WO2013024741A1 - Wafer separation device and wafer manufacturing method using same - Google Patents

Wafer separation device and wafer manufacturing method using same Download PDF

Info

Publication number
WO2013024741A1
WO2013024741A1 PCT/JP2012/070051 JP2012070051W WO2013024741A1 WO 2013024741 A1 WO2013024741 A1 WO 2013024741A1 JP 2012070051 W JP2012070051 W JP 2012070051W WO 2013024741 A1 WO2013024741 A1 WO 2013024741A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
liquid
liquid flow
injection nozzle
nozzle
Prior art date
Application number
PCT/JP2012/070051
Other languages
French (fr)
Japanese (ja)
Inventor
明生 早川
清秀 一見
榊原 健二
Original Assignee
株式会社 安永
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 安永 filed Critical 株式会社 安永
Publication of WO2013024741A1 publication Critical patent/WO2013024741A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0082Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work

Definitions

  • the present invention relates to a wafer separating apparatus and a wafer manufacturing method using the same, and to a technique for separating a plurality of wafers obtained by cutting a silicon ingot into pieces.
  • silicon wafers for solar cells are used for solar power generation, and the demand for silicon wafers for solar cells is increasing with the spread of solar power generation.
  • solar cell silicon wafers are manufactured by cutting a silicon ingot into a thin plate with a wire saw and turning it into single sheets.
  • the present invention has been made to solve such problems.
  • the object of the present invention is to reliably separate a large number of wafer groups obtained by cutting a silicon ingot into individual wafers after passing a liquid. Then, it is providing the wafer separation apparatus which can be supplied to the following process, and the manufacturing method of a wafer using the same.
  • the wafer separating apparatus is configured such that a plurality of wafer groups obtained by cutting a silicon ingot are stacked horizontally and stacked in layers, and the mounting table is detachable.
  • the wafer group loaded on the loading table which is provided so as to be immersed and lifted together with the loading table support member by the lifting device, is sucked to the transport belt at the one end in order from the uppermost wafer.
  • a liquid flow injection device configured to inject a liquid flow in a lateral direction toward the wafer group which is provided so as to be immersed in a liquid in the liquid tank and is horizontally placed on the loading table in a layered manner.
  • Nozzle and said liquid jet Nozzle of provided below characterized in that it comprises a bubble discharging device for discharging bubbles as bubble between the liquid flow injection nozzle and the wafer group is increased.
  • the wafer separating apparatus according to the first aspect, wherein the bubble discharge device is configured to discharge bubbles having different sizes.
  • the wafer separating apparatus according to the first or second aspect wherein the liquid jet nozzles are arranged on the left and right with respect to the wafer group and jetted from the left and right liquid jet nozzles toward the wafer group, respectively. The liquid flows are provided so as to have a predetermined depression angle.
  • the liquid flow injection nozzle injects a liquid flow toward a wafer group higher than the central layer in the wafer group.
  • the liquid jet nozzle is composed of two upper and lower stages of a lower jet nozzle and an upper jet nozzle.
  • the wafer separating apparatus is the wafer separating apparatus according to the fifth aspect, wherein the lower injection nozzle injects a liquid flow with an injection intensity equal to or higher than a predetermined force, and the upper injection nozzle generates a liquid flow with an injection intensity lower than the predetermined force. It is characterized by spraying.
  • the wafer separating apparatus according to claim 7 is characterized in that, in claim 5 or 6, the lower injection nozzle injects a liquid flow at an injection strength of a predetermined force or more capable of blowing off a broken and broken wafer.
  • the liquid separation nozzle is provided so as to be immersed in a liquid in the liquid tank, and obliquely upward toward the wafer group.
  • a second liquid flow injection nozzle for injecting a liquid flow is provided.
  • a wafer manufacturing method using the wafer separating apparatus according to claim 9 is a wafer manufacturing method using the wafer separating apparatus according to any one of claims 1 to 8, wherein the wafer group is placed horizontally on the loading table.
  • the loading table is supported by the loading table support member, and the loading table support member is raised by the lifting device toward the transfer device while passing the liquid in the liquid tank.
  • the bubbles are ejected so that the bubbles rise between the liquid jet nozzle and the wafer group by the bubble ejection device while jetting a liquid flow laterally toward the wafer group by the flow jet nozzle.
  • a liquid flow injection nozzle for cutting a silicon ingot and injecting a liquid flow in a horizontal direction toward a plurality of wafers stacked horizontally in a layered manner. Since a bubble discharge device is provided below the liquid flow injection nozzle to discharge and raise bubbles between the liquid flow injection nozzle and the wafer group, it is easy to push the bubbles between each wafer in the wafer group with a liquid flow. The wafer can be easily peeled off. Therefore, after passing through the liquid in the wafer group, the wafers can be reliably separated one by one and supplied to the next process. Moreover, the cleaning action of each wafer can be promoted by pushing bubbles between the wafers in a liquid flow.
  • the bubble discharge device is configured to be able to discharge bubbles of different sizes, bubbles of different sizes are generated simultaneously from coarse ones having a large diameter to fine ones having a small diameter. It is easy to widen the gap between the wafers by pushing small bubbles between the wafers in the lower layers of the wafer group, which makes it difficult to widen the gap between the wafers by its own weight due to the liquid flow by the liquid jet nozzle. A large diameter coarse bubble can be pushed in between each upper layer wafer, and the wafer can be more easily peeled off.
  • the wafer separating apparatus of the third aspect since the liquid jet nozzles are arranged on the left and right, the wafer can be more easily peeled off more stably and the posture of the wafer can be stabilized.
  • the wafer separating apparatus of the fourth aspect since the liquid flow is ejected toward at least the wafer group higher than the center layer in the wafer group, bubbles can be efficiently pushed between the wafers in a range close to the transfer device. it can.
  • the liquid flow injection nozzle is composed of the upper and lower stages of the lower injection nozzle and the upper injection nozzle, the liquid flow injected from the lower injection nozzle and the upper injection nozzle are injected. The injection strength can be adjusted and numerical control can be performed with the liquid flow.
  • the lower injection nozzle injects the liquid flow with an injection strength greater than or equal to a predetermined force
  • the upper injection nozzle injects the liquid flow with an injection intensity lower than the predetermined force.
  • the second liquid flow injection nozzle for injecting the liquid flow obliquely upward toward the wafer group is provided separately from the liquid flow injection nozzle, the second liquid flow injection nozzle is used for injection.
  • the uppermost wafer of the wafer group is lifted obliquely by the liquid flow so as to be peeled off very smoothly and smoothly transferred to the inclined transfer device, so that the wafers can be separated more reliably.
  • bubbles are liquefied between the wafers of the wafer group loaded on the loading table while the loading table is raised by the lifting device toward the transfer device.
  • the wafer can be pushed in by a flow, and the wafer can be easily peeled off. Therefore, after passing through the liquid in the wafer group, the wafers can be reliably separated one by one and supplied to the next process. Moreover, the cleaning action of each wafer can be promoted by pushing bubbles between the wafers in a liquid flow.
  • FIG. 1 is a front view of a wafer separating apparatus showing an overall configuration of the wafer separating apparatus according to the present invention. It is a side view of the wafer separation apparatus seen from the arrow A direction of FIG.
  • FIG. 2 is a plan sectional view of the wafer separating apparatus along the line BB in FIG. 1. It is the C section enlarged view of FIG. It is a top view of a basket. It is a front view of a basket. It is a side view of a basket. It is a schematic diagram which expands and shows a flow injection nozzle, a bubble discharge device, and a wafer group placed on a basket. It is a schematic diagram which expands and shows the 2nd liquid-flow injection nozzle, the 1st conveyor, and the wafer group mounted in the basket. It is a figure which shows other embodiment of this invention.
  • FIG. 1 is a front view of a wafer separating apparatus showing the overall configuration of the wafer separating apparatus according to the present invention
  • FIG. 2 is a side view of the wafer separating apparatus viewed from the direction of arrow A in FIG. 1
  • FIG. FIG. 4 is a plan sectional view of the wafer separating apparatus taken along line BB in FIG. 1
  • FIG. 4 is an enlarged view of part C in FIG.
  • the wafer separating apparatus according to the present invention is an apparatus for cutting a silicon ingot and laminating a plurality of wafers stacked in layers, and then separating the wafers one by one and supplying them to the next process. As shown in FIG.
  • a liquid tank 2 in which a cleaning liquid is stored, an elevating device 10 that moves up and down a large number of wafer groups W in the liquid tank 2, and a wafer group W that has been raised by the elevating apparatus 10 are arranged at the top.
  • the belt conveyor (conveyance device) 20 conveys the wafers in order from the wafer at the position, and the storage device 30 that stores the wafer group W that is moved up and down by the lifting device 10.
  • the cleaning liquid stored in the liquid tank 2 is, for example, water (tap water, pure water, etc.), and it is possible to wash away the chips generated on the silicon ingot and adhered to the wafer.
  • the liquid tank 2 is provided with a dirt sensor 3 for detecting the dirt of the cleaning liquid. Based on information from the dirt sensor 3, the degree of dirt of the cleaning liquid can be monitored.
  • the wafer group W is stacked horizontally in a layered manner on a basket (loading table) 40 having a unified standard. Specifically, the wafer group W is processed into a quadrangular shape with the periphery cut off, and FIGS. 4 and 5 show a plan view of the basket 40, FIG. 6 shows a front view of the basket 40, and FIG.
  • the basket 40 has a right side wall 41, a left side wall 42, and a rear side wall 43 extending in the stacking direction of the wafer group W, and can position the square wafer group W appropriately. Standards are unified so that the sides and top are open. Thus, the wafer group W can be loaded into the basket 40 from one side and from above, and the wafer group W loaded on the basket 40 can be approached from one side and from above.
  • the basket 40 is also provided with a right handle 44 and a left handle 45.
  • the right side wall 41 is made of a plate member having a relatively wide width
  • the left side wall 42 is made of a member having a width narrower than the width of the right side wall 41 (for example, about half the width of the right side wall 41).
  • the rear side wall 43 is made of a member having a width narrower than the width of the left side wall 42 (for example, approximately half the width of the left side wall 42), and is arranged on the right side. That is, the left side wall 42 and the rear side wall 43 are arranged such that the distance between the left side wall 42 and the rear side wall 43 is sufficiently larger than the distance between the right side wall 41 and the rear side wall 43.
  • the right handle 44 is composed of an inverted U-shaped bar member
  • the left handle 45 is composed of an F-shaped bar member whose rear is opened.
  • the space between the left side wall 42 and the rear side wall 43 is widened, and the rear side of the left side handle 45 is opened, so that the broken wafer is opened as shown in the direction of the arrow in the figure and described in detail later. It is possible to eliminate by passing through the space.
  • the elevating device 10 includes a pair of left and right elevating units 11, 12, and each of the pair of left and right elevating units 11, 12 can elevate the basket 40 on which the wafer group W is loaded.
  • the elevating units 11 and 12 can be raised and lowered by rotating a ball screw with a stepping motor, for example.
  • the lifting units 11 and 12 are provided with basket support members (loading table support members) 13 and 14 integrally with the lifting units 11 and 12, and the lifting units 11 and 12 are provided on the basket support members 13 and 14.
  • the basket 40 is supported on the wafer group W, and the wafer group W together with the basket 40 can be moved up and down independently.
  • the elevating device 10 is also provided with slide units 15 and 16 so that the elevating units 11 and 12 can be independently moved from the storage device 30 side to the belt conveyor 20 side or in the opposite direction.
  • the slide units 15 and 16 can also be operated by rotating a ball screw with a stepping motor, for example.
  • the elevating units 11 and 12 can move the wafer group W together with the basket 40 in the liquid tank 2 independently in the biaxial directions as indicated by the arrows in FIG.
  • the belt conveyor 20 includes a first conveyor 21 and a second conveyor 22.
  • the first conveyor 21 travels in a pair of endless belts, a vacuum unit 23 is provided from one end to a predetermined range between the pair of endless belts, and one end is predetermined with respect to the horizontal so that one end is immersed in the liquid. Inclined at an angle of (greater than 0 °).
