WO2011007405A1 - 浄水装置 - Google Patents

浄水装置 Download PDF

Info

Publication number
WO2011007405A1
WO2011007405A1 PCT/JP2009/062664 JP2009062664W WO2011007405A1 WO 2011007405 A1 WO2011007405 A1 WO 2011007405A1 JP 2009062664 W JP2009062664 W JP 2009062664W WO 2011007405 A1 WO2011007405 A1 WO 2011007405A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
water
blade
disposed
splitter device
Prior art date
Application number
PCT/JP2009/062664
Other languages
English (en)
French (fr)
Inventor
孝 矢部
Original Assignee
株式会社エレクトラホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エレクトラホールディングス filed Critical 株式会社エレクトラホールディングス
Priority to US13/384,165 priority Critical patent/US20120175237A1/en
Priority to CN2009801614169A priority patent/CN102482118A/zh
Priority to KR20127003656A priority patent/KR20120036362A/ko
Priority to EP20090847303 priority patent/EP2455343A1/en
Priority to PCT/JP2009/062664 priority patent/WO2011007405A1/ja
Priority to JP2011522633A priority patent/JPWO2011007405A1/ja
Priority to AU2009349828A priority patent/AU2009349828A1/en
Publication of WO2011007405A1 publication Critical patent/WO2011007405A1/ja
Priority to IN1272DEN2012 priority patent/IN2012DN01272A/en
Priority to US14/796,621 priority patent/US20160008732A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • B01D1/305Demister (vapour-liquid separation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0094Evaporating with forced circulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/343Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • C02F1/12Spray evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a water purification apparatus for obtaining purified water from raw water.
  • the multistage evaporator has a plurality of decompression chambers. Depressurize each room to lower the evaporation temperature and evaporate the seawater. Heat is recovered by exchanging heat of the water vapor evaporated in the room on the high temperature side with the sea water on the low temperature side.
  • JP 2006-70889 A Japanese Patent Laid-Open No. 9-52082
  • the evaporator is complicated and large. Moreover, since this evaporator requires a lot of energy, it is attached to a thermal power plant, an essential oil, and a power plant. From the above, the evaporator has problems in terms of energy saving and location conditions.
  • an object of the present invention is to provide a water purification apparatus for efficiently producing purified water from raw water.
  • the water purifier (1) has a case (11) having a circulation path (11c).
  • the water purifier (1) is disposed in the case (11) and splits the raw water into droplets (D1) and can circulate through the circulation path (11c), and the water vapor evaporated from the droplets (D1). It has a splitter device (15) that creates a carrier air flow (A1) that is transportable.
  • the water purifier (1) has a condenser (19) that is disposed downstream of the carrier airflow in the case (11) with respect to the splitter (15) and condenses the water vapor to generate purified water.
  • the splitter device (15) includes a rotating shaft (15a) extending in the vertical direction of the case (11), and a blade that is attached to the rotating shaft (15a) in the radial direction and has unevenness (152p, 152q, 152r, 152s, 152t). (152A-152Q).
  • the unevenness has recesses (152p, 152q) that are recessed from the blade surface (152d) of the blades (152A-152Q).
  • the recesses (152p, 152q) extend from the edges (152a, 152c) of the blades (152A-152Q).
  • the irregularities have concave portions (152r, 152s) cut out from the edges (152a, 152c) of the blades (152A-152Q).
  • the irregularities are protrusions (152t) protruding from the blade surface (152d) of the blade.
  • the unevenness includes first and second concave portions (154p, 154q) arranged in series toward the tip of the blade 15f, and a convex portion (154r) arranged between the first and second concave portions. .
  • the blades (152A-152Q) are disposed obliquely with respect to the rotation axis (15a).
  • the blades (152A-152Q) are formed by cutting a disk-shaped member in the radial direction to produce a sector piece and twisting the sector piece.
  • the case (1) has a first case (15A) and a second case (15B) that are stacked one above the other.
  • the splitter device (15) is disposed in the first case (11A) and includes the first splitter device (15A) including the first blade, the second case (11B), and the first case. It has a second splitter device (15B) containing two blades.
  • the first blade and the second blade have a rotating shaft (15a) attached to the rotating shaft (15a).
  • the capacitor (19) includes a first capacitor (19A) disposed in the first case (11A) and a second capacitor (19B) disposed in the second case (11B).
  • the case has a first case and a second case in communication with the first case.
  • the capacitor includes a first capacitor disposed within the first case and a second capacitor disposed within the second case and in communication with the first capacitor.
  • the water purifier has a return pipe (26) that communicates the discharge pipe of the first case and the first capacitor.
  • the raw water is heated by the first condenser and the second condenser and supplied to the second splitter device. A portion of the raw water evaporates and is condensed by the second condenser.
  • the remaining raw water is supplied to the first splitter device, and a part of this raw water evaporates and is condensed by the first condenser.
  • the remaining raw water is discharged from the first case at 60 ° C. or higher, and is returned to the return pipe. And is introduced into the first capacitor.
  • the water purifier (1, 1A) according to the second feature of the present invention has a case (11) having a circulation path.
  • the water purifier (1, 1A) is disposed in the case (11), splits the raw water into droplets, can circulate through the circulation path, and can transport water vapor evaporated from the droplets (D1). It has a splitter device (15) that creates a carrier airflow (A1).
  • the water purifier (1, 1A) is disposed downstream of the carrier airflow in the case (11) with respect to the splitter device (15), and removes the droplet (D1) and allows the passage of the water vapor. 18, 18C).
  • the water purifier (1, 1A) is disposed downstream of the carrier airflow with respect to the demister (18, 18C) in the case (11) and condenses water vapor flowing out from the demister (18, 18C) to generate purified water. It has a capacitor (19) to be used.
  • the demisters (18, 18C) have demister plates (180, 180C) that are arranged at predetermined intervals to define a flow path.
  • the demister plate (180) is bent.
  • the demister plate (180C) is curved.
  • the demister plate (180, 180C) has a waveform.
  • the water purifier (1B) is arranged in the case (11) having a circulation path, and disposed in the case (11), and splits the raw water into droplets (D1) and the circulation path.
  • a splitter device (15) that creates a carrier air flow (A1) that can circulate water vapor evaporated from the droplet (D1), and a carrier air flow with respect to the splitter device (15) in the case (11).
  • the splitter device (15) has a rotating shaft (15a) extending in the vertical direction of the case (11) and a rotating shaft (15a). Blades (152A-152Q) mounted in the radial direction to the blades, and guides (16, 16A, 6B, has a 16C).
  • the guide comprises a curved guide plate (16).
  • the guides (16A, 16B, 16C) are composed of a plurality of guide plates arranged apart from each other.
  • Each guide plate (161A-161I, 162A-162I) is disposed obliquely with respect to the radial direction around the rotation axis.
  • Each guide plate (162A-162I) is curved.
  • the guide (16C) is arranged outside the first guide plates (163A-163K) and between the first guide plates (163A-163K) and between the first guide plates (163A-163K). Has a second guide plate (164A-164L).
  • the blade since the blade has irregularities, the raw water is easily deformed, the raw water is efficiently divided into droplets, and the recovery efficiency of purified water from the raw water is improved.
  • the blade Since the blade is disposed obliquely with respect to the rotation axis, when the raw water hits the blade, the raw water pushes the blade in the rotation direction, and the rotation of the blade accelerates. Easy to generate.
  • the blade is formed by cutting the disk-shaped member in the radial direction to produce a sector piece and twisting the sector piece, the blade is produced by a simple process.
  • the space is saved because the circulator is attached to the rotating shaft of the splitter device.
  • the first and second condensers heat the raw water and raise the temperature of the raw water, thereby increasing the evaporation efficiency of the droplets and improving the recovery efficiency of the purified water from the raw water. Further, since the first and second splitter devices have a common rotation axis, space saving is achieved.
  • the remainder of the raw water of 60 ° C. or higher is supplied to the first condenser through the return pipe, so that when the raw water is supplied to the first splitter device and the second splitter device, it becomes 60 ° C. or higher. Since the evaporation of water increases rapidly above 60 ° C., the amount of purified water recovered by the first condenser and the second condenser also increases. Therefore, the recovery efficiency of purified water from raw water is improved. Moreover, since the remaining raw water can be reused, the recovery efficiency of purified water from the raw water is further improved.
  • the droplet hits the demister plate, and the demister plate efficiently collects the droplet.
  • purified water with few impurities is obtained from raw water.
  • the guide increases the carrier airflow and improves the circulation efficiency in the case of the carrier airflow, thereby increasing the evaporation efficiency of the droplets and recovering the purified water from the raw water. To improve.
  • FIG. 3 is a plan view of the disk blade shown in FIG. 2.
  • FIG. 4 is a side view of the disk blade shown in FIG. 3.
  • A) shows the top view of the blade part which concerns on a deformation
  • B shows the top view of the blade part which concerns on another deformation
  • transformation is shown,
  • A) is a top view,
  • B) is sectional drawing along VIB-VIB. It is a perspective view of the demister plate of the demister shown in FIG.
  • the water purifier 1 has an evaporation-condensation system 10.
  • the system 10 includes an annular case 11 that allows circulation of airflow, a pump 12 disposed outside the case 11, and a heater 13 disposed on the case 11.
  • the water purifier 1 is disposed in the case 11 and is disposed under the heater 13, the guide 16 disposed after the splitter 15, and the coaxial with the splitter 15, for example, A circulator 17 having a sirocco fan is included.
  • the water purifier 15 includes a demister group 18 disposed downstream of the splitter apparatus 15 and a capacitor 19 disposed downstream of the demister group 18.
  • the case 11 has an inner cylinder 11a, an outer cylinder 11b outside the inner cylinder 11a, and an annular space 11c between the inner cylinder 11a and the outer cylinder 11b.
  • This space 11c serves as a flow path as a circulation path that permits the circulation of the airflow.
  • the case 11 has a liquid reservoir 11 d below the splitter device 15.
  • the liquid reservoir 11d communicates with the outside through a discharge pipe 11e.
  • the case 11 has a liquid reservoir 11 f under the capacitor 19.
  • the liquid reservoir 11f communicates with an external water storage tank through a pipe (not shown).
  • the pump 12 is connected to a capacitor 19.
  • the pump 12 pumps raw water and supplies it to the condenser 19.
  • Raw water is seawater, lake water, and industrial sewage, for example.
  • the inlet of the heater 13 is connected to the capacitor 19 by piping.
  • the outlet of the heater 13 is connected to a pipe 14 having a nozzle 14a.
  • the heater 13 has a water tank having hot water, a heat exchange tube disposed in the hot water of the water tank, and fins attached to the heat exchange tube.
  • Hot water may be heated with sunlight, for example, and may be heated with a heating wire.
  • the hot water may be heated by heat generated by burning or oxidizing magnesium (Mg) in water.
  • the splitter device 15 includes a rotating shaft 15a and a motor 15b that drives the rotating shaft 15a when extending in the vertical direction of the case 11.
  • the splitter device 15 includes disk blades 15c and 15d that are attached to the rotary shaft 15a in two stages and are horizontally disposed. As shown in FIG. 3, the disk blades 15c and 15d have a circular center portion 151 having a center hole 151a for attaching the rotating shaft 15a.
  • the disk blades 15c and 15d are a plurality of fan-shaped blade portions 152A, 152B, 152C, 152D, 152E, 152G, 152H, 152I, 152J, and 152K that are arranged around the center portion 151 at a predetermined center angle with respect to the rotation shaft 15a. , 152L, 152M, 152N, 152P, and 152Q.
