WO2011007461A1 - 開口絞り - Google Patents

開口絞り Download PDF

Info

Publication number
WO2011007461A1
WO2011007461A1 PCT/JP2009/067352 JP2009067352W WO2011007461A1 WO 2011007461 A1 WO2011007461 A1 WO 2011007461A1 JP 2009067352 W JP2009067352 W JP 2009067352W WO 2011007461 A1 WO2011007461 A1 WO 2011007461A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
subject
fluorescence
observation
Prior art date
Application number
PCT/JP2009/067352
Other languages
English (en)
French (fr)
Inventor
司朗 山野
佐藤 隆幸
Original Assignee
株式会社山野光学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山野光学 filed Critical 株式会社山野光学
Priority to EP09847357.2A priority Critical patent/EP2454985B1/en
Priority to JP2011522679A priority patent/JP5224078B2/ja
Priority to US12/809,937 priority patent/US8711461B2/en
Publication of WO2011007461A1 publication Critical patent/WO2011007461A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • G03B9/06Two or more co-operating pivoted blades, e.g. iris type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention when the amount of fluorescent light from the observation region of the subject is weak compared to the illumination light that illuminates the subject, an observation image with weak fluorescence and a subject image with strong illumination light are simultaneously captured clearly.
  • the present invention relates to an aperture stop used for the purpose.
  • PDD photodynamic diagnosis
  • PDT photodynamic therapy
  • PDD and PDT require that fluorescence emitted from a photosensitive substance in a tumor tissue be photographed with high precision and observed under strong illumination light such as an operating room operating light. Since the fluorescence emitted from the substance is extremely weak compared to the illumination light, there is a problem that the fluorescence image is buried in the subject image by the illumination light.
  • ICG Indocyanine Green
  • the ICG is excited by irradiation of excitation light, etc., and a near-infrared fluorescent image emitted from the ICG is taken together with a subject image and observed. Therefore, attention has been paid to a method for making a diagnosis.
  • Hemoglobin absorbs at wavelengths shorter than 600 nm, and water absorbs at wavelengths longer than 900 nm.
  • the excitation wavelength of ICG and the wavelength of fluorescence emitted by ICG are 600 to 900 nm without absorption of hemoglobin and water, respectively. Since it is in the wavelength band, the inside of the living body can be observed by using ICG.
  • this method also has a problem that the fluorescent image is buried in the subject image.
  • Patent Document 2 when illuminating a subject using an illumination device including excitation light and illumination light, and simultaneously observing the observation image due to weak fluorescence emitted from the observation site in the subject and the subject image due to reflected light from the subject, the excitation light component And adjusting the intensity of illumination light component and controlling the luminance value and contrast of the observation image and the subject image (Patent Document 2).
  • an illuminating device is used not for endoscopic observation but for observation of tissue exposed to strong illumination light in an operating room or the like, it is necessary to greatly reduce the illumination light component. The problem arises that the room must be darkened.
  • an optical filter that cuts excitation light and transmits infrared light and visible light is used.
  • the light transmittance is different between infrared light and visible light to balance the infrared light image and the visible light image (Patent Document 3).
  • the fluorescence in the infrared light band that forms the observation image with respect to the illumination light in the visible light band that forms the subject image is extremely weak, the transmittance in the infrared light band and the transmittance in the visible light band It is difficult to obtain an optical filter that is adjusted in a well-balanced manner.
  • the focal planes of the fluorescence in the infrared light band that forms the observation image and the light in the visible light band that forms the object image are different, the observation image and the object image cannot be captured clearly simultaneously.
  • the filter diaphragm is divided into three concentric circles, the innermost side being a circular visible light transmission part, the outer side being a visible light non-transmission part, and the outermost side being It has been proposed to use a light-shielding part, thereby brightening a fluorescent image with respect to a visible light image so that the visible light image can be observed at a deep subject depth (Patent Document 4).
  • Patent Document 4 a light-shielding part
  • the present invention provides a simple method for illumination when the fluorescence from the observation site of the subject is weak compared to the illumination light that forms the subject image and the intensity of the illumination light varies depending on the observation situation. It is an object of the present invention to clearly obtain both an object image by light and an observation image by fluorescence from an observation site of the object.
  • the present inventors function as an aperture stop with a variable opening for light in the wavelength range corresponding to the illumination light, but transmit the light in the wavelength range corresponding to the fluorescence from the observation site of the subject without being reduced. It has been found that the above-described problems can be solved by using an aperture stop.
  • the present invention includes a plurality of diaphragm blade members each having a filter portion formed partly or entirely, a filter region formed from the filter portions of the plurality of diaphragm blade members, and an opening region located inside the filter region,
  • An aperture stop having The filter region transmits light in a wavelength region corresponding to fluorescence from the observation site of the subject, and reduces or blocks transmission of light in a wavelength region corresponding to illumination light to the subject,
  • the aperture region transmits light in a wavelength region corresponding to fluorescence from the observation site of the subject and light in a wavelength region corresponding to illumination light to the subject,
  • an aperture stop in which light in a wavelength region corresponding to fluorescence from an observation site of a subject is not focused and the area of the aperture region is variable.
  • the present invention also provides an imaging apparatus that captures both an observation image by fluorescence from an observation site of a subject and a subject image by illumination light, and includes the above-described aperture stop.
  • the present invention provides an imaging apparatus that simultaneously observes an observation image by fluorescence from an observation site of a subject and a subject image by illumination light, and includes the above-described aperture stop.
  • the aperture stop of the present invention inside the filter region that transmits light in the wavelength region corresponding to the fluorescence from the observation site of the subject and reduces or blocks light in the wavelength region corresponding to the illumination light to the subject. Since the aperture region is formed, only the light in the wavelength region of the illumination light that forms the subject image is narrowed down without reducing the fluorescence from the observation site of the subject. For this reason, even when the amount of light in the wavelength range of the illumination light that forms the subject image is overwhelmingly large compared to the weak fluorescence from the observation site of the subject, the subject image caused by the illumination light has weak fluorescence. It is possible to clearly observe an observation image with weak fluorescence without burying the observation image.
  • the light that forms the subject image by the illumination light is stopped in the aperture region. Therefore, according to the imaging device including the aperture stop of the present invention, the depth of focus becomes deep for the light in the wavelength region corresponding to the illumination light. For this reason, in the imaging apparatus having the aperture stop according to the present invention, when the focus is adjusted to the observation image by fluorescence, the light forming the subject image and the fluorescence forming the observation image have different wavelengths. A subject image can be clearly obtained even though the surface is shifted.
  • the aperture stop of the present invention since the area of the aperture region is variable, it is more appropriate to adjust the balance of the light amount and the depth of focus for the light forming the subject image and the fluorescence forming the observation image. Can be done.
  • the aperture stop of the present invention can obtain the above-described effects with a simple configuration. Therefore, according to the imaging device of the present invention having the aperture stop of the present invention, both a subject image by illumination light and an observation image by fluorescence from the observation site of the subject can be obtained clearly and at low cost. .
  • FIG. 1A and 1B are a plan view and a cross-sectional view for explaining the operation of a two-blade aperture stop 10A according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a diaphragm blade member 20A constituting the two-blade type aperture diaphragm 10A according to the embodiment of the present invention.
  • FIG. 3 is a plan view and a cross-sectional view of the two-blade aperture stop 10B according to the embodiment of the present invention.
  • FIG. 4 is a plan view of a diaphragm blade member 20C constituting the two-blade aperture stop according to the embodiment of the present invention.
  • FIG. 5 is a plan view of a diaphragm blade member 20D constituting the two-blade type aperture diaphragm according to the embodiment of the present invention.
  • FIG. 6 is a plan view and a cross-sectional view of the two-blade aperture stop 10E according to the embodiment of the present invention.
  • FIG. 7 is a plan view and a cross-sectional view of the two-blade aperture stop 10F according to the embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram of an imaging apparatus 100A according to the embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram of the imaging apparatus 100B according to the embodiment of the present invention.
  • FIG. 10 is a schematic configuration diagram of an endoscope imaging apparatus 100C according to the embodiment of the present invention.
  • FIG. 11 is a schematic configuration diagram of an endoscope observation apparatus 100D according to the embodiment of the present invention.
  • FIG. 1 is an explanatory view of a two-blade type aperture stop 10A which is an embodiment of the aperture stop of the present invention.
  • FIG. 2 shows a pair of stop blade members 20A constituting the two-blade type aperture stop 10A. It is a top view.
  • the diaphragm blade member 20A has a filter part 21 in which a filter layer 21a is formed on the left and right sides of the surface of a rectangular flat substrate 23, and a non-filter part 22 that is a non-formation region of the filter layer 21a. It is fitted in.
  • the filter layer 21a has a shape in which the non-filter part 22 side is recessed in a V shape.
  • This filter layer 21a transmits the light in the fluorescent wavelength region from the observation site of the subject without being substantially attenuated, and has a light transmission characteristic that reduces or blocks the light in the wavelength region of the illumination light to the subject. Have.
  • the two-blade type aperture stop 10A shown in FIG. 1 is constructed by combining a pair of stop blade members 20A so that both non-filter portions 22 overlap and movably mounted on a rail 25.
  • the overlapping region of the non-filter portion 22 of the pair of diaphragm blade members 20A becomes the opening region 2 of the two-blade type aperture stop 10A.
  • the pair of filter portions 21 surrounding the opening region 2 becomes the filter region 1 of the two-blade type aperture stop 10A, transmits light in the fluorescent wavelength region from the observation region of the subject, and illuminates the subject. Reduce or block light in the wavelength range of.
  • the area of the opening region 2 is variable.
  • FIG. 1A the state where the opening region 2 is maximized
  • FIG. The area of the opening region 2 can be continuously changed between the state in which the opening region 2 is narrowed down and the state in which the opening region 2 is further narrowed down as shown in FIG. Therefore, it is possible to appropriately adjust the balance between the light that forms the subject image and the amount of fluorescent light that forms the observation image, and the depth of focus.
  • a broken-line circle X around the aperture region 2 indicates the maximum area of the optical path at the mounting position when the two-blade aperture stop 10A is mounted on an optical system such as an imaging device.
  • the filter region 1 in the two-blade type aperture stop 10A is always larger than the maximum region indicated by the broken-line circle X regardless of the size of the aperture in the aperture region 2, The effective diameter of fluorescence cannot be reduced. Therefore, in the two-blade type aperture stop 10A, it is possible to always use the maximum fluorescence from the observation site of the subject.
  • the wavelength range of the fluorescence and the wavelength range of the illumination light can be appropriately determined according to the type of the subject to be observed, the photosensitive substance, the photocontrast agent, the observation purpose, and the like.
  • the accumulation site is used as an observation site, and fluorescence is emitted by irradiating ICG with excitation light, and the fluorescence is observed
  • the peak of the excitation wavelength of ICG is 805 nm
  • the peak of the fluorescence wavelength of ICG is 845 nm
  • Light of 810 to 1000 nm including the wavelength band is transmitted, but light of 400 to 810 nm on the shorter wavelength side is preferably reduced or blocked.
  • the light transmission characteristics of the two-blade aperture stop 10A are set in this way, light in the wavelength region of the excitation light passes through the aperture region 2, so that when the two-blade aperture stop 10A is used, 750 is used. It is preferable to use together an excitation light cut filter that blocks light of ⁇ 810 nm.
  • the above-described filter layer 21a is formed on one surface of the flat substrate 23 and the other surface of the flat substrate 23 is formed.
  • An excitation light cut filter layer 5 that blocks light of 750 to 810 nm may be formed on the entire surface.
  • HpD hematoporphyrin derivative
  • the filter region 1 transmits light having a wavelength of 610 to 720 nm, which is the fluorescent wavelength region, but blocks or reduces visible light having a shorter wavelength than the fluorescent wavelength region and infrared light having a longer wavelength. Those that block light on the shorter wavelength side and longer wavelength side than the fluorescent wavelength region are more preferable.
  • the filter unit 21 is formed by vapor deposition of a thin film on the flat substrate 23 or the like.
  • the flat substrate 23 is formed of a transparent glass plate, a plastic resin plate, or the like.
  • the pair of diaphragm blade members 20A when combining the pair of diaphragm blade members 20A so that the two non-filter portions 22 overlap each other, the pair of diaphragm blade members 20A, It is desirable to place them as close as possible.
  • a pair of aperture blade members 20A may be connected by a known connector so that the pair of aperture blade members 20A move symmetrically about the center p of the opening region 2.
  • the drive source of the diaphragm blade member 20A may be manual or a stepping motor or the like.
  • the aperture stop of the present invention can take various modes.
  • the V-shaped opening angle ⁇ and the V-shaped depth d of the filter portion 21 are determined by the overlapping of the pair of non-filter portions 22. There is no particular limitation as long as it is formed.
  • the filter portion 21 is recessed in a V shape on the non-filter portion 22 side.
  • the filter portion 21 is recessed as long as the opening region 2 can be formed by overlapping the pair of non-filter portions 22.
  • the opening region 2 is not particularly limited, and the opening region 2 is formed in a state in which the area of the opening region 2 is narrowed by denting the tip of the V-shaped recess in a semicircular shape like the diaphragm blade member 20C shown in FIG. May be circular.
  • the planar shape itself of the flat substrate 23 that forms the diaphragm blade member 20E has a concave shape like the filter portion 21, and this flat substrate. All of 23 may be used as the filter portion 21, or, as in the diaphragm blade member 20F of the two-blade type aperture diaphragm 10F shown in FIG. May use the thing which has the light transmission characteristic similar to the filter layer 21a, and may form the opening area
  • a part of the flat substrate 23 is used as the filter portion 21, and the non-filter portion 22 of the flat substrate 23 is adjacent to one side of the filter substrate 21, thereby making the maximum of the optical path indicated by the broken line.
  • the total thickness of the diaphragm blade member 20A in the optical axis direction in the filter region 1 and the total thickness of the diaphragm blade member 20A in the optical axis direction in the aperture region 2 are the same, and the fluorescence transmitted through the filter region 1 and the aperture region It is preferable not to cause a phase difference between the fluorescent light passing through 2. Thereby, an observation image can be formed more clearly.
  • the aperture stop of the present invention can take various modes.
  • a filter region and an opening region located inside the filter region may be formed by combining three or more aperture blade members having a filter part and a non-filter part.
  • the total thickness of the diaphragm blade member in the optical axis direction in the filter region and the total thickness of the diaphragm blade member in the optical axis direction in the aperture region are the same within the maximum range of the optical path in the aperture stop. .
  • the aperture stop according to the present invention can be widely used in various imaging devices that simultaneously capture a subject image by illumination light and an observation image by fluorescence from the observation site of the subject, thereby forming light that forms the subject image. On the other hand, even when the fluorescence forming the observation image is weak, both the subject image and the observation image can be clearly obtained.
  • FIG. 8 is a schematic configuration diagram of an example of an imaging apparatus 100A in which the aperture stop 10 of the present invention is incorporated into a known handy type near-infrared fluorescent imaging apparatus using ICG.
  • This imaging device 100A takes a subject image by visible light with a living body as a subject S, and simultaneously takes an infrared image fluorescence image emitted by ICG administered to a living tissue as an observation image. 102, a monitor 103, and the like.
  • the camera unit 101 has a near infrared wavelength LED excitation light source 104 as an auxiliary light source for exciting the ICG on the front side of the subject, and a CCD 105 having sensitivity in the near infrared light band and visible light band inside, A lens system 106 for forming an image on the CCD 105 is provided, and an excitation light cut filter 50 is provided in front of the lens system 106. Also, in the lens system 106, for example, a two-blade type aperture stop 10A is installed as the aperture stop 10 of the present invention. In addition, as the aperture stop 10 of the present invention, the above-described various aspects can be installed, and in the case where the one having the excitation light cut filter layer 5 formed therein is installed, the excitation light cut The filter 50 is not necessary.
  • the controller 102 has an image processing function for adjusting the contrast of an image captured by the CCD 105 and removing noise. Also, it has a function of outputting image data to the monitor 103 and outputting the subject image and the observation image to the monitor 103 at the same time, or outputting image data to be connected to an external recording device, communication device, etc. as necessary. ing.
  • ICG is administered to a predetermined part of a patient to be the subject S in advance, the subject S is imaged under the illumination light L1 from the external illumination device 110 such as a surgical light, and the illumination light is obtained.
  • a subject image by L1 and an observation image by ICG fluorescence are simultaneously imaged, and a composite image thereof is output to the monitor 103 to be used for diagnosis of the subject S.
  • the illumination light from the external illumination device 110 is preferably white light (particularly, an observation image is formed by using a fluorescent lamp, a halogen lamp, a xenon lamp, an LED or the like as a light source and cutting light in the infrared light band.
  • White light obtained by cutting light in a wavelength region of 810 nm or more.
  • the sensitivity and focus of the imaging apparatus 100A are adjusted based on the fluorescence intensity from the observation site.
  • the opening degree of the opening region 2 of the aperture stop 10 is adjusted as appropriate.
  • an imaging apparatus incorporating the aperture stop of the present invention As an imaging apparatus incorporating the aperture stop of the present invention, light in a wavelength region corresponding to fluorescence from the observation region of the subject is transmitted through the front surface of the lens system 106 as in the imaging apparatus 100B shown in FIG.
  • An ND filter 40 that reduces or blocks transmission of light in a wavelength range corresponding to the illumination light of the subject may be provided.
  • the aperture stop 10 of the present invention if the area of the aperture region 2 is excessively reduced, the subject image deteriorates. Therefore, only the aperture stop 10 of the present invention cannot sufficiently reduce the visible light that forms the subject image.
  • the ND filter 40 that transmits light in the wavelength region corresponding to the fluorescence from the observation region of the subject and reduces or blocks transmission of light in the wavelength region corresponding to the illumination light of the subject is the aperture stop 10 of the present invention.
  • the light that forms the subject image can be sufficiently reduced, and both the observation image by fluorescence and the subject image can be clearly photographed.
  • FIG. 10 is a schematic configuration diagram of a fiber endoscope imaging apparatus 100C incorporating the aperture stop 10 of the present invention.
  • reference numeral 107 denotes an optical fiber.
  • FIG. 11 is a schematic configuration diagram of a relay lens type endoscope observation apparatus 100D incorporating the aperture stop 10 of the present invention.
  • reference numeral 108 denotes a relay lens.
  • This observation apparatus 100D can also be provided with a known illumination optical system (not shown). Also in the observation apparatus, an ND filter and an excitation light cut filter can be provided as necessary as described above.
  • the present invention also includes these devices incorporating the aperture stop of the present invention.
  • the aperture stop of the present invention is useful in fluorescent imaging devices using fluorescent reagents such as ICG, imaging devices in the medical field such as PDD and PDT, and when taking fluorescent images in analysis tests of foods and various materials. Is also useful.

Abstract

 開口絞り10Aが、平板状基板23に形成されたフィルタ領域1、フィルタ領域1の内側に形成された開口領域2を有する。フィルタ領域1は、赤外光を透過させ、かつ可視光の透過を低減又は遮断する。開口領域2は、被写体の観察部位からの蛍光に対応する波長域の光と、被写体への照明光に対応する波長域の光を透過させる。この開口絞り10Aでは、被写体の観察部位からの蛍光に対応する波長域の光が絞られず、開口領域2の面積が可変であることにより可視光の光が可変に絞られるので、照明光による可視光帯域の被写体像と、その被写体の観察部位からの赤外帯域の微弱な蛍光による観察像とを、簡便な方法で同時に鮮明に観察することが可能となる。

Description

開口絞り
 本発明は、被写体を照明する照明光に比べて被写体の観察部位からの蛍光の光量が微弱な場合に、微弱な蛍光による観察像と強力な照明光による被写体像とを、同時に鮮明に撮像するために用いる開口絞りに関する。
 医療分野において光線力学的診断法(PDD)や光線力学的治療法(PDT)が利用されている。PDDは、励起光の照射により蛍光を発生する光感受性物質が腫瘍組織に特異的に蓄積される性質を利用して、予め生体内に光感受性物質を投与し、それが発する蛍光により腫瘍組織を観察する診断法であり、PDTは、光感受性物質の励起により生じる一重項酸素を利用して腫瘍組織を破壊する治療法である。
 PDDやPDTでは、手術室の無影灯等の強力な照明光下において、腫瘍組織内の光感受性物質から発せられる蛍光を高精度に撮影し、観察可能とすることが求められるが、光感受性物質から発せられる蛍光は照明光に比して極めて微弱であるため、蛍光像が照明光による被写体像に埋もれてしまうという問題がある。
 一方、近年、生体内に光造影剤としてICG(インドシアニングリーン)を投与し、励起光の照射等によりICGを励起させ、ICGが発する近赤外の蛍光像を被写体像と共に撮像し、観察することにより診断を行う方法が注目されている。ヘモグロビンは600nmより短波長に吸収があり、水は900nmより長波長に吸収があり、他方、ICGの励起波長やICGが発する蛍光の波長は、それぞれ、ヘモグロビンや水の吸収のない600~900nmの波長帯域にあるため、ICGを使用することにより、生体内部の観察も可能になる。しかしながら、この方法においても蛍光像が被写体像に埋もれてしまうというという問題がある。
 このような問題を解決するために、赤外領域の蛍光を含む被写体像をRGB成分に分解し、再度それらを重畳してカラー画像を形成するにあたり、R成分が多くなるように分解し、微弱な蛍光による観察部位を強調することが提案されている(特許文献1)。しかしながら、この方法では、赤外領域にある蛍光だけでなく、被写体像を形成するR成分の光も同時に強調されるため、被写体像の中で蛍光を発する部位を精確に観察することが困難となる。さらに、被写体像をRGB成分に分解するためのフィルタやその駆動機構が必要となり、装置構成が複雑になることも問題となる。
 また、励起光と照明光を含む照明装置を用いて被写体を照明し、被写体中の観察部位が発する微弱な蛍光による観察像と被写体の反射光による被写体像とを同時に観察するにあたり、励起光成分と照明光成分の強度を調整し、観察像と被写体像の輝度値やコントラストを制御することが提案されている(特許文献2)。しかしながら、このような照明装置を内視鏡観察ではなく、手術室等において強力な照明光に暴露された組織の観察に使用する場合、照明光成分を大きく低減させることが必要になるため、手術室内を暗くしなければならないという問題が生じる。
 さらに、赤外光帯域の蛍光による観察像と可視光帯域の被写体像とを同時に撮影する撮像装置において、励起光をカットすると共に、赤外光と可視光とを透過させる光学フィルタを使用すること、その場合に、赤外光と可視光とで光の透過率を異ならせ、赤外光像と可視光像とのバランスをとることが提案されている(特許文献3)。しかしながら、被写体像を形成する可視光帯域の照明光に対して観察像を形成する赤外光帯域の蛍光が極めて微弱であるため、赤外光帯域の透過率と、可視光帯域の透過率とをバランスよく調整した光学フィルタを得ることは難しい。さらに、観察像を形成する赤外光帯域の蛍光と被写体像を形成する可視光帯域の光とでは焦点面が異なるため、観察像と被写体像とを同時に鮮明に撮像することができない。
 これに対し、蛍光内視鏡装置において、同心円状に3つに分かれたフィルタ絞りであって、最も内側は円形状の可視光透過部とし、その外側は可視光非透過部とし、最も外側を遮光部としたものを使用し、これにより可視光画像に対して蛍光画像を明るくし、可視光画像を深い被写体深度で観察できるようにすることが提案されている(特許文献4)。しかしながら、このフィルタ絞りを、手術室等で照明光に暴露された組織の観察に使用する場合、照明光の強さは具体的観察状況ごとに大きく変わるため、可視光画像に対する蛍光画像の明るさを適切に調整することができない。
特開2001-78205号公報 特開2008-259591号公報 特開2008-188196号公報 特開平10-151104号公報
 上述のように、照明光による被写体像と、その被写体の観察部位からの微弱な蛍光による観察像とを鮮明に観察することが課題となっている。したがって、本発明は、被写体像を形成する照明光に比べて被写体の観察部位からの蛍光が微弱であり、かつ照明光の強度が観察状況に応じて変動する場合に、簡便な方法で、照明光による被写体像と、被写体の観察部位からの蛍光による観察像との双方を鮮明に得られるようにすることを目的とする。
 本発明者らは、照明光に対応する波長域の光に対しては開度が可変の開口絞りとして機能するが、被写体の観察部位からの蛍光に対応する波長域の光は絞ることなく透過させる開口絞りを用いることにより、上述の課題を解決できることを見出した。
 すなわち、本発明は、一部又は全部にフィルタ部が形成された絞り羽根部材を複数備え、複数の絞り羽根部材のフィルタ部から形成されたフィルタ領域と該フィルタ領域の内側に位置する開口領域とを有する開口絞りであって、
フィルタ領域が、被写体の観察部位からの蛍光に対応する波長域の光を透過させ、被写体への照明光に対応する波長域の光の透過を低減又は遮断し、
開口領域が、被写体の観察部位からの蛍光に対応する波長域の光と、被写体への照明光に対応する波長域の光を透過させ、
被写体の観察部位からの蛍光に対応する波長域の光が絞られず、開口領域の面積が可変である開口絞りを提供する。
 また、本発明は、被写体の観察部位からの蛍光による観察像と、照明光による被写体像とを共に撮影する撮像装置であって、上述の開口絞りを備えた撮像装置を提供する。
 さらに、本発明は、被写体の観察部位からの蛍光による観察像と、照明光による被写体像とを同時に観察する撮像装置であって、上述の開口絞りを備えた観察装置を提供する。
 本発明の開口絞りによれば、被写体の観察部位からの蛍光に対応する波長域の光を透過させ、かつ被写体への照明光に対応する波長域の光を低減又は遮断するフィルタ領域の内側に開口領域が形成されているので、被写体の観察部位からの蛍光は絞られることなく、被写体像を形成する照明光の波長域の光のみが絞られる。このため、被写体の観察部位からの微弱な蛍光に比して、被写体像を形成する照明光の波長域の光の光量が圧倒的に多い場合でも、照明光による被写体像中に微弱な蛍光による観察像が埋もれることなく、微弱な蛍光による観察像を鮮明に観察することが可能となる。
 また、本発明の開口絞りによれば、照明光による被写体像を形成する光は開口領域で絞られる。従って、本発明の開口絞りを備えた撮像装置によれば、照明光に対応する波長域の光については焦点深度が深くなる。このため、本発明の開口絞りを備えた撮像装置において、焦点を、蛍光による観察像に合わせると、被写体像を形成する光と、観察像を形成する蛍光とでは波長が異なるために双方の焦点面がずれるにもかかわらず、被写体像も明瞭に得ることができる。
 さらに、本発明の開口絞りによれば、開口領域の面積が可変であるため、被写体像を形成する光と観察像を形成する蛍光について、それらの光量のバランス調整や焦点深度の調整をより適切に行うことができる。
 加えて、本発明の開口絞りは、上述の効果を簡便な構成で得ることができる。したがって、本発明の開口絞りを備えた本発明の撮像装置によれば、照明光による被写体像と被写体の観察部位からの蛍光による観察像の双方を鮮明に、かつ、低コストに得ることができる。
図1は、本発明の実施例の2枚羽根型開口絞り10Aの作用を説明する平面図及び断面図である。
図2は、本発明の実施例の2枚羽根型開口絞り10Aを構成する絞り羽根部材20Aの平面図である。
図3は、本発明の実施例の2枚羽根型開口絞り10Bの平面図及び断面図である。
図4は、本発明の実施例の2枚羽根型開口絞りを構成する絞り羽根部材20Cの平面図である。
図5は、本発明の実施例の2枚羽根型開口絞りを構成する絞り羽根部材20Dの平面図である。
図6は、本発明の実施例の2枚羽根型開口絞り10Eの平面図及び断面図である。
図7は、本発明の実施例の2枚羽根型開口絞り10Fの平面図及び断面図である。
図8は、本発明の実施例の撮像装置100Aの概略構成図である。
図9は、本発明の実施例の撮像装置100Bの概略構成図である。
図10は、本発明の実施例の内視鏡撮像装置100Cの概略構成図である。
図11は、本発明の実施例の内視鏡観察装置100Dの概略構成図である。
 以下、図面を参照して本発明を詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。
 図1は、本発明の開口絞りの一実施例である2枚羽根型開口絞り10Aの説明図であり、図2は、この2枚羽根型開口絞り10Aを構成する一対の絞り羽根部材20Aの平面図である。
 絞り羽根部材20Aは、矩形の平板状基材23の表面の左右片側にフィルタ層21aが形成されたフィルタ部21とフィルタ層21aの非形成領域である非フィルタ部22を有し、外枠24に嵌められている。ここで、フィルタ層21aは非フィルタ部22側がV字型に凹んだ形状をしている。このフィルタ層21aは、被写体の観察部位からの蛍光の波長域の光を実質的に減衰することなく透過し、かつ被写体への照明光の波長域の光を低減又は遮断する光の透過特性を有する。
 図1に示した2枚羽根型開口絞り10Aは、一対の絞り羽根部材20Aを、双方の非フィルタ部22が重なり合うように組み合わせ、レール25上に移動可能に取り付けたものである。この2枚羽根型開口絞り10Aによれば、一対の絞り羽根部材20Aの非フィルタ部22の重なり合った領域が、2枚羽根型開口絞り10Aの開口領域2となり、被写体の観察部位からの蛍光の波長域の光と被写体への照明光の波長域の光を透過させる。また、この開口領域2を囲む一対のフィルタ部21が、2枚羽根型開口絞り10Aのフィルタ領域1となり、被写体の観察部位からの蛍光の波長域の光を透過させ、かつ被写体への照明光の波長域の光を低減又は遮断する。
 したがって、この2枚羽根型開口絞り10Aによれば、開口領域2の面積が可変となり、例えば、図1(a)に示すように、開口領域2を最大にした状態と、同図(b)に示すように開口領域2を絞った状態と、同図(c)に示すように開口領域2をさらに絞った状態に、開口領域2の面積を連続的に変化させることができる。よって、被写体像を形成する光と観察像を形成する蛍光の光量のバランス調整や焦点深度の調整を適切に行うことができる。
 また、図1において、開口領域2の周りの破線円形Xは、この2枚羽根型開口絞り10Aを撮像装置などの光学系に取り付けた場合の取付位置での光路の最大域を示している。同図に示すように、2枚羽根型開口絞り10Aにおけるフィルタ領域1は、開口領域2の絞りの大小にかかわらず、常に破線円形Xで示される最大域よりも大きく、被写体の観察部位からの蛍光の有効径は絞られない。したがって、この2枚羽根型開口絞り10Aにおいては、常に被写体の観察部位からの蛍光を最大限利用することが可能となる。
 ここで、蛍光の波長域と照明光の波長域は、観察対象とする被写体、光感受性物質、光造影剤等の種類や観察目的等に応じて適宜定めることができる。例えば、生体内にICGを蓄積させ、その蓄積部位を観察部位とし、ICGに励起光を照射することにより蛍光を発光させ、その蛍光を観察する場合、ICGの励起波長のピークは805nmであり、ICGの蛍光波長のピークは845nmであるから、750~810nmを励起波長域とし、この励起波長域を含む白色光を照明光の波長域とすることが好ましく、したがって、フィルタ領域1では、蛍光の波長域を含む810~1000nmの光は透過するが、それよりも短波長側の400~810nmの光は低減又は遮断されるようにすることが好ましい。
 なお、このように2枚羽根型開口絞り10Aの光の透過特性を設定すると、開口領域2を励起光の波長域の光が通過するので、この2枚羽根型開口絞り10Aの使用時には、750~810nmの光を遮断する励起光カットフィルタを併用することが好ましい。あるいは、図3に示した2枚羽根型開口絞り10B絞りの絞り羽根部材20Bのように、平板状基材23の片面に上述のフィルタ層21aを形成すると共に、平板状基材23の他面全面に750~810nmの光を遮断する励起光カットフィルタ層5を形成してもよい。
 一方、PDD法において光感受性物質としてヘマトポルフィリン誘導体(HpD)を使用する場合、HpDを蓄積した腫瘍細胞はピーク波長630nmと690nmの蛍光を発するため、蛍光の波長域としては、610~720nmを設定する。また、HpDの励起波長は405nmがピーク波長であるから、385~425nmを励起波長域とし、この励起波長域を含む白色光を照明光波長域とすることが好ましい。したがって、フィルタ領域1としては、蛍光の波長域である610~720nmの光を透過するが、この蛍光の波長域よりも短波長側の可視光や長波長側の赤外光は遮断又は低減するものが好ましく、この蛍光の波長域よりも短波長側及び長波長側の光を遮断するものがより好ましい。
 なお、2枚羽根型開口絞り10Aにおいて、フィルタ部21は、平板状基材23への薄膜の蒸着等により形成される。平板状基材23は、透明なガラス板、プラスチック樹脂板等から形成される。
 また、2枚羽根型開口絞り10Aにおいて、一対の絞り羽根部材20Aを双方の非フィルタ部22が重なり合うように組み合わせるにあたり、一対の絞り羽根部材20Aは、これらの対向面が互いに接触しない限りで、できるだけ近接して配置することが望ましい。
 絞り羽根部材10Aの駆動機構としては、開口領域2の中心pを中心にして左右対称に一対の絞り羽根部材20Aが動くように、一対の絞り羽根部材20Aを公知の接続具で接続することが好ましい。また、絞り羽根部材20Aの駆動源としては、手動でもよく、ステッピングモーター等を使用してもよい。
 本発明の開口絞りは、さらに種々の態様をとることができる。例えば、図2に示した絞り羽根部材20Aおいて、フィルタ部21のV字型の開きの角度θやV字型の深さdは、一対の非フィルタ部22の重ね合わせにより開口領域2が形成される限り特に制限はない。
 図2に示した絞り羽根部材20Aでは、フィルタ部21は、その非フィルタ部22側がV字型に凹んでいるが、一対の非フィルタ部22の重ね合わせにより開口領域2を形成できる限り凹み形状自体には特に制限なく、図4に示す絞り羽根部材20CのようにV字型の凹みの先端部を半円形に凹ませることにより、開口領域2の面積を最も狭めた状態で、開口領域2が円形になるようにしてもよい。また、図5に示す絞り羽根部材20Dのように、フィルタ部21の非フィルタ部22側を半楕円状等に凹ませても良い。
 図6に示す2枚羽根型開口絞り10Eのように、絞り羽根部材20Eを形成する平板状基材23の平面形状自体を、フィルタ部21と同様に凹みを有する形状とし、この平板状基材23の全部をフィルタ部21としてもよく、あるいは、図7に示す2枚羽根型開口絞り10Fの絞り羽部材20Fのように、色材が均一に分散していることにより平板状基材23自体がフィルタ層21aと同様の光透過特性を有する物を使用し、それを凹みを有する形状に切り欠くことにより開口領域2を形成してもよい。ただし、図1に示したように、平板状基材23の一部をフィルタ部21とし、その片側に平板状基材23の非フィルタ部22を隣接させることにより、破線で示した光路の最大域内では、フィルタ領域1における光軸方向の絞り羽根部材20Aの総厚と、開口領域2における光軸方向の絞り羽根部材20Aの総厚とを同一とし、フィルタ領域1を透過する蛍光と開口領域2を透過する蛍光とに位相差を生じさせないことが好ましい。これにより、観察像をより鮮明に形成することができる。
 本発明の開口絞りは、さらに種々の態様をとることができる。例えば、フィルタ部と非フィルタ部を有する絞り羽根部材を3枚以上組み合わせることにより、フィルタ領域と、そのフィルタ領域の内側に位置する開口領域とが形成されるようにしてもよい。この場合にも、開口絞りにおける光路の最大域内において、フィルタ領域における光軸方向の絞り羽根部材の総厚と、開口領域における光軸方向の絞り羽根部材の総厚とを同一とすることが好ましい。
 本発明の開口絞りは、照明光による被写体像と、被写体の観察部位からの蛍光による観察像とを同時に撮像する種々の撮像装置に広く使用することができ、それにより、被写体像を形成する光に対して観察像を形成する蛍光が微弱な場合でも、被写体像と観察像の双方を鮮明に得ることを可能とする。
 図8は、ICGを利用した公知のハンディタイプの近赤外蛍光画像撮像装置に本発明の開口絞り10を組み込んだ撮像装置100Aの一例の概略構成図である。この撮像装置100Aは、生体を被写体Sとして可視光による被写体像を撮ると共に、生体組織に投与したICGが発する赤外光帯域の蛍光の画像も観察像として同時に撮るもので、カメラユニット101、コントローラ102、モニタ103等を備えている。
 カメラユニット101は、被写体側前面に、ICGを励起させるための補助光源として近赤外波長のLED励起光源104を有し、内部に近赤外光帯域と可視光帯域に感度を有するCCD105と、画像をCCD105に結像させるためのレンズ系106が設けられ、レンズ系106の前面に励起光カットフィルタ50が設けられている。また、レンズ系106の内部には、本発明の開口絞り10として、例えば、2枚羽根型開口絞り10Aが設置されている。なお、本発明の開口絞り10としては、前述の種々の態様のものを設置することができ、それ自体に励起光カットフィルタ層5が形成されているものを設置する場合には、励起光カットフィルタ50は不要である。
 コントローラ102は、CCD105で撮像した画像のコントラストの調整やノイズの除去を行う画像処理機能を有している。また、画像データをモニタ103に出力してモニタ103に被写体像と観察像を同時に出力させたり、必要に応じて接続される外部記録装置、通信装置などにする画像データを出力する機能を有している。
 この撮像装置100Aの使用方法としては、予め被写体Sとなる患者の所定部位にICGを投与しておき、無影灯等の外部照明装置110による照明光L1下で被写体Sを撮像し、照明光L1による被写体像とICGの蛍光による観察像とを同時に撮像し、モニタ103にそれらの合成画像を出力し、被写体Sの診断に供する。
 ここで、外部照明装置110による照明光としては、好ましくは、蛍光灯、ハロゲンランプ、キセノンランプ、LED等を光源とし、赤外光帯域の光をカットした白色光(特に、観察像を形成する810nm以上の波長域の光をカットした白色光)を使用する。
 撮像時には、まず、観察部位からの蛍光強度に基づいて撮像装置100Aの感度と焦点を調整する。次いで、開口絞り10の開口領域2の開度を適宜調整する。
 本発明の開口絞りを組み込んだ撮像装置としては、図9に示した撮像装置100Bのように、レンズ系106の前面に、被写体の観察部位からの蛍光に対応する波長域の光を透過させ、被写体の照明光に対応する波長域の光の透過を低減又は遮断するNDフィルタ40を設けても良い。本発明の開口絞り10において開口領域2の面積を過度に小さくすると被写体像が劣化するため、本発明の開口絞り10だけでは、被写体像を形成する可視光を十分に絞ることができない場合であっても、被写体の観察部位からの蛍光に対応する波長域の光を透過させ、被写体の照明光に対応する波長域の光の透過を低減又は遮断するNDフィルタ40を本発明の開口絞り10と併用することにより、被写体像を形成する光を十分に低減させ、蛍光による観察像と、被写体像の双方を明瞭に撮影することが可能となる。
 また、本発明の開口絞りは、ハンディタイプの撮像装置だけでなく、備え付けの撮像装置にも組み込むことができ、また、内視鏡、腹腔鏡等にも組み込むことができる。例えば、図10は、本発明の開口絞り10を組み込んだファイバー式内視鏡撮像装置100Cの概略構成図である。図中、符号107は光ファイバーである。体内に挿入される内視鏡の先端部の光学系に本発明の開口絞りを組み込むと、その部分の洗浄、滅菌等が難しくなるが、図10に示したように、体内への非挿入部に本発明の開口絞り10を設けることにより、照明光による被写体像と蛍光による観察像との明度調整を容易に行うことができる。なお、この撮像装置100Cには公知の照明光学系(図示せず)を設けることができる。
 さらに、本発明の開口絞りは、撮像装置だけでなく、観察装置も組み込むことができる。この場合、蛍光を可視化するため、必要に応じて蛍光変換板を使用する。例えば、図11は、本発明の開口絞り10を組み込んだリレーレンズ式内視鏡観察装置100Dの概略構成図である。図中、符号108はリレーレンズである。この観察装置100Dにも公知の照明光学系(図示せず)を設けることができる。観察装置においても、前述と同様に必要に応じてNDフィルタ、励起光カットフィルタを設けることができる。
 本発明は、本発明の開口絞りを組み込んだこれらの装置も包含する。
 本発明の開口絞りは、ICG等の蛍光試薬を利用した蛍光画像撮像装置、PDD、PDT等の医療分野の撮像装置で有用である他、食品、各種材料の分析試験において蛍光画像を撮る場合などにおいても有用である。
1…フィルタ領域
1a…フィルタ層
2…開口領域
3…平板状基材
3b…レンズ
4…外枠
5…励起光カットフィルタ層
10、10A、10B、10E、10F…2枚羽根型開口絞り
20A、20B、20C、20D、20E、20F…絞り羽根部材
21…フィルタ部
21a…フィルタ層
22…非フィルタ部
23…平板状基材
24…外枠
25…レール
40…NDフィルタ
50…励起光カットフィルタ
100A、100B…撮像装置
100C…ファイバー式内視鏡撮像装置
100D…リレーレンズ式内視鏡観察装置
101…カメラユニット
102…コントローラ
103…モニタ
104…LED励起光源
105…CCD
106…レンズ系
110…外部照明装置

 

Claims (7)

  1.  一部又は全部にフィルタ部が形成された絞り羽根部材を複数備え、複数の絞り羽根部材のフィルタ部から形成されたフィルタ領域と該フィルタ領域の内側に位置する開口領域とを有する開口絞りであって、
    フィルタ領域が、被写体の観察部位からの蛍光に対応する波長域の光を透過させ、被写体への照明光に対応する波長域の光の透過を低減又は遮断し、
    開口領域が、被写体の観察部位からの蛍光に対応する波長域の光と、被写体への照明光に対応する波長域の光を透過させ、
    被写体の観察部位からの蛍光に対応する波長域の光が絞られず、開口領域の面積が可変である開口絞り。
  2.  被写体の観察部位からの蛍光が赤外光であり、照明光が可視光である請求項1記載の開口絞り。
  3.  フィルタ領域における光軸方向の絞り羽根部材の総厚と、開口領域における光軸方向の絞り羽根部材の総厚とが同一である請求項1記載の開口絞り。
  4.  被写体の観察部位からの蛍光による観察像と、照明光による被写体像とを共に撮影する撮像装置であって、請求項1記載の開口絞りを備えた撮像装置。
  5.  さらに、被写体の観察部位からの蛍光に対応する波長域の光を透過させ、被写体への照明光に対応する波長域の光の透過を低減又は遮断するNDフィルタを備えた請求項4記載の撮像装置。
  6.  被写体の観察部位からの蛍光による観察像と、照明光による被写体像とを同時に観察する観察装置であって、請求項1記載の開口絞りを備えた観察装置。
  7.  さらに、被写体の観察部位からの蛍光に対応する波長域の光を透過させ、被写体への照明光に対応する波長域の光の透過を低減又は遮断するNDフィルタを備えた請求項6記載の観察装置。
PCT/JP2009/067352 2009-07-16 2009-10-05 開口絞り WO2011007461A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09847357.2A EP2454985B1 (en) 2009-07-16 2009-10-05 Aperture stop
JP2011522679A JP5224078B2 (ja) 2009-07-16 2009-10-05 開口絞り
US12/809,937 US8711461B2 (en) 2009-07-16 2009-10-05 Aperture stop

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2009/062885 2009-07-16
PCT/JP2009/062885 WO2011007435A1 (ja) 2009-07-16 2009-07-16 開口絞り

Publications (1)

Publication Number Publication Date
WO2011007461A1 true WO2011007461A1 (ja) 2011-01-20

Family

ID=43449051

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/062885 WO2011007435A1 (ja) 2009-07-16 2009-07-16 開口絞り
PCT/JP2009/067352 WO2011007461A1 (ja) 2009-07-16 2009-10-05 開口絞り

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062885 WO2011007435A1 (ja) 2009-07-16 2009-07-16 開口絞り

Country Status (4)

Country Link
US (1) US8711461B2 (ja)
EP (1) EP2454985B1 (ja)
JP (1) JPWO2011007435A1 (ja)
WO (2) WO2011007435A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175831B2 (en) 2011-01-20 2015-11-03 Yamano Optical Co., Ltd. Illumination aperture diaphragm
WO2016039000A1 (ja) * 2014-09-08 2016-03-17 株式会社島津製作所 イメージング装置
DE102014218202A1 (de) 2014-09-11 2016-03-17 Iwasaki Electric Co., Ltd. Abbildungssystem
US9625386B2 (en) 2014-09-10 2017-04-18 Iwasaki Electric Co., Ltd. Imaging system
US10948638B2 (en) 2014-03-04 2021-03-16 Stryker European Operations Limited Spatial and spectral filtering apertures and optical imaging systems including the same
JP2021186321A (ja) * 2020-06-01 2021-12-13 富士フイルム株式会社 内視鏡システム
CN114184588A (zh) * 2016-05-30 2022-03-15 徕卡仪器(新加坡)有限公司 使用具有透射窗的滤光系统观察部分荧光的物体的医疗装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780161B2 (en) * 2011-03-01 2014-07-15 Hewlett-Packard Development Company, L.P. System and method for modifying images
WO2015137148A1 (ja) * 2014-03-14 2015-09-17 ソニー株式会社 撮像装置、アイリス装置、撮像方法、およびプログラム
CN107111009B (zh) * 2014-08-08 2019-11-08 快图有限公司 用于图像获取装置的光学系统、图像获取装置以及图像获取系统
US10152631B2 (en) 2014-08-08 2018-12-11 Fotonation Limited Optical system for an image acquisition device
JP2016075825A (ja) 2014-10-07 2016-05-12 パナソニックIpマネジメント株式会社 色分解プリズム及び撮像装置
CN108431649B (zh) 2015-08-31 2021-08-24 史赛克欧洲运营有限公司 偏振依赖滤波器、使用其的系统以及相关联的工具包和方法
JP6843996B2 (ja) * 2017-07-12 2021-03-17 オリンパス株式会社 内視鏡及び撮像ユニット
EP3440989A1 (en) * 2017-08-09 2019-02-13 Koninklijke Philips N.V. System for imaging an eye
DE102017127931A1 (de) * 2017-11-27 2019-05-29 Henke-Sass, Wolf Gmbh Optikanordnung für ein Endoskop und Endoskop mit einer solchen Optikanordnung
CN110893095A (zh) * 2018-09-12 2020-03-20 上海逸思医学影像设备有限公司 一种用于可见光和激发荧光实时成像的系统和方法
TWI691742B (zh) 2019-02-01 2020-04-21 光芒光學股份有限公司 鏡頭
US11166623B2 (en) * 2019-04-23 2021-11-09 Arthrex, Inc. Field stop fluorescent indicator system and method
TWI745745B (zh) 2019-09-10 2021-11-11 光芒光學股份有限公司 取像鏡頭與遮光元件的製作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151104A (ja) 1996-11-25 1998-06-09 Olympus Optical Co Ltd 蛍光内視鏡装置
JP2001078205A (ja) 1999-09-01 2001-03-23 Hamamatsu Photonics Kk 微弱光カラー撮像装置
JP2002189238A (ja) * 2000-10-13 2002-07-05 Pentax Precision Co Ltd Cctvカメラ用レンズの絞り装置及び絞り装置ユニット
JP2004205557A (ja) * 2002-12-20 2004-07-22 Tamron Co Ltd 光量調節装置
JP2008188196A (ja) 2007-02-05 2008-08-21 Sanyo Electric Co Ltd 撮像装置
JP2008259591A (ja) 2007-04-10 2008-10-30 Hamamatsu Photonics Kk 蛍光観察用光源装置及びそれを用いた蛍光観察装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265971A (ja) * 1993-03-12 1994-09-22 Fuji Photo Optical Co Ltd 透過光量調整機構
JPH0928676A (ja) * 1995-07-17 1997-02-04 Canon Inc 眼底カメラ
JP3674012B2 (ja) 1995-10-27 2005-07-20 株式会社ニコン 固体撮像装置
JP4476373B2 (ja) 1998-02-16 2010-06-09 富士フイルム株式会社 電子カメラ及び電子カメラの露光量制御方法
JP4544662B2 (ja) * 1999-04-30 2010-09-15 日本真空光学株式会社 可視光線遮断赤外線透過フィルター
JP3381150B2 (ja) * 1999-08-30 2003-02-24 スタンレー電気株式会社 赤外線透過フィルタ及びその製造方法
JP4010779B2 (ja) * 2001-06-08 2007-11-21 ペンタックス株式会社 画像検出装置と絞り装置
JP4931288B2 (ja) * 2001-06-08 2012-05-16 ペンタックスリコーイメージング株式会社 画像検出装置と絞り装置
JP4164355B2 (ja) * 2002-12-26 2008-10-15 キヤノン株式会社 光量調整装置及びそれを用いた光学機器
JP4438056B2 (ja) 2003-06-26 2010-03-24 キヤノン株式会社 光量調節部材の製造方法
US7688505B2 (en) 2005-12-09 2010-03-30 Auburn University Simultaneous observation of darkfield images and fluorescence using filter and diaphragm

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151104A (ja) 1996-11-25 1998-06-09 Olympus Optical Co Ltd 蛍光内視鏡装置
JP2001078205A (ja) 1999-09-01 2001-03-23 Hamamatsu Photonics Kk 微弱光カラー撮像装置
JP2002189238A (ja) * 2000-10-13 2002-07-05 Pentax Precision Co Ltd Cctvカメラ用レンズの絞り装置及び絞り装置ユニット
JP2004205557A (ja) * 2002-12-20 2004-07-22 Tamron Co Ltd 光量調節装置
JP2008188196A (ja) 2007-02-05 2008-08-21 Sanyo Electric Co Ltd 撮像装置
JP2008259591A (ja) 2007-04-10 2008-10-30 Hamamatsu Photonics Kk 蛍光観察用光源装置及びそれを用いた蛍光観察装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2454985A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175831B2 (en) 2011-01-20 2015-11-03 Yamano Optical Co., Ltd. Illumination aperture diaphragm
US10948638B2 (en) 2014-03-04 2021-03-16 Stryker European Operations Limited Spatial and spectral filtering apertures and optical imaging systems including the same
WO2016039000A1 (ja) * 2014-09-08 2016-03-17 株式会社島津製作所 イメージング装置
US9625386B2 (en) 2014-09-10 2017-04-18 Iwasaki Electric Co., Ltd. Imaging system
DE102014218202A1 (de) 2014-09-11 2016-03-17 Iwasaki Electric Co., Ltd. Abbildungssystem
CN114184588A (zh) * 2016-05-30 2022-03-15 徕卡仪器(新加坡)有限公司 使用具有透射窗的滤光系统观察部分荧光的物体的医疗装置
JP2021186321A (ja) * 2020-06-01 2021-12-13 富士フイルム株式会社 内視鏡システム
JP7346357B2 (ja) 2020-06-01 2023-09-19 富士フイルム株式会社 内視鏡システム

Also Published As

Publication number Publication date
EP2454985A4 (en) 2012-11-28
US20110205651A1 (en) 2011-08-25
WO2011007435A1 (ja) 2011-01-20
EP2454985B1 (en) 2017-09-06
EP2454985A1 (en) 2012-05-23
JPWO2011007435A1 (ja) 2012-12-20
US8711461B2 (en) 2014-04-29

Similar Documents

Publication Publication Date Title
WO2011007461A1 (ja) 開口絞り
JP5796244B2 (ja) 照明用開口絞り
KR100798486B1 (ko) 형광 진단 및 광역동치료를 위한 광원장치
JP5496852B2 (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び電子内視鏡システムの作動方法
JP5468845B2 (ja) 医療機器
JP5945104B2 (ja) 蛍光手術用実体顕微鏡
WO2011010534A1 (ja) 透過率調整装置、観察装置、及び観察システム
JP6827512B2 (ja) 内視鏡システム
JP2007143624A (ja) 蛍光観察装置
JP2011104333A (ja) 内視鏡装置及びこれに用いる内視鏡用先端フード
CN108014424B (zh) 一种内窥镜装置
JP5418707B2 (ja) 開口絞り
US6749562B2 (en) Video endoscope and system incorporating the same
JP4855755B2 (ja) 生体診断装置
JP2012081048A (ja) 電子内視鏡システム、電子内視鏡、及び励起光照射方法
JP5224078B2 (ja) 開口絞り
CN217792957U (zh) 内窥镜系统
JP6359998B2 (ja) 内視鏡
WO2019215906A1 (ja) 医用画像撮像装置
JP6867533B1 (ja) 光源装置
JP4258324B2 (ja) 医療用光源システム
JP6450492B1 (ja) 内視鏡用照明装置および内視鏡システム
EP3542699A1 (en) Handheld device for diagnosing an in-vivo target
CN116725458A (zh) 内窥镜系统及内窥镜检测方法
JP2005312830A (ja) 内視鏡撮像システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12809937

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011522679

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009847357

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009847357

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE