WO2008068943A1 - Submerged wafer separating method, and submerged wafer separating apparatus - Google Patents

Submerged wafer separating method, and submerged wafer separating apparatus Download PDF

Info

Publication number
WO2008068943A1
WO2008068943A1 PCT/JP2007/068128 JP2007068128W WO2008068943A1 WO 2008068943 A1 WO2008068943 A1 WO 2008068943A1 JP 2007068128 W JP2007068128 W JP 2007068128W WO 2008068943 A1 WO2008068943 A1 WO 2008068943A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
liquid
uppermost
submerged
support plate
Prior art date
Application number
PCT/JP2007/068128
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Tsuchiya
Ikuo Mashimo
Koichi Saito
Original Assignee
Mimasu Semiconductor Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mimasu Semiconductor Industry Co., Ltd. filed Critical Mimasu Semiconductor Industry Co., Ltd.
Publication of WO2008068943A1 publication Critical patent/WO2008068943A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • the present invention relates to a wafer on the uppermost layer of a wafer laminate in which a plurality of wafers or a plurality of wafers, particularly thin wafers, for example, a semiconductor wafer such as a silicon wafer, particularly a semiconductor wafer for solar cells is laminated.
  • the present invention relates to a novel submerged wafer isolation method and submerged wafer isolation apparatus that can be safely and easily separated from an adjacent lower wafer.
  • wafers semiconductor wafers
  • wafers such as thin silicon wafers that have been sliced and cut out with a force such as a silicon ingot, etc.
  • a force such as a silicon ingot, etc.
  • wafer stack commonly called a coin stack
  • each wafer is separated from the wafer stack to process each wafer. It is usually done.
  • oil and other liquids adhere to the surface of the wafer after various treatments, such as an abrasive (slurry) containing oil remaining on the surface of a wafer sliced from an ingot. Often doing.
  • abrasive slurry
  • the surface tension of these liquids existing on the wafer surface can move the wafers to the side, but from above the adjacent lower wafers. It is difficult to pull apart.
  • the present inventor warps the peripheral edge of the uppermost wafer of the wafer laminated body in which a large number or a plurality of wafers are laminated, to the lower side adjacent to the lower surface of the uppermost wafer.
  • a first wafer isolating apparatus has been proposed in which fluid is blown between the upper surface of the wafer and the uppermost wafer is raised to isolate the wafer (Patent Document 1).
  • the present inventors vacuum-sucked two or more suction positions (for example, four points) facing each other through the central portion of the wafer at the periphery of the upper surface of the wafer to By bending upward, the bending stress generated on the wafer is dispersed, and the force for isolating the wafer safely, simply and reliably can be increased, and the processing speed for isolating the wafer can be improved.
  • the second wafer isolation system was proposed further (Patent Document 2), but there were still cases where a wafer cracking accident occurred, and the following studies were made to make further improvements. The following knowledge was obtained.
  • a wafer is formed by forming a single crystal rod (ingot) of silicon or the like crystal-grown by the CZ (Czochralski) method or the FZ (Floating Zone) method into a cylindrical shape by a cylindrical grinder, and then using a wire saw or the like. It is obtained by thinly slicing in a direction substantially perpendicular to the axis.
  • a wafer cut from an ingot grown in such a crystal orientation in the ⁇ 100> direction is a disk-shaped wafer in which axes where crystal habit lines are formed (hereinafter referred to as crystal habit axes) are centered. It is orthogonal at the part, and OF (orientation flat) is provided on the outer circumference corresponding to the habit axis.
  • crystal habit axes axes where crystal habit lines are formed
  • OF orientation flat
  • the present inventor can isolate a wafer in a safer, simpler and more reliable manner, and can further improve the processing speed for isolating the wafer.
  • a wafer isolation method and a wafer isolation machine using the wafer isolation apparatus Patent Document 3
  • This wafer isolation apparatus has gained popularity recently. There is a growing need for a wafer isolation system that can safely, easily, reliably and quickly isolate very thin wafers. In recent years, since ultra-thin wafers with a thickness of about 200 m have been used, wafers are becoming more susceptible to cracking, and the problem of wafer cracking has become more prominent! .
  • Patent Document 1 JP-A-9 64152
  • Patent Document 2 WO2004 / 051735
  • Patent Document 3 WO2004 / 102654
  • the present invention has been made in view of the above problems, and provides a wafer isolation method and a wafer isolation apparatus capable of isolating an extremely thin wafer safely, simply, reliably and quickly. Let's call it Mejiro.
  • the method for isolating wafers in liquid according to the present invention is to remove the uppermost wafer from a wafer laminate in which a large number or a plurality of wafers are immersed in a liquid.
  • a wafer isolation method for isolation comprising: immersing a wafer laminate in which a large number of wafers or a plurality of wafers are laminated in a liquid; and preparing a crystal of a wafer in the uppermost layer of the wafer laminate A step of pressing the uppermost wafer in an axial direction shifted by 15 ° to 75 ° clockwise or counterclockwise from the winding axis; and the bending stress of the uppermost wafer is generated in the axial direction.
  • a step of bending the peripheral edge of the upper wafer upward, a step of blowing liquid between the lower surface of the uppermost wafer and the upper surface of the lower wafer adjacent to the lower surface, and raising the uppermost wafer Step and Look, is characterized in that so as to isolate the wafer.
  • the angle in the axial direction shifted clockwise or counterclockwise from the crystal habit axis is preferably 30 ° to 60 °, more preferably 40 ° to 50. And most ideally 45 °.
  • the crystal habit axis is perpendicular to the center of the wafer, so the wafer is warped with the axis direction shifted by 45 ° clockwise or counterclockwise from the crystal habit axis as the support axis. This is because it is most difficult to cleave.
  • the uppermost wafer When the uppermost wafer is isolated by being raised, it is preferable that the uppermost wafer is raised while being inclined in the horizontal direction.
  • the uppermost wafer In the submerged wafer isolation method of the present invention, since the entire wafer stack is immersed in the liquid, the uppermost wafer is raised while being inclined in the horizontal direction during isolation. Therefore, the partial force acting by the decompression force generated between the lower surface of the uppermost wafer and the upper surface of the lower wafer adjacent to the lower surface is shifted from the portion where the bending stress of the uppermost wafer is generated. A wafer cracking accident will not occur due to the difference. In addition, the liquid on the uppermost wafer also stays on the wafer and can reduce wafer cracking.
  • the uppermost wafer is tilted in the horizontal direction.
  • the inclination angle when raising it 2 ° to 60 ° is preferable, and 2 ° to 40 ° is preferable, and 5 ° to 20 °. Is most preferred.
  • the submerged wafer isolation device of the present invention also isolates the uppermost wafer from a wafer stack in which a large number or a plurality of wafers immersed in a liquid are stacked.
  • a support plate provided so as to be movable up and down, wafer shaft pressing means provided on the lower surface of the support plate, and a wafer on the uppermost layer provided on a peripheral portion of the lower surface of the support plate.
  • Wafer adsorbing means for adsorbing one or more opposing adsorbing positions on the periphery of the upper surface of the substrate, liquid ejecting means provided on the outer side corresponding to the wafer adsorbing means, and the entire wafer stack are immersed
  • An immersion container configured to fill the immersion liquid and perform the wafer isolation operation in the liquid, and from the crystal axis of the uppermost wafer by the wafer axis pressing means.
  • the top layer of the uppermost layer is shifted in the axial direction by 15 ° to 75 ° clockwise or counterclockwise.
  • the wafer adsorbing means opposes the upper surface of the uppermost wafer through the center of the upper surface of the wafer so that the wafer is pressed and bending stress of the uppermost wafer is generated in the axial direction. While adsorbing one or more pairs of adsorbing positions and curving the peripheral edge of the uppermost layer wafer upward at one or more pairs of adsorbing positions, the lower wafer adjacent to the lower surface and the lower wafer adjacent to the lower surface A liquid is blown by the liquid ejecting means between the upper surface of the wafer and the uppermost wafer is raised to isolate the wafer.
  • the angle in the axial direction shifted clockwise or counterclockwise from the crystal habit axis is preferably 30 ° to 60 °, more preferably 40 ° to 50 °, and most preferably 45 °. This is as described above.
  • the wafer shaft pressing means includes a plurality of wafer pressing members arranged in one direction on the lower surface of the support plate, or a wafer elongated in one direction provided on the lower surface of the support plate. It is preferably made of a pressing member.
  • the wafer presser means in the conventional wafer isolating apparatus functions as a fulcrum when the wafer is warped and serves as a fulcrum for supporting one point at the center of the wafer. This is because it functions as a support shaft when the wafer is warped and serves as a support shaft for supporting the predetermined axial direction of the wafer, so that it is necessary to support the wafer in an axial direction that is not a point.
  • Two or more pairs of the wafer adsorbing means are provided, and the wafer is provided at the periphery of the upper surface of the uppermost wafer. It is preferable to adsorb two or more pairs of adsorbing positions opposite to each other via the central portion of the wafer and to warp the peripheral portion of the uppermost wafer at the two or more adsorbing positions upward.
  • the support plate is formed in a cross shape, an X shape, or a horizontal H shape, and the wafer suction means is provided around the lower surface of the support plate.
  • the support plate is provided so as to be inclined in the horizontal direction when moved upward.
  • the effect of the surface tension of the liquid can be reduced by raising the uppermost wafer while tilting in the horizontal direction.
  • the wafer suction means and wafer shaft holding means provided on the support plate are similarly inclined in the horizontal direction.
  • the uppermost wafer is attracted and lifted by the wafer attracting means, it can be tilted in the horizontal direction.
  • water may be used! /, But a chemical solution such as a surface active agent added to water may also be used.
  • the tilt angle when the uppermost wafer is tilted and raised in the horizontal direction is preferably 2 ° to 60 °, and more preferably 2 ° to 40 °. As described above, 5 ° to 20 ° is most preferable.
  • the wafer suction means is a vacuum suction nozzle having a liquid ejecting function, and a liquid is ejected from the vacuum suction nozzle to clean the suction position of the uppermost wafer of the wafer stack.
  • Thin layer silicon wafers, etc., sliced from silicon ingots, etc. have liquids such as slurry at the time of slicing remaining, and the remaining liquids such as slurry are semi-dried on the wafer surface over time.
  • the suction by the wafer suction means fails or the suction becomes incomplete and becomes very unstable. Therefore, as described above, if the liquid is ejected from the vacuum suction nozzle to clean the suction position, problems such as suction failure and incomplete suction can be solved.
  • the wafer suction means is a vacuum suction nozzle having a liquid jet function, and a liquid is jetted from the vacuum suction nozzle to clean a pipe communicating with the vacuum suction nozzle. Since the liquid such as slurry at the time of slicing remains on the wafer as described above, when the liquid is adsorbed, the liquid such as slurry is sucked into the pipe communicating with the vacuum suction nozzle. Dirty or clogged, causing malfunction. So vacuum If the pipe is cleaned by spraying the liquid from the suction nozzle, it is possible to prevent such a malfunction.
  • the wafer suction means is a vacuum suction nozzle having a liquid jet function, and it is preferable that the wafer suction means jets liquid from the vacuum suction nozzle so that the wafer suction means temporarily hoveres on the wafer surface.
  • semiconductor wafers such as silicon wafers are brittle materials, they can be easily damaged by impacts or the like.
  • the wafer suction means is lowered and brought into contact with the wafer surface and vacuum suction is performed, if the wafer suction means is simply dropped by its own weight, the wafer suction means rapidly drops and collides with the wafer surface. Damage to the wafer will occur. Therefore, if the wafer suction means is lowered while spraying liquid from the vacuum suction nozzle, and the wafer suction means is temporarily hovered on the wafer surface, such damage to the wafer can be prevented. it can.
  • the wafer stack further includes a wafer stack holding means for holding the wafer stack so as to be movable up and down, and a wafer position confirmation sensor for checking the height position of the uppermost wafer.
  • the wafer laminate may be configured to be set at a predetermined height position by detecting whether the laminate has reached a predetermined height by the wafer laminate holding means or not by the wafer position confirmation sensor. I'll do it.
  • FIG. 1 A plan view showing an adsorption position when a wafer is isolated by the wafer isolation method of the present invention, (a) is a disk-shaped wafer, (b) is a substantially square shape. In the case of a shaped wafer
  • FIG. 2 is an explanatory side view showing the principle of operation for tilting a wafer in the horizontal direction during wafer isolation in the wafer isolation method of the present invention.
  • FIG. 2 (a) shows a state in which the wafer is attracted and warped.
  • (B) shows the wafer tilted in the horizontal direction.
  • FIG. 3 is a partial cross-sectional side view showing the case where the support plate of the wafer isolation apparatus of the present invention is in the lowered position It is surface explanatory drawing.
  • FIG. 4 is a partial cross-sectional side view illustrating a case where the support plate of the wafer isolation device of the present invention is in the upper limit position.
  • FIG. 5 is a plan view of the wafer isolating apparatus of the present invention.
  • FIG. 6 is a flowchart showing an operation flow of the wafer isolation apparatus of the present invention.
  • FIG. 7 is a main part explanatory diagram showing an inclination angle when the uppermost wafer is raised while being inclined in the horizontal direction.
  • FIG. 1 is a plan view showing a suction position when a wafer is isolated by the wafer isolation method of the present invention, (a) is a disk-shaped wafer, and (b) is a substantially square shape. This is the case of a shaped wafer.
  • the symbol Wa is a disk-shaped wafer, which is a wafer with a crystal orientation of 100>.
  • the axis of the line segment indicated by reference signs A—A ′ and the axis of the line segment indicated by reference signs BB ′ are crystal habit axes, and are orthogonal at the center of the wafer.
  • OF orientation flat
  • the axial direction shifted by 45 ° from the crystal habit axis (the axial direction of the line segment indicated by the symbol L-L ') is pressed by wafer pressing members 20a and 20b as wafer axis pressing means 20, Two pairs of suction positions facing each other through the center of the wafer Wa are vacuum-sucked by a pair of wafer suction means 22a and 22b and a pair of wafer suction means 22c and 22d. .
  • symbol Wb is a wafer for manufacturing a substantially rectangular solar cell.
  • the crystallographic axis (the axis of the line indicated by reference A—A ′ or the axis of the line indicated by reference B—B ′) is on the diagonal of the wafer.
  • the axial direction shifted by 45 ° from the crystal habit axis (the axial direction of the line segment indicated by the symbol L L ') is used as the wafer axis pressing means.
  • the wafer holding members 20a and 20b are used to hold two pairs of suction positions on the periphery of the upper surface of the wafer Wb opposite to each other via the center of the wafer. 2 Vacuum adsorption with 2c, 22d pair.
  • FIG. 2 is a side view for explaining the principle of operation in which the wafer is tilted in the horizontal direction during wafer isolation in the wafer isolation method of the present invention, and (a) shows the wafer attracted and warped. (B) shows the wafer tilted in the horizontal direction during isolation.
  • symbol WS is a wafer laminate in which a large number or a plurality of wafers W are laminated.
  • the wafer laminate WS is placed on the upper surface of the wafer platform 130.
  • Reference numeral 10 is a movable member that can move up and down above the wafer stack WS. It is a cylinder rod of an air cylinder.
  • the movable member 10, that is, the cylinder rod is configured to descend by its own weight when the air cylinder air is turned off, and to rise when the air cylinder air is turned on.
  • a support base plate 13 is attached to the lower end portion of the movable member 10.
  • a support plate 12 is attached to the support base plate 13 with bolts 15a and 15b in a state where there is play, so that the play widths of the bolts 15a and 15b are different.
  • bolts 15a and 15b as shown in the figure use bolts of different lengths, and are installed so that the free width of the bolt 15a is larger than the direction force S bolt 15b.
  • a wafer shaft pressing means 20 is provided on the lower surface of the support plate 12. As described above, the wafer shaft pressing means 20 is composed of the wafer pressing members 20a and 20b (see FIG. 1), and presses a predetermined axial direction of the wafer W1. Wafer adsorbing means 22a, 22b, 22c, 22d are provided on the periphery of the lower surface of the support plate, and liquid ejecting means 24a, 24b, 24c, 24d are respectively provided on the outer sides corresponding thereto! /, (See Fig. 5).
  • an immersion container 134 is provided which is configured to fill the immersion liquid 132 so that the entire wafer laminate WS is immersed and to perform the wafer isolation operation in the liquid. That is.
  • the immersion container 134 has a liquid supply port 136 and a liquid discharge port 138.
  • the side wall 140 on the side of the drainage port 138 of the immersion vessel 134 is such that the entire wafer stack WS can be immersed, that is, the liquid level 132a of the immersion liquid is higher than the upper surface of the uppermost wafer W1 of the wafer stack WS.
  • the height is set so as to be located above, and excess immersion liquid is discharged from the drain port 138 as the overflow liquid 142.
  • Water may be used as the immersion liquid, but a chemical solution such as a surfactant added to water can also be used.
  • the wafer W1 in the uppermost layer of the wafer laminate WS is axially shifted by 45 ° from the habit line axis of wafer W1 by the wafer axis pressing means 20 (the line indicated by the symbol L L ′ in FIG. 1). Press the minute axis direction).
  • the peripheral part of the wafer W1 is adsorbed by adsorbing the peripheral part of the wafer W1 by the set of the wafer adsorbing means 22a, 22b and the set of the wafer adsorbing means 22c, 22d, A gap D between the lower surface of the uppermost wafer Wl and the upper surface of the lower wafer W2 adjacent to the lower surface by the liquid ejecting means 24a, 24b, 24c, 24d.
  • Blow liquid F eg, water
  • the support plate 12 is inclined in the horizontal direction toward the bolt 15a having a large play width, so that the wafer W1 is also inclined in the horizontal direction [FIG. 2 (b)]. .
  • the entire wafer laminate WS is immersed in the immersion liquid. Therefore, the liquid decompression force when the uppermost wafer W1 is isolated from the adjacent lower wafer W2 is a bending stress. It works at the part shifted to the bolt 15a side from the part where it occurs, and the part where the liquid pressure is reduced and the part where the bending stress of the uppermost wafer is not aligned do not match. This makes it difficult for a wafer cracking accident to occur. Furthermore, since the liquid on the wafer also stays on the wafer, wafer cracking can be reduced.
  • FIG. 3 is a partial cross-sectional side view showing the case where the support plate of the wafer isolation apparatus of the present invention is in the lowered position
  • FIG. 4 shows the support plate of the wafer isolation apparatus of the present invention in the upper limit position
  • FIG. 5 is a plan view of a wafer isolating apparatus according to the present invention.
  • reference numeral 2 denotes a wafer isolation apparatus according to the present invention
  • 2A denotes a wafer isolation apparatus main body
  • Reference numeral 4 denotes a wafer laminate holding means for holding a wafer laminate WS in which a large number or a plurality of semiconductor wafers such as silicon wafers are laminated.
  • the wafer laminate holding means 4 includes a plurality of holding rods 6 for positioning and holding the wafer laminate WS.
  • a holding member 5 is attached to the wafer laminate holding means 4, and the holding member 5 is moved up and down by a driving means 7 (for example, a motor), and the wafer laminate holding means 4 attached to the holding member 5. Can move up and down.
  • the greatest feature of the wafer isolation device 2 of the present invention is that the wafer stack WS is filled with the immersion liquid 132 so that the entire wafer laminate WS is immersed, and the wafer isolation operation is performed in the liquid.
  • the container 134 was installed.
  • the immersion container 134 has a liquid supply port 136 and a liquid discharge port 138.
  • the side wall 140 on the side of the drainage port 138 of the immersion container 134 is such that the entire surface of the wafer stack WS can be immersed, that is, the liquid level 132a of the immersion liquid is higher than the upper surface of the uppermost wafer W1 of the wafer stack WS.
  • wafer position confirmation sensors 9a and 9b for confirming the height position of the uppermost wafer of the wafer stack WS are provided on the side wall 140.
  • the height position of the uppermost wafer of the wafer laminate WS is detected by a laser 19), and the wafer laminate WS is set at a predetermined height position.
  • the force used to confirm the wafer position with a laser sensor is sufficient as long as the height position of the uppermost wafer of the wafer stack WS can be confirmed. Therefore, the wafer position confirmation sensor is an ultrasonic sensor. Or other sensor means.
  • the movable member 10 is provided so as to be movable up and down above the wafer laminate holding means 4 and serves as a cylinder rod for the air cylinder means 11.
  • the movable member 10 as a cylinder rod descends by its own weight when the air of the air cylinder means 11 is turned off, and rises when the air of the air cylinder means 11 is turned on.
  • a support base plate 13 is attached to the lower end portion of the movable member 10.
  • the support base plate 13 is suspended by a plurality of suspension members having different play widths in the vertical direction so that the support plate 12 is inclined in the horizontal direction when the support plate 12 is suspended.
  • a bolt and nut can be used as the hanging member.
  • the bolts 15a and 15b as shown in the figure use bolts having different lengths so that the play widths in the vertical direction are different.
  • the bolt 15a side has a larger play width than the bolt 15b side so that the support plate is inclined to the bolt 15a side when suspended from the support base plate 13. 12 is suspended.
  • the configuration in which the play width in the vertical direction of the suspending member is different can take various configurations such as different play widths using springs having different elasticity.
  • the support plate 12 is not particularly limited as long as it is a member longer than the diameter of the wafer in at least one direction. Although it may be a circle or a rectangle larger than the wafer, it is preferably formed in a cross shape, an X shape, or a horizontal H shape. In the illustrated example, the support plate 12 is formed in a cross shape (see FIG. 5).
  • Reference numeral 20 denotes a wafer shaft pressing means made of an elastic material, such as a rubber material, suspended from the lower surface of the support plate 12.
  • the wafer axis pressing means 20 is angled from 15 ° to 75 °, preferably 30 ° to clockwise or counterclockwise from the crystal habit line axis of wafer. 60 °, more preferably 40 ° to 50 °, most preferably 45 ° when the uppermost wafer is pressed in the axial direction, and the wafer suction means 22a to 22d suck the peripheral edge of the wafer and deflect it upward. It is a support shaft.
  • a predetermined axial direction of the wafer is pressed by the wafer pressing members 20a and 20b arranged in a predetermined direction as the wafer axis pressing means 20 (see FIG. 5).
  • Wafer adsorbing means 22a, 22b, 22c, and 22d for vacuum adsorbing predetermined adsorbing positions (four locations in the illustrated example) around the upper surface of the wafer are provided around the lower surface of the support plate 12 (see FIG. 5). )
  • the base end portions of the wafer adsorbing means 22a to 22d are connected to a vacuum source (not shown) by pipes 23 so as to be turned on and off, and when the tip vacuum adsorbing portion adsorbs the wafer, the vacuum source The vacuum connection is turned on and the vacuum connection is turned off! /, And the connection with the vacuum source is turned off.
  • a vacuum suction nozzle (not shown) for performing vacuum suction is provided at the vacuum suction portion at the tip of the wafer suction means 22a to 22d.
  • the vacuum suction nozzle can also be provided with a liquid jetting function for jetting a liquid such as water.
  • the pipe 23 can be turned on / off with a water supply source (not shown) and switched to a vacuum source. Connecting. When injecting liquid from a vacuum adsorption nozzle, switch from the vacuum source to the water supply source, turn on the connection with the water supply source and inject the liquid, do not inject the liquid! The connection to is also turned off.
  • the liquid ejection function of the vacuum suction nozzle is that vacuum suction is performed by the vacuum suction nozzle. Since slurry or the like remains on the wafer, if vacuum suction is repeated, the vacuum suction nozzle The piping 23 communicating with the vacuum suction nozzle is contaminated to cause a malfunction. Therefore, the piping 23 communicating with the vacuum suction nozzle is cleaned by ejecting a liquid such as water from the vacuum suction nozzle.
  • vacuum suction by the vacuum suction nozzle may become unstable, so before performing vacuum suction, a liquid such as water is jetted from the vacuum suction nozzle to The wafer suction position is cleaned, and as described above, the movable member (cylinder rod) 10 is lowered by its own weight, and the wafer suction means 2 equipped with the vacuum suction nozzle is also provided. 2a-22d also descends If this drop suddenly drops, the vacuum suction nozzle and the wafer may collide and damage the wafer. Therefore, liquid is ejected from the vacuum suction nozzle, and the vacuum suction nozzle This prevents the wafer from being damaged by temporarily hovering the wafer surface.
  • Reference numerals 24a, 24b, 24c, and 24d are liquid ejecting means, and are arranged on the peripheral end portion of the support plate 12 so as to be located outside corresponding to the wafer suction means 22a, 22b, 22c, and 22d. It is provided via a mounting bracket 28. Liquid ejection holes 26 are formed in the lower end portions of the liquid ejecting means 24a to 24d.
  • the liquid ejecting means 24a to 24d communicate with the pipe 25, respectively, and are connected to a liquid supply source (not shown) so as to be turned on and off.
  • the liquid ejecting means 24a to 24d have a gap D formed between the lower surface of the uppermost wafer W1 of the wafer stack WS and the upper surface of the lower wafer W2 adjacent to the lower surface (see FIG. 2). ) Inject liquid.
  • the liquid to be ejected water may be used, but a liquid obtained by adding a chemical solution such as a surfactant to water can also be used.
  • Reference numeral 32 denotes a plate-like body having one end attached to the lower end of the air cylinder means 11, and the other end of the plate-like body 32 is connected to the side base 3.
  • Reference numeral 36 is a through hole formed in the central portion of the plate-like body 32, and a guide rod 38 standing through the support base plate 13 via a connecting member 30 is passed through the through hole 36, The support base plate 13 is prevented from shaking through the guide rod 38. Note that the connection member 30, the through hole 36, and the guide rod 38 may be omitted if the support base plate 13 does not need to be steady.
  • FIG. 6 is a flowchart showing an operation flow of the wafer isolating apparatus of the present invention.
  • the wafer isolation apparatus 2 is prepared by immersing the wafer laminate WS in which a large number or a plurality of wafers are laminated in the immersion liquid 132 of the immersion container 134.
  • the operation of the wafer isolating apparatus 2 is started by turning on a starting means (not shown).
  • the support plate 12 starts to descend by its own weight when the air of the air cylinder means 11 is turned off (step 101). At the same time, the liquid 23 such as water is ejected from the nozzles of the wafer suction means 22a to 22d, thereby cleaning the pipe 23 communicating with the nozzles (step 102). [0066] When the wafer shaft pressing means 20 and the wafer suction means 22a 22d provided on the lower surface of the support plate 12 come into contact with the uppermost wafer W1, it is lowered by its own weight! /, And the support plate 12 is automatically lowered. Is stopped (step 103).
  • the wafer axis holding means 20 is shifted from the habit axis of the wafer clockwise or counterclockwise by an angle of 15 ° 75 °, preferably 30 ° 60 °, more preferably 40 ° 50 °, and most preferably 45 °.
  • the uppermost wafer W1 is pressed in the axial direction.
  • the wafer adsorbing means 22a and 22d are operated to adsorb the periphery of the upper surface of the uppermost wafer W1, and warp the peripheral edge of the uppermost wafer W1 upward (step 104).
  • the wafer adsorbing means 22a and 22d are operated to adsorb the periphery of the upper surface of the uppermost wafer W1, and warp the peripheral edge of the uppermost wafer W1 upward (step 104).
  • the wafer adsorbing means 22a and 22d are operated to adsorb the periphery of the upper surface of the uppermost wafer W1, and warp the peripheral edge of the uppermost wafer W1 upward (step 104).
  • the entire wafer laminate WS is immersed in the liquid, the surface between the peripheral edge of the uppermost wafer W1 and the peripheral edge of the lower wafer W2 adjacent to the uppermost wafer W1.
  • the tension is getting lower.
  • the surface tension between the uppermost wafer W1 and the lower wafer W2 adjacent to the uppermost wafer W1 is extremely low, and can be easily separated.
  • the support plate 12 is raised while the uppermost wafer W1 is adsorbed to the wafer adsorbing means 22a 22d (step 106).
  • the support plate 12 rises while tilting in the horizontal direction, the influence of the surface tension of water is further reduced.
  • the liquid jet stops.
  • the inclination angle ⁇ when the uppermost wafer W1 is raised while being inclined in the horizontal direction is preferably 2 ° 60 ° in order to reduce wafer cracking accidents. 2 ° 40 ° is preferred 5 ° 20 ° is most preferred Yes.
  • the support plate 12 moves to the upper limit (step 107). Therefore, the uppermost wafer adsorbed by the wafer adsorbing means 22a to 22d is released from the vacuum adsorbing, and is transferred to the next process by an appropriate means such as a robot arm (step 108). At this point, one cycle of the operation of the wafer isolator 2 is completed. By repeating the same procedure, it is possible to isolate the wafer stacks WS one after another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

This invention provides a wafer separating method and a wafer separating apparatus, which can separate a very thin wafer in a safe, simple, reliable and rapid manner. The wafer separating method comprises separating the uppermost layer wafer from a wafer laminate comprising a number of or a plurality of wafers stacked on top of each other and immersed in a liquid. The wafer separating method comprises the step of immersing a wafer laminate comprising a number of or a plurality of wafers stacked on top of each other in a liquid to provide a submerged wafer laminate, the step of holding the uppermost layer wafer in an axial direction which is deviated by an angle of 15° to 75° clockwise or anticlockwise from a crystal habit line axis of the uppermost layer wafer in the wafer laminate, the step of warping the peripheral part of the uppermost layer wafer upward so as to cause bending stress of the uppermost layer wafer in the axial direction, the step of blowing a liquid into between the lower surface of the uppermost layer wafer and the upper surface of a wafer located on and adjacent to the lower side of the uppermost layer wafer in its lower surface, and the step of lifting the uppermost layer wafer.

Description

明 細 書  Specification
液中ウェハ単離方法及び液中ウェハ単離装置  Submerged wafer isolation method and submerged wafer isolation apparatus
技術分野  Technical field
[0001] 本発明は、多数枚又は複数枚のウェハ、特に薄いウエノ、、例えば、シリコンウェハ等 の半導体ウェハ、特には太陽電池用の半導体ウェハが積層されたウェハ積層体の最 上層のウェハを隣接する下側のウェハから安全で簡単かつ確実に引き離すことを可 能とした新規な液中ウェハ単離方法及び液中ウェハ単離装置に関する。  [0001] The present invention relates to a wafer on the uppermost layer of a wafer laminate in which a plurality of wafers or a plurality of wafers, particularly thin wafers, for example, a semiconductor wafer such as a silicon wafer, particularly a semiconductor wafer for solar cells is laminated. The present invention relates to a novel submerged wafer isolation method and submerged wafer isolation apparatus that can be safely and easily separated from an adjacent lower wafer.
背景技術  Background art
[0002] 従来、シリコンインゴットなど力、らスライスされて切り出された薄層状のシリコンウェハ 等の半導体ウェハ(以下、単にウェハという)は、その後各種の処理を受けて最終製 品化される。このウェハの各種の処理にあたって、多数枚又は複数枚のウェハを積層 してウェハ積層体(コインスタックと通称される)となし、このウェハ積層体から 1枚ずつ ウェハを引き離して各ウェハ毎に処理されるのが通常である。  Conventionally, semiconductor wafers (hereinafter simply referred to as wafers) such as thin silicon wafers that have been sliced and cut out with a force such as a silicon ingot, etc. are then subjected to various treatments to become final products. When performing various types of processing on this wafer, multiple or multiple wafers are stacked to form a wafer stack (commonly called a coin stack), and each wafer is separated from the wafer stack to process each wafer. It is usually done.
[0003] しかしながら、例えば、インゴットからスライスされたウェハの表面には油を含有した 砥粒剤(スラリー)が残存付着しているように、各種処理後のウェハ表面には油等の 液体が付着していることが多い。多数枚又は複数枚のウェハを積層した場合には、ゥ ェハ面に存在するこれらの液体の表面張力によって、ウェハを側方に移動することは できるにしても隣接する下側のウェハから上方に引き離すことは困難である。  However, for example, oil and other liquids adhere to the surface of the wafer after various treatments, such as an abrasive (slurry) containing oil remaining on the surface of a wafer sliced from an ingot. Often doing. When multiple wafers or multiple wafers are stacked, the surface tension of these liquids existing on the wafer surface can move the wafers to the side, but from above the adjacent lower wafers. It is difficult to pull apart.
[0004] そこで、本発明者は、多数枚又は複数枚のウェハが積層されたウェハ積層体の最 上層のウェハの周縁部を上方に反らせ、該最上層のウェハの下面と隣接する下側の ウェハの上面との間に流体を吹き込むとともに該最上層のウェハを上昇せしめ、ゥェ ハを単離するようにした第一のウェハ単離装置を提案した(特許文献 1)。  [0004] In view of this, the present inventor warps the peripheral edge of the uppermost wafer of the wafer laminated body in which a large number or a plurality of wafers are laminated, to the lower side adjacent to the lower surface of the uppermost wafer. A first wafer isolating apparatus has been proposed in which fluid is blown between the upper surface of the wafer and the uppermost wafer is raised to isolate the wafer (Patent Document 1).
[0005] 上記従来のウェハ単離装置の動作原理を説明すると、多数枚又は複数枚のウェハ が積層されたウェハ積層体の最上層のウェハの中心部をウェハ押え手段によって押 えると共に、ウェハ吸着手段によってウェハの周辺部を真空吸着してウェハの周縁部 を上方に反らせ、該最上層のウェハの下面と隣接する下側のウェハの上面との間の 間隙に流体噴射手段によって流体 (水及び/又は空気)を吹き込むと共に該最上層 のウェハを上昇せしめ、ウェハをウェハ積層体から単離するというものである。 [0005] The operation principle of the conventional wafer isolating apparatus will be described. The center of the uppermost wafer of the wafer stack in which a large number or a plurality of wafers are stacked is pressed by the wafer pressing means, and the wafer is attracted. The periphery of the wafer is vacuum-adsorbed by the means to warp the peripheral edge of the wafer upward, and fluid (water and water) is introduced into the gap between the lower surface of the uppermost wafer and the upper surface of the adjacent lower wafer. (Or air) and the top layer The wafer is raised and the wafer is isolated from the wafer stack.
[0006] 上記従来のウェハ単離装置によっても、ウェハ積層体からウェハを 1枚ずつ簡単か つ確実に引き離すことができた力 ウェハの中央部分に曲げ応力が生じるため、ゥェ ハが割れるとレ、う事故が発生することがあった。 [0006] Even with the above-described conventional wafer isolating apparatus, the force that can easily and reliably separate the wafers one by one from the wafer stack The bending stress is generated in the central part of the wafer. There were occasional accidents.
[0007] そこで、本発明者は、ウェハの上面周辺部であってウェハの中心部を介して相対向 する 2対以上の吸着位置 (例えば 4点)を真空吸着して、ウェハの周縁部を上方に反 らせることにより、ウェハに生じる曲げ応力が分散し、安全で簡単かつ確実にウェハを 単離させること力 Sでき、し力、もウェハの単離を行う処理速度の向上を図るようにした第 二のウェハ単離装置をさらに提案(特許文献 2)したが、未だ依然としてウェハ割れの 事故は発生する場合があり、更なる改良を加えるべく鋭意検討を重ねていた処、以 下のような知見を得た。 [0007] In view of this, the present inventors vacuum-sucked two or more suction positions (for example, four points) facing each other through the central portion of the wafer at the periphery of the upper surface of the wafer to By bending upward, the bending stress generated on the wafer is dispersed, and the force for isolating the wafer safely, simply and reliably can be increased, and the processing speed for isolating the wafer can be improved. The second wafer isolation system was proposed further (Patent Document 2), but there were still cases where a wafer cracking accident occurred, and the following studies were made to make further improvements. The following knowledge was obtained.
[0008] ウェハは、 CZ (Czochralski)法や FZ (Floating Zone)法等により結晶成長され たシリコン等の単結晶棒 (インゴット)を円筒研削装置によって円柱状に成形した後、 ワイヤーソ一等によって棒軸に対して略直角方向に薄くスライスすることによって得ら れるものである。  [0008] A wafer is formed by forming a single crystal rod (ingot) of silicon or the like crystal-grown by the CZ (Czochralski) method or the FZ (Floating Zone) method into a cylindrical shape by a cylindrical grinder, and then using a wire saw or the like. It is obtained by thinly slicing in a direction substantially perpendicular to the axis.
[0009] このシリコン単結晶の結晶成長では、例えば CZ法により、結晶方位 < 100〉方向 に成長させた場合、結晶面 { 100 }同士が作る晶癖線カインゴットの外表面に現れる 。シリコン単結晶における結晶面 { 100 }同士の交角は 90° であるため、インゴットの 棒軸からみて 90° 毎に合計 4本の晶癖線がインゴットの外表面の長手方向に高さ数 mm程度の隆起した凸条 (線状凸起)として形成されることとなる。  [0009] In the crystal growth of this silicon single crystal, when it is grown in the crystal orientation <100> direction by, for example, the CZ method, it appears on the outer surface of the crystal habit line kaingot formed by the crystal planes {100}. Since the crossing angle between crystal planes {100} in a silicon single crystal is 90 °, a total of four crystal habit lines are about several millimeters in height in the longitudinal direction of the outer surface of the ingot every 90 ° when viewed from the rod axis of the ingot. It will be formed as a raised protrusion (linear protrusion).
[0010] このような結晶方位く 100〉方向に成長されたインゴットから切り出されたウェハは 、円盤形状のウェハでは、晶癖線が形成された軸(以下、晶癖線軸という)同士が中 心部分で直交しており、晶癖線軸に対応して OF (オリエンテーションフラット)が外周 に設けられる。また、近年、生産量が増大している太陽電池製造用のウェハの場合で は、ウェハ自体が略四角形状に加工され、それぞれの晶癖線軸が夫々ウェハの対角 泉上にあるように切り出されて!/、る。  [0010] A wafer cut from an ingot grown in such a crystal orientation in the <100> direction is a disk-shaped wafer in which axes where crystal habit lines are formed (hereinafter referred to as crystal habit axes) are centered. It is orthogonal at the part, and OF (orientation flat) is provided on the outer circumference corresponding to the habit axis. In addition, in the case of a wafer for manufacturing a solar cell whose production volume has been increasing in recent years, the wafer itself is processed into a substantially rectangular shape, and each crystal habit line axis is cut out so as to be on the diagonal spring of the wafer. Re! /
[0011] これらウェハは、この晶癖線軸に沿って平行な方向に劈開し易いという性質がある。  [0011] These wafers have a property that they are easily cleaved in a direction parallel to the crystallographic axis.
そのため、ウェハ積層体からウェハを単離する際、ウェハの周縁部を上方に反らせた 場合に、曲げ応力が生じる部分と晶癖線軸とがー致していると、極めて容易に劈開 するため、例え、前述した提案の如ぐウェハに生じる曲げ応力を分散するように、ゥ ヱハの上面周辺部であってウェハの中心部を介して相対向する 2対以上の吸着位置 (例えば 4点)を吸着してウェハの周縁部を上方に反らせるようにしても、ウェハ割れの 事故が生じてしまうのである。 Therefore, when isolating the wafer from the wafer stack, the peripheral edge of the wafer is warped upward. In this case, if the portion where the bending stress is generated and the crystallographic axis are aligned, it will cleave very easily. For example, in order to distribute the bending stress generated in the wafer as described above, Even if two or more pairs of suction positions (for example, four points) facing each other through the center part of the wafer at the periphery of the upper surface are attracted and the peripheral edge of the wafer is warped upward, a wafer cracking accident occurs. It will end up.
[0012] また、インゴットから切り出された直後のウェハのように、その表面にスラリーが残存 付着している場合には、最上層のウェハの下面と隣接する下側のウェハの上面との 間に吹き込む流体として水を用いることが好適である力 単離する際に水の表面張 力が働いて、単離する方向とは逆方向に引っ張られ、し力、も、単純に上方に向かって 単離しようとした場合、上記曲げ応力の生じる部分と水の表面張力が働く部分とがー 致するため、よりウェハ割れの事故が生じ易い状況となる。  [0012] When the slurry remains on the surface of the wafer just after being cut out from the ingot, it is between the lower surface of the uppermost wafer and the upper surface of the adjacent lower wafer. Force that is suitable to use water as the fluid to be blown In the isolation, the surface tension of the water works and is pulled in the direction opposite to the direction of isolation, and the force is also simply upward. When the separation is attempted, the portion where the bending stress is generated and the portion where the surface tension of water works are matched, so that a wafer cracking accident is more likely to occur.
[0013] ウェハ割れの事故が一端発生すると、製品の歩留まり低下もさることながら、割れた ウェハの破片がウェハ単離装置上に散乱するため、操業を一時停止する等して、散 乱している割れたウェハの破片を手作業で回収しなければならなくなり、著しく生産 性が低下する原因となる。  [0013] Once a wafer cracking accident occurs, the yield of the product is reduced, and the broken wafer fragments are scattered on the wafer isolator, so that the operation is temporarily suspended. The broken wafer fragments that have to be collected must be collected manually, causing a significant reduction in productivity.
[0014] そこで、本発明者は、より安全で簡単かつ確実にウェハを単離させることができ、し かもウェハの単離を行う処理速度の向上を図ることのできる第三のウェハ単離装置、 並びにウェハ単離方法及び該ウェハ単離装置を用いたウェハ単離機を提案(特許文 献 3)し、このウェハ単離装置は好評を博している力 最近はウェハの薄層化が益々 進行しており、極薄のウェハの単離を安全、簡単、確実かつ迅速に行うことのできるゥ ェハ単離装置が待望されている。近年では薄さ 200 m程度の極薄ウェハが用いら れるようになっていることから、ウェハはさらに割れやすくなつてきており、ウェハ割れ の事故の問題は一層顕著となってきて!/、る。  [0014] Therefore, the present inventor can isolate a wafer in a safer, simpler and more reliable manner, and can further improve the processing speed for isolating the wafer. And a wafer isolation method and a wafer isolation machine using the wafer isolation apparatus (Patent Document 3). This wafer isolation apparatus has gained popularity recently. There is a growing need for a wafer isolation system that can safely, easily, reliably and quickly isolate very thin wafers. In recent years, since ultra-thin wafers with a thickness of about 200 m have been used, wafers are becoming more susceptible to cracking, and the problem of wafer cracking has become more prominent! .
特許文献 1 :特開平 9 64152号公報  Patent Document 1: JP-A-9 64152
特許文献 2 :WO2004/051735  Patent Document 2: WO2004 / 051735
特許文献 3: WO2004/102654  Patent Document 3: WO2004 / 102654
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0015] 本発明は、上記問題点に鑑みてなされたものであり、極薄のウェハを安全、簡単、 確実かつ迅速に単離させることができるウェハ単離方法及びウェハ単離装置を提供 することを目白勺とする。 Problems to be solved by the invention [0015] The present invention has been made in view of the above problems, and provides a wafer isolation method and a wafer isolation apparatus capable of isolating an extremely thin wafer safely, simply, reliably and quickly. Let's call it Mejiro.
課題を解決するための手段  Means for solving the problem
[0016] 上記課題を解決するために、本発明の液中ウェハ単離方法は、液体中に浸漬され た状態の多数枚又は複数枚のウェハが積層されたウェハ積層体から最上層のウェハ を単離するウェハ単離方法であって、多数枚又は複数枚のウェハが積層されたゥェ ハ積層体を液体中に浸漬させて準備するステップと、前記ウェハ積層体の最上層の ウェハの晶癖線軸から時計回り又は反時計回りに角度 15° 〜75° ずらした軸方向 で前記最上層のウェハを押えるステップと、前記最上層のウェハの曲げ応力が前記 軸方向に生じるように、前記最上層のウェハの周縁部を上方に反らせるステップと、 前記最上層のウェハの下面と該下面と隣接する下側のウェハの上面との間に液体を 吹き込むステップと、前記最上層のウェハを上昇せしめるステップと、を含み、ウェハ を単離するようにしたことを特徴とする。  [0016] In order to solve the above-mentioned problem, the method for isolating wafers in liquid according to the present invention is to remove the uppermost wafer from a wafer laminate in which a large number or a plurality of wafers are immersed in a liquid. A wafer isolation method for isolation, comprising: immersing a wafer laminate in which a large number of wafers or a plurality of wafers are laminated in a liquid; and preparing a crystal of a wafer in the uppermost layer of the wafer laminate A step of pressing the uppermost wafer in an axial direction shifted by 15 ° to 75 ° clockwise or counterclockwise from the winding axis; and the bending stress of the uppermost wafer is generated in the axial direction. A step of bending the peripheral edge of the upper wafer upward, a step of blowing liquid between the lower surface of the uppermost wafer and the upper surface of the lower wafer adjacent to the lower surface, and raising the uppermost wafer Step and Look, is characterized in that so as to isolate the wafer.
[0017] 前記晶癖線軸から時計回り又は反時計回りにずらす軸方向の角度は、 30° 〜60 ° であることが好ましぐ更に好ましくは 40° 〜50。 であり、最も理想的には 45° で ある。結晶方位く 100〉のウェハの場合、晶癖線軸はウェハ中心部で直交している ため、晶癖線軸から時計回り又は反時計回りに 45° ずれた軸方向を支軸としてゥェ ハを反らせることが最も劈開し難いからである。  [0017] The angle in the axial direction shifted clockwise or counterclockwise from the crystal habit axis is preferably 30 ° to 60 °, more preferably 40 ° to 50. And most ideally 45 °. In the case of a wafer with a crystal orientation of 100>, the crystal habit axis is perpendicular to the center of the wafer, so the wafer is warped with the axis direction shifted by 45 ° clockwise or counterclockwise from the crystal habit axis as the support axis. This is because it is most difficult to cleave.
[0018] 前記最上層のウェハを上昇せしめて単離する際、該最上層のウェハを水平方向で 傾斜しつつ上昇せしめることが好ましい。本発明の液中ウェハ単離方法においては、 ウェハ積層体の全体が液体中に浸漬された状態となっているので、単離する際に最 上層のウェハを水平方向で傾斜しつつ上昇することで、最上層のウェハの下面と該 下面と隣接する下側のウェハの上面との間において生じる減圧力の働く部分力 最 上層のウェハの曲げ応力の生じている部分からずれるため、液体の圧力差が原因で ウェハ割れの事故が発生することがなくなる。更に最上層ウェハの上の液体もウェハ 上に滞留しに《なりウェハ割れを減少する事ができる。  [0018] When the uppermost wafer is isolated by being raised, it is preferable that the uppermost wafer is raised while being inclined in the horizontal direction. In the submerged wafer isolation method of the present invention, since the entire wafer stack is immersed in the liquid, the uppermost wafer is raised while being inclined in the horizontal direction during isolation. Therefore, the partial force acting by the decompression force generated between the lower surface of the uppermost wafer and the upper surface of the lower wafer adjacent to the lower surface is shifted from the portion where the bending stress of the uppermost wafer is generated. A wafer cracking accident will not occur due to the difference. In addition, the liquid on the uppermost wafer also stays on the wafer and can reduce wafer cracking.
[0019] ウェハ割れ事故を減少させるために、前記最上層のウェハを水平方向で傾斜しつ つ上昇せしめる際の前記傾斜角度としては、 2° 〜60° が好ましぐさらに 2° 〜40 ° が好ましぐ 5° 〜20。 が最も好ましい。 [0019] In order to reduce wafer cracking accidents, the uppermost wafer is tilted in the horizontal direction. As the inclination angle when raising it, 2 ° to 60 ° is preferable, and 2 ° to 40 ° is preferable, and 5 ° to 20 °. Is most preferred.
[0020] また、本発明の液中ウェハ単離装置は、液体中に浸漬された多数枚又は複数枚の ウェハが積層されたウェハ積層体から最上層のウェハを単離する液中ウェハ単離装 置であって、上下動自在に設けられた支持板と、該支持板の下面に設けられたゥェ ハ軸押え手段と、該支持板の下面周辺部に設けられ、該最上層のウェハの上面周辺 部の相対向する 1対以上の吸着位置を吸着するウェハ吸着手段と、該ウェハ吸着手 段に対応してその外方に設けられた液体噴射手段と、ウェハ積層体の全体が浸漬す るように浸漬液体を満たしかつウェハの単離動作が液中で行えるように構成された浸 漬容器と、を有し、該ウェハ軸押え手段によって、該最上層のウェハの晶癖線軸から 時計回り又は反時計回りに角度 15° 〜75° ずらした軸方向で該最上層のウェハを 押えると共に、該最上層のウェハの曲げ応力が該軸方向に生じるように、該ウェハ吸 着手段により該最上層のウェハの上面周辺部であってウェハの中心部を介して相対 向する 1対以上の吸着位置を吸着し、該最上層のウェハの周縁部を 1対以上の吸着 位置で上方に反らせつつ、該最上層のウェハの下面と該下面と隣接する下側のゥェ ハの上面との間に該液体噴射手段によって液体を吹き込むと共に該最上層のウェハ を上昇せしめ、ウェハを単離するようにしたことを特徴とする。  [0020] The submerged wafer isolation device of the present invention also isolates the uppermost wafer from a wafer stack in which a large number or a plurality of wafers immersed in a liquid are stacked. A support plate provided so as to be movable up and down, wafer shaft pressing means provided on the lower surface of the support plate, and a wafer on the uppermost layer provided on a peripheral portion of the lower surface of the support plate. Wafer adsorbing means for adsorbing one or more opposing adsorbing positions on the periphery of the upper surface of the substrate, liquid ejecting means provided on the outer side corresponding to the wafer adsorbing means, and the entire wafer stack are immersed An immersion container configured to fill the immersion liquid and perform the wafer isolation operation in the liquid, and from the crystal axis of the uppermost wafer by the wafer axis pressing means. The top layer of the uppermost layer is shifted in the axial direction by 15 ° to 75 ° clockwise or counterclockwise. The wafer adsorbing means opposes the upper surface of the uppermost wafer through the center of the upper surface of the wafer so that the wafer is pressed and bending stress of the uppermost wafer is generated in the axial direction. While adsorbing one or more pairs of adsorbing positions and curving the peripheral edge of the uppermost layer wafer upward at one or more pairs of adsorbing positions, the lower wafer adjacent to the lower surface and the lower wafer adjacent to the lower surface A liquid is blown by the liquid ejecting means between the upper surface of the wafer and the uppermost wafer is raised to isolate the wafer.
[0021] 前記晶癖線軸から時計回り又は反時計回りにずらす軸方向の角度は、 30° 〜60 ° であることが好ましぐ更に好ましくは 40° 〜50° であり、最も好ましくは 45° であ ることは上述した通りである。  [0021] The angle in the axial direction shifted clockwise or counterclockwise from the crystal habit axis is preferably 30 ° to 60 °, more preferably 40 ° to 50 °, and most preferably 45 °. This is as described above.
[0022] 前記ウェハ軸押え手段は、該支持板の下面に一方向に併設された複数のウェハ押 ぇ部材からなること、或いは、該支持板の下面に設けられた一方向に長尺のウェハ押 ぇ部材からなること、が好ましい。即ち、従来のウェハ単離装置におけるウェハ押え手 段は、ウェハを反らせる際の支点として働き、ウェハ中心部の 1点を支持する支点とな るものであつたが、本発明におけるウェハ軸押え手段は、ウェハを反らせる際の支軸 として働き、ウェハの前記所定の軸方向を支持する支軸となるものであるため、ウェハ 上を点ではなぐ軸方向で支持する必要があるからである。  [0022] The wafer shaft pressing means includes a plurality of wafer pressing members arranged in one direction on the lower surface of the support plate, or a wafer elongated in one direction provided on the lower surface of the support plate. It is preferably made of a pressing member. In other words, the wafer presser means in the conventional wafer isolating apparatus functions as a fulcrum when the wafer is warped and serves as a fulcrum for supporting one point at the center of the wafer. This is because it functions as a support shaft when the wafer is warped and serves as a support shaft for supporting the predetermined axial direction of the wafer, so that it is necessary to support the wafer in an axial direction that is not a point.
[0023] 前記ウェハ吸着手段を 2対以上設け、最上層のウェハの上面周辺部であってウェハ の中心部を介して相対向する 2対以上の吸着位置を吸着し、該最上層のウェハの周 縁部を 2対以上の吸着位置で上方に反らせるようにすることが好ましい。 [0023] Two or more pairs of the wafer adsorbing means are provided, and the wafer is provided at the periphery of the upper surface of the uppermost wafer. It is preferable to adsorb two or more pairs of adsorbing positions opposite to each other via the central portion of the wafer and to warp the peripheral portion of the uppermost wafer at the two or more adsorbing positions upward.
[0024] 前記支持板を十字形状、 X字形状或いは横 H字形状に形成し、該支持板の下面 周辺部に、前記ウェハ吸着手段を設けることが好ましい。  [0024] It is preferable that the support plate is formed in a cross shape, an X shape, or a horizontal H shape, and the wafer suction means is provided around the lower surface of the support plate.
[0025] 前記支持板は、上方移動時に水平方向で傾斜するように設けられていることが好ま しい。前述した如ぐ単離する際に最上層のウェハを水平方向で傾斜しつつ上昇す ることで液体の表面張力の影響を低減できる。そのためには、支持板を上方移動時 に水平方向で傾斜するように設けておくことで、支持板に設けられているウェハ吸着 手段やウェハ軸押え手段も同様に水平方向で傾斜することとなり、最上層のウェハが ウェハ吸着手段により吸着されて上昇する時に水平方向で傾斜させることができる。 前記した浸漬液体及び噴射液体としては水を用いればよ!/、が、水に薬液、例えば界 面活性剤等を添加したものを使用することもできる。  [0025] It is preferable that the support plate is provided so as to be inclined in the horizontal direction when moved upward. When isolating as described above, the effect of the surface tension of the liquid can be reduced by raising the uppermost wafer while tilting in the horizontal direction. For this purpose, by providing the support plate to be inclined in the horizontal direction when moving upward, the wafer suction means and wafer shaft holding means provided on the support plate are similarly inclined in the horizontal direction. When the uppermost wafer is attracted and lifted by the wafer attracting means, it can be tilted in the horizontal direction. As the immersion liquid and the jet liquid, water may be used! /, But a chemical solution such as a surface active agent added to water may also be used.
[0026] ウェハ割れ事故を減少させるために、前記最上層のウェハを水平方向で傾斜しつ つ上昇せしめる際の前記傾斜角度としては、 2° 〜60° が好ましぐさらに 2° 〜40 ° が好ましぐ 5° 〜20° が最も好ましいことは上述した通りである。  [0026] In order to reduce wafer cracking accidents, the tilt angle when the uppermost wafer is tilted and raised in the horizontal direction is preferably 2 ° to 60 °, and more preferably 2 ° to 40 °. As described above, 5 ° to 20 ° is most preferable.
[0027] 前記ウェハ吸着手段が液体噴射機能を備える真空吸着ノズルであり、該真空吸着 ノズルから液体を噴射し、前記ウェハ積層体の最上層のウェハの吸着位置を洗浄す ることが好ましい。シリコンインゴット等からスライスされて切り出された薄層状のシリコ ンウェハ等は、スライス時のスラリー等の液体が残存付着しており、この残存したスラリ 一等の液体は時間が経つとウェハ表面で半乾状態となるため、ウェハ吸着手段によ る吸着に失敗したり、不完全な吸着となったりして、非常に不安定なものとなる。そこ で、上述したように、真空吸着ノズルから液体を噴射して、吸着位置を洗浄するように しておけば、吸着の失敗や不完全な吸着等の不具合を解消できる。  [0027] Preferably, the wafer suction means is a vacuum suction nozzle having a liquid ejecting function, and a liquid is ejected from the vacuum suction nozzle to clean the suction position of the uppermost wafer of the wafer stack. Thin layer silicon wafers, etc., sliced from silicon ingots, etc. have liquids such as slurry at the time of slicing remaining, and the remaining liquids such as slurry are semi-dried on the wafer surface over time. As a result, the suction by the wafer suction means fails or the suction becomes incomplete and becomes very unstable. Therefore, as described above, if the liquid is ejected from the vacuum suction nozzle to clean the suction position, problems such as suction failure and incomplete suction can be solved.
[0028] 前記ウェハ吸着手段が液体噴射機能を備える真空吸着ノズルであり、該真空吸着 ノズルから液体を噴射し、該真空吸着ノズルに連通する配管の洗浄を行うことが好ま しい。上述した如ぐウェハにはスライス時のスラリー等の液体が残存付着しているた め、これを吸着する際に、スラリー等の液体も真空吸着ノズルに連通する配管に吸い 込まれるため、配管が汚れて詰まったりして動作不良を起こしてしまう。そこで、真空 吸着ノズルから液体を噴射して、配管を洗浄するようにしておけば、このような動作不 良の発生を防ぐことができる。 [0028] It is preferable that the wafer suction means is a vacuum suction nozzle having a liquid jet function, and a liquid is jetted from the vacuum suction nozzle to clean a pipe communicating with the vacuum suction nozzle. Since the liquid such as slurry at the time of slicing remains on the wafer as described above, when the liquid is adsorbed, the liquid such as slurry is sucked into the pipe communicating with the vacuum suction nozzle. Dirty or clogged, causing malfunction. So vacuum If the pipe is cleaned by spraying the liquid from the suction nozzle, it is possible to prevent such a malfunction.
[0029] 前記ウェハ吸着手段が液体噴射機能を備える真空吸着ノズルであり、該真空吸着 ノズルから液体を噴射し、前記ウェハ吸着手段がウェハ表面上で一時的にホバリング するようにすること力 S好ましい。シリコンウェハ等の半導体ウェハは、脆性材料である ため、衝撃等により容易に破損が生じ得る。特に、ウェハ吸着手段を降下せしめてゥ ェハの表面に接触させ、真空吸着を行う場合、単純にウェハ吸着手段を自重落下さ せると、ウェハ吸着手段が急降下してウェハの表面に衝突し、ウェハの破損が生じて しまう。そこで、真空吸着ノズルから液体を噴射しつつウェハ吸着手段を降下せしめ、 ウェハ吸着手段がウェハ表面上で一時的にホバリングするようにしておけば、このよう なウェハの破損が生じるのを防ぐことができる。  [0029] The wafer suction means is a vacuum suction nozzle having a liquid jet function, and it is preferable that the wafer suction means jets liquid from the vacuum suction nozzle so that the wafer suction means temporarily hoveres on the wafer surface. . Since semiconductor wafers such as silicon wafers are brittle materials, they can be easily damaged by impacts or the like. In particular, when the wafer suction means is lowered and brought into contact with the wafer surface and vacuum suction is performed, if the wafer suction means is simply dropped by its own weight, the wafer suction means rapidly drops and collides with the wafer surface. Damage to the wafer will occur. Therefore, if the wafer suction means is lowered while spraying liquid from the vacuum suction nozzle, and the wafer suction means is temporarily hovered on the wafer surface, such damage to the wafer can be prevented. it can.
[0030] また、前記ウェハ積層体を上下動自在に保持するためのウェハ積層体保持手段と 、最上層ウェハの高さ位置を確認するためのウェハ位置確認センサーと、をさらに含 み、前記ウェハ積層体がウェハ積層体保持手段によって所定高さに達した力、どうかを 前記ウェハ位置確認センサーによって検出することで、前記ウェハ積層体が所定高さ 位置にセッ卜されるように構成することあでさる。  [0030] The wafer stack further includes a wafer stack holding means for holding the wafer stack so as to be movable up and down, and a wafer position confirmation sensor for checking the height position of the uppermost wafer. The wafer laminate may be configured to be set at a predetermined height position by detecting whether the laminate has reached a predetermined height by the wafer laminate holding means or not by the wafer position confirmation sensor. I'll do it.
発明の効果  The invention's effect
[0031] 以上述べた如ぐ本発明によれば、安全、簡単、確実かつ迅速に極薄のウェハを単 離させることができる液中ウェハ単離方法及び液中ウェハ単離装置を提供することが できると!/、う大きな効果を奏する。  [0031] According to the present invention as described above, it is possible to provide a submerged wafer isolation method and a submerged wafer isolation apparatus capable of isolating an ultrathin wafer safely, simply, reliably and quickly. If you can!
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]本発明のウェハ単離方法によって、ウェハを単離する場合の吸着位置を示す平 面図であり、(a)は円盤形状のウェハの場合、(b)は略四角形状のウェハの場合であ  [0032] [FIG. 1] A plan view showing an adsorption position when a wafer is isolated by the wafer isolation method of the present invention, (a) is a disk-shaped wafer, (b) is a substantially square shape. In the case of a shaped wafer
[図 2]本発明のウェハ単離方法において、ウェハ単離時にウェハを水平方向で傾斜 せしめる動作原理を示す側面概念説明図であり、 (a)はウェハを吸着して反らした状 態を示し、 (b)はウェハを水平方向で傾斜せしめた状態を示している。 FIG. 2 is an explanatory side view showing the principle of operation for tilting a wafer in the horizontal direction during wafer isolation in the wafer isolation method of the present invention. FIG. 2 (a) shows a state in which the wafer is attracted and warped. (B) shows the wafer tilted in the horizontal direction.
[図 3]本発明のウェハ単離装置の支持板が降下位置にある場合を示す一部断面側 面説明図である。 FIG. 3 is a partial cross-sectional side view showing the case where the support plate of the wafer isolation apparatus of the present invention is in the lowered position It is surface explanatory drawing.
[図 4]本発明のウェハ単離装置の支持板が上限位置にある場合を示す一部断面側 面説明図である。  FIG. 4 is a partial cross-sectional side view illustrating a case where the support plate of the wafer isolation device of the present invention is in the upper limit position.
[図 5]本発明のウェハ単離装置の平面図である。  FIG. 5 is a plan view of the wafer isolating apparatus of the present invention.
[図 6]本発明のウェハ単離装置の動作フローを示すフローチャートである。  FIG. 6 is a flowchart showing an operation flow of the wafer isolation apparatus of the present invention.
[図 7]最上層のウェハを水平方向で傾斜しつつ上昇させる場合の傾斜角度を示す要 部説明図である。  FIG. 7 is a main part explanatory diagram showing an inclination angle when the uppermost wafer is raised while being inclined in the horizontal direction.
符号の説明  Explanation of symbols
[0033] 2:ウェハ単離装置、 2A:ウェハ単離装置本体、 3:側方基体、 4:ウェハ積層体保持 手段、 5:保持部材、 6:保持棒、 7:駆動手段、 8:容器、 9a, 9b:ウェハ位置確認セン サー、 10:可動部材、 11:エアシリンダ手段、 12:支持板、 13:支持ベース板、 15a, 15b:ボノレト、 19:レーザー、 20:ウエノヽ車由押え手段、 20a, 20b:ウエノ、押えき材、 22 a, 22b, 22c, 22d:ウエノヽ吸着手段、 23:酉己管、 24、 24a, 24b, 24c, 24d:i夜体噴 射手段、 25:配管、 26:液体噴射孔、 28:取付金具、 30:連結部材、 32:板状体、 36 :貫通穴、 38:ガイドロッド、 D:間隙、 F:噴射液体、 L:晶癖線、 W:ウェハ、 W1:最上 層ウエノ、、 W2:下側ウエノ、、 Wa, Wb:ウエノ、、 WS:ウェハ積層体、 130:ウェハ乗せ 台、 132:浸漬液体、 132a:液面、 134:浸漬容器、 136:給液口、 138:排液口、 140: 側壁、 142:オーバーフロー液。  [0033] 2: Wafer isolation apparatus, 2A: Wafer isolation apparatus main body, 3: Side substrate, 4: Wafer stack holding means, 5: Holding member, 6: Holding rod, 7: Driving means, 8: Container 9a, 9b: Wafer position detection sensor, 10: Movable member, 11: Air cylinder means, 12: Support plate, 13: Support base plate, 15a, 15b: Bonoret, 19: Laser, 20: Ueno carriage presser Means, 20a, 20b: Ueno, presser foot, 22a, 22b, 22c, 22d: Ueno soot adsorption means, 23: Self-tube, 24, 24a, 24b, 24c, 24d: i night-body injection means, 25 : Piping, 26: Liquid injection hole, 28: Mounting bracket, 30: Connecting member, 32: Plate body, 36: Through hole, 38: Guide rod, D: Gap, F: Injection liquid, L: Crystalline wire, W: Wafer, W1: Upper layer Ueno, W2: Lower Ueno, Wa, Wb: Ueno, WS: Wafer stack, 130: Wafer mounting, 132: Immersion liquid, 132a: Liquid surface, 134: Immersion Container, 136: liquid supply port, 138: drainage port, 140: side wall, 142: Overflow liquid.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 以下に本発明の実施の形態をあげるが、以下の説明は例示的に示されるもので限 定的に解釈すべきものでな!/、ことは!/、うまでもなレ、。 [0034] Embodiments of the present invention will be described below, but the following description is given by way of example and should not be construed in a limited way! /!
[0035] 図 1は、本発明のウェハ単離方法によって、ウェハを単離する場合の吸着位置を示 す平面図であり、(a)は円盤形状のウェハの場合、(b)は略四角形状のウェハの場合 である。 FIG. 1 is a plan view showing a suction position when a wafer is isolated by the wafer isolation method of the present invention, (a) is a disk-shaped wafer, and (b) is a substantially square shape. This is the case of a shaped wafer.
[0036] 図 1(a)において、符号 Waは円盤形状のウェハであり、結晶方位く 100〉のウェハ である。符号 A— A'で示した線分の軸と符号 B— B'で示した線分の軸が晶癖線軸 であり、ウェハの中心部分で直交している。晶癖線軸に対応して OF (オリエンテーシ ヨンフラット)が外周に設けられて!/、る。 [0037] そして、晶癖線軸から 45° ずれた軸方向(符号 L— L'で示した線分の軸方向)をゥ ェハ軸押え手段 20としてのウェハ押え部材 20a, 20bによって押さえると共に、ウェハ Waの上面周辺部であって、ウェハの中心部を介して相対向する 2対の吸着位置をゥ ェハ吸着手段 22a, 22bの組とウェハ吸着手段 22c, 22dの組とで真空吸着する。 In FIG. 1 (a), the symbol Wa is a disk-shaped wafer, which is a wafer with a crystal orientation of 100>. The axis of the line segment indicated by reference signs A—A ′ and the axis of the line segment indicated by reference signs BB ′ are crystal habit axes, and are orthogonal at the center of the wafer. OF (orientation flat) is provided on the outer circumference corresponding to the crystallographic axis! [0037] Then, the axial direction shifted by 45 ° from the crystal habit axis (the axial direction of the line segment indicated by the symbol L-L ') is pressed by wafer pressing members 20a and 20b as wafer axis pressing means 20, Two pairs of suction positions facing each other through the center of the wafer Wa are vacuum-sucked by a pair of wafer suction means 22a and 22b and a pair of wafer suction means 22c and 22d. .
[0038] すると、ウェハ押え部材 20a, 20bによって押さえられている軸方向(符号 L L'で 示した線分の軸方向)を支軸として、ウェハ吸着手段 22a, 22bの組と、ウェハ吸着手 段 22c, 22dの組とによって、ウェハ Waが折り曲げられ、晶癖線軸力、ら 45° ずれた 劈開し難い軸方向(符号 L L'で示した線分の軸方向)に沿った部分にのみ曲げ応 力が生じる。これにより、劈開し易い晶癖線軸(符号 A—A'で示した線分の軸又は符 号 B— B'で示した線分の軸)には曲げ応力が生じることがないので、ウェハ割れの事 故も減少し、安全かつ確実にウェハを単離することができる。  [0038] Then, a set of wafer suction means 22a, 22b and a wafer suction hand with the axial direction pressed by the wafer pressing members 20a, 20b (the axial direction of the line indicated by the symbol L L ') as a support shaft Wafer Wa was bent by the pair of steps 22c and 22d, and the crystal habit line axial force, shifted by 45 °, only in the portion along the axis direction that was difficult to cleave (the axial direction of the line segment indicated by the symbol L L ′) Bending stress is generated. As a result, there is no bending stress on the crystallographic axis that is easy to cleave (the axis of the line indicated by the symbol A-A 'or the axis of the line indicated by the symbol B-B'). Therefore, wafers can be isolated safely and reliably.
[0039] 図 1 (b)において、符号 Wbは略四角形状の太陽電池製造用のウェハである。ゥェ ハ Wbの場合、晶癖線軸(符号 A— A'で示した線分の軸又は符号 B— B'で示した線 分の軸)はウェハの対角線上にある。  In FIG. 1 (b), symbol Wb is a wafer for manufacturing a substantially rectangular solar cell. In the case of wafer Wb, the crystallographic axis (the axis of the line indicated by reference A—A ′ or the axis of the line indicated by reference B—B ′) is on the diagonal of the wafer.
[0040] そして、ウェハ Wbの場合も、図 1 (a)と同様、晶癖線軸から 45° ずれた軸方向(符 号 L L'で示した線分の軸方向)をウェハ軸押え手段としてのウェハ押え部材 20a, 20bによって押さえると共に、ウェハ Wbの上面周辺部であって、ウェハの中心部を介 して相対向する 2対の吸着位置をウェハ吸着手段 22a, 22bの組とウェハ吸着手段 2 2c, 22dの組とで真空吸着する。  [0040] In the case of wafer Wb as well, as in FIG. 1 (a), the axial direction shifted by 45 ° from the crystal habit axis (the axial direction of the line segment indicated by the symbol L L ') is used as the wafer axis pressing means. The wafer holding members 20a and 20b are used to hold two pairs of suction positions on the periphery of the upper surface of the wafer Wb opposite to each other via the center of the wafer. 2 Vacuum adsorption with 2c, 22d pair.
[0041] これにより、晶癖線軸から 45° ずれた劈開し難い軸方向(符号 L L'で示した線 分の軸方向)に沿った部分にのみ曲げ応力が生じ、安全かつ確実なウェハの単離を fiうこと力 Sでさる。  [0041] As a result, a bending stress is generated only in a portion along the axis direction that is difficult to cleave (an axis direction indicated by a symbol L L ') deviated by 45 ° from the crystallographic axis. Use the power S to isolate.
[0042] 図 2は、本発明のウェハ単離方法において、ウェハ単離時にウェハを水平方向で傾 斜せしめる動作原理を示す側面概念説明図であり、 (a)はウェハを吸着して反らした 様子を示し、 (b)は単離時にウェハを水平方向で傾斜せしめた様子を示している。  [0042] FIG. 2 is a side view for explaining the principle of operation in which the wafer is tilted in the horizontal direction during wafer isolation in the wafer isolation method of the present invention, and (a) shows the wafer attracted and warped. (B) shows the wafer tilted in the horizontal direction during isolation.
[0043] 図 2 (a)及び (b)において、符号 WSは多数枚又は複数枚のウェハ Wが積層された ウェハ積層体である。該ウェハ積層体 WSはウェハ乗せ台 130の上面に載置されて いる。符号 10はウェハ積層体 WSの上方で上下動自在な可動部材であり、例えば、 エアシリンダのシリンダロッドである。該可動部材 10、即ちシリンダロッドはエアシリン ダのエアがオフとされると自重で降下し、エアシリンダのエアがオンとされると上昇す るように構成される。 In FIGS. 2 (a) and 2 (b), symbol WS is a wafer laminate in which a large number or a plurality of wafers W are laminated. The wafer laminate WS is placed on the upper surface of the wafer platform 130. Reference numeral 10 is a movable member that can move up and down above the wafer stack WS. It is a cylinder rod of an air cylinder. The movable member 10, that is, the cylinder rod is configured to descend by its own weight when the air cylinder air is turned off, and to rise when the air cylinder air is turned on.
[0044] 可動部材 10の下端部には支持ベース板 13が取り付けられている。支持ベース板 1 3には、支持板 12がボルト 15a, 15bによって遊びがある状態で取り付けられており、 ボルト 15aとボルト 15bでは遊び幅が異なるようにする。例えば、図示した如ぐボルト 15aとボルト 15bでは長さの異なるボルトを用い、ボルト 15aの方力 Sボルト 15bよりも遊 び幅が多いように取り付ける。  A support base plate 13 is attached to the lower end portion of the movable member 10. A support plate 12 is attached to the support base plate 13 with bolts 15a and 15b in a state where there is play, so that the play widths of the bolts 15a and 15b are different. For example, bolts 15a and 15b as shown in the figure use bolts of different lengths, and are installed so that the free width of the bolt 15a is larger than the direction force S bolt 15b.
[0045] 支持板 12の下面にはウェハ軸押え手段 20が設けられる。前述したように、ウェハ軸 押え手段 20はウェハ押え部材 20a, 20b (図 1参照)からなり、ウェハ W1の所定の軸 方向を押さえるものである。支持板の下面周辺部にはウェハ吸着手段 22a, 22b, 22 c, 22dが設けられ、これに対応して夫々その外方に液体噴射手段 24a, 24b, 24c, 24dが設けられて!/、る(図 5参照)。  A wafer shaft pressing means 20 is provided on the lower surface of the support plate 12. As described above, the wafer shaft pressing means 20 is composed of the wafer pressing members 20a and 20b (see FIG. 1), and presses a predetermined axial direction of the wafer W1. Wafer adsorbing means 22a, 22b, 22c, 22d are provided on the periphery of the lower surface of the support plate, and liquid ejecting means 24a, 24b, 24c, 24d are respectively provided on the outer sides corresponding thereto! /, (See Fig. 5).
[0046] 本発明の最大の特徴は、ウェハ積層体 WSの全体が浸漬するように浸漬液体 132 を満たしかつウェハの単離動作が液中で行えるように構成された浸漬容器 134を設 置したことである。該浸漬容器 134は給液口 136及び排液口 138を有している。該浸 漬容器 134の排液口 138側の側壁 140は、ウェハ積層体 WSの全体が浸漬できるよ うに、即ちウェハ積層体 WSの最上層のウェハ W1の上面よりも浸漬液体の液面 132a が上方に位置するように、その高さが設定されており、余分な浸漬液体はオーバーフ ロー液 142として排液口 138から排出されるようになっている。浸漬液体としては水を 用いればよいが、水に薬液、例えば界面活性剤等を添加したものを使用することもで きる。  [0046] The greatest feature of the present invention is that an immersion container 134 is provided which is configured to fill the immersion liquid 132 so that the entire wafer laminate WS is immersed and to perform the wafer isolation operation in the liquid. That is. The immersion container 134 has a liquid supply port 136 and a liquid discharge port 138. The side wall 140 on the side of the drainage port 138 of the immersion vessel 134 is such that the entire wafer stack WS can be immersed, that is, the liquid level 132a of the immersion liquid is higher than the upper surface of the uppermost wafer W1 of the wafer stack WS. The height is set so as to be located above, and excess immersion liquid is discharged from the drain port 138 as the overflow liquid 142. Water may be used as the immersion liquid, but a chemical solution such as a surfactant added to water can also be used.
[0047] まず、ウェハ積層体 WSの最上層のウェハ W1をウェハ軸押え手段 20によって、ゥェ ハ W1の晶癖線軸から 45° ずれた軸方向(図 1の符号 L L'で示した線分の軸方向 )を押さえる。次いで、ウェハ軸押え手段 20を支軸として、ウェハ吸着手段 22a, 22b の組と、ウェハ吸着手段 22c, 22dの組によってウェハ W1の周辺部を吸着してウェハ W1の周縁部を上方に反らせ、液体噴射手段 24a, 24b, 24c, 24dによって、該最 上層のウェハ Wlの下面と該下面と隣接する下側のウェハ W2の上面との間の間隙 D に液体 F (例えば、水)を吹き込む〔図 2 (a)〕。 [0047] First, the wafer W1 in the uppermost layer of the wafer laminate WS is axially shifted by 45 ° from the habit line axis of wafer W1 by the wafer axis pressing means 20 (the line indicated by the symbol L L ′ in FIG. 1). Press the minute axis direction). Next, with the wafer shaft pressing means 20 as a supporting shaft, the peripheral part of the wafer W1 is adsorbed by adsorbing the peripheral part of the wafer W1 by the set of the wafer adsorbing means 22a, 22b and the set of the wafer adsorbing means 22c, 22d, A gap D between the lower surface of the uppermost wafer Wl and the upper surface of the lower wafer W2 adjacent to the lower surface by the liquid ejecting means 24a, 24b, 24c, 24d. Blow liquid F (eg, water) into the tank [Fig. 2 (a)].
[0048] そして、可動部材 10を上昇すると、支持板 12は遊び幅の多いボルト 15aの側に水 平方向で傾くため、ウェハ W1も水平方向で傾斜した状態になる〔図 2 (b)〕。本発明 においては、ウェハ積層体 WSの全体が浸漬液体に浸漬されており、従って、最上層 のウェハ W1が隣接する下側のウェハ W2から単離される際の液体の減圧力は、曲げ 応力が生じている部分よりもボルト 15aの側にずれた部分で働くこととなり、液体の減 圧力の働く部分と最上層のウェハの曲げ応力の生じている部分とがー致しないように なるため、水の減圧力が原因でウェハ割れの事故が発生し難くなる。更にウェハ上の 液体もウェハ上に滞留しに《なる為、ウェハ割れを減少させる事ができる。  [0048] When the movable member 10 is raised, the support plate 12 is inclined in the horizontal direction toward the bolt 15a having a large play width, so that the wafer W1 is also inclined in the horizontal direction [FIG. 2 (b)]. . In the present invention, the entire wafer laminate WS is immersed in the immersion liquid. Therefore, the liquid decompression force when the uppermost wafer W1 is isolated from the adjacent lower wafer W2 is a bending stress. It works at the part shifted to the bolt 15a side from the part where it occurs, and the part where the liquid pressure is reduced and the part where the bending stress of the uppermost wafer is not aligned do not match. This makes it difficult for a wafer cracking accident to occur. Furthermore, since the liquid on the wafer also stays on the wafer, wafer cracking can be reduced.
[0049] 次に、図 3〜図 5に基づいて、本発明のウェハ単離装置の構成について説明する。  Next, the configuration of the wafer isolation apparatus of the present invention will be described with reference to FIGS.
図 3は、本発明のウェハ単離装置の支持板が降下位置にある場合を示す一部断面 側面説明図であり、図 4は、本発明のウェハ単離装置の支持板が上限位置にある場 合を示す一部断面側面説明図であり、図 5は、本発明のウェハ単離装置の平面図で ある。  FIG. 3 is a partial cross-sectional side view showing the case where the support plate of the wafer isolation apparatus of the present invention is in the lowered position, and FIG. 4 shows the support plate of the wafer isolation apparatus of the present invention in the upper limit position. FIG. 5 is a plan view of a wafer isolating apparatus according to the present invention.
[0050] 図中、符号 2は本発明に係るウェハ単離装置であり、 2Aはウェハ単離装置本体で ある。符号 4はウェハ積層体保持手段で、多数枚又は複数枚の半導体ウェハ、例え ばシリコンウェハなどのウェハが積層されたウェハ積層体 WSを保持する作用を行う。 該ウェハ積層体保持手段 4はウェハ積層体 WSを位置決めして保持するための複数 本の保持棒 6を備える。該ウェハ積層体保持手段 4には、保持部材 5が取付けられて おり、該保持部材 5は駆動手段 7 (例えばモーター)によって上下動せしめられ、保持 部材 5に取付けられたウェハ積層体保持手段 4が上下動可能とされている。  In the figure, reference numeral 2 denotes a wafer isolation apparatus according to the present invention, and 2A denotes a wafer isolation apparatus main body. Reference numeral 4 denotes a wafer laminate holding means for holding a wafer laminate WS in which a large number or a plurality of semiconductor wafers such as silicon wafers are laminated. The wafer laminate holding means 4 includes a plurality of holding rods 6 for positioning and holding the wafer laminate WS. A holding member 5 is attached to the wafer laminate holding means 4, and the holding member 5 is moved up and down by a driving means 7 (for example, a motor), and the wafer laminate holding means 4 attached to the holding member 5. Can move up and down.
[0051] 本発明のウェハ単離装置 2の最大の特徴は、ウェハ積層体 WSの全体が浸漬する ように浸漬液体 132を満たしかつウェハの単離動作が液中で行えるように構成された 浸漬容器 134を設置したことである。該浸漬容器 134は給液口 136及び排液口 138 を有している。該浸漬容器 134の排液口 138側の側壁 140は、ウェハ積層体 WSの 全体が浸漬できるように、即ちウェハ積層体 WSの最上層のウェハ W1の上面よりも浸 漬液体の液面 132aが上方に位置するように、その高さが設定されており、余分な液 体はオーバーフロー液 142として排液口 138から排出されるようになっている。 [0052] 側壁 140には、ウェハ積層体 WSの最上層ウェハの高さ位置を確認するためのゥェ ハ位置確認センサー 9a, 9bが設けられており、仮想線で示したようにセンサー(図示 例ではレーザー 19)によって、ウェハ積層体 WSの最上層ウェハの高さ位置を検知し 、ウェハ積層体 WSが所定高さ位置にセットされるように構成されている。なお、図示 例ではレーザーセンサーによってウェハ位置確認を行う例を示した力 ウェハ積層体 WSの最上層ウェハの高さ位置を確認することができればよいものであるから、ウェハ 位置確認センサーは超音波センサーやその他のセンサー手段でもよい。 [0051] The greatest feature of the wafer isolation device 2 of the present invention is that the wafer stack WS is filled with the immersion liquid 132 so that the entire wafer laminate WS is immersed, and the wafer isolation operation is performed in the liquid. The container 134 was installed. The immersion container 134 has a liquid supply port 136 and a liquid discharge port 138. The side wall 140 on the side of the drainage port 138 of the immersion container 134 is such that the entire surface of the wafer stack WS can be immersed, that is, the liquid level 132a of the immersion liquid is higher than the upper surface of the uppermost wafer W1 of the wafer stack WS. The height is set so as to be positioned above, and the excess liquid is discharged from the drain port 138 as the overflow liquid 142. [0052] On the side wall 140, wafer position confirmation sensors 9a and 9b for confirming the height position of the uppermost wafer of the wafer stack WS are provided. In the example, the height position of the uppermost wafer of the wafer laminate WS is detected by a laser 19), and the wafer laminate WS is set at a predetermined height position. In the example shown in the figure, the force used to confirm the wafer position with a laser sensor is sufficient as long as the height position of the uppermost wafer of the wafer stack WS can be confirmed. Therefore, the wafer position confirmation sensor is an ultrasonic sensor. Or other sensor means.
[0053] 可動部材 10は、ウェハ積層体保持手段 4の上方で上下動自在に設けられ、エアシ リンダ手段 11のシリンダロッドとなっている。シリンダロッドとしての可動部材 10はエア シリンダ手段 11のエアがオフとされると自重で降下し、エアシリンダ手段 11のエアが オンとされると上昇する。  The movable member 10 is provided so as to be movable up and down above the wafer laminate holding means 4 and serves as a cylinder rod for the air cylinder means 11. The movable member 10 as a cylinder rod descends by its own weight when the air of the air cylinder means 11 is turned off, and rises when the air of the air cylinder means 11 is turned on.
[0054] 該可動部材 10の下端部には支持ベース板 13が取り付けられている。支持ベース 板 13には支持板 12が吊り下げた状態において水平方向で傾斜するように、鉛直方 向の遊び幅の異なる複数の吊着部材により、吊設されている。吊着部材としては、例 えば、ボルトナットを用いることができる。この場合、図示した如ぐボルト 15aとボルト 15bでは鉛直方向の遊び幅が異なるように長さの異なるボルトを用いる。そして、ボ ルト 15aの側の方がボルト 15bの側よりも遊び幅が多!/、ように取り付けることで、支持 ベース板 13から吊り下げた状態ではボルト 15aの側に傾斜するように支持板 12を吊 設する。なお、吊着部材の鉛直方向の遊び幅を異ならせる構成は、弾性の異なるス プリングを用いて遊び幅を異ならせる等の種々の構成を取り得ることはいうまでもない A support base plate 13 is attached to the lower end portion of the movable member 10. The support base plate 13 is suspended by a plurality of suspension members having different play widths in the vertical direction so that the support plate 12 is inclined in the horizontal direction when the support plate 12 is suspended. As the hanging member, for example, a bolt and nut can be used. In this case, the bolts 15a and 15b as shown in the figure use bolts having different lengths so that the play widths in the vertical direction are different. The bolt 15a side has a larger play width than the bolt 15b side so that the support plate is inclined to the bolt 15a side when suspended from the support base plate 13. 12 is suspended. Needless to say, the configuration in which the play width in the vertical direction of the suspending member is different can take various configurations such as different play widths using springs having different elasticity.
Yes
[0055] 支持板 12は、少なくとも 1方向以上において、ウェハの直径よりも長い部材であれ ばよく特に限定されない。ウェハよりも大きな円形や四角形とすることもできるが、好ま しくは、十字形状、 X字形状或いは横 H字形状に形成すればよい。図示例では、支 持板 12を十字形状に形成した場合を示した(図 5参照)。  [0055] The support plate 12 is not particularly limited as long as it is a member longer than the diameter of the wafer in at least one direction. Although it may be a circle or a rectangle larger than the wafer, it is preferably formed in a cross shape, an X shape, or a horizontal H shape. In the illustrated example, the support plate 12 is formed in a cross shape (see FIG. 5).
[0056] 符号 20は該支持板 12の下面に垂設された弾性を有する材料、例えばゴム材料で 構成されたウェハ軸押え手段である。前述したように、ウェハ軸押え手段 20は、ゥェ ハの晶癖線軸から時計回り又は反時計回りに角度 15° 〜75° 、好ましくは 30° 〜 60° 、更に好ましくは 40° 〜50° 、最も好ましくは 45° ずらした軸方向で該最上層 のウェハを押え、ウェハ吸着手段 22a〜22dによってウェハの周縁部を吸着して上方 に反らせる際の支軸となるものである。図示例では、ウェハ軸押え手段 20としての所 定方向に並んだウェハ押え部材 20a, 20bによって、ウェハの所定の軸方向を押さえ るようにしている(図 5参照)。 Reference numeral 20 denotes a wafer shaft pressing means made of an elastic material, such as a rubber material, suspended from the lower surface of the support plate 12. As described above, the wafer axis pressing means 20 is angled from 15 ° to 75 °, preferably 30 ° to clockwise or counterclockwise from the crystal habit line axis of wafer. 60 °, more preferably 40 ° to 50 °, most preferably 45 ° when the uppermost wafer is pressed in the axial direction, and the wafer suction means 22a to 22d suck the peripheral edge of the wafer and deflect it upward. It is a support shaft. In the illustrated example, a predetermined axial direction of the wafer is pressed by the wafer pressing members 20a and 20b arranged in a predetermined direction as the wafer axis pressing means 20 (see FIG. 5).
[0057] 支持板 12の下面周辺部に、ウェハの上面周辺部の所定の吸着位置(図示例では 4 箇所)を真空吸着するウェハ吸着手段 22a, 22b, 22c, 22dが設けられる(図 5参照)[0057] Wafer adsorbing means 22a, 22b, 22c, and 22d for vacuum adsorbing predetermined adsorbing positions (four locations in the illustrated example) around the upper surface of the wafer are provided around the lower surface of the support plate 12 (see FIG. 5). )
Yes
[0058] 該ウェハ吸着手段 22a〜22dの基端部は夫々配管 23によって真空源(不図示)と オンオフ可能に接続されており、先端の真空吸着部がウェハを吸着する場合には真 空源との接続がオンとなって真空吸着を行な!/、、吸着しなレ、場合には真空源との接 続がオフとなるようになつている。  [0058] The base end portions of the wafer adsorbing means 22a to 22d are connected to a vacuum source (not shown) by pipes 23 so as to be turned on and off, and when the tip vacuum adsorbing portion adsorbs the wafer, the vacuum source The vacuum connection is turned on and the vacuum connection is turned off! /, And the connection with the vacuum source is turned off.
[0059] 該ウェハ吸着手段 22a〜22dの先端の真空吸着部には真空吸着を行なうための真 空吸着ノズル (不図示)が設けられている。該真空吸着ノズルは水等の液体を噴射す る液体噴射機能を併せて具備することができ、この場合は、配管 23によって水供給 源 (不図示)とオンオフ可能に且つ真空源と切り換え可能に接続する。真空吸着ノズ ルから液体を噴射する場合には、真空源から水供給源に切り換えて、水供給源との 接続をオンとして液体を噴射し、液体を噴射しな!、場合には水供給源との接続もオフ とする。  A vacuum suction nozzle (not shown) for performing vacuum suction is provided at the vacuum suction portion at the tip of the wafer suction means 22a to 22d. The vacuum suction nozzle can also be provided with a liquid jetting function for jetting a liquid such as water. In this case, the pipe 23 can be turned on / off with a water supply source (not shown) and switched to a vacuum source. Connecting. When injecting liquid from a vacuum adsorption nozzle, switch from the vacuum source to the water supply source, turn on the connection with the water supply source and inject the liquid, do not inject the liquid! The connection to is also turned off.
[0060] 該真空吸着ノズルの液体噴射機能は、該真空吸着ノズルによって真空吸着を行う ウェハにはスラリー等が残存しているために、真空吸着を繰り返して行っていると該真 空吸着ノズルに連通する配管 23が汚れて動作不良の原因となるため、該真空吸着 ノズルから水等の液体を噴射することによって該真空吸着ノズルに連通する配管 23 の洗浄を行なうものであり、また、最上層のウェハがスラリー等で汚れていると、真空 吸着ノズルによる真空吸着が不安定となることがあるので、真空吸着を行う前に、該 真空吸着ノズルから水等の液体を噴射して最上層のウェハの吸着位置の洗浄を行な うものであり、さらに、前述したように、可動部材 (シリンダロッド) 10は自重で降下し、 これと一緒に該真空吸着ノズルを備えるウェハ吸着手段 22a〜22dも降下することと なる力 S、この降下が急降下となった場合に該真空吸着ノズルとウェハとが衝突しゥェ ハを破損する危険があるため、該真空吸着ノズルから液体を噴射し、該真空吸着ノズ ノレがウェハ表面上で一時的にホバリングの状態となるようにして、ウェハの破損を防 止するものである。 [0060] The liquid ejection function of the vacuum suction nozzle is that vacuum suction is performed by the vacuum suction nozzle. Since slurry or the like remains on the wafer, if vacuum suction is repeated, the vacuum suction nozzle The piping 23 communicating with the vacuum suction nozzle is contaminated to cause a malfunction. Therefore, the piping 23 communicating with the vacuum suction nozzle is cleaned by ejecting a liquid such as water from the vacuum suction nozzle. If the wafer is contaminated with slurry or the like, vacuum suction by the vacuum suction nozzle may become unstable, so before performing vacuum suction, a liquid such as water is jetted from the vacuum suction nozzle to The wafer suction position is cleaned, and as described above, the movable member (cylinder rod) 10 is lowered by its own weight, and the wafer suction means 2 equipped with the vacuum suction nozzle is also provided. 2a-22d also descends If this drop suddenly drops, the vacuum suction nozzle and the wafer may collide and damage the wafer. Therefore, liquid is ejected from the vacuum suction nozzle, and the vacuum suction nozzle This prevents the wafer from being damaged by temporarily hovering the wafer surface.
[0061] 符号 24a, 24b, 24c, 24dは液体噴射手段で、前記ウェハ吸着手段 22a, 22b, 2 2c, 22dに対応してその外方に位置するように該支持板 12の周端部に取付金具 28 を介して設けられている。該液体噴射手段 24a〜24dの下端部には液体噴射孔 26 が夫々形成されている。該液体噴射手段 24a〜24dは夫々に配管 25と連通しており 液体供給源 (不図示)とオンオフ可能に接続されている。  Reference numerals 24a, 24b, 24c, and 24d are liquid ejecting means, and are arranged on the peripheral end portion of the support plate 12 so as to be located outside corresponding to the wafer suction means 22a, 22b, 22c, and 22d. It is provided via a mounting bracket 28. Liquid ejection holes 26 are formed in the lower end portions of the liquid ejecting means 24a to 24d. The liquid ejecting means 24a to 24d communicate with the pipe 25, respectively, and are connected to a liquid supply source (not shown) so as to be turned on and off.
[0062] 該液体噴射手段 24a〜24dは、ウェハ積層体 WSの最上層のウェハ W1の下面と該 下面に隣接する下側のウェハ W2の上面との間に形成される間隙 D (図 2参照)に液 体を噴射する。噴射する液体としては、水を用いればよいが、水に薬液、例えば界面 活性剤等を添加したものを使用することもできる。  [0062] The liquid ejecting means 24a to 24d have a gap D formed between the lower surface of the uppermost wafer W1 of the wafer stack WS and the upper surface of the lower wafer W2 adjacent to the lower surface (see FIG. 2). ) Inject liquid. As the liquid to be ejected, water may be used, but a liquid obtained by adding a chemical solution such as a surfactant to water can also be used.
[0063] 符号 32は前記エアシリンダ手段 11の下端部にその一端部が取りつけられた板状 体で、該板状体 32の他端部は側方基体 3に接続されている。符号 36は該板状体 32 の中央部分に穿設された貫通穴であり、該貫通穴 36に前記支持ベース板 13に連結 部材 30を介して立設されたガイドロッド 38を揷通し、該ガイドロッド 38を介して支持 ベース板 13の振れ止め作用を行なうものである。なお、支持ベース板 13の振れ止め を行う必要がなければ、連結部材 30、貫通穴 36及びガイドロッド 38は無くともよい。  Reference numeral 32 denotes a plate-like body having one end attached to the lower end of the air cylinder means 11, and the other end of the plate-like body 32 is connected to the side base 3. Reference numeral 36 is a through hole formed in the central portion of the plate-like body 32, and a guide rod 38 standing through the support base plate 13 via a connecting member 30 is passed through the through hole 36, The support base plate 13 is prevented from shaking through the guide rod 38. Note that the connection member 30, the through hole 36, and the guide rod 38 may be omitted if the support base plate 13 does not need to be steady.
[0064] 次に、上記の構成により、その動作フローを図 6を用いて説明する。図 6は、本発明 のウェハ単離装置の動作フローを示すフローチャートである。上述したように、多数枚 又は複数枚のウェハが積層されたウェハ積層体 WSを浸漬容器 134の浸漬液体 132 中に浸漬させてウェハ単離装置 2を準備しておく。そしてまず、該ウェハ単離装置 2を 図示しない起動手段をオンとすることによって動作をスタートさせる。  Next, the operation flow of the above configuration will be described with reference to FIG. FIG. 6 is a flowchart showing an operation flow of the wafer isolating apparatus of the present invention. As described above, the wafer isolation apparatus 2 is prepared by immersing the wafer laminate WS in which a large number or a plurality of wafers are laminated in the immersion liquid 132 of the immersion container 134. First, the operation of the wafer isolating apparatus 2 is started by turning on a starting means (not shown).
[0065] 前記支持板 12がエアシリンダ手段 11のエアがオフとされることによって自重で降下 を開始する(ステップ 101)。これと同時にウェハ吸着手段 22a〜22dのノズルから水 等の液体噴射を行なうことによって、ノズルに連通する配管 23の洗浄を行なう(ステツ プ 102)。 [0066] 該支持板 12の下面に設けられたウェハ軸押え手段 20及びウェハ吸着手段 22a 22dが最上層ウェハ W1に接触すると、自重によって降下して!/、た支持板 12は自動 的に降下を停止する(ステップ 103)。この時、ウェハ軸押え手段 20によってウェハの 晶癖線軸から時計回り又は反時計回りに角度 15° 75° 、好ましくは 30° 60° 、更に好ましくは 40° 50° 、最も好ましくは 45° ずらした軸方向で該最上層のゥ ェハ W1が押えられる。 The support plate 12 starts to descend by its own weight when the air of the air cylinder means 11 is turned off (step 101). At the same time, the liquid 23 such as water is ejected from the nozzles of the wafer suction means 22a to 22d, thereby cleaning the pipe 23 communicating with the nozzles (step 102). [0066] When the wafer shaft pressing means 20 and the wafer suction means 22a 22d provided on the lower surface of the support plate 12 come into contact with the uppermost wafer W1, it is lowered by its own weight! /, And the support plate 12 is automatically lowered. Is stopped (step 103). At this time, the wafer axis holding means 20 is shifted from the habit axis of the wafer clockwise or counterclockwise by an angle of 15 ° 75 °, preferably 30 ° 60 °, more preferably 40 ° 50 °, and most preferably 45 °. The uppermost wafer W1 is pressed in the axial direction.
[0067] なお、該支持板 12が最上層ウェハ W1の上面に接触しているか否かを検知するセ ンサーを設置しておき、該支持板 12の最上層ウェハ W1への接触を検知すると、該 センサーからの指令により該支持板 12の降下が終了するように構成することもできる  [0067] When a sensor that detects whether or not the support plate 12 is in contact with the upper surface of the uppermost wafer W1 is installed, and the contact of the support plate 12 with the uppermost wafer W1 is detected, It can also be configured so that the lowering of the support plate 12 is terminated by a command from the sensor.
[0068] 次いで、ウェハ吸着手段 22a 22dが作動して最上層ウェハ W1の上面周辺部を 吸着し、該最上層ウェハ W1の周縁部を上方に反らせる(ステップ 104)。この時、ゥェ ハ積層体 WSの全体が液体中に浸漬されているため、該最上層ウェハ W1の周縁部 と最上層ウェハ W1と隣接する下側のウェハ W2の周縁部との間の表面張力は低くな つている。 Next, the wafer adsorbing means 22a and 22d are operated to adsorb the periphery of the upper surface of the uppermost wafer W1, and warp the peripheral edge of the uppermost wafer W1 upward (step 104). At this time, since the entire wafer laminate WS is immersed in the liquid, the surface between the peripheral edge of the uppermost wafer W1 and the peripheral edge of the lower wafer W2 adjacent to the uppermost wafer W1. The tension is getting lower.
[0069] 該最上層ウェハ W1の周縁部と最上層ウェハ W1に隣接する下側のウェハ W2の周 縁部との間に形成された間隙 D (図 2参照)に対して液体噴射手段 24から水等が噴 射される(ステップ 105)。この液体噴射によって該最上層ウェハ W1の周縁部と最上 層ウェハ W1に隣接する下側のウェハ W2の周縁部との間の表面張力は更に低くなる  [0069] From the liquid ejecting means 24 to the gap D (see Fig. 2) formed between the peripheral edge of the uppermost wafer W1 and the peripheral edge of the lower wafer W2 adjacent to the uppermost wafer W1. Water or the like is sprayed (step 105). By this liquid jetting, the surface tension between the peripheral edge of the uppermost wafer W1 and the peripheral edge of the lower wafer W2 adjacent to the uppermost wafer W1 is further reduced.
[0070] このようにして、該最上層ウェハ W1と最上層ウェハ W1に隣接する下側ウェハ W2 の間の表面張力は極めて低くなり、容易に離間され得る状態となる。そして、支持板 12を該ウェハ吸着手段 22a 22dに最上層ウェハ W1を吸着したまま上昇せしめる( ステップ 106)。この時、支持板 12は水平方向で傾斜しつつ上昇するため、水の表 面張力の影響はさらに低減される。この最上層ウェハ W1の上昇開始とともに上記液 体噴射は停止する。図 7に示されるように、前記最上層のウェハ W1を水平方向で傾 斜しつつ上昇せしめる際の前記傾斜角度 Θとしては、ウェハ割れ事故を減少させる ため、 2° 60° が好ましぐさらに 2° 40° が好ましぐ 5° 20° が最も好まし い。 [0070] In this manner, the surface tension between the uppermost wafer W1 and the lower wafer W2 adjacent to the uppermost wafer W1 is extremely low, and can be easily separated. Then, the support plate 12 is raised while the uppermost wafer W1 is adsorbed to the wafer adsorbing means 22a 22d (step 106). At this time, since the support plate 12 rises while tilting in the horizontal direction, the influence of the surface tension of water is further reduced. As the uppermost wafer W1 starts to rise, the liquid jet stops. As shown in FIG. 7, the inclination angle Θ when the uppermost wafer W1 is raised while being inclined in the horizontal direction is preferably 2 ° 60 ° in order to reduce wafer cracking accidents. 2 ° 40 ° is preferred 5 ° 20 ° is most preferred Yes.
該支持板 12は上限まで移動する(ステップ 107)。そこで、ウェハ吸着手段 22a〜2 2dに吸着されていた最上層ウェハはその真空吸着が解除され、ロボットアーム等の 適宜手段によって次工程に搬送される(ステップ 108)。ここまででウェハ単離装置 2 の動作の 1サイクルは終了する。同様の手順を繰り返すことによって、ウェハ積層体 WSのウエノ、を次々と単離すること力 Sできる。  The support plate 12 moves to the upper limit (step 107). Therefore, the uppermost wafer adsorbed by the wafer adsorbing means 22a to 22d is released from the vacuum adsorbing, and is transferred to the next process by an appropriate means such as a robot arm (step 108). At this point, one cycle of the operation of the wafer isolator 2 is completed. By repeating the same procedure, it is possible to isolate the wafer stacks WS one after another.

Claims

請求の範囲 The scope of the claims
[1] 液体中に浸漬された状態の多数枚又は複数枚のウェハが積層されたウェハ積層体 力、ら最上層のウェハを単離するウェハ単離方法であって、多数枚又は複数枚のゥェ ハが積層されたウェハ積層体を液体中に浸漬させて準備するステップと、前記ウェハ 積層体の最上層のウェハの晶癖線軸から時計回り又は反時計回りに角度 15° 〜75 ° ずらした軸方向で前記最上層のウェハを押えるステップと、前記最上層のウェハの 曲げ応力が前記軸方向に生じるように、前記最上層のウェハの周縁部を上方に反ら せるステップと、前記最上層のウェハの下面と該下面と隣接する下側のウェハの上面 との間に液体を吹き込むステップと、前記最上層のウェハを上昇せしめるステップと、 を含み、ウェハを単離するようにしたことを特徴とする液中ウェハ単離方法。  [1] Wafer stack in which a large number of wafers or a plurality of wafers immersed in a liquid are laminated, and a wafer isolation method for isolating the uppermost wafer, A step of immersing the wafer stack on which the wafer is stacked in a liquid and preparing the wafer stack, and shifting the angle from 15 ° to 75 ° clockwise or counterclockwise from the crystal axis of the uppermost wafer of the wafer stack. Pressing the uppermost wafer in the axial direction, bending the peripheral edge of the uppermost wafer upward so that bending stress of the uppermost wafer is generated in the axial direction, and A step of blowing liquid between the lower surface of the upper layer wafer and the upper surface of the lower wafer adjacent to the lower surface; and raising the uppermost wafer; and isolating the wafer In-liquid liquid Isolation method.
[2] 前記晶癖線軸から時計回り又は反時計回りにずらす軸方向の角度は、 30° 〜60 ° であることを特徴とする請求項 1記載の液中ウェハ単離方法。  [2] The submerged wafer isolation method according to [1], wherein an angle in an axial direction shifted clockwise or counterclockwise from the crystal habit axis is 30 ° to 60 °.
[3] 前記最上層のウェハを上昇せしめて単離する際、該最上層のウェハを水平方向で 傾斜しつつ上昇せしめることを特徴とする請求項 1又は 2記載の液中ウェハ単離方法 [3] The submerged wafer isolation method according to claim 1 or 2, wherein when the uppermost wafer is raised and isolated, the uppermost wafer is raised while being inclined in the horizontal direction.
Yes
[4] 液体中に浸漬された多数枚又は複数枚のウェハが積層されたウェハ積層体から最 上層のウェハを単離する液中ウェハ単離装置であって、上下動自在に設けられた支 持板と、該支持板の下面に設けられたウェハ軸押え手段と、該支持板の下面周辺部 に設けられ、該最上層のウェハの上面周辺部の相対向する 1対以上の吸着位置を吸 着するウェハ吸着手段と、該ウェハ吸着手段に対応してその外方に設けられた液体 噴射手段と、ウェハ積層体の全体が浸漬するように浸漬液を満たしかつウェハの単 離動作が液中で行えるように構成された浸漬容器と、を有し、該ウェハ軸押え手段に よって、該最上層のウェハの晶癖線軸から時計回り又は反時計回りに角度 15° 〜7 5° ずらした軸方向で該最上層のウェハを押えると共に、該最上層のウェハの曲げ応 力が該軸方向に生じるように、該ウェハ吸着手段により該最上層のウェハの上面周辺 部であってウェハの中心部を介して相対向する 1対以上の吸着位置を吸着し、該最 上層のウェハの周縁部を 1対以上の吸着位置で上方に反らせつつ、該最上層のゥェ ハの下面と該下面と隣接する下側のウェハの上面との間に該液体噴射手段によって 液体を吹き込むと共に該最上層のウェハを上昇せしめ、ウェハを単離するようにした ことを特徴とする液中ウェハ単離装置。 [4] A submerged wafer isolating apparatus for isolating the uppermost wafer from a wafer laminate in which a large number of wafers or a plurality of wafers immersed in a liquid are laminated. A holding plate, wafer shaft pressing means provided on the lower surface of the support plate, and one or more pairs of suction positions opposed to each other on the upper surface periphery of the uppermost wafer. Wafer adsorption means for adsorbing, liquid ejecting means provided on the outer side corresponding to the wafer adsorption means, the immersion liquid is filled so that the whole wafer stack is immersed, and the wafer separation operation is liquid An immersion vessel configured to be able to perform in the wafer, and the wafer axis pressing means is shifted from the crystal habit axis of the uppermost wafer by an angle of 15 ° to 75 ° clockwise or counterclockwise. The uppermost wafer is pressed in the axial direction and the uppermost wafer In order to generate a bending stress in the axial direction, the wafer suction means sucks one or more pairs of suction positions facing each other through the center of the wafer at the periphery of the upper surface of the uppermost wafer, The liquid jetting means between the lower surface of the uppermost wafer and the upper surface of the lower wafer adjacent to the lower surface while the peripheral edge of the uppermost wafer is warped upward at one or more pairs of suction positions. A submerged wafer isolation device characterized by isolating a wafer by blowing a liquid and raising the uppermost wafer.
[5] 前記晶癖線軸から時計回り又は反時計回りにずらす軸方向の角度は、 30° 〜60[5] The angle in the axial direction shifted clockwise or counterclockwise from the crystal habit axis is 30 ° to 60 °.
° であることを特徴とする請求項 4記載の液中ウェハ単離装置。 5. The submerged wafer isolation device according to claim 4, wherein
[6] 前記ウェハ軸押え手段は、該支持板の下面に一方向に併設された複数のウェハ押 ぇ部材からなることを特徴とする請求項 4又は 5記載の液中ウェハ単離装置。 6. The submerged wafer isolation device according to claim 4 or 5, wherein the wafer shaft pressing means comprises a plurality of wafer pressing members arranged in one direction on the lower surface of the support plate.
[7] 前記ウェハ軸押え手段は、該支持板の下面に設けられた一方向に長尺のウェハ押 ぇ部材からなることを特徴とする請求項 4又は 5記載の液中ウェハ単離装置。 7. The submerged wafer isolation device according to claim 4 or 5, wherein the wafer shaft pressing means comprises a wafer pressing member elongated in one direction provided on the lower surface of the support plate.
[8] 前記ウェハ吸着手段を 2対以上設け、最上層のウェハの上面周辺部であってウェハ の中心部を介して相対向する 2対以上の吸着位置を吸着し、該最上層のウェハの周 縁部を 2対以上の吸着位置で上方に反らせるようにすることを特徴とする請求項 4〜[8] Two or more pairs of the wafer suction means are provided, and two or more pairs of suction positions facing each other through the central portion of the wafer on the upper surface of the uppermost wafer are sucked. The peripheral edges are bent upward at two or more pairs of suction positions.
7のいずれ力、 1項記載の液中ウェハ単離装置。 7. The submerged wafer isolation device according to 1 above, wherein
[9] 前記支持板を十字形状、 X字形状或いは横 H字形状に形成し、該支持板の下面 周辺部に、前記ウェハ吸着手段を設けることを特徴とする請求項 4〜8のいずれか 1 項記載の液中ウェハ単離装置。 [9] The support plate according to any one of claims 4 to 8, wherein the support plate is formed in a cross shape, an X shape, or a horizontal H shape, and the wafer suction means is provided around the lower surface of the support plate. The liquid wafer isolation device according to item 1.
[10] 前記支持板は、上方移動時に水平方向で傾斜するように設けられていることを特徴 とする請求項 4〜9のいずれ力、 1項記載の液中ウェハ単離装置。 10. The submerged wafer isolation device according to any one of claims 4 to 9, wherein the support plate is provided so as to be inclined in a horizontal direction when moving upward.
[11] 前記液体は水であることを特徴とする請求項 4〜; 10のいずれ力、 1項記載の液中ゥェ ハ単離装置。 [11] The liquid wafer isolation device according to any one of [4] to [10], wherein the liquid is water.
[12] 前記ウェハ吸着手段が液体噴射機能を備える真空吸着ノズルであり、該真空吸着 ノズルから液体を噴射し、前記ウェハ積層体の最上層のウェハの吸着位置を洗浄す ることを特徴とする請求項 4〜; 11のいずれか 1項記載の液中ウェハ単離装置。  [12] The wafer suction means is a vacuum suction nozzle having a liquid ejecting function, and ejects liquid from the vacuum suction nozzle to clean the suction position of the uppermost wafer of the wafer stack. The in-liquid wafer isolation device according to any one of claims 4 to 11;
[13] 前記ウェハ吸着手段が液体噴射機能を備える真空吸着ノズルであり、該真空吸着 ノズルから液体を噴射し、該真空吸着ノズルに連通する配管の洗浄を行うことを特徴 とする請求項 4〜; 12のいずれ力、 1項記載の液中ウェハ単離装置。  [13] The wafer suction means is a vacuum suction nozzle having a liquid jet function, jets liquid from the vacuum suction nozzle, and cleans a pipe communicating with the vacuum suction nozzle. Any of 12 forces, the submerged wafer isolation device according to 1;
[14] 前記ウェハ吸着手段が液体噴射機能を備える真空吸着ノズルであり、該真空吸着 ノズルから液体を噴射し、前記ウェハ吸着手段がウェハ表面上で一時的にホバリング するようにすることを特徴とする請求項 4〜; 13のいずれ力、 1項記載の液中ウェハ単離 装置。 [14] The wafer suction means is a vacuum suction nozzle having a liquid ejecting function, and the liquid is ejected from the vacuum suction nozzle so that the wafer suction means temporarily hoveres on the wafer surface. 14. The liquid wafer isolation according to any one of claims 4 to 13; apparatus.
前記ウェハ積層体を上下動自在に保持するためのウェハ積層体保持手段と、最上 層ウェハの高さ位置を確認するためのウェハ位置確認センサーと、をさらに含み、前 記ウェハ積層体が所定高さ位置にセットされるようにしたことを特徴とする請求項 4〜 14のいずれ力、 1項記載の液中ウェハ単離装置。  A wafer stack holding means for holding the wafer stack in a vertically movable manner; and a wafer position confirmation sensor for checking the height position of the uppermost wafer, wherein the wafer stack has a predetermined height. 15. The submerged wafer isolation device according to any one of claims 4 to 14, wherein the wafer isolation device is set at a vertical position.
PCT/JP2007/068128 2006-12-06 2007-09-19 Submerged wafer separating method, and submerged wafer separating apparatus WO2008068943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-329540 2006-12-06
JP2006329540A JP2010045057A (en) 2006-12-06 2006-12-06 Submerged wafer separating method, and submerged wafer separating apparatus

Publications (1)

Publication Number Publication Date
WO2008068943A1 true WO2008068943A1 (en) 2008-06-12

Family

ID=39491855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068128 WO2008068943A1 (en) 2006-12-06 2007-09-19 Submerged wafer separating method, and submerged wafer separating apparatus

Country Status (2)

Country Link
JP (1) JP2010045057A (en)
WO (1) WO2008068943A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010683A1 (en) * 2009-07-24 2011-01-27 株式会社住友金属ファインテック Wafer conveying method and wafer conveying device
JP2011061120A (en) * 2009-09-14 2011-03-24 Sumitomo Metal Fine Technology Co Ltd Method of carrying wafer and wafer carrying device
JP2011124481A (en) * 2009-12-14 2011-06-23 Mimasu Semiconductor Industry Co Ltd Method and device for isolation of submerged wafer
US20170178930A1 (en) * 2015-12-17 2017-06-22 Tokyo Electron Limited Substrate aligning method, substrate receiving method, substrate liquid processing method, substrate aligning apparatus, substrate receiving apparatus, substrate liquid processing apparatus, and substrate processing system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101313092B1 (en) * 2012-02-03 2013-09-30 주식회사 케이엔제이 Work picking apparatus and method using the same
KR102417000B1 (en) * 2017-03-20 2022-07-05 주식회사 케이씨텍 Substrate procesing apparatus
KR102457191B1 (en) * 2018-05-16 2022-10-20 (주)포인트엔지니어링 Micro led transfer system
KR102012877B1 (en) * 2019-01-24 2019-08-21 주식회사 디에스이엔티 Printed circuit board stacking device for racks
KR102260638B1 (en) * 2019-09-26 2021-06-04 엘지전자 주식회사 Self assembly device for semiconductor light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188277A (en) * 1992-12-17 1994-07-08 Sumitomo Metal Mining Co Ltd Apparatus and method of carrying sheet material
JPH10114426A (en) * 1996-10-11 1998-05-06 Tokyo Seimitsu Co Ltd Wafer take-out device
WO2004102654A1 (en) * 2003-05-13 2004-11-25 Mimasu Semiconductor Industry Co.,Ltd. Wafer demounting method, wafer demounting device, and wafer demounting and transferring machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188277A (en) * 1992-12-17 1994-07-08 Sumitomo Metal Mining Co Ltd Apparatus and method of carrying sheet material
JPH10114426A (en) * 1996-10-11 1998-05-06 Tokyo Seimitsu Co Ltd Wafer take-out device
WO2004102654A1 (en) * 2003-05-13 2004-11-25 Mimasu Semiconductor Industry Co.,Ltd. Wafer demounting method, wafer demounting device, and wafer demounting and transferring machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010683A1 (en) * 2009-07-24 2011-01-27 株式会社住友金属ファインテック Wafer conveying method and wafer conveying device
JP2011061120A (en) * 2009-09-14 2011-03-24 Sumitomo Metal Fine Technology Co Ltd Method of carrying wafer and wafer carrying device
JP2011124481A (en) * 2009-12-14 2011-06-23 Mimasu Semiconductor Industry Co Ltd Method and device for isolation of submerged wafer
US20170178930A1 (en) * 2015-12-17 2017-06-22 Tokyo Electron Limited Substrate aligning method, substrate receiving method, substrate liquid processing method, substrate aligning apparatus, substrate receiving apparatus, substrate liquid processing apparatus, and substrate processing system
US10770283B2 (en) * 2015-12-17 2020-09-08 Tokyo Electron Limited Substrate aligning method, substrate receiving method, substrate liquid processing method, substrate aligning apparatus, substrate receiving apparatus, substrate liquid processing apparatus, and substrate processing system
US11626277B2 (en) 2015-12-17 2023-04-11 Tokyo Electron Limited Substrate aligning method, substrate receiving method, substrate liquid processing method, substrate aligning apparatus, substrate receiving apparatus, substrate liquid processing apparatus, and substrate processing system

Also Published As

Publication number Publication date
JP2010045057A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP4208843B2 (en) Wafer isolation method, wafer isolation apparatus, and wafer isolation transfer machine
WO2008068943A1 (en) Submerged wafer separating method, and submerged wafer separating apparatus
EP2122676A1 (en) Method and device for separation of silicon wafers
KR101066978B1 (en) Apparatus for transferring and separating wafer of solar battery
JP3150888B2 (en) Wafer separation / transport apparatus and separation / transfer method
JP6309371B2 (en) Unloading plate workpiece
US6074442A (en) Method of separating slice base mounting member from wafer and jig adapted therefor
JP5464696B2 (en) Submerged wafer isolation method and submerged wafer isolation apparatus
JPH0964152A (en) Wafer separation apparatus
JP6083749B2 (en) Work stripping apparatus and stripping method
JP2009166955A (en) Separating device, and substrate inspecting device
JPH10114426A (en) Wafer take-out device
JP4668350B1 (en) Semiconductor wafer separator
WO2004051735A1 (en) Wafer separation apparatus
JPH09237817A (en) Separate carry device for wafer
TW201324602A (en) Wafer separation device and wafer manufacturing method using same
JP3069243B2 (en) Thin plate immersion equipment
JPH10256348A (en) Transportation method for wafer
JPH09136723A (en) Wafer takeout device
JP6325906B2 (en) Submerged wafer isolation method and submerged wafer isolation device
KR101290139B1 (en) Method for Separating Wafer, and Separation Apparatus
KR101162684B1 (en) A wafer separation apparatus
JP3533936B2 (en) Wafer peeling method and peeling device
KR101150206B1 (en) A wafer separation apparatus a wafer separation apparatus
KR101078548B1 (en) A wafer separation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP