相当する高さだけ上昇させることにより、次のウエハ90を吸着可能な状態となる。以上に述べた工程を順次繰り返すことにより、積み上げられた複数枚のウエハ90を1枚ずつ搬送し、スタッカ7へと装填できる。 Thereafter, the wafer 90 is loaded into the stacker 7 via the relay conveyor 5 and the loading conveyor 6. On the other hand, the suction conveyor 2 is brought into the state shown in FIG. 4 again by rotating the endless belt 22 and switching the valve unit 27. Then, the lifter 12 raises the stacked wafers 90 by a height corresponding to the thickness of the single wafer 90, so that the next wafer 90 can be adsorbed. By sequentially repeating the steps described above, a plurality of stacked wafers 90 can be transferred one by one and loaded into the stacker 7.
 次に、本実施形態のウエハ搬送方法およびウエハ搬送装置10の作用について説明する。 Next, the operation of the wafer transfer method and wafer transfer apparatus 10 of this embodiment will be described.
 複数枚のウエハ90は、たとえばワイヤソーを用いた切断工程の後に、洗浄工程や接着剤の溶解工程を経るために濡れた状態となる。これらの濡れたウエハ90を大気中におくと、互いに張り付いてしまい、1枚ずつに分離することは困難である。本実施形態によれば、複数枚のウエハ90が漬かる液体91は、ヒータ41により加熱され、常温よりも高温とされている。これにより、液体91の粘度は加熱前よりも低下しており、隣り合うウエハ90どうしの間に液体91が侵入することが促進される。その結果、複数枚のウエハ90のうち最上位に位置するウエハ90を、これの直下に隣接するウエハ90から分離しやすくなり、最上位のウエハ90を適切に取り上げることができる。 The plurality of wafers 90 are in a wet state because, for example, a cutting process using a wire saw is followed by a cleaning process and an adhesive dissolving process. When these wet wafers 90 are placed in the atmosphere, they stick to each other and it is difficult to separate them one by one. According to the present embodiment, the liquid 91 in which the plurality of wafers 90 are immersed is heated by the heater 41 and has a temperature higher than room temperature. As a result, the viscosity of the liquid 91 is lower than that before the heating, and the penetration of the liquid 91 between the adjacent wafers 90 is promoted. As a result, the wafer 90 positioned at the uppermost position among the plurality of wafers 90 can be easily separated from the wafer 90 adjacent immediately below the wafer 90, and the uppermost wafer 90 can be picked up appropriately.
 ヒータ41の駆動は、液体91の温度(温度センサ42による測定温度)に応じてヒータ制御部43によって制御される。このため、液体91中からウエハ90を順次取り上げる作業工程において、液体91の温度を所望の温度範囲に維持することができる。 The driving of the heater 41 is controlled by the heater control unit 43 in accordance with the temperature of the liquid 91 (measured temperature by the temperature sensor 42). For this reason, the temperature of the liquid 91 can be maintained in a desired temperature range in the work process of sequentially picking up the wafers 90 from the liquid 91.
 本実施形態では、液体91中に積み上げられた複数枚のウエハ90においては、これらウエハ90の端面に液体91を噴出することにより、最上位にあるウエハ90を含む複数枚のウエハ90の間に隙間が生じさせられる。すなわち、最上位のウエハ90とこれに隣接する直下のウエハ90との間に隙間があるため、ウエハ90どうしが張り付いた状態は解消されて、最上位に位置するウエハ90を適切に吸着コンベア2に吸着させることができる。また、上述したように、複数枚のウエハ90が漬かる液体91は加熱されることよって粘度が低下した状態にあるため、ウエハ90どうしの間に液体91が侵入しやすくなっている。このこととウエハ90端面への液体噴出とが相俟って、ウエハ90の間に隙間が生じやすくなる。 In the present embodiment, in the plurality of wafers 90 stacked in the liquid 91, the liquid 91 is ejected onto the end surfaces of the wafers 90, thereby interposing between the plurality of wafers 90 including the uppermost wafer 90. A gap is created. That is, since there is a gap between the uppermost wafer 90 and the wafer 90 immediately below the uppermost wafer 90, the state in which the wafers 90 are stuck together is eliminated, and the wafer 90 positioned at the uppermost position is appropriately sucked by the conveyor. 2 can be adsorbed. Further, as described above, since the liquid 91 in which the plurality of wafers 90 are immersed is in a state where the viscosity is lowered by being heated, the liquid 91 easily enters between the wafers 90. This and the liquid ejection to the end face of the wafer 90 tend to cause a gap between the wafers 90.
 ウエハ90をスライドさせる吸着コンベア2を用いれば、吸着したウエハ90を積み上げられた複数枚のウエハ90の直上からスムーズに退避させることができる。このとき、複数枚のウエハ90が大きく乱されるおそれが少ない。 If the suction conveyor 2 that slides the wafer 90 is used, the sucked wafers 90 can be smoothly retracted from directly above the plurality of stacked wafers 90. At this time, there is little possibility that the plurality of wafers 90 are greatly disturbed.
 複数枚のウエハ90は、最上位に位置するものの上面が吸着コンベア2のウエハ吸着面223と平行となるように積み上げられている。このため、ノズル31からの液体噴出により浮上してきた最上位のウエハ90の全面に対して、吸着コンベア2による吸着力が略均等に作用する。このような構成は、最上位にあるウエハ90を的確に吸着するのに適している。また、ウエハ吸着面223は、ウエハ90のスライド方向前方側(図中右方)が上位となるように傾斜しているため、ウエハ90を短い移動行程で効率よく搬送するのに適している。 The plurality of wafers 90 are stacked so that the upper surface of the wafer 90 is parallel to the wafer suction surface 223 of the suction conveyor 2. For this reason, the suction force by the suction conveyor 2 acts substantially evenly on the entire surface of the uppermost wafer 90 that has been lifted by the liquid jet from the nozzle 31. Such a configuration is suitable for accurately adsorbing the wafer 90 at the uppermost position. Further, since the wafer suction surface 223 is inclined so that the front side in the sliding direction of the wafer 90 (right side in the figure) is higher, it is suitable for efficiently transporting the wafer 90 in a short movement process.
 ノズル31は、複数枚のウエハ90に対してウエハ90のスライド方向前方側(図中右方)に配置されており、積み上げられたウエハ90の端面に向けて液体91を噴出する。すなわち、ノズル31からはウエハ90のスライド方向とは逆方向に液体91が噴出される。これにより、最上位に位置していたウエハ90の直下にあるウエハ90が誤って運ばれるのを抑制することができる。 The nozzle 31 is arranged on the front side in the sliding direction of the wafer 90 (right side in the figure) with respect to the plurality of wafers 90, and ejects the liquid 91 toward the end face of the stacked wafers 90. That is, the liquid 91 is ejected from the nozzle 31 in the direction opposite to the sliding direction of the wafer 90. Thereby, it is possible to prevent the wafer 90 immediately below the wafer 90 positioned at the top from being mistakenly carried.
 区画室231,232,233のうち吸着区間221と重ならないものを、順次ポンプ26に対して遮断することにより、吸着区間221以外の部分によって吸着したいウエハ90以外のウエハ90を誤って吸着してしまうことを防止することができる。 Of the compartments 231, 232, and 233, those that do not overlap with the adsorption section 221 are sequentially blocked from the pump 26, so that a wafer 90 other than the wafer 90 that is to be adsorbed by a portion other than the adsorption section 221 is erroneously adsorbed. Can be prevented.
 図11および図12は、本発明の第2実施形態に基づくウエハ搬送装置を示している。同図に示す構成は、分離用の2つのノズル8をさらに備えている点が、上述した実施形態と異なっており、その他の構成については上述した実施形態と同様であり図示を省略している。 11 and 12 show a wafer transfer apparatus according to the second embodiment of the present invention. The configuration shown in the drawing is different from the above-described embodiment in that it further includes two nozzles 8 for separation, and the other configurations are the same as those in the above-described embodiment and are not shown. .
 ノズル8は、図中矢印で示された最上位のウエハ90が搬送される方向を挟んで、両側に設けられている。ノズル8からの噴流は、ノズル31からの噴流により浮上させられたウエハ90の端面に向かって吐出される。 The nozzles 8 are provided on both sides across the direction in which the uppermost wafer 90 indicated by the arrow in the figure is conveyed. The jet flow from the nozzle 8 is discharged toward the end surface of the wafer 90 that is levitated by the jet flow from the nozzle 31.
 このような実施形態によれば、最上位のウエハ90と2枚目のウエハ90とが仮に密着状態であっても、ノズル8からの噴流によってこれらの間に液体91を侵入させることが可能である。この侵入により、最上位のウエハ90と2枚目のウエハ90との分離を促進できる。したがって、最上位のウエハ90が上述したノズル31の噴流によって浮上させられるときに、2枚目のウエハ90が最上位のウエハ90に張り付いた状態で誤って浮上させられることを防止することができる。 According to such an embodiment, even if the uppermost wafer 90 and the second wafer 90 are in close contact with each other, the liquid 91 can enter between them by the jet flow from the nozzle 8. is there. By this intrusion, separation between the uppermost wafer 90 and the second wafer 90 can be promoted. Therefore, when the uppermost wafer 90 is lifted by the jet flow of the nozzle 31 described above, it is possible to prevent the second wafer 90 from being erroneously lifted in a state of sticking to the uppermost wafer 90. it can.
 図13は、本発明の第3実施形態に基づくウエハ搬送装置を示している。本実施形態のウエハ搬送装置10は、ウエハ槽1、吸着コンベア2、複数のノズル31、スポンジローラ32、ヒータ41、温度センサ42、ヒータ制御部43、中継コンベア5、装填コンベア6、スタッカ7、置台81、およびサポート部材82を備えている。 FIG. 13 shows a wafer transfer apparatus according to the third embodiment of the present invention. The wafer transfer apparatus 10 of this embodiment includes a wafer tank 1, a suction conveyor 2, a plurality of nozzles 31, a sponge roller 32, a heater 41, a temperature sensor 42, a heater control unit 43, a relay conveyor 5, a loading conveyor 6, a stacker 7, A mounting table 81 and a support member 82 are provided.
 ウエハ槽1は、鉛直方向上方が開口する容器状とされており、複数枚のウエハ90を、所定の液体91に浸した状態で収容するためのものである。複数枚のウエハ90は、後述する置台81に載置され、且つ、サポート部材82にガイドされている。複数枚のウエハ90は、上下に積み上げられた状態で液体91内につけられており、液体91の液面92に対して所定の角度傾斜した姿勢とされている。液体91は、たとえば水に適量の界面活性剤が混入されたものである。これらウエハ90の枚数は、たとえば1000枚程度である。ウエハ90の寸法の一例を挙げると、外形が156mm角であって、厚さが0.14~0.18mmである。複数枚のウエハ90は、その最上位に位置するものの上面が後述する吸着コンベア2のウエハ吸着面223と平行となるように積み上げられている。最上位のウエハ90の上面と吸着コンベア2のウエハ吸着面223との距離は、たとえば15~35mmとされる。 The wafer tank 1 is formed in a container shape that opens upward in the vertical direction, and accommodates a plurality of wafers 90 in a state of being immersed in a predetermined liquid 91. The plurality of wafers 90 are mounted on a mounting table 81 to be described later and guided by a support member 82. The plurality of wafers 90 are placed in the liquid 91 in a state where they are stacked up and down, and are inclined at a predetermined angle with respect to the liquid surface 92 of the liquid 91. The liquid 91 is, for example, water in which an appropriate amount of a surfactant is mixed. The number of these wafers 90 is about 1000, for example. As an example of the dimensions of the wafer 90, the outer shape is 156 mm square and the thickness is 0.14 to 0.18 mm. The plurality of wafers 90 are stacked so that the upper surface of the wafer 90 is parallel to a wafer suction surface 223 of the suction conveyor 2 described later. The distance between the upper surface of the uppermost wafer 90 and the wafer suction surface 223 of the suction conveyor 2 is, for example, 15 to 35 mm.
 図15は、置台81およびサポート部材82のみを一部透視化して示す斜視図である。図16は、図13のXVI-XVI線に沿う要部断面図である。図17は、図16の上側からみた平面図を示している。 FIG. 15 is a perspective view showing only the mounting table 81 and the support member 82 in a partially transparent manner. FIG. 16 is a cross-sectional view of a principal part taken along line XVI-XVI in FIG. FIG. 17 shows a plan view seen from the upper side of FIG.
 置台81は、複数枚のウエハ90を載置するためのものである。置台81は、たとえば塩化ビニル樹脂、またはガラスエポキシ樹脂からなる。図15、図16に示すように、置台81は、底台部811と、一対の板状部材812,813と、補助支持部材814とを備える。底台部811は、正方形状の平板状である。底台部811の外形はウエハ90とほぼ同程度の大きさであって、厚さがたとえば10mmである。 The mounting table 81 is for mounting a plurality of wafers 90. The mounting table 81 is made of, for example, vinyl chloride resin or glass epoxy resin. As shown in FIGS. 15 and 16, the mounting table 81 includes a bottom base portion 811, a pair of plate- like members 812 and 813, and an auxiliary support member 814. The bottom portion 811 has a square flat plate shape. The outer shape of the base portion 811 is approximately the same size as the wafer 90 and has a thickness of, for example, 10 mm.
 一対の板状部材812,813、および補助支持部材814はいずれも、底台部811から図15、図16の上方に向かって起立している。一対の板状部材812,813、および補助支持部材814は互いに平行に配置されており、且つ、x1-x2方向に沿って延びる長板状である。一対の板状部材812,813、および補助支持部材814はいずれもウエハ90を支持するためのものである。一対の板状部材812,813のみを配置しても複数枚のウエハ90を支持できるが、補助支持部材814をさらに配置することによって、ウエハ90が下方にたわむことを抑制できる。一対の板状部材812,813、および補助支持部材814の寸法はたとえば、長辺が156mm、短辺が15~35mm、厚さが2~10mmである。 Each of the pair of plate- like members 812 and 813 and the auxiliary support member 814 is erected upward from the bottom base portion 811 in FIGS. 15 and 16. The pair of plate- like members 812 and 813 and the auxiliary support member 814 are arranged in parallel to each other and have a long plate shape extending along the x1-x2 direction. The pair of plate- like members 812 and 813 and the auxiliary support member 814 are all for supporting the wafer 90. Even if only a pair of plate- like members 812 and 813 is disposed, a plurality of wafers 90 can be supported. However, by further disposing the auxiliary support member 814, the wafer 90 can be prevented from being bent downward. The dimensions of the pair of plate- like members 812 and 813 and the auxiliary support member 814 are, for example, a long side of 156 mm, a short side of 15 to 35 mm, and a thickness of 2 to 10 mm.
 置台81においては、底台部811、一対の板状部材812,813、および補助支持部材814に挟まれることにより、2つの空間815が形成されている。空間815は、x1-x2方向において貫通している。また、空間815は、底台部811と反対側、すなわちウエハ90が載置される側に向かって露出している。 In the mounting table 81, two spaces 815 are formed by being sandwiched between the bottom portion 811, the pair of plate- like members 812 and 813, and the auxiliary support member 814. The space 815 penetrates in the x1-x2 direction. Further, the space 815 is exposed toward the side opposite to the base portion 811, that is, the side on which the wafer 90 is placed.
 サポート部材82は、複数枚のウエハ90が位置ずれを起こさないように複数枚のウエハ90をガイドするためのものである。本実施形態では、サポート部材82は、置台81に連結されている。 The support member 82 is for guiding the plurality of wafers 90 so that the plurality of wafers 90 are not displaced. In the present embodiment, the support member 82 is connected to the mounting table 81.
 サポート部材82は、たとえばガラスエポキシ樹脂、またはステンレススチールからなる。図15~図17に示すように、サポート部材82は、一対の移動規制部821,822、および移動規制部823,824を備える。移動規制部821,822はいずれも、複数枚のウエハ90に対して方向x1側に配置されている。このように移動規制部821,822が配置されていることによって、複数枚のウエハ90が方向x1に移動することが規制される。移動規制部821,822はウエハ90の積層方向に沿って延びる長板状である。移動規制部821,822どうしは、互いに離間しており、その離間距離L1はたとえば101~140mmである。また、当該離間距離はウエハ90の幅より小さい。 The support member 82 is made of, for example, glass epoxy resin or stainless steel. As shown in FIGS. 15 to 17, the support member 82 includes a pair of movement restricting portions 821, 822 and movement restricting portions 823, 824. All of the movement restricting portions 821 and 822 are arranged on the direction x1 side with respect to the plurality of wafers 90. By thus disposing the movement restricting portions 821 and 822, the movement of the plurality of wafers 90 in the direction x1 is restricted. The movement restricting portions 821 and 822 have a long plate shape extending along the stacking direction of the wafers 90. The movement restricting portions 821 and 822 are separated from each other, and the separation distance L1 is, for example, 101 to 140 mm. Further, the separation distance is smaller than the width of the wafer 90.