  • the first conveyor 21 can suck the wafer at the uppermost position of the wafer group W in the liquid by the vacuum unit 23, press the wafer against the belt, and transfer it to the second conveyor 22 at the other end. .
  • the liquid tank 2 has an uppermost position sensor 4 for detecting the height position of the uppermost wafer so that the uppermost wafer of the wafer group W loaded on the basket 40 is in the vicinity of one end of the first conveyor 21.
  • a photoelectric sensor is employed as the uppermost position sensor 4.
  • the first conveyor 21 can satisfactorily suck the wafer at the uppermost position of the wafer group W by the vacuum unit 23.
  • the second conveyor 22 is inclined so that a pair of endless belts travel, and the wafer received from the first conveyor 21 can be further transferred to the next process.
  • the storage device 30 is configured such that a stepping motor 33 can rotate a turntable 31 on which a plurality of L-shaped arm members 32 that support the basket 40 are suspended.
  • the arm members 32 are, for example, six pieces, and are arranged at equal intervals of 60 ° so that one side of the basket 40 that is opened is radiated and faces outward.
  • a liquid jet nozzle 50 is provided so as to be spaced apart from the opened side of the basket 40. .
  • the liquid jet nozzle 50 is composed of upper and lower two stages of a lower jet nozzle 51 and an upper jet nozzle 52, and jets a liquid flow from the lateral direction toward one side surface of the wafer group W loaded on the basket 40, respectively. Is configured to do.
  • the lower injection nozzle 51 and the upper injection nozzle 52 are connected to a liquid flow generator 54.
  • the lower injection nozzle 51 and the upper injection nozzle 52 are provided in one of the rectangular wafer groups W with respect to the wafer group W higher than the central layer of the wafer group W.
  • the liquid flow is arranged to be ejected obliquely toward one side corner.
  • the lower injection nozzle 51 is set so as to strongly inject a liquid flow with an injection intensity equal to or higher than a predetermined force
  • the upper injection nozzle 52 has an injection port extending in the vertical direction and smaller than the predetermined force.
  • the liquid flow is set to be jetted gently at the jetting intensity.
  • a bubble discharge device 60 for discharging the bubbles so that the bubbles rise between the liquid jet nozzle 50 and the wafer group W.
  • the bubble discharge device 60 is connected to the bubble generation device 62.
  • the bubble discharge device 60 is configured to be able to generate bubbles of different sizes at the same time.
  • the bubble discharge device 60 is configured by combining two or more types of bubble discharge devices with different amounts of gas to be introduced.
  • the bubble discharge device 60 is a bubble having a different size from a coarse one having a large diameter (for example, a maximum diameter of 0.3 mm to 2 mm) to a fine one having a small diameter (for example, a maximum diameter of 0.03 mm to less than 0.3 mm). Can be generated and mixed at the same time.
  • the bubble discharge device 60 may be configured to include two or more types of bubble discharge nozzles having different opening areas in one bubble discharge device. Even in this case, the bubble discharge device 60 can simultaneously generate and mix bubbles having different sizes from a coarser one with a large diameter to a fine one with a small diameter from each bubble discharge nozzle.
  • a pair of second liquid flow injection nozzles 70 so as to inject a liquid flow obliquely upward toward one side surface of the wafer group W loaded on the basket 40, 70 is provided.
  • a pair of second liquid flow jet nozzles 70, 70 are also connected to the liquid flow generator 54.
  • the wafer separation device includes a control device, and the lifting device 10, the belt conveyor 20, the storage device 30, the liquid flow generation device 54, and the bubble generation device 62 are the contamination sensor 3, the uppermost position. Based on output signals from sensors such as the sensor 4, the operation is appropriately controlled by a control device.
  • the operation of the wafer separating apparatus according to the present invention configured as described above that is, a wafer manufacturing method using the wafer separating apparatus according to the present invention will be described.
  • the basket 40 loaded with the wafer group W is carried by the operator with the handles 44 and 45 so that the L-shaped arm member of the storage device 30 is transported.
  • the storage device 30 is configured such that the arm member 32 rotates and stops in the direction of the arrow by 60 ° at the position shown in FIG. 3, and with the arm member 32 stopped, the elevating unit 11 and the elevating unit 11 of the elevating device 10 are stopped.
  • the unit 12 operates to alternately receive the baskets 40 placed on the arm members 32. Thereby, the basket 40 is sequentially supported by the basket support member 13 of the lift unit 11 and the basket support member 14 of the lift unit 12, respectively.
  • the elevating unit 11 and the elevating unit 12 that have received the basket 40 move the basket 40 in the liquid as indicated by an arrow in FIG. While cleaning, the basket 40 is positioned so that the height position of the uppermost wafer in the wafer group W is in the vicinity of one end of the first conveyor 21 based on information from the uppermost position sensor 4. As a result, the wafer at the uppermost position of the wafer group W is sequentially sucked by the vacuum unit 23 and transferred to the second conveyor 22 by the first conveyor 21.
  • the bubbles are discharged from the bubble discharging device 60 from a large diameter to a small diameter.
  • the bubbles are discharged in a mixed manner, and the bubbles rise between the liquid jet nozzle 50 and the wafer group W. At this time, the liquid flow is jetted from the liquid jet nozzle 50 toward the wafer group W.
  • the liquid jet nozzle 50, the bubble discharge device 60, and the wafer group W placed on the basket 40 are schematically shown in an enlarged manner, and are jetted from the bubbles and the liquid jet nozzle 50.
  • the action of the liquid flow will be described in detail with reference to FIG.
  • the bubbles rise between the liquid jet nozzle 50 and the wafer group W, and the liquid flow from the lower jet nozzle 51 and the upper jet nozzle 52 which are the liquid jet nozzles 50 as indicated by arrows.
  • the bubbles P are pushed between the wafers in the wafer group W by the liquid flow.
  • the wafer group W is easy to widen the gap between the wafers by the liquid flow in the upper layer, but it is difficult to widen the gap between the wafers by its own weight as it becomes the lower layer even in the liquid.
  • the small diameter bubbles P are preferentially pushed in between the wafers by the liquid flow from the lower injection nozzle 51 in order from the finest, and the liquid flow from the upper injection nozzle 52 is inserted between the wafers of the upper layer. A relatively large diameter coarse bubble P is pushed in.
  • the injection nozzle is composed of upper and lower two stages of the lower injection nozzle 51 and the upper injection nozzle 52, the liquid flow injected from the lower injection nozzle 51 and the liquid flow injected from the upper injection nozzle 52 Thus, adjustment of the injection intensity and numerical management can be performed.
  • the liquid flow injected from the lower injection nozzle 51 is set so as to strongly inject the liquid flow with an injection intensity equal to or greater than a predetermined force. Accordingly, a gap is easily formed between the wafers of the wafer group W by the liquid flow from the lower injection nozzle 51, and the small-sized fine bubbles P are favorably pushed between the wafers.
  • the liquid flow injected from the lower injection nozzle 51 is set to an injection strength that is equal to or higher than a predetermined force capable of blowing off a damaged and broken wafer.
  • the wafer thus broken and divided is no longer regulated by the right side wall 41, the left side wall 42, and the rear side wall 43, and the liquid jetted from the lower jet nozzle 51.
  • the air is blown out rearward through the open space behind the left side wall 42, the rear side wall 43 and the left side handle 45, and is eliminated.
  • the damaged wafer can be easily removed, it is possible to prevent the apparatus from being stopped due to jamming, and to improve the operation rate of the apparatus.
  • the liquid flow injected from the upper injection nozzle 52 is set to inject the liquid flow with an injection strength smaller than a predetermined force. Even by such a gentle liquid flow injected from the upper injection nozzle 52, a gap larger than that of the lower layer is easily formed between the wafers in the upper layer of the wafer group W as described above. Since the small-sized fine bubbles P are pushed in first, the large-sized coarse bubbles P are well pushed into the gaps between the wafers formed by the liquid flow from the lower injection nozzle 51 and are evenly arranged. The gap between each wafer is gradually enlarged.
  • the lower injection nozzle 51 and the upper injection nozzle 52 inject the liquid flow toward the wafer group W that is at least higher than the center layer in the wafer group W, the bubbles are efficiently produced in a range close to the first conveyor 21. P can be pushed between the wafers.
  • the bubbles P are sufficiently pushed into the gaps between the wafers, so that the wafer can be lifted by the presence of the bubbles P and easily peeled off.
  • the uppermost wafer can be smoothly peeled off and pressed against the belt by suction of the vacuum unit 23, and the wafers can be reliably separated one by one and transported to the next process.
  • the second liquid jet nozzle 70, the first conveyor 21, and the wafer group W placed on the basket 40 are schematically shown in an enlarged manner. The action of the jetted liquid flow will be described in detail with reference to FIG.
  • the wafers are easy to peel off due to the presence of the bubbles P in the gaps between the wafers.
  • the wafer is largely separated on the second liquid jet nozzle 70 side by the liquid flow from the second liquid jet nozzle 70, that is, the wafer is It inclines so that the 2nd liquid-flow injection nozzle 70 side may become high with an elevation angle larger than 0 degree.
  • the wafer since the first conveyor 21 is inclined at a predetermined angle (greater than 0 °) with respect to the horizontal so that one end is immersed in the liquid, the wafer easily follows the inclined belt of the first conveyor 21. So close. Thereby, only the wafer at the uppermost position of the wafer group W is smoothly sucked by the vacuum unit 23 and pressed against the belt, and is sequentially transferred to the second conveyor 22 by the first conveyor 21.
  • the lifting unit 11 and the lifting unit 12 are operated based on the information from the uppermost position sensor 4 so that the basket 40 is raised by the thickness of the wafer.
  • the position of the uppermost wafer in the wafer group W can always be maintained at a position near one end of the first conveyor 21.
  • the liquid flow from the second liquid flow injection nozzle 70 may be intermittently performed at a constant period in accordance with, for example, the traveling speed of the belt of the first conveyor 21, and thereby the first wafer is timed. It can be delivered to the conveyor 21.
  • the lower injection nozzle 51 and the upper injection nozzle 52 which are the liquid flow injection nozzles 50 are arranged so as to inject the liquid flow obliquely toward one corner on one side of the rectangular wafer group W. Are arranged one by one, and one bubble discharge device 60 is arranged in accordance with this, but as another embodiment, as shown in FIG.
  • a lower injection nozzle 51 and an upper injection nozzle 52 is further directed to not only one side of the wafer group W but also to the other corner so that the liquid flow is ejected obliquely with a predetermined depression angle (for example, 20 ° to 180 °). Two of them may be arranged symmetrically, and two bubble discharge devices 60 may be arranged according to this.
  • the present invention is not limited to the above embodiment.
  • the bubble discharge device 60 is configured by combining two or more types of bubble discharge devices having different amounts of gas to be introduced, or includes two or more types of bubble discharge nozzles having different opening areas.
  • the bubble discharge device 60 includes a bubble discharge device main body that generates bubbles of a certain size and a bubble shearing device provided above the bubble discharge device main body. You may make it mix from a large diameter coarse bubble to a small diameter fine bubble by dividing
  • the liquid injection nozzle 50 is comprised by the lower injection nozzle 51 and the upper injection nozzle 52, even if there is only one liquid injection nozzle 50, the effect of this invention is acquired. be able to. Even in this case, the bubbles are favorably pushed between the wafers in order from the small diameter bubbles from the lower layer to the upper layer of the wafer group W, and the same effect as described above can be obtained.
  • the pair of second liquid jet nozzles 70 and 70 are provided, but the effect of the present invention can be obtained even if there is only one second liquid jet nozzle 70. . Further, since the wafer can be easily lifted and peeled only by the liquid jet nozzle 50, the second liquid jet nozzle 70 is not necessarily provided, and even in this case, the effect of the present invention can be obtained.
  • Liquid tank 10 Lifting device 13, 14 Basket support member (loading table support member) 20 Belt conveyor (conveyor) 40 baskets DESCRIPTION OF SYMBOLS 50 Liquid jet nozzle 51 Lower jet nozzle 52 Upper jet nozzle 54 Liquid flow generator 60 Bubble discharge apparatus 62 Bubble generator 70 Second liquid jet nozzle

Abstract

This invention is provided with: a liquid flow injection nozzle (50) for laterally injecting a liquid flow towards a wafer group (W) comprising multiple wafers loaded horizontally as layers in a liquid tank and obtained by cutting a silicon ingot; and a bubble discharge device (60) for discharging bubbles below the liquid flow injection nozzle and between the liquid flow injection nozzle and the wafer group (W), and causing the bubbles to rise.

