JP2010505623A - 脱塩システム - Google Patents

脱塩システム Download PDF

Info

Publication number
JP2010505623A
JP2010505623A JP2009532556A JP2009532556A JP2010505623A JP 2010505623 A JP2010505623 A JP 2010505623A JP 2009532556 A JP2009532556 A JP 2009532556A JP 2009532556 A JP2009532556 A JP 2009532556A JP 2010505623 A JP2010505623 A JP 2010505623A
Authority
JP
Japan
Prior art keywords
evaporator
brine solution
evaporators
steam
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009532556A
Other languages
English (en)
Inventor
ティー ホルツアップル,マーク
エイ ラブローカー,ジョージ
ズゥ,リー
エイチ.ジェイ.,ララ ルイーズ,ジョージ
ワタナワナヴェット,ソムサック
Original Assignee
ザ テキサス エイ・アンド・エム ユニヴァーシティ システム
スターローター コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ テキサス エイ・アンド・エム ユニヴァーシティ システム, スターローター コーポレーション filed Critical ザ テキサス エイ・アンド・エム ユニヴァーシティ システム
Publication of JP2010505623A publication Critical patent/JP2010505623A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/26Multiple-effect evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/2887The compressor is integrated in the evaporation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/289Compressor features (e.g. constructions, details, cooling, lubrication, driving systems)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/289Compressor features (e.g. constructions, details, cooling, lubrication, driving systems)
    • B01D1/2893Driving systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/041Treatment of water, waste water, or sewage by heating by distillation or evaporation by means of vapour compression
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/042Prevention of deposits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

特定の実施例に従い、脱塩システムは、複数の蒸発器を含む。その複数の蒸発器は、少なくとも最初の蒸発器と最初の蒸発器とを含む。複数の蒸発器はカスケード式に配置されるので、ブライン溶液が最初の蒸発器から最後の蒸発器へ複数の蒸発器を通るにつれて、ブライン溶液の塩の濃縮は増す。脱塩システムは又、複数の熱交換機を含む。各蒸発器の入力は、複数の熱交換機のうちの少なくとも1つに結合される。そのシステムは又、複数の蒸発器のうちの少なくとも1つに結合された蒸気源を含む。

Description

本発明は、一般に脱塩システムに関し、特に、一連のカスケード(cascading)式蒸発器を用いる脱塩システムに関する。
塩水から飲料用又は脱塩水を取り戻すために脱塩システムが考案された。多くの異なる設計のタイプが用いられてきたが、水の蒸気圧の熱力学的性質を用いる蒸発システムは、広く受け入れられてきた。これは主に、蒸発過程により作られた水の相対的に高い純粋性による。1つのシステムは、蒸気をその熱交換機の一端から取り入れ、コンプレッサーを通し、そうしてその熱交換機の他端に戻す単一熱交換機の使用を含む。これは単効果蒸発器として言及される。
単効果蒸発器の欠点は、圧力差が非常に小さい(例えば圧縮比1.03又は1.05から1)事である。それ故コンプレッサーは、基本的に送風機として機能し、本当はコンプレッサーとしては機能しない。更に、そのシステムにより作られた全ての蒸留水は、送風機を通る蒸気として進まなければならなかった。
特定の実施例によれば、脱塩システムは、複数の蒸発器を含む。複数の蒸発器は、少なくとも最初と最後の蒸発器とを含む。複数の蒸発器は、カスケード式に配置されるので、ブライン溶液中の塩の濃縮は、ブライン溶液が最初の蒸発器から最後の蒸発器に向かって複数の蒸発器を通るにつれて増加する。脱塩システムは又、複数の熱交換機を含む。各蒸発器の入り口は、複数の熱交換機の少なくとも1つに結合される。そのシステムは又、複数の蒸発器の少なくとも1つに結合された蒸発源を含む。
装備された特定の機能により、本発明の特定の実施例は、以下の技術的利点のうちの一部若しくは全部を示すか又は全然示さない。種々の実施例は、海水又は汽水からの改良された脱塩工程を提供することができる。開示された実施例は、システムに投入されたエネルギー又は仕事を効率的に利用するために蒸気圧の変化を効率的に利用する塩水のカスケード式蒸発工程を記述する。従って、蒸留水を除くのに必要な仕事量が段階的に減るように蒸留水は除かれる。
加えて、相対的に建設と維持に費用のかからないカスケード式脱塩システムを一定の実施例は、供給することができる。他の技術的利点は、以下の図面、明細書及び請求の範囲から当業者にとって非常に明白で有る。
特定の実施例のより完全な理解は、以下の付随図面に関連する詳細な記述から明らかにされる。
特定の実施例による単一蒸気源を用いる脱塩システムの概略図である。 特定の実施例による単一蒸気源を用いるもう1つの脱塩システムの概略図である。 特定の実施例による多蒸気源を用いる脱塩システムの概略図である。 特定の実施例による多蒸気源を用いるもう1つの脱塩システムの概略図である。 図1から4の実施例と共に使用可能なコンプレッサーの1実施例の側断面図である。 図5Aのコンプレッサーと共に使用可能なプロペラの1実施例の正面図である。 図5Aのコンプレッサーと共に使用可能なダクト内ファンの1実施例の正面図である。 特定の実施例による蒸気源としての多抽出機を用いるもう1つの脱塩システムの概略図である。 特定の実施例による蒸気源としての多抽出機を用いるもう1つの脱塩システムの概略図である。 特定の実施例による蒸気源としての多抽出機を用いるもう1つの脱塩システムの概略図である。 図6から8の実施例と共に使用可能な抽出機の実施例の側断面図である。 図6から8の実施例と共に使用可能な抽出機のもう1つの実施例の側断面図である。 図6から8の実施例と共に使用可能な抽出機のもう1つの実施例の側断面図である。 図9Cの線192に沿った正面断面図である。 特定の実施例による蒸発器の平断面図である。 特定の実施例による蒸発器の側断面図である。 特定の実施例による蒸発器の正面断面図である。 特定の実施例による蒸発器内に使用されたカセットと抽出機の透視図である。 図12Aの抽出機の正面断面図である。 図12Aのカセットのうちの1つの1部分を形成するために使用される熱交換機板の正面図である。 図13Aに示される熱交換機板の点線に沿って折り曲げられた縁を持つ図13Aの熱交換機板の正面図である。 図13Bの熱交換機板の側断面図である。 図13Bの熱交換機板の側断面図である。 図12Aのカセットのうちの1つの1部分を形成するために使用されるもう1つの熱交換機板の正面図である。 図14Aに示される熱交換機板の点線に沿って折り曲げられた縁を持つ図14Aの熱交換機板の正面図である。 図14Bの金属板の側断面図である。 図14Bの金属板の側断面図である。 特定の実施例によるカセットアセンブリーの1部透視図である。 縁に形成されたタブを示す図15Aの部分拡大透視図である。 図15Aの拡大部分側面図である。 特定の実施例によるもう1つのカセットアセンブリーの部分透視図である。 縁を示す図16Aの部分拡大透視図である。 図16Aの拡大部分側面図である。 平表面を持つへこみと共に示された、一緒に組み立てられた2つの熱交換機板の拡大部分平面図である。 数個のくぼみ中のへこみと共に示された、一緒に組み立てられた2つの熱交換機板の拡大部分平面図である。 溶接継ぎ手を用いて一緒に接合された2つの熱交換機板の拡大部分平面図である。 ブレーズド(blazed)継ぎ手を用いて一緒に接合された2つの熱交換機板の拡大部分平面図である。 圧着クランプを用いて一緒に接合された2つの熱交換機板の部分平面図である。 熱交換機板の縁が持ち上げられているので圧着クランプが安全に適所に保持される、圧着クランプを用いて一緒に接合された2つの熱交換機板の部分平面図である。 リベット又はねじを用いて一緒に接合された2つの熱交換機板の部分平面図である。 1つの熱交換機板の縁に一体化して形成された延長タブを用いて一緒に接合された2つの熱交換機板の部分平面図である。 特定の実施例によるイオン交換システムを用いる脱塩システムの概略図である。 特定の実施例による研磨材を用いる脱塩システムの概略図である。 特定の実施例による研磨材及び沈殿物質を用いる脱塩システムの概略図である。 特定の実施例による最後の蒸発器を出る蒸気が凝縮され且つ排出される脱塩システムの概略図である。 特定の実施例による最後の蒸発器を出る蒸気が凝縮され且つ排出されるもう1つの脱塩システムの概略図である。 特定の実施例による最後の蒸発器を出る蒸気が凝縮され且つ排出される2つの蒸気源を用いる脱塩システムの概略図である。 特定の実施例による最初の蒸発器を出る蒸気が凝縮され且つ排出される脱塩システムの概略図である。 凝縮蒸気と沸騰水との間の凝縮側温度と全温度差の関数としての全熱伝導係数を示すグラフである。
図面を参照して、図1は、特定の実施例による単一蒸気源を用いる脱塩システムの概略図である。脱塩システム10は、脱気供給入力12で塩水を受容するのに適合し、塩水から蒸留水の少なくとも一部分を蒸留するのに適合し、且つ蒸留水出力ライン14で蒸留水を提供し且つ濃縮ブライン出力ライン16で濃縮ブラインを提供する。脱塩システム10は、数個の水蒸発器20、各水蒸発器20の間に結合された数機の熱交換機22、及び各水蒸発器20に結合されたコンプレッサー24を有する。コンプレッサー24は、各水蒸発器20にカスケードに結合されるので、各続きの水蒸発器20は、上流側水蒸発器20より相対的に低い作動圧及び作動温度を有する。このように、水を、塩水から漸次取り除く事ができ、又は蒸発することができる。
上流側水蒸発器20の凝縮蒸気は、塩水を沸騰させるのにより多くの蒸気が必要になる。この流れは、次の下流側水蒸発器20に滝のように流れ込み、そこでは蒸気が凝縮しより多くの水が蒸発する。このように蒸気は、水蒸発器20dから水蒸発器20aへ向かって進むので、その温度は減少し、塩水は蒸発器20aから蒸発器20dへ向かって進むので塩濃縮度は、増加する。従って、より高い温度の蒸気は、より濃縮度の高い塩水を蒸発するのにも用いられるのに対し、より濃縮度の少ない塩水は、より温度の低い蒸気で蒸発される。このことは、より濃縮度の少ない塩水から水を抽出する事について相対的に簡便で(従ってより少ない仕事)である利点がある。蒸発器間の温度差は、1°の何分の1かの小ささになりうる。ある実施例において、水蒸発器20間の温度差は、1から6°Fの間である。
示される通り、脱気塩水は、脱気供給入力12に導入され、反対方向に流れる濃縮塩水と蒸留水とを有する対向流熱交換機26に導入される。熱交換機26は、蒸発器20aに入る前にブライン溶液を予熱する事を助けることができる。脱気塩水は、一部の水が蒸発する第1水蒸発器20aに入る。脱気供給12に存在していたときよりも高い塩濃縮である残りの塩水は、対向流熱交換機22aにポンプで通され、追加の水が蒸発される第2水蒸発器20bに入る。水蒸発器20aより高温高圧である水蒸発器20bに入る前に対向流熱交換機22aは、塩水を加熱するのを助ける。このプロセスは、望まれるとおり何回でも繰り返される。図1に、4つの水蒸発器20a、20b、20c、及び20dが示されるが、水蒸発器20は何器でも使用しても良い。水蒸発器20dに導入された各ポンドの蒸気につき4つの蒸発器又は4ステージを使うことにより、4ポンドの液体(蒸留水14)生成物が生成可能である。このように、初期エネルギーは、4回再生利用されるので、流入する蒸気の凝縮熱は、各4つの水蒸発器20に供給される。水蒸発器20により使用される蒸気の4番目のみが実際コンプレッサー24を通る事は4ステージのもう1つの利点である。このようにコンプレッサー24は、単一ステージ脱塩システムで必要なコンプレッサーの大きさの1/4で有りうる。
第1水蒸発器20aから蒸発された塩水は、コンプレッサー24の取り入れ口28に入る。もし望まれるなら、コンプレッサー24を冷却状態に保つためコンプレッサー取り入れ口28に噴霧液体を加えることができる。これは蒸気を過熱から予防するのに助けとなる。コンプレッサー24は、各4ステージに対して圧縮されるので圧縮率は、単一ステージのみの場合より非常に高くなる(各追加ステージにつき全体圧縮率はその追加ステージの圧縮率により乗算される)。高圧縮率での圧縮時、従来のコンプレッサーは典型的に、過熱する。これは、過熱蒸気を克服するため非過熱蒸気について必要なエネルギーよりも多くのエネルギーがシステムに投入される事を要する可能性がある。これは、コンプレッサー内の気体が熱くなればなるほど、それを圧縮するのにより多くのエネルギーを要するという概念に基づく。このように、特定の実施例において、蒸気を過熱させるよりも、飽和曲線上に維持し過熱を避けるため液体はコンプレッサーに噴霧される。コンプレッサーに噴霧される液体は、操作上の必要、希望、又は好みにより塩水又は蒸留水であってもよい。水をコンプレッサー24に導入する事により明らかなように、いくらかの水は蒸発し凝縮され得る追加の蒸気を作る。というのは、示された実施例において、コンプレッサー24供給された塩水は、コンプレッサー24を冷却状態に保つ助けとなるばかりでなく、又同時にある塩水を脱塩する。このように、明らかであるかもしれないが、コンプレッサー24は、蒸気ばかりでなく液体も取り扱うことができる。例えば、特定の実施例において、スターローターコーポレーション(StarRotor Corporation)から入手可能なgerotorコンプレッサーを使うことができる。
もし余剰液体がコンプレッサー24に加えられると、余剰分は、ノックアウトドラム30へ取り除かれる。脱気供給12の一部分も又、ノックアウトドラム30に供給可能である。液体のこの供給をコンプレッサー24に噴霧するために使うことができる。この図に描かれたノックアウトドラム30は塩水と共に示されるが、他の実施例においてノックアウトドラムは、蒸留水で満たされ得る。
噴霧水は、如何なるタイプの水であっても良い。1実施例において、噴霧水は、塩水であり得る。水はコンプレッサー24で蒸発するので、塩の濃縮は増加する。この濃縮塩の一部は、システムから除かれなければならない。そしてそれは濃縮ブライン出力ライン16から濃縮生成物として取り戻される。ノックアウトドラム30から取り除かれた濃縮塩を埋め合わせるために新脱気供給32は、加えられる。ノックアウトドラム30の1機能は、コンプレッサー24に噴霧される塩水がそこに凝縮する蒸気と共に水蒸発器20dに入る事を避ける事である。
コンプレッサー24を出る高圧蒸気は、最高圧で運転中の水蒸発器20dに供給される。水蒸発器20dに供給されるこの蒸気は、水蒸発器20cに供給される蒸気よりも高温であるかもしれない。これらの蒸気が凝縮するにつれて、それらは水が塩水から蒸発する原因になる。水蒸発器20dに供給される蒸気よりも低温であるこれらの蒸気は、蒸気が凝縮する低温で運転される次の水蒸発器20cに通される。システム中に構成された全ての他の水蒸発器20b及び20aについてこのプロセスは繰り返される。各ステップで漸次冷却しながら、蒸発器20dから蒸発器20aへ蒸気は一般に移動する一方、脱気供給入力12は、蒸発器20aから蒸発器20dへ一般に移動する塩水を供給する。塩水が蒸発器20dへ向かって移動するにつれて、水は蒸発するので塩濃縮は次第に増加する。塩水が最後に蒸発器20dを出るとき、塩水は相対的に濃縮され相対的に高温である。この熱い濃縮流体は、濃縮生成物16として排除される前に熱交換機22及び26を通る。濃縮流体は、熱交換機22及び26を通るにつれて濃縮生成物は冷却される。濃縮生成物から除去された熱は、各水蒸発器20に入る塩水の温度を増すために使用される。脱塩システム10の操作者の必要により、濃縮生成物16及び/又は蒸留水14は、後の使用のために回収可能である。
脱気供給入力12に入る如何なる非凝縮性物質(例えば、空気又は気体)もシステムから除去されなければならない。図1に示すとおり、全ての熱交換機は大気(圧)1以上で運転されると想定されるので、非凝縮性物質は直接除去可能である。もしシステムが1気圧以下で運転されるなら、非凝縮性物質を除去するために真空ポンプ(特別には示されず)が必要とされるかもしれない。いずれの場合にせよ、除去前に凝縮器36が配置されるので、非凝縮性物質が除去される前に水蒸気は再生可能である。ある実施例において、非凝縮性物質は、最終的に外界に排出される緩慢なしずくとして脱塩システムから除去可能である。凝縮器36は、非凝縮性物質が排出される前に、非凝縮性物質に混じっているかもしれない如何なる水蒸気でも再生される事を確認する。もし脱塩システムが高圧で運転されるなら、エネルギーは、タービン56で再生可能である。このエネルギーを、脱気供給12に圧力を加えるために使用されるポンプ57で再び与えることができる。
コンプレッサー24は、エンジン又は電動機のような如何なる動く装置によっても駆動可能である。図1において、コンプレッサー24は、ブレイトンサイクルエンジン40及びランキンサイクルエンジン42のような複合サイクルガスタービンにより駆動される。ブレイトンサイクルエンジン40において、エアーコンプレッサー44を用いて空気が圧縮され、燃焼室46内で燃料が圧縮空気に加えられ燃焼され、高温高圧気体は、膨張器48を通して膨張される。既存の低圧気体は非常に熱く、この場合熱交換機50であるボトミングサイクルの間、ランキンサイクルで液体を蒸発するために使用可能である。
ランキンサイクルエンジン42において、高圧流体は、熱交換機50で加熱される。高温高圧流体は、仕事が抽出される膨張器52で膨張する。膨張器52を出る蒸気は、凝縮器54で液体に凝縮され、その後熱交換機50にポンプで戻される。
理想的には、ランキン膨張器52は、膨張プロセスの間膨張器52で液体の凝縮を可能にする。これが起きると、凝縮器54の熱負荷を減少し、膨張器52の物理的大きさを縮小し、そのサイクルをもっと効率の良い物とする。というのは、いくらかの潜熱が仕事量に変換されるからである。1実施例において、ジェローター(gerotor)膨張器であっても良い。もう1つの実施例において、ジェローター膨張器は、テキサス州ブライアン(Brian)にあるスターローター株式会社から入手可能である。
原理上は、多くのランキン流体が利用可能であるが、ある流体は他より良い。膨張器に入るときに超臨界圧以上で、膨張器から出るときに超臨界圧以下である流体が選ばれる。膨張器に入るときに超臨界圧以上の流体(例えばメタノール)を選ぶ事により、ブレイトンサイクルからの排出気体から熱エネルギーを選ばれた流体が向流的に抽出するのでその流体中で顕著な熱変化のみ存在する。このことは、システム効率を増加する熱交換機を通してアプローチ温度を非常に均一にすることができる。もしその流体が、高温熱交換機内で潜熱変化を受けるなら、システム効率を低下させる高アプローチ温度が熱交換機内で要求される。
図2は、特定の実施例による単一蒸気源を用いるもう1つの脱塩システムの概略図である。脱気供給入力12、蒸留水出力ライン14、濃縮ブライン出力ライン16、水蒸発器20、熱交換機22、コンプレッサー24、ブレイトンサイクルエンジン40、及びランキンサイクルエンジン42は、図1の実施例に類似する。脱塩システム60はしかし、脱気供給入力12が最高温及び最高圧で運転される蒸発器20dに結合される点において異なる。本実施例は、脱気供給が反溶解特性を持つ構成物を有する場所で望まれる可能性がある。例えば炭酸カルシウムは、温度が高くなるほど溶けにくくなる。
明らかなように、水蒸発器20dで脱気供給を導入することにより、塩水が水蒸発器20dから水蒸発器20aへ向かって移動するにつれて、塩水の濃縮は減少する。このことは、図1において、蒸発器20(a,b,c,d)間での塩濃縮の変化方法の逆である。しかし、左端の水蒸発器20aから右端の水蒸発器20dへ温度及び圧力はまだ増加する。
図3は、特定の実施例による多蒸気源を用いる脱塩システムの概略図である。脱塩システム70は、脱塩システム70が又、各々異なる塩濃縮度で運転している一連の蒸発器20を用いる点において図1の脱塩システム10に類似する。この特定の実施例において、しかし、各蒸発器20はそれ専用のコンプレッサー24を有する。この場合、各蒸発器は、各蒸発器ステージ間で熱交換機の必要性を除去できるほぼ同一温度で運転する事は可能である。図3に示されるコンプレッサーは、如何なる手段でも駆動可能である。この場合、電動機72が示される。先行実施例に類似して、各蒸発器を通るにつれて塩濃縮度は、ゆっくりと増加する。従って、溶液は、水蒸発器20aで最も濃縮され、水蒸発器20dで最も低濃縮である。このように、水蒸発器20aに奉仕するコンプレッサー24は最も困難な仕事を持つ可能性がある。というのはそのコンプレッサーは、最も濃縮された溶液で働くからである。ある実施例において、コンプレッサー24は、1対1.05又は1.03の低圧縮率で非常に効率的である可能性がある。
図4は、特定の実施例による多蒸気源を用いるもう1つの脱塩システムの概略図である。脱塩システム80は、脱塩システム80が又、各々異なる塩濃縮度で運転している一連の蒸発器20を用いる点において図3の脱塩システム70に類似する。この特定の実施例において、しかし、各コンプレッサー24は多蒸発器20に奉仕する。この特定の実施例において、各コンプレッサー24は2つの蒸発器20に奉仕する。加えて、単一コンプレッサー24により奉仕された水蒸発器20は、異なる温度で動作できる。単一コンプレッサー24により奉仕されたステージ間で対向流熱交換機22の使用によりこれは簡易化され得る。
図5Aは、図1から4の実施例と共に使用可能なコンプレッサーの1実施例の側断面図である。図5Bと5Cとは、図5Aのコンプレッサーと共に使用可能なインペラーの異なるタイプの例である。コンプレッサー24は、上記の脱塩システム10,60、70,及び80と共に使用可能である。実施例によりコンプレッサー24は、相対的に低圧ではあるが高速用に設計可能である。コンプレッサー24は、のど部24cで結合された集束パイプ部分24a及び分流パイプ部分24bを有しても良い。これはベンツーリに類似する可能性がある。インペラー24dは、コンプレッサー24を通る流れを作るために提供される。インペラー24dは、プロペラ24d’ 又はダクト内ファン24d”であっても良い。加えて、整流器24eは、蒸気のエネルギーを奪う回転運動を取り除くために提供可能である。開発費を節約するために、プロペラ24d’又はダクト内ファン24d”は、宇宙空間応用に適合可能である。例えばプロペラ24d’は、プロペラ機に使用されるプロペラーで、ダクト内ファン24d”は、ジェットエンジンに使用されても良い。これは蒸発器圧を調整することにより為され得るので蒸気密度は、プロペラ24d’又はダクト内ファン24d”が動作するように設計された高度での空気に類似する。使用されたインペラー24dのタイプに無関係に、コンプレッサー24は、蒸気流を加速するためにインペラー24dを使うことができるのでそれは高速で運動する。というのは整流器24eはインペラー24dの下流にあるので、それは蒸気のスピン量を減らすことができるからである。これは望ましい。というのは、しばしば回転運動は、殆ど全然利益を与えないエネルギーの浪費になるからである。蒸気が整流器24eを通り移動するにつれてコンプレッサー24の直径は増加し始め、蒸気速は、鈍化し始める。この速度の減少は、圧力エネルギーに変換される。
図6は、特定の実施例による蒸気源としての多抽出機を用いるもう1つの脱塩システムの概略図である。脱気供給入力12、蒸留水出力ライン14、濃縮ブライン出力ライン16、及び水蒸発器20は、図1の実施例に類似する。脱塩システム90は、各コンプレッサーが抽出機92を用い実施される点でしかし異なる。ある実施例において、抽出機92は、脱塩システム90の減温減圧での作動を可能にする蒸気の大容量を圧縮できる点で利点がある。これは容器費用を減少させ、排出ブライン水及び蒸留水で供給水を予め予熱するかなりの大きさの熱交換機の大きさを減少する。各抽出機92により要求される動力は、機械式コンプレッサー94により供給される。図6に示されるとおり、機械式コンプレッサー94への入力蒸気は、各抽出機92からの低圧流体ライン96から供給される。特定の実施例において、機械式コンプレッサー94は、低圧流体ライン96から低圧流体を受け取ることができ、5又は6対1の比率で圧縮できる。この高圧蒸気はその後、抽出機92ののど部に供給される。高圧蒸気は、各蒸発器20のために必要な圧縮を作るのに使われる。
図7は、特定の実施例による蒸気源としての多抽出機を用いるもう1つの脱塩システムの概略図である。コンプレッサー24が各抽出機92からの高圧ライン102により供給される事を除き脱塩システム100は、脱塩システム90に類似する。言い換えると、抽出機92は、コンプレッサー24に入る蒸気を予め圧縮するのを助けることができる。これの1つのあり得る利益は、それがコンプレッサー24の大きさ/動力要求を少し小さくする事であるかもしれない。というのは、コンプレッサーに入る蒸気は既に、僅かに予め圧縮されるからである。
図8は、特定の実施例による蒸気源としての多抽出機を用いるもう1つの脱塩システムの概略図である。脱気供給入力12、蒸留水出力ライン14、濃縮ブライン出力ライン16、及び水蒸発器20は、図1に描かれる実施例に類似する。この特定の実施例において、しかし各抽出機92は、多蒸発器20に奉仕する。加えて、単一コンプレッサーにより奉仕された水蒸発器20は、異なる温度で操作できる。単一抽出機92により奉仕されたステージ間で対向流熱交換機22の使用によりこれは簡易化され得る。
図9A―9Cは、図6から8の実施例と共に使用可能な異なる抽出機の側断面図であり、図9Dは、図9Cの線192に沿った正面断面図である。図9A―9Cに描かれた抽出機は一般に、2つの入り口と1つの出口を含む。第1の入り口は、抽出機92の左側に置かれ、低圧低速蒸気を受け取る。2番目の入り口は、入力ライン93からの高圧高速蒸気を提供する。これらの2つの入力は、抽出機92の拘束のど部内で混合し、2つの入力からの蒸気の圧力や速度の中間値を有する蒸気出力を生成する。1対1.05又は1.03の圧縮率で圧縮される時抽出機92は、相対的に高効率を有する可能性がある。
図9Aに描かれる抽出機は、動力流体が単一ステップで供給される定領域抽出機92aを示す。その動力流体は入力ライン93を通して供給される。動力流体は特定の実施例において、高圧蒸気であり得る。
図9Bは、動力流体の漸次的追加を許すのに適合された2ステップノズル92b’を有する抽出機92bのもう1つの実施例を示す。2ステップノズル92b’は、図9Aに描かれた単一ステップノズルより効率的であり得る。2ステップノズル92b’は、高圧蒸気が2ステージに導入されるのを可能にする。2ステージは左から抽出機92に入る低速蒸気と、2ステップノズル92b’を通り入る高速蒸気との間の速度差を減少する。このように2ステージノズルの第1ステージは、第2ステージに到達する前に低速蒸気を前もって加速するのを助ける事ができる。2ステージは図9Bに示されるが、他の実施例は、追加ステージを使うことができる。
図9Cは、2段ノズル92c’を用いるもう1つの抽出機92cを描く。2段ノズル92c’は、4つの個々のノズルチップ、中央ノズルチップ92c”及び周辺ノズルチップ92c”’を含む。図9Dに見ることができるように、中央ノズルチップ92c”は、3つの等しく間隔を置く周辺ノズルチップ92c”’により囲まれる。中央ノズルチップ92c”は、周辺ノズルチップ92c”’より更に下流に延びる。このように、高圧蒸気は、先ず周辺ノズルチップ92c”’を通り、ついで中央ノズルチップ92c”を通り下流で2段で放出される。3つの周辺ノズルチップ92c”’が描かれるが、他の実施例は、それ以下又はそれ以上の周辺ノズルチップを使うことができる。更に、幾つかの実施例は、ノズルチップを異なった風に配置するかもしれない。例えば、中央ノズルチップ92c”は、周辺ノズルチップ92c”’の上流かもしれないし、又全ての4つのノズルチップは、同じ長さかもしれない(例えば、それらは全て抽出機92に等しい距離延びる)。
図10Aは、特定の実施例による蒸発器の平断面図で、図10Bは、特定の実施例による蒸発器の側断面図である。熱交換機22を、封入パイプ120内に含むことができる。この特定の実施例において、熱交換機26を各水蒸発器20を通じて分布させることができるので各水蒸発器20からの水蒸気の効率的蒸発が起きうる。図10Bに示されるとおり、脱気供給入力12は、塩水の入口点を与える。水は、水蒸発器20で蒸発するので、ポート98’は、蒸留水蒸気の排出口を与える。液体ポンプ24は、塩水が脱気供給入力12から各複数の抽出機92への経路を取るために与えられる。抽出機92は、液体が移動するのを助けるために塩水内の幾らかの流れを導くことができる。これは熱伝達を助けることができ、水蒸発器を小さくする事を可能にする。このプロセスを用い、蒸留水を得るために塩水から水を蒸発させる事ができる。
図10Aは、水蒸発器20を通る水蒸気により取り得る経路を示す。ポート98”を通って入る蒸気は、プレートを通り塩水を加熱し沸騰させる。沸騰するべき塩水を持ってくる際、蒸気は、水蒸発器20を通るジグザグ経路を通り、排出口(例えば、図11の排出口14)を通る凝結水として実際上排出される。蒸気は左から右へ進むので、整流板(baffles)は、より一緒に近づく。凝結から蒸気を失うにもかかわらず、これは相対的に一定速(例えば、約5フィート/秒)を保つのを助けることができる。蒸気が整流熱交換板を通り水が凝結するので、蒸気相は、非凝縮性物質に富むことになる。これらの非凝縮性物質を、出口74を通り排出することができる。このように、水蒸発器20からの蒸留水蒸気を次の水蒸発器20中の塩水を加熱するために使用することができる。蒸留水排出ライン(例えば、図11の排出口14)は、脱塩システムからの凝結蒸留水の排出口を与える。
図11は、特定の実施例による蒸発器の正面断面図である。上四分円122及び下四分円124は、低圧塩水を含み、左四分円128及び右四分円130は、高圧蒸気と蒸留水とを含む。水は塩から蒸発し出口98’を通り上部から出る。低圧塩水と高圧水蒸気との圧力差を、コンプレッサー又は抽出機(特に図11には示されず)により供給できる。左四分円128と右四分円130とは、プレート内部で凝結する高圧蒸気を供給される。凝結物は、左四分円128と右四分円130との底に集まり、ポート14から排出される。1実施例において、熱交換板の角を膨張性ガスケットを用い、パイプに密封する事ができる。
図12Aは、水蒸発器20と封入パイプ120から取り除かれた抽出機92とを示す。図12Bは、熱交換を促進できる熱交換機を通り液体を循環する図12Aの抽出機92の正面断面図を示す。
一体化された水蒸発器20及び熱交換機26は記述される。図13Aは、一体化水蒸発器20の1部分を形成するために使用可能な金属板140及び図12の熱交換機26を示す。金属板140は、望ましい形に切断され且つ多くのくぼみ142がそこに形成された状態で図13Aに示される。加えて、タブ146は、金属板140の4隅に一体的に形成される。図13Bは、点線144に沿って金属板140に折り目が形成された図13Aの金属板140を示す。図13Cと13Dとは、各々線13C及び13Dに沿い切断された金属板140の断面図を示す。
図14Aから14Dは、水蒸発器20を形成するために使用可能な金属板150及び図12の熱交換機26のもう1つの実施例を示す。金属板150は、金属板150の4隅にタブが存在しない点を除き金属板140と同一である。金属板は、望ましい形に切断され且つ多くのくぼみ152がそこに形成された状態で図14Aに示される。図14Bは、点線154に沿って金属板150に折り目が形成された図14Aの金属板150を示す。図14Cと14Dとは、各々線14C及び14Dに沿い切断された金属板150の断面図を示す。
図15Aは、水蒸発器20の組み立てられた部分及び1つ1つ積み上げられた多くの金属板140を用い構成された図13の熱交換機26を示す。図15Bは、各タブ146により形成された構造を示す図15Aの部分拡大図である。図15Cは、図15Aの拡大側面図を示す。
図16Aは、水蒸発器20の組み立てられた部分及び1つ1つ積み上げられた多くの金属板150を用い構成された図14の熱交換機26を示す。図16Bは、2つの対の板150の隅部を示す図16Aの部分拡大図である。図16Cは、図16Aの拡大側面図を示す。
図17Aは、本発明の1面を含むへこみ形142又は152の1実施例を示す。示されたとおり、各へこみ形142又は152は、平部分156を持つので、もう1つの金属板140又は150が隣り合わせに置かれた時、もし先端が丸くなっているか尖っているなら起きるであろう斜め滑りの傾向はない。図17Bに示されたもう1つの実施例において、1金属板140又は150のくぼみ142又は152を、もう1つの金属板140又は150からもう1対のくぼみ142又は152の外面形状に従うように適合されたへこみ158を用い形成できる。
図18Aから18Fは、1金属板140又は150をもう1つに付着するために使用可能な種々のタイプの継ぎ手を示す。図18Aは、溶接継ぎ手160を示す。図18Bは、ブレーズド継ぎ手162を示す。図18Cは、終端部を一緒に付着するために用いられる圧着クランプ164を示す。図18Dは、圧着クランプ164のもう1つの実施例を示し、熱交換機板140又は150の縁は持ち上げられているので、圧着クランプが安全に適所に保持される。図18Eは、板140又は150を一緒に付着するために使用されるリベット又はねじ168を示す。図18Fは、1板140又は150の縁に一体的に形成されたタブ170を示す。組み立て時に、このタブは、隣り合う板140又は150の縁の周りに曲げられる。
図19は、特定の実施例によるイオン交換システムを用いる脱塩システムの概略図である。脱塩システム180は、硫酸イオンを選択的に取り除くイオン交換システムを提供する。硫酸イオンを取り除くために操作できる樹脂の例は、ピューロライト(Purolite)A-830W(ピューロライト株式会社から入手可能)及びリライト(Relite)MG1/P(三菱化学株式会社Residdion S.R.Lから入手可能)
図19において、pH値を下げるために酸は、混合用容器182の淡水供給に加えられる。塩酸、リン酸、又は硫酸のような如何なる適切な酸物質をも使用できる。1実施例において、相対的低費用より硫酸を用いることができる。混合機に存在するpHは大体3から6である。塩素イオンでいっぱいの吸尽イオン交換ベッド184に酸性水が加えられる。塩水が吸尽イオン交換ベッド184を通過するとき、硫酸イオンは拘束され塩素イオンは開放される。硫酸イオンの約95%除去は可能である。吸尽イオン交換ベッド184に存在するpHは大体5.0から5.2である。この脱スルホン化水は、溶解二酸化炭素が除去される真空抜き取り器186に流れる;低圧蒸気は、運搬ケース(carrier case)として加えられる。幾らかの実施例において、膜を横切り気体を引くために真空を用いる装置のような他の脱気技術を使用できる。真空抜き取り器186を出る液体は、大体7.0から7.2のpHを有する。その液体は、熱交換機の湯垢問題を減らす硫酸及び炭酸イオンの低濃縮を含む。脱気塩水は、脱塩システム188に流れ入る。脱塩システム10、60,70,80,90,100,又は110のような多くの異なるタイプの脱塩システムを採用できる。図19はしかし、脱塩システム70を用いて示される。水蒸発器20を出る濃縮ブラインは、再生イオン交換ベッド190を再生するために使用される。典型的には、ブライン濃縮は、供給塩水より2.5倍から4倍濃縮される。
図20は、特定の実施例による研磨材を用いる脱塩システムの概略図である。脱塩システム200は、塩水と共に小さいゴム球、又は刻んだ針金の小片のような研磨材を含むことにより熱交換機表面の湯垢形成を減らすように操作可能である。研磨材をライン204で塩水に導入でき、濾過、沈殿、又は磁石のような適切な方法を採用する研磨材分離器202を用いライン206で濃縮ブラインから研磨材は回収される。
図21は、特定の実施例による研磨材及び沈殿物質を用いる脱塩システムの概略図である。脱塩システム210は、水蒸発器20及び熱交換機26内表面の湯垢形成を減少する2つのシステムを提供する。1実施例において、研磨材分離器202は、図20の研磨材分離器202に類似する方法でその機能を実施可能である。特定の実施例は、ライン232で沈殿物を塩水に分配しライン234から沈殿物を取り戻す沈殿物分離器230を提供する。核形成部位を提供する種結晶として作用するために塩水に沈殿物の小粒を加える。塩溶液が過飽和するので、金属表面で起きる沈殿よりも沈殿物は、種結晶に形成する傾向がある。というのは、表面積が金属表面よりも非常に大きいからである。又、金属表面とは違い、種結晶は、金属表面よりも種結晶に沈殿を容易に形成する新たに形成された沈殿物に類似した結晶構造を持つ。沈殿物は、分離器230で適切な方法(例えば、濾過、遠心分離)で除去される。沈殿物の1部分は、種結晶として戻され、過剰分は、システムから除去される。
図22は、特定の実施例による最後の蒸発器を出る蒸気が凝縮され且つ排出される脱塩システムの概略図である。脱塩システム220は、塩水を塩水取り入れライン12で受け入れるのに適合され、塩水から蒸留水の少なくとも一部分を蒸留し、蒸留水出力ライン14で蒸留水を提供し、濃縮ブライン出力ライン16で濃縮ブラインを提供する。脱塩システム220は、数器の水蒸発器20、各水蒸発器20の間に結合された数機の熱交換機22、及び水蒸発器20(蒸気圧縮蒸発器として機能できる)の1つに結合された抽出機92を有する。カスケード形式で他の水蒸発器20a、20b、及び20cに加圧蒸気を供給できるので、各一連の水蒸発器20a、20b、及び20c(多効果蒸発器として機能できる)は、上流水蒸発器20dより相対的に低い作動圧力を有する。このように、水を漸次除去でき、又は塩水から蒸発できる。
示されるとおり、脱気塩水は、脱気水供給入力12に導入され、反対方向に流れる濃縮ブライン及び蒸留水を有する対向流熱交換機26に導入される。脱気塩水は、水の一部が蒸発する第1水蒸発器20dに入る。残りの塩水は、ポンプにより対向流熱交換機22cを通り追加の水が蒸発する第2水蒸発器20cに入る。このプロセスは、望まれる回数だけ繰り返される。示される通り、全部で4つの水蒸発器20a、20b、20c及び20dが示されるが、水蒸発器20の如何なる台数をも使用できる。
ボイラーから供給され得るような高圧蒸気は、ライン93を通り抽出機92に入り、入力ライン28から出力ライン30へ水蒸気を圧縮するのに必要とされる動力を提供する。出力ライン30は、水蒸発器20dに結合される。こうして、水蒸発器20dに結果として起きる高圧は、水蒸気が凝結する原因となる。これらの蒸気が凝結するにつれて、それらは水を塩水から蒸発させる。低圧で運転される次段の蒸発器20cにおいて、これらの蒸気は凝結する。本システムで構成される全ての他の蒸発器20b及び20aにつきこのプロセスは繰り返される。
塩水取り入れライン12に入る如何なる非凝縮性物質もシステムから除去可能である。図22に示されるとおり、全ての熱交換機は、1気圧以上で動作すると推定されるので、非凝縮性物質を直接除去できる事が想定される。もしシステムが1気圧以下で運転されるなら、非凝縮性物質を除去するために真空ポンプ(特別には示されず)が必要とされるかもしれない。いずれの場合にせよ、排出38の前に凝縮器36が配置されるので、非凝縮性物質が除去される前に水蒸気は回収可能である。抽出機92は、取り入れライン28から出力ライン30へ水蒸気の加圧に奉仕する。
図23は、特定の実施例による最後の蒸発器を出る蒸気が凝縮され且つ排出されるもう1つの脱塩システムの概略図である。塩水取り入れライン12、蒸留水出力ライン14、濃縮ブライン出力ライン16、水蒸発器20、熱交換機22、及び抽出機92は、図22の脱塩システム210に類似する。脱塩システム230は、しかし抽出機92の入力ラインが第2水蒸発器20cに結合される点で異なる。
図24は、特定の実施例による最後の蒸発器を出る蒸気が凝縮され且つ排出される2つの蒸気源を用いる脱塩システムの概略図である。この実施例は、脱塩システム240は又、各々異なる塩濃縮で動作する一連の水蒸発器20を用いる点で図22の脱塩システム210に類似する。この特定の実施例においてはしかし、数機の水蒸発器20c及び20dは、それら自身専有の抽出機92を有する。図24において第1水蒸発器20d及び第2水蒸発器20cは、各それら自身専有の抽出機92とともに示される。しかし、如何なる水蒸発器20a、20b、20c、又は24dもそれら自身専有の抽出機92とともに構成されても良い事は評価されても良い。
図25は、特定の実施例による最初の蒸発器を出る蒸気が凝縮され且つ排出される脱塩システムの概略図である。塩水取り入れライン12、蒸留水出力ライン14、濃縮ブライン出力ライン16、及び水蒸発器20は、図22の脱塩システム210に類似する。脱塩システム250は、しかし抽出機92に直接結合されていない第2水蒸発器20aに脱気供給入力12が結合される点で異なる。即ち、脱気供給入力12は、水蒸発器20カスケード列から下流の続きの水蒸発器20aに結合される
図26は、凝縮側温度と凝縮蒸気と沸騰水との間の全温度差の関数としての全熱伝導係数を示すグラフである。グラフは、凝縮側温度と凝縮蒸気と沸騰水との間の全温度差(ΔT)の関数としての全熱伝導係数を示す。このグラフは、凝縮側温度が約340°Fに増加するにつれて全熱伝導係数が劇的に上がる事を示す。この温度以上で、膜状凝縮より劇的に良い熱伝導を有する結露を維持することは難しい。結露は、疎水性表面(例えば、金、クロム、銀、窒化チタン、テフロン)で促進される。好ましい疎水性表面は、ジアゾニウム化学を用い金属(銅)熱交換機の表面に直接疎水性有機化学物質の単分子層を共有結合する事により作られる。
248°F(120°C)以上で、海水は、湯垢を熱交換機表面に堆積する傾向がある。一般に、熱交換機の海水側は焦げ付かないことが望ましい。248°F(120°C)以上で、もしカルシウム、マグネシウム、硫酸及び炭酸イオンが水中に存在するなら、焦げ付かない表面は特に有用である。もし熱交換機がチタニウムからできているなら、それは自然に焦げ付かない表面を有する。以下のような焦げ付かない表面で金属メッキすることも又可能である:
a 金属へのテフロンコーティング。調理器具に使われるデユポンシルバーストーンテフロンコーティングは、290°Cの温度を維持できる。
b アルミニウムは、硬陽極酸化でき、PTFE(ポリテトラフルオロエチレン)の包有物が続く。
c 炭素鋼の真空アルミニウムメッキ処理後、硬陽極酸化及びPTFE(ポリテトラフルオロエチレン)の包有物が続く。
d アルミニウム、炭素鋼、PPS(ポリフェニレンサルファイド)付きネーバル黄銅又はPPS/PTFE合金のインパクトコーティング
e 物理的気相成長法による窒化チタン、炭化チタン、又はホウ化チタン
そのようなコーティングは、熱塩水に曝される熱交換機の側に適用される。理想的には、母材は、ネーバル又はアドミラルティー黄銅のような耐塩水材料からなる。このアプローチを用い、コーティングが剥げても、熱交換機は汚れる可能性はあるが、穴は開かないし漏れない。
低温(おおよそ120°C以下)で、焦げ付かない表面は必要ないかもしれないが、アルミニウム又は炭素鋼のような他の金属上のチタンの陰極アーク蒸着により耐海水性を与えることができる。
金属表面のコーティングに代えて、接着剤及び/又は熱ラミネート加工を用い、PVDF(ポリフッ化ビニリデン)又はPTFEのような重合薄膜を接着する事は可能である。
もし汚染が起きたら、熱交換機は、希酸又は他の適切なクリーナーで表面を掃除するために一時的に操業を中止する。
本発明は数実施例に記述されてきたが、種々の変化、変更、変形、及び修正を当業者は示唆でき、本発明は、付随の特許請求の精神及び範囲内に属する物として、そのような変化、変更、変形、及び修正を含む事が意図される。

Claims (61)

  1. ブライン溶液が最初の蒸発器から最後の蒸発器に向かって複数の蒸発器を通るにつれて、前記ブライン溶液中の塩の濃縮が増加するようにカスケード式に配置された少なくとも前記最初と最後の蒸発器とを含む複数の蒸発器;
    各蒸発器の入力が複数の熱交換機の少なくとも各1つに結合された複数の熱交換機;及び
    複数の蒸発器の少なくとも1つに結合された蒸気源
    を含む脱塩システム。
  2. 各熱交換機は、前記ブライン溶液が前記各蒸発器に入る前に前記ブライン溶液の温度が増加するように配置された請求項1のシステム。
  3. 各熱交換機は、前記ブライン溶液が前記各蒸発器に入る前に前記ブライン溶液の温度が減少するように配置された請求項1のシステム。
  4. 前記複数の蒸発器は、各蒸発器の圧力が前記最初の蒸発器から前記最後の蒸発器へ増加するように更にカスケード式に配置された請求項1のシステム。
  5. 前記複数の蒸発器は、各蒸発器の圧力が前記最初の蒸発器から前記最後の蒸発器へ減少するように更にカスケード式に配置された請求項1のシステム。
  6. 前記最初の蒸発器に前記ブライン溶液を供給するために操作できる前記最初の蒸発器
    に結合されたポンプを更に含む請求項1のシステム。
  7. 前記最後の蒸発器に前記ブライン溶液を供給するために操作できる前記最後の蒸発器
    に結合されたポンプを更に含む請求項1のシステム。
  8. 前記蒸気源は、蒸気と共に流体を圧縮するように操作できるコンプレッサーを含む請求項1のシステム。
  9. 前記蒸気源は、ランキンサイクルコンプレッサーを含む請求項1のシステム。
  10. 前記蒸気源は、ブレイトンサイクルエンジンにより駆動される請求項1のシステム。
  11. 前記蒸気源は、抽出機を含む請求項1のシステム。
  12. 前記抽出機は、蒸気ボイラーから高圧蒸気を供給される請求項10のシステム。
  13. 前記蒸気源は、前記最後の蒸発器に結合された請求項1のシステム。
  14. 前記蒸気源は、前記最後の蒸発器と多数の蒸発器より少ない少なくとも1つの追加の蒸発器とに結合された請求項1のシステム。
  15. 前記複数の蒸発器は複数対の蒸発器板を含み、前記蒸発器板の対は前記蒸発器内で変位し、蒸発器板の対の第1蒸発器板は複数の半球のくぼみを含み、蒸発器板の対の第2蒸発器板は複数の半球のくぼみを含み、各くぼみは蒸発器板の側方運動を防ぐため凹部を有する請求項1のシステム。
  16. 前記複数の蒸発器は撥水材層で覆われた複数の蒸発器板対を含む請求項1のシステム。
  17. 前記複数の蒸発器の各蒸発器内に有り、前記各蒸発器内のブライン溶液を攪拌するように操作できる複数の抽出機を更に含む請求項1のシステム。
  18. 硫酸イオンを選択的に取り除くように操作できるイオン交換器であって、前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液が通過するイオン交換器を更に含む請求項1のシステム。
  19. 前記ブライン溶液が前記イオン交換器に入る前に前記ブライン溶液が混ぜられる酸性溶液を含む混合用容器を更に含む請求項18のシステム。
  20. 前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液から二酸化炭素を除去するように操作できる真空抜き取り器を更に含む請求項1のシステム。
  21. 前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液へ研磨材を加えるように操作できる研磨材分離器を更に含む請求項1のシステム。
  22. 前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液へ沈殿物を加えるように操作できる沈殿物分離器を更に含む請求項1のシステム。
  23. ブライン溶液が最初の蒸発器から最後の蒸発器に向かって複数の蒸発器を通るにつれて、前記ブライン溶液中の塩の濃縮が増加するようにカスケード式に配置された少なくとも前記最初と最後の蒸発器とを含む複数の蒸発器;及び
    各蒸気源が前記複数の蒸発器の少なくとも1つに結合された複数の蒸気源
    を含む脱塩システム。
  24. 前記複数の蒸発器の数は前記複数の蒸気源の数に等しく、前記複数の蒸発器の各蒸発器は前記複数の蒸気源の異なる蒸気源に結合された請求項23のシステム。
  25. 前記複数の蒸気源の少なくとも1つの蒸気源は、前記複数の蒸発器の1より大きい第1の数の蒸発器に結合された請求項23のシステム。
  26. 前記第1の数より小さい第2の数の熱交換機の各熱交換機が、前記第1の数の蒸発器のうちの2つの間に機能的に存在するように前記複数の蒸発器のうちの1つの蒸発器に各々結合された第2の数の熱交換機を更に含む請求項23のシステム。
  27. 前記最初の蒸発器に結合され、前記ブライン溶液が前記最初の蒸発器に入る前に、前記ブライン溶液を加熱するように操作できる熱交換機を更に含む請求項23のシステム。
  28. 前記複数の蒸気源が、そこに置かれたタービンを有する複数の集束/分流パイプを含む請求項23のシステム。
  29. 前記複数の蒸気源が、各ベンツーリがインペラーを含む複数のベンツーリを含む請求項23のシステム。
  30. 各整流器が、前記複数のベンツーリの1つに有り且つ前記インペラーの下流に有る複数の整流器を更に含む請求項29のシステム。
  31. 前記インペラーは、プロペラ機に使用するために作動可能なプロペラを含む請求項29のシステム。
  32. 前記インペラーは、飛行機のジェットエンジンに使用するために作動可能なダクト内ファンを含む請求項29のシステム。
  33. 前記複数の蒸気源が、複数の抽出機を含む請求項23のシステム。
  34. 前記複数の抽出機の各々が、コンプレッサーから高圧蒸気を供給される請求項33のシステム。
  35. 前記コンプレッサーが、前記複数の蒸発器の各々から低圧蒸気を供給される請求項34のシステム。
  36. 前記コンプレッサーが、前記複数の抽出器の各々から中圧蒸気を供給される請求項34のシステム。
  37. 前記複数の蒸発器は複数対の蒸発器板を含み、前記蒸発器板の対は前記蒸発器内で変位し、蒸発器板の対の第1蒸発器板は複数の半球のくぼみを含み、蒸発器板の対の第2蒸発器板は複数の半球のくぼみを含み、各くぼみは蒸発器板の側方運動を防ぐため凹部を有する請求項23のシステム。
  38. 前記複数の蒸発器は撥水材層で覆われた複数の蒸発器板対を含む請求項23のシステム。
  39. 前記複数の蒸発器の各蒸発器内に有り、前記各蒸発器内のブライン溶液を攪拌するように操作できる複数の抽出機を更に含む請求項23のシステム。
  40. 硫酸イオンを選択的に取り除くように操作できるイオン交換器であって、前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液が通過するイオン交換器を更に含む請求項23のシステム。
  41. 前記イオン交換器に入る前に前記ブライン溶液が混ぜられる酸性溶液を含む混合用容器を更に含む請求項40のシステム。
  42. 前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液から二酸化炭素を除去するように操作できる真空抜き取り器を更に含む請求項23のシステム。
  43. 前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液へ研磨材を加えるように操作できる研磨材分離器を更に含む請求項23のシステム。
  44. 前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液へ沈殿物を加えるように操作できる沈殿物分離器を更に含む請求項23のシステム。
  45. ブライン溶液を受け取るステップ;
    非蒸留水が複数の蒸発器の最初の蒸発器に入る前に前記ブライン溶液を加熱するステップ;
    前記ブライン溶液を蒸留流体の部分、及び前記最初の蒸発器に入る前のブライン溶液より濃縮され減少された量のブライン溶液に蒸留するステップ;
    前記複数の蒸発器を通る前記減少された量のブライン溶液のポンピングは、
    前記減少された非蒸留水が前記複数の蒸発器の次の蒸発器に入る前にブライン溶液の前記減少量を加熱するサブステップ;及び
    前記減少されたブライン溶液を蒸留流体の部分、及び前記続きの蒸発器に入る前のブライン溶液より濃縮され更に減少された量のブライン溶液に蒸留するサブステップ;
    の上記2つのサブステップを含む、前記複数の蒸発器を通る前記減少された量のブライン溶液をポンプでくみ出すステップ;並びに
    前記複数の蒸発器のうちの最後の蒸発器で、ブライン溶液の更なる減少分を蒸留し、濃縮生成物としてブライン溶液の前記更なる減少分を排出するステップ
    を含むブライン溶液を脱塩するための方法。
  46. 蒸気の第1の流れを作るステップ;
    前記蒸気の第1の流れを前記複数の蒸発器の最後の蒸発器に運ぶステップ;並びに
    前記複数の蒸発器の各蒸発器につき、
    蒸発器内に蒸気の第2の流れを作るサブステップ;及び
    前記蒸気の第2の流れを続きの蒸発器に運ぶサブステップ
    を更に含む請求項45の方法。
  47. 蒸気の第1の流れを作るステップは、コンプレッサー内でブライン溶液又は蒸留された液体を蒸気と混ぜるステップを含む請求項46の方法。
  48. 蒸気の第1の流れを作るステップは、
    蒸気の高圧流を作るステップ;及び
    抽出機内で前記蒸気の高圧流を前記最後の蒸発器からの蒸気の低圧流と合流させ、その合流は結果的に前記蒸気の第1の流れをもたらすステップ
    を含む請求項46の方法。
  49. 蒸気の第1の流れを作るステップ;
    前記蒸気の第1の流れを前記複数の蒸発器の最初の蒸発器に運ぶステップ;並びに
    前記複数の蒸発器の各蒸発器につき、
    蒸発器内に蒸気の第2の流れを作るサブステップ;及び
    前記蒸気の第2の流れを続きの蒸発器に運ぶサブステップ
    を更に含む請求項45の方法。
  50. 蒸気の第1の流れを作るステップは、コンプレッサー内でブライン溶液又は蒸留された液体を蒸気と混ぜるステップを含む請求項45の方法。
  51. 蒸気の第1の流れを作るステップは、
    蒸気の高圧流を作るステップ;及び
    抽出機内で前記蒸気の高圧流を前記最初の蒸発器からの蒸気の低圧流と合流させ、その合流は結果的に前記蒸気の第1の流れをもたらすステップ
    を含む請求項45の方法。
  52. 前記複数の蒸発器の各蒸発器内の複数の抽出機で、前記複数の蒸発器の各蒸発器内のブライン溶液を攪拌するステップを更に含む請求項51の方法。
  53. 前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、イオン交換器内で前記ブライン溶液内のイオンを交換するステップを更に含む請求項51の方法。
  54. 前記ブライン溶液が前記イオン交換器に入る前に酸性溶液を前記ブライン溶液と混ぜるステップを更に含む請求項53の方法。
  55. 前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液から二酸化炭素を除去するステップを更に含む請求項45の方法。
  56. 前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液へ研磨材を加えるステップを更に含む請求項45の方法。
  57. 前記複数の蒸発器の如何なる蒸発器にも前記ブライン溶液が入る前に、前記ブライン溶液へ沈殿物を加えるステップを更に含む請求項45の方法。
  58. 第1端で低圧蒸気流を受け取るように操作できる第1の注入口を含み、及び前記第1端とは反対側の第2端で中圧蒸気流を排出できるように操作できる第1の排出口を含む経路;並びに
    最初のステージが最後のステージの上流にあり、前記経路に結合され、高圧蒸気流を低圧蒸気流に段階的に排出するように操作できる高圧デリバリー機構
    を含む抽出機。
  59. 高圧デリバリー機構は、複数のノズルを含み、前記複数のうちの第1の数のノズルは、少なくとも1つの追加ノズルの周囲の周りに配置され、前記少なくとも1つの追加ノズルは前記複数のうちの前記第1の数のノズルの下流にある請求項58の抽出機。
  60. 高圧デリバリー機構は、周囲の周りの3つのノズルは、第4のノズルの周囲の周りに配置された3つのノズルを含むので、前記周囲の周りの前記3つのノズルは、互いに等距離で前記第4のノズルの上流にある請求項58の抽出機。
  61. 前記経路は更に狭い通路を含み、その狭い通路は前記第1端及び第2端より狭く、前記経路長より短い経路部分に沿って延び;且つ
    前記高圧デリバリー機構が前記狭い通路内から通路に高圧蒸気流を排出するように操作できるように、前記高圧デリバリー機構は前記経路に結合された請求項58の抽出機。
JP2009532556A 2006-10-10 2007-10-10 脱塩システム Pending JP2010505623A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82888206P 2006-10-10 2006-10-10
PCT/US2007/080954 WO2008045943A2 (en) 2006-10-10 2007-10-10 Desalination system

Publications (1)

Publication Number Publication Date
JP2010505623A true JP2010505623A (ja) 2010-02-25

Family

ID=39016812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009532556A Pending JP2010505623A (ja) 2006-10-10 2007-10-10 脱塩システム

Country Status (11)

Country Link
US (2) US20080083605A1 (ja)
EP (1) EP2076465A2 (ja)
JP (1) JP2010505623A (ja)
CN (1) CN101636354A (ja)
AU (1) AU2007307709A1 (ja)
BR (1) BRPI0719253A2 (ja)
CA (1) CA2666532A1 (ja)
IL (1) IL198153A0 (ja)
MX (1) MX2009003855A (ja)
WO (1) WO2008045943A2 (ja)
ZA (1) ZA200902994B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140133517A (ko) * 2012-01-11 2014-11-19 후이 멍 창 정수용 방법 및 장치

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG157984A1 (en) * 2008-06-23 2010-01-29 Univ Singapore Apparatus and method for improved desalination
US8707697B2 (en) * 2008-12-08 2014-04-29 George Nitschke System integration to produce concentrated brine and electricity from geopressured-geothermal reservoirs
DE102008061917B4 (de) * 2008-12-15 2010-11-04 Astrium Gmbh Heißgaskammer
WO2011007405A1 (ja) * 2009-07-13 2011-01-20 株式会社エレクトラホールディングス 浄水装置
AU2010319846B2 (en) 2009-10-28 2015-05-28 Oasys Water LLC Forward osmosis separation processes
US9044692B2 (en) 2009-12-11 2015-06-02 Micronic Technologies, Inc. Systems and methods for water desalinization
US8273165B2 (en) * 2009-12-11 2012-09-25 Micronic Technologies, LLC Compacted air flow rapid fluid evaporation system
CN101786754A (zh) * 2010-02-11 2010-07-28 上海东化环境工程有限公司 含盐废水的零排放处理工艺
US20100314238A1 (en) * 2010-04-30 2010-12-16 Sunlight Photonics Inc. Hybrid solar desalination system
AU2011276936B2 (en) 2010-07-09 2016-10-20 The University Of Western Australia A desalination plant
BR112013006569A2 (pt) * 2010-09-22 2016-06-07 Oasys Water Inc processos de membrana osmoticamente ativados e sistemas e métodos para a recuperação de soluto de arraste
US8647477B2 (en) * 2011-02-15 2014-02-11 Massachusetts Institute Of Technology High-efficiency thermal-energy-driven water purification system
US9546099B2 (en) 2012-02-01 2017-01-17 Micronic Technologies, Inc. Systems and methods for water purification
US10703644B2 (en) * 2012-07-16 2020-07-07 Saudi Arabian Oil Company Produced water treatment process at crude oil and natural gas processing facilities
US10053374B2 (en) * 2012-08-16 2018-08-21 University Of South Florida Systems and methods for water desalination and power generation
CN102942232B (zh) * 2012-11-16 2013-09-11 海南大学 一种旋转自供热式海水淡化方法
US10160663B2 (en) * 2013-01-04 2018-12-25 Gas Technology Institute Method for purifying water and water treatment system therefor
CN103241887A (zh) * 2013-05-27 2013-08-14 兰州节能环保工程有限责任公司 高盐废水处理回收利用的方法及装置
WO2015021062A1 (en) 2013-08-05 2015-02-12 Gradiant Corporation Water treatment systems and associated methods
US10046250B2 (en) 2013-09-18 2018-08-14 Aquaback Technologies, Inc. System for processing water and generating electricity, rankine
CA2925869A1 (en) * 2013-09-23 2015-03-26 Gradiant Corporation Desalination systems and associated methods
CA2899656C (en) * 2013-11-26 2019-09-03 Saltworks Technologies Inc. Multiple effect concentration swap de-scaling system
US10233094B2 (en) * 2013-12-06 2019-03-19 Arthur Francisco Hurtado System and method for distillation using a condensing probe and recycled heat
WO2016003913A1 (en) * 2014-06-30 2016-01-07 Massachusetts Institute Of Technology Thermal-energy-driven mechanical compression humidification-dehumidification water purification
US10532934B1 (en) * 2014-12-05 2020-01-14 Arthur Francisco Hurtado Energy recycling and heat exchange systems
US11298631B1 (en) * 2014-12-05 2022-04-12 Arthur Francisco Hurtado Distillation using mechanical advantage through mulitiple expanders
US10308526B2 (en) 2015-02-11 2019-06-04 Gradiant Corporation Methods and systems for producing treated brines for desalination
US10167218B2 (en) 2015-02-11 2019-01-01 Gradiant Corporation Production of ultra-high-density brines
CH710735A1 (de) * 2015-02-13 2016-08-15 Thermal Purification Tech Ltd Mehrstufige Destillationsanlage, Verfahren zum Betreiben einer solchen und Steuerung dafür.
CN104649498B (zh) * 2015-03-13 2016-08-24 广东德嘉电力环保科技有限公司 一种脱硫废水蒸发工艺及系统
DE102015206484A1 (de) * 2015-04-10 2016-10-13 Siemens Aktiengesellschaft Verfahren zum Aufbereiten eines flüssigen Mediums und Aufbereitungsanlage
US9266748B1 (en) 2015-05-21 2016-02-23 Gradiant Corporation Transiently-operated desalination systems with heat recovery and associated methods
US10143936B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
CA2993007C (en) 2015-07-29 2023-04-04 Gradiant Corporation Osmotic desalination methods and associated systems
WO2017030932A1 (en) 2015-08-14 2017-02-23 Gradiant Corporation Selective retention of multivalent ions
WO2017030937A1 (en) 2015-08-14 2017-02-23 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
US20190022550A1 (en) 2016-01-22 2019-01-24 Gradiant Corporation Formation of solid salts using high gas flow velocities in humidifiers, such as multi-stage bubble column humidifiers
US10138139B2 (en) 2016-02-12 2018-11-27 Babcock Power Environmental Inc. Wastewater treatment systems and methods
WO2017147113A1 (en) 2016-02-22 2017-08-31 Gradiant Corporation Hybrid desalination systems and associated methods
US9925476B2 (en) * 2016-03-28 2018-03-27 Energy Integration, Inc. Energy-efficient systems including combined heat and power and mechanical vapor compression for biofuel or biochemical plants
US10294123B2 (en) 2016-05-20 2019-05-21 Gradiant Corporation Humidification-dehumidification systems and methods at low top brine temperatures
US11225954B2 (en) 2016-06-09 2022-01-18 New Jersey Institute Of Technology System and method for multi-level vacuum generation and storage
GB2552162A (en) * 2016-07-11 2018-01-17 Ide Technologies Ltd Water treatment system
DK3415852T3 (da) * 2016-08-05 2024-02-05 Obshestvo S Ogranichennoi Otvetstvennostu Reinnolts Lab Skal- og rørkondensator og varmevekslingsrør til en skal- og rørkondensator (varianter)
DK3504305T3 (da) 2016-08-27 2022-11-14 Joe Travis Moore System til behandling af saltvand produceret i olie- og gasborehul
WO2018112104A1 (en) * 2016-12-13 2018-06-21 The Texas A&M University System Sensible and latent heat exchangers with particular application to vapor-compression desalination
US10661194B2 (en) * 2017-05-31 2020-05-26 New Jersey Institute Of Technology Vacuum distillation and desalination
GR20170100407A (el) * 2017-09-07 2019-05-09 Αριστειδης Εμμανουηλ Δερμιτζακης Συμπιεστης πολλαπλων θαλαμων μηχανικης επανασυμπιεσης ατμων
ES1203439Y (es) * 2017-12-05 2018-04-13 Wga Water Global Access Sl Cámara intercambiadora de calor latente
US20180257950A1 (en) * 2018-03-22 2018-09-13 William Prichard Taylor Salt, potable water, and energy from saline water source
AT521595A1 (de) * 2018-08-17 2020-03-15 Matthias Budil Solarbetriebener kontinuierlicher Destillator mit effizienter Wärmerückgewinnung
SG11202101293TA (en) 2018-08-22 2021-03-30 Gradiant Corp Liquid solution concentration system comprising isolated subsystem and related methods
EP3938070A4 (en) * 2019-03-14 2022-10-26 Vivek Verma METHOD, PROCESS AND APPARATUS FOR A VERY LOW TEMPERATURE EVAPORATION SYSTEM
CN110028118B (zh) * 2019-04-10 2021-07-06 南京大学 一种高浓盐水低温蒸发装置
CN114173912B (zh) * 2019-04-12 2024-10-08 微技术股份有限公司 用于水处理的系统和方法
US11655161B2 (en) 2019-08-05 2023-05-23 Mehdi Hatamian Modular water purification device
CN110344898B (zh) * 2019-08-05 2024-04-23 上海发电设备成套设计研究院有限责任公司 吸收式海水淡化与闭式循环发电系统
US10918969B2 (en) * 2019-10-24 2021-02-16 Serguei TIKHONOV Vertical desublimation apparatus for crystalline iodine production
PE20221897A1 (es) * 2020-03-10 2022-12-15 Bechtel Energy Tech And Solutions Inc Sistema de desalinizacion con eyector de baja energia
GB202004347D0 (en) * 2020-03-25 2020-05-06 Clean Water Designs Ltd Distillation apparatus
ES1250825Y (es) * 2020-04-08 2020-10-28 Wga Water Global Access Sl Dispositivo desalinizador de compresion por inyeccion hidraulica
CN111994983A (zh) * 2020-08-21 2020-11-27 天津大学 水溶液的浓缩方法及装置
WO2022108891A1 (en) 2020-11-17 2022-05-27 Gradiant Corporaton Osmotic methods and systems involving energy recovery
FR3121613B1 (fr) * 2021-04-09 2024-10-04 Naval Group Bouilleur a compression de vapeur multi-effets
CN113266609B (zh) * 2021-06-02 2023-04-07 傅朝清 热液喷射多单元蒸气压缩装置及热泵
US20240270607A1 (en) * 2021-09-24 2024-08-15 Bechtel Energy Technologies & Solutions, Inc. Low Energy Ejector Desalination System
WO2023215411A1 (en) * 2022-05-03 2023-11-09 Occidental Oil And Gas Corporation Systems and methods for treating salt solutions
US11707695B1 (en) * 2022-06-27 2023-07-25 King Fahd University Of Petroleum And Minerals Multiple-effect system and method for desalination and cooling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965985A (ja) * 1972-10-23 1974-06-26
JPS55145502A (en) * 1979-04-27 1980-11-13 Babcock Hitachi Kk Multiple-effect evaporator
WO2005078371A2 (en) * 2004-02-10 2005-08-25 The Texas A & M University System Vapor-compression evaporation system and method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI47083C (fi) * 1971-04-22 1973-09-10 Huhta-Koivisto Tislausmenetelmä ja -laite
GB1434010A (en) * 1972-04-21 1976-04-28 Atomic Energy Authority Uk Multistage evaporators
US3741879A (en) * 1972-05-30 1973-06-26 T Best Apparatus for distillation of fluids
US3839160A (en) * 1972-06-23 1974-10-01 Hitachi Ltd Multiple effect evaporator
US4402793A (en) * 1980-02-19 1983-09-06 Petrek John P Multiple effect thin film distillation system and process
DE3219387A1 (de) * 1982-05-24 1983-12-01 D.V.T. Büro für Anwendung Deutscher Verfahrenstechnik H. Morsy, 4000 Düsseldorf Anordnung zum entsalzen von meerwasser nach dem multieffekt-verdampfungsverfahren
US4795532A (en) * 1985-02-19 1989-01-03 Sasakura Engineering Co. Ltd. Aftertreatment method and apparatus for distilled water
US5139620A (en) * 1990-08-13 1992-08-18 Kamyr, Inc. Dimple plate horizontal evaporator effects and method of use
US5597453A (en) * 1992-10-16 1997-01-28 Superstill Technology, Inc. Apparatus and method for vapor compression distillation device
TW482743B (en) * 1997-12-25 2002-04-11 Ebara Corp Desalination method and desalination apparatus
US6171449B1 (en) * 1998-06-19 2001-01-09 Washington Group International, Inc. Cascade reboiling of ethylbenzene/styrene columns
JP3505503B2 (ja) * 2000-11-22 2004-03-08 康一 浅野 分離係数が1に近い混合物の蒸留による分離濃縮方法および装置
US7708865B2 (en) * 2003-09-19 2010-05-04 Texas A&M University System Vapor-compression evaporation system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965985A (ja) * 1972-10-23 1974-06-26
JPS55145502A (en) * 1979-04-27 1980-11-13 Babcock Hitachi Kk Multiple-effect evaporator
WO2005078371A2 (en) * 2004-02-10 2005-08-25 The Texas A & M University System Vapor-compression evaporation system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140133517A (ko) * 2012-01-11 2014-11-19 후이 멍 창 정수용 방법 및 장치
JP2015518412A (ja) * 2012-01-11 2015-07-02 チャン, フエイメンCHANG, Huei Meng 浄水の方法および装置
KR102212070B1 (ko) * 2012-01-11 2021-02-05 후이 멍 창 정수용 방법 및 장치

Also Published As

Publication number Publication date
CA2666532A1 (en) 2008-04-17
BRPI0719253A2 (pt) 2014-01-28
US20120199534A1 (en) 2012-08-09
CN101636354A (zh) 2010-01-27
MX2009003855A (es) 2009-10-13
WO2008045943A2 (en) 2008-04-17
IL198153A0 (en) 2009-12-24
AU2007307709A1 (en) 2008-04-17
US20080083605A1 (en) 2008-04-10
WO2008045943A3 (en) 2008-10-09
EP2076465A2 (en) 2009-07-08
ZA200902994B (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP2010505623A (ja) 脱塩システム
US4315402A (en) Heat transfer process and system
US8206557B2 (en) Methods and apparatus for distillation of shallow depth fluids
JP2009539584A (ja) 浸透圧性溶質を回収するための多段式カラム蒸留(mscd)法
JP2009539584A6 (ja) 浸透圧性溶質を回収するための多段式カラム蒸留(mscd)法
SE437560B (sv) Anordning och forfarande for forangning av kondenserad naturgas
CN112245955B (zh) 用于在包括间接热泵的精馏设备中蒸馏粗组分的工艺
US4238296A (en) Process of desalination by direct contact heat transfer
JP6692058B2 (ja) 海水淡水化装置および海水淡水化方法
CA2668972A1 (en) Methods and apparatus for distillation
US8202401B2 (en) Methods and apparatus for distillation using phase change energy
US3486985A (en) Flash distillation apparatus with refrigerant heat exchange circuits
US4310387A (en) Process and system of desalination by direct contact heat transfer
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
KR101323160B1 (ko) 선박용 수직형 다단 조수기
JP5497663B2 (ja) 改善されたブライン再循環システムを備えたmsf脱塩ユニットを用いた塩水の脱塩方法および脱塩プラント
CN111807441B (zh) 一种耐腐蚀的蒸发浓缩系统
KR20100109552A (ko) 증기 재순환 시스템을 구비한 msf식 담수화 유닛을 사용하여 염수를 담수화하는 방법 및 설비
US20080105531A1 (en) Methods and apparatus for signal processing associated with phase change distillation
CN110420471A (zh) 一种用于液体蒸发的节能蒸发系统
JP2979104B2 (ja) 非共沸混合物用蒸発器
JP2007502208A (ja) 水処理方法及び装置
US8506763B2 (en) Device for heating a liquid comprising a solvent and solute, and separating the solvent and solution
JPS61187985A (ja) 清水の製造方法
EP1706619A2 (en) Jet ejector system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023