 移動規制部823は、複数枚のウエハ90に対して方向y1側に配置されており、移動規制部824は、複数枚のウエハ90に対して方向y2側に配置されている。このように移動規制部823,824が配置されていることによって、複数枚のウエハ90がy1-y2方向に移動することが規制される。移動規制部823,824は、ウエハ90の積層方向に沿って延びる長板状である。移動規制部823は移動規制部821と一体成型されており、移動規制部824は移動規制部824と一体成型されている。 The movement restricting portion 823 is disposed on the direction y1 side with respect to the plurality of wafers 90, and the movement restricting portion 824 is disposed on the direction y2 side with respect to the plurality of wafers 90. Since the movement restricting portions 823 and 824 are arranged in this way, the movement of the plurality of wafers 90 in the y1-y2 direction is restricted. The movement restricting portions 823 and 824 have a long plate shape extending along the stacking direction of the wafers 90. The movement restricting portion 823 is integrally formed with the movement restricting portion 821, and the movement restricting portion 824 is integrally formed with the movement restricting portion 824.
 複数枚のウエハ90は、たとえばウエハ槽1の図13の左方において置台81上に積み上げられ且つサポート部材82にガイドされた状態で、コンベア11によってウエハ槽1の図中右方部分に送られてハンドリングされる。リフタ12は、たとえばサーボモータ(図示略)によって、少なくともウエハ90の1枚分の厚さに相当する精度で昇降自在とされている。リフタ12の昇降にしたがって、置台81、サポート部材82、およびウエハ90が昇降する。 The plurality of wafers 90 are, for example, stacked on the table 81 on the left side of the wafer tank 1 in FIG. 13 and guided by the support member 82, and are sent to the right part of the wafer tank 1 in the drawing by the conveyor 11. Are handled. The lifter 12 can be raised and lowered with an accuracy corresponding to at least the thickness of one wafer 90 by, for example, a servo motor (not shown). As the lifter 12 moves up and down, the table 81, the support member 82, and the wafer 90 move up and down.
 吸着コンベア2は、本発明で言う吸着スライド手段の一例に相当し、ウエハ槽1内においてその下方部分が液体91に漬かる位置に設けられている。図17に示すように、吸着コンベア2のy1-y2方向における大きさL2は、移動規制部821,822どうしの離間距離L1より小さく、たとえば100mmである。図14に示すように、吸着コンベア2は、1対のローラ21、1対の無端ベルト22、およびバキュームボックス23を備えている。 The suction conveyor 2 corresponds to an example of the suction slide means referred to in the present invention, and is provided in a position where the lower part of the wafer tank 1 is immersed in the liquid 91. As shown in FIG. 17, the size L2 of the suction conveyor 2 in the y1-y2 direction is smaller than the separation distance L1 between the movement restricting portions 821 and 822, for example, 100 mm. As shown in FIG. 14, the suction conveyor 2 includes a pair of rollers 21, a pair of endless belts 22, and a vacuum box 23.
 1対のローラ21は、互いに離間して平行配置されており、少なくともいずれかがサーボモータ(図示略)などの駆動源に連結されている。本実施形態では、図14に示されたローラ21は、図中の反時計回りに回転させられる。 The pair of rollers 21 are spaced apart from each other in parallel and at least one of them is connected to a drive source such as a servo motor (not shown). In the present embodiment, the roller 21 shown in FIG. 14 is rotated counterclockwise in the drawing.
 1対の無端ベルト22は、環状とされたたとえばゴム製の帯状ベルトであり、1対のローラ21に掛け回されている。図18に示すように、1対の無端ベルト22は、互いに平行に離間配置されている。図14および図18に示すように、各無端ベルト22のうちその周回方向の一部分である吸着区間221には、複数の孔222が形成されている。各孔222は、無端ベルト22をその厚さ方向に貫通しており、液体91や空気が通過可能となっている。本実施形態においては、吸着区間221の周回方向寸法は、ウエハ90の周回方向寸法とほぼ同じとされている。 The pair of endless belts 22 are, for example, rubber belt-like belts that are annular, and are wound around the pair of rollers 21. As shown in FIG. 18, the pair of endless belts 22 are spaced apart from each other in parallel. As shown in FIG. 14 and FIG. 18, a plurality of holes 222 are formed in the suction section 221 that is a part in the circumferential direction of each endless belt 22. Each hole 222 penetrates the endless belt 22 in the thickness direction, and allows liquid 91 and air to pass therethrough. In the present embodiment, the circumferential dimension of the suction section 221 is substantially the same as the circumferential dimension of the wafer 90.
 図14に示すように、バキュームボックス23は、無端ベルト22の内側空間に配置されており、断面矩形状のたとえばSUS製の箱である。バキュームボックス23の高さ方向寸法は、無端ベルト22の内側どうしの間隔とほぼ同じとなっている。このため、バキュームボックス23の上下面に沿って、無端ベルト22が摺動する。各無端ベルト22は、ローラ21の駆動によって、図14における矢印方向(反時計回り)に周回させられる。すなわち、ローラ21が回転駆動すると、無端ベルト22のうちバキュームボックス23に対して下側に位置する部分(ウエハ吸着面223)は、図中左方から右方に向けてスライドする。 As shown in FIG. 14, the vacuum box 23 is disposed in the inner space of the endless belt 22 and is a box made of, for example, SUS having a rectangular cross section. The dimension in the height direction of the vacuum box 23 is substantially the same as the interval between the inner sides of the endless belt 22. For this reason, the endless belt 22 slides along the upper and lower surfaces of the vacuum box 23. Each endless belt 22 is rotated in the direction of the arrow in FIG. That is, when the roller 21 is driven to rotate, a portion (wafer suction surface 223) of the endless belt 22 positioned below the vacuum box 23 slides from the left to the right in the drawing.
 バキュームボックス23は、3つの区画室231,232,233を有する。これらの区画室231,232,233は、1対のローラ21が離間する方向に沿って並べられている。バキュームボックス23には、複数の孔235が形成されている。複数の孔235は、バキュームボックス23の下側部分に設けられており、本実施形態においては、バキュームボックス23の下側部分のほぼ全面に設けられている。区画室231,232,233には、それぞれ吸気口234が設けられている。 The vacuum box 23 has three compartments 231, 232 and 233. These compartments 231, 232 and 233 are arranged along the direction in which the pair of rollers 21 are separated. A plurality of holes 235 are formed in the vacuum box 23. The plurality of holes 235 are provided in the lower portion of the vacuum box 23. In the present embodiment, the plurality of holes 235 are provided in substantially the entire lower portion of the vacuum box 23. The compartments 231, 232, and 233 are each provided with an air inlet 234.
 図14によく表れているように、吸着コンベア2は、液体91の液面92に対して若干傾いた姿勢とされている。より具体的には、吸着コンベア2の右端が左端よりも上位となるように傾斜している。 As clearly shown in FIG. 14, the suction conveyor 2 is inclined slightly with respect to the liquid surface 92 of the liquid 91. More specifically, the suction conveyor 2 is inclined so that the right end is higher than the left end.
 吸気口234には、ホース24、バルブユニット27、脱水槽25を介してポンプ26が接続されている。ホース24は、たとえば樹脂からなる可撓性を有する配管部品である。バルブユニット27は、区画室231,232,233ののうちいずれをポンプ26と接続するかを切替可能とされている。脱水槽25は、バキュームボックス23を介して吸引した空気から液体91を分離するためのものである。ポンプ26は、吸着コンベア2によってウエハ90を吸着することが可能な程度に、無端ベルト22に収容された格好となっているバキュームボックス23内の空間を減圧するための減圧源である。 A pump 26 is connected to the intake port 234 via a hose 24, a valve unit 27, and a dehydration tank 25. The hose 24 is a flexible piping component made of resin, for example. The valve unit 27 can switch which of the compartments 231, 232, and 233 is connected to the pump 26. The dehydration tank 25 is for separating the liquid 91 from the air sucked through the vacuum box 23. The pump 26 is a depressurization source for depressurizing the space in the vacuum box 23 accommodated in the endless belt 22 to such an extent that the wafer 90 can be adsorbed by the adsorption conveyor 2.
 複数のノズル31は、液体91を吐出する部品であり、液体91の噴流を生じさせる。これらのノズル31にはそれぞれ、配管(図示略)を介して吐出ポンプ(図示略)が接続されている。本実施形態においては、図14に示すように、ノズル31は、積み上げられた複数枚のウエハ90に対して図中右方に配置されており、複数枚のウエハ90の端面93に向けて液体91を噴出させる姿勢で設けられている。ノズル31はいずれも、ウエハ90の積層方向において扁平な形状の液体91を噴出可能である(図示略)。ノズル31から吐出される液体91の流量は、たとえば9L/min程度である。 The plurality of nozzles 31 are components for discharging the liquid 91 and cause a jet of the liquid 91 to be generated. Each of these nozzles 31 is connected to a discharge pump (not shown) via a pipe (not shown). In the present embodiment, as shown in FIG. 14, the nozzle 31 is disposed on the right side of the plurality of stacked wafers 90 in the drawing, and the liquid is directed toward the end surfaces 93 of the plurality of wafers 90. 91 is provided in a posture for jetting. Each of the nozzles 31 can eject a liquid 91 having a flat shape in the stacking direction of the wafer 90 (not shown). The flow rate of the liquid 91 discharged from the nozzle 31 is, for example, about 9 L / min.
 図16、図17を用いて、複数のノズル31の詳細な配置状態について説明する。これらの図において、y1-y2方向における中央に配置されたものをノズル311とし、ノズル311と隣り合うものをノズル312とし、y1-y2方向における最外側に配置されたものをノズル313としている。 The detailed arrangement state of the plurality of nozzles 31 will be described with reference to FIGS. In these drawings, the nozzle 311 is arranged at the center in the y1-y2 direction, the nozzle 312 is adjacent to the nozzle 311, and the nozzle 313 is arranged at the outermost side in the y1-y2 direction.
 ノズル311は、y1-y2方向(ウエハ90の端面93の延びる方向)におけるウエハWfの端面93の中央に向けて液体91を噴出する。ノズル311からの噴流がウエハ90の端面93に当たる位置としては、複数のウエハ90の最上位のものから数枚分(5~6枚程度)の位置である。ノズル311が液体91を噴出する方向は、方向x1に一致する。ノズル312は、y1-y2方向においてウエハ90の端面93と重なる位置に配置されている。また、図16に示すように、ノズル312は、ウエハ90の積層方向においてノズル311と同位に配置されている。ノズル312は、ウエハ90の端面93の一端寄りの部分に向けて、液体91を噴出する。ノズル312からの噴流がウエハ90の端面93に当たる位置としては、複数のウエハ90の最上位のものから数枚分(5~6枚程度)の位置である。ノズル312が液体91を噴出する方向も、方向x1に一致する。 The nozzle 311 ejects the liquid 91 toward the center of the end surface 93 of the wafer Wf in the y1-y2 direction (the direction in which the end surface 93 of the wafer 90 extends). The position where the jet flow from the nozzle 311 hits the end surface 93 of the wafer 90 is a position corresponding to several sheets (about 5 to 6 sheets) from the uppermost one of the plurality of wafers 90. The direction in which the nozzle 311 ejects the liquid 91 coincides with the direction x1. The nozzle 312 is disposed at a position overlapping the end surface 93 of the wafer 90 in the y1-y2 direction. Further, as shown in FIG. 16, the nozzle 312 is disposed in the same direction as the nozzle 311 in the stacking direction of the wafer 90. The nozzle 312 ejects the liquid 91 toward a portion near one end of the end surface 93 of the wafer 90. The position at which the jet flow from the nozzle 312 hits the end surface 93 of the wafer 90 is a position of several sheets (about 5 to 6 sheets) from the uppermost one of the plurality of wafers 90. The direction in which the nozzle 312 ejects the liquid 91 also coincides with the direction x1.
 図16、図17に示すように、ノズル313は、y1-y2方向においてウエハ90の端面93の外側に配置されている。図16に示すように、ノズル313は、ウエハ90の積層方向において、ノズル311,312に比べて、上位に配置されている。ノズル313は、ウエハ90の端面93の一端近傍に向けてやや上向きに液体91を噴出する。好ましくは、ノズル313は、複数枚のウエハ90の最上位のものよりも上側に向けて、且つ、ノズル313からの噴流が吸着コンベア2に至るように、液体91を噴出するとよい。ノズル313による液体91の噴出方向は、ウエハ90の面内方向に対して、たとえば15~20度の角度をなしている。 As shown in FIGS. 16 and 17, the nozzle 313 is disposed outside the end face 93 of the wafer 90 in the y1-y2 direction. As shown in FIG. 16, the nozzle 313 is arranged higher than the nozzles 311 and 312 in the stacking direction of the wafer 90. The nozzle 313 ejects the liquid 91 slightly upward toward one end of the end surface 93 of the wafer 90. Preferably, the nozzle 313 may eject the liquid 91 toward the upper side of the uppermost one of the plurality of wafers 90 and so that the jet flow from the nozzle 313 reaches the adsorption conveyor 2. The ejection direction of the liquid 91 by the nozzle 313 is at an angle of, for example, 15 to 20 degrees with respect to the in-plane direction of the wafer 90.
 スポンジローラ32は、表面部分がスポンジからなるローラである。スポンジローラ32は、吸着コンベア2の直下において、積み上げられた複数枚のウエハ90に対して図中右方に配置されている。スポンジローラ32は、図示しないたとえばモータに連結されており、回転可能とされている。本実施形態においては、スポンジローラ32は、ブラケットによって吸着コンベア2に対して固定されている。 The sponge roller 32 is a roller whose surface is made of sponge. The sponge roller 32 is disposed rightward in the drawing with respect to the stacked wafers 90 just below the suction conveyor 2. The sponge roller 32 is connected to a motor (not shown), for example, and is rotatable. In the present embodiment, the sponge roller 32 is fixed to the suction conveyor 2 by a bracket.
 図13に示すように、ヒータ41は、液体91に漬かっており、たとえばウエハ槽1の壁面付近に配置されている。このヒータ41としては、液体加熱用のものが用いられる。ヒータ41が駆動すると、液体91が加熱されて当該液体91の温度が上昇する。ヒータ41は、ケーブルを介してヒータ制御部43につながっており、ヒータ制御部43からの電気信号によってその駆動が制御される。 As shown in FIG. 13, the heater 41 is immersed in the liquid 91 and is disposed, for example, near the wall surface of the wafer tank 1. As the heater 41, a liquid heating one is used. When the heater 41 is driven, the liquid 91 is heated and the temperature of the liquid 91 rises. The heater 41 is connected to the heater control unit 43 via a cable, and its driving is controlled by an electric signal from the heater control unit 43.
 温度センサ42は、液体91に漬かっており、たとえばウエハ槽1の壁面付近に配置されている。温度センサ42としては、たとえば液温測定用のサーミスタを採用することができる。温度センサ42からの出力信号は、ケーブルを介してヒータ制御部43に伝送される。 The temperature sensor 42 is immersed in the liquid 91 and is disposed, for example, near the wall surface of the wafer tank 1. As the temperature sensor 42, for example, a thermistor for measuring a liquid temperature can be employed. An output signal from the temperature sensor 42 is transmitted to the heater control unit 43 via a cable.
 ヒータ制御部43は、ヒータ41に駆動電力を供給するためのものであり、ウエハ槽1の外部に設けられている。ヒータ制御部43は、温度センサ42からの電気信号に応じてヒータ41の駆動を制御する制御回路を備える。ヒータ制御部43による制御としては、たとえば温度センサ42での測定温度が所定の温度範囲となるようにヒータ41の駆動を制御する、いわゆるフィードバック制御が挙げられる。 The heater control unit 43 is for supplying driving power to the heater 41, and is provided outside the wafer tank 1. The heater control unit 43 includes a control circuit that controls driving of the heater 41 in accordance with an electrical signal from the temperature sensor 42. Examples of the control by the heater control unit 43 include so-called feedback control that controls the driving of the heater 41 so that the temperature measured by the temperature sensor 42 falls within a predetermined temperature range.
 中継コンベア5は、吸着コンベア2の下流側において、液面92の上方に配置されている。中継コンベア5は、後述する手順によって吸着されたウエハ90を吸着コンベア2から受け渡される。 The relay conveyor 5 is disposed above the liquid level 92 on the downstream side of the suction conveyor 2. The relay conveyor 5 receives the wafer 90 sucked by the procedure described later from the suction conveyor 2.
 装填コンベア6は、中継コンベア5の下流側に配置されている。装填コンベア6は、中継コンベア5から受け取ったウエハ90を、スタッカ7へと装填するのに用いられる。 The loading conveyor 6 is arranged on the downstream side of the relay conveyor 5. The loading conveyor 6 is used to load the wafer 90 received from the relay conveyor 5 into the stacker 7.
 スタッカ7は、複数枚のウエハ90を1枚ずつ格納するためのものであり、鉛直方向に互いに平行に配列された複数のポケット71を有している。装填コンベア6からウエハ90が送られてくると、このウエハ90があるポケット71に装填される。すると、図示しない昇降手段によってスタッカ7はポケット71の一段分だけ上昇される。これにより、次のウエハ90を装填可能な状態となる。 The stacker 7 is for storing a plurality of wafers 90 one by one, and has a plurality of pockets 71 arranged in parallel to each other in the vertical direction. When the wafer 90 is sent from the loading conveyor 6, the wafer 90 is loaded into a pocket 71. Then, the stacker 7 is raised by one step of the pocket 71 by lifting means (not shown). As a result, the next wafer 90 can be loaded.
 次に、本発明に係るウエハ搬送方法の一例について、図19~図26を参照しつつ以下に説明する。図19~図25においては、理解の便宜上、置台81、サポート部材82の記載を省略しているが、実際には、複数枚のウエハ90は置台81に載置され、かつサポート部材82にガイドされたまま以下の工程が行われる。 Next, an example of a wafer transfer method according to the present invention will be described below with reference to FIGS. In FIG. 19 to FIG. 25, the table 81 and the support member 82 are not shown for convenience of understanding. However, in reality, a plurality of wafers 90 are mounted on the table 81 and guided to the support member 82. The following steps are performed as they are.
 まず、図19に示すように、無端ベルト22の吸着区間221を、積み上げられたウエハ90の直上に位置させる。この時、最上位のウエハ90の上面と吸着コンベア2のウエハ吸着面223との距離は、たとえば15~35mmである。吸着区間221がこの位置にあるときは、バキュームボックス23の複数の孔235のうち区画室231,232に設けられたものが、吸着区間221と重なっている。また、このときバルブユニット27を切り替えることにより、区画室231,232とポンプ26とを接続し、区画室233とポンプ26とを遮断する。これとともに、ポンプ26を駆動させ、区画室231,232の内圧を負圧とする。ここで、ヒータ41を駆動することにより、あらかじめ液体91の温度を30~50度程度にしておく。 First, as shown in FIG. 19, the suction section 221 of the endless belt 22 is positioned immediately above the stacked wafers 90. At this time, the distance between the upper surface of the uppermost wafer 90 and the wafer suction surface 223 of the suction conveyor 2 is, for example, 15 to 35 mm. When the suction section 221 is in this position, the one provided in the compartments 231 and 232 of the plurality of holes 235 of the vacuum box 23 overlaps the suction section 221. At this time, by switching the valve unit 27, the compartments 231 and 232 and the pump 26 are connected, and the compartment 233 and the pump 26 are shut off. At the same time, the pump 26 is driven, and the internal pressure of the compartments 231 and 232 is set to a negative pressure. Here, the temperature of the liquid 91 is set to about 30 to 50 degrees in advance by driving the heater 41.
 次いで、複数のノズル31からウエハ90の端面93に向けて所定の吐出圧力で液体91を噴出する(図16~図18参照)。ノズル31からの吐出圧力によって、液体91が噴き付けられる部位において、ウエハ90どうしの間や、ウエハ90の最上部の上側に液体91が侵入する。そうすると、図20に示すように、最上位のウエハ90を含む複数枚のウエハ90は、互いの間に隙間が生じるように浮き上がる。そして、最上位のウエハ90は、無端ベルト22の吸着区間221(ウエハ吸着面223)に近接する。 Next, the liquid 91 is ejected from the plurality of nozzles 31 toward the end surface 93 of the wafer 90 at a predetermined discharge pressure (see FIGS. 16 to 18). Due to the discharge pressure from the nozzle 31, the liquid 91 enters between the wafers 90 or on the uppermost part of the wafer 90 at a part where the liquid 91 is sprayed. Then, as shown in FIG. 20, the plurality of wafers 90 including the uppermost wafer 90 are lifted so that a gap is formed between them. The uppermost wafer 90 is close to the suction section 221 (wafer suction surface 223) of the endless belt 22.
 吸着コンベア2において、区画室231,232の内圧が負圧であることから、吸着区間221の直下近傍にある最上位のウエハ90が上方に引き寄せられる。そして、図21および図22に示すように、最上位のウエハ90が吸着区間221に吸着される。 In the suction conveyor 2, since the internal pressure of the compartments 231 and 232 is negative, the uppermost wafer 90 in the vicinity immediately below the suction section 221 is drawn upward. Then, as shown in FIGS. 21 and 22, the uppermost wafer 90 is sucked into the suction section 221.
 次いで、ノズル31からの液体91の噴出を停止する。そして図23および図24に示すように、ローラ21を駆動することにより無端ベルト22を反時計回りに周回させる。これにより、吸着されたウエハ90が図中右方にスライドされる。このとき、スポンジローラ32を反時計回りに回転させておく。すると、スライドするウエハ90は、その先端から順にスポンジローラ32の上方をこれに接しながら通過する。これにより、ウエハ90にはスライド方向と反対方向に向けて抵抗力が付与される。仮に、最上位に位置していたウエハ90とその直下にあったウエハ90とが、誤って2枚取りされた場合、この抵抗力によって下方のウエハ90を取り除くことができる。さらに、液体91に混入された界面活性剤は、2枚のウエハ90どうしの間に液体91が侵入することを好適に促進する。なお、本記載ではノズル31からの液体91の噴出を停止しているが、ノズル31からの液体91の噴出を停止させずに以下の一連の工程を続けて行ってもよい。 Next, the ejection of the liquid 91 from the nozzle 31 is stopped. Then, as shown in FIGS. 23 and 24, the endless belt 22 is rotated counterclockwise by driving the roller 21. Thereby, the attracted wafer 90 is slid rightward in the figure. At this time, the sponge roller 32 is rotated counterclockwise. Then, the slidable wafer 90 passes through the sponge roller 32 in order from the tip while contacting the wafer 90. As a result, a resistance force is applied to the wafer 90 in the direction opposite to the sliding direction. If two wafers 90 that were positioned at the uppermost position and the wafer 90 that was immediately below the uppermost wafer 90 were mistakenly taken, the lower wafer 90 can be removed by this resistance force. Further, the surfactant mixed in the liquid 91 favorably promotes the penetration of the liquid 91 between the two wafers 90. In the present description, the ejection of the liquid 91 from the nozzle 31 is stopped, but the following series of steps may be continued without stopping the ejection of the liquid 91 from the nozzle 31.
 無端ベルト22が周回すると、吸着区間221が区画室231,232と重なる位置から区画室232,233と重なる位置へと移動する。このときには、図23によく表れているように、バルブユニット27を切り替えることにより、区画室232,233とポンプ26とを接続し、区画室231とポンプ26とを遮断する。これにより、区画室232,233の内圧が負圧となり、区画室231はその内圧が強い負圧となる状態から解除される。 When the endless belt 22 circulates, the suction section 221 moves from a position overlapping the compartments 231 and 232 to a position overlapping the compartments 232 and 233. At this time, as clearly shown in FIG. 23, by switching the valve unit 27, the compartments 232 and 233 and the pump 26 are connected, and the compartment 231 and the pump 26 are shut off. As a result, the internal pressure of the compartments 232 and 233 becomes negative, and the compartment 231 is released from the state where the internal pressure becomes a strong negative pressure.
 次いで、図25に示すように、さらに無端ベルト22を周回させる。すると、吸着されたウエハ90は、さらに右方へとスライドし、中継コンベア5へと受け渡される。図示された状態においては、吸着区間221は区画室233のみと重なっている。このときには、バルブユニット27を切り替えることにより、区画室233とポンプ26とを接続し、区画室231,232とポンプ26とを遮断する。 Next, as shown in FIG. 25, the endless belt 22 is further rotated. Then, the sucked wafer 90 slides further to the right and is delivered to the relay conveyor 5. In the state shown in the figure, the adsorption section 221 overlaps only the compartment 233. At this time, by switching the valve unit 27, the compartment 233 and the pump 26 are connected, and the compartments 231 and 232 and the pump 26 are shut off.
 この後は、中継コンベア5、装填コンベア6を経由して、ウエハ90がスタッカ7に装填される。一方、吸着コンベア2は、無端ベルト22をさらに周回させるとともに、バルブユニット27を切り替えることにより、再び図19に示す状態となる。そして、リフタ12が、積み上げられた複数枚のウエハ90をその一枚分の厚さに相当する高さだけ上昇させることにより、次のウエハ90を吸着可能な状態となる。以上に述べた工程を順次繰り返すことにより、積み上げられた複数枚のウエハ90を1枚ずつ搬送し、スタッカ7へと装填できる。 Thereafter, the wafer 90 is loaded into the stacker 7 via the relay conveyor 5 and the loading conveyor 6. On the other hand, the suction conveyor 2 is brought into the state shown in FIG. 19 again by rotating the endless belt 22 and switching the valve unit 27. Then, the lifter 12 raises the stacked wafers 90 by a height corresponding to the thickness of the single wafer 90, so that the next wafer 90 can be adsorbed. By sequentially repeating the steps described above, a plurality of stacked wafers 90 can be transferred one by one and loaded into the stacker 7.
 そして上記の工程を順次繰り返した結果、最終的に図26に示すように、置台81に載置されたウエハ90の数が数枚程度となる。ウエハ90の数が数枚程度となった場合、ウエハ90の端面93に向けてノズル31から噴出された液体91は、ウエハ90を載置している置台81の空間815にも侵入する。そのため、ウエハ90は数枚であっても、互いの間に隙間が生じるように浮き上がる。その後、上記と同様の工程を経ることにより、置台81に載置されたウエハ90をほぼ全てスタッカ7へと装填できる。 As a result of sequentially repeating the above steps, finally, as shown in FIG. 26, the number of wafers 90 mounted on the mounting table 81 is about several. When the number of the wafers 90 is about several, the liquid 91 ejected from the nozzle 31 toward the end surface 93 of the wafer 90 also enters the space 815 of the mounting table 81 on which the wafer 90 is placed. Therefore, even if there are several wafers 90, they are lifted up so that a gap is generated between them. Thereafter, almost all the wafers 90 mounted on the mounting table 81 can be loaded into the stacker 7 through the same process as described above.
 次に、本実施形態のウエハ搬送方法およびウエハ搬送装置10の作用について説明する。 Next, the operation of the wafer transfer method and wafer transfer apparatus 10 of this embodiment will be described.
 複数枚のウエハ90は、たとえばワイヤソーを用いた切断工程の後に、洗浄工程や接着剤の溶解工程を経るために濡れた状態となる。これらの濡れたウエハ90を大気中におくと、互いに張り付いてしまい、1枚ずつに分離することは困難である。本実施形態によれば、液体91中に積み上げられた複数枚のウエハ90においては、これらウエハ90の端面93に液体91を噴出することにより、最上位にあるウエハ90を含む複数枚のウエハ90の間に隙間が生じさせられる。すなわち、最上位のウエハ90とこれに隣接する直下のウエハ90との間に隙間があるため、ウエハ90どうしが張り付いた状態は解消されて、最上位に位置するウエハ90を適切に吸着コンベア2に吸着させることができる。 The plurality of wafers 90 are in a wet state because, for example, a cutting process using a wire saw is followed by a cleaning process and an adhesive dissolving process. When these wet wafers 90 are placed in the atmosphere, they stick to each other and it is difficult to separate them one by one. According to the present embodiment, in the plurality of wafers 90 stacked in the liquid 91, the plurality of wafers 90 including the uppermost wafer 90 is ejected by ejecting the liquid 91 onto the end surfaces 93 of the wafers 90. A gap is created between the two. That is, since there is a gap between the uppermost wafer 90 and the wafer 90 immediately below the uppermost wafer 90, the state in which the wafers 90 are stuck together is eliminated, and the wafer 90 positioned at the uppermost position is appropriately sucked by the conveyor. 2 can be adsorbed.
 さらに本実施形態においては、ノズル31を、図16、図17のように配置し、且つ、ノズル31から噴出される液体91の方向を調整したことで、複数枚のウエハ90どうしの間に隙間を生じさせやすくなっている。 Further, in the present embodiment, the nozzle 31 is arranged as shown in FIGS. 16 and 17 and the direction of the liquid 91 ejected from the nozzle 31 is adjusted, so that a gap is formed between the plurality of wafers 90. It is easy to cause.
 発明者らの試験によると、本実施形態によれば、ノズル311を設けない場合と比べて、より多くのウエハ90どうしの間に隙間を生じさせやすくっており、ウエハ90をより早く浮上させることができた。また、ノズル312もしくはノズル313を設けない場合と比べて、複数枚のウエハ90をより確実に浮上させることができた。 According to the tests by the inventors, according to the present embodiment, it is easier to create a gap between more wafers 90 than in the case where the nozzle 311 is not provided, and the wafers 90 can be floated faster. I was able to. In addition, the plurality of wafers 90 can be floated more reliably than in the case where the nozzle 312 or the nozzle 313 is not provided.
 なお同図に示すように、必ずしも、ノズル31としてノズル311,312,313のいずれをも配置する必要はない。たとえば、ノズル31として、ノズル311,312のみを配置したり、ノズル311,313のみを配置したり、ノズル312,313のみを配置したりしてもよい。もしくは、ノズル31として、ノズル311のみを配置したり、ノズル312のみを配置したり、ノズル313のみを配置したりしてもよい。 As shown in the figure, it is not always necessary to dispose any of the nozzles 311, 312, and 313 as the nozzle 31. For example, as the nozzle 31, only the nozzles 311 and 312 may be arranged, only the nozzles 311 and 313 may be arranged, or only the nozzles 312 and 313 may be arranged. Alternatively, only the nozzle 311, only the nozzle 312, or only the nozzle 313 may be disposed as the nozzle 31.
 ノズル31はいずれも、ウエハ90の積層方向において扁平な形状の液体91を噴出可能である。これによっても、複数枚のウエハ90どうしの間に隙間を生じさせやすくなっている。 All the nozzles 31 can eject a liquid 91 having a flat shape in the stacking direction of the wafers 90. This also facilitates the formation of a gap between the plurality of wafers 90.
 図16、図17に示したように、複数枚のウエハ90は、サポート部材82にガイドされている。特に、複数枚のウエハ90は、一対の移動規制部821,822により、方向x1における移動が規制されている。そのため、ウエハ90に対し方向x1に向かってノズル31から液体91が噴出されても、当該液体91による力を受けてウエハ90は方向x1において位置ずれをしてしまうといったおそれが少ない。このような構成は、最上位にあるウエハ90を的確に吸着するのに適している。また、一対の移動規制部823,824によって、方向y1および方向y2に向かうウエハ90の移動が規制されている。このような構成も、最上位にあるウエハ90を的確に吸着するのに適している。なお、上記実施形態では一対の移動規制部821,822はそれぞれ、別個の板状の部材である例を示したが、一対の移動規制部821,822は、一体の部材における2つの部位であってもかまわない。 As shown in FIGS. 16 and 17, the plurality of wafers 90 are guided by the support member 82. In particular, the movement of the plurality of wafers 90 in the direction x1 is restricted by the pair of movement restricting portions 821 and 822. Therefore, even if the liquid 91 is ejected from the nozzle 31 toward the direction x1 with respect to the wafer 90, there is little possibility that the wafer 90 is displaced in the direction x1 due to the force of the liquid 91. Such a configuration is suitable for accurately adsorbing the wafer 90 at the uppermost position. Further, the movement of the wafer 90 in the direction y1 and the direction y2 is restricted by the pair of movement restriction parts 823 and 824. Such a configuration is also suitable for accurately adsorbing the wafer 90 at the uppermost position. In the above embodiment, the pair of movement restricting portions 821 and 822 is an example of a separate plate-like member, but the pair of movement restricting portions 821 and 822 are two portions of an integral member. It doesn't matter.
 吸着コンベア2のy1-y2方向における大きさL2は、移動規制部821,822どうしの離間距離L1より小さい。そのため、図26に示したように、移動規制部821,822に妨げられることなく、吸着コンベア2は複数枚のウエハ90の積層方向において移動することが可能となっている。これは、吸着コンベア2を複数枚のウエハ90の最上位のものにより接近させるのに適している。そのため、吸着コンベア2により、当該最上位のウエハ90をより吸着しやすくなっている。 The size L2 of the suction conveyor 2 in the y1-y2 direction is smaller than the separation distance L1 between the movement restricting portions 821 and 822. Therefore, as illustrated in FIG. 26, the suction conveyor 2 can move in the stacking direction of the plurality of wafers 90 without being obstructed by the movement restricting portions 821 and 822. This is suitable for bringing the suction conveyor 2 closer to the uppermost one of the plurality of wafers 90. For this reason, the uppermost wafer 90 is more easily sucked by the suction conveyor 2.
 ウエハ90をスライドさせる吸着コンベア2を用いれば、吸着したウエハ90を積み上げられた複数枚のウエハ90の直上からスムーズに退避させることができる。このとき、複数枚のウエハ90が大きく乱されるおそれが少ない。 If the suction conveyor 2 that slides the wafer 90 is used, the sucked wafers 90 can be smoothly retracted from directly above the plurality of stacked wafers 90. At this time, there is little possibility that the plurality of wafers 90 are greatly disturbed.
 複数枚のウエハ90は、最上位に位置するものの上面が吸着コンベア2のウエハ吸着面223と平行となるように積み上げられている。このため、ノズル31からの液体噴出により浮上してきた最上位のウエハ90の全面に対して、吸着コンベア2による吸着力が略均等に作用する。このような構成は、最上位にあるウエハ90を的確に吸着するのに適している。また、ウエハ吸着面223は、ウエハ90のスライド方向前方側(図中右方)が上位となるように傾斜しているため、ウエハ90を短い移動行程で効率よく搬送するのに適している。 The plurality of wafers 90 are stacked so that the upper surface of the wafer 90 is parallel to the wafer suction surface 223 of the suction conveyor 2. For this reason, the suction force by the suction conveyor 2 acts substantially evenly on the entire surface of the uppermost wafer 90 that has been lifted by the liquid jet from the nozzle 31. Such a configuration is suitable for accurately adsorbing the wafer 90 at the uppermost position. Further, since the wafer suction surface 223 is inclined so that the front side in the sliding direction of the wafer 90 (right side in the figure) is higher, it is suitable for efficiently transporting the wafer 90 in a short movement process.
