WO2011004822A1 - 小型反応器 - Google Patents

小型反応器 Download PDF

Info

Publication number
WO2011004822A1
WO2011004822A1 PCT/JP2010/061481 JP2010061481W WO2011004822A1 WO 2011004822 A1 WO2011004822 A1 WO 2011004822A1 JP 2010061481 W JP2010061481 W JP 2010061481W WO 2011004822 A1 WO2011004822 A1 WO 2011004822A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
medium
reactor
ring member
channel
Prior art date
Application number
PCT/JP2010/061481
Other languages
English (en)
French (fr)
Inventor
重司 榊原
勝信 遠藤
祐二 金子
博之 南
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to JP2011521929A priority Critical patent/JPWO2011004822A1/ja
Priority to KR1020127001197A priority patent/KR20120058499A/ko
Publication of WO2011004822A1 publication Critical patent/WO2011004822A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00801Means to assemble
    • B01J2219/00804Plurality of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00801Means to assemble
    • B01J2219/0081Plurality of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass

Definitions

  • the present invention relates to a small reactor in which glass substrates are stacked and configured, and more particularly to a small reactor that supplies a temperature control medium with a large pressure.
  • small-sized reactors with built-in fine flow paths have been mainly made of metal with a plurality of SUS (stainless) plates bonded together, but in recent years, a plurality of glass substrates have been bonded together.
  • a small glass reactor appeared.
  • the small glass reactor is more resistant to acids and alkalis than the small metal reactor, and has the advantage of being able to observe the internal reaction state because it is transparent. There is a possibility that the glass breaks (breaks), which is not a problem with SUS.
  • the glass small reactor that does not use an adhesive is a small glass reactor that is hardened with an adhesive because it does not contaminate the reaction fluid and has high transparency.
  • a small reactor made of glass hardened with an adhesive even if it is manufactured in the shape of the medium flow path of a normal SUS small reactor, a glass / adhesive / glass sandwich structure is obtained. Therefore, although the risk of damaging the glass is low, in a small glass reactor manufactured by glass bonding, the pressure resistance of the medium supply section is weak in the shape of the medium flow path of a normal SUS small reactor as it is. When tightened with a ring member such as an O-ring when assembled to an external device, there is a risk of damage.
  • FIG. 4 shows a conventional glass small reactor 103 in which a plurality of glass substrates are laminated and bonded without using an adhesive so as to form a flow path having the same pattern as that of a normal SUS small reactor. It is a side view.
  • the small reactor 103 has a reaction channel 122i for chemical reaction and two-layer medium tank channels 131 and 134 for temperature management.
  • the two-layer medium tank channels 131 and 134 are arranged at positions where they are stacked one above the other, and the reaction channel 122i is formed so as to be positioned therebetween.
  • One end of the vertical medium flow paths 121 c and 125 g is connected to the bottom or top of the medium tank flow paths 131 and 134, and the other ends form openings 135 and 136 on the back and front surfaces of the small reactor 103.
  • the two-layer medium tank channels 131 and 134 are connected to each other by the communication channels 137a and 137b in the small reactor 103, and the temperature management introduced from one of the openings 135 and 136 on the back surface or the front surface.
  • the medium flows through the vertical medium flow paths 121c and 125g, the medium tank flow paths 131 and 134, and the communication flow paths 137a and 137b, and flows out from the other openings 135 and 136.
  • reaction channel 122i One end of the reaction channel 122i is connected to the introduction channel 138e, and the other end is connected to the outlet channel 121b.
  • a chemical solution reaction fluid
  • reaction flow The chemical solution containing the reaction product flows through the passage 122i and reacts, and flows out of the small reactor 103 from the outlet passage 121b.
  • the reaction flow path 122i is sandwiched between the medium tank flow paths 131 and 134, and the medium tank flow paths 131 and 134 are filled with the temperature management medium whose temperature is controlled. Can be advanced.
  • the temperature management medium When the temperature management medium is introduced into and led out from the openings 135 and 136, the temperature management medium is supplied with a large pressure. Therefore, a flange is provided at the end of the pipe through which the temperature management medium flows, and the O-ring is placed at the position shown in FIG. 151 is arranged, the flange is pressed against the small reactor 103 through the O-ring 151, and the temperature control medium is introduced or led out to a region surrounded by the O-ring 151.
  • JP 2005-66382 A Japanese Patent Laid-Open No. 2004-81949
  • the present invention was created to solve the above-mentioned disadvantages of the prior art, and its purpose is a small glass reactor manufactured by glass bonding, which is a small reaction with increased pressure resistance of the medium supply unit. Is to provide a vessel.
  • the present invention provides a reactor main body configured by stacking substrates, a pair of openings opened on one surface and the other surface of the reactor main body, and one of the pair of openings.
  • a passage that is continuous with the other of the pair of openings via the inside of the reactor body, and a pipe that allows fluid to flow into or out of the opening and the flow path around the opening.
  • a small reactor having an annular contact portion with which a ring member disposed between the connection member and the connection member is contacted, and the flow path is formed so as to cross right below the annular contact portion. is there.
  • this invention is a small reactor which the said flow path crosses over a part of outer periphery from the center of the said cyclic
  • the reactor body includes a reaction channel through which a reaction fluid flows, a medium tank channel through which a temperature control medium flows, and the opening formed in the surface of the reactor body.
  • a vertical medium flow path connecting the medium tanks, and the temperature management medium is configured to flow into or out of the medium tank flow path from the opening through the vertical medium flow path
  • the medium tank flow path has a wide flow path, a connection flow path having one end connected to the wide flow path and the other end connected to the vertical medium flow path, and is disposed so as to surround the opening.
  • the connection flow path is directly below the ring member. It is a small reactor formed to cross.
  • one surface and the other surface of the reactor main body are formed in a rectangular shape, and the pair of openings are provided on one side in the longitudinal direction of the one surface and the other in the longitudinal direction of the other surface. It is a small reactor.
  • the reactor main body includes the ring member that contacts the contact portion, and a pressing member that contacts the surface opposite to the surface on which the contact portion is provided, corresponding to the contact portion. It is a small reactor sandwiched between.
  • the pressure resistance around the opening to which the medium is supplied is improved, so that damage is unlikely to occur when the medium is assembled to an external device such as a reaction module.
  • impurities generated from the adhesive are not mixed in the reaction system, and the reaction can be performed at a high temperature (300 ° C. or higher).
  • FIG. 1 (a) to 1 (e) are plan views of five substrates constituting a small reactor of the present invention.
  • 2 (a) to 2 (e) are cross-sectional views of five substrates constituting the small reactor of the present invention.
  • FIG. 3 is a side view of an example of the small reactor of the present invention.
  • FIG. 4 is a side view of an example of a conventional small reactor.
  • FIG. 5 is a side view of an external device for introducing and deriving a temperature management medium to and from a small reactor.
  • FIG. 6 is a side view of a small reactor constituted by an external device and a small reactor.
  • FIG. 7 is a plan view of a conventional small reactor.
  • FIG. 3 shows a side view of an example of the small reactor 3 of the present invention, in which the first to fifth substrates 11 to 15, which are inorganic transparent substrates shown in FIGS. 1 (a) to (e), are laminated. These are fixed to each other.
  • the ordinal numbers of the first to fifth substrates 11 to 15 are attached so as to gradually increase from the bottom to the top when arranged up and down as shown in FIG.
  • the small reactor 3 is disposed apart from the reaction flow path 22 i and the upper and lower portions of the reaction flow path 22 i, and has an upper medium tank flow path 34 and a lower medium tank flow path 31 that have substantially the same shape. have.
  • the upper wide flow path 24j which is a part of the upper medium tank flow path 34 and the lower wide flow path 21k which is a part of the lower medium tank flow path 31 have a substantially rectangular shape and are spaced apart from the upper wide flow path 24j. Is provided with an upper vertical medium flow path 25g, and a lower vertical medium flow path 21c is provided at a position separated from the lower wide flow path 21k.
  • the upper medium tank flow path 34 and the lower medium tank flow path 31 are arranged at positions where they overlap each other, and the upper vertical medium flow path 25g is connected to one end of the upper medium tank flow path 34 and the lower medium tank flow path 31 that are overlapped.
  • the lower vertical medium flow path 21c is positioned on the opposite side of the upper medium tank flow path 34 and the lower medium tank flow path 31 with respect to the upper vertical medium flow path 25g.
  • the upper wide flow path 24j and the lower wide flow path 21k are wide, and the sizes of the upper vertical medium flow path 25g and the lower vertical medium flow path 21c are larger than the widths of the upper wide flow path 24j and the lower wide flow path 21k. Has also been made smaller.
  • a wide connection flow path 25k connected to the upper wide flow path 24j is disposed above the upper wide flow path 24j.
  • An upper connection flow path 25m that is narrower than the upper wide flow path 24j is disposed between the wide connection flow path 25k and the upper vertical medium flow path 25g.
  • the path 25g is connected by an upper connection flow path 25m.
  • a lower connection flow channel 21m narrower than the width of the lower wide flow channel 21k is disposed between the lower wide flow channel 21k and the lower vertical medium flow channel 21c.
  • the medium channel 21c is connected by a lower connection channel 21m.
  • the lower vertical medium flow path 21c and the upper vertical medium flow path 25g are extended to the back surface and the front surface of the small reactor 3, respectively.
  • first and second communication channels 37 a and 37 c are arranged between the upper medium tank channel 34 and the lower medium tank channel 31.
  • the first communication flow path 37a is disposed at a position close to the upper vertical medium flow path 25g
  • the second communication flow path 37c is disposed at a position close to the lower vertical medium flow path 21c
  • the tank channel 34 and the lower medium tank channel 31 are connected to each other at two locations by first and second communication channels 37a and 37c.
  • the lower medium tank flow path 31 first, the lower medium tank flow path 31.
  • either one of the upper medium tank channels 34 is filled with the temperature management medium, and the other is filled with the temperature management medium that has passed through the first or second communication channels 37a, 37c. Out of the opening 35 and the upper opening 36, the other flows out to the outside.
  • reaction flow path 22i One end of the reaction flow path 22i is connected to one or more reaction liquid introduction flow paths 38e and 38f, and the other end is connected to the reaction liquid discharge flow path 21b, and is introduced from the reaction liquid introduction flow paths 38e and 38f.
  • the liquid chemical (reaction fluid) reacts when flowing through the reaction flow path 22i, and the liquid containing the reaction product flows out from the reaction liquid outlet flow path 21b.
  • the reaction flow path 22i is sandwiched between the upper medium tank flow path 34 and the lower medium tank flow path 31, and the temperature control medium flowing through the upper medium tank flow path 34 and the lower medium tank flow path 31 allows The chemical liquid flowing through can be brought to a desired temperature.
  • the front surface and the back surface of the small reactor 3 are parallel to each other, and the lower vertical medium flow channel 21c and the upper vertical medium flow channel 25g are arranged perpendicular to the front surface and the back surface.
  • Reference numeral 4 in FIG. 5 indicates an external device that introduces and leads the chemical solution into and out of the small reactor 3
  • reference numeral 5 in FIG. 6 indicates a small reaction device that includes the external device 4 and the small reactor 3.
  • the external device 4 includes an upper flange 51a, a lower flange 51b, two flat plates 54a and 54b, a plurality of long screws 52a and 52b, an elastic upper ring member 50a and a lower ring member 50b, respectively.
  • a plurality of pressing members 55a and 55b (here, two) having elasticity are provided.
  • An upper ring member 50a and a lower ring member 50b having elastic force are disposed on the upper flange 51a and the lower flange 51b, and the upper ring member 50a and the lower ring member 50b are exposed so that the upper flange member 51a and the lower flange member 50b are exposed.
  • 51b is fitted in a hole formed in the two flat plates 54a and 54b.
  • the flat plates 54a and 54b are fitted between the flat plates 54a and 54b so that the upper ring member 50a and the lower ring member 50b are in contact with the periphery of the upper opening 36 and the periphery of the lower opening 35, respectively. Aligned and arranged.
  • the holding members 55a and 55b are arranged between the front surface of the small reactor 3 and the flat plate 54a, between the back surface and the flat plate 54b, at positions facing the upper flange 51a and the lower flange 51b, and the upper flange 51a and the holding member.
  • a force is applied to 55a and a force is applied between the lower flange 51b and the pressing member 55b, a force is applied perpendicularly to the front and back surfaces of the small reactor 3.
  • the upper flange 51a, the lower flange 51b, and the pressing members 55a and 55b are disposed between the two flat plates 54a and 54b and the small reactor 3, and the through holes formed in the two flat plates 54a and 54b.
  • the upper ring member 50a and the lower ring member 50b are disposed so as to surround the upper opening 36 and the lower opening 35, respectively, and the upper ring member 50a and the lower ring member 50b include the upper flange 51a and the lower flange 51b. Are pressed against the small reactor 3 by the two flat plates 55a and 55b.
  • Through holes 58a and 58b are formed in the upper flange 51a and the lower flange 51b, respectively, and one end of each of the through holes 58a and 58b is exposed inside a region surrounded by the upper ring member 50a and the lower ring member 50b.
  • An introductory pipe 56b is connected to the lower flange 51b, and a lead-out pipe 56a is connected to the upper flange 51a.
  • the lower longitudinal medium flow path 21c is connected to the lower flange 51b through a region surrounded by the lower ring member 50b.
  • the temperature management medium that has been introduced to and flows through the inside flows out from the upper vertical medium flow path 25g to the outlet pipe 56a through the region surrounded by the upper ring member 50a.
  • Reference numerals 41a to 45a and reference numerals 41b to 45b in FIGS. 1A to 1E are assembled as shown in FIG. 3, and between the upper ring member 50a and the pressing member 55a and between the lower ring member 50b and the pressing member 55b.
  • the ring-shaped contact portion where the upper ring member 50a contacts and is pressed when the force perpendicular to the ring is applied, and the ring-shaped contact portion where the lower ring member 50b contacts and is pressed are shown.
  • the upper vertical medium flow path 25g and the lower vertical medium flow path 21c are respectively located directly below the portions surrounded by the ring-shaped contact portions 41a to 45a and 41b to 45b to be pressed.
  • the first and second communication channels 37a, 37c, the upper medium tank channel 34, the lower medium tank channel 31, and the channels 22i, 38e, 38f through which the chemical solution (reaction fluid) flows are pressed rings.
  • the only flow paths that pass directly below the ring-shaped contact portions 41a to 45a and 41b to 45b to be pressed are the upper connection flow path 25m and the lower connection flow path 21m.
  • the lower connection channel 21m is formed smaller than the diameter of the ring member 50a
  • the width of the lower connection channel 21m is formed smaller than the diameter of the lower ring member 50b
  • the upper connection channel 25m extends from the center of the upper ring member 50a.
  • the lower connection flow path 21m crosses the position directly below from the center of the lower ring member 50b to a part of the outer periphery.
  • the narrower upper / lower connection flow path 25m is applied to the portion where the force is applied.
  • 21 m is arranged, so that none of the substrates 11 to 15 is damaged.
  • the area of the upper and lower connection flow paths 25m and 21m located directly below or directly above the connection region, which is the region inside the outer periphery of each ring member 50a and 50b, is more than 50% of the area of each connection region. It is formed to be smaller.
  • the opening portion was damaged by the screw tightening force of 2 N ⁇ m.
  • the small reactor 3 with improved pressure resistance according to the present invention is not damaged even by the screw tightening force of 6 N ⁇ m. Did not occur.
  • This small reactor 3 is formed by laminating five inorganic transparent substrates (first to fifth substrates) 11 to 15 made of borosilicate glass after being subjected to the following processing and fixing them to each other. Has been.
  • FIGS. 2A to 2E are cross-sectional views of the first to fifth substrates 11 to 15.
  • FIG. is there.
  • Each of the substrates 11 to 15 has a surface that is laminated with the other substrates 11 to 15 and is in contact with the adjacent substrates 11 to 15.
  • the first substrate 11 located on the top surface is an adhesive surface
  • the fifth substrate 15 located on the top is the bottom surface and the first and fifth substrates located on the bottom and top.
  • the second to fourth substrates 12 to 14 sandwiched between 11 and 15 are both adhesive surfaces.
  • a flattening process by polishing is performed on the bonding surfaces of the substrates 11 to 15, and then a process of forming a channel such as a bottomed or bottomless groove or a bottomed or bottomless hole is performed.
  • This flow path formation includes mechanical processing such as partial etching removal of the adhesion surface by chemical solution or reactive gas, excavation, and partial grinding.
  • the bonded surface is brought into contact with a mixed solution of hydrogen peroxide, ammonia and water (1: 1: 5) to make the bonded surface hydrophilic, and then washed with pure water.
  • a pure water film is formed on the bonding surfaces of the respective substrates 11 to 15, and each of the substrates 11 to 15 is rotated, and the pure water film is shaken off by a centrifugal force due to the rotation.
  • the pure water film of each of the substrates 11 to 15 is removed, the pure water film is not heated and evaporated and removed, so that water molecules are adsorbed on the bonding surface immediately after the swing-off removal.
  • the substrates 11 to 15 are stacked with their contact surfaces in contact with each other, the substrates 11 to 15 are bonded to each other by hydrogen bonding via water molecules.
  • Each of the substrates 11 to 15 is made of borosilicate glass or quartz glass (in this case, borosilicate glass), and the substrates 11 to 15 are bonded to each other by hydrogen bonding to 500 ° C. or more and 1000 ° C. or less (here. When heated to 570 ° C., the hydrogen bonds are changed to chemical bonds via oxygen, and the contacting adhesive surfaces are fixed by chemical bonds via oxygen, whereby the small reactor 3 is obtained.
  • impurities generated from the adhesive are not mixed into the reaction system of the small reactor 3, and the reaction is performed at a high temperature of 300 ° C. or higher. Can do.
  • Each of the substrates 11 to 15 has a rectangular shape with a notch formed in one of the four corners, and is formed in the same area and shape.
  • the first substrate 11 has a lower wide channel 21k made of a bottomed groove for temperature control, and is formed on the side of the lower wide channel 21k so as to be spaced apart from each other.
  • a medium flow path (heat medium introduction flow path) 21c, a chemical solution outlet flow path 21b, and a lower connection flow path 21m including a bottomed groove that connects the lower wide flow path 21k and the lower vertical medium flow path 21c are provided. ing.
  • the lower connection flow path 21m is formed to have a width narrower than the width of the wide lower wide flow path 21k.
  • an elongated reaction channel 22i composed of a bottomed groove located above the lower wide channel 21k is provided. Yes.
  • the lower surface of the second substrate 12 covers the lower wide channel 21k and the lower connection channel 21m, and constitutes the lower medium tank channel (lower jacket) 31 of FIG.
  • the second substrate 12 is formed with a first communication channel 22a and a second communication channel 22c, which are through holes, respectively. One ends of the first and second communication channels 22 a and 22 c are connected to the lower medium tank channel 31.
  • the reaction flow path 22i is branched in three directions around the junction point 22d, and a chemical solution outlet flow path 22b including a through hole is provided at one end of the branched portion, and the lower end thereof is laminated. When this is done, it is configured to communicate with the chemical solution outlet passage 21b of the first substrate 11. At the other two end portions of the reaction channel 22i branched, chemical introduction portions 22e and 22f, which are bottomed grooves wider than the reaction channel 22i, are formed.
  • the third substrate 13 When stacked, the lower surface of the third substrate 13 covers the surface of the reaction flow path 22i and makes the reaction flow path 22i into a pipe shape.
  • the third substrate 13 includes first and second communication channels 23a each including a through hole at positions communicating with the first and second communication channels 22a and 22c of the second substrate 12, respectively. 23c is provided.
  • the third substrate 13 has chemical solution introduction channels 23e and 23f each having a through hole that is located above the chemical solution introduction portions 22e and 22f of the second substrate 12 and connected to the chemical solution introduction portions 22e and 22f. Is provided.
  • the fourth substrate 14 is formed with a bottomless and wide upper wide flow path 24j for temperature control and is spaced apart to the side of the upper wide flow path 24j, and a chemical solution introduction flow comprising a through hole is formed. Paths 24e and 24f are formed.
  • the upper wide flow path 24j is positioned on the first and second communication flow paths 23a and 23c of the third substrate 13, and the bottom surface of the upper wide flow path 24j is the first and second communication flow. Except for the portions on the paths 23a and 23c, the third substrate 13 is covered with a surface facing upward.
  • the upper medium tank channel 34 formed by the upper wide channel 24j becomes the first and second communication channels 37a and 37c. Is connected to the lower medium tank channel 31.
  • the upper wide channel 24j is sandwiched between the bonding surfaces of the third and fifth substrates 13 and 15, and the upper medium tank channel (upper jacket). 34 is formed.
  • a wide connection flow path 25k made of a bottomed groove, an upper vertical medium flow path 25g made of a through hole, and a wide connection flow path 25k.
  • the upper connection flow path 25m which consists of a bottomed groove which connects the upper vertical medium flow path 25g is provided. Since the wide connection flow path 25k is positioned on the upper wide flow path 24j and connected to the upper medium tank flow path 34 when stacked, the upper medium tank flow path 34 and the upper vertical medium flow path 25g
  • the connection channel 25m and the wide connection channel 25k are connected by a lead-out channel 25a.
  • the fifth substrate 15 is provided with chemical solution introduction channels 25e and 25f each having a through hole above the two chemical solution introduction channels 24e and 24f of the fourth substrate 14, respectively.
  • the chemical solution introduction channels 25e, 25f, 24e, 24f, 23e, and 23f formed in the fourth and third substrates 15, 14, and 13 are communicated so as to form two channels in the stacking direction. Yes.
  • the two flow paths in the stacking direction are connected to the two reaction flow paths 22i that join at the joining point 22d at the chemical solution introduction portions 22e and 22f, respectively, and are introduced from the flow paths in the stacking direction.
  • the chemical solution (reaction fluid) is merged at one point of the merge point 22d in the reaction channel 22i and flows as one, and is led out of the small reactor 3 from the chemical solution deriving channel 21b. Accordingly, when chemical solutions that react with each other are introduced into the small reactor 3 from the two chemical solution introduction channels 25e and 25f of the fifth substrate 15, they are merged at the junction 22d of the reaction channel 22i and mixed to start the reaction. The reaction proceeds while flowing through one reaction channel 22i, and the reaction product can be taken out from the chemical solution outlet channel 21b.
  • the temperature control medium is introduced from the lower vertical medium flow path 21c via the lower flange 51b to fill the lower medium tank flow path 31, and then The temperature management heat medium is discharged from the upper vertical medium flow path 25g to the outside through the first communication flow paths 22a and 23a and the outlet flow path 25a and introduced from the lower vertical medium flow path 21c.
  • the upper medium tank channel 34 is filled, and then the upper vertical medium channel via the outlet channel 25a.
  • reaction flow path 22i When discharged from 25 g to the outside, the reaction flow path 22i is sandwiched between the temperature management media filled in the lower and upper medium tank flow paths 31 and 34, and the reaction is performed by managing the temperature of the temperature management medium. Chemical solution in the flow path 22i (reverse The temperature of the fluid) can be maintained at a desired temperature. Therefore, the chemical liquid flowing through the reaction channel 22i can be heated and cooled with high efficiency.
  • the temperature control medium is flowed from below to above, but it may be flowed from above to below.
  • the chemical solution reaction fluid
  • the small reactor 3 is installed upside down, the two flow paths are flowed upward from the bottom, merged at the merge point, and then flowed upward. May be. Further, in the above example, all the bonding surfaces are partially etched, but there may be bonding surfaces that are not etched.
  • two kinds of chemical solutions reaction fluid
  • the small reactor 3 of the present invention is not limited thereto, and one kind of chemical is reacted. The case where the reaction is controlled by heating or cooling when flowing in the flow path 22i is also included.
  • the lower opening 35 and the upper opening 36 are arranged on different surfaces of the small reactor 3, they may be arranged on the same surface. Furthermore, although the lower opening 35 and the upper opening 36 are arranged on the opposite sides in the longitudinal direction, they may be arranged on the same side, and when arranged in a straight line, by pressing the flanges 51a and 51b, The ring members 50a and 50b can be brought into close contact with the surface of the small reactor 3 without using the pressing members 55a and 55b.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

ガラス接合にて製作されたガラス製小型反応器であって、媒体供給部の耐圧を上げた小型反応器を提供する。縦方向媒体流路(21c)、(25g)の開口(35)、(36)にリング部材を介してフランジを取り付け、フランジから縦方向媒体流路(21c)、(25g)を介して小型反応器(3)内部の幅広流路(21k)、(24j)に温度管理媒体を供給するために、幅広流路(21k)、(24j)と縦方向媒体流路(21c)、(25g)とを接続流路(21m)、(25m)によって接続させる。接続流路(21m)、(25m)はリング部材下方位置を部分的に横切るようにされているため、力が加わる部分の流路の面積が少なくなり、リング部材の押圧力に対しての強度が増す。

Description

小型反応器
 本発明は、ガラス製の基板を積層して構成させる小型反応器に係り、特に、温度管理媒体を大きな圧力で供給する小型反応器に関する。
 本出願は、日本国において2009年7月6日に出願された日本国特許出願番号特願2009-159432を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 微細な流路を内蔵した小型反応器(マイクロリアクター)は、従来SUS(ステンレス)プレートが複数枚貼り合わされた金属製のものが主流であったが、近年、複数枚のガラス基板が貼り合わされたガラス製の小型反応器が出現した。
 ガラス製小型反応器は、金属製の小型反応器よりも酸やアルカリに強く、また透明であるから内部の反応状態を観察できる等の利点があるが、小型反応器を反応モジュール等の外部装置に組み込む際に、SUS製では問題がなかったガラスの割れ(破損)が生じる虞がある。
 ガラス製の小型反応器を大別すると、複数枚のガラス基板を樹脂(接着剤)にて接着したものと、接着剤を用いずに、ガラス接合法によってガラス基板を接着したものとの2種類がある。
 2種の小型反応器のうち、接着剤を用いないガラス製小型反応器は、反応流体中への接着剤汚染が無い点や、透明度が高い点で、接着剤で固めたガラス製小型反応器よりも有利であるが、接着剤で固めたガラス製小型反応器では、通常のSUS製小型反応器の媒体流路そのままの形状で製作しても、ガラス/接着剤/ガラスのサンドイッチ構造となるため、ガラスを破損する危険性は低いが、ガラス接合にて製作したガラス製の小型反応器では、通常のSUS製小型反応器の媒体流路そのままの形状では、媒体の供給部の耐圧が弱く、外部装置に組み付ける際にオーリング等のリング部材で締め付けを行うと、破損する虞がある。
 図4は通常のSUS製小型反応器の流路と同じパターンの流路を形成するように、複数のガラス基板を接着剤を用いずに積層して接合した従来のガラス製小型反応器103の側面図である。
 この小型反応器103は薬液反応用の反応流路122iと、温度管理用の二層の媒体槽流路131、134を有している。
 二層の媒体槽流路131、134は上下に重ねられる位置に配置されており、反応流路122iは、その間に位置するように形成されている。
 媒体槽流路131、134の底部又は天部には縦方向媒体流路121c、125gの一端が接続され、他端が小型反応器103の裏面と表面で開口135、136を形成している。
 二層の媒体槽流路131、134は、小型反応器103の内部で連絡流路137a、137bによって互いに接続されており、裏面と表面のいずれか一方の開口135、136から導入された温度管理媒体は、縦方向媒体流路121c、125gと媒体槽流路131、134と連絡流路137a、137bとを流れ、他方の開口135、136から流出するようにされている。
 反応流路122iの一端は導入流路138eに接続され、他端は導出流路121bに接続されており、導入流路138eから反応流路122i内に薬液(反応流体)を導入すると、反応流路122i内を流れて反応し、反応生成物を含有する薬液は導出流路121bから小型反応器103の外部に流出する。
 反応流路122iは媒体槽流路131、134で挟まれており、媒体槽流路131、134は温度が管理された温度管理媒体が充満して流れているため、温度を管理して反応を進行させることができる。
 温度管理媒体を開口135、136に導入、導出させる際には大きな圧力で温度管理媒体が供給されるため、温度管理媒体が流れる配管の先端にフランジを設け、図7に示される位置にオーリング151が配置され、オーリング151を介してフランジを小型反応器103に押圧し、オーリング151で囲まれた領域に温度管理媒体を導入又は導出させている。
 このとき、フランジを小型反応器103に押しつけるため、小型反応器103のうち、オーリング151と接触する部分の下方に力が加わってしまう。この小型反応器103では、力が加わる部分に大きな空洞である無底の媒体槽流路131、134が位置しているため、媒体槽流路131、134の上又は下に位置するガラス基板に割れ、ヒビが生じてしまう。
 なお、小型反応器103に関する技術は下記公報に記載されている。
特開2005-66382号公報 特開2004-81949号公報
 本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、ガラス接合にて製作されたガラス製小型反応器であって、媒体供給部の耐圧を上げた小型反応器を提供することである。
 上記課題を解決するために本発明は、基板が積層されて構成される反応器本体と、上記反応器本体の一面及び他面に開口された一対の開口部と、上記一対の開口部の一方より上記反応器本体内を介して上記一対の開口部の他方に連続する流路とを備え、上記開口部の周囲に、該開口部と上記流路に対して流体を流入又は流出させる配管の接続部材との間に配置されるリング部材が当接される環状の当接部を有し、上記流路は、上記環状の当接部の真下を横切るように形成されている小型反応器である。
 また、本発明は、上記流路は、上記環状の当接部の中心から外周の一部にかけて横切る小型反応器である。
 また、本発明は、上記リング部材の外周よりも内側の領域である接続領域の真下に位置する上記流路の面積は、上記接続領域の面積の50%よりも小さくなるように形成された小型反応器である。
 また、本発明は、上記反応器本体の内部には、反応流体が流れる反応流路と、温度管理媒体が流れる媒体槽流路と、上記反応器本体の表面に形成された上記開口部に上記媒体槽を接続する縦方向媒体流路とが形成され、上記温度管理媒体は、上記開口部から上記縦方向媒体流路を通って上記媒体槽流路に流入又は流出するように構成され、上記媒体槽流路は、幅広流路と、一端が上記幅広流路に接続され、他端が上記縦方向媒体流路に接続された接続流路とを有し、上記開口部を取り囲むように配置された上記リング部材が、上記開口部に上記温度管理媒体を流入又は流出させるフランジによって上記反応器本体に押圧されるように配置されたときに、上記接続流路は、上記リング部材の真下を横切るように形成された小型反応器である。
 また、本発明は、上記反応器本体の一面及び他面は矩形状に形成され、上記一対の開口部は、上記一面の長手方向の一方側及び上記他面の長手方向の他方に設けられている小型反応器である。
 また、本発明は、上記反応器本体は、上記当接部に当接する上記リング部材と、該当接部が設けられた面と反対側の面に上記当接部に対応して当接する押圧部材とによって挟持される小型反応器である。
 本発明は、媒体が供給される開口部周囲の耐圧を改善しているので、反応モジュール等の外部装置へ組み付ける際に、破損が生じにくい。
 また、本発明は、接着剤を用いていないので、反応系に接着剤から発生する不純物が混入することはなく、また反応を高温にして行うこともできる(300℃以上)。
図1(a)~(e)は、本発明の小型反応器を構成する5枚の基板の平面図である。 図2(a)~(e)は、本発明の小型反応器を構成する5枚の基板の断面図である。 図3は、本発明の小型反応器の一例の側面図である。 図4は、従来の小型反応器の一例の側面図である。 図5は、温度管理媒体を小型反応器に導入・導出させる外部装置の側面図である。 図6は、外部装置と小型反応器とで構成された小型反応装置の側面図である。 図7は、従来の小型反応器の平面図である。
 図3は本発明の小型反応器3の一例の側面図を示しており、図1(a)~(e)に示した無機透明基板である第一~第五の基板11~15が積層され、互いに固定されて構成されている。
 第一~第五の基板11~15の序数は、図3に示すように上下を決めて配置したときに、最下部から最上部に向けて漸増するように付している。
 図3を参照し、小型反応器3は反応流路22iと、反応流路22iの上部と下部に離間して配置され、互いに略同形状の上部媒体槽流路34と下部媒体槽流路31を有している。
 上部媒体槽流路34の一部である上部幅広流路24jと下部媒体槽流路31の一部である下部幅広流路21kは、略長方形形状であり、上部幅広流路24jから離間した位置には、上部縦方向媒体流路25gが設けられており、下部幅広流路21kから離間した位置には、下部縦方向媒体流路21cが設けられている。
 上部媒体槽流路34と下部媒体槽流路31は重ね合う位置に配置されており、上部縦方向媒体流路25gは、重ねられた上部媒体槽流路34と下部媒体槽流路31の一端に位置し、下部縦方向媒体流路21cは、重ねられた上部媒体槽流路34と下部媒体槽流路31の上部縦方向媒体流路25gに対する反対側に位置している。
 上部幅広流路24jと下部幅広流路21kは幅広であり、上部縦方向媒体流路25gと下部縦方向媒体流路21cの大きさは、上部幅広流路24jや下部幅広流路21kの幅よりも小さくされている。
 上部幅広流路24jの上方には、上部幅広流路24jに接続された幅広接続流路25kが配置されている。
 幅広接続流路25kと上部縦方向媒体流路25gの間には、上部幅広流路24jよりも幅狭の上部接続流路25mが配置されており、幅広接続流路25kと上部縦方向媒体流路25gは、上部接続流路25mによって接続されている。
 他方、下部幅広流路21kと下部縦方向媒体流路21cの間には、下部幅広流路21kの幅よりも狭い下部接続流路21mが配置されており、下部幅広流路21kと下部縦方向媒体流路21cとは、下部接続流路21mによって接続されている。
 下部縦方向媒体流路21cと上部縦方向媒体流路25gは、小型反応器3の裏面と表面にまでそれぞれ延設されており、裏面と表面には、下部縦方向媒体流路21cと上部縦方向媒体流路25gの先端である下部開口35と上部開口36がそれぞれ形成されている。
 上部媒体槽流路34と下部媒体槽流路31の間には、第一、第二の連絡流路37a、37cが配置されている。
 第一の連絡流路37aは、上部縦方向媒体流路25gに近い位置に配置されており、第二の連絡流路37cは、下部縦方向媒体流路21cに近い位置に配置され、上部媒体槽流路34と下部媒体槽流路31は、第一、第二の連絡流路37a、37cによって二カ所で互いに接続されている。
 したがって、下部開口35と上部開口36のうち、いずれか一方から温度管理された熱水、冷水又はオイル等から成る温度管理媒体を小型反応器3内に導入すると、先ず、下部媒体槽流路31又は上部媒体槽流路34のいずれか一方が温度管理媒体で満たされ、第一又は第二の連絡流路37a、37cを通った温度管理媒体によって、他方が満たされ、温度管理媒体は、下部開口35と上部開口36のうち、他方から外部に流出する。
 反応流路22iは、一端が一又は二以上の反応液導入流路38e、38fに接続され、他端が反応液導出流路21bに接続されており、反応液導入流路38e、38fから導入された薬液(反応流体)が反応流路22iを流れる際に反応し、反応生成物を含有する液体が、反応液導出流路21bから外部に流出するようになっている。
 反応流路22iは、上部媒体槽流路34と下部媒体槽流路31に挟まれており、上部媒体槽流路34と下部媒体槽流路31を流れる温度管理媒体によって、反応流路22i内を流れる薬液を所望の温度にできるようになっている。
 本発明では、小型反応器3の表面と裏面は平行になっており、下部縦方向媒体流路21cと上部縦方向媒体流路25gは、表面と裏面に対して垂直に配置されている。
 図5の符号4は、薬液を小型反応器3内に導入・導出させる外部装置を示しており、図6の符号5は、外部装置4と小型反応器3とで構成された小型反応装置を示している。
 外部装置4は、上部フランジ51aと、下部フランジ51bと、二枚の平板54a、54bと、複数の長ネジ52a、52bと、それぞれ弾性力のある上部リング部材50aと下部リング部材50bと、それぞれ弾性力のある複数の押さえ部材55a、55b(ここでは二個)とを有している。
 上部フランジ51aと下部フランジ51bには、弾性力を有する上部リング部材50aと下部リング部材50bとが配置されており、上部リング部材50aと下部リング部材50bを露出させて、上部フランジ51aと下部フランジ51bとが二枚の平板54a、54bに形成された孔に嵌め込まれている。
 平板54a、54bは、平板54a、54bに嵌め込まれ上部リング部材50aと下部リング部材50bとが、上部開口36の周囲と下部開口35の周囲にそれぞれ接触するように小型反応器3との間で位置合わせをされて配置されている。
 押さえ部材55a、55bは、小型反応器3の表面と平板54aの間と裏面と平板54bの間であって、上部フランジ51aと下部フランジ51bと対向する位置に配置され、上部フランジ51aと押さえ部材55aとに力を加え、また、下部フランジ51bと押さえ部材55bとの間に力を加えると、小型反応器3の表面と裏面に垂直に力が印加されるようになっている。
 そのように、二枚の平板54a、54bと小型反応器3の間に上部フランジ51aと下部フランジ51bと押さえ部材55a、55bとを配置し、二枚の平板54a、54bに形成された貫通孔に長ネジ52a、52bを挿通して先端にナット53a、53bを装着してネジを締めると、小型反応器3は二枚の平板54a、54bによって押圧される。
 その結果、上部リング部材50aと下部リング部材50bとは、上部開口36と下部開口35とをそれぞれ取り囲むように配置されており、上部リング部材50aと下部リング部材50bは上部フランジ51aと下部フランジ51bとを介して二枚の平板55a、55bによって小型反応器3に押圧される。
  上部フランジ51aと下部フランジ51bには、貫通孔58a、58bがそれぞれ形成されており、貫通孔58a、58bの一端は、上部リング部材50aと下部リング部材50bで囲まれた領域の内側に露出されている。
 下部フランジ51bには導入配管56bが接続され、上部フランジ51aには導出配管56aが接続されており、導入配管56bから、下部リング部材50bで囲まれた領域を介して下部縦方向媒体流路21cに導入され、内部を流れた温度管理媒体は、上部縦方向媒体流路25gから、上部リング部材50aで囲まれた領域を介して、導出配管56aに流出する。
 図1(a)~(e)の符号41a~45aと符号41b~45bは、図3のように組み立て、上部リング部材50aと押さえ部材55aの間と、下部リング部材50bと押さえ部材55bの間とに垂直な力が加えられたときに、上部リング部材50aが当接し押圧されるリング状の当接部と、下部リング部材50bが当接し押圧されるリング状の当接部を示している。
 上部縦方向媒体流路25gと下部縦方向媒体流路21cは、押圧されるリング状の当接部41a~45a、41b~45bで取り囲まれた部分の真下にそれぞれ位置している。
 他方、第一、第二の連絡流路37a、37cと上部媒体槽流路34と下部媒体槽流路31と、薬液(反応流体)が流れる流路22i、38e、38fは、押圧されるリング状の当接部41a~45a、41b~45bの外側に位置している。
 押圧されるリング状の当接部41a~45a、41b~45bの真下を横断する流路は、上部接続流路25mと下部接続流路21mだけであり、上部接続流路25mの幅は、上部リング部材50aの直径よりも小さく形成されており、下部接続流路21mの幅は、下部リング部材50bの直径よりも小さく形成されており、上部接続流路25mは、上部リング部材50aの中心から外周の一部にかけてその真下位置を横断し、下部接続流路21mは下部リング部材50bの中心から外周の一部にかけてその真下位置を横断する。
 したがって、上部リング部材50aと押さえ部材55aの間と、下部リング部材50bと押さえ部材55bの間とに垂直な力が加わったとき、力が加わる部分には幅狭の上部・下部接続流路25m、21mしか配置されていないので、いずれの基板11~15も破損することはない。
 また、各リング部材50a、50bの外周よりも内側の領域である接続領域の真下又は真上に位置する上部、下部接続流路25m、21mの面積は、各接続領域の面積の50%よりも小さくなるように形成されている。
 従来の小型反応器103は2N・mのネジ締め込み力により開口部分が破損したが、本発明の耐圧改善をした小型反応器3については、6N・mのネジ締め込み力にても破損は生じなかった。
 この小型反応器3は、ホウケイ酸ガラスから成る5枚の無機透明基板(第一~第五の基板)11~15が、以下のような処理を行われた後積層され、互いに固定されて形成されている。
 図1(a)~(e)は第一~第五の基板11~15の平面図であり、図2(a)~(e)は第一~第五の基板11~15の断面図である。
 各基板11~15は、それぞれ他の基板11~15と積層されて隣接する基板11~15と接触する面を有しており、その面を「接着面」とすると、積層したときに最下部に位置する第一の基板11は表面が接着面であり、最上部に位置する第五の基板15は、底面が接着面であり、最下部と最上部に位置する第一、第五の基板11、15に挟まれた第二~第四の基板12~14は、両面が接着面である。
 各基板11~15の接着面には、先ず、研磨による平坦化処理を行った後、有底又は無底の溝や有底又は無底の孔等の流路の形成処理を行う。この流路形成は、薬液や反応性ガスによる接着面の部分的なエッチング除去や、掘削、部分的研削等の機械的処理が含まれる。
 次いで、接着面を過酸化水素とアンモニアと水との混合液(1:1:5)に接触させ、接着面を親水化させた後、純水による洗浄処理をする。
 この状態では、各基板11~15の接着面には純水膜が形成されており、各基板11~15を回転させ、回転による遠心力で純水膜を振り切り除去する。
 各基板11~15の純水膜は除去されるが、純水膜は加熱されて蒸発除去されてはいないので、振り切り除去の直後は接着面に水分子が吸着しており、その状態で、各基板11~15を接触面同士を接触させて積層すると、水分子を介した水素結合によって、各基板11~15が互いに接着される。
 各基板11~15はホウケイ酸ガラスや石英ガラスで構成されており(ここではホウケイ酸ガラス)、各基板11~15が水素結合によって互いに接着された状態で、500℃以上1000℃以下(ここでは570℃)に加熱すると、水素結合が酸素を介した化学結合に変わり、接触する接着面は、酸素を介して化学結合して固定され、小型反応器3が得られる。
 各基板11~15を接着剤を用いずに接合することにより、小型反応器3の反応系に接着剤から発生する不純物が混入することはなく、また反応を300℃以上の高温にして行うことができる。
 各基板11~15に形成された流路の相対的な位置関係は、各基板11~15を積層したり、小型反応器3を形成しても変化しないから、以下、小型反応器3が形成されたときの位置関係で説明する。
 各基板11~15は、四隅のうち、一隅に切り欠きが形成された長方形であり、同一面積、同一形状に形成されている。
 第一の基板11には、温度管理用であって有底の溝から成る下部幅広流路21kと、下部幅広流路21kの側方に離間して形成され、それぞれ貫通孔から成る下部縦方向媒体流路(熱媒体導入流路)21cと薬液導出流路21bと、下部幅広流路21kと下部縦方向媒体流路21cとを接続する有底溝から成る下部接続流路21mとが設けられている。下部接続流路21mは、幅広の下部幅広流路21kの幅より狭い幅に形成されている。
 第一の基板11上に配置される第二の基板12の上方の面(表面)には、下部幅広流路21kの上部に位置する有底の溝から成る細長い反応流路22iが設けられている。第二の基板12の下方の面は下部幅広流路21kと下部接続流路21mとを覆い、図3の下部媒体槽流路(下部ジャケット)31を構成させる。
 また、第二の基板12には、それぞれ貫通孔である第一の連絡流路22aと第二の連絡流路22cが形成されている。
 第一、第二の連絡流路22a、22cの一端は、下部媒体槽流路31に接続されている。
 反応流路22iは合流地点22dを中心として三方向に分岐しており、分岐した部分の一つの端部には、貫通孔から成る薬液導出流路22bが設けられており、その下端は、積層されたときに、第一の基板11の薬液導出流路21bと連通するように構成されている。
 反応流路22iの分岐した他の二つの端部には、反応流路22iよりも幅の広い有底溝である薬液導入部22e、22fが形成されている。
 第三の基板13の下方の面は、積層されたときに、反応流路22iの表面を覆い、反応流路22iをパイプ状にする。
 また、第三の基板13には、第二の基板12の第一、第二の連絡流路22a、22cとそれぞれ連通する位置に、貫通孔から成る第一、第二の連絡流路23a、23cがそれぞれ設けられている。
 したがって、第二、第三の基板12、13の互いに連通する第一の連絡流路22a、23aと、第二の連絡流路22c、23cによって、それぞれ図3に示した第一、第二の連絡流路37a、37cが形成される。
 また第三の基板13には、第二の基板12の薬液導入部22e、22fの上部に位置し、薬液導入部22e、22fに接続される、貫通孔から成る薬液導入流路23e、23fが設けられている。
 第四の基板14には、温度管理用であって無底で幅広の上部幅広流路24jが形成されており、上部幅広流路24jの側方に離間して、貫通孔からなる薬液導入流路24e、24fが形成されている。
 上部幅広流路24jは、第三の基板13の第一、第二の連絡流路23a、23cの上に位置しており、上部幅広流路24jの底面は、第一、第二の連絡流路23a、23c上の部分を除き、第三の基板13の上方を向いた面で塞がれる。
 第四の基板14が第三の基板13に積層されると、後述するように上部幅広流路24jによって形成される上部媒体槽流路34は、第一、第二の連絡流路37a、37cによって、下部媒体槽流路31に接続される。
 第四の基板14上に第五の基板15が積層されると、上部幅広流路24jは第三、第五の基板13、15の接着面によって挟まれ、上部媒体槽流路(上部ジャケット)34が形成される。
 第五の基板15の第四の基板14と接着される接着面には、有底溝から成る幅広接続流路25kと、貫通孔から成る上部縦方向媒体流路25gと、幅広接続流路25kと上部縦方向媒体流路25gとを接続する有底溝から成る上部接続流路25mが設けられている。
 積層したときに幅広接続流路25kは上部幅広流路24j上に位置し、上部媒体槽流路34に接続されるから、上部媒体槽流路34と上部縦方向媒体流路25gとは、上部接続流路25mと幅広接続流路25kとから成る導出流路25aによって接続されている。
 また第五の基板15には、第四の基板14の二個の薬液導入流路24e、24fの上方位置に、貫通孔から成る薬液導入流路25e、25fがそれぞれ配置されており、第五、第四、第三の基板15、14、13に形成された薬液導入流路25e、25f、24e、24f、23e、23fは、積層方向に二個の流路を形成するように連通されている。
 そして、その積層方向の二個の流路は、合流地点22dで合流する反応流路22iの二本に、薬液導入部22e、22fにおいてそれぞれ接続されており、積層方向の流路から導入された薬液(反応流体)は、反応流路22i内で合流地点22dの一点で合流して一本になって流れ、薬液導出流路21bから小型反応器3の外部に導出される。
 したがって、第五の基板15の二つの薬液導入流路25e、25fから小型反応器3内に互いに反応する薬液を導入すると、反応流路22iの合流地点22dで合流し、混合されて反応が開始され、一本の反応流路22iを流れる間に反応が進行し、反応生成物は、薬液導出流路21bから外部に取り出すことができる。
 この小型反応器3を前述のような外部装置4に取り付けると、下部フランジ51bを介して下部縦方向媒体流路21cから温度管理媒体を導入して下部媒体槽流路31を満たした後、その温度管理熱媒体を、第一の連絡流路22a、23aと導出流路25aとを介して上部縦方向媒体流路25gから外部に排出すると共に、下部縦方向媒体流路21cから導入した温度管理媒体を、第二の連絡流路22c、23cを介して上部媒体槽流路34内に導入し、上部媒体槽流路34を満たした後、導出流路25aを介して上部縦方向媒体流路25gから外部に排出させると、反応流路22iは、下部及び上部媒体槽流路31、34に充満した温度管理媒体で挟まれた状態になり、温度管理媒体の温度を管理することで、反応流路22i内の薬液(反応流体)の温度を所望の温度に維持することができる。
 したがって、反応流路22iを流れる薬液の加熱や冷却を高効率で行うことができる。
 なお、上記小型反応器3では、下方から上方に向けて温度管理媒体を流したが、上方から下方に向けて流してもよい。また、薬液(反応流体)についても、上記小型反応器3を上下反転して設置し、二ヵ所の流路を下方から上方に向けて流し、合流地点で合流させた後、上方に向けて流してもよい。
 また、上記例では、全部の接着面が、その一部表面をエッチングされていたが、エッチングしない接着面があってもよい。
 また、二種類の薬液(反応流体)を合流させて反応流路22i内で化学反応をさせていたが、本発明の小型反応器3はそれに限定されるものではなく、一種類の薬品を反応流路22i内を流す際に加熱又は冷却して反応を制御する場合も含まれる。
 また、下部開口35と上部開口36を小型反応器3の異なる表面に配置したが、同じ面に配置してもよい。
 更にまた、下部開口35と上部開口36を長手方向の互いに反対側に配置したが、同じ側に配置してもよく、一直線に配置した場合には、フランジ51a、51b同士を押圧することで、押さえ部材55a、55bを用いなくてもリング部材50a、50bを小型反応器3の表面に密着させることができる。
 3 小型反応器、11~15 基板、21k,24j 幅広流路、21m,25m,25k 接続流路、22i 反応流路、31,34 媒体槽流路、21c,25g 縦方向媒体流路、50a,50b リング部材、51a,51b フランジ

Claims (6)

  1.  基板が積層されて構成される反応器本体と、
     上記反応器本体の一面及び他面に開口された一対の開口部と、
     上記一対の開口部の一方より上記反応器本体内を介して上記一対の開口部の他方に連続する流路とを備え、
     上記開口部の周囲に、該開口部と上記流路に対して流体を流入又は流出させる配管の接続部材との間に配置されるリング部材が当接される環状の当接部を有し、
     上記流路は、上記環状の当接部の真下を横切るように形成されている小型反応器。
  2.  上記流路は、上記環状の当接部の中心から外周の一部にかけて横切る請求項1記載の小型反応器。
  3.  上記リング部材の外周よりも内側の領域である接続領域の真下に位置する上記流路の面積は、上記接続領域の面積の50%よりも小さくなるように形成された請求項2に記載の小型反応器。
  4.  上記反応器本体の内部には、反応流体が流れる反応流路と、温度管理媒体が流れる媒体槽流路と、上記反応器本体の表面に形成された上記開口部に上記媒体槽を接続する縦方向媒体流路とが形成され、
     上記温度管理媒体は、上記開口部から上記縦方向媒体流路を通って上記媒体槽流路に流入又は流出するように構成され、
     上記媒体槽流路は、幅広流路と、一端が上記幅広流路に接続され、他端が上記縦方向媒体流路に接続された接続流路とを有し、
     上記開口部を取り囲むように配置された上記リング部材が、上記開口部に上記温度管理媒体を流入又は流出させるフランジによって上記反応器本体に押圧されるように配置されたときに、上記接続流路は、上記リング部材の真下を横切るように形成された請求項1記載の小型反応器。
  5.  上記反応器本体の一面及び他面は矩形状に形成され、
     上記一対の開口部は、上記一面の長手方向の一方側及び上記他面の長手方向の他方に設けられている請求項1記載の小型反応器。
  6.  上記反応器本体は、上記当接部に当接する上記リング部材と、該当接部が設けられた面と反対側の面に上記当接部に対応して当接する押圧部材とによって挟持される請求項5記載の小型反応器。
PCT/JP2010/061481 2009-07-06 2010-07-06 小型反応器 WO2011004822A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011521929A JPWO2011004822A1 (ja) 2009-07-06 2010-07-06 小型反応器
KR1020127001197A KR20120058499A (ko) 2009-07-06 2010-07-06 소형 반응기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009159432 2009-07-06
JP2009-159432 2009-07-06

Publications (1)

Publication Number Publication Date
WO2011004822A1 true WO2011004822A1 (ja) 2011-01-13

Family

ID=43429246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061481 WO2011004822A1 (ja) 2009-07-06 2010-07-06 小型反応器

Country Status (3)

Country Link
JP (1) JPWO2011004822A1 (ja)
KR (1) KR20120058499A (ja)
WO (1) WO2011004822A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2821134A1 (en) 2013-07-04 2015-01-07 Technische Universität Kaiserslautern A system and a method for the implementation of chemical, biological or physical reactions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302148B2 (ja) * 2018-08-03 2023-07-04 株式会社ニコン 流体デバイスキットおよび流体デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270729A (ja) * 2004-03-23 2005-10-06 Nippon Sheet Glass Co Ltd マイクロ化学システム用チップホルダ
JP2005326176A (ja) * 2004-05-12 2005-11-24 Ricoh Opt Ind Co Ltd マイクロチップ及びマイクロチップ系
JP2006281071A (ja) * 2005-03-31 2006-10-19 Ube Ind Ltd マイクロデバイス
JP2008039100A (ja) * 2006-08-08 2008-02-21 Youwa:Kk 平板流路及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031802B (zh) * 2005-01-07 2012-11-07 积水化学工业株式会社 使用盒的检测装置
JP2008023406A (ja) * 2006-07-18 2008-02-07 Fuji Xerox Co Ltd 一体型接続部を有するマイクロリアクター装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270729A (ja) * 2004-03-23 2005-10-06 Nippon Sheet Glass Co Ltd マイクロ化学システム用チップホルダ
JP2005326176A (ja) * 2004-05-12 2005-11-24 Ricoh Opt Ind Co Ltd マイクロチップ及びマイクロチップ系
JP2006281071A (ja) * 2005-03-31 2006-10-19 Ube Ind Ltd マイクロデバイス
JP2008039100A (ja) * 2006-08-08 2008-02-21 Youwa:Kk 平板流路及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2821134A1 (en) 2013-07-04 2015-01-07 Technische Universität Kaiserslautern A system and a method for the implementation of chemical, biological or physical reactions

Also Published As

Publication number Publication date
JPWO2011004822A1 (ja) 2012-12-20
KR20120058499A (ko) 2012-06-07

Similar Documents

Publication Publication Date Title
US6537506B1 (en) Miniaturized reaction apparatus
CN101678497B (zh) 包括多个扩散焊接板的气体分布器以及制造这种气体分布器的方法
JP4977198B2 (ja) 電子マイクロ流体素子のシステム・イン・パッケージプラットフォーム
WO2010147173A1 (ja) 小型反応器の製造方法、小型反応器
WO2007049332A1 (ja) フローセル及びその製造方法
TWI358151B (en) Membrane electrode assembly
JP2006346671A (ja) 液液界面反応装置
WO2011004822A1 (ja) 小型反応器
WO2005100896A1 (ja) 熱交換器及びその製造方法
US9132381B2 (en) Hydrogen separation device
US20120040448A1 (en) Microreactors With Connectors Sealed Thereon; Their Manufacturing
JP2012007920A (ja) マイクロ流路デバイスの製造方法
WO2019092989A1 (ja) マイクロ流体チップおよびマイクロ流体デバイス
JP5598432B2 (ja) マイクロ流路デバイスの製造方法及びマイクロ流路チップ
KR20090007173A (ko) 웨이퍼 레벨 패키지, 바이오칩 키트 및 이들의 패키징 방법
JP4532457B2 (ja) マイクロ化学反応装置
EP3936807B1 (en) Fluid flow path device
CN105246584B (zh) 可拆卸的堆叠的流反应器
JP4488704B2 (ja) マイクロ流体装置及びマイクロ流体デバイスの集積方法
JP2008238097A (ja) 滴生成用微小流路集合体装置
JP2002195776A (ja) プレート式熱交換器
US9446378B2 (en) Fluidic module permanent stack assemblies and methods
US20120219752A1 (en) Honeycomb Body U-Bend Mixers.
JP2001259392A (ja) 液体混合器
JP2004256380A (ja) ガラス基板の接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797133

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521929

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127001197

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10797133

Country of ref document: EP

Kind code of ref document: A1