  • Each of the fan-shaped blade portions 152A to 152Q has a front edge 152a and a rear edge 152b extending in the radial direction from the center portion 151 and forming a predetermined angle.
  • Each blade portion 152A-152Q has a peripheral edge 152c extending in an arc shape between the front ends of the front edge 152a and the rear edge 152b.
  • Each blade portion 152A-152Q has a blade surface 152d surrounded by a front edge 152a, a rear edge 152b, and a peripheral edge 152c.
  • the front edge 152a is disposed in front of the rear edge 152b in the rotation direction R1.
  • each blade portion 152A-152Q is disposed obliquely with respect to the rotation shaft 15a and the center portion 151.
  • Each blade portion 152A-152Q has an inclination angle of 10 ° to 45 ° with respect to the central portion 151, and this inclination angle may be, for example, 25 °.
  • Each blade portion 152A-152Q has a front edge recess 152p that is recessed from the blade surface 152d and extends from the front edge 152a in the circumferential direction.
  • Each blade portion 152A-152Q has a peripheral recess 152q extending in the radial direction from the periphery 152c.
  • the front edge recess 152d and the peripheral recess 152e are planar rectangles and have a predetermined depth.
  • each blade part 152A-152Q is as follows.
  • the disk-shaped member is cut from the outer periphery toward the center portion 151 at a predetermined angular interval to create a plurality of fan-shaped pieces. Further, each sector piece is twisted counterclockwise with respect to the center portion 151, and the front edge 152a is disposed above and the rear edge 152b is disposed below the front edge 152a.
  • the blade portions 152A-152Q may have a front edge recess 152r and a periphery recess 152s cut out from the front edge 152a and the periphery 152c.
  • each blade portion 152A-152Q may have a protrusion 152t protruding from the blade surface 152d instead of the front edge recess and the peripheral recess.
  • a disk blade 15f shown in FIGS. 6A and 6B may be used.
  • the disk blade 15f has a circular center portion 153 having a center hole 153a for attaching the rotating shaft 15a.
  • the disk blade 15 f has a plurality of fan-shaped blade portions 154 arranged around the center portion 153 at a predetermined center angle. The thickness of the blade part 154 increases toward the tip.
  • Each blade portion 154 has a front edge 154a and a rear edge 154b extending in the radial direction from the center portion 153. Each blade portion 154 has a peripheral edge 154c extending between the front ends of the front edge 152a and the rear edge 152b. Each blade portion 154 has an upper surface 154d and a lower surface 154e between the front edge 152a and the rear edge 152b.
  • Each blade portion 154 has concave portions 154p and 154q that are arranged at predetermined intervals in the radial direction and extend obliquely with respect to the radial direction.
  • the recesses 154p and 154q are formed across the front edge 152a, the rear edge 152b, the upper surface 154d, and the lower surface 154e.
  • Each blade portion 154 has a convex portion 154r between the concave portions 154p and 154q.
  • the convex part 154r is thicker than the concave parts 154p and 154q.
  • the disk blade 15f efficiently splits raw water into droplets at the convex portions 154r and the concave portions 154p and 154q.
  • the guide 16 is disposed upstream (backward) of the carrier airflow A1 with respect to the splitter device 15 and the circulator 17.
  • the guide 16 is, for example, a guide plate that is curved in an arc on the circumference around the rotation shaft 15a. Both side ends of the guide 16 are separated from the inner cylinder 11a and the outer cylinder 11b of the case 11 to define a flow path. Similarly, the upper and lower ends of the guide 16 are separated from the top and bottom walls of the case 11 to define a flow path.
  • the circulator 17 has a rotation shaft 17a common to the rotation shaft 15a of the splitter device 15, and a sirocco fan 17b attached to the rotation shaft 17a.
  • the sirocco fan 17b is rotatable around the rotation shaft 17a so as to generate airflows A1, A2, A3 in the clockwise direction.
  • the demister 18 has demister plate groups 18a and 18b arranged in series in the case 11 along the path of the carrier airflow A1.
  • Each demister plate group 18a, 18b has a plurality of demister plates 180 which are arranged at a predetermined interval and which define a flow path. As shown in FIG. 7, each demister plate 180 is bent at a crest 180a and a trough 180b, and has a waveform as a whole.
  • Each demister plate 180 includes a first wall portion 180c, a second wall portion 180d extending obliquely with respect to the first wall portion 180c, a second wall portion parallel to the first wall portion 180c and the second wall portion. It has the 3rd wall part 180e extended diagonally with respect to 180d.
  • the capacitor 19 has a heat exchange tube 19a and fins 19b attached to the heat exchange tube 19a.
  • the heat exchange tube 19a extends upward from below while turning back.
  • the pump 12 pumps up raw water.
  • This raw water is supplied from the nozzle 14 a to the splitter device 15 through the condenser 19, the heater 13 and the pipe 14.
  • the raw water passes through the heat exchange tube 19a of the condenser 19 and is heated through the fins 19b.
  • the raw water passes through the heat exchange tube of the heater 13 and is further heated by the hot water in the water tank 13. As a result, the raw water becomes about 70 ° C to 90 ° C.
  • the heated raw water is sprayed from the nozzle 14a onto the disk blades 15c and 15d of the splitter device 15.
  • the disk blades 15c and 15d of the splitter device 15 are rotated in the counterclockwise direction R1 around the rotation shaft 15a (see FIG. 3).
  • the raw water hits the rotating blade portions 152A-152Q and breaks up into fine droplets (mist).
  • the edges of the front edge recess 152p and the peripheral recess 152q of the blade portions 152A-152Q are sharp, they easily enter the raw water, and efficiently split the raw water.
  • the droplets scatter in all directions while evaporating from the disk blades 15c and 15d.
  • the droplet and a part of the water vapor move toward the demister 18.
  • the remaining droplets and water vapor strike the guide 16.
  • the remaining droplets fall along the guide 16, accumulate in the liquid reservoir 11d, and are discharged from the discharge pipe 11e.
  • the remaining water vapor is guided in the clockwise direction by the guide 16 and merges with a carrier air flow A1 described later.
  • the guide plate 16 blocks liquid droplets scattered in the counterclockwise direction of the case 11 from the disk blades 15c and 15D.
  • each blade portion 152A-152Q is inclined with respect to the rotating shaft 15a, and the front edge 152a is disposed above the rear edge 152b. Therefore, when the raw water hits the blade surface 152d of the blade portions 152A-152Q, the blade portions 152A-152Q are pushed in the rotation direction R1, and the rotation of the blade portions 152A-152Q is accelerated. As a result, the disk blades 15c and 15d are likely to generate airflow.
  • the sirocco fan 17b of the circulator 17 rotates about the rotating shaft 17a to increase the airflow.
  • the airflow is generated in all directions.
  • the guide 16 guides the counterclockwise airflow in the case 11 in the clockwise direction.
  • the carrier airflow A1 flows clockwise in the case 11.
  • the droplet D1 and water vapor are carried by the carrier airflow A1 and reach the demister 18. During this time, a part of the droplet D1 is further evaporated to become water vapor. That is, a droplet having a fine particle diameter has a large surface area and is thus easily vaporized. Further, the carrier air flow A1 promotes the evaporation of the droplet D1.
  • the carrier airflow A1 accompanied by the droplet D1 and water vapor is introduced between the demister plates 180-180 of the first and second demister plate groups 18a, 18b of the demister 18.
  • droplets and water vapor pass between the first wall portions 180c-180c, between the second wall portions 180d-180d, and between the third wall portions 180e-180e.
  • the droplet hits each first wall 180c, each second wall 180d, and each third wall 180e and is collected.
  • the collected droplets flow downward along the first wall portions 180c, the second wall portions 180d, and the third wall portions 180e, and accumulate in the lower portion of the case 11.
  • each demister plate 180 is bent at a crest 180a and a valley 180b, and the flow path between the demister plates 180-180 meanders in an S shape. Since the liquid droplets cannot change directions at the peaks 180a and the valleys 180b, they hit the walls 180c, 180d, and 180e. Accordingly, the droplets are efficiently captured by the walls 180c, 180d, and 180e. On the other hand, the carrier airflow A1 and water vapor change direction at the peaks 180a and valleys 180b, pass through the flow path between the walls 180c, 180d, and 180e, and flow out of the demister 18. That is, the demister 18 does not become the resistance of the carrier airflow A1 and water vapor, but can smoothly pass the carrier airflow A1 and water vapor.
  • the water vapor is carried by the carrier airflow A2 and flows into the condenser 19. Water vapor contacts the fins 19b. The water vapor is cooled by exchanging heat with the raw water flowing in the heat exchange tube 19a. Water vapor is condensed into water and releases latent heat of condensation. On the other hand, the raw water in the heat exchange tube 19a is heated by the latent heat of condensation, and the temperature of the raw water rises. Thereby, water turns into purified water which does not contain impurities, such as salt and other ions. This purified water is collected in a liquid reservoir 11f at the bottom of the case 11 and discharged to an external water storage tank.
  • the carrier airflow A3 that has passed through the capacitor 19 returns to the splitter device 15.
  • the carrier airflows A1, A2, and A3 circulate in the case 11
  • the power consumption of the motor 15b is reduced and efficient energy use is achieved.
  • each blade part 152A-152Q of the disk blades 15c, 15d has the recesses 152p, 152q, 152r, 152s, or the protrusion 152t, so that the raw water is efficiently divided into droplets. , Improve the recovery efficiency of purified water from raw water.
  • Each blade portion 152A-152Q is disposed obliquely with respect to the rotating shaft 15a. As a result, when the raw water hits the blade portions 152A-152Q from above, the blade portions 152A-152Q are pushed in the rotation direction R1 to accelerate the rotation of the blade portions 152A-152Q. This facilitates the splitting of raw water into droplets and the generation of carrier airflow.
  • each blade portion 152A-152Q is formed by cutting a disk-shaped member in the radial direction to produce a fan-shaped piece and twisting the fan-shaped piece, it is produced by a simple process.
  • Each demister plate 180 of the demister 18 is bent at a mountain 180a and a valley 180b and has a waveform. As a result, the liquid droplets cannot change direction at the peaks 180a and the valleys 180b, hit the demister plate, and the demister plate 180 efficiently collects the liquid droplets.
  • each demister plate 180C is composed of one sheet 181 curved at a plurality of locations 181a, 181b, 181c, 181d.
  • Each demister plate 180C has a waveform, and has valleys 181a, 181c, 181e and peaks 181b, 181d between the valleys 181a, 181c, 181e.
  • Each demister plate 180C defines a flow path meandering in an S shape.
  • the carrier airflow A1 accompanied by water vapor and droplets flows between the demister plates 180C and 180C.
  • the carrier airflow and water vapor smoothly change direction at the curved valleys 181a, 181c, 181e and peaks 181b, 181d and flow out of the demister 18C.
  • the droplet hits the demister plates 180C and 180C without being redirected at the valleys 181a, 181c and 181e and the valleys 181b and 181d, and is collected. Thereby, purified water with few impurities is obtained from raw water.
  • the water purifier 1B which concerns on 3rd Embodiment has the guide 16A which concerns on a deformation
  • the guide 16A is disposed concentrically with the disk blades 15c and 15d as shown in FIG. That is, the guide 16A has guide plates 161A, 161B, 161C, 161D, 161E, 161F, 161G, 161H, and 161I that are spaced apart from each other at a predetermined interval on a circumference C1 that is centered on the rotation shaft 15a.
  • the guide plates 161A-161I are disposed obliquely with respect to the tangential direction of the circumference C1. That is, the guide plates 161A-161I are disposed obliquely with respect to the radial direction around the rotation shaft 15a.
  • the guide plates 161A-161I approach the rotating shaft 15a from the rear end toward the front end in the rotation direction of the disk blades 15c, 15d. A part of the adjacent plate portions 161A-161I defines a flow channel facing each other.
  • the demister 18D has demister plate groups 18d and 18e composed of demister plates 180D and 180E. Each demister plate 180D, 180E is bent at one location.
  • FIG. 10 the disk blades 15c and 15d and the sirocco fan not shown rotate in the counterclockwise direction R1.
  • airflow is generated in all directions around the disk blades 15c and 15d.
  • guide plates 161A-161I guide the airflow in the counterclockwise direction R1, and generate the airflow A4.
  • the airflow A4 flows out from the guide plate 161I in the clockwise direction of the case 11, and merges with the carrier airflow A1. Thereby, carrier airflow A1 increases.
  • the flow path between the guide plates 161A-161I allows passage of the carrier airflow A3 from the rear (upstream), so that the carrier airflow A3 merges with the airflow A4.
  • the circulation efficiency of the carrier airflow in the case 11 is improved.
  • the guide plates 161A-161I block the liquid droplets scattered from the disk blades 15c and 15D in the counterclockwise direction of the case 11. Thereby, when the air blower for airflow generation is arranged behind (upstream) the splitter device 15, when the droplets contain, for example, salt, the guide plate 16 ⁇ / b> A prevents failure of the air blower due to salt.
  • the guide 16A increases the carrier airflow and improves the circulation efficiency in the case 11 of the carrier airflow. Therefore, the evaporation efficiency of the droplets D1 is increased and the recovery efficiency of purified water from the raw water is increased. To improve.
  • a guide 16B As shown in FIG. 12A, a guide 16B according to another modification has curved guide plates 162A, 162B, 162C, 162D, 162E, 162F, 162G, 162H, 162I. According to this guide 16B, the curved guide plates 162A-162I guide the airflow more smoothly.
  • guides 16C are first guide plates 163A, 163B, which are arranged at predetermined intervals along the circumference around the rotation shaft 15a. 163C, 163D, 163E, 163F, 163G, 163H, 163I, 163J, and 163K.
  • the guide plate 16C includes second guide plates 164A, 164B, 164C, 164D, 164E, 164F, 164G, 164H, 164I, 164J, 164K, 164L arranged concentrically outside the first guide plate 163A-163K. Have.
  • the second guide plates 164A-164L are disposed between the first guide plates 163A-163K and cover the gaps between the first guide plates 163A-163K.
  • the second guide plates 164A-164L block droplets scattered from the gap between the first guide plates 163A-163K.
  • the guide plate 16 ⁇ / b> C prevents the blower from being damaged by the salt.
  • a water purifier 1C includes evaporation-condensation systems 10A and 10B having a two-stage configuration of a lower stage and an upper stage.
  • the systems 10A and 10B have the same cases 11A and 11B, splitter devices 15A and 15B, circulators 17A and 17B, demisters 18A and 18B, and capacitors 19A and 19B in the lower and upper stages.
  • the lower and upper cases 11A and 11B have communication pipes 21 that communicate with each other.
  • the communication pipe 21 introduces raw water from the liquid reservoir 11d of the upper case 11B to the lower case 11A. It has the discharge piping 23 connected to the discharge piping 11g and 11g of the liquid reservoirs 11f and 11f of the upper and lower cases 11A and 11B.
  • the lower splitter device 15A and the upper splitter device 15B have a common rotating shaft 15a.
  • the rotating shaft 15a penetrates the lower and upper cases 11A and 11B in the vertical direction.
  • the disk blades 15c and 15d, the tray 15e, and the circulators 17A and 17B of the lower splitter device 15A and the upper splitter device 15B are attached to the rotating shaft 15a.
  • the heat exchange tube 19a of the upper condenser 19 is connected to the lower heat exchange tube 19a via a connecting pipe 22.
  • Raw water is pumped up by the pump 12 and supplied to the lower condenser 19A.
  • the raw water is heated by the lower-stage condenser 19A and supplied to the upper-stage capacitor 19B through the connecting pipe 22.
  • the raw water is further heated by the upper condenser 19 ⁇ / b> B and supplied to the heater 13.
  • the raw water is heated by the heater 13 and supplied through the pipe 14 from the nozzle 14a to the upper splitter device 15B.
  • the raw water is divided into droplets by the rotating disk blades 15c and 15d of the splitter device 15B.
  • a part of the droplet is carried to the demister 18B by the carrier air flow generated by the circulator 17B while evaporating.
  • the droplet is removed by the demister 18B.
  • the remaining water vapor passes through the demister 18B and is carried to the capacitor 19A by the carrier airflow.
  • the water vapor is condensed by the condenser 19B to become purified water. This purified water is stored in the liquid reservoir 11f.
  • the remaining droplets hit the guide 16B and fall into the liquid reservoir 11d.
  • the droplets gather in the liquid reservoir 11d and return to the raw water.
  • the raw water passes through the connecting pipe 21 and falls onto the disk blades 15c and 15d of the lower splitter device 15A. Part of the raw water is split into droplets by the lower disk blades 15c and 15d. A part of the droplet is carried to the demister 18B by the carrier air flow generated by the circulator 17A while evaporating.
  • the remaining droplets hit the guide 16A, accumulate in the liquid reservoir 11d, and are discharged from the discharge pipe 11e.
  • the droplet in the carrier air current is removed by the demister 18A.
  • Water vapor in the carrier airflow passes through the demister 18A and is carried to the capacitor 19A by the carrier airflow.
  • the water vapor is condensed by the condenser 19A and becomes purified water.
  • This purified water is stored in the liquid reservoir 11f.
  • the purified water is recovered from the upper and lower liquid reservoirs 11f and 11f through the discharge pipes 11g and 11g and the pipe 23.
  • the lower and upper condensers 19A and 19B heat the raw water and raise the temperature of the raw water, thereby reducing the burden on the heater 13 and increasing the evaporation efficiency of the droplets. Improve the recovery efficiency.
  • the raw water recovered in the upper liquid reservoir 11d is supplied to the lower splitter device 15A, the raw water can be reused and the recovery efficiency from the raw water to the purified water is increased.
  • the lower and upper splitter devices 15A and 15B and the circulators 17A and 17B are attached to a common rotating shaft 15a extending in the vertical direction.
  • one motor 15b can drive the splitter devices 15A and 15B and the circulators 17A and 17B, thereby achieving space saving.
  • this configuration is advantageous for realizing a plurality of water purifiers in which evaporation / condensation systems are stacked in multiple stages.
  • a water purifier 1D includes evaporation-condensation systems 10C, 10D, 10E, 10F, 10G, and 10H that are stacked in six stages in the vertical direction.
  • the internal configuration of each system 10C-10H is the same as that of the first embodiment. Cases 11 of the system 10C-10H are connected to each other by a connecting pipe 21 shown in FIG. The capacitors 19 of the system 10C-10H are connected to each other by a connecting pipe 22 shown in FIG.
  • the water purifier 1C has a return pipe 26 that connects the discharge pipe 11e below the splitter of the evaporation-condensation system 10C and the condenser inlet.
  • the return pipe 26 is connected to the pump 12 on the way.
  • the remaining raw water at 60 ° C. that has not evaporated flows out from the discharge pipe 11e of the evaporation-condensation system 10C.
  • This return raw water flows through the return pipe 26 toward the condenser of the system 10C.
  • 20 ° C. fresh raw water is sent out by the pump 12 and mixed with the return raw water.
  • the temperature of the mixed raw water becomes 55 ° C. and flows into the heat exchange tube of the condenser of the system 10C.
  • the raw water is heated to 60 ° C. by the condenser and flows into the condenser of the upper evaporation-condensation system 10D.
  • the raw water is heated to 65 ° C.
  • the condenser of the system 10D flows into the condenser of the upper evaporation-condensing system 10E.
  • the raw water is heated stepwise to 85 ° C. by the condenser of the evaporation-condensation systems 10E, 10F, 10G, and 10H, and flows out from the case 11 of the system 10H.
  • Raw water is heated to 90 ° C. by the heater 13 and flows into the case 11 of the system 10H through the pipe 14.
  • the raw water is supplied to the splitter device of the system 10H. A part of the raw water evaporates, and the remaining raw water is cooled to 85 ° C. and supplied to the lower evaporation-condensation system 10G through the connecting pipe 21.
  • the remaining raw water is sequentially supplied to the evaporation-condensation systems 10F, 10E, 10D, and 10C.
  • the remaining raw water is cooled to 60 ° C. in case 11C.
  • the evaporation of water increases rapidly above 60 ° C with 60 ° C as a threshold. Since the raw water is introduced into the evaporation-condensation system 10C-10H at 60 ° C. or higher, the water vapor of the raw water also increases rapidly, and the amount of purified water recovered by each condenser 19 also increases. Therefore, the recovery rate of purified water from raw water is improved.
  • a 13-stage evaporation-condensation system is usually required to heat raw water from 20 ° C to 85 ° C.
  • the purification apparatus 1C heats the raw water to 85 ° C. with the six-stage evaporation-condensation system 10C-10H, so that the apparatus configuration becomes small.
  • Measurement method A case having a diameter of 570 mm was used.
  • the air blowing rate was 8.1 m 3 / min (maximum value), and the raw water flow rate was 6 L / min.
  • the inlet temperature (T air, in ) of the cold air, the outlet temperature (T air, in ) of the hot air, the inlet temperature (T w, out ) of the heated raw water, and the outlet temperature (T w, out ) of the waste water were measured.
  • a sirocco fan 17b shown in FIG. 1 was used instead of the splitter device.
  • the same sirocco fan 17b was disposed horizontally (hereinafter referred to as a horizontal sirocco fan), and the same measurement was performed.
  • Evaluation method used the evaluation formula of the heat exchanger shown in Formula (1).
  • R th ⁇ T m / P exchange (1)
  • R th Thermal resistance coefficient
  • P exchange is calculated from the raw water flow rate using equation (2).
  • C w Specific heat of water [kJ / (kg ⁇ K)]
  • T m Logarithmic average temperature difference [K] between circulating air and raw water ⁇ T m is calculated using equation (3).
  • ⁇ T m ( ⁇ T in ⁇ T out ) / ln ( ⁇ T in / ⁇ T out ) (3)
  • the evaporator thermal resistance coefficient Rth [K / kW] of the blade of the splitter device is about 3.8 K / kW, while the evaporator thermal resistance coefficient Rth [K / kW] of the horizontal sirocco fan. was about 7.6 K / kW.
  • the splitter device was smaller than the horizontal sirocco fan in terms of the evaporator thermal resistance coefficient. Therefore, the splitter device was superior to the horizontal sirocco fan in terms of evaporation performance.
  • the two-stage disk blades 15c and 15d of the first embodiment were used, and performance evaluation was performed on this.
  • the same one-stage disk blade as the disk blades 15c and 15d was used.
  • a one-stage disk blade having 24 blade portions (blades) and having no recess on the periphery was used.
  • a two-stage disk blade having 24 blade portions (blades) and having no recess at the periphery was used.
  • the evaporation amount of the comparative example was 2.32 [g / min], whereas the water vapor amount of the second example increased to 2.67 [g / min]. Further, similarly, in the first reference example and the second reference example, the evaporation amount of the first reference example having two-stage disk blades was increased. This is because raw water falls from above and becomes droplets (mist) by the disk blade, but there is also water that falls between the blade portions. By arranging two disk blades in series in the axial direction, water that does not hit the disk blades can be reduced, which is considered to increase the amount of evaporation.
  • the thermal resistance coefficient was about 3 K / W.
  • the coefficient of thermal resistance became a minimum of about 1 K / W. This indicates a high heat exchange property.
  • the thermal resistance coefficient also increases. With a water volume of 8.5 L / min, the thermal resistance coefficient increased to 4 K / W. This is considered that when the amount of water is small, the absolute volume of the mist decreases, and heat exchange cannot be performed.
  • the present invention can be used for a water business that obtains purified water from raw water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

 原水から浄水を効率よく製造する浄水装置を提供する。 循環経路を有するケース(11)と、ケース(11)内に配置されると共に原水を液滴に分裂させると共に前記循環経路を循環可能であり且つ前記液滴(D1)から蒸発した水蒸気を運搬可能なキャリア気流(A1)を作り出すスプリッタ装置(15)と、ケース(11)内でスプリッタ装置(15)に対してキャリア気流の下流に配置されると共に前記水蒸気を凝縮して浄水を生成するコンデンサ(19)を備え、スプリッタ装置(15)は、ケース(11)の上下方向に延びる回転軸(15a)と、回転軸(15a)に径方向に取り付けられる共に凹凸(152p、152q、152r、152s、152t)を有するブレード(152A-152Q)を有する。

Description

浄水装置
 本発明は、原水から浄水を得る浄水装置に関する。
 現在、世界人口のうち11億人が水を十分に利用できない状態にある。西暦2025年に30億人は水不足になると予想されている。この点に鑑み、海水から淡水を取得する種々の装置が検討されている。特に近年、海水を濾過して淡水を生成する逆浸透膜装置、及び、海水を蒸留して淡水を生成する蒸発装置が実用化されている。
 多段の蒸発装置は複数の減圧室を有する。各部屋を減圧して蒸発温度を低くて海水を蒸発させる。高温側の部屋で蒸発した水蒸気の凝縮熱を低温側の海水と熱交換することで、熱回収を行っている。
特開2006-70889号公報 特開平9-52082号公報
 しかしながら、上記蒸発装置は複雑かつ大型である。また、この蒸発装置は、多くのエネルギーを必要するため、火力発電所、精油、発電プラントに併設される。以上から、前記蒸発装置は省エネルギー、立地条件の点で課題を有する。
 そこで、本発明の目的は、原水から浄水を効率よく製造する浄水装置を提供することにある。
 以下、符号を付して本発明の特徴を説明する。なお、符号は参照のためであり、本発明を実施形態に限定するものでない。
 本発明の第1の特徴に係わる浄水装置(1)は、循環経路(11c)を有するケース(11)を有する。浄水装置(1)は、ケース(11)内に配置されると共に原水を液滴(D1)に分裂させる共に前記循環経路(11c)を循環可能であり且つ液滴(D1)から蒸発した水蒸気を運搬可能であるキャリア気流(A1)を作り出すスプリッタ装置(15)を有する。浄水装置(1)は、ケース(11)内でスプリッタ装置(15)に対してキャリア気流の下流に配置されると共に前記水蒸気を凝縮して浄水を生成するコンデンサ(19)を有する。スプリッタ装置(15)は、ケース(11)の上下方向に延びる回転軸(15a)と、回転軸(15a)に径方向に取り付けられる共に凹凸(152p、152q、152r、152s、152t)を有するブレード(152A-152Q)を有する。
 以上の第1の特徴において、前記凹凸はブレード(152A-152Q)のブレード面(152d)から凹んだ凹部(152p、152q)を有する。
 凹部(152p、152q)はブレード(152A-152Q)の縁(152a、152c)から延びる。
 前記凹凸はブレード(152A-152Q)の縁(152a、152c)から切り欠かれた凹部(152r、152s)を有する。
 前記凹凸はブレードのブレード面(152d)から突出する突起(152t)である。 
 前記凹凸はブレード15fの先端へ向けて直列に配置された第1及び第2の凹部(154p、154q)と、第1及び第2の凹部の間に配置された凸部(154r)とを有する。
 ブレード(152A-152Q)は回転軸(15a)に対して斜めに配置される。
 ブレード(152A-152Q)は、ディスク状部材を径方向に切断して扇形片を作製し、この扇形片を捻ることによって形成される。
 スプリッタ装置(15)の回転軸(15a)に取り付けられたサーキュレータ(17)を有する。
 ケース(1)は上下に重ねられた第1のケース(15A)及び第2のケース(15B)を有する。スプリッタ装置(15)は第1のケース(11A)内に配置されると共に第1のブレードを含んだ第1のスプリッタ装置(15A)と、第2のケース(11B)内に配置されると共に第2のブレードを含んだ第2のスプリッタ装置(15B)を有する。第1のスプリッタ装置(15A)及び第2のスプリッタ装置(15B)は前記第1のブレードと前記第2のブレードは回転軸(15a)に取り付けられる回転軸(15a)を有する。コンデンサ(19)は、第1のケース(11A)内に配置された第1のコンデンサ(19A)と、第2のケース(11B)内に配置された第2のコンデンサ(19B)を有する。
 前記ケースは、第1のケースと、第1のケースと連絡した第2のケースとを有する。前記コンデンサは、第1のケース内に配置された第1のコンデンサと、第2のケース内に配置されると共に第1のコンデンサと連絡した第2のコンデンサとを有する。浄水装置は、前記第1のケースの排出配管と前記第1のコンデンサとを連絡する帰還配管(26)とを有する。原水は、第1のコンデンサ及び第2のコンデンサによって加熱されて、第2のスプリッタ装置に供給される。原水の一部は蒸発すると共に第2のコンデンサによって凝縮される。残りの原水が第1のスプリッタ装置に供給され、この原水の一部は蒸発すると共に第1のコンデンサによって凝縮され、この原水の残りは60℃以上で第1のケースから排出され、帰還配管を通って第1のコンデンサに導入される。
 本発明の第2の特徴に係る浄水装置(1、1A)は、循環経路を有するケース(11)を有する。浄水装置(1、1A)は、ケース(11)内に配置されると共に原水を液滴に分裂させると共に前記循環経路を循環可能であり且つ液滴(D1)から蒸発した水蒸気を運搬可能であるキャリア気流(A1)を作り出すスプリッタ装置(15)を有する。浄水装置(1、1A)は、ケース(11)内でスプリッタ装置(15)に対してキャリア気流の下流に配置され、前記液滴(D1)を除去すると共に前記水蒸気の通過を許容するデミスタ(18、18C)を有する。浄水装置(1、1A)は、ケース(11)内でデミスタ(18、18C)に対してキャリア気流の下流に配置されると共にデミスタ(18、18C)から流出した水蒸気を凝縮して浄水を生成するコンデンサ(19)を有する。デミスタ(18、18C)は所定の間隔で配置されて流路を画成するデミスタプレート(180、180C)を有する。
 以上の第2の特徴において、デミスタプレート(180)は屈曲している。
 デミスタプレート(180C)は湾曲している。
 デミスタプレート(180、180C)は波形を有する。
 本発明の第3の特徴に係る浄水装置(1B)は、循環経路を有するケース(11)と、ケース(11)内に配置されると共に原水を液滴(D1)に分裂させると共に前記循環経路を循環可能であり且つ液滴(D1)から蒸発した水蒸気を運搬可能であるキャリア気流(A1)を作り出すスプリッタ装置(15)と、ケース(11)内でスプリッタ装置(15)に対してキャリア気流の下流に配置されると共に前記水蒸気を凝縮して浄水を生成するコンデンサを有し、スプリッタ装置(15)は、ケース(11)の上下方向に延びる回転軸(15a)と、回転軸(15a)に径方向に取り付けられたブレード(152A-152Q)と、ブレード(152A-152Q)に対して前記キャリア気流の上流に配置されたガイド(16,16A,16B,16C)を有する。
 以上の第3の特徴において、前記ガイドは湾曲したガイドプレート(16)からなる。
 ガイド(16A、16B、16C)は互いに離れて配置された複数のガイドプレートからなる。
 各ガイドプレート(161A-161I,162A-162I)は回転軸を中心とする径方向に対して斜めに配置される。
 各ガイドプレート(162A-162I)は湾曲している。
 ガイド(16C)は、複数の第1のガイドプレート(163A-163K)と、第1のガイドプレート(163A-163K)の外側に配置されると共に第1のガイドプレート(163A-163K)同士の間に配置された第2のガイドプレート(164A-164L)を有する。
 本発明の第1の特徴によれば、ブレードは凹凸を有するので、原水を変形させ易くなり、原水を液滴に効率的に分裂させ、原水から浄水の回収効率を向上させる。
 ブレードは、回転軸に対して斜めに配置されているので、原水がブレードに当たると、原水はブレードを回転方向に押し、ブレードの回転は加速するので、原水から液滴への分裂及びキャリア気流の発生を容易にする。
 ブレードは、ディスク状部材を径方向に切断して扇形片を作製し、この扇形片を捻ることによって形成されるので、簡単な工程で作製される。
 サーキュレータはスプリッタ装置の回転軸に取り付けられので、省スペースを達成する。
 第1及び第2のコンデンサは原水を加熱し、原水の温度をより上昇させるので、液滴の蒸発効率を上げ、原水から浄水の回収効率を改善する。また、第1及び第2のスプリッタ装置は、共通の回転軸を有するので、省スペースを達成する。
 60℃以上の原水の残りは、帰還配管を通って、第1のコンデンサに供給されるので、原水が第1のスプリッタ装置、第2のスプリッタ装置に供給されるとき、60℃以上となる。水の蒸発は60℃以上で急激に増加するので、第1のコンデンサ及び第2のコンデンサによって回収される浄水の量も増加する。よって、原水から浄水の回収効率が向上する。また、残りの原水を再利用できるので、原水から浄水の回収効率をさらに向上させる。
 本発明の第2の特徴によれば、液滴はデミスタプレートに当たり、デミスタプレートは液滴を効率的に捕集する。これにより、原水から不純物の少ない浄水を得る。
 本発明の第3の特徴によれば、ガイドは、キャリア気流を増加させ、また、キャリア気流のケース内の循環効率を向上させるので、液滴の蒸発効率を増加させ、原水から浄水の回収効率を改善する。
第1の実施形態に係る浄水装置を示す側面図である。 図1に示す浄水装置の平面図である。 図2に示すディスクブレードの平面図である。 図3に示すディスクブレードの側面図である。 (A)は変形に係るブレード部の平面図を示し、(B)は他の変形に係るブレード部の平面図を示す。 変形に係る浄水装置のディスクブレードを示し、(A)は平面図であり、(B)はVIB-VIBに沿った断面図である。 図1に示すデミスタのデミスタプレートの斜視図である。 第2の実施形態に係る浄水装置を示す平面図である。 図8に示すデミスタのデミスタプレートの斜視図である。 第3の実施形態に係る浄水装置を示す平面図である。 図10に示すスプリッタ装置の要部を示す拡大平面図である。 (A)、(B)は変形に係るガイドの要部平面図である。 第4の実施形態に係る浄水装置を示す側面図である。 第5の実施形態に係る浄水装置の概要図である。 第1の実施例に係るスプリッタ装置及び比較例に係わる水平シロッコファンの蒸発器熱抵抗を測定したグラフである。 第3の実施例に係るディスクブレードの熱抵抗を測定したグラフである。
 以下、図面を参照して実施の形態を詳細に説明する。
 第1の実施形態
 図1、2に示すように、浄水装置1は、蒸発-凝縮システム10を有する。同システム10は、気流の循環を許容する環状のケース11と、ケース11の外に配置されたポンプ12と、ケース11の上に配置したヒータ13を有する。浄水装置1は、ケース11内に配置されると共にヒータ13の下に配置されたスプリッタ装置15と、スプリッタ装置15の後に配置されたガイド16と、スプリッタ装置15と同軸に配置された、例えば、シロッコファンを有するサーキュレータ17を有する。浄水装置15は、スプリッタ装置15の下流に配置されたデミスタ群18と、デミスタ群18の下流に配置されたコンデンサ19を有する。 
 ケース11は、内筒11aと、内筒11aの外側に外筒11bと、内筒11aと外筒11bとの間に環状の空間11cを有する。この空間11cは気流の循環を許容する循環経路としての流路となる。ケース11はスプリッタ装置15の下に液溜め11dを有する。この液溜め11dは排出配管11eで外部と連絡している。ケース11はコンデンサ19の下に液溜め11fを有する。この液溜め11fは図示しない配管で外部の貯水槽に連絡している。
 ポンプ12は、コンデンサ19と接続している。ポンプ12は原水を汲み上げ、コンデンサ19に供給する。原水は、例えば、海水、湖水、産業汚水である。
 ヒータ13の入口は、配管でコンデンサ19と接続している。ヒータ13の出口はノズル14aを有した配管14と接続する。ヒータ13は、温水を有する水槽と、水槽の温水の中に配置された熱交換チューブと、熱交換チューブに取り付けられたフィンを有する。温水は、例えば、太陽光で加熱してもよいし、電熱線で加熱してもよい。また、温水は、マグネシウム(Mg)を水中で燃焼又は酸化させることにより発生する熱によって、加熱してもよい。
 スプリッタ装置15は、ケース11の上下方向に延びると回転軸15aと、回転軸15aを駆動するモータ15bを有する。スプリッタ装置15は、回転軸15aに2段に取り付けられると共に水平に配置されたディスクブレード15c、15dを有する。
 図3に示すように、ディスクブレード15c、15dは、回転軸15aを取り付けるための中心孔151aを有した円形の中心部151を有する。ディスクブレード15c、15dは、中心部151の周りに回転軸15aについて所定の中心角度で配置された扇形の複数のブレード部152A、152B、152C、152D、152E、152G、152H、152I、152J、152K、152L、152M、152N、152P、152Qを有する。
 扇形の各ブレード部152A-152Qは、中心部151から径方向に延びると共に所定の角度をなす前縁152aおよび後縁152bを有する。各ブレード部152A-152Qは、前縁152a及び後縁152bの先端同士の間に弧状に延びる周縁152cを有する。各ブレード部152A-152Qは、前縁152a、後縁152b及び周縁152cによって囲まれたブレード面152dを有する。ここで、前縁152aは回転方向R1において後縁152bよりも前に配置される。また、前縁152aは中心部151に対して上方に位置決めされ、後縁152bは中心部151に対して下方に位置決めされる。つまり、図4に示すように、各ブレード部152A-152Qは回転軸15a及び中心部151に対して斜めに配置される。各ブレード部152A-152Qは、中心部151に対して10°~45°の傾斜角を有し、この傾斜角は、例えば、25°でもよい。
 各ブレード部152A-152Qは、ブレード面152dから凹むと共に前縁152aから周方向へ延びる前縁凹部152pを有する。各ブレード部152A-152Qは、周縁152cから径方向に延びる周縁凹部152qを有する。前縁凹部152d及び周縁凹部152eは、平面矩形であり、所定の深さを有する。
 各ブレード部152A-152Qの作製方法は以下のとおりである。所定の角度間隔で外周から中心部151へ向けてディスク状部材を切断し、複数の扇形片を作成する。さらに、中心部151に対して各扇形片を反時計方向に捻り、前縁152aを上方に後縁152bを前縁152aより下方に配置する。
 なお、図5(A)に示すように、ブレード部152A-152Qは、前縁152a及び周縁152cから切り欠かれた前縁凹部152r及び周縁凹部152sを有してもよい。
 また、図5(B)に示すように、各ブレード部152A-152Qは、前縁凹部及び周縁凹部の代わりにブレード面152dから突出した突起152tを有してもよい。
 また、図6(A)、(B)に示すディスクブレード15fを用いてもよい。
 ディスクブレード15fは、回転軸15aを取り付けるための中心孔153aを有した円形の中心部153を有する。ディスクブレード15fは、中心部153の周りに所定の中心角度で配置された扇形の複数のブレード部154を有する。ブレード部154の厚さは、先端へ向けて大きくなる。
 各ブレード部154は、中心部153から径方向に延びる前縁154a及び後縁154bを有する。各ブレード部154は、前縁152a及び後縁152bの先端同士の間に延びる周縁154cを有する。各ブレード部154は、前縁152a及び後縁152bの間に上面154d及び下面154eを有する。
 各ブレード部154は、径方向に所定の間隔で配置され、径方向に対して斜めに延びる凹部154p、154qを有する。この凹部154p、154qは、前縁152a、後縁152b、上面154d、下面154eに渡って形成されている。各ブレード部154は、凹部154p、154qの間に凸部154r有する。凸部154rは凹部154p、154qより太くなっている。
 このディスクブレード15fは、凸部154r及び凹部154p、154qで原水を効率的に液滴に分裂させる。
 図1に示すように、ガイド16は、スプリッタ装置15及びサーキュレータ17対してキャリア気流A1の上流(後方)に配置される。ガイド16は、例えば、回転軸15aを中心に円周上で弧状に湾曲したガイドプレートである。ガイド16の両側端はケース11の内筒11a及び外筒11bから離れ、流通路を画成する。同様に、ガイド16の上端及び下端はケース11の頂壁及び底壁から離れて、流通路を画成する。
 サーキュレータ17は、スプリッタ装置15の回転軸15aと共通の回転軸17aと、回転軸17aに取り付けられたシロッコファン17bを有する。シロッコファン17bは時計方向に気流A1、A2、A3を生じさせるように回転軸17aを中心に回転可能である。
 デミスタ18は、ケース11内においてキャリア気流A1の経路に沿って直列に配置されたデミスタプレート群18a、18bを有する。各デミスタプレート群18a、18bは、所定の間隔で配置されると共に流路を画成する複数のデミスタプレート180を有する。図7に示すように、各デミスタプレート180は、山180a及び谷180bで屈曲しており、全体で波形を有する。各デミスタプレート180は、第1の壁部180cと、第1の壁部180cに対して斜めに延びる第2の壁部180dと、第1の壁部180cと平行であり且つ第2の壁部180dに対して斜めに延びる第3の壁部180eを有する。
 コンデンサ19は、熱交換チューブ19aと、熱交換チューブ19aに取り付けられたフィン19bを有する。熱交換チューブ19aは折り返しながら、下方から上方へ延びる。
 次に、浄水装置1の使用方法について説明する。
 図1に示すように、ポンプ12は原水を汲み上げる。この原水はコンデンサ19、ヒータ13、配管14を通って、ノズル14aからスプリッタ装置15に供給される。このとき、原水はコンデンサ19の熱交換チューブ19aを通過し、フィン19bを介して加熱される。また、原水はヒータ13の熱交換チューブを通過し、水槽13内の温水によってさらに加熱される。これにより、原水は70℃~90℃程度になる。
 加熱した原水はノズル14aからスプリッタ装置15のディスクブレード15c、15dの上に噴射される。ここで、スプリッタ装置15のディスクブレード15c、15dは回転軸15aを中心に反時計方向R1に回転している(図3参照)。原水は、回転するブレード部152A-152Qに当たり、分裂して微細な液滴(ミスト)になる。このとき、ブレード部152A-152Qの前縁凹部152p及び周縁凹部152qの縁は尖っているため、原水の中に入り込み易く、原水を効率的に分裂させる。
 液滴はディスクブレード15c、15dから蒸発しながら全方位に飛散する。液滴及び水蒸気の一部はデミスタ18へ向かって移動する。残りの液滴及び水蒸気はガイド16に当たる。残りの液滴はガイド16に沿って落下し、液溜め11dに溜まり、排出配管11eから排出される。残りの水蒸気は、ガイド16によって時計方向へ案内され、後述するキャリア気流A1と合流する。
 また、ガイドプレート16は、ディスクブレード15c、15Dからケース11の反時計方向へ飛散する液滴を遮る。これにより、スプリッタ装置15の後方(上流)に気流発生用の送風装置を配置した場合、液滴が、例えば、塩分を含むとき、ガイドプレート16は塩分による送風装置の故障を防止する。
 また、図4に示すように、各ブレード部152A-152Qは回転軸15aに対して傾いており、前縁152aは後縁152bより上方に配置される。よって、原水がブレード部152A-152Qのブレード面152dに当たると、ブレード部152A-152Qを回転方向R1に押し、ブレード部152A-152Qの回転を加速する。これにより、ディスクブレード15c、15dは気流を生じさせ易くなる。
 サーキュレータ17のシロッコファン17bは回転軸17aを中心に回転し、気流を増加させる。ここで、気流は全方位に生じている。ガイド16はケース11内において反時計方向の気流を時計方向へ導く。これにより、キャリア気流A1はケース11内で時計方向に流れる。
 液滴D1及び水蒸気はキャリア気流A1によって運ばれ、デミスタ18に到達する。この間、液滴D1の一部はさらに蒸発して水蒸気になる。すなわち、微細な粒径の液滴は、大きな表面積を有するので、気化し易くなる。また、キャリア気流A1は液滴D1の蒸発を促進する。
 液滴D1及び水蒸気を伴うキャリア気流A1は、デミスタ18の第1及び第2のデミスタプレート群18a、18bのデミスタプレート180-180同士の間に導入される。図7に示すように、液滴及び水蒸気が第1の壁部180c-180c同士、第2の壁部180d-180d同士、第3の壁部180e-180e同士の間を通過する。この間、液滴は各第1の壁部180c、各第2の壁部180d、各第3の壁部180eに当たり、捕集される。捕集された液滴は各第1の壁部180c、各第2の壁部180d、各第3の壁部180eに沿って下方に流れ、ケース11の下部に溜まる。ここで、各デミスタプレート180は、山180a及び谷180bで屈曲しており、デミスタプレート180-180間の流路はS字状に蛇行する。液滴は、山180a及び谷180bで方向転換できないので、各壁部180c、180d、180eに当たる。よって、液滴は各壁部180c、180d、180eによって効率的に捕捉される。一方、キャリア気流A1及び水蒸気は山180a及び谷180bで方向転換し、壁部180c、180d、180e間の流路を通過して、デミスタ18から流出する。つまり、デミスタ18はキャリア気流A1及び水蒸気の抵抗とならず、キャリア気流A1及び水蒸気をスムーズに通過させることができる。
 水蒸気はキャリア気流A2によって運ばれてコンデンサ19に流入する。水蒸気はフィン19bと接触する。水蒸気は熱交換チューブ19a内を流れる原水と熱交換して、冷却される。水蒸気は水に凝縮されて凝縮潜熱を放出する。一方、熱交換チューブ19a内の原水は凝縮潜熱によって加熱され、原水の温度は上昇する。これにより、水は塩分、その他のイオン等の不純物を含まない浄水となる。この浄水はケース11の底部の液溜め11fに溜まり、外部の貯水槽に排出される。
 コンデンサ19通過したキャリア気流A3はスプリッタ装置15へ戻る。このようにキャリア気流A1、A2、A3は、ケース11内を循環するので、モータ15bの消費電力を減少させ、効率的なエネルギー利用を達成する。
 以上の第1の実施形態によれば、ディスクブレード15c、15dの各ブレード部152A-152Qは凹部152p、152q、152r、152s、又は突起152tを有するので、原水を液滴に効率的に分裂させ、原水から浄水の回収効率を向上させる。
 各ブレード部152A-152Qは、回転軸15aに対して斜めに配置されている。これにより、原水が各ブレード部152A-152Qに上方から当たると、各ブレード部152A-152Qを回転方向R1に押し、各ブレード部152A-152Q回転を加速する。これにより、原水から液滴への分裂及びキャリア気流の発生を容易にする。
 各ブレード部152A-152Qは、ディスク状部材を径方向に切断して扇形片を作製し、この扇形片を捻ることによって形成されるので、簡単な工程で作製される。
 サーキュレータ17のシロッコファン17bはスプリッタ装置15の回転軸15aから延長した回転軸17aに取り付けられているので、省スペースを達成する。
 デミスタ18の各デミスタプレート180は山180a及び谷180bで屈曲し、波形を有する。これにより、液滴は山180a及び谷180bで方向転換できず、デミスタプレートに当たり、デミスタプレート180は液滴を効率的に捕集する。
 第2の実施形態
 図8に示すように、第2の実施形態に係る浄水装置1Aは、変形に係るデミスタ18Cを有する。デミスタ18Cはデミスタプレート群18cを有する。デミスタプレート群18cは、互いに所定の間隔で互いに離れて配置されると共に流路を画成する複数のデミスタプレート180Cを有する。図9に示すように、各デミスタプレート180Cは、複数箇所181a、181b、181c、181dで湾曲させた1枚のシート181からなる。各デミスタプレート180Cは波形を有し、谷181a、181c、181eと、谷181a、181c、181eの間に山181b、181dを有する。各デミスタプレート180CはS字状に蛇行した流路を画成する。
 以上の第2の実施形態によれば、水蒸気及び液滴を伴うキャリア気流A1はデミスタプレート180C、180Cの間に流入する。キャリア気流及び水蒸気は、湾曲した谷181a、181c、181e及び山181b、181dでスムースに方向転換し、デミスタ18Cから流出する。これに対して、液滴は、谷181a、181c、181e及び谷181b、181dで、方向転換できずにデミスタプレート180C、180Cに当たり、捕集される。これにより、原水から不純物の少ない浄水を得る。
 第3の実施形態
 図10に示すように、第3の実施形態に係る浄水装置1Bは、変形に係るガイド16Aを有する。
 ガイド16Aは、図11に示すように、ディスクブレード15c、15dと同心に配置される。すなわち、ガイド16Aは、回転軸15aを中心とする円周C1上に所定の間隔で互いに離れて配置されたガイドプレート161A,161B,161C,161D,161E,161F,161G,161H,161Iを有する。ガイドプレート161A-161Iは円周C1の接線方向に対して斜めに配置されている。すなわち、ガイドプレート161A-161Iは、回転軸15aを中心とした径方向に対して斜めに配置される。ガイドプレート161A-161Iは、ディスクブレード15c、15dの回転方向において後端から前端へ向けて回転軸15aに近づく。隣り合うプレート部161A-161Iの一部は、互いに対向して流路を画成する。
 また、図1に示すように、デミスタ18Dはデミスタプレート180D、180Eからなるデミスタプレート群18d、18eを有する。各デミスタプレート180D、180Eは、一箇所で屈曲している。
 次に、浄水装置1Bの使用方法について説明する。
 図10において、ディスクブレード15c、15d及び図外のシロッコファンが反時計方向R1へ回転する。これにより、気流がディスクブレード15c、15dの周りで全方位に生じている。図11において、ガイドプレート161A-161Iは、気流を反時計方向R1へ案内し、気流A4を生成する。気流A4はガイドプレート161Iからケース11の時計方向へ流れ出て、キャリア気流A1に合流する。これにより、キャリア気流A1は増加する。
 一方、ガイドプレート161A-161Iの間の流路は、後方(上流)からのキャリア気流A3の通過を許容するので、キャリア気流A3は気流A4に合流する。これにより、ケース11内のキャリア気流の循環効率を向上させる。
 また、ガイドプレート161A-161Iは、ディスクブレード15c、15Dからケース11の反時計方向へ飛散する液滴を遮る。これにより、スプリッタ装置15の後方(上流)に気流発生用の送風装置を配置した場合、液滴が、例えば、塩分を含むとき、ガイドプレート16Aは塩分による送風装置の故障を防止する。
 以上の実施形態によれば、ガイド16Aは、キャリア気流を増加させ、また、キャリア気流のケース11内の循環効率を向上させるので、液滴D1の蒸発効率を増加させ、原水から浄水の回収効率を改善する。
 なお、図12(A)に示すように、別の変形に係るガイド16Bは、湾曲したガイドプレート162A,162B,162C,162D,162E,162F,162G,162H,162Iを有する。このガイド16Bによれば、湾曲したガイドプレート162A-162Iはより円滑に気流を案内する。
 また、図12(B)に示すように、さらなる別の変形に係るガイド16Cは、回転軸15aを中心とした円周に沿って所定の間隔で配置された第1のガイドプレート163A,163B,163C,163D,163E,163F,163G,163H,163I,163J,163Kを有する。ガイドプレート16Cは、第1のガイドプレート163A-163Kの外側に同心に配置された第2のガイドプレート164A,164B,164C,164D,164E,164F,164G,164H,164I,164J,164K、164Lを有する。第2のガイドプレート164A-164Lは、第1のガイドプレート163A-163Kの間に配置されて、第1のガイドプレート163A-163Kの間の隙間を覆う。
 このガイドプレート16Cによれば、第2のガイドプレート164A-164Lは第1のガイドプレート163A-163Kの間の隙間から飛散する液滴を遮る。これにより、スプリッタ装置15の後方(上流)に気流発生用の送風装置を配置した場合、液滴が、例えば、塩分を含むとき、ガイドプレート16Cは塩分による送風装置の故障を防止する。
 第4の実施形態
 図13に示すように、第4の実施形態に係る浄水装置1Cは下段及び上段の2段構成の蒸発-凝縮システム10A、10Bを有する。同システム10A、10Bは、下段及び上段に、第1の実施形態と同じケース11A、11B、スプリッタ装置15A、15B、サーキュレータ17A、17B、デミスタ18A、18B、コンデンサ19A、19Bを有する。
 下段及び上段のケース11A、11Bは同士を連絡する連絡配管21を有する。連絡配管21は上段のケース11Bの液溜め11dから下段のケース11Aへ原水を導入する。上段及び下段のケース11A、11Bの液溜め11f、11fの排出配管11g、11gに接続した排出配管23を有する。
 下段スプリッタ装置15A及び上段のスプリッタ装置15Bは共通の回転軸15aを有する。この回転軸15aは下段及び上段のケース11A、11Bを上下方向に貫通している。下段のスプリッタ装置15A及び上段のスプリッタ装置15Bのディスクブレード15c、15d、受皿15e、サーキュレータ17A、17Bは、回転軸15aに取り付けられる。
 上段のコンデンサ19の熱交換チューブ19aは連絡配管22を介して下段の熱交換チューブ19aと接続している。
 次に、浄水装置1Cの使用方法を説明する。
 原水は、ポンプ12によって汲み上げられ、下段のコンデンサ19Aに供給される。原水は、下段のコンデサ19Aによって加熱され、連絡配管22を通って上段のコンデンサ19Bへ供給される。原水は、上段のコンデンサ19Bによってさらに加熱されて、ヒータ13に供給される。原水はヒータ13によって加熱され、配管14を通ってノズル14aから上段のスプリッタ装置15Bに供給される。原水はスプリッタ装置15Bの回転するディスクブレード15c、15dによって液滴に分裂される。
 液滴の一部は、蒸発しながら、サーキュレータ17Bによって生じたキャリア気流によってデミスタ18Bへ運ばれる。液滴はデミスタ18Bで取り除かれる。残りの水蒸気がデミスタ18Bを通過し、キャリア気流によってコンデンサ19Aに運ばれる。水蒸気はコンデンサ19Bによって凝縮されて浄水となる。この浄水は液溜め11fに溜められる。
 一方、残りの液滴は、ガイド16Bに当たり、液溜め11dに落下する。液滴は液溜め11dで集合し原水に戻る。原水は、連絡配管21を通って下段のスプリッタ装置15Aのディスクブレード15c、15dの上に落下する。原水の一部は、下段のディスクブレード15c、15dによって液滴に分裂される。液滴の一部は、蒸発しながら、サーキュレータ17Aによって生じたキャリア気流によってデミスタ18Bへ運ばれる。残りの液滴はガイド16Aに当たって、液溜め11dに溜まり、排出配管11eから排出される。
 キャリア気流中の液滴はデミスタ18Aで取り除かれる。キャリア気流中の水蒸気はデミスタ18Aを通過し、キャリア気流によってコンデンサ19Aに運ばれる。水蒸気はコンデンサ19Aによって凝縮され、浄水となる。この浄水は液溜め11fに溜められる。浄水は上段及び下段の液溜め11f、11fから排出配管11g、11g及び配管23を通過して回収される。
 以上の実施形態によれば、下段及び上段のコンデンサ19A、19Bは原水を加熱し、原水の温度を上昇させるので、ヒータ13の負担を軽減させると共に、液滴の蒸発効率を上げ、原水から浄水の回収効率を改善する。
 上段の液溜め11dで回収した原水を下段のスプリッタ装置15Aに供給するので、原水を再利用でき、原水から浄水へ回収効率を上げる。
 下段及び上段のスプリッタ装置15A、15B並びにサーキュレータ17A、17Bを上下方向に延びた共通の回転軸15aに取り付ける。これにより、1つのモータ15bはスプリッタ装置15A、15B及びサーキュレータ17A、17Bを駆動することができ、省スペースを達成する。特に、この構成は、蒸発-凝縮システムを上下に多段に重ねた複数の浄水装置の実現に有利である。
  第5の実施形態
  図14に示すように、第5の実施形態に係る浄水装置1Dは、上下方向に6段に重ねた蒸発-凝縮システム10C、10D、10E、10F、10G、10Hを有する。各システム10C-10Hの内部構成は第1の実施形態の構成と同じである。同システム10C-10Hのケース11同士は図13に示す連絡配管21によって接続されている。同システム10C-10Hのコンデンサ19同士は、図13に示す連絡配管22によって接続されている。
 浄水装置1Cは蒸発-凝縮システム10Cのスプリッタ装置下の排出配管11eとコンデンサの入口とを接続する帰還配管26を有する。この帰還配管26は途中でポンプ12と接続する。
 次に、浄水装置1Dの使用方法を説明する。
 蒸発しなかった60℃の残りの原水は蒸発-凝縮システム10Cの排出配管11eから流れ出る。この戻り原水は、帰還配管26を通って同システム10Cのコンデンサへ向けて流れる。この間、20℃の新原水がポンプ12によって送出され、戻り原水と混合する。これにより、混合した原水の温度は55℃になり、同システム10Cのコンデンサの熱交換チューブへ流入する。原水は、コンデンサによって60℃に加熱されて、上段の蒸発-凝縮システム10Dのコンデンサに流入する。原水は同システム10Dのコンデンサによって65℃まで加熱されて、上段の蒸発-凝縮システム10Eのコンデンサに流入する。以下、原水は、蒸発-凝縮システム10E、10F、10G、10Hのコンデサによって85℃まで段階的に加熱され、同システム10Hのケース11から流出する。
 原水はヒータ13によって90℃に加熱され、配管14を通って同システム10Hのケース11内へ流入する。原水は同システム10Hのスプリッタ装置へ供給される。原水の一部は蒸発し、残りの原水は85℃まで冷却され、連絡配管21を通って下段の蒸発-凝縮システム10G内へ供給される。以下、残りの原水は、蒸発-凝縮システム10F、10E、10D、10Cに順に供給される。残りの原水はケース11Cで60℃に冷却される。
 ここで、水の蒸発は60℃を閾値として60℃以上で急激に増加する。原水は60℃以上で蒸発-凝縮システム10C-10Hに導入されるので、原水の水蒸気も急激に増加し、各コンデンサ19によって回収される浄水の量も増加する。よって、原水から浄水の回収率を向上させる。
 また、通常、原水を20℃から85℃加熱するまでに13段の蒸発-凝縮システムが必要とされる。一方、本浄化装置1Cは6段の蒸発-凝縮システム10C-10Hで原水を85℃まで加熱するので、装置構成は小型になる。
  また、原水を廃棄せずに再利用できるので、原水から浄水の回収効率をさらに向上させると共にポンプの負担を軽減する。 
 なお、本発明は上記実施形態に限られない。上記実施形態の修正、変更は、当業者によって上記教示を考慮してなされる。
 第1の実施例
 第1の実施形態に係るスプリッタ装置15の性能を評価した。
 測定方法
 570mmの直径のケースを用いた。測定条件として、空気の送風量は8.1m/min(最高値)であり、原水流量は6L/minであった。低温空気の入口温度(Tair,in)と高温空気の出口温度(Tair,in)、加熱原水の入口温度(Tw,out)と排水の出口温度(Tw,out)を測定した。比較例として、スプリッタ装置の代わりに、図1に示すシロッコファン17bを用いた。同シロッコファン17bを水平に配置して(以下、水平シロッコファンと称する。)、同様な測定を実施した。
 評価方法
 評価方法は式(1)に示す熱交換器の評価式を用いた。
  Rth=ΔTm/Pexchange・・・(1)
  Rth:熱抵抗係数
  Pexchange:原水から空気へ移動した熱量(=原水の失った熱量)[kW]
  Pexchangeは式(2)を用いて原水流量から計算される。 
Figure JPOXMLDOC01-appb-I000001
  C:水の比熱[kJ/(kg・K)]
Figure JPOXMLDOC01-appb-I000002
  ΔT:循環空気と原水との対数平均温度差[K]
   ΔTは式(3)を用いて計算される。
   ΔT=(ΔTin-ΔTout)/ln(ΔTin/ΔTout)・・・(3)
  ここで、ΔTin:入口流体温度差[K]
      ΔTin=Tw,in―Tair,in
      ΔTout:出口流体温度差[K]
      ΔTout=Tw,out-Tair,out
 測定結果 
 図15に示すように、スプリッタ装置のブレードの蒸発器熱抵抗係数Rth[K/kW]は、約3.8K/kWである一方、水平シロッコファンの蒸発器熱抵抗係数Rth[K/kW]は、約7.6K/kWであった。スプリッタ装置は、蒸発器熱抵抗係数に関して水平シロッコファンよりも小さかった。よって、スプリッタ装置は、蒸発性能に関して水平シロッコファンよりも優れていた。
 第2の実施例
 第2の実施例は、第1の実施形態の2段のディスクブレード15c、15dを用い、これに対する性能評価を行った。比較例としては、ディスクブレード15c、15dと同じ1段のディスクブレードを使用した。また、第1の参考例として、24枚のブレード部(羽根)を有する1段のディスクブレードであって、周縁に凹部のないものを用いた。第2の参考例として、24枚のブレード部(羽根)を有する2段のディスクブレードであって周縁に凹部のないものを用いた。
 性能評価方法として、ディスクブレードで作り出したミスト(液滴)に、熱風をあて、ケースの入出温湿度を測定した。この温湿度から蒸気流量を算出し、この入出蒸気量の差を蒸発量[g/min]とした。 初期条件は、室温が26.4度、相対湿度75.7%、風量が1.91 m/minであった。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 比較例の蒸発量は2.32[g/min]であったのに対し、第2の実施例の水蒸気量は2.67[g/min]へ上昇した。さらに、第1の参考例、第2の参考例においても同様に、2段のディスクブレードを有する第1の参考例の蒸発量が高くなった。これは、上方から原水が落下して、ディスクブレードで液滴(ミスト)になっていくが、ブレード部とブレード部の間を通って落下してしまう水も存在する。2枚のディスクブレードを軸方向に直列に配置することで、ディスクブレードに当たらない水を少なくすることができ、これが蒸発量を増加させていると考えられる。
 第3の実施例
 図6に示すディスクブレード15fについて原水の供給水量に対する熱抵抗係数(Rth)を評価した。熱抵抗係数は第1の実施例と同様な評価方法を用いた。
 図16を参照して、水量が3L/minのときに、熱抵抗係数は約3K/Wであった。水量が増加し6L/minに達すると、熱抵抗係数は約1K/Wと最小となった。これは高い熱交換性を示している。しかし、水量が6L/minから増加するにつれて熱抵抗係数も増加する。8.5L/minの水量では、熱抵抗係数が4K/Wまで高くなった。これは、水量が少ないときには、ミストの絶対体積が少なくなってしまい、熱交換が出来ないと考えられる。一方、水量が過多の場合には、原水がディスクブレードに当たってもミストになりきれず、ファンを伝って流れ落ちていく水が多くなってしまうため、ファンに当てる水量の最適値が存在すると考えられる。
 本発明は、原水から浄水に得る水事業に利用可能である。
  1   浄水装置 
  10  蒸発-凝縮システム
  11  ケース
  12  ポンプ
  13  ヒータ
  14  配管
  15  スプリッタ装置  
  15a 回転軸
  15c、15d ディスクブレード
  16  ガイド
  17  サーキュレータ
  18  デミスタ 
  19  コンデンサ 

Claims (21)

  1.  循環経路を有するケースと、
     前記ケース内に配置されると共に原水を液滴に分裂させると共に前記循環経路を循環可能であり且つ前記液滴から蒸発した水蒸気を運搬可能であるキャリア気流を作り出すスプリッタ装置と、
     前記ケース内で前記スプリッタ装置に対してキャリア気流の下流に配置されると共に前記水蒸気を凝縮して浄水を生成するコンデンサを有し、
     前記スプリッタ装置は、
      前記ケースの上下方向に延びる回転軸と、
      前記回転軸に径方向に取り付けられる共に凹凸を有するブレードを有する、
     浄水装置。
  2.  前記凹凸は前記ブレードのブレード面から凹んだ凹部を有する請求項1に記載の浄水装置。 
  3.  前記凹部は前記ブレードの縁から延びる請求項2に記載の浄水装置。
  4.  前記凹凸は前記ブレードの縁から切り欠かれた凹部を有する請求項1に記載の浄水装置。
  5.  前記凹凸は前記ブレードのブレード面から突出する突起である請求項1に記載の浄水装置。
  6.  前記凹凸はブレードの先端へ向けて直列に配置された第1及び第2の凹部と、第1及び第2の凹部の間に配置された凸部とを有する請求項1に記載の浄水装置。
  7.  前記ブレードは前記回転軸に対して斜めに配置された請求項1に記載の浄水装置。
  8.  前記ブレードは、ディスク状部材を径方向に切断して扇形片を作製し、この扇形片を捻ることによって形成される請求項1に記載の浄水装置。
  9.  前記スプリッタ装置の回転軸に取り付けられたサーキュレータを有する請求項1に記載の浄水装置。
  10.  前記ケースは上下に重ねられた第1のケース及び第2のケースを有し、
     前記スプリッタ装置は前記第1のケース内に配置されると共に第1のブレードを含んだ第1のスプリッタ装置と、前記第2のケース内に配置されると共に第2のブレードを含んだ第2のスプリッタ装置を有し、
     第1のスプリッタ装置及び第2のスプリッタ装置は前記第1のブレードと前記第2のブレードが取り付けられる回転軸を有し、
     前記コンデンサは、前記第1のケース内に配置された第1のコンデンサと、前記第2のケース内に配置された第2のコンデンサを有する
     請求項1に記載の浄水装置。
  11.  前記ケースは、第1のケースと、第1のケースと連絡した第2のケースとを有し、
     前記スプリッタ装置は、第1のケース内に配置された第1のスプリッタ装置と、第2のケース内に配置された第2のスプリッタ装置とを有し、
     前記コンデンサは、第1のケース内に配置された第1のコンデンサと、第2のケース内に配置されると共に第1のコンデンサと連絡する第2のコンデンサとを有し、
     前記第1のケースの排出配管と前記第1のコンデンサとを連絡する帰還配管とを有し、
     原水は、第1のコンデンサ及び第2のコンデンサによって加熱されて、第2のスプリッタ装置に供給され、原水の一部は蒸発すると共に第2のコンデンサによって凝縮され、
     残りの原水が第1のスプリッタ装置に供給され、この原水の一部は蒸発すると共に第1のコンデンサによって凝縮され、この原水の残りは60℃以上で第1のケースから排出され、帰還配管を通って第1のコンデンサに導入される、
     請求項1に記載の浄水装置。
  12.  循環経路を有するケースと、
     前記ケース内に配置されると共に原水を液滴に分裂させると共に前記循環経路を循環可能であり且つ前記液滴から蒸発した水蒸気を運搬可能であるキャリア気流を作り出すスプリッタ装置と、
     前記ケース内で前記スプリッタ装置に対してキャリア気流の下流に配置され、前記液滴を除去すると共に前記水蒸気の通過を許容するデミスタと、
     前記ケース内で前記デミスタに対してキャリア気流の下流に配置されると共に前記デミスタから流出した水蒸気を凝縮して浄水を生成するコンデンサを有し、
     前記デミスタは所定の間隔で配置されて流路を画成するデミスタプレートを有する、
     浄水装置。
  13.  前記デミスタプレートは屈曲している請求項12に記載の浄水装置。
  14.  前記デミスタプレートは湾曲している請求項12記載の浄水装置。
  15.  前記デミスタプレートは波形を有する請求項12に記載の浄水装置。
  16.  循環経路を有するケースと、
     前記ケース内に配置されると共に原水を液滴に分裂させると共に前記循環経路を循環可能であり且つ前記液滴から蒸発した水蒸気を運搬可能であるキャリア気流を作り出すスプリッタ装置と、
     前記ケース内で前記スプリッタ装置に対してキャリア気流の下流に配置されると共に前記水蒸気を凝縮して浄水を生成するコンデンサを有し、
    前記スプリッタ装置は、
      前記ケースの上下方向に延びる回転軸と、
      前記回転軸に径方向に取り付けられたブレードと、
      前記ブレードに対して前記キャリア気流の上流に配置されたガイドを有する、
     浄水装置。
  17.  前記ガイドは湾曲したガイドプレートからなる請求項16に記載の浄水装置。
  18.  前記ガイドは互いに離れて配置された複数のガイドプレートからなる請求項16に記載の浄水装置。
  19.  各ガイドプレートは前記回転軸を中心とする径方向に対して斜めに配置された請求項18に記載の浄水装置。
  20.  各ガイドプレートは湾曲している請求項19に記載の浄水装置。
  21.  前記ガイドは、複数の第1のガイドプレートと、前記第1のガイドプレートの外側に配置されると共に第1のガイドプレート同士の間に配置された第2のガイドプレートを有する請求項18に記載の浄水装置。
PCT/JP2009/062664 2009-07-13 2009-07-13 浄水装置 WO2011007405A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US13/384,165 US20120175237A1 (en) 2009-07-13 2009-07-13 Water Purifying Apparatus
CN2009801614169A CN102482118A (zh) 2009-07-13 2009-07-13 净水装置
KR20127003656A KR20120036362A (ko) 2009-07-13 2009-07-13 정수 장치
EP20090847303 EP2455343A1 (en) 2009-07-13 2009-07-13 Water purifying device
PCT/JP2009/062664 WO2011007405A1 (ja) 2009-07-13 2009-07-13 浄水装置
JP2011522633A JPWO2011007405A1 (ja) 2009-07-13 2009-07-13 浄水装置
AU2009349828A AU2009349828A1 (en) 2009-07-13 2009-07-13 Water purifying device
IN1272DEN2012 IN2012DN01272A (ja) 2009-07-13 2012-02-10
US14/796,621 US20160008732A1 (en) 2009-07-13 2015-07-10 Water Purifying Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062664 WO2011007405A1 (ja) 2009-07-13 2009-07-13 浄水装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/384,165 A-371-Of-International US20120175237A1 (en) 2009-07-13 2009-07-13 Water Purifying Apparatus
US14/796,621 Division US20160008732A1 (en) 2009-07-13 2015-07-10 Water Purifying Apparatus

Publications (1)

Publication Number Publication Date
WO2011007405A1 true WO2011007405A1 (ja) 2011-01-20

Family

ID=43449024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062664 WO2011007405A1 (ja) 2009-07-13 2009-07-13 浄水装置

Country Status (8)

Country Link
US (2) US20120175237A1 (ja)
EP (1) EP2455343A1 (ja)
JP (1) JPWO2011007405A1 (ja)
KR (1) KR20120036362A (ja)
CN (1) CN102482118A (ja)
AU (1) AU2009349828A1 (ja)
IN (1) IN2012DN01272A (ja)
WO (1) WO2011007405A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150075963A1 (en) * 2012-04-10 2015-03-19 Yts Science Properties Pte. Ltd. Water Treatment Device
JP2016155066A (ja) * 2015-02-24 2016-09-01 株式会社ユニバーサルエンターテインメント 水処理装置
WO2017069031A1 (ja) * 2015-10-23 2017-04-27 株式会社シーアイピーソフト 水処理装置
JP2020521631A (ja) * 2017-07-11 2020-07-27 ▲広▼州▲極飛▼科技有限公司Guangzhou Xaircraft Technology Co., Ltd. アトマイジングディスク及びそれを有するアトマイジング装置、ドローン

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102774911B (zh) * 2012-07-20 2013-08-14 陈银轩 一种水体喷射分离器
DE102013224351B4 (de) * 2013-11-28 2017-03-30 Reinhold Barth Vorrichtung zur Erzeugung von Brauchwasser
CN105460992B (zh) * 2015-12-30 2017-11-17 台州盛世环境工程有限公司 一种废水处理设备
SG10201605165XA (en) * 2016-06-22 2018-01-30 Matthias Enzenhofer Humidity Management Device, Potable Water Generation System And Method
DE102018002568A1 (de) * 2017-07-14 2019-01-17 Burkhard Seifert Verfahren und Einrichtung zur Durchführung des Verfahrens zur Konzentration von Lösungen
TWI757508B (zh) * 2017-08-02 2022-03-11 日商笹倉機械工程股份有限公司 造水裝置
CN110563234B (zh) * 2019-09-02 2021-12-03 衡阳远通物流有限公司 一种低耗能海水淡化系统及方法
DE102020113392B4 (de) 2020-05-18 2023-09-21 TenneT TSO GmbH Vorrichtung und Verfahren zur Entsalzung von Meerwasser
WO2023111693A1 (en) * 2021-12-16 2023-06-22 Arun Ganesaraman An evaporator to float on a water body and a method to operate the same
CN115259494B (zh) * 2022-07-26 2023-07-25 广西百年沁泉水业有限公司 一种饮用水处理系统及其处理工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541039U (ja) * 1978-06-09 1979-01-06
JPS62247850A (ja) * 1986-04-22 1987-10-28 Oogawara Kakoki Kk 液体噴霧化方法とその装置及び噴霧乾燥装置
JPH0952082A (ja) 1995-08-16 1997-02-25 Nkk Corp 海水淡水化装置
JP3250738B2 (ja) * 1997-02-18 2002-01-28 正勝 高安 海水の処理方法および処理装置、自然塩並びに淡水
JP2005185988A (ja) * 2003-12-26 2005-07-14 Xenesys Inc 海水淡水化装置
JP2006070889A (ja) 2004-08-02 2006-03-16 Jgc Corp 発電淡水化方法および装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2261939A (en) * 1937-04-26 1941-11-11 American Lurgi Corp Apparatus for distilling high boiling point liquids
US2326142A (en) * 1940-02-07 1943-08-10 Drying & Concentrating Company Method of and apparatus for concentrating liquid products
US3248306A (en) * 1962-08-28 1966-04-26 Charles R Cummings Water purification convective distillation apparatus
US3311543A (en) * 1963-05-15 1967-03-28 Aqua Chem Inc Vapor compression still for distilling impure water
US3273631A (en) * 1964-01-13 1966-09-20 Neuman Entpr Ltd Ultrasonic fluid heating, vaporizing, cleaning and separating apparatus
US4243526A (en) * 1979-02-15 1981-01-06 Ransmark Sven Erik L Process for purifying liquids and a device for carrying out the process
US4391102A (en) * 1981-08-10 1983-07-05 Biphase Energy Systems Fresh water production from power plant waste heat
US5096543A (en) * 1990-09-27 1992-03-17 Kamyr, Inc. Carrier gas apparatus for evaporation and condensation
DE4214094C1 (ja) * 1992-04-29 1993-09-02 Dieter Prof. Dr.-Ing. 7570 Baden-Baden De Wurz
US6083302A (en) * 1998-08-13 2000-07-04 Abb Environmental Systems, Division Of Abb Flakt, Inc. Mist eliminator for wet gas scrubbing
CA2661925C (en) * 2006-09-25 2015-04-28 Gocha Chochua Fluid deflector for fluid separator devices
JP2010505623A (ja) * 2006-10-10 2010-02-25 ザ テキサス エイ・アンド・エム ユニヴァーシティ システム 脱塩システム
US20100288619A1 (en) * 2008-01-18 2010-11-18 Takashi Yabe Energy-Saving Type Apparatus For Producing Freshwater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541039U (ja) * 1978-06-09 1979-01-06
JPS62247850A (ja) * 1986-04-22 1987-10-28 Oogawara Kakoki Kk 液体噴霧化方法とその装置及び噴霧乾燥装置
JPH0952082A (ja) 1995-08-16 1997-02-25 Nkk Corp 海水淡水化装置
JP3250738B2 (ja) * 1997-02-18 2002-01-28 正勝 高安 海水の処理方法および処理装置、自然塩並びに淡水
JP2005185988A (ja) * 2003-12-26 2005-07-14 Xenesys Inc 海水淡水化装置
JP2006070889A (ja) 2004-08-02 2006-03-16 Jgc Corp 発電淡水化方法および装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150075963A1 (en) * 2012-04-10 2015-03-19 Yts Science Properties Pte. Ltd. Water Treatment Device
US10029923B2 (en) * 2012-04-10 2018-07-24 Mgr Energy Llp Water treatment device
JP2016155066A (ja) * 2015-02-24 2016-09-01 株式会社ユニバーサルエンターテインメント 水処理装置
WO2017069031A1 (ja) * 2015-10-23 2017-04-27 株式会社シーアイピーソフト 水処理装置
JPWO2017069031A1 (ja) * 2015-10-23 2017-10-19 株式会社シーアイピーソフト 水処理装置
JP2020521631A (ja) * 2017-07-11 2020-07-27 ▲広▼州▲極飛▼科技有限公司Guangzhou Xaircraft Technology Co., Ltd. アトマイジングディスク及びそれを有するアトマイジング装置、ドローン

Also Published As

Publication number Publication date
US20160008732A1 (en) 2016-01-14
EP2455343A1 (en) 2012-05-23
US20120175237A1 (en) 2012-07-12
AU2009349828A1 (en) 2012-03-22
CN102482118A (zh) 2012-05-30
KR20120036362A (ko) 2012-04-17
IN2012DN01272A (ja) 2015-05-15
JPWO2011007405A1 (ja) 2012-12-20

Similar Documents

Publication Publication Date Title
WO2011007405A1 (ja) 浄水装置
US10294123B2 (en) Humidification-dehumidification systems and methods at low top brine temperatures
JP6224235B2 (ja) 多段気泡搭加湿器
JP5369258B2 (ja) 省エネルギー型淡水製造装置
US10500521B1 (en) Dual compressor vapor phase desalination system
JP2009539584A6 (ja) 浸透圧性溶質を回収するための多段式カラム蒸留(mscd)法
JP2009539584A (ja) 浸透圧性溶質を回収するための多段式カラム蒸留(mscd)法
JP5836398B2 (ja) 水処理装置
JP2008531278A (ja) 多重効用蒸発装置
CN208700620U (zh) 一种蒸发设备
JP2015020163A (ja) ナノファイバー膜蒸留装置
CN108815869B (zh) 液体提纯装置
CN204987976U (zh) 一种板式换热器
JP2012122672A (ja) 熱交換器および水処理装置
JP6148736B2 (ja) 液滴分離器及び蒸発器
Panthalookaran et al. Design of a helical coil dehumidifier for a novel gravity-driven solar distillation unit
JP2012217963A (ja) 海水淡水化装置
CN103073079B (zh) 一种低温多效蒸馏海水淡化系统
JP2005313117A (ja) 蒸発濃縮方法及び装置
US20150041306A1 (en) Fresh water generator
IL185469A (en) Multi-effect evaporator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161416.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011522633

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127003656

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009349828

Country of ref document: AU

Ref document number: 1272/DELNP/2012

Country of ref document: IN

Ref document number: 2009847303

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009349828

Country of ref document: AU

Date of ref document: 20090713

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13384165

Country of ref document: US