WO2011004816A1 - マイクロ波プラズマ処理装置及び誘電体板 - Google Patents

マイクロ波プラズマ処理装置及び誘電体板 Download PDF

Info

Publication number
WO2011004816A1
WO2011004816A1 PCT/JP2010/061468 JP2010061468W WO2011004816A1 WO 2011004816 A1 WO2011004816 A1 WO 2011004816A1 JP 2010061468 W JP2010061468 W JP 2010061468W WO 2011004816 A1 WO2011004816 A1 WO 2011004816A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
dielectric plate
plasma
plate
microwaves
Prior art date
Application number
PCT/JP2010/061468
Other languages
English (en)
French (fr)
Inventor
直樹 松本
和樹 ▲高▼橋
直輝 三原
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2011004816A1 publication Critical patent/WO2011004816A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas

Definitions

  • the present invention relates to a microwave plasma processing apparatus that generates plasma in a processing chamber using microwaves and performs plasma processing on an object to be processed using the plasma, and a dielectric plate that constitutes the microwave plasma processing apparatus.
  • the RLSA microwave plasma processing apparatus includes a processing chamber in which a semiconductor wafer that is an object to be processed is accommodated.
  • a flat circular slot plate in which a large number of slots are formed in a predetermined pattern is provided in the upper portion of the processing chamber.
  • a dielectric plate made of quartz, AlN or the like that shortens the wavelength of the microwave guided from the microwave generation source is in surface contact, and on the lower surface side, the processing chamber is kept in vacuum.
  • a dielectric window provided for this purpose is in surface contact.
  • a cylindrical microwave incident portion into which microwaves are incident is integrally formed at the substantially central portion of the upper surface of the dielectric plate.
  • the microwave guided from the microwave generation source is incident on the dielectric plate through the microwave incident part.
  • the wavelength of the microwave incident on the dielectric plate is shortened, and the microwave whose wavelength is shortened is radiated from the slot of the slot plate into the processing chamber through the dielectric window.
  • the process gas introduced into the processing chamber is turned into plasma by the microwave radiated into the processing chamber, and the semiconductor wafer is subjected to plasma processing by the plasma of the process gas.
  • the slot plate is deteriorated, and the propagation of the microwave becomes uneven, The generated plasma may become unstable.
  • the dielectric plate has a microwave incident part for introducing the microwave without loss, the processing method for forming the dielectric plate is limited, and there is a limit to reducing the surface roughness. there were. For this reason, there has been no idea of solving the above problem by paying attention to the design change of the dielectric plate.
  • the inventor of the present application has made extensive studies under such circumstances and found that there is a cause in the surface roughness of the dielectric plate in surface contact with the upper surface of the slot plate. More specifically, since the surface of the dielectric plate on the slot plate side is rough, when a microwave is applied, a local high voltage is generated in the gap between the projection of the dielectric plate and the slot plate, and a local discharge is generated. The inventors have focused on the fact that the dielectric plate and the slot plate are rubbed when the temperature rises due to the difference in thermal expansion coefficient, damaging the surface of the slot plate and making the propagation of microwaves uneven.
  • the present invention has been made in view of such circumstances, and by reducing the surface roughness of the surface of the dielectric plate, particularly the surface in contact with the slot plate, to be smaller than the surface roughness of the other surface, the cost can be reduced.
  • a plasma processing apparatus capable of reducing local discharge between a dielectric plate and a slot plate and improving plasma stability, and a dielectric plate constituting the microwave plasma processing apparatus.
  • a microwave plasma processing apparatus generates a plasma in a processing chamber by using a microwave, and in the microwave plasma processing apparatus that performs a plasma process on an object to be processed with the plasma, Is provided on one side and is in surface contact with the other side of the dielectric plate that shortens the wavelength of the incident microwave, and radiates the wavelength-shortened microwave toward the processing chamber.
  • a slot plate having a plurality of microwave radiation slots, and the surface roughness of the dielectric plate on the other surface side is smaller than the surface roughness on the one surface side.
  • the surface roughness on the other surface side of the dielectric plate is smaller than the surface roughness on the one surface side of the dielectric plate provided with the microwave incident part. Therefore, by reducing the surface roughness on the other surface side, the local discharge between the dielectric plate and the slot plate is reduced, the microwave propagation is kept uniform, and the plasma stability is improved. Further, since the surface roughness on the other surface side is reduced except for one surface side, the dielectric plate can be formed at low cost.
  • a microwave plasma processing apparatus generates a plasma in a processing chamber by using a microwave, and in the microwave plasma processing apparatus that performs a plasma process on an object to be processed with the plasma, Is provided on one side and is in surface contact with the other side of the dielectric plate that shortens the wavelength of the incident microwave, and radiates the wavelength-shortened microwave toward the processing chamber.
  • the other surface side of the dielectric plate that is, the slot plate side is polished. Therefore, by reducing the surface roughness on the other surface side, the local discharge between the dielectric plate and the slot plate is reduced, and the stability of the plasma is improved.
  • the dielectric plate is formed by non-polishing and the other surface is polished except for one surface, the dielectric plate can be formed at low cost. For example, the entire surface of the dielectric plate having the microwave incident portion is formed by cutting, and then the other surface is ground to reduce the surface roughness on the other surface compared to the one surface. It ’s fine. According to this processing method, the microwave plasma processing apparatus according to the present invention can be configured at low cost.
  • the microwave plasma processing apparatus is characterized in that the surface roughness of the other surface side of the dielectric plate satisfies Ra ⁇ 0.2.
  • the surface roughness of the other surface of the dielectric plate satisfies Ra ⁇ 0.2, the local discharge between the dielectric plate and the slot plate is reduced, and the plasma stability is improved. To do.
  • a dielectric window is in surface contact with the processing chamber side of the slot plate, and the surface roughness of the dielectric window on the slot plate side is Ra ⁇ 0. 2 is satisfied.
  • the dielectric window is in surface contact with the processing chamber side of the slot plate, and the surface roughness of the dielectric window on the slot plate side satisfies Ra ⁇ 0.2. Accordingly, local discharge between the slot plate and the dielectric window is also reduced, and the stability of the plasma is further improved.
  • the microwave plasma processing apparatus includes a microwave generation source that generates a microwave, and a coaxial waveguide that guides the microwave generated by the microwave generation source to the processing chamber, and the dielectric plate And the slot plate has a disc shape, and the microwave incident portion protrudes from the substantially central portion on the one surface side of the dielectric plate toward the coaxial waveguide, and is fitted into the coaxial waveguide. It is a cylindrical member.
  • the microwave incident portion is formed of a cylindrical member that protrudes from one surface side of the dielectric plate to the coaxial waveguide side and fits inside the coaxial waveguide. Therefore, it is possible to effectively introduce the microwave guided from the microwave generation source to the dielectric plate, reduce local discharge between the dielectric plate and the slot plate, and improve the plasma stability. It is.
  • the dielectric plate according to the present invention has a microwave incident portion on one side where a microwave is incident, and the dielectric plate that shortens the wavelength of the incident microwave has a surface roughness on the other side of the dielectric plate. It is smaller than the surface roughness of the side.
  • the dielectric plate is provided in a microwave plasma processing apparatus that generates plasma in a processing chamber by microwaves and performs plasma processing on the target object with the plasma.
  • a microwave plasma processing apparatus having the above-described action is configured. That is, the local discharge between the dielectric plate and the slot plate is reduced, the microwave propagation is kept uniform, and the plasma stability is improved. Further, since the surface roughness on the other surface side is reduced except for one surface side, the dielectric plate can be formed at low cost.
  • a microwave plasma processing apparatus generates a plasma in a processing chamber by using a microwave, and in the microwave plasma processing apparatus that performs a plasma process on an object to be processed with the plasma, Is provided on one side and is in surface contact with the other side of the dielectric plate that shortens the wavelength of the incident microwave, and radiates the wavelength-shortened microwave toward the processing chamber.
  • a slot plate having a plurality of microwave radiation slots, and the surface roughness of the other side of the dielectric plate satisfies Ra ⁇ 0.2.
  • a microwave plasma processing apparatus generates a plasma in a processing chamber by using a microwave, and in the microwave plasma processing apparatus that performs a plasma process on an object to be processed with the plasma, Is provided on one side and is in surface contact with the other side of the dielectric plate that shortens the wavelength of the incident microwave, and radiates the wavelength-shortened microwave toward the processing chamber.
  • a slot plate having a plurality of microwave radiation slots, and at least the other surface side of the dielectric plate is formed by polishing.
  • the local discharge between the dielectric plate and the slot plate can be reduced at low cost, the microwave can be introduced uniformly, and the stability of the plasma can be improved.
  • FIG. 1 It is sectional drawing which shows typically an example of the microwave plasma processing apparatus which concerns on embodiment of this invention. It is a top view of a dielectric material board. It is a side view of a dielectric plate. It is a bottom view of a dielectric plate. It is a sectional side view of a dielectric plate. It is the sectional side view to which the principal part of the dielectric material board was expanded. It is the top view which showed the structure of the slot board typically. It is a top view of the slot plate before use concerning this embodiment. It is a top view of the slot plate after use for a fixed period concerning this embodiment. It is a top view of the slot board before use which concerns on a prior art. It is a top view of the slot board after a fixed period use based on a prior art.
  • FIG. 1 is a cross-sectional view schematically showing an example of a microwave plasma processing apparatus according to an embodiment of the present invention.
  • the overall configuration of the microwave plasma processing apparatus will be described, and then the details of the dielectric plate 33, the slot plate 31, and the dielectric window 28 according to the embodiment of the present invention, in particular, the surface roughness will be described.
  • the microwave plasma processing apparatus is, for example, an RLSA type, and includes a substantially cylindrical processing chamber 1 that is airtight and grounded.
  • the processing chamber 1 is made of, for example, aluminum (Al), and includes a flat plate-shaped annular bottom wall 1a in which a circular opening 10 is formed in a substantially central portion, and side walls provided around the bottom wall 1a. The upper part is open.
  • a cylindrical liner 7 made of quartz is provided on the inner periphery of the processing chamber 1.
  • An annular gas introducing member 15 is provided on the side wall of the processing chamber 1, and a processing gas supply system 16 is connected to the gas introducing member 15.
  • the gas introduction member 15 is arranged in a shower shape, for example.
  • a predetermined processing gas is introduced from the processing gas supply system 16 into the processing chamber 1 through the gas introduction member 15.
  • an appropriate gas is used according to the type of plasma processing. For example, Ar gas, H2 gas, O2 gas, or the like is used when an oxidation process such as a selective oxidation process of a tungsten-based gate electrode is performed.
  • a gate valve 26 is provided on the side wall of the processing chamber 1.
  • the bottom wall 1 a of the processing chamber 1 is provided with a bottomed cylindrical exhaust chamber 11 protruding downward so as to communicate with the opening 10.
  • An exhaust pipe 23 is provided on the side wall of the exhaust chamber 11, and an exhaust device 24 including a high-speed vacuum pump is connected to the exhaust pipe 23.
  • the gas in the processing chamber 1 is uniformly discharged into the space 11 a of the exhaust chamber 11 and is exhausted through the exhaust pipe 23. Therefore, the inside of the processing chamber 1 can be depressurized at a high speed to a predetermined degree of vacuum, for example, 0.133 Pa.
  • a columnar member 3 made of ceramics such as AlN protrudes substantially vertically at the center of the bottom of the exhaust chamber 11, and a susceptor 2 that supports a semiconductor wafer W as an object to be processed is provided at the tip of the columnar member.
  • the susceptor 2 has a disk shape made of ceramics such as AlN, and a guide ring 4 for guiding the semiconductor wafer W is provided on the outer edge thereof.
  • a resistance heating type heater 5 is embedded in the susceptor 2. The heater 5 heats the semiconductor wafer W by being supplied with power from the heater power source 6.
  • the susceptor 2 is provided with wafer support pins (not shown) for supporting the semiconductor wafer W and raising and lowering it so as to protrude and retract with respect to the surface of the susceptor 2.
  • the opening formed in the upper part of the processing chamber 1 is provided with a ring-shaped support 27 along the peripheral edge thereof.
  • the support portion 27 is made of a dielectric material such as quartz or Al 2 O 3, and a disk-shaped dielectric window 28 that transmits microwaves is airtightly provided through a seal member 29.
  • a disk-shaped slot plate 31 is provided above the dielectric window 28 so as to face the susceptor 2.
  • the slot plate 31 is provided so as to be in surface contact with the dielectric window 28.
  • dielectric plates 33 having a dielectric constant larger than that of vacuum are provided so as to be in surface contact with each other. Details of the dielectric plate 33 and the slot plate 31 will be described later.
  • a disc-shaped shield lid 34 is provided on the upper surface of the processing chamber 1 so as to cover the slot plate 31 and the dielectric plate 33.
  • the shield lid 34 is made of a metal such as aluminum or stainless steel.
  • a space between the upper surface of the processing chamber 1 and the shield lid 34 is sealed with a seal member 35.
  • a cooling water flow path 34a is formed inside the shield cover 34, and the cooling water flow is passed through the cooling water flow path 34a, whereby the slot plate 31, the dielectric window 28, the dielectric plate 33, the shield cover body. 34 is configured to cool.
  • the shield lid 34 is grounded.
  • An opening 36 is formed in the center of the upper wall of the shield lid 34, and a waveguide 37 is connected to the opening.
  • the waveguide 37 has a circular cross-section coaxial waveguide 37a extending upward from the opening 36 of the shield lid 34, and a horizontal cross-section extending in the horizontal direction connected to the upper end of the coaxial waveguide 37a.
  • the microwave generator 39 is connected to the end of the rectangular waveguide 37b via a matching circuit 38.
  • a microwave generated by the microwave generator 39 for example, a microwave having a frequency of 2.45 GHz, is propagated to the slot plate 31 through the waveguide 37. Note that the microwave frequency may be 8.35 GHz, 1.98 GHz, or the like.
  • a mode converter 40 is provided at the end of the rectangular waveguide 37b on the side where the coaxial waveguide 37a is connected.
  • the coaxial waveguide 37 a has a cylindrical coaxial outer conductor 42 and a coaxial inner conductor 41 arranged along the center line of the coaxial outer conductor 42, and the lower end portion of the coaxial inner conductor 41 is a slot plate 31. Fixed in the center of the connection.
  • the microwave incident portion 332 (see FIGS. 2A to 2C) of the dielectric plate 33 is fitted in the coaxial waveguide 37a.
  • the microwave plasma processing apparatus includes a process controller 50 that controls each component of the microwave plasma processing apparatus.
  • the process controller 50 includes a user interface 51 that includes a keyboard on which a process manager inputs commands to manage the microwave plasma processing apparatus, a display that visualizes and displays the operating status of the microwave plasma processing apparatus, and the like. Is connected.
  • the process controller 50 also stores a control program for realizing various processes executed by the microwave plasma processing apparatus under the control of the process controller 50, a process control program in which process condition data and the like are recorded.
  • the part 52 is connected.
  • the process controller 50 calls and executes an arbitrary process control program according to an instruction from the user interface 51 from the storage unit 52, and performs desired processing in the microwave plasma processing apparatus under the control of the process controller 50.
  • FIGS. 3A to 3B are cross-sectional views schematically showing the structure of the dielectric plate 33.
  • FIG. 2A is a plan view of the dielectric plate 33
  • FIG. 2B is a side view of the dielectric plate 33
  • FIG. 2C is a bottom view of the dielectric plate 33
  • FIG. 3A is a side sectional view of the dielectric plate 33
  • FIG. 4 is an enlarged side cross-sectional view of a main part of a dielectric plate 33.
  • the dielectric plate 33 has a flat dielectric disk portion 331.
  • a hole 332 a is formed in a substantially central portion of the dielectric disk portion 331.
  • a cylindrical microwave incident portion 332 protrudes from the periphery of the hole portion 332a substantially perpendicularly to the dielectric disc portion 331.
  • the first surface 331a of the dielectric disk portion 331, that is, the surface roughness Ra on the side where the microwave incident portion 332 is formed is 1 or more, and the surface roughness Ra of the second surface 331b on the opposite side is 0. .2 or less.
  • the second surface 331b of the dielectric disk portion 331 is configured to have a smaller surface roughness than the first surface 331a.
  • the dielectric member is cut into the shape shown in FIGS. 2A to 2C, and then the second surface 331b side is polished, so that the surface roughness Ra is 0.2 or less. It can be processed to become.
  • FIG. 4 is a plan view schematically showing the structure of the slot plate 31.
  • the slot plate 31 is made of a conductor, for example, a copper plate or an aluminum plate whose surface is gold-plated, and the surface roughness Ra of the upper and lower surfaces of the slot plate 31 is 0.2 or less.
  • the slot plate 31 has a configuration in which a plurality of microwave radiation slots 32 are formed in a predetermined pattern. That is, the slot plate 31 constitutes an RLSA antenna.
  • the microwave radiation slots 32 have, for example, a long groove shape, and are disposed close to each other so that a pair of adjacent microwave radiation slots 32 form a substantially L shape.
  • the plurality of microwave radiation slots 32 forming a pair are arranged concentrically. Specifically, seven pairs of microwave radiation slots 32 are formed on the inner peripheral side and 26 pairs on the outer peripheral side. The length and arrangement interval of the microwave radiation slots 32 are determined according to the wavelength of the microwave and the like.
  • the surface of the dielectric window 28, that is, the surface roughness on the side in contact with the slot plate 31, is also processed to be 0.2 or less.
  • the slot plate 31 and the dielectric window 28 are in close contact with each other, and no air gap as in the prior art is formed.
  • the dielectric plate 33 and the slot plate 31 are also in close contact with each other.
  • the local discharge between the dielectric plate 33 and the slot plate 31 is reduced, the microwave propagation is kept uniform, and the plasma stability is improved. Can be improved.
  • FIG. 5A to 5D are plan views schematically showing the slot plate 31 after use according to the present embodiment and the prior art.
  • FIG. 5A is a plan view of the slot plate 31 before use according to the present embodiment
  • FIG. 5B is a plan view of the slot plate 31 after use for a certain period according to the present embodiment.
  • 5C is a plan view of the slot plate 31 before use according to the prior art
  • FIG. 5D is a plan view of the slot plate 31 after use for a certain period according to the prior art.
  • the surface roughness Ra of the dielectric plate according to the related art is 1 or more for both the first surface and the second surface. As shown in FIG.
  • the microwave plasma processing apparatus can be configured at low cost. Even when the surface roughness on the first surface 331a side of the dielectric plate 33 is 1.0 or more, no defect that adversely affects the stability of the plasma has been found.
  • the surface roughness Ra of the dielectric window 28 is also set to 0.2 or less, the local discharge between the slot plate 31 and the dielectric window 28 is also reduced, the microwave propagation is kept uniform, and the plasma Stability can be further improved.
  • the dielectric plate 33 includes the cylindrical microwave incident portion 332, the microwave guided from the microwave generation source can be effectively introduced into the dielectric plate 33, and the dielectric plate It is possible to reduce the local discharge between the slot 33 and the slot plate 31, to keep the microwave propagation uniform, and to improve the stability of the plasma.
  • the slot plate 31 and the dielectric window 28 are in close contact with each other, and the air gap is not formed as in the conventional case, so that microwave power loss occurs in the air gap. There is no.
  • the cooling efficiency can be improved.
  • the surface roughness Ra is set to 0.2 or less, but the upper surface side of the dielectric plate is also polished. It is also possible to set the surface roughness Ra to 0.2 or less.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 低コストで誘電体板及びスロット板間の局所放電を低減し、プラズマの安定性を向上させることができるプラズマ処理装置を提供する。 マイクロ波によって処理室1内にプラズマを生成し、該プラズマにて半導体ウエハWにプラズマ処理を施すマイクロ波プラズマ処理装置に、マイクロ波が入射するマイクロ波入射部(332)を第1面(331a)側に有し、入射した該マイクロ波の波長を短縮させる誘電体板33と、誘電体板33の他面側に面接触しており、波長短縮したマイクロ波を処理室1に向けて放射する複数のマイクロ波放射スロット32を有するスロット板31とを備え、誘電体板33の第2面(331b)側の面粗さは、第1面(331a)側の面粗さよりも小さく構成する。

Description

マイクロ波プラズマ処理装置及び誘電体板
 本発明は、マイクロ波によって処理室内にプラズマを生成し、該プラズマにて被処理体にプラズマ処理を施すマイクロ波プラズマ処理装置及び該マイクロ波プラズマ処理装置を構成する誘電体板に関する。
 近年、高密度で低電子温度のプラズマを均一に形成することができるRLSA(Radial Line Slot Antenna)マイクロ波プラズマ処理装置が注目されている(例えば特許文献1)。RLSAマイクロ波プラズマ処理装置は、被処理体である半導体ウエハが収容される処理室を備える。該処理室の上部には、所定パターンで多数のスロットが形成された平円形状のスロット板が設けられている。スロット板の上面側には、マイクロ波発生源から導かれたマイクロ波の波長を短縮させる石英製、AlN製等の誘電体板が面接触し、下面側には、処理室内を真空に保持すべく設けられた誘電体窓が面接触している。誘電体板の上面略中央部には、マイクロ波が入射する筒状のマイクロ波入射部が一体形成されている。
 このように構成されたRLSAマイクロ波プラズマ処理装置においては、マイクロ波発生源から導かれたマイクロ波がマイクロ波入射部を通じて誘電体板に入射する。該誘電体板に入射したマイクロ波の波長は短縮され、波長短縮されたマイクロ波は、スロット板のスロットから誘電体窓を介して処理室内に放射される。処理室内に導入されているプロセスガスは、該処理室内に放射されたマイクロ波によってプラズマ化し、プロセスガスのプラズマによって半導体ウエハにプラズマ処理が施される。
特開2006-244891号公報
 ところが、従来のマイクロ波プラズマ処理装置においては、経年変化によって、スロット板の上面に変色、擦れ、放電痕のようなものが発生してスロット板が劣化し、マイクロ波の伝播が不均一となり、生成されるプラズマが不安定になることがあった。
 一方、誘電体板はマイクロ波を損失なく導入するためのマイクロ波入射部を有しているため、誘電体板を形成する加工方法が限られており、面粗さを低くするには限界があった。このため、誘電体板の設計変更に着目して、上記問題を解決するという発想は皆無であった。
 本願発明者は、斯かる事情の下、鋭意検討を重ね、スロット板の上面に面接触する誘電体板の面粗さに原因があることを見出した。より詳細には、誘電体板のスロット板側の表面が粗いため、マイクロ波印加時に、誘電体板の突起とスロット板との間隙で、局所高電圧が発生し局所放電が発生していること、誘電体板とスロット板との熱膨張率の違いから昇温時に擦れが生じ、スロット板表面が損傷しマイクロ波の伝播を不均一にしていることに着眼した。誘電体板の表面、特にスロット板に面接触する側の面粗さを、他面の面粗さよりも小さくすることによって、低コストで誘電体板及びスロット板間の局所放電を低減し、また擦れによる損傷を無くすことでマイクロ波の均一な伝播が可能になるという着想を得た。
 本発明は斯かる事情に鑑みてなされたものであり、誘電体板の表面、特にスロット板に面接触する側の面粗さを、他面の面粗さよりも小さくすることによって、低コストで誘電体板及びスロット板間の局所放電を低減し、プラズマの安定性を向上させることができるプラズマ処理装置及び該マイクロ波プラズマ処理装置を構成する誘電体板を提供する。
 本発明に係るマイクロ波プラズマ処理装置は、マイクロ波によって処理室内にプラズマを生成し、該プラズマにて被処理体にプラズマ処理を施すマイクロ波プラズマ処理装置において、マイクロ波