 ノズル31は、複数枚のウエハ90に対してウエハ90のスライド方向前方側(図中右方)に配置されており、積み上げられたウエハ90の端面93に向けて液体91を噴出する。すなわち、ノズル31からはウエハ90のスライド方向とは逆方向に液体91が噴出される。そのため、最上位に位置していたウエハ90は、吸着コンベア2からスライド方向前方に移動する力を受けるものの、最上位に位置していたウエハ90の直下にあるウエハ90は、ノズル31から噴出される液体91により、上記スライド方向と逆方向に向かう力を受ける。これにより、最上位に位置していたウエハ90の直下にあるウエハ90が誤って運ばれるのを抑制することができる。 The nozzle 31 is disposed on the front side of the wafer 90 in the sliding direction (right side in the drawing) with respect to the plurality of wafers 90, and ejects the liquid 91 toward the end surface 93 of the stacked wafers 90. That is, the liquid 91 is ejected from the nozzle 31 in the direction opposite to the sliding direction of the wafer 90. Therefore, although the wafer 90 located at the uppermost position receives a force that moves forward in the sliding direction from the suction conveyor 2, the wafer 90 immediately below the wafer 90 located at the uppermost position is ejected from the nozzle 31. The liquid 91 receives a force in the direction opposite to the sliding direction. Thereby, it is possible to prevent the wafer 90 immediately below the wafer 90 positioned at the top from being mistakenly carried.
 複数枚のウエハ90が漬かる液体91は、ヒータ41により加熱され、常温よりも高温とされている。当該液体91は加熱されると粘度が低下する性質を有するため、隣り合うウエハ90どうしの間に液体91が侵入することが促進される。その結果、複数枚のウエハ90のうち最上位に位置するウエハ90を、これの直下に隣接するウエハ90から分離しやすくなり、最上位のウエハ90を適切に取り上げることができる。 The liquid 91 in which the plurality of wafers 90 are immersed is heated by the heater 41 and is set to a temperature higher than room temperature. Since the liquid 91 has a property that its viscosity decreases when heated, it is promoted that the liquid 91 enters between adjacent wafers 90. As a result, the wafer 90 positioned at the uppermost position among the plurality of wafers 90 can be easily separated from the wafer 90 adjacent immediately below the wafer 90, and the uppermost wafer 90 can be picked up appropriately.
 区画室231,232,233のうち吸着区間221と重ならないものを、順次ポンプ26に対して遮断することにより、吸着区間221以外の部分によって吸着したいウエハWf以外のウエハ90を誤って吸着してしまうことを防止することができる。 Of the compartments 231, 232, and 233, those that do not overlap with the adsorption section 221 are sequentially blocked from the pump 26, so that the wafer 90 other than the wafer Wf to be adsorbed by a part other than the adsorption section 221 is erroneously adsorbed. Can be prevented.
 置台81には、空間815が形成されている。置台81をこのような構成にすることで、図26に示したように置台81に載置された複数枚のウエハ90の枚数が少なくなっても、より確実にこれらのウエハ90どうしの間に隙間を生じさせることができる。これにより、複数枚のウエハ90のうち下方に位置するものを、吸着コンベア2により吸着し、搬送することが可能となる。これにより、吸着コンベア2により吸着されずに置台81に載置されたままとなるウエハ90を、より少なくすることができる。 A space 815 is formed in the mounting table 81. By configuring the mounting table 81 in such a configuration, even when the number of the plurality of wafers 90 mounted on the mounting table 81 decreases as shown in FIG. A gap can be generated. Thereby, it is possible to suck and convey the wafer 90 located below among the plurality of wafers 90 by the suction conveyor 2. As a result, the number of wafers 90 that are not sucked by the suction conveyor 2 and remain mounted on the table 81 can be reduced.
 また、上記の工程において、ウエハ90を取り上げる度にノズル31からの液体91の噴出を停止することなく、ノズル31からの液体91の噴出を継続した場合には、最上位に位置するウエハ90が浮上している状態を維持できる。そのため、ウエハ90が浮上していない状態に戻った後に、再びウエハ90を浮上させることが必要なくなる。その結果、上記ウエハの搬送工程の効率化を図りうる。 In the above process, when the ejection of the liquid 91 from the nozzle 31 is continued without stopping the ejection of the liquid 91 from the nozzle 31 each time the wafer 90 is picked up, the wafer 90 positioned at the uppermost position is Can maintain a floating state. Therefore, it is not necessary to lift the wafer 90 again after returning to the state where the wafer 90 is not lifted. As a result, the efficiency of the wafer transfer process can be improved.
 本発明に係るウエハ搬送方法およびウエハ搬送装置は、上述した実施形態に限定されるものではない。本発明に係るウエハ搬送方法およびウエハ搬送装置の具体的な構成は、種々に設計変更自在である。 The wafer transfer method and the wafer transfer apparatus according to the present invention are not limited to the above-described embodiments. The specific configurations of the wafer transfer method and the wafer transfer apparatus according to the present invention can be varied in design in various ways.

Claims (14)

  1.  液体中に積層された複数枚のウエハどうしの間のいずれかに隙間を生じさせるべく、上記複数枚のウエハの端面に向けて上記液体を噴出する工程と、
     上記隙間を生じさせた状態で、上記複数枚のウエハのうち少なくとも最上位に位置するウエハを取り上げる工程と、を備える、ウエハ搬送方法。
    Injecting the liquid toward the end faces of the plurality of wafers in order to create a gap between any of the plurality of wafers stacked in the liquid;
    Picking up at least the uppermost wafer among the plurality of wafers in a state where the gap is generated.
  2.  上記液体を噴出する工程は、上記ウエハの上記端面の延びる方向における上記端面の中央に向けて上記液体を噴出する第1の工程を含む、請求項1に記載のウエハ搬送方法。 2. The wafer transfer method according to claim 1, wherein the step of ejecting the liquid includes a first step of ejecting the liquid toward the center of the end face in the extending direction of the end face of the wafer.
  3.  上記液体を噴出する工程は、上記ウエハの上記端面の延びる方向において上記端面と重なる位置から上記端面に向けて上記液体を噴出する、上記第1の工程と異なる第2の工程をさらに含む、請求項2に記載のウエハ搬送方法。 The step of ejecting the liquid further includes a second step different from the first step, in which the liquid is ejected toward the end surface from a position overlapping the end surface in a direction in which the end surface of the wafer extends. Item 3. The wafer transfer method according to Item 2.
  4.  上記液体を噴出する工程は、上記ウエハの上記端面の延びる方向における上記端面の外側から上記端面に向けて上記液体を噴出する第3の工程をさらに含む、請求項3に記載のウエハ搬送方法。 4. The wafer transfer method according to claim 3, wherein the step of ejecting the liquid further includes a third step of ejecting the liquid from the outside of the end face in the direction in which the end face of the wafer extends toward the end face.
  5.  上記複数枚のウエハのうち最上位にあったものを吸着した状態でこのウエハをその面内方向にスライドさせる吸着スライド手段によって、上記最上位のウエハから順に上記ウエハを搬送する工程をさらに備える、請求項1に記載のウエハ搬送方法。 A step of conveying the wafer in order from the top wafer by suction slide means for sliding the wafer in the in-plane direction with the top wafer among the plurality of wafers being sucked; The wafer transfer method according to claim 1.
  6.  上記液体を噴出する工程においては、上記複数枚のウエハに対して上記ウエハのスライド方向前方側から上記液体を噴出する、請求項5に記載のウエハ搬送方法。 6. The wafer transfer method according to claim 5, wherein, in the step of ejecting the liquid, the liquid is ejected from the front side in the sliding direction of the wafer to the plurality of wafers.
  7.  上記液体の温度を測定し、この測定温度が所定の温度範囲となるように上記液体を加熱する液体温度調整工程をさらに含む、請求項1に記載のウエハ搬送方法。 2. The wafer transfer method according to claim 1, further comprising a liquid temperature adjusting step of measuring the temperature of the liquid and heating the liquid so that the measured temperature falls within a predetermined temperature range.
  8.  液体中に積層された複数枚のウエハの端面に向けて上記液体を噴出することにより、上記複数枚のウエハどうしの間のいずれかに隙間を生じさせる少なくとも1つの液体噴出手段と、
     上記隙間を生じさせた状態において、上記複数枚のウエハのうち少なくとも最上位に位置するウエハを受け取り可能なウエハ受け取り手段と、を備えることを特徴とする、ウエハ搬送装置。
    At least one liquid ejecting means for creating a gap between the plurality of wafers by ejecting the liquid toward the end faces of the plurality of wafers stacked in the liquid;
    And a wafer receiving means capable of receiving at least the uppermost wafer of the plurality of wafers in a state where the gap is generated.
  9.  上記少なくとも1つの液体噴出手段は、上記ウエハの上記端面の延びる方向における上記端面の中央に向けて上記液体を噴出する第1の液体噴出手段を含む、請求項8に記載のウエハ搬送装置。 9. The wafer transfer apparatus according to claim 8, wherein the at least one liquid ejecting means includes first liquid ejecting means for ejecting the liquid toward a center of the end face in a direction in which the end face of the wafer extends.
  10.  上記少なくとも1つの液体噴出手段は、上記端面の延びる方向において上記端面と重なる位置に配置され且つ上記端面に向けて上記液体を噴出する、上記第1の液体噴出手段と異なる第2の液体噴出手段をさらに含む、請求項9に記載のウエハ搬送装置。 The at least one liquid ejecting means is disposed at a position overlapping the end face in the extending direction of the end face, and ejects the liquid toward the end face. The second liquid ejecting means is different from the first liquid ejecting means. The wafer transfer apparatus according to claim 9, further comprising:
  11.  上記少なくとも1つの液体噴出手段は、上記端面の延びる方向における上記端面の外側から上記端面に向けて上記液体を噴出する第3の液体噴出手段をさらに含む、請求項10に記載のウエハ搬送装置。 11. The wafer transfer apparatus according to claim 10, wherein the at least one liquid ejecting unit further includes a third liquid ejecting unit that ejects the liquid from the outside of the end surface in the extending direction of the end surface toward the end surface.
  12.  上記ウエハ受け取り手段は、上記複数枚のウエハのうち最上位にあるものを吸着した状態で、このウエハをその面内方向にスライドさせる吸着スライド手段を含む、請求項8に記載のウエハ搬送装置。 The wafer transfer apparatus according to claim 8, wherein the wafer receiving means includes suction slide means for sliding the wafer in an in-plane direction in a state where the uppermost one of the plurality of wafers is sucked.
  13.  上記少なくとも1つの液体噴出手段は、上記複数のウエハに対して上記ウエハのスライド方向前方側に配置されている、請求項12に記載のウエハ搬送装置。 13. The wafer transfer apparatus according to claim 12, wherein the at least one liquid ejecting means is disposed on the front side in the sliding direction of the wafer with respect to the plurality of wafers.
  14.  上記液体を加熱する加熱手段と、
     上記液体の温度を測定する温度測定手段と、
     上記温度測定手段による上記液体の測定温度が所定の温度範囲となるように上記加熱手段の駆動を制御する制御手段と、
     をさらに備える、請求項8に記載のウエハ搬送装置。
    Heating means for heating the liquid;
    Temperature measuring means for measuring the temperature of the liquid;
    Control means for controlling the driving of the heating means such that the temperature measured by the temperature measuring means falls within a predetermined temperature range;
    The wafer transfer apparatus according to claim 8, further comprising:
PCT/JP2010/062303 2009-07-24 2010-07-22 Wafer conveying method and wafer conveying device WO2011010683A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117029322A KR101370578B1 (en) 2009-07-24 2010-07-22 Wafer conveying method and wafer conveying device
CN201080033609.9A CN102473666B (en) 2009-07-24 2010-07-22 Wafer conveying method and wafer conveying device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-173210 2009-07-24
JP2009173508A JP2011029401A (en) 2009-07-24 2009-07-24 Wafer conveying method and wafer conveying device
JP2009-173508 2009-07-24
JP2009173210A JP2011029390A (en) 2009-07-24 2009-07-24 Wafer conveying method and wafer conveying device
JP2009211484A JP2011061120A (en) 2009-09-14 2009-09-14 Method of carrying wafer and wafer carrying device
JP2009-211484 2009-09-14

Publications (1)

Publication Number Publication Date
WO2011010683A1 true WO2011010683A1 (en) 2011-01-27

Family

ID=43499155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062303 WO2011010683A1 (en) 2009-07-24 2010-07-22 Wafer conveying method and wafer conveying device

Country Status (3)

Country Link
KR (1) KR101370578B1 (en)
CN (1) CN102473666B (en)
WO (1) WO2011010683A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024741A1 (en) * 2011-08-12 2013-02-21 株式会社 安永 Wafer separation device and wafer manufacturing method using same
EP2874183A1 (en) * 2013-11-15 2015-05-20 mechatronic Systemtechnik GmbH Device for at least emptying one transport container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103538936B (en) * 2012-07-16 2016-04-27 北京北方微电子基地设备工艺研究中心有限责任公司 For cell piece Qu Pian mechanism and there is its transmission system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292160A (en) * 2002-04-01 2003-10-15 Hitachi Kiden Kogyo Ltd Takeout apparatus of glass substrate
WO2008068943A1 (en) * 2006-12-06 2008-06-12 Mimasu Semiconductor Industry Co., Ltd. Submerged wafer separating method, and submerged wafer separating apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254378A (en) * 2001-02-22 2002-09-10 Hiroshi Akashi In-liquid work taking out device
US20080146003A1 (en) * 2006-12-19 2008-06-19 Rec Scanwafer As Method and device for separating silicon wafers
DE102007061410A1 (en) * 2007-12-11 2009-06-18 Gebr. Schmid Gmbh & Co. Method and apparatus for separating wafers from a wafer stack

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292160A (en) * 2002-04-01 2003-10-15 Hitachi Kiden Kogyo Ltd Takeout apparatus of glass substrate
WO2008068943A1 (en) * 2006-12-06 2008-06-12 Mimasu Semiconductor Industry Co., Ltd. Submerged wafer separating method, and submerged wafer separating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024741A1 (en) * 2011-08-12 2013-02-21 株式会社 安永 Wafer separation device and wafer manufacturing method using same
EP2874183A1 (en) * 2013-11-15 2015-05-20 mechatronic Systemtechnik GmbH Device for at least emptying one transport container
WO2015071475A1 (en) * 2013-11-15 2015-05-21 Mechatronic Systemtechnik Gmbh Device for at least emptying a transport container
US9978624B2 (en) 2013-11-15 2018-05-22 Mechatronic Systemtechnik Gmbh Device for at least emptying a transport container

Also Published As

Publication number Publication date
KR101370578B1 (en) 2014-03-07
CN102473666B (en) 2014-09-03
CN102473666A (en) 2012-05-23
KR20120025510A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
WO2010116949A1 (en) Wafer transfer method and wafer transfer apparatus
JP5254114B2 (en) Wafer transfer method and wafer transfer apparatus
JP5457113B2 (en) Wafer transfer method and wafer transfer apparatus
KR101440414B1 (en) Apparatus and method for the separating and transporting of substrate
TWI659918B (en) Sheet material supply device
JP5502503B2 (en) Wafer transfer apparatus and wafer transfer method
TW201625087A (en) Method of separating sheet for circuit substrate and device of separating sheet for circuit substrate
JP5368222B2 (en) Wafer transfer method and wafer transfer apparatus
TWI411567B (en) Floating handling device and handling system with floating handling device
JP2011151167A5 (en)
TW200812889A (en) Substrate transmission apparatus and substrate transmission method
WO2011010683A1 (en) Wafer conveying method and wafer conveying device
JP2011061120A (en) Method of carrying wafer and wafer carrying device
JP4762116B2 (en) Sheet feeding device
JP2011029390A (en) Wafer conveying method and wafer conveying device
JP2010165928A (en) Method and apparatus for conveying wafer
CN105742242A (en) Sheet separating method for circuit substrates, and sheet separating device for circuit substrates
JP2011029401A (en) Wafer conveying method and wafer conveying device
KR100920973B1 (en) Feed apparatus for seat
JP2010165891A (en) Semiconductor wafer conveying device
WO2013024741A1 (en) Wafer separation device and wafer manufacturing method using same
JP2012119526A (en) Substrate transport device
JP6093255B2 (en) Heat treatment apparatus, peeling system, heat treatment method, program, and computer storage medium
JP2017193439A (en) Circuit board sheet separating/conveying method, circuit board sheet separating/conveying device, prepreg separating/conveying method, and prepreg separating/conveying device
JP2012033739A (en) Substrate transfer apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033609.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117029322

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10802303

Country of ref document: EP

Kind code of ref document: A1