WO2011010030A1 - Dispositif de distribution de jets de fluide sans joint tournant - Google Patents

Dispositif de distribution de jets de fluide sans joint tournant Download PDF

Info

Publication number
WO2011010030A1
WO2011010030A1 PCT/FR2010/051291 FR2010051291W WO2011010030A1 WO 2011010030 A1 WO2011010030 A1 WO 2011010030A1 FR 2010051291 W FR2010051291 W FR 2010051291W WO 2011010030 A1 WO2011010030 A1 WO 2011010030A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
pinion
carrier
fluid
axis
Prior art date
Application number
PCT/FR2010/051291
Other languages
English (en)
Inventor
Jacques Quintard
Frédéric Richard
Charles Truchot
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to JP2012521071A priority Critical patent/JP5738858B2/ja
Priority to RU2012106028/05A priority patent/RU2518960C2/ru
Priority to CN201080032070.5A priority patent/CN102470385B/zh
Priority to EP10745314.4A priority patent/EP2456567B1/fr
Priority to US13/386,342 priority patent/US9914142B2/en
Publication of WO2011010030A1 publication Critical patent/WO2011010030A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0421Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with rotating spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/14Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/65Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits
    • B05B15/652Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits whereby the jet can be oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/02Abrasive blasting machines or devices; Plants characterised by the arrangement of the component assemblies with respect to each other
    • B24C3/04Abrasive blasting machines or devices; Plants characterised by the arrangement of the component assemblies with respect to each other stationary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/0403Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing

Definitions

  • the invention relates to a device and a method for working by jets of cryogenic fluid, in particular liquid nitrogen, under high pressure, in particular surface treatment, pickling or scouring, of coated or uncoated materials, such as metals, concrete, wood, polymers, ceramics and plastics or any other type of material.
  • the surface treatment of coated or uncoated materials is essentially by sanding, by projection of ultra high pressure water (UHP), sander, jackhammer , at the shredder or by chemical means.
  • UHP ultra high pressure water
  • cryogenic jets under very high pressure as proposed by US-A-7, 310,955 and US-A-7,316,363.
  • one or more jets of liquid nitrogen are used at a pressure of 1000 to 4000 bar and at a cryogenic temperature of, for example, between -100 and -200 ° C., typically about -140 and -160 ° C., which are distributed by a rotating nozzle tool.
  • this nozzle holder tool is attached to the end of a cryogenic fluid supply line which supplies the tool with cryogenic fluid.
  • the pipe and the tool are then given a rotary movement about the axis of the pipe by a drive system with gears or belts driven by a motor.
  • the dynamic seal of the rotary system is usually provided by a rotating cylinder gasket, typically Tivar®, arranged around the pipe.
  • a rotating cylinder gasket typically Tivar®
  • this cylindrical joint is traversed longitudinally by a bronze piece and surrounded for a solid piece of stainless steel.
  • US-A-4,369,850 discloses a device provided with a nozzle for dispensing water under pressure arranged at the downstream end of a water pipe, itself arranged in a rotary cylindrical housing rotated by a engine via a belt and pulley transmission mechanism, in which the water pipe is flexible and bent so as to be able to distribute a jet of water in a circular path, so as to make holes in the ground, it that is the earth or the like.
  • this device is not completely satisfactory because it does not make it possible to vary the surface impacted by the jet, at a given distance from the nozzle, which proves to be a significant disadvantage in certain applications, particularly in stripping or surface peeling, especially of concrete.
  • the problem to be solved is to propose a device for distributing cryogenic fluid, in particular liquid nitrogen, which is reliable, that is to say with which not only the problems related to the wear of the leaks do not exist, so as to overcome the aforementioned drawbacks and which also makes it possible to vary the surface treated by the or the jets of nitrogen at a given distance from the nozzle, especially when it is used in pickling or concrete peeling.
  • the solution of the invention is then a device for dispensing one or more jets of cryogenic fluid, in particular liquid nitrogen, comprising a fluid supply line supplying one or more fluid distribution nozzles arranged at the same time. downstream end of said pipe, and a motor cooperating with the fluid supply pipe via a rotary transmission shaft and a transmission mechanism, in which:
  • the fluid supply pipe comprises an upstream portion of a first axis XX and a downstream portion of a second axis YY, the first and second axes XX, YY forming between them an angle ⁇ of between 5 and 50 °,
  • the transmission mechanism comprises moving means acting on said downstream portion of pipe to give it a determined movement
  • the transmission mechanism comprises a pinion-carrier rotatable about an axis of rotation located in the center of said pinion-carrier, the fluid supply pipe being arranged ex-centrally and freely through said pinion-carrier , and further a gear drive means cooperating with the carrier pinion, and
  • the fluid supply pipe cooperates with an anchoring means arranged on the pipe upstream of the carrier pinion, said anchoring means forming all or part of an adjustment system for choosing or adjusting the length fluid supply line pipe measured between the anchoring means and the downstream end of said pipe.
  • the device of the invention may comprise one or more of the following characteristics:
  • the anchoring means is designed to and adapted to be secured to or disassociated from said pipe so as to maintain said pipe when the anchoring means is secured to the pipe and / or to release said pipe, when the anchoring means is separated from the pipe, and allow adjustment of the pipe length, said length being measured between the anchoring means and the downstream end of the pipe.
  • the first and second axes XX, YY forming between them an angle ⁇ of between 10 and 40 °, preferably of the order of 20 to 30 °.
  • the moving means act on said downstream portion of the pipe to give it a determined movement selected from the rotational movements and oscillation.
  • the transmission axis cooperates with the pinion drive means, and the pinion drive means cooperates with said pinion-carrier so as to transmit, via the pinion drive means, the rotational movement of the pinion gear; transmission axis to the carrier pinion and thereby obtain a circular movement of the fluid distribution nozzle or nozzles arranged at the downstream end of said pipe.
  • the transmission mechanism is arranged in a transmission box within which enters the transmission axis.
  • the carrier pinion is held by pinion holding means comprising one or more pads or bearings, including a ball bearing.
  • the pipe is arranged in a passage formed through the body of the pinion carrier, which passage is located within the disk that forms the carrier pinion, excluding the center of said disk.
  • - Retaining elements are provided to maintain the carrier pinion, the holding elements being positioned on the pinion at a distance R from the axis of rotation of the upper pinion at the distance r between the axis of rotation and the orifice.
  • the holding elements are pads, radial bearings or pins and / or in that the pinion drive means is a pinion or a belt.
  • the anchoring means comprises a clamping device, preferably a flange, a gland, a slotted nut, an elastic cone, a rack and pinion system or any other suitable clamping device.
  • the pipe is a stainless steel tube, preferably a flexible tube.
  • the end of the tube is removable so that it can be easily replaced, especially in case of wear.
  • the invention also relates to the use of a device according to the invention for distributing, by means of one or more nozzles, a fluid in the form of one or more jets of fluid at a temperature below -140 ° C. and at a pressure of at least 1500 bar, preferably between 2000 and 5000 bar, to achieve, by means of at least one jet of pressurized fluid, a surface treatment, that is to say a stripping or a peeling of a material, in particular concrete.
  • the invention also relates to a method of pickling or peeling concrete by liquid nitrogen jet implementing a device for dispensing one or more jets of liquid nitrogen at a pressure of at least 1500 bar and at a temperature below -140 0 C, in particular a device according to the invention, comprising a liquid nitrogen supply pipe feeding one or more liquid nitrogen distribution nozzles arranged at the downstream end of said pipeline, and a motor cooperating with the nitrogen supply line fluid via a rotary transmission shaft and a transmission mechanism, wherein the liquid nitrogen supply line comprises an upstream portion of first axis XX and a downstream portion of second axis YY, the first and second axes XX, YY forming between them an angle ⁇ of between 5 and 50 °, the downstream portion of second axis YY carrying the downstream end of the pipe with the one or more liquid nitrogen distribution nozzles, and the mechanism of transmission comprises moving means acting on said downstream portion of pipe to give it a determined movement, said transmission mechanism comprising a pinion-carrier rot
  • the method of the invention may include one or more of the following features:
  • the fluid supply pipe cooperates with an anchoring means arranged on the pipe upstream of the carrier pinion, said anchoring means forming all or part of a control system and is chosen or adjusts the length of pipe fluid supply measured between the anchoring means and the downstream end of said pipe by acting on said adjustment system.
  • the fluid jets are at a pressure between 1000 and 5000 bar, preferably at least 2000 bar.
  • the fluid is at a temperature below -140 ° C., preferably between -150 and -200 ° C.
  • the method of the invention can be implemented manually, that is to say by an operator, or automatically or automatically, that is to say by a machine or a robot.
  • FIG. 1 is a diagrammatic (side) view of a device for dispensing high pressure fluid jets according to the present invention
  • FIG. 2 is a diagrammatic (front) view of the carrier and motor gears of a device according to FIG. 1
  • FIG. 3 is a diagrammatic (side) view of the carrier pinion and the high pressure tube of a device according to FIG. 1;
  • FIG. 4 represents the detail of the pinion holding means
  • FIG. 5 shows an embodiment with a pigtail system
  • FIG. 6 represents a nozzle-carrying tool with the trajectory of the jets for a tool of the prior art
  • FIG. 7 represents a nozzle-carrying tool with the trajectory of the jets for a tool according to the present invention
  • FIG. 8 represents a manual tool according to the present invention.
  • 9 represents an automatic tool according to the present invention integrated on a robot.
  • Figure 1 illustrates the principle of a fluid jet distribution device, preferably a cryogenic temperature fluid, and high pressure according to the present invention.
  • This device comprises a fluid supply pipe 7, such as a stainless steel tube, supplying one or more fluid distribution nozzles arranged at the downstream end of said pipe 7.
  • a fluid supply pipe 7 such as a stainless steel tube
  • the nozzles are carried by a door tool -buses 5.
  • the fluid to be dispensed is a fluid at cryogenic temperature and at high pressure, in particular liquid nitrogen at a pressure between 1000 and 4000 bar and a temperature between -140 and -200 0 C.
  • the fluid emanating from a fluid source (not shown), such as a compressor, a reservoir, a heat exchanger, a feed line, a gas cylinder or the like, supplying the upstream end of the fluid pipe 7.
  • the fluid supply line 7 of the fluid distribution device cooperates with a motor 1 via a rotary transmission axis 2 and a transmission mechanism 4a, 4b, which will be detailed below.
  • the pipe 7 for supplying fluid comprises, in turn, an upstream portion 7a of first axis XX and a downstream portion 7b of second axis YY forming between them an angle ⁇ of between 5 and 50 °, typically between 10 and 40 ° preferably of the order of 20 to 30 °.
  • the downstream portion 7b carries the downstream end of the pipe 7 where are arranged the fluid distribution nozzle or nozzles, for example on a tool-bearing bush.
  • the transmission mechanism 4a, 4b comprises moving means acting on the downstream pipe portion 7b so as to give it a determined movement, of any nature whatsoever, in particular a rotational movement or rotation. oscillation.
  • rotation movement we will understand movement describing a circle, an ellipse, for example.
  • the choice of the design of room 4b will determine the type of movement chosen.
  • the motor 1 cooperating with the pipe 7 for supplying fluid via its rotary transmission axis 2 and the transmission mechanism 4a, 4b to which the transmission axis 2 transmits its rotational movement.
  • the engine is a pneumatic, electric, gasoline engine or any other type of engine.
  • the transmission mechanism 4a, 4b comprises a carrier pinion 4b rotatable about an axis of rotation located in the center of said carrier pinion 4b, and the delivery pipe 7 cryogenic fluid being arranged ex-centrally through said pinion-carrier 4b.
  • the axis of the pipe 7 is the axis of the carrier pinion 4b are not confused.
  • the pipe 7 is thus arranged in a passage or orifice 10 formed through the body of the pinion-carrier 4b, which passage is located within the disk that forms the pinion-carrier 4b, excluding the center of said disk.
  • the passage for the pipe 7 is located at least 1 mm from the center of the pinion, that is to say the axis of said pinion-carrier 4b.
  • a pinion drive means 4a such as a motor pinion or a belt, cooperates with the carrier pinion 4b so as to drive said pinion-carrier 4b in rotation. More specifically, the transmission shaft 2, driven by the motor 1, cooperates with the pinion drive means 4a, and the pinion drive means 4a itself engages with said pinion-carrier 4b so as to transmit , via the gear drive means 4a, the rotational movement of the transmission shaft 2 to the carrier pinion 4b and thus obtain a movement, preferably circular, of the fluid distribution nozzle or nozzles arranged at the downstream end of said pipe 7, that is to say arranged on the tool 5 nozzle holder used to distribute the jets 6 of high pressure fluid.
  • a gearbox 3 forming a protective housing and into which the transmission axis and which houses the transmission mechanism 4a, 4b.
  • the pinion 4b is held in place by a set of pads or by bearings of any type, for example with needles or balls, preferably balls.
  • the carrier pinion 4b is held by sprocket holding means 9 comprising one or more skids or bearings, in particular a ball bearing, as shown diagrammatically in FIG. 4.
  • elements 9, such as pads, radial bearings or pins, are provided to maintain a good rotation of the carrier pinion 4b.
  • the carrier pinion 4b is grooved to accommodate the elements 9.
  • the carrier pinion 4b is not held on its axis.
  • the pinion 4b is held by devices 9 which are positioned on the pinion 4b at a distance R from the axis of rotation of the pinion 4b greater than the distance r between the axis of rotation and the orifice 10, as illustrated in FIG. 3.
  • the fluid supply pipe 7 cooperates with anchoring means 8, such as a gland, a flange, a slotted nut, an elastic cone, a rack-and-pinion system or any other suitable mechanical device, making it possible to maintain the pipe 7 in position relative to the rest of the jet distribution device, said anchoring means 8 being arranged on the pipe 7 upstream of the pinion-carrier 4b, that is to say that the pinion-carrier 4b is located between the anchoring means 8 and the end of the pipe 7 carrying the nozzle or nozzles.
  • anchoring means 8 such as a gland, a flange, a slotted nut, an elastic cone, a rack-and-pinion system or any other suitable mechanical device
  • the pipe 7 is, on the one hand, kept fixed or approximately fixed at and because of the anchoring means 8, and, on the other hand, has a downstream end 7b provided with the nozzles which is movable and describes a given movement, preferably circular, when the motor 1 drives the transmission axis 2, the motor pinion 4a connected to the axis 2, and the carrier pinion 4b, which itself causes the tube 7 in a determined path, in particular circular or the like.
  • the anchoring point 8 is a mechanical element making it possible to block or unblock the slippage of the pipe 7 through the device and finally through the passage 10.
  • the anchor point thus makes it possible to set, for the time of the implementation of the method, the length Lo, therefore the diameter or the like of the circular or other trajectory described by the nozzle, knowing that the distance from the anchor point 8 to pinion 4b is fixed.
  • modifying the length Lo is particularly advantageous for varying the radius of the circular path Ro described by the one or more nozzles for delivering high pressure fluid jets as illustrated in FIG. 3.
  • the mechanical element of the anchor point can be loosened easily by the user, for example by using a suitable tool, if he wants to adjust or adjust the length Lo.
  • the pipe 7 In the case where the pipe 7 is positioned on a displacement machine or on a robot, it may be difficult or impractical to slide the tube 7 inside the device. It is therefore useful for the pipe 7 to be divided into two parts connected by a very high pressure static coupling 7c positioned upstream of the anchoring point 8. This makes it easy to change this part of the tube between 7c and the nozzle holder tool 5, by a tube of suitable length to adjust Lo to the desired length, without having to move or modify the entire tube 7.
  • a stainless steel tube is preferably used as pipe 7, and of internal and external diameters as given in Table II below. -Dessous.
  • the 14.8 mm diameter tube is too rigid to be effectively used. From there, typically, a high pressure stainless steel tube 316 (up to about 4000 bar) with an outside diameter of about 6.4 mm is used.
  • this tube In order to further flexibilise the tube, it is possible to give this tube a form of lyre or pigtail, as shown in Figure 5, or use a bellows system.
  • a ball bearing system or the like may advantageously be placed around the hose 7.
  • a device according to the invention comprising a stainless steel tube 6.4 mm external radius, supplied with liquid nitrogen at a temperature of -155 ° C and a pressure of 3500 bar, was tested without breaking in fatigue over 2,000,000 cycles at a very high speed of about 1100 rpm.
  • the tube will not be able to break by fatigue, whatever the number of cycles performed, and particularly greater than 2,000,000. The results obtained are therefore quite satisfactory. and the device works perfectly.
  • a bushel equipped with two nozzles used with the system described in US-A-7,316,363 gives the two nozzles concentric circular paths of different radii, as shown in Figure 6, while the same nozzle holder equipped with the same two nozzles gives the nozzles circular paths of identical rays Ro but shifted, as shown schematically in Figure 7.
  • the circles (FIG. 7) described by the liquid nitrogen jets will have a larger diameter since the parameters Lo and ⁇ will have high values. Thus, for a surface treatment or a concrete peel, for example, the yield will also be more important because the surface described will be larger.
  • the device of the invention can be used for a manual application, as shown in FIG. 8, or automatic or robotic as shown in FIG. 9.
  • FIG. 8 shows an example of a manual tool comprising a pneumatic motor 1 equipped with a handle 11 of a trigger 12 and a compressed air inlet pipe 13, whereas FIG. example of an automatic tool, with an electric motor 1, mounted on a robot 14.
  • the automatic tool can also be used with a mobile device comprising one or more axes of displacement.
  • the device of the present invention is applicable in any operation or heat treatment process requiring the implementation of a rotation of fluid jets, in particular cryogenic fluids, such as surface treatment, pickling or peeling of a material, such as metals, concrete, stone, plastics, wood, ceramics ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Spray Control Apparatus (AREA)
  • Manipulator (AREA)

Abstract

Un dispositif de distribution d'un ou plusieurs jets de fluide (6) comprenant une canalisation (7) d'amenée de fluide alimentant une ou plusieurs buses (5) de distribution de fluide agencées à l'extrémité aval de ladite canalisation (7), et un moteur (1) coopérant avec la canalisation (7) d'amenée de fluide par l'intermédiaire d'un axe de transmission (2) rotatif et d'un mécanisme de transmission (4a, 4b). La canalisation (7) d'amenée de fluide comprend une portion amont (7 a) de premier axe (XX) et une portion aval (7b) de deuxième axe (YY), les premier et deuxième axes (XX, YY) formant entre eux un angle (α) compris entre 5 et 50°. La portion aval (7b) de deuxième axe (YY) portant l'extrémité aval de la canalisation (7) avec la ou lesdites buses de distribution de fluide et le mécanisme de transmission (4a, 4b) comprend des moyens de mise en mouvement agissant sur ladite portion aval (7b) de canalisation pour lui conférer un mouvement déterminé. Procédé de traitement de surface, de décapage ou d'écroutage, d'un matériau par fluide à haute pression, dans lequel on met en œuvre un tel dispositif pour distribuer, au moyen d'une ou plusieurs buses, un fluide sous forme d'un ou plusieurs jets de fluide à une pression d'au moins 1500 bar, de préférence entre 2000 et 5000 bar.

Description

Dispositif de distribution de jets de fluide sans joint tournant
L'invention porte sur un dispositif et un procédé de travail par jets de fluide cryogénique, en particulier d'azote liquide, sous haute pression, en particulier de traitement de surface, de décapage ou d'écroutage, de matériaux revêtus ou non, tels les métaux, le béton, le bois, les polymères, les céramiques et les plastiques ou tout autre type de matériau.
Actuellement, le traitement de surface de matériaux revêtus ou non, en particulier le décapage, l'écroutage ou analogue, se fait essentiellement par sablage, par projection d'eau à ultra haute pression (UHP), à la ponceuse, au marteau-piqueur, à la bouchardeuse ou encore par voie chimique.
Toutefois, lorsqu'il doit ne pas y avoir d'eau, par exemple en milieu nucléaire, ou de produit chimique, par exemple du fait de contraintes environnementales drastiques, seuls des procédés de travail dits « à sec » peuvent être utilisés.
Cependant, dans certains cas, ces procédés « à sec » sont difficiles à mettre en œuvre, sont très laborieux ou pénibles à utiliser ou encore génèrent des pollutions supplémentaires, par exemple du fait de l'ajout de grenaille ou de sable à retraiter ensuite.
Une alternative à ces technologies repose sur l'utilisation de jets cryogéniques sous très haute pression comme proposé par les documents US-A-7 ,310,955 et US-A-7,316,363. Dans ce cas, on utilise un ou des jets d'azote liquide à une pression de 1000 à 4000 bars et à température cryogénique comprise par exemple entre -100 et -2000C, typiquement environ -140 et -1600C, qui sont distribués par un outil porte-buses animé d'un mouvement rotatif.
Plus précisément, cet outil porte-buses est fixé à l'extrémité d'une canalisation d'amenée de fluide cryogénique qui alimente l'outil en fluide cryogénique. On confère alors à la canalisation et à l'outil, un mouvement rotatif autour de l'axe de la canalisation, par un système d'entraînement à pignons ou courroies mus par un moteur.
L'étanchéité dynamique du système rotatif est habituellement assurée par un joint cylindre tournant, typiquement en Tivar®, agencé autour de la canalisation. Typiquement, ce joint de forme cylindrique est traversé longitudinalement par une pièce en bronze et entouré pour une pièce massive en inox.
Du fait des températures cryogéniques mises en œuvre, on a remarqué en pratique que l'efficacité de ce joint diminue au fil du temps, ce qui engendre à plus ou moins courte échéance des fuites et donc des pertes de rendement du procédé, notamment lors d'opérations d'écroutage de béton ou de décapage de peinture par exemple. En effet, sous l'effet des températures cryogéniques mises en oeuvre, les matériaux se déforment de manière différente les uns des autres, en fonction de leur coefficient de dilatation thermique respectif, comme illustré dans le Tableau I.
Tableau I
Coefficient de dilatation thermique (x 10~6/K)
Tivar® Acier inoxydable Bronze
180 15 17.5
Comme on le voit, ces matériaux réagissent très différemment aux températures cryogéniques et, de ce fait, au cours des cycles alternatifs de refroidissement et de réchauffement, il se produit des déformations, voire des détériorations du joint et ce, d'autant plus rapidement qu'il est soumis à des pressions très importantes, à savoir jusqu'à typiquement
4000 bars.
En effet, on a constaté en pratique qu'un jeu apparaît progressivement entre le joint et les pièces métalliques, lequel induit des fuites, qui sont rédhibitoires pour un fonctionnement normal du système. En conséquence de quoi, il faut changer régulièrement le joint, ce qui occasionne des coûts de matériel et de maintenance. Or, ceci est critique dans les milieux à risques, notamment les domaines nucléaire ou chimique par exemple, où l'intervention humaine doit être la moins fréquente possible.
Le document US-A-4,369,850 décrit un dispositif muni d'une buse de distribution d'eau sous pression agencée à l'extrémité aval d'une canalisation d'eau, elle-même agencée dans un logement cylindrique rotatif entraîné en rotation par un moteur via un mécanisme de transmission à sangle et poulies, dans lequel la canalisation d'eau est flexible et coudée de manière à pouvoir distribuer un jet d'eau selon une trajectoire circulaire, de manière à pouvoir réaliser des perçages dans le sol, c'est-à-dire la terre ou analogue.
Toutefois, ce dispositif n'est pas totalement satisfaisant car il ne permet pas de faire varier la surface impactée par le jet, à une distance donnée de la buse, ce qui s'avère être un inconvénient notable dans certaines applications, notamment en décapage ou écroutage de surface, notamment de béton.
Un dispositif analogue est par ailleurs décrit par DE-A- 10236266.
Au vu de cela, le problème à résoudre est de proposer un dispositif de distribution de fluide cryogénique, en particulier d'azote liquide, qui soit fiable, c'est-à-dire avec lequel non seulement les problèmes liés à l'usure du joint et aux fuites n'existent pas, de manière à pallier les inconvénients susmentionnés et qui permette en outre de varier la surface traitée par le ou les jets d'azote, à une distance donnée de la buse, notamment lors de son utilisation en décapage ou écroutage de béton.
La solution de l'invention est alors un dispositif de distribution d'un ou plusieurs jets de fluide cryogénique, en particulier d'azote liquide, comprenant une canalisation d'amenée de fluide alimentant une ou plusieurs buses de distribution de fluide agencées à l'extrémité aval de ladite canalisation, et un moteur coopérant avec la canalisation d'amenée de fluide par l'intermédiaire d'un axe de transmission rotatif et d'un mécanisme de transmission, dans lequel :
- la canalisation d'amenée de fluide comprend une portion amont de premier axe XX et une portion aval de deuxième axe YY, les premier et deuxième axes XX, YY formant entre eux un angle α compris entre 5 et 50°,
- la portion aval de deuxième axe YY portant l'extrémité aval de la canalisation avec la ou lesdites buses de distribution de fluide,
et le mécanisme de transmission comprend des moyens de mise en mouvement agissant sur ladite portion aval de canalisation pour lui conférer un mouvement déterminé,
caractérisé en ce que :
- le mécanisme de transmission comprend un pignon-porteur mobile en rotation autour d'un axe de rotation situé au centre dudit pignon-porteur, la canalisation d'amenée de fluide étant agencée de manière ex-centrée et libre au travers dudit pignon-porteur, et en outre un moyen d'entraînement de pignon coopérant avec le pignon-porteur, et
- la canalisation d'amenée de fluide coopère avec un moyen d'ancrage agencé sur la canalisation en amont du pignon-porteur, ledit moyen d'ancrage formant tout ou partie d'un système de réglage permettant de choisir ou d'ajuster la longueur de canalisation d'amenée de fluide mesurée entre le moyen d'ancrage et l'extrémité aval de ladite canalisation.
Selon le cas, le dispositif de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- le moyen d'ancrage est conçu pour et apte à être solidarisé ou désolidarisé de ladite canalisation de manière à maintenir ladite canalisation lorsque le moyen d'ancrage est solidarisé à la canalisation et/ou à libérer ladite canalisation, lorsque le moyen d'ancrage est désolidarisé de la canalisation, et autoriser ainsi un réglage de la longueur de canalisation, ladite longueur étant mesurée entre le moyen d'ancrage et l'extrémité aval de la canalisation.
- les premier et deuxième axes XX, YY formant entre eux un angle α compris entre 10 et 40°, de préférence de l'ordre de 20 à 30°.
- les moyens de mise en mouvement agissent sur ladite portion aval de canalisation pour lui conférer un mouvement déterminé choisi parmi les mouvements de rotation et oscillation. - l'axe de transmission coopère avec le moyen d'entraînement de pignon, et le moyen d'entraînement de pignon coopère avec ledit pignon-porteur de manière à transmettre, via le moyen d'entraînement de pignon, le mouvement de rotation de l'axe de transmission au pignon-porteur et obtenir ainsi un mouvement circulaire de la ou des buses de distribution de fluide agencées à l'extrémité aval de ladite canalisation.
- le mécanisme de transmission est agencé dans une boite de transmission au sein de laquelle pénètre l'axe de transmission.
- le pignon-porteur est maintenu par des moyens de maintien de pignon comprenant un ou plusieurs patins ou roulements, notamment un roulement à billes.
- la canalisation est agencée dans un passage formé au travers du corps du pignon- porteur, lequel passage est situé au sein du disque que forme le pignon-porteur, à l'exclusion du centre dudit disque.
- des éléments de maintien sont prévus pour maintenir pignon-porteur, les éléments de maintien étant positionnés sur le pignon à une distance R de l'axe de rotation du pignon supérieure à la distance r entre l'axe de rotation et l'orifice.
- les éléments de maintien sont des patins, des roulements radiaux ou des tétons et/ou en ce que le moyen d'entraînement de pignon est un pignon ou une courroie.
- le moyen d'ancrage comprend un dispositif de serrage, de préférence une bride, un presse étoupe, une noix fendue, un cône élastique, un système pignon-crémaillère ou tout autre dispositif de serrage adapté.
- la canalisation est un tube en acier inoxydable, de préférence un tube flexible.
- l'extrémité du tube est démontable de manière à pouvoir être remplacée facilement, notamment en cas d'usure.
L'invention porte également sur l'utilisation d'un dispositif selon l'invention pour distribuer, au moyen d'une ou plusieurs buses, un fluide sous forme d'un ou plusieurs jets de fluide à une température inférieure à -1400C et à une pression d'au moins 1500 bar, de préférence entre 2000 et 5000 bar, pour réaliser, au moyen d'au moins un jet de fluide sous pression, un traitement de surface, c'est-à-dire un décapage ou un écroûtage d'un matériau, en particulier du béton.
Par ailleurs, l'invention porte aussi sur un procédé de décapage ou d'écroûtage de béton par jet d'azote liquide mettant en œuvre un dispositif de distribution d'un ou plusieurs jets d'azote liquide à une pression d'au moins 1500 bar et à une température inférieure à -1400C, en particulier un dispositif selon l'invention, comprenant une canalisation d'amenée d'azote liquide alimentant une ou plusieurs buses de distribution d'azote liquide agencées à l'extrémité aval de ladite canalisation, et un moteur coopérant avec la canalisation d'amenée d'azote liquide par l'intermédiaire d'un axe de transmission rotatif et d'un mécanisme de transmission, dans lequel la canalisation d'amenée d'azote liquide comprend une portion amont de premier axe XX et une portion aval de deuxième axe YY, les premier et deuxième axes XX, YY formant entre eux un angle α compris entre 5 et 50°, la portion aval de deuxième axe YY portant l'extrémité aval de la canalisation avec la ou lesdites buses de distribution d'azote liquide, et le mécanisme de transmission comprend des moyens de mise en mouvement agissant sur ladite portion aval de canalisation pour lui conférer un mouvement déterminé, ledit mécanisme de transmission comprenant un pignon-porteur mobile en rotation autour d'un axe de rotation situé au centre dudit pignon-porteur, la canalisation d'amenée d'azote liquide étant agencée de manière ex-centrée et libre au travers dudit pignon-porteur, et en outre un moyen d'entraînement de pignon coopérant avec le pignon-porteur.
Selon le cas, le procédé de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- la canalisation d'amenée de fluide coopère avec un moyen d'ancrage agencé sur la canalisation en amont du pignon-porteur, ledit moyen d'ancrage formant tout ou partie d'un système de réglage et on choisit ou ajuste la longueur de canalisation d'amenée de fluide mesurée entre le moyen d'ancrage et l'extrémité aval de ladite canalisation en agissant sur ledit système de réglage.
- on agit sur le moyen d'ancrage du système de réglage pour, respectivement, le solidariser à ou le désolidariser de ladite canalisation de manière à, respectivement maintenir ladite canalisation ou libérer ladite canalisation et autoriser ainsi un réglage de la longueur de canalisation.
- les jets de fluide sont à une pression entre 1000 et 5000 bar, de préférence au moins 2000 bar.
- le fluide est à une température inférieure à -1400C, de préférence entre -150 et -2000C.
Le procédé de l'invention peut être mis en œuvre de façon manuelle, c'est-à-dire par un opérateur, ou alors de façon automatique ou automatisée, c'est-à-dire par une machine ou un robot.
L'invention va être mieux comprise grâce aux explications illustratives suivantes, faites en rapport avec les figures annexées parmi lesquelles :
- la Figure 1 est une vue schématique (de côté) d'un dispositif de distribution de jets de fluide à haute pression selon la présente invention,
- la Figure 2 est une vue schématique (de face) des pignons porteur et moteur d'un dispositif selon la Figure 1, - la Figure 3 est une vue schématique (de côté) du pignon porteur et du tube à haute pression d'un dispositif selon la Figure 1,
- la Figure 4 représente le détail des moyens de maintien de pignon,
- la Figure 5 représente une réalisation avec un système de queue de cochon,
- la Figure 6 représente un outil porte-buses avec la trajectoire des jets pour un outil de l'art antérieur,
- la Figure 7 représente un outil porte-buses avec la trajectoire des jets pour un outil selon la présente invention,
- la Figure 8 représente un outil manuel selon la présente invention, et
- la Figure 9 représente un outil automatique selon la présente invention intégré sur un robot.
La Figure 1 illustre le principe d'un dispositif de distribution de jets de fluide, de préférence un fluide à température cryogénique, et à haute pression selon la présente invention.
Ce dispositif comprend une canalisation 7 d'amenée de fluide, tel un tube en acier inoxydable, alimentant une ou plusieurs buses de distribution de fluide agencées à l'extrémité aval de ladite canalisation 7. En général, les buses sont portées par un outil porte -buses 5.
Selon un mode de réalisation, le fluide à distribuer est un fluide à température cryogénique et à haute pression, en particulier de l'azote liquide à une pression entre 1000 et 4000 bar et une température entre -140 et -2000C. Le fluide émanant d'une source de fluide (non montrée), tel un compresseur, un réservoir, un échangeur thermique, une ligne d'alimentation, une ou des bouteilles de gaz ou analogue, alimentant l'extrémité amont de la canalisation 7 de fluide.
Comme illustré en Figure 3, la canalisation 7 d'amenée de fluide du dispositif de distribution de fluide coopère avec un moteur 1 par l'intermédiaire d'un axe de transmission 2 rotatif et d'un mécanisme de transmission 4a, 4b, qui sera détaillé ci-après.
La canalisation 7 d'amenée de fluide comprend, quant à elle, une portion amont 7a de premier axe XX et une portion aval 7b de deuxième axe YY formant entre eux un angle α compris entre 5 et 50°, typiquement entre 10 et 40°, de préférence de l'ordre de 20 à 30°.
La portion aval 7b porte l'extrémité aval de la canalisation 7 où sont agencées la ou les buses de distribution de fluide, par exemple sur un outil porte -buses.
Par ailleurs, le mécanisme de transmission 4a, 4b comprend des moyens de mise en mouvement agissant sur la portion aval 7b de canalisation de manière à lui conférer un mouvement déterminé, de quelque nature que ce soit, en particulier un mouvement de rotation ou d'oscillation. Par mouvement de rotation, on comprendra mouvement décrivant un cercle, une ellipse, par exemple. Le choix du design de la pièce 4b déterminera le type de mouvement choisi.
Le moteur 1 coopérant avec la canalisation 7 d'amenée de fluide par l'intermédiaire de son axe de transmission 2 rotatif et du mécanisme de transmission 4a, 4b auquel l'axe de transmission 2 transmet son mouvement de rotation. Le moteur est un moteur pneumatique, électrique, à essence ou tout autre type de moteur.
Selon l'invention, comme visible en Figure 2, le mécanisme de transmission 4a, 4b comprend un pignon-porteur 4b mobile en rotation autour d'un axe de rotation situé au centre dudit pignon-porteur 4b, et la canalisation 7 d'amenée de fluide cryogénique étant agencée de manière ex-centrée au travers dudit pignon-porteur 4b. En d'autres termes, l'axe de la canalisation 7 est l'axe du pignon-porteur 4b ne sont pas confondus.
La canalisation 7 est donc agencée dans un passage ou orifice 10 formé au travers du corps du pignon-porteur 4b, lequel passage est situé au sein du disque que forme le pignon- porteur 4b, à l'exclusion du centre dudit disque.
De préférence, le passage pour la canalisation 7 est situé à au moins 1 mm du centre du pignon, c'est-à-dire de l'axe dudit pignon-porteur 4b.
Par ailleurs, un moyen d'entraînement 4a de pignon, tel un pignon-moteur ou une courroie, coopère avec le pignon-porteur 4b de manière à entraîner ledit pignon-porteur 4b en rotation. Plus précisément, l'axe de transmission 2, entraîné par le moteur 1, coopère avec le moyen d'entraînement 4a de pignon, et le moyen d'entraînement 4a de pignon coopère lui- même avec ledit pignon-porteur 4b de manière à transmettre, via le moyen d'entraînement 4a de pignon, le mouvement de rotation de l'axe de transmission 2 au pignon-porteur 4b et obtenir ainsi un mouvement, de préférence circulaire, de la ou des buses de distribution de fluide agencées à l'extrémité aval de ladite canalisation 7, c'est-à-dire agencée sur l'outil 5 porte - buses utilisé pour distribuer les jets 6 de fluide à haute pression.
Comme illustré en Figure 1 , une boîte de transmission 3 formant carter de protection et dans laquelle pénètre l'axe de transmission et laquelle abrite le mécanisme de transmission 4a, 4b. Dans cette boite de transmission 3, le pignon 4b est maintenu en place par un jeu de patins ou par des roulements de tout type, par exemple à aiguilles ou billes, de préférence à billes.
Le pignon-porteur 4b est maintenu par des moyens de maintien de pignon 9 comprenant un ou plusieurs patins ou roulements, notamment un roulement à billes, tel que schématisé en Figure 4.
Il est à noter que des éléments 9, tels des patins, des roulements radiaux ou des tétons, sont prévus pour conserver une bonne rotation du pignon-porteur 4b. En fait, le pignon-porteur 4b est rainure pour accueillir les éléments 9. Le pignon-porteur 4b n'est pas tenu sur son axe. Le pignon 4b est maintenu par des dispositifs 9 qui sont positionnés sur le pignon 4b à une distance R de l'axe de rotation du pignon 4b supérieure à la distance r entre l'axe de rotation et l'orifice 10, comme illustré en Figure 3.
Par ailleurs, la canalisation 7 d'amenée de fluide coopère avec des moyens d'ancrage 8, tels un presse étoupe, une bride, une noix fendue, un cône élastique, un système pignon- crémaillère ou tout autre dispositif mécanique adapté, permettant de maintenir la canalisation 7 en position par rapport au reste du dispositif de distribution des jets, lesdits moyens d'ancrage 8 étant agencés sur la canalisation 7 en amont du pignon-porteur 4b, c'est-à-dire que le pignon- porteur 4b est situé entre les moyens d'ancrage 8 et l'extrémité de la canalisation 7 portant la ou les buses. En d'autres termes, la canalisation 7 est, d'une part, maintenue fixe ou approximativement fixe au niveau de et du fait des moyens d'ancrage 8, et, d'autre part, comporte une extrémité aval 7b munie de la ou des buses qui est mobile et décrit un mouvement donné, de préférence circulaire, lorsque le moteur 1 entraîne l'axe de transmission 2, le pignon-moteur 4a relié à l'axe 2, et le pignon-porteur 4b, qui lui-même entraîne le tube 7 selon une trajectoire déterminée, en particulier circulaire ou analogue.
Le point d'ancrage 8 est un élément mécanique permettant de bloquer ou débloquer le glissement de la canalisation 7 au travers du dispositif et finalement au travers du passage 10.
Le point d'ancrage permet donc de fixer, pour le temps de la mise en œuvre du procédé, la longueur Lo, donc le diamètre ou analogue de la trajectoire circulaire ou autre décrite par la buse, sachant que la distance du point d'ancrage 8 au pignon 4b est fixe. Dit autrement, modifier la longueur Lo est particulièrement avantageux pour faire varier le rayon de la trajectoire circulaire Ro décrite par la ou les buses de distribution de jets de fluide sous haute pression comme illustré en Figure 3.
L'élément mécanique du point d'ancrage peut être desserré aisément par l'utilisateur, par exemple en utilisant un outil adapté, s'il souhaite régler ou ajuster la longueur Lo.
Dans le cas où la canalisation 7 est positionnée sur une machine de déplacement ou sur un robot, il peut être difficile ou peu pratique de faire coulisser le tube 7 à l'intérieur du dispositif. Il est donc utile que la canalisation 7 soit scindée en deux parties reliées par un raccord statique très haute pression 7c positionné en amont du point d'ancrage 8. Ceci permet de changer aisément cette partie du tube entre 7c et l'outil porte-buses 5, par un tube de longueur adaptée permettant d'ajuster Lo à la longueur voulue, sans avoir à déplacer ou modifier l'ensemble du tube 7.
En outre cette partie de la canalisation étant soumise à des déformations, il est préférable qu'elle soit facilement interchangeable à des fins de maintenance. Afin d'obtenir une déformation élastique (flexibilité) suffisante de la canalisation 7, on choisit avec soin les caractéristiques de ladite canalisation 7, ou pour le moins de la partie 7b de canalisation 7 située entre les moyens d'ancrage 8 et l'extrémité portant l'outil porte-buses 5, en particulier, la nature du matériau constituant le tube 7, et son dimensionnement, i.e. diamètres intérieur et extérieur dudit tube.
Par exemple, dans le cas d'amenée de fluide cryogénique, tel d'azote liquide, sous haute pression, on utilise préférentiellement un tube en acier inoxydable en tant que canalisation 7, et de diamètres interne et externe comme donnés dans le Tableau II ci-dessous.
Tableau II
Figure imgf000011_0001
Comme on le voit dans le tableau II, le tube de 14,8 mm de diamètre est trop rigide pour être efficacement utilisé. De là, typiquement, on utilise un tube en acier inoxydable 316 résistant aux hautes pressions (jusqu'à environ 4000 bars) ayant un diamètre extérieur d'environ 6,4 mm.
Afin de flexibiliser davantage le tube, il est possible de conférer à ce tube une forme de lyre ou de queue de cochon, comme montré en figure 5, ou d'utiliser un système de soufflet.
De même, afin d'assurer un mouvement libre entre le pignon 4b et le tube 7 au niveau de l'orifice 10, un système de roulement à bille ou autre peut avantageusement être placé en 10 autour du flexible 7.
Un dispositif conforme à l'invention comprenant un tube en acier inox de 6.4 mm de rayon externe, alimenté avec de l'azote liquide à une température de -155°C et une pression de 3500 bar, a été testé sans se rompre en fatigue sur 2 000 000 cycles à une vitesse de rotation très élevée d'environ 1100 tr/min. Ainsi, selon l'homme de l'art en mécanique de fatigue, le tube ne pourra pas se rompre par fatigue, quelque soit le nombre de cycles effectué, et particulièrement supérieur à 2 000 000. Les résultats obtenus sont donc tout à fait satisfaisants et le dispositif fonctionne parfaitement.
Il est à noter qu'un dispositif selon l'invention ne reproduira pas exactement la même trajectoire des jets que les systèmes précédemment utilisés. Un porte -buses équipé avec deux buses utilisé avec le système décrites dans le document US-A-7,316,363 donne aux deux buses des trajectoires circulaires concentriques de rayons différents, comme illustré en Figure 6, alors que le même porte buse équipé des mêmes deux buses donne aux buses des trajectoires circulaires de rayons identiques Ro mais décalées, comme schématisé en Figure 7.
Les cercles (Figure 7) décrits par les jets d'azote liquide auront un diamètre d'autant plus important que les paramètres Lo et α auront des valeurs élevées Ainsi, pour un traitement de surface ou un écroutage de béton, par exemple, le rendement sera alors aussi plus important car la surface décrite sera plus grande.
Le dispositif de l'invention peut être utilisé pour une application manuelle, telle que montrée sur la figure 8, ou automatique ou robotique tel que montrée sur la figure 9.
Plus précisément, la figure 8 schématise un exemple d'outil manuel comprenant un moteur 1 pneumatique muni d'une poignée 11 d'une détente 12 et d'un tuyau d'arrivée d'air comprimé 13, alors que la figure 9 montre un exemple d'outil automatique, à moteur 1 électrique, monté sur un robot 14. L'outil automatique peut également être utilisé avec un dispositif mobile comportant un ou plusieurs axes de déplacement.
Le dispositif de la présente invention est applicable dans toute opération ou procédé de traitement thermique nécessitant la mise en oeuvre d'une rotation de jets de fluide, en particulier de fluides cryogéniques, tel que traitement de surface, décapage ou écroutage d'un matériau, tel les métaux, le béton, la pierre, les plastiques, le bois, la céramique...

Claims

Revendications
1. Dispositif de distribution d'un ou plusieurs jets de fluide (6) comprenant une canalisation (7) d'amenée de fluide alimentant une ou plusieurs buses (5) de distribution de fluide agencées à l'extrémité aval de ladite canalisation (7), et un moteur (1) coopérant avec la canalisation (7) d'amenée de fluide par l'intermédiaire d'un axe de transmission (2) rotatif et d'un mécanisme de transmission (4a , 4b), dans lequel :
- la canalisation (7) d'amenée de fluide comprend une portion amont (7a) de premier axe (XX) et une portion aval (7b) de deuxième axe (YY), les premier et deuxième axes (XX, YY) formant entre eux un angle (α) compris entre 5 et 50°,
- la portion aval (7b) de deuxième axe (YY) portant l'extrémité aval de la canalisation (7) avec la ou lesdites buses de distribution de fluide,
et le mécanisme de transmission (4a, 4b) comprend des moyens de mise en mouvement agissant sur ladite portion aval (7b) de canalisation pour lui conférer un mouvement déterminé, caractérisé en ce que :
- le mécanisme de transmission (4a, 4b) comprend un pignon-porteur (4b) mobile en rotation autour d'un axe de rotation situé au centre dudit pignon-porteur (4b), la canalisation (7) d'amenée de fluide étant agencée de manière ex-centrée et libre au travers dudit pignon-porteur (4b), et en outre un moyen d'entraînement (4a) de pignon coopérant avec le pignon-porteur (4b),
- et la canalisation d'amenée de fluide coopère avec un moyen d'ancrage (8) agencé sur la canalisation en amont du pignon-porteur (4b), ledit moyen d'ancrage (8) formant tout ou partie d'un système de réglage permettant de choisir ou d'ajuster la longueur de canalisation d'amenée de fluide mesurée entre le moyen d'ancrage (8) et l'extrémité aval de ladite canalisation (7).
2. Dispositif selon la revendication 1, caractérisé en ce que le moyen d'ancrage (8) est conçu pour et apte à être solidarisé ou désolidarisé de ladite canalisation (7) de manière à maintenir ladite canalisation (7) lorsque le moyen d'ancrage est solidarisé à la canalisation (7) ou à libérer ladite canalisation, lorsque le moyen d'ancrage est désolidarisé de la canalisation (7), et autoriser ainsi un réglage de la longueur de canalisation (7), ladite longueur étant mesurée entre le moyen d'ancrage (8) et l'extrémité aval de la canalisation (7).
3. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les premier et deuxième axes (XX, YY) formant entre eux un angle (α) compris entre 10 et 40°, de préférence de l'ordre de 20 à 30°.
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'axe de transmission (2) coopère avec le moyen d'entraînement (4a) de pignon, et le moyen d'entraînement (4a) de pignon coopère avec ledit pignon-porteur (4b) de manière à transmettre, via le moyen d'entraînement (4a) de pignon, le mouvement de rotation de l'axe de transmission (2) au pignon-porteur (4b) et obtenir ainsi un mouvement circulaire de la ou des buses de distribution de fluide agencées à l'extrémité aval de ladite canalisation (7).
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le mécanisme de transmission (4a, 4b) est agencé dans une boite de transmission (3) au sein de laquelle pénètre l'axe de transmission (2).
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le pignon-porteur (4b) est maintenu par des moyens de maintien de pignon comprenant un ou plusieurs patins ou roulements, notamment un roulement à billes.
7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la canalisation (7) est agencée dans un passage (10) formé au travers du corps du pignon-porteur (4b), lequel passage (10) est situé au sein du disque que forme le pignon-porteur (4b), à l'exclusion du centre dudit disque.
8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que des éléments (9) de maintien sont prévus pour maintenir pignon-porteur (4b), les éléments (9) de maintien étant positionnés sur le pignon (4b) à une distance R de l'axe de rotation du pignon (4b) supérieure à la distance r entre l'axe de rotation et l'orifice (10).
9. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les éléments (9) de maintien sont des patins, des roulements radiaux ou des tétons et/ou en ce que le moyen d'entraînement (4a) de pignon est un pignon ou une courroie.
10. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le moyen d'ancrage (8) comprend un dispositif de serrage, de préférence une bride, un presse étoupe, une noix fendue, un cône élastique ou un système pignon-crémaillère.
11. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la canalisation (7) est un tube en acier inoxydable, de préférence un tube flexible.
12. Utilisation d'un dispositif selon l'une des revendications précédentes pour distribuer, au moyen d'une ou plusieurs buses, un fluide sous forme d'un ou plusieurs jets de fluide à une température inférieure à -1400C et à une pression d'au moins 1500 bar, pour réaliser, au moyen d'au moins un jet de fluide sous pression, un traitement de surface, un décapage ou un écroutage d'un matériau.
13. Procédé de décapage ou d'écroutage de béton par jet d'azote mettant en œuvre un dispositif de distribution d'un ou plusieurs jets (6) d'azote liquide à une pression d'au moins
1500 bar et à une température inférieure à -1400C, comprenant une canalisation (7) d'amenée d'azote liquide alimentant une ou plusieurs buses (5) de distribution d'azote liquide agencées à l'extrémité aval de ladite canalisation (7), et un moteur (1) coopérant avec la canalisation (7) d'amenée d'azote liquide par l'intermédiaire d'un axe de transmission (2) rotatif et d'un mécanisme de transmission (4a, 4b), dans lequel la canalisation (7) d'amenée d'azote liquide comprend une portion amont (7a) de premier axe (XX) et une portion aval (7b) de deuxième axe (YY), les premier et deuxième axes (XX, YY) formant entre eux un angle (α) compris entre 5 et 50°, la portion aval (7b) de deuxième axe (YY) portant l'extrémité aval de la canalisation (7) avec la ou lesdites buses de distribution d'azote liquide, et le mécanisme de transmission (4a, 4b) comprend des moyens de mise en mouvement agissant sur ladite portion aval (7b) de canalisation pour lui conférer un mouvement déterminé, ledit mécanisme de transmission (4a, 4b) comprenant un pignon-porteur (4b) mobile en rotation autour d'un axe de rotation situé au centre dudit pignon-porteur (4b), la canalisation (7) d'amenée d'azote liquide étant agencée de manière ex-centrée et libre au travers dudit pignon-porteur (4b), et en outre un moyen d'entraînement (4a) de pignon coopérant avec le pignon-porteur (4b).
14. Procédé selon la revendication 13, caractérisé en ce que la canalisation d'amenée de fluide coopère avec un moyen d'ancrage (8) agencé sur la canalisation en amont du pignon-porteur (4b), ledit moyen d'ancrage (8) formant tout ou partie d'un système de réglage et en ce qu'on choisit ou ajuste la longueur de canalisation d'amenée de fluide mesurée entre le moyen d'ancrage (8) et l'extrémité aval de ladite canalisation (7) en agissant sur ledit système de réglage.
15. Procédé selon l'une des revendications 13 ou 14, caractérisé en ce qu'on agit sur ledit moyen d'ancrage (8) du système de réglage pour, respectivement, le solidariser à ou le désolidariser de ladite canalisation (7) de manière à, respectivement maintenir ladite canalisation (7) ou libérer ladite canalisation et autoriser ainsi un réglage de la longueur de canalisation (7).
PCT/FR2010/051291 2009-07-21 2010-06-24 Dispositif de distribution de jets de fluide sans joint tournant WO2011010030A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012521071A JP5738858B2 (ja) 2009-07-21 2010-06-24 回転ジョイントなしで流体ジェットを分配するための装置
RU2012106028/05A RU2518960C2 (ru) 2009-07-21 2010-06-24 Устройство для распыления струй жидкости или газа без шарнирного соединения
CN201080032070.5A CN102470385B (zh) 2009-07-21 2010-06-24 无旋转接头的流体射流分配装置
EP10745314.4A EP2456567B1 (fr) 2009-07-21 2010-06-24 Dispositif de distribution de jets de fluide sans joint tournant
US13/386,342 US9914142B2 (en) 2009-07-21 2010-06-24 Device for dispensing fluid jets without a rotating joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0955058 2009-07-21
FR0955058A FR2948301B1 (fr) 2009-07-21 2009-07-21 Dispositif de distribution de jets de fluide sans joint tournant

Publications (1)

Publication Number Publication Date
WO2011010030A1 true WO2011010030A1 (fr) 2011-01-27

Family

ID=41445547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051291 WO2011010030A1 (fr) 2009-07-21 2010-06-24 Dispositif de distribution de jets de fluide sans joint tournant

Country Status (7)

Country Link
US (1) US9914142B2 (fr)
EP (1) EP2456567B1 (fr)
JP (1) JP5738858B2 (fr)
CN (1) CN102470385B (fr)
FR (1) FR2948301B1 (fr)
RU (1) RU2518960C2 (fr)
WO (1) WO2011010030A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2978925A1 (fr) * 2011-08-12 2013-02-15 Air Liquide Dispositif de decapage cryogenique de surfaces non planes, en particulier de l'interieur d'un tube
WO2013076395A1 (fr) 2011-11-24 2013-05-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de distribution de jets de fluide cryogénique à chambre de tranquillisation
WO2014135781A1 (fr) 2013-03-07 2014-09-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de distribution de jets de fluide cryogénique avec enveloppe souple de protection
WO2014177824A1 (fr) * 2013-04-29 2014-11-06 Amb Engineering Limited Appareil et procédé d'atomisation de fluide conducteur
US9586291B2 (en) 2012-11-28 2017-03-07 Globalfoundries Inc Adhesives for bonding handler wafers to device wafers and enabling mid-wavelength infrared laser ablation release

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150273977A1 (en) * 2014-03-26 2015-10-01 Ron C. Lee Method and apparatus for in-transit refrigeration
DE102014014592A1 (de) * 2014-10-07 2016-04-07 Sca Schucker Gmbh & Co. Kg Vorrichtung zum Auftragen eines viskosen Materials
TWI693971B (zh) * 2018-01-18 2020-05-21 日商Ihi股份有限公司 噴嘴單元
CN111212715B (zh) * 2018-01-18 2022-05-03 株式会社 Ihi 衬套件剥离方法
CN108580072A (zh) * 2018-06-01 2018-09-28 江苏纽唯盛机电有限公司 喷嘴旋转机构及蒸脸装置
CN109013510A (zh) * 2018-09-11 2018-12-18 上海水威环境技术股份有限公司 一种微水射流电控枪
CN109532200A (zh) * 2018-12-27 2019-03-29 西安麦特沃金液控技术有限公司 挤压制品表面包覆材料的分离方法
BR112022013018A2 (pt) 2019-12-31 2022-09-06 Cold Jet Llc Método e aparelho para fluxo de jateamento aprimorado
AU2021236675A1 (en) * 2020-03-18 2022-10-20 The Fountainhead Group, Inc. Sprayer with tentacle pump
CN111993893B (zh) * 2020-06-19 2021-11-12 嘉兴学院 一种太阳能智能供电的车载氢气安全系统和方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369850A (en) 1980-07-28 1983-01-25 The Curators Of The University Of Missouri High pressure fluid jet cutting and drilling apparatus
WO1990011134A1 (fr) * 1989-03-17 1990-10-04 Edi Mark Ajutage pour jet de liquide sous haute pression
DE4142740A1 (de) * 1991-12-21 1993-06-24 Wepuko Hydraulik Gmbh & Co Pum Reinigungsvorrichtung mit fluessigstrahlduese
US5794854A (en) * 1996-04-18 1998-08-18 Jetec Company Apparatus for generating oscillating fluid jets
US20010038039A1 (en) * 2000-05-05 2001-11-08 Schultz Carl L. Orbital applicator tool with self-centering dispersing head
US20020109017A1 (en) * 2001-02-14 2002-08-15 Rogers Thomas W. Oscillating high energy density output mechanism
DE10236266A1 (de) 2001-08-07 2003-02-20 Nordson Corp Wirbelpistole
US20060053165A1 (en) * 2004-09-03 2006-03-09 Nitrocision L.L.C. System and method for delivering cryogenic fluid
DE102005001169A1 (de) * 2004-11-24 2006-06-22 Jäger, Anton Düse zum Ausstoßen eines Fluids
US7316363B2 (en) 2004-09-03 2008-01-08 Nitrocision Llc System and method for delivering cryogenic fluid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031366U (ja) * 1983-08-04 1985-03-02 株式会社 スギノマシン 超高圧水噴射ガン
JPH0811203B2 (ja) * 1986-05-13 1996-02-07 株式会社スギノマシン 超高圧液体噴射装置
US4736808A (en) * 1986-10-14 1988-04-12 Canadian Patents And Development Limited/Societe Canadienne Des Brevets Et D'exploitation Limitee Percussive tool with high pressure fluid jet
SU1475722A1 (ru) * 1987-03-16 1989-04-30 Фрунзенский политехнический институт Устройство дл распылени
JP2619723B2 (ja) * 1989-11-29 1997-06-11 アールディー興産株式会社 鉄筋コンクリート斫用偏角回転ウォータジェットガン
JP2507296Y2 (ja) * 1992-07-08 1996-08-14 川崎重工業株式会社 偏心回転式ウォ―タ―ジェットノズルヘッド
US5533673A (en) * 1994-10-31 1996-07-09 Jet Blast Products Corp. Nozzle system imparting compound motion
JP2002035630A (ja) * 2000-07-28 2002-02-05 Ns Engineering Kk コンクリート破砕装置
FR2945761B1 (fr) * 2009-05-20 2012-06-01 Air Liquide Installation et procede de traitement de surface par jets de fluide cryogenique.

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369850A (en) 1980-07-28 1983-01-25 The Curators Of The University Of Missouri High pressure fluid jet cutting and drilling apparatus
US4369850B1 (fr) 1980-07-28 1988-07-12
US4369850B2 (en) 1980-07-28 1989-06-06 High pressure fluid jet cutting and drilling apparatus
WO1990011134A1 (fr) * 1989-03-17 1990-10-04 Edi Mark Ajutage pour jet de liquide sous haute pression
DE4142740A1 (de) * 1991-12-21 1993-06-24 Wepuko Hydraulik Gmbh & Co Pum Reinigungsvorrichtung mit fluessigstrahlduese
US5794854A (en) * 1996-04-18 1998-08-18 Jetec Company Apparatus for generating oscillating fluid jets
US20010038039A1 (en) * 2000-05-05 2001-11-08 Schultz Carl L. Orbital applicator tool with self-centering dispersing head
US20020109017A1 (en) * 2001-02-14 2002-08-15 Rogers Thomas W. Oscillating high energy density output mechanism
DE10236266A1 (de) 2001-08-07 2003-02-20 Nordson Corp Wirbelpistole
US20060053165A1 (en) * 2004-09-03 2006-03-09 Nitrocision L.L.C. System and method for delivering cryogenic fluid
US7310955B2 (en) 2004-09-03 2007-12-25 Nitrocision Llc System and method for delivering cryogenic fluid
US7316363B2 (en) 2004-09-03 2008-01-08 Nitrocision Llc System and method for delivering cryogenic fluid
DE102005001169A1 (de) * 2004-11-24 2006-06-22 Jäger, Anton Düse zum Ausstoßen eines Fluids

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2978925A1 (fr) * 2011-08-12 2013-02-15 Air Liquide Dispositif de decapage cryogenique de surfaces non planes, en particulier de l'interieur d'un tube
WO2013024221A1 (fr) 2011-08-12 2013-02-21 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de décapage cryogénique de surfaces non planes, en particulier de l'intérieur d'un tube
WO2013076395A1 (fr) 2011-11-24 2013-05-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de distribution de jets de fluide cryogénique à chambre de tranquillisation
US10180294B2 (en) 2011-11-24 2019-01-15 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Device for dispensing jets of cryogenic fluid, including a plenum chamber
US9586291B2 (en) 2012-11-28 2017-03-07 Globalfoundries Inc Adhesives for bonding handler wafers to device wafers and enabling mid-wavelength infrared laser ablation release
WO2014135781A1 (fr) 2013-03-07 2014-09-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de distribution de jets de fluide cryogénique avec enveloppe souple de protection
US20160008837A1 (en) * 2013-03-07 2016-01-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for dispensing cryogenic fluid jets, having a flexible protection casing
WO2014177824A1 (fr) * 2013-04-29 2014-11-06 Amb Engineering Limited Appareil et procédé d'atomisation de fluide conducteur
GB2527474A (en) * 2013-04-29 2015-12-23 Amb Engineering Ltd Apparatus and a method for atomising a conducting liquid

Also Published As

Publication number Publication date
RU2518960C2 (ru) 2014-06-10
EP2456567B1 (fr) 2015-10-14
JP5738858B2 (ja) 2015-06-24
FR2948301B1 (fr) 2013-01-11
US9914142B2 (en) 2018-03-13
RU2012106028A (ru) 2013-08-27
JP2012533422A (ja) 2012-12-27
US20120222708A1 (en) 2012-09-06
CN102470385A (zh) 2012-05-23
EP2456567A1 (fr) 2012-05-30
CN102470385B (zh) 2015-06-03
FR2948301A1 (fr) 2011-01-28

Similar Documents

Publication Publication Date Title
EP2456567B1 (fr) Dispositif de distribution de jets de fluide sans joint tournant
EP2066462B1 (fr) Procede et dispositif de decapage de tubes par action d'un fluide a tres haute pression
EP2503208B1 (fr) Système d'entretien de la paroi intérieure d'une conduite et procédé de mise en oeuvre
EP2741861B1 (fr) Dispositif de décapage cryogénique de surfaces non planes, en particulier de l'intérieur d'un tube
EP2419241B1 (fr) Procédé et installation de traitement de surface par jets de fluide cryogénique
EP1621288A2 (fr) Projectiles, dispositifs et installations de grenaillage par ultrasons et pièces ainsi traitées
FR2718665A1 (fr) Outil de découpe de tuyauterie immergée par jet abrasif.
EP2782711B1 (fr) Dispositif de distribution de jets de fluide cryogénique à chambre de tranquillisation
FR3052533A1 (fr) Cloche de projection de grenaille et d'aspiration de la grenaille projetee, robot pour la renovation de conduites forcees, muni d'une telle cloche
EP0683013B1 (fr) Dispositif de surfacage ou de polissage de matériaux pierreux
EP2480378B1 (fr) Dispositif de distribution de jets de fluide cryogénique avec joint en polymère à coefficient de dilatation donné
FR2905290A1 (fr) Dispositif de traitement pour le grenaillage de la surface interieure d'une piece tubulaire
EP2514562A1 (fr) Dispositif et procédé de sablage d'une conduite
FR2950270A1 (fr) Dispositif de distribution de jets de fluide sans joint tournant avec moyens de refroidissement des parties mobiles
EP2473318A1 (fr) Calorifugation des canalisations d'une installation de travail par jets de fluide cryogénique
EP3083141A1 (fr) Enceinte de protection d'un outil mobile de distribution de fluide a temperature cryogenique
WO2022243632A1 (fr) Buse de sablage
EP0882522B1 (fr) Lance et appareil de production d'un jet de CO2 liquide, et son application à une installation de nettoyage de surfaces
WO2022243633A1 (fr) Système de projection pour dispositif de sablage
FR2984780A1 (fr) Dispositif de percage d'une canalisation
EP2782710B1 (fr) Installation et procédé de travail par jets de fluide cryogénique avec amélioration de la cloche d'aspiration
FR3015631A1 (fr) Dispositif de distribution de fluide a temperature cryogenique et procede de decapage ou d'ecroutage de beton par jet de fluide a temperature cryogenique mettant en œuvre un tel dispositif
WO1993022559A1 (fr) Axe d'entrainement pour pompe peristaltique et son procede de fabrication
FR2876599A1 (fr) Dispositif pour creer un jet fluide orbital pur ou charge de particules notamment abrasives
FR2719801A1 (fr) Procédé et dispositif pour ébarber des pièces moulées cylindriques.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032070.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010745314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012521071

Country of ref document: JP

Ref document number: 13386342

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201200624

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2012106028

Country of ref document: RU