Description

ウェハ分離装置及びこれを用いたウェハの製造方法Wafer separation apparatus and wafer manufacturing method using the same
 本発明は、ウェハ分離装置及びこれを用いたウェハの製造方法に係り、シリコンインゴットを切断して枚葉化した多数枚のウェハを分離する技術に関する。 The present invention relates to a wafer separating apparatus and a wafer manufacturing method using the same, and to a technique for separating a plurality of wafers obtained by cutting a silicon ingot into pieces.
 近年、発電時の環境への影響を少なくするべく、自然エネルギを利用した発電技術が種々開発されており、太陽光発電もその一つである。
 太陽光発電には一般に太陽電池用シリコンウェハが使用され、太陽光発電の普及とともに太陽電池用シリコンウェハの需要が高まっている。
 太陽電池用シリコンウェハは、従来の半導体用シリコンウェハと同様に、シリコンインゴットをワイヤソーで薄板状に切断し、枚葉化することで製造される。
In recent years, various power generation technologies using natural energy have been developed to reduce the environmental impact during power generation, and solar power generation is one of them.
In general, silicon wafers for solar cells are used for solar power generation, and the demand for silicon wafers for solar cells is increasing with the spread of solar power generation.
Similar to conventional silicon wafers for semiconductors, solar cell silicon wafers are manufactured by cutting a silicon ingot into a thin plate with a wire saw and turning it into single sheets.
 ところで、シリコンインゴットを切断すると、切粉等がシリコンインゴットに付着していることから、例えば切断した直後の多数枚のウェハ群、或いは一旦枚葉化したウェハを立てた状態で並べた多数枚のウェハ群を液体の入った液槽に浸け、液体によって切粉等を洗い流すことが行われている。また、このような多数枚のウェハ群に対し、液体とともに微細気泡を用いて付着した切粉等を洗い流すことも種々行われている(特許文献1、2参照)。
 しかしながら、太陽電池用シリコンウェハは、半導体用シリコンウェハと同様に極力薄肉に製造するのが好ましい一方、受光面積が大きい方がよいことから一枚毎の外形寸法は大きく、それ故、液槽に浸けた後、液体で互いに密着したウェハを一枚ずつ剥離し分離しようとすると、面積に比例して密着力は大きいために分離し難く、ウェハが破損し易いという問題がある。
By the way, when the silicon ingot is cut, chips and the like are attached to the silicon ingot. For example, a large number of wafer groups immediately after being cut, or a large number of wafers arranged in a standing state after being cut into single wafers. A wafer group is immersed in a liquid tank containing a liquid, and chips and the like are washed away with the liquid. In addition, various types of wafers such as chips adhering to the liquid using fine bubbles are washed away (see Patent Documents 1 and 2).
However, while it is preferable to manufacture the silicon wafer for solar cells as thin as possible like the silicon wafer for semiconductors, it is preferable to have a large light receiving area. If the wafers that are in close contact with each other after being soaked are separated and separated one by one, there is a problem that the wafers are easily broken because the contact force is large in proportion to the area and the separation is difficult.
 そこで、枚葉化して立てた状態で並べたウェハ間に液槽の液体内において微細気泡を含ませ、これにより液体を通過した多数枚のウェハ群の分離性を高める装置が開発されている(特許文献3参照)。 In view of this, a device has been developed in which fine bubbles are included in the liquid in the liquid tank between wafers arranged in a single wafer, thereby improving the separability of multiple wafer groups that have passed the liquid ( (See Patent Document 3).
特開2003-100703号公報JP 2003-100703 A 特開2006-310456号公報JP 2006-310456 A WO2010/082567号WO2010 / 082567
 ところで、上記特許文献3に記載の装置では、立てた状態で並べたウェハ群を次工程に送る際、並べたウェハ群の全体を一旦横置きにして液面より上に出すようにし、この状態で最上位のウェハから順にウェハを搬送コンベアにローラで送り出すようにしている。
 しかしながら、このように縦置きに並べたウェハ群を横置きにして且つ液面より上に出すようにすると、特に下位のウェハ間では、含ませた微細気泡の多くがウェハの重みで外部に押し出されて放散してしまう可能性が高いという問題がある。この点について、上記特許文献1、2では搬送についての明確な記載はないが、特許文献3と同様の搬送が行われるとすれば同様の問題が起こり得る。
By the way, in the apparatus described in Patent Document 3, when the wafer group arranged in an upright state is sent to the next process, the entire arranged wafer group is once placed horizontally and placed above the liquid surface. Thus, the wafers are sequentially sent from the uppermost wafer to the conveyor by rollers.
However, when the vertically aligned wafer group is placed horizontally and placed above the liquid level, many of the included fine bubbles are pushed out to the outside due to the weight of the wafer, especially between lower wafers. There is a problem that there is a high possibility of being dissipated. In this regard, in Patent Documents 1 and 2 described above, there is no clear description of transport, but if the same transport as in Patent Document 3 is performed, the same problem may occur.
 このようにウェハ間の微細気泡が放散して減少してしまうと、結果的にウェハ同士の密着力が大きくなり、ウェハを十分に分離できなくなるおそれがあり、好ましいことではない。
 本発明はこのような問題点を解決するためになされたもので、その目的とするところは、シリコンインゴットを切断してなる多数枚のウェハ群を液体通過後に確実に一枚ずつのウェハに分離して次工程に供給可能なウェハ分離装置及びこれを用いたウェハの製造方法を提供することにある。
If the fine bubbles between the wafers are diffused and reduced as described above, the adhesion between the wafers increases as a result, and the wafers may not be sufficiently separated, which is not preferable.
The present invention has been made to solve such problems. The object of the present invention is to reliably separate a large number of wafer groups obtained by cutting a silicon ingot into individual wafers after passing a liquid. Then, it is providing the wafer separation apparatus which can be supplied to the following process, and the manufacturing method of a wafer using the same.
 上記目的を達成するため、請求項1のウェハ分離装置は、シリコンインゴットを切断してなる枚葉化した多数枚のウェハ群を横置きに層状に積載する積載台と、前記積載台を着脱可能に支持する積載台支持部材と、液体を収容した液槽と、前記積載台支持部材を少なくとも前記液槽内で昇降させる昇降装置と、前記液槽の上部開口部に位置して一端が液体に浸るように傾斜して設けられ、前記昇降装置により前記積載台支持部材とともに上昇した前記積載台に積載された前記ウェハ群を最上位層のウェハから順に前記一端にて搬送ベルトに吸引して他端へ搬送する搬送装置と、前記液槽内に液体に浸るように設けられ、前記積載台に横置きに層状に積載された前記ウェハ群に向けて横方向に液流を噴射する液流噴射ノズルと、前記液流噴射ノズルの下方に設けられ、前記液流噴射ノズルと前記ウェハ群との間を気泡が上昇するように該気泡を吐出させる気泡吐出装置とを備えることを特徴とする。 In order to achieve the above object, the wafer separating apparatus according to claim 1 is configured such that a plurality of wafer groups obtained by cutting a silicon ingot are stacked horizontally and stacked in layers, and the mounting table is detachable. A liquid tank containing liquid, a lifting device for raising and lowering the loading base support member in at least the liquid tank, and one end of the liquid tank located at the upper opening of the liquid tank. The wafer group loaded on the loading table, which is provided so as to be immersed and lifted together with the loading table support member by the lifting device, is sucked to the transport belt at the one end in order from the uppermost wafer. A liquid flow injection device configured to inject a liquid flow in a lateral direction toward the wafer group which is provided so as to be immersed in a liquid in the liquid tank and is horizontally placed on the loading table in a layered manner. Nozzle and said liquid jet Nozzle of provided below, characterized in that it comprises a bubble discharging device for discharging bubbles as bubble between the liquid flow injection nozzle and the wafer group is increased.
 請求項2のウェハ分離装置では、請求項1において、前記気泡吐出装置は、サイズの異なる気泡を吐出可能に構成されていることを特徴とする。
 請求項3のウェハ分離装置では、請求項1または2において、前記液流噴射ノズルは、ウェハ群に対し左右に配置され、該左右の液流噴射ノズルからそれぞれ前記ウェハ群に向けて噴射される液流同士が所定の夾角を有するよう設けられていることを特徴とする。
According to a second aspect of the present invention, there is provided the wafer separating apparatus according to the first aspect, wherein the bubble discharge device is configured to discharge bubbles having different sizes.
According to a third aspect of the present invention, there is provided the wafer separating apparatus according to the first or second aspect, wherein the liquid jet nozzles are arranged on the left and right with respect to the wafer group and jetted from the left and right liquid jet nozzles toward the wafer group, respectively. The liquid flows are provided so as to have a predetermined depression angle.
 請求項4のウェハ分離装置では、請求項1乃至3のいずれかにおいて、前記液流噴射ノズルは、前記ウェハ群のうち少なくとも中央層より上位層のウェハ群に向けて液流を噴射することを特徴とする。
 請求項5のウェハ分離装置では、請求項1乃至4のいずれかにおいて、前記液流噴射ノズルは、下側噴射ノズルと上側噴射ノズルの上下2段からなることを特徴とする。
 請求項6のウェハ分離装置では、請求項5において、前記下側噴射ノズルは、所定力以上の噴射強度で液流を噴射し、前記上側噴射ノズルは、所定力より小さい噴射強度で液流を噴射することを特徴とする。
According to a wafer separation apparatus of a fourth aspect, in any one of the first to third aspects, the liquid flow injection nozzle injects a liquid flow toward a wafer group higher than the central layer in the wafer group. Features.
According to a fifth aspect of the present invention, there is provided the wafer separating apparatus according to any one of the first to fourth aspects, wherein the liquid jet nozzle is composed of two upper and lower stages of a lower jet nozzle and an upper jet nozzle.
The wafer separating apparatus according to a sixth aspect of the present invention is the wafer separating apparatus according to the fifth aspect, wherein the lower injection nozzle injects a liquid flow with an injection intensity equal to or higher than a predetermined force, and the upper injection nozzle generates a liquid flow with an injection intensity lower than the predetermined force. It is characterized by spraying.
 請求項7のウェハ分離装置では、請求項5または6において、前記下側噴射ノズルは、破損し割れたウェハを吹き飛ばすことが可能な所定力以上の噴射強度で液流を噴射することを特徴とする。
 請求項8のウェハ分離装置では、請求項1乃至7のいずれかにおいて、前記液流噴射ノズルとは別に、前記液槽内に液体に浸るように設けられ、前記ウェハ群に向けて斜め上方向に液流を噴射する第2液流噴射ノズルを備えることを特徴とする。
The wafer separating apparatus according to claim 7 is characterized in that, in claim 5 or 6, the lower injection nozzle injects a liquid flow at an injection strength of a predetermined force or more capable of blowing off a broken and broken wafer. To do.
A wafer separation apparatus according to claim 8, wherein, in any one of claims 1 to 7, the liquid separation nozzle is provided so as to be immersed in a liquid in the liquid tank, and obliquely upward toward the wafer group. A second liquid flow injection nozzle for injecting a liquid flow is provided.
 請求項9のウェハ分離装置を用いたウェハの製造方法は、請求項1乃至8のいずれかに記載のウェハ分離装置を用いたウェハの製造方法であって、前記ウェハ群を前記積載台に横置きに層状に積載し、該積載台を前記積載台支持部材により支持し該積載台支持部材を前記液槽内で液体に通過させながら前記搬送装置に向けて前記昇降装置で上昇させ、前記液流噴射ノズルにより前記ウェハ群に向けて横方向に液流を噴射しつつ前記気泡吐出装置により前記液流噴射ノズルと前記ウェハ群との間を気泡が上昇するよう該気泡を吐出させることを特徴とする。 A wafer manufacturing method using the wafer separating apparatus according to claim 9 is a wafer manufacturing method using the wafer separating apparatus according to any one of claims 1 to 8, wherein the wafer group is placed horizontally on the loading table. The loading table is supported by the loading table support member, and the loading table support member is raised by the lifting device toward the transfer device while passing the liquid in the liquid tank. The bubbles are ejected so that the bubbles rise between the liquid jet nozzle and the wafer group by the bubble ejection device while jetting a liquid flow laterally toward the wafer group by the flow jet nozzle. And
 本発明の請求項1のウェハ分離装置によれば、シリコンインゴットを切断して横置きに層状に積載された多数枚のウェハ群に向けて横方向に液流を噴射する液流噴射ノズルを設け、液流噴射ノズルの下方に液流噴射ノズルとウェハ群との間に気泡を吐出させ上昇させる気泡吐出装置を設けるようにしたので、ウェハ群の各ウェハ間に気泡を液流で押し込み、容易にウェハを剥離し易いようにできる。従って、ウェハ群の液体通過後、ウェハを一枚ずつ確実に分離させて次工程に供給することができる。また、各ウェハ間に気泡を液流で押し込むことで、各ウェハの洗浄作用を促進することもできる。 According to the wafer separating apparatus of the first aspect of the present invention, there is provided a liquid flow injection nozzle for cutting a silicon ingot and injecting a liquid flow in a horizontal direction toward a plurality of wafers stacked horizontally in a layered manner. Since a bubble discharge device is provided below the liquid flow injection nozzle to discharge and raise bubbles between the liquid flow injection nozzle and the wafer group, it is easy to push the bubbles between each wafer in the wafer group with a liquid flow. The wafer can be easily peeled off. Therefore, after passing through the liquid in the wafer group, the wafers can be reliably separated one by one and supplied to the next process. Moreover, the cleaning action of each wafer can be promoted by pushing bubbles between the wafers in a liquid flow.
 請求項2のウェハ分離装置によれば、気泡吐出装置はサイズの異なる気泡を吐出可能に構成されているので、大径の粗いものから小径の細かいものまでサイズの異なる気泡を同時に発生させて混在させることができ、液流噴射ノズルによる液流により、自重によって各ウェハ間の隙間を広げ難いウェハ群の下位層の各ウェハ間には小径の細かい気泡を押し込み、各ウェハ間の隙間を広げ易い上位層の各ウェハ間には大径の粗い気泡を押し込むようにでき、より容易にウェハを剥離し易いようにできる。
 請求項3のウェハ分離装置によれば、液流噴射ノズルは左右に配置されるので、ウェハをさらに安定的に剥離し易くすることができ、ウェハの姿勢を安定させることができる。
According to the wafer separating apparatus of claim 2, since the bubble discharge device is configured to be able to discharge bubbles of different sizes, bubbles of different sizes are generated simultaneously from coarse ones having a large diameter to fine ones having a small diameter. It is easy to widen the gap between the wafers by pushing small bubbles between the wafers in the lower layers of the wafer group, which makes it difficult to widen the gap between the wafers by its own weight due to the liquid flow by the liquid jet nozzle. A large diameter coarse bubble can be pushed in between each upper layer wafer, and the wafer can be more easily peeled off.
According to the wafer separating apparatus of the third aspect, since the liquid jet nozzles are arranged on the left and right, the wafer can be more easily peeled off more stably and the posture of the wafer can be stabilized.
 請求項4のウェハ分離装置によれば、ウェハ群のうち少なくとも中央層より上位層のウェハ群に向けて液流を噴射するので、搬送装置に近い範囲において効率良く気泡をウェハ間に押し込むことができる。
 請求項5のウェハ分離装置によれば、液流噴射ノズルは下側噴射ノズルと上側噴射ノズルの上下2段からなるので、下側噴射ノズルから噴射される液流と上側噴射ノズルから噴射される液流とで噴射強度の調整及び数値管理を行うことができる。
According to the wafer separating apparatus of the fourth aspect, since the liquid flow is ejected toward at least the wafer group higher than the center layer in the wafer group, bubbles can be efficiently pushed between the wafers in a range close to the transfer device. it can.
According to the wafer separating apparatus of the fifth aspect, since the liquid flow injection nozzle is composed of the upper and lower stages of the lower injection nozzle and the upper injection nozzle, the liquid flow injected from the lower injection nozzle and the upper injection nozzle are injected. The injection strength can be adjusted and numerical control can be performed with the liquid flow.
 請求項6のウェハ分離装置によれば、下側噴射ノズルは所定力以上の噴射強度で液流を噴射し、前記上側噴射ノズルは所定力より小さい噴射強度で液流を噴射するので、下側噴射ノズルからの強い液流によってウェハ群の各ウェハ間に先ず隙間を形成でき、上側噴射ノズル52から噴射される緩やかな液流によって、気泡を上記形成された各ウェハ間の隙間に押し込んで均一に整え、各ウェハ間の隙間を徐々に拡大するようにできる。
 請求項7のウェハ分離装置によれば、下側噴射ノズルにより破損し割れたウェハを吹き飛ばして排除することができるので、ジャミングによって装置が停止することを防止でき、装置の稼働率を向上させることができる。
According to the wafer separating apparatus of the sixth aspect, the lower injection nozzle injects the liquid flow with an injection strength greater than or equal to a predetermined force, and the upper injection nozzle injects the liquid flow with an injection intensity lower than the predetermined force. First, a gap can be formed between each wafer of the wafer group by a strong liquid flow from the injection nozzle, and bubbles are pushed into the gap between the formed wafers uniformly by a gentle liquid flow injected from the upper injection nozzle 52. The gap between each wafer can be gradually enlarged.
According to the wafer separating apparatus of the seventh aspect, since the wafer broken and broken by the lower injection nozzle can be blown away, it is possible to prevent the apparatus from being stopped by jamming and to improve the operating rate of the apparatus. Can do.
 請求項8のウェハ分離装置によれば、液流噴射ノズルとは別にウェハ群に向けて斜め上方向に液流を噴射する第2液流噴射ノズルを備えるので、第2液流噴射ノズルから噴射される液流によりウェハ群の最上位置のウェハを斜めに浮かせながら極めて滑らかに剥離させて傾斜した搬送装置にスムーズに受け渡すようにでき、より一層確実にウェハを分離させることができる。
 請求項9のウェハ分離装置を用いたウェハの製造方法によれば、搬送装置に向けて昇降装置で積載台を上昇させる間に、積載台に積載されたウェハ群の各ウェハ間に気泡を液流で押し込むようにでき、容易にウェハを剥離し易いようにできる。従って、ウェハ群の液体通過後、ウェハを一枚ずつ確実に分離させて次工程に供給することができる。また、各ウェハ間に気泡を液流で押し込むことで、各ウェハの洗浄作用を促進することもできる。
According to the wafer separating apparatus of the eighth aspect, since the second liquid flow injection nozzle for injecting the liquid flow obliquely upward toward the wafer group is provided separately from the liquid flow injection nozzle, the second liquid flow injection nozzle is used for injection. The uppermost wafer of the wafer group is lifted obliquely by the liquid flow so as to be peeled off very smoothly and smoothly transferred to the inclined transfer device, so that the wafers can be separated more reliably.
According to the method for manufacturing a wafer using the wafer separating apparatus according to claim 9, bubbles are liquefied between the wafers of the wafer group loaded on the loading table while the loading table is raised by the lifting device toward the transfer device. The wafer can be pushed in by a flow, and the wafer can be easily peeled off. Therefore, after passing through the liquid in the wafer group, the wafers can be reliably separated one by one and supplied to the next process. Moreover, the cleaning action of each wafer can be promoted by pushing bubbles between the wafers in a liquid flow.
本発明に係るウェハ分離装置の全体構成を示すウェハ分離装置の正面図である。1 is a front view of a wafer separating apparatus showing an overall configuration of the wafer separating apparatus according to the present invention. 図1の矢視A方向から視たウェハ分離装置の側面図である。It is a side view of the wafer separation apparatus seen from the arrow A direction of FIG. 図1のB-B線に沿うウェハ分離装置の平断面図である。FIG. 2 is a plan sectional view of the wafer separating apparatus along the line BB in FIG. 1. 図3のC部拡大図である。It is the C section enlarged view of FIG. バスケットの平面図である。It is a top view of a basket. バスケットの正面図である。It is a front view of a basket. バスケットの側面図である。It is a side view of a basket. 流噴射ノズルと気泡吐出装置とバスケットに載置されたウェハ群とを拡大して示す模式図である。It is a schematic diagram which expands and shows a flow injection nozzle, a bubble discharge device, and a wafer group placed on a basket. 第2液流噴射ノズルと第1コンベアとバスケットに載置されたウェハ群とを拡大して示す模式図である。It is a schematic diagram which expands and shows the 2nd liquid-flow injection nozzle, the 1st conveyor, and the wafer group mounted in the basket. 本発明の他の実施形態を示す図である。It is a figure which shows other embodiment of this invention.
 以下、図面に基づき本発明の実施形態について説明する。
 図1は本発明に係るウェハ分離装置の全体構成を示すウェハ分離装置の正面図であり、図2は図1の矢視A方向から視たウェハ分離装置の側面図であり、図3は図1のB-B線に沿うウェハ分離装置の平断面図であり、図4は図3のC部拡大図である。
 本発明に係るウェハ分離装置は、シリコンインゴットを切断して層状に積載した多数枚のウェハ群を液体洗浄した後、ウェハを一枚ずつに分離して次工程に供給するための装置であり、図1に示すように、大きくは、洗浄液の収容された液槽2と、多数枚のウェハ群Wを液槽2内で昇降させる昇降装置10と、昇降装置10で上昇したウェハ群Wを最上位置のウェハから順に搬送するベルトコンベア(搬送装置)20と、昇降装置10で昇降するウェハ群Wを貯留しておく貯留装置30とから構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view of a wafer separating apparatus showing the overall configuration of the wafer separating apparatus according to the present invention, FIG. 2 is a side view of the wafer separating apparatus viewed from the direction of arrow A in FIG. 1, and FIG. FIG. 4 is a plan sectional view of the wafer separating apparatus taken along line BB in FIG. 1, and FIG. 4 is an enlarged view of part C in FIG.
The wafer separating apparatus according to the present invention is an apparatus for cutting a silicon ingot and laminating a plurality of wafers stacked in layers, and then separating the wafers one by one and supplying them to the next process. As shown in FIG. 1, roughly, a liquid tank 2 in which a cleaning liquid is stored, an elevating device 10 that moves up and down a large number of wafer groups W in the liquid tank 2, and a wafer group W that has been raised by the elevating apparatus 10 are arranged at the top. The belt conveyor (conveyance device) 20 conveys the wafers in order from the wafer at the position, and the storage device 30 that stores the wafer group W that is moved up and down by the lifting device 10.
 液槽2内に収容された洗浄液は、例えば水(水道水、純水等)であり、これによりシリコンインゴットの切断時に発生しウェハに付着した切粉等を洗い流すことが可能である。液槽2には、洗浄液の汚れを検知する汚れセンサ3が設けられており、この汚れセンサ3からの情報に基づき洗浄液の汚れの度合いを監視することができる。
 ここでは、ウェハ群Wは規格が統一されたバスケット(積載台)40に横置きに層状に積載されている。詳しくは、ウェハ群Wは周縁が切除されて四角形状に加工されており、図4及び図5にバスケット40の平面図を示し、図6にバスケット40の正面図を示し、図7にバスケット40の側面図を示すように、バスケット40はウェハ群Wの積載方向に延びる右側壁41、左側壁42及び後部側壁43を有し、四角形状のウェハ群Wを適切に位置決め可能であるとともに、一側方及び上方が開放されるように規格が統一されている。これによりウェハ群Wを一側方及び上方からバスケット40に投入できるとともに、バスケット40に積載されたウェハ群Wに対し一側方及び上方からアプローチすることが可能である。また、バスケット40には、右側取っ手44及び左側取っ手45も設けられている。
The cleaning liquid stored in the liquid tank 2 is, for example, water (tap water, pure water, etc.), and it is possible to wash away the chips generated on the silicon ingot and adhered to the wafer. The liquid tank 2 is provided with a dirt sensor 3 for detecting the dirt of the cleaning liquid. Based on information from the dirt sensor 3, the degree of dirt of the cleaning liquid can be monitored.
Here, the wafer group W is stacked horizontally in a layered manner on a basket (loading table) 40 having a unified standard. Specifically, the wafer group W is processed into a quadrangular shape with the periphery cut off, and FIGS. 4 and 5 show a plan view of the basket 40, FIG. 6 shows a front view of the basket 40, and FIG. As shown in the side view, the basket 40 has a right side wall 41, a left side wall 42, and a rear side wall 43 extending in the stacking direction of the wafer group W, and can position the square wafer group W appropriately. Standards are unified so that the sides and top are open. Thus, the wafer group W can be loaded into the basket 40 from one side and from above, and the wafer group W loaded on the basket 40 can be approached from one side and from above. The basket 40 is also provided with a right handle 44 and a left handle 45.
 より詳しくは、右側壁41は比較的広い幅の板部材からなる一方、左側壁42は右側壁41の幅よりも狭い幅(例えば、右側壁41の幅の約半分の寸法)の部材からなり、上記開放された一側方寄りに配置されている。また、後部側壁43は左側壁42の幅よりもさらに狭い幅(例えば、左側壁42の幅の約半分の寸法)の部材からなり、右側方寄りに配置されている。即ち、左側壁42と後部側壁43とは、左側壁42と後部側壁43との間隔が右側壁41と後部側壁43との間隔よりも十分に広くなるように配置されている。さらに、右側取っ手44は逆U字状の棒部材で構成されている一方、左側取っ手45は後方が開放されたF字状の棒部材で構成されている。
 このように左側壁42と後部側壁43との間隔が広くされ、左側取っ手45の後方が開放されていることにより、図中矢印で方向を示し詳しくは後述するように、破損したウェハをこの開放空間を通過させて排除することが可能である。
More specifically, the right side wall 41 is made of a plate member having a relatively wide width, while the left side wall 42 is made of a member having a width narrower than the width of the right side wall 41 (for example, about half the width of the right side wall 41). , Arranged on one side of the opened side. Further, the rear side wall 43 is made of a member having a width narrower than the width of the left side wall 42 (for example, approximately half the width of the left side wall 42), and is arranged on the right side. That is, the left side wall 42 and the rear side wall 43 are arranged such that the distance between the left side wall 42 and the rear side wall 43 is sufficiently larger than the distance between the right side wall 41 and the rear side wall 43. Further, the right handle 44 is composed of an inverted U-shaped bar member, while the left handle 45 is composed of an F-shaped bar member whose rear is opened.
In this way, the space between the left side wall 42 and the rear side wall 43 is widened, and the rear side of the left side handle 45 is opened, so that the broken wafer is opened as shown in the direction of the arrow in the figure and described in detail later. It is possible to eliminate by passing through the space.
 昇降装置10は、図2に示すように、左右一対の昇降ユニット11、12からなり、左右一対の昇降ユニット11、12の各々がウェハ群Wの積載されたバスケット40を昇降可能である。昇降ユニット11、12は、例えばステッピングモータでボールねじを回転させることで昇降可能である。詳しくは、昇降ユニット11、12には昇降ユニット11、12と一体にバスケット支持部材(積載台支持部材)13、14が設けられており、昇降ユニット11、12は、バスケット支持部材13、14上にバスケット40を支持し、バスケット40ごとウェハ群Wをそれぞれ独立して昇降可能である。 As shown in FIG. 2, the elevating device 10 includes a pair of left and right elevating units 11, 12, and each of the pair of left and right elevating units 11, 12 can elevate the basket 40 on which the wafer group W is loaded. The elevating units 11 and 12 can be raised and lowered by rotating a ball screw with a stepping motor, for example. Specifically, the lifting units 11 and 12 are provided with basket support members (loading table support members) 13 and 14 integrally with the lifting units 11 and 12, and the lifting units 11 and 12 are provided on the basket support members 13 and 14. The basket 40 is supported on the wafer group W, and the wafer group W together with the basket 40 can be moved up and down independently.
 また、昇降装置10には昇降ユニット11、12をそれぞれ貯留装置30側からベルトコンベア20側へ或いはその逆方向へ独立して移動させることが可能にスライドユニット15、16も設けられている。スライドユニット15、16も、例えばステッピングモータでボールねじを回転させることで作動可能である。
 これにより、昇降ユニット11、12は、図1に矢印で動きを示すように、バスケット40ごとウェハ群Wを液槽2内でそれぞれ独立して2軸方向に移動させることが可能である。
Further, the elevating device 10 is also provided with slide units 15 and 16 so that the elevating units 11 and 12 can be independently moved from the storage device 30 side to the belt conveyor 20 side or in the opposite direction. The slide units 15 and 16 can also be operated by rotating a ball screw with a stepping motor, for example.
As a result, the elevating units 11 and 12 can move the wafer group W together with the basket 40 in the liquid tank 2 independently in the biaxial directions as indicated by the arrows in FIG.
 ベルトコンベア20は、第1コンベア21と第2コンベア22とから構成されている。第1コンベア21は、一対の無端状のベルトが走行し、一対の無端状のベルトの間に一端から所定範囲に亘ってバキュームユニット23が設けられ、一端が液体に浸るように水平に対し所定の角度(0°より大)をもって傾斜して構成されている。これにより、第1コンベア21は、液体内でバキュームユニット23によりウェハ群Wの最上位置のウェハを吸引してベルトに押し付けて搬送し、他端において第2コンベア22に受け渡すことが可能である。
 なお、液槽2には、バスケット40に積載したウェハ群Wの最上位置のウェハが第1コンベア21の一端の近傍となるように最上位置のウェハの高さ位置を検知する最上位置センサ4が設けられている。最上位置センサ4としては例えば光電センサが採用される。これにより、第1コンベア21はウェハ群Wの最上位置のウェハをバキュームユニット23によって良好に吸引可能である。
 そして、第2コンベア22は、同様に一対の無端状のベルトが走行するよう傾斜して構成されており、第1コンベア21から受け取ったウェハをさらに次工程に搬送することが可能である。
The belt conveyor 20 includes a first conveyor 21 and a second conveyor 22. The first conveyor 21 travels in a pair of endless belts, a vacuum unit 23 is provided from one end to a predetermined range between the pair of endless belts, and one end is predetermined with respect to the horizontal so that one end is immersed in the liquid. Inclined at an angle of (greater than 0 °). As a result, the first conveyor 21 can suck the wafer at the uppermost position of the wafer group W in the liquid by the vacuum unit 23, press the wafer against the belt, and transfer it to the second conveyor 22 at the other end. .
The liquid tank 2 has an uppermost position sensor 4 for detecting the height position of the uppermost wafer so that the uppermost wafer of the wafer group W loaded on the basket 40 is in the vicinity of one end of the first conveyor 21. Is provided. For example, a photoelectric sensor is employed as the uppermost position sensor 4. As a result, the first conveyor 21 can satisfactorily suck the wafer at the uppermost position of the wafer group W by the vacuum unit 23.
Similarly, the second conveyor 22 is inclined so that a pair of endless belts travel, and the wafer received from the first conveyor 21 can be further transferred to the next process.
 貯留装置30は、バスケット40を支持する複数のL字状の腕部材32が懸架された回転盤31をステッピングモータ33で回転可能に構成されている。詳しくは、図3に示すように、腕部材32は、例えば6個からなり、バスケット40の開放された一側方が放射状にして外方を向くようにして60°毎の等間隔に配設されている。
 そして、本発明に係るウェハ分離装置では、図1~図4に示すように、バスケット40の開放された一側方に離間して位置するようにして、液流噴射ノズル50が設けられている。
The storage device 30 is configured such that a stepping motor 33 can rotate a turntable 31 on which a plurality of L-shaped arm members 32 that support the basket 40 are suspended. Specifically, as shown in FIG. 3, the arm members 32 are, for example, six pieces, and are arranged at equal intervals of 60 ° so that one side of the basket 40 that is opened is radiated and faces outward. Has been.
In the wafer separating apparatus according to the present invention, as shown in FIGS. 1 to 4, a liquid jet nozzle 50 is provided so as to be spaced apart from the opened side of the basket 40. .
 液流噴射ノズル50は、下側噴射ノズル51と上側噴射ノズル52の上下2段からなり、それぞれバスケット40に積載されたウェハ群Wの一側方の面に向けて横方向から液流を噴射するように構成されている。これら下側噴射ノズル51及び上側噴射ノズル52は液流発生装置54に接続されている。実際には、図3、図4に示すように、下側噴射ノズル51及び上側噴射ノズル52は、ウェハ群Wの中央層より上位層のウェハ群Wに対し、四角形状のウェハ群Wの一側方の一方の角部に向けて斜めに液流を噴射するように配設されている。
 詳しくは、下側噴射ノズル51は、所定力以上の噴射強度で液流を強く噴射するように設定されており、一方上側噴射ノズル52は、噴射口が上下方向に広がり、所定力よりも小さい噴射強度で緩やかに液流を噴射するように設定されている。
The liquid jet nozzle 50 is composed of upper and lower two stages of a lower jet nozzle 51 and an upper jet nozzle 52, and jets a liquid flow from the lateral direction toward one side surface of the wafer group W loaded on the basket 40, respectively. Is configured to do. The lower injection nozzle 51 and the upper injection nozzle 52 are connected to a liquid flow generator 54. Actually, as shown in FIGS. 3 and 4, the lower injection nozzle 51 and the upper injection nozzle 52 are provided in one of the rectangular wafer groups W with respect to the wafer group W higher than the central layer of the wafer group W. The liquid flow is arranged to be ejected obliquely toward one side corner.
Specifically, the lower injection nozzle 51 is set so as to strongly inject a liquid flow with an injection intensity equal to or higher than a predetermined force, while the upper injection nozzle 52 has an injection port extending in the vertical direction and smaller than the predetermined force. The liquid flow is set to be jetted gently at the jetting intensity.
 さらに、液流噴射ノズル50の下方には、液流噴射ノズル50とウェハ群Wとの間を気泡が上昇するように該気泡を吐出させる気泡吐出装置60が設けられている。気泡吐出装置60は気泡発生装置62に接続されている。詳しくは、気泡吐出装置60は、同時に異なるサイズの気泡を発生することが可能に構成されている。例えば、気泡吐出装置60は、導入する気体の量が異なる2種類以上の気泡吐出装置を合わせて構成されている。これにより、気泡吐出装置60は、大径の粗いもの(例えば、最大直径0.3mm以上2mm以下)から小径の細かいもの(例えば、最大直径0.03mm以上0.3mm未満)までサイズの異なる気泡を同時に発生させて混在させることが可能である。また、例えば、気泡吐出装置60は、一つの気泡吐出装置に開口面積の異なる2種類以上の気泡吐出ノズルを備えて構成されていてもよい。このようにしても、気泡吐出装置60は、大径の粗いものから小径の細かいものまでサイズの異なる気泡を各気泡吐出ノズルから同時に発生させて混在させることが可能である。 Further, below the liquid jet nozzle 50, there is provided a bubble discharge device 60 for discharging the bubbles so that the bubbles rise between the liquid jet nozzle 50 and the wafer group W. The bubble discharge device 60 is connected to the bubble generation device 62. Specifically, the bubble discharge device 60 is configured to be able to generate bubbles of different sizes at the same time. For example, the bubble discharge device 60 is configured by combining two or more types of bubble discharge devices with different amounts of gas to be introduced. As a result, the bubble discharge device 60 is a bubble having a different size from a coarse one having a large diameter (for example, a maximum diameter of 0.3 mm to 2 mm) to a fine one having a small diameter (for example, a maximum diameter of 0.03 mm to less than 0.3 mm). Can be generated and mixed at the same time. Further, for example, the bubble discharge device 60 may be configured to include two or more types of bubble discharge nozzles having different opening areas in one bubble discharge device. Even in this case, the bubble discharge device 60 can simultaneously generate and mix bubbles having different sizes from a coarser one with a large diameter to a fine one with a small diameter from each bubble discharge nozzle.
 また、液流噴射ノズル50とは別に、バスケット40に積載されたウェハ群Wの一側方の面に向けて斜め上方向に液流を噴射するよう、一対の第2液流噴射ノズル70、70が設けられている。一対の第2液流噴射ノズル70、70も上記液流発生装置54に接続されている。
 なお、図示していないが、ウェハ分離装置は、制御装置を備えており、昇降装置10、ベルトコンベア20、貯留装置30、液流発生装置54及び気泡発生装置62は、汚れセンサ3、最上位置センサ4等のセンサ類からの出力信号に基づき、制御装置によって適宜作動制御される。
 以下、このように構成された本発明に係るウェハ分離装置の作用、即ち本発明に係るウェハ分離装置を用いたウェハの製造方法について説明する。
In addition to the liquid flow injection nozzle 50, a pair of second liquid flow injection nozzles 70, so as to inject a liquid flow obliquely upward toward one side surface of the wafer group W loaded on the basket 40, 70 is provided. A pair of second liquid flow jet nozzles 70, 70 are also connected to the liquid flow generator 54.
Although not shown, the wafer separation device includes a control device, and the lifting device 10, the belt conveyor 20, the storage device 30, the liquid flow generation device 54, and the bubble generation device 62 are the contamination sensor 3, the uppermost position. Based on output signals from sensors such as the sensor 4, the operation is appropriately controlled by a control device.
Hereinafter, the operation of the wafer separating apparatus according to the present invention configured as described above, that is, a wafer manufacturing method using the wafer separating apparatus according to the present invention will be described.
 作業者によってウェハ群Wがバスケット40に積載されると、ウェハ群Wの積載されたバスケット40は、作業者が取っ手44、45を持って運ぶことで、貯留装置30のL字状の腕部材32に載置される。
 貯留装置30は、図3に示す位置に腕部材32が60°ずつ矢印方向に回転して停止するよう構成されており、腕部材32が停止した状態で、昇降装置10の昇降ユニット11及び昇降ユニット12が、腕部材32に載置されたバスケット40を交互に受け取るように作動する。これにより、バスケット40がそれぞれ昇降ユニット11のバスケット支持部材13、昇降ユニット12のバスケット支持部材14に順次支持される。
When the wafer group W is loaded on the basket 40 by an operator, the basket 40 loaded with the wafer group W is carried by the operator with the handles 44 and 45 so that the L-shaped arm member of the storage device 30 is transported. 32.
The storage device 30 is configured such that the arm member 32 rotates and stops in the direction of the arrow by 60 ° at the position shown in FIG. 3, and with the arm member 32 stopped, the elevating unit 11 and the elevating unit 11 of the elevating device 10 are stopped. The unit 12 operates to alternately receive the baskets 40 placed on the arm members 32. Thereby, the basket 40 is sequentially supported by the basket support member 13 of the lift unit 11 and the basket support member 14 of the lift unit 12, respectively.
 バスケット40を受け取った昇降ユニット11及び昇降ユニット12は、スライドユニット15、16の作動と相俟って、当該バスケット40を液体内で図1中に矢印で示すように移動させ、ウェハ群Wを洗浄しながら、最上位置センサ4からの情報に基づきウェハ群Wの最上位置のウェハの高さ位置が第1コンベア21の一端の近傍となるようにバスケット40を位置させる。
 これにより、ウェハ群Wの最上位置のウェハが順次バキュームユニット23により吸引され、第1コンベア21によって第2コンベア22に搬送される。
 ところで、ウェハ群Wの最上位置のウェハが第1コンベア21の一端の近傍となるようにバスケット40が位置しているとき、気泡吐出装置60からは気泡が大径の粗いものから小径の細かいものまで混在して吐出されており、当該気泡は液流噴射ノズル50とウェハ群Wとの間を上昇している。また、このとき、液流噴射ノズル50からは、液流がウェハ群Wに向けて噴射されている。
The elevating unit 11 and the elevating unit 12 that have received the basket 40 move the basket 40 in the liquid as indicated by an arrow in FIG. While cleaning, the basket 40 is positioned so that the height position of the uppermost wafer in the wafer group W is in the vicinity of one end of the first conveyor 21 based on information from the uppermost position sensor 4.
As a result, the wafer at the uppermost position of the wafer group W is sequentially sucked by the vacuum unit 23 and transferred to the second conveyor 22 by the first conveyor 21.
By the way, when the basket 40 is positioned such that the uppermost wafer of the wafer group W is in the vicinity of one end of the first conveyor 21, the bubbles are discharged from the bubble discharging device 60 from a large diameter to a small diameter. The bubbles are discharged in a mixed manner, and the bubbles rise between the liquid jet nozzle 50 and the wafer group W. At this time, the liquid flow is jetted from the liquid jet nozzle 50 toward the wafer group W.
 図8を参照すると、液流噴射ノズル50と気泡吐出装置60とバスケット40に載置されたウェハ群Wとが拡大して模式的に示されており、気泡及び液流噴射ノズル50から噴射される液流の作用について同図に基づき詳細に説明する。
 同図に示すように、気泡が液流噴射ノズル50とウェハ群Wとの間を上昇し、液流噴射ノズル50である下側噴射ノズル51と上側噴射ノズル52から液流が矢印のようにウェハ群Wに向けて噴射されていると、気泡Pが液流によってウェハ群Wの各ウェハ間に押し込まれる。詳しくは、ウェハ群Wは、上位層では液流によって各ウェハ間の隙間を広げ易い一方、液中であっても下位層になるほど自重によって各ウェハ間の隙間を広げ難いことから、下位層側の各ウェハ間には下側噴射ノズル51からの液流によって小径の細かい気泡Pが最も細かいものから順に優先的に押し込まれ、上位層の各ウェハ間には上側噴射ノズル52からの液流によって比較的大径の粗い気泡Pが押し込まれることとなる。
 この際、噴射ノズルが下側噴射ノズル51と上側噴射ノズル52の上下2段から構成されているので、下側噴射ノズル51から噴射される液流と上側噴射ノズル52から噴射される液流とによって噴射強度の調整及び数値管理を行うことができる。
Referring to FIG. 8, the liquid jet nozzle 50, the bubble discharge device 60, and the wafer group W placed on the basket 40 are schematically shown in an enlarged manner, and are jetted from the bubbles and the liquid jet nozzle 50. The action of the liquid flow will be described in detail with reference to FIG.
As shown in the figure, the bubbles rise between the liquid jet nozzle 50 and the wafer group W, and the liquid flow from the lower jet nozzle 51 and the upper jet nozzle 52 which are the liquid jet nozzles 50 as indicated by arrows. When sprayed toward the wafer group W, the bubbles P are pushed between the wafers in the wafer group W by the liquid flow. Specifically, the wafer group W is easy to widen the gap between the wafers by the liquid flow in the upper layer, but it is difficult to widen the gap between the wafers by its own weight as it becomes the lower layer even in the liquid. The small diameter bubbles P are preferentially pushed in between the wafers by the liquid flow from the lower injection nozzle 51 in order from the finest, and the liquid flow from the upper injection nozzle 52 is inserted between the wafers of the upper layer. A relatively large diameter coarse bubble P is pushed in.
At this time, since the injection nozzle is composed of upper and lower two stages of the lower injection nozzle 51 and the upper injection nozzle 52, the liquid flow injected from the lower injection nozzle 51 and the liquid flow injected from the upper injection nozzle 52 Thus, adjustment of the injection intensity and numerical management can be performed.
 下側噴射ノズル51から噴射される液流は所定力以上の噴射強度で強く液流を噴射するように設定されている。これにより、下側噴射ノズル51からの液流によってウェハ群Wの各ウェハ間に隙間が形成され易く、小径の細かい気泡Pが各ウェハ間に良好に押し込まれる。
 特に、ここでは、下側噴射ノズル51から噴射される液流は、破損し割れたウェハを吹き飛ばすことが可能な所定力以上の噴射強度に設定されている。従って、このとき破損したウェハがあると、このように破損して分割されたウェハは、もはや右側壁41、左側壁42及び後部側壁43によって規制されず、下側噴射ノズル51から噴射される液流によって左側壁42と後部側壁43及び左側取っ手45の後方の開放された空間を通って後方に吹き飛ばされ、排除される。このように、破損したウェハを容易に排除できることで、ジャミングによって装置が停止することが防止され、装置の稼働率を向上させることができる。
The liquid flow injected from the lower injection nozzle 51 is set so as to strongly inject the liquid flow with an injection intensity equal to or greater than a predetermined force. Accordingly, a gap is easily formed between the wafers of the wafer group W by the liquid flow from the lower injection nozzle 51, and the small-sized fine bubbles P are favorably pushed between the wafers.
In particular, here, the liquid flow injected from the lower injection nozzle 51 is set to an injection strength that is equal to or higher than a predetermined force capable of blowing off a damaged and broken wafer. Therefore, if there is a damaged wafer at this time, the wafer thus broken and divided is no longer regulated by the right side wall 41, the left side wall 42, and the rear side wall 43, and the liquid jetted from the lower jet nozzle 51. The air is blown out rearward through the open space behind the left side wall 42, the rear side wall 43 and the left side handle 45, and is eliminated. Thus, since the damaged wafer can be easily removed, it is possible to prevent the apparatus from being stopped due to jamming, and to improve the operation rate of the apparatus.
 一方、上側噴射ノズル52から噴射される液流は所定力よりも小さい噴射強度で液流を噴射するように設定されている。このような上側噴射ノズル52から噴射される緩い液流によっても、ウェハ群Wの上位層では、上述したように各ウェハ間に下位層よりも広い隙間が形成され易く、また各ウェハ間には先に小径の細かい気泡Pが押し込まれているため、大径の粗い気泡Pが下側噴射ノズル51からの液流によって形成された各ウェハ間の隙間に良好に押し込まれて均一に整えられ、各ウェハ間の隙間が徐々に拡大される。
 特に、下側噴射ノズル51及び上側噴射ノズル52は、ウェハ群Wのうち少なくとも中央層より上位層のウェハ群Wに向けて液流を噴射するので、第1コンベア21に近い範囲において効率良く気泡Pをウェハ間に押し込むことができる。
On the other hand, the liquid flow injected from the upper injection nozzle 52 is set to inject the liquid flow with an injection strength smaller than a predetermined force. Even by such a gentle liquid flow injected from the upper injection nozzle 52, a gap larger than that of the lower layer is easily formed between the wafers in the upper layer of the wafer group W as described above. Since the small-sized fine bubbles P are pushed in first, the large-sized coarse bubbles P are well pushed into the gaps between the wafers formed by the liquid flow from the lower injection nozzle 51 and are evenly arranged. The gap between each wafer is gradually enlarged.
In particular, since the lower injection nozzle 51 and the upper injection nozzle 52 inject the liquid flow toward the wafer group W that is at least higher than the center layer in the wafer group W, the bubbles are efficiently produced in a range close to the first conveyor 21. P can be pushed between the wafers.
 このように各ウェハ間の隙間に気泡Pが十分に押し込まれることで、ウェハを気泡Pの存在により浮かせて剥離し易い状態にできる。これにより、最上位置のウェハを滑らかに剥離させてバキュームユニット23の吸引によりベルトに押し付けるようにでき、ウェハを一枚ずつ確実に分離させて次工程に搬送することができる。
 図9を参照すると、第2液流噴射ノズル70と第1コンベア21とバスケット40に載置されたウェハ群Wとが拡大して模式的に示されており、第2液流噴射ノズル70から噴射される液流の作用について同図に基づき詳細に説明する。
As described above, the bubbles P are sufficiently pushed into the gaps between the wafers, so that the wafer can be lifted by the presence of the bubbles P and easily peeled off. As a result, the uppermost wafer can be smoothly peeled off and pressed against the belt by suction of the vacuum unit 23, and the wafers can be reliably separated one by one and transported to the next process.
Referring to FIG. 9, the second liquid jet nozzle 70, the first conveyor 21, and the wafer group W placed on the basket 40 are schematically shown in an enlarged manner. The action of the jetted liquid flow will be described in detail with reference to FIG.
 上述の如く各ウェハ間の隙間に気泡Pが押し込まれた状態では、ウェハは各ウェハ間の隙間に気泡Pが存在していることで剥離し易くなっていることから、この状態で第2液流噴射ノズル70から液流が斜め上方向に向けて噴射されると、第2液流噴射ノズル70からの液流によって、ウェハは第2液流噴射ノズル70側で大きく剥離し、即ちウェハは0°より大きな仰角をもって第2液流噴射ノズル70側が高くなるように傾斜する。この際、第1コンベア21は一端が液体に浸るように水平に対し所定の角度(0°より大)をもって傾斜していることから、ウェハは容易にして傾斜した第1コンベア21のベルトに沿うよう接近する。これにより、ウェハ群Wの最上位置のウェハだけがバキュームユニット23によりスムーズに吸引されてベルトに押し付けられ、第1コンベア21によって順次第2コンベア22に搬送される。 In the state where the bubbles P are pushed into the gaps between the wafers as described above, the wafers are easy to peel off due to the presence of the bubbles P in the gaps between the wafers. When the liquid flow is jetted obliquely upward from the flow jet nozzle 70, the wafer is largely separated on the second liquid jet nozzle 70 side by the liquid flow from the second liquid jet nozzle 70, that is, the wafer is It inclines so that the 2nd liquid-flow injection nozzle 70 side may become high with an elevation angle larger than 0 degree. At this time, since the first conveyor 21 is inclined at a predetermined angle (greater than 0 °) with respect to the horizontal so that one end is immersed in the liquid, the wafer easily follows the inclined belt of the first conveyor 21. So close. Thereby, only the wafer at the uppermost position of the wafer group W is smoothly sucked by the vacuum unit 23 and pressed against the belt, and is sequentially transferred to the second conveyor 22 by the first conveyor 21.
 即ち、最上位置のウェハと直下のウェハとの隙間に上側噴射ノズル52から噴射された液流によって押し込まれた大径の粗い気泡Pが多く存在していることで、第2液流噴射ノズル70から噴射される液流により、最上位置のウェハをさらに浮かせて極めて滑らかに剥離させてバキュームユニット23の吸引によりベルトに押し付けるようにでき、ウェハを一枚ずつより一層確実に分離させて次工程に搬送することができる。
 また、下側噴射ノズル51及び上側噴射ノズル52により液流を噴射して各ウェハ間に気泡Pを押し込むことにより、各ウェハの洗浄作用を促進することもできる。
 なお、ウェハが第1コンベア21に受け渡される毎に、最上位置センサ4からの情報に基づき昇降ユニット11及び昇降ユニット12を作動させてバスケット40をウェハの厚み分上昇させるようにする。これにより、ウェハ群Wの最上位置のウェハの位置を常に第1コンベア21の一端の近傍位置に維持させることができる。
That is, since there are many large-diameter coarse bubbles P pushed by the liquid flow injected from the upper injection nozzle 52 in the gap between the uppermost wafer and the wafer immediately below, the second liquid injection nozzle 70. The uppermost wafer is further floated and peeled off very smoothly by the liquid flow ejected from the wafer, and pressed against the belt by suction of the vacuum unit 23, and the wafers are separated more reliably one by one for the next process. Can be transported.
Further, the cleaning action of each wafer can be promoted by injecting the liquid flow by the lower injection nozzle 51 and the upper injection nozzle 52 and pushing the bubbles P between the wafers.
Each time the wafer is delivered to the first conveyor 21, the lifting unit 11 and the lifting unit 12 are operated based on the information from the uppermost position sensor 4 so that the basket 40 is raised by the thickness of the wafer. As a result, the position of the uppermost wafer in the wafer group W can always be maintained at a position near one end of the first conveyor 21.
 また、第2液流噴射ノズル70からの液流の噴射は、例えば第1コンベア21のベルトの走行速度等に合わせて一定周期で間欠的に行うのがよく、これによりタイミングよくウェハを第1コンベア21に受け渡すことが可能である。
 上記実施形態では、四角形状のウェハ群Wの一側方の一方の角部に向けて斜めに液流を噴射するよう、液流噴射ノズル50である下側噴射ノズル51と上側噴射ノズル52とをそれぞれ一つずつ配設し、これに合わせて気泡吐出装置60を一つ配設するようにしたが、他の実施形態として、図10に示すように、下側噴射ノズル51と上側噴射ノズル52とをさらにウェハ群Wの一側方の一方のみならず他方の角部に向けて互いに所定の夾角(例えば、20°~180°)を有して斜めに液流を噴射するよう例えば左右対称に二つ配設し、これに合わせて気泡吐出装置60を二つ配設するようにしてもよい。
In addition, the liquid flow from the second liquid flow injection nozzle 70 may be intermittently performed at a constant period in accordance with, for example, the traveling speed of the belt of the first conveyor 21, and thereby the first wafer is timed. It can be delivered to the conveyor 21.
In the above embodiment, the lower injection nozzle 51 and the upper injection nozzle 52 which are the liquid flow injection nozzles 50 are arranged so as to inject the liquid flow obliquely toward one corner on one side of the rectangular wafer group W. Are arranged one by one, and one bubble discharge device 60 is arranged in accordance with this, but as another embodiment, as shown in FIG. 10, a lower injection nozzle 51 and an upper injection nozzle 52 is further directed to not only one side of the wafer group W but also to the other corner so that the liquid flow is ejected obliquely with a predetermined depression angle (for example, 20 ° to 180 °). Two of them may be arranged symmetrically, and two bubble discharge devices 60 may be arranged according to this.
 これより、より一層多くの気泡を各ウェハ間の隙間に存在させるようにでき、ウェハをさらに安定的に浮かせて剥離し易くすることができる。また、ウェハ群Wに向けて斜め左右方向の二方向から液流を噴射することになるので、ウェハの姿勢を安定させることができる。
 以上で本発明に係るウェハ分離装置及びこれを用いたウェハの製造方法の説明を終えるが、本発明は上記実施形態に限られるものではない。
As a result, more bubbles can be present in the gaps between the wafers, and the wafers can be floated more stably and easily peeled off. In addition, since the liquid flow is ejected toward the wafer group W from two diagonal directions, the posture of the wafer can be stabilized.
Although the description of the wafer separating apparatus and the method for manufacturing a wafer using the same according to the present invention has been completed above, the present invention is not limited to the above embodiment.
 例えば、上記実施形態では、気泡吐出装置60を、導入する気体の量が異なる2種類以上の気泡吐出装置を合わせて構成し、或いは開口面積の異なる2種類以上の気泡吐出ノズルを備えて構成するようにしているが、これに限られず、例えば、気泡吐出装置60を一定のサイズの気泡を発生する気泡吐出装置本体と気泡吐出装置本体の上方に設けられた気泡せん断装置とで構成し、気泡吐出装置本体で発生した気泡の一部を気泡せん断装置で細かく分断することで、大径の粗い気泡から小径の細かい気泡まで混在させるようにしてもよい。
 また、上記実施形態では、液流噴射ノズル50を下側噴射ノズル51と上側噴射ノズル52とで構成しているが、液流噴射ノズル50は一つだけであっても本発明の効果を得ることができる。この場合であっても、ウェハ群Wの下位層から上位層に向けて小径の細かい気泡から順に気泡が各ウェハ間に良好に押し込まれることになり、上記同様の効果を得ることができる。
For example, in the above-described embodiment, the bubble discharge device 60 is configured by combining two or more types of bubble discharge devices having different amounts of gas to be introduced, or includes two or more types of bubble discharge nozzles having different opening areas. However, the present invention is not limited to this. For example, the bubble discharge device 60 includes a bubble discharge device main body that generates bubbles of a certain size and a bubble shearing device provided above the bubble discharge device main body. You may make it mix from a large diameter coarse bubble to a small diameter fine bubble by dividing | segmenting part of the bubble which generate | occur | produced in the discharge device main body finely with a bubble shearing device.
Moreover, in the said embodiment, although the liquid injection nozzle 50 is comprised by the lower injection nozzle 51 and the upper injection nozzle 52, even if there is only one liquid injection nozzle 50, the effect of this invention is acquired. be able to. Even in this case, the bubbles are favorably pushed between the wafers in order from the small diameter bubbles from the lower layer to the upper layer of the wafer group W, and the same effect as described above can be obtained.
 また、上記実施形態では、一対の第2液流噴射ノズル70、70を設けるようにしているが、第2液流噴射ノズル70は一つだけであっても本発明の効果を得ることができる。
 また、液流噴射ノズル50だけでもウェハを浮かせて剥離し易くできることから、第2液流噴射ノズル70については必ずしも設ける必要はなく、この場合であっても本発明の効果を得ることができる。
In the above embodiment, the pair of second liquid jet nozzles 70 and 70 are provided, but the effect of the present invention can be obtained even if there is only one second liquid jet nozzle 70. .
Further, since the wafer can be easily lifted and peeled only by the liquid jet nozzle 50, the second liquid jet nozzle 70 is not necessarily provided, and even in this case, the effect of the present invention can be obtained.
  2  液槽
 10  昇降装置
 13、14  バスケット支持部材(積載台支持部材)
 20  ベルトコンベア(搬送装置)
 40  バスケット(積載台)
 50  液流噴射ノズル
 51  下側噴射ノズル
 52  上側噴射ノズル
 54  液流発生装置
 60  気泡吐出装置
 62  気泡発生装置
 70  第2液流噴射ノズル
2 Liquid tank 10 Lifting device 13, 14 Basket support member (loading table support member)
20 Belt conveyor (conveyor)
40 baskets
DESCRIPTION OF SYMBOLS 50 Liquid jet nozzle 51 Lower jet nozzle 52 Upper jet nozzle 54 Liquid flow generator 60 Bubble discharge apparatus 62 Bubble generator 70 Second liquid jet nozzle

Claims (9)

  1.  シリコンインゴットを切断してなる枚葉化した多数枚のウェハ群を横置きに層状に積載する積載台と、
     前記積載台を着脱可能に支持する積載台支持部材と、
     液体を収容した液槽と、
     前記積載台支持部材を少なくとも前記液槽内で昇降させる昇降装置と、
     前記液槽の上部開口部に位置して一端が液体に浸るように傾斜して設けられ、前記昇降装置により前記積載台支持部材とともに上昇した前記積載台に積載された前記ウェハ群を最上位層のウェハから順に前記一端にて搬送ベルトに吸引して他端へ搬送する搬送装置と、
     前記液槽内に液体に浸るように設けられ、前記積載台に横置きに層状に積載された前記ウェハ群に向けて横方向に液流を噴射する液流噴射ノズルと、
     前記液流噴射ノズルの下方に設けられ、前記液流噴射ノズルと前記ウェハ群との間を気泡が上昇するように該気泡を吐出させる気泡吐出装置と、
    を備えることを特徴とするウェハ分離装置。
    A loading table on which a large number of wafers formed by cutting a silicon ingot are horizontally stacked and stacked in layers;
    A loading table support member that removably supports the loading table;
    A liquid tank containing a liquid;
    An elevating device for elevating and lowering the loading table supporting member at least in the liquid tank;
    The uppermost layer of the wafer group loaded on the loading table, which is positioned at the upper opening of the liquid tank and inclined at one end so as to be immersed in the liquid and raised together with the loading table support member by the lifting device A transfer device that sucks the transfer belt at one end in order from the wafer and transfers it to the other end;
    A liquid flow injection nozzle that is provided so as to be immersed in the liquid in the liquid tank, and injects a liquid flow in a lateral direction toward the wafer group that is horizontally stacked on the mounting table;
    A bubble ejection device that is provided below the liquid ejection nozzle and ejects the bubbles so that the bubbles rise between the liquid ejection nozzle and the wafer group;
    A wafer separating apparatus comprising:
  2.  前記気泡吐出装置は、サイズの異なる気泡を吐出可能に構成されていることを特徴とする、請求項1に記載のウェハ分離装置。 The wafer separation apparatus according to claim 1, wherein the bubble discharge device is configured to discharge bubbles of different sizes.
  3.  前記液流噴射ノズルは、ウェハ群に対し左右に配置され、該左右の液流噴射ノズルからそれぞれ前記ウェハ群に向けて噴射される液流同士が所定の夾角を有するよう設けられていることを特徴とする、請求項1または2に記載のウェハ分離装置。 The liquid jet nozzles are arranged on the left and right with respect to the wafer group, and the liquid streams jetted from the left and right liquid jet nozzles toward the wafer group are provided so as to have a predetermined depression angle. The wafer separating apparatus according to claim 1, wherein the wafer separating apparatus is characterized.
  4.  前記液流噴射ノズルは、前記ウェハ群のうち少なくとも中央層より上位層のウェハ群に向けて液流を噴射することを特徴とする、請求項1乃至3のいずれかに記載のウェハ分離装置。 4. The wafer separation apparatus according to claim 1, wherein the liquid flow injection nozzle injects a liquid flow toward at least a wafer group higher than a central layer in the wafer group.
  5.  前記液流噴射ノズルは、下側噴射ノズルと上側噴射ノズルの上下2段からなることを特徴とする、請求項1乃至4のいずれかに記載のウェハ分離装置。 5. The wafer separation apparatus according to claim 1, wherein the liquid flow spray nozzle is composed of upper and lower two stages of a lower spray nozzle and an upper spray nozzle.
  6.  前記下側噴射ノズルは、所定力以上の噴射強度で液流を噴射し、前記上側噴射ノズルは、所定力より小さい噴射強度で液流を噴射することを特徴とする、請求項5に記載のウェハ分離装置。 The said lower side injection nozzle injects a liquid flow with the injection intensity | strength more than predetermined force, The said upper side injection nozzle injects a liquid flow with the injection intensity smaller than predetermined force, It is characterized by the above-mentioned. Wafer separation device.
  7.  前記下側噴射ノズルは、破損し割れたウェハを吹き飛ばすことが可能な所定力以上の噴射強度で液流を噴射することを特徴とする、請求項5または6に記載のウェハ分離装置。 The wafer separating apparatus according to claim 5 or 6, wherein the lower injection nozzle injects a liquid flow with an injection intensity equal to or higher than a predetermined force capable of blowing a broken and broken wafer.
  8.  前記液流噴射ノズルとは別に、前記液槽内に液体に浸るように設けられ、前記ウェハ群に向けて斜め上方向に液流を噴射する第2液流噴射ノズルを備えることを特徴とする、請求項1乃至7のいずれかに記載のウェハ分離装置。 In addition to the liquid flow injection nozzle, a second liquid flow injection nozzle that is provided so as to be immersed in the liquid in the liquid tank and that injects the liquid flow obliquely upward toward the wafer group is provided. A wafer separating apparatus according to claim 1.
  9.  請求項1乃至8のいずれかに記載のウェハ分離装置を用いたウェハの製造方法であって、
     前記ウェハ群を前記積載台に横置きに層状に積載し、該積載台を前記積載台支持部材により支持して該積載台支持部材を前記液槽内で液体に通過させながら前記搬送装置に向けて前記昇降装置で上昇させ、
     前記液流噴射ノズルにより前記ウェハ群に向けて横方向に液流を噴射しつつ前記気泡吐出装置により前記液流噴射ノズルと前記ウェハ群との間を気泡が上昇するよう該気泡を吐出させることを特徴とする、ウェハ分離装置を用いたウェハの製造方法。
    A method for manufacturing a wafer using the wafer separating apparatus according to claim 1,
    The wafer group is horizontally stacked on the loading table in a layered manner, the loading table is supported by the loading table supporting member, and the loading table supporting member is directed to the transfer device while passing the liquid in the liquid tank. Lift with the lifting device,
    The bubbles are ejected by the bubble ejecting device so that the bubbles rise between the fluid ejecting nozzle and the wafer group while ejecting a liquid flow laterally toward the wafer group by the liquid ejecting nozzle. A method for producing a wafer using a wafer separating apparatus.
PCT/JP2012/070051 2011-08-12 2012-08-07 Wafer separation device and wafer manufacturing method using same WO2013024741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011176830A JP2014207250A (en) 2011-08-12 2011-08-12 Wafer separator and process of manufacturing wafer using the same
JP2011-176830 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013024741A1 true WO2013024741A1 (en) 2013-02-21

Family

ID=47715061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070051 WO2013024741A1 (en) 2011-08-12 2012-08-07 Wafer separation device and wafer manufacturing method using same

Country Status (3)

Country Link
JP (1) JP2014207250A (en)
TW (1) TW201324602A (en)
WO (1) WO2013024741A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149702A (en) * 2012-01-18 2013-08-01 Nippon Steel & Sumikin Fine Technology Co Ltd Wafer conveying device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556299B (en) * 2014-01-22 2016-11-01 友達晶材股份有限公司 Method of wet separation and transporting for semiconductor substrate and device thereof
KR101905692B1 (en) 2016-11-15 2018-10-12 한국에너지기술연구원 Silicon ingot slicing device using micro bubble and wire electric discharge, and silicon slicing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148278A (en) * 1995-11-28 1997-06-06 Nippei Toyama Corp Separate carrier of wafer and separate carrying method
WO2010082567A1 (en) * 2009-01-13 2010-07-22 株式会社エクサ Wafer separating apparatus, wafer separating/transferring apparatus, wafer separating method, wafer separating/transferring method and solar cell wafer separating/transferring method
WO2010116949A1 (en) * 2009-04-07 2010-10-14 株式会社住友金属ファインテック Wafer transfer method and wafer transfer apparatus
WO2011010683A1 (en) * 2009-07-24 2011-01-27 株式会社住友金属ファインテック Wafer conveying method and wafer conveying device
JP2011086739A (en) * 2009-10-15 2011-04-28 Fuashiritei:Kk Device for separating and extracting cut sheet
JP2011129652A (en) * 2009-12-16 2011-06-30 Takatori Corp Device and method for separation and housing of wafer
JP2011151167A (en) * 2010-01-21 2011-08-04 Sumitomo Metal Fine Technology Co Ltd Wafer carrying device and wafer carrying method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148278A (en) * 1995-11-28 1997-06-06 Nippei Toyama Corp Separate carrier of wafer and separate carrying method
WO2010082567A1 (en) * 2009-01-13 2010-07-22 株式会社エクサ Wafer separating apparatus, wafer separating/transferring apparatus, wafer separating method, wafer separating/transferring method and solar cell wafer separating/transferring method
WO2010116949A1 (en) * 2009-04-07 2010-10-14 株式会社住友金属ファインテック Wafer transfer method and wafer transfer apparatus
WO2011010683A1 (en) * 2009-07-24 2011-01-27 株式会社住友金属ファインテック Wafer conveying method and wafer conveying device
JP2011086739A (en) * 2009-10-15 2011-04-28 Fuashiritei:Kk Device for separating and extracting cut sheet
JP2011129652A (en) * 2009-12-16 2011-06-30 Takatori Corp Device and method for separation and housing of wafer
JP2011151167A (en) * 2010-01-21 2011-08-04 Sumitomo Metal Fine Technology Co Ltd Wafer carrying device and wafer carrying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149702A (en) * 2012-01-18 2013-08-01 Nippon Steel & Sumikin Fine Technology Co Ltd Wafer conveying device

Also Published As

Publication number Publication date
JP2014207250A (en) 2014-10-30
TW201324602A (en) 2013-06-16

Similar Documents

Publication Publication Date Title
WO2004102654A1 (en) Wafer demounting method, wafer demounting device, and wafer demounting and transferring machine
WO2008075970A1 (en) Method and device for se aration of silicon wafers
JP5585911B2 (en) Wafer separation method and wafer separation transfer apparatus
WO2013024741A1 (en) Wafer separation device and wafer manufacturing method using same
JP5965316B2 (en) Wafer separation apparatus, wafer separation transfer apparatus, wafer separation method, wafer separation transfer method, and solar cell wafer separation transfer method
KR20140051052A (en) Blast processing equipment for processing substrate peripheral portion and blast processing method by using the equipment
JP5457113B2 (en) Wafer transfer method and wafer transfer apparatus
KR20110063420A (en) Wafer separator and transferring device
JP5368222B2 (en) Wafer transfer method and wafer transfer apparatus
JPH10114426A (en) Wafer take-out device
JP2011061120A (en) Method of carrying wafer and wafer carrying device
JP5464696B2 (en) Submerged wafer isolation method and submerged wafer isolation apparatus
KR101447940B1 (en) The device for separation a sheet to solar cell wafer with a vacuum adsorption and separation function
WO2011010683A1 (en) Wafer conveying method and wafer conveying device
CN113651123A (en) Slicing device for silicon wafer
JP2012119526A (en) Substrate transport device
KR101290139B1 (en) Method for Separating Wafer, and Separation Apparatus
JP2011205041A (en) Apparatus and method for conveying substrate
KR101162684B1 (en) A wafer separation apparatus
JPH09237817A (en) Separate carry device for wafer
TWI433214B (en) Wafer separation method and separation device
JP2013102082A (en) Loader device
JP2011086739A (en) Device for separating and extracting cut sheet
JP5456161B2 (en) Process module for serial processing of substrates
KR101150206B1 (en) A wafer separation apparatus a wafer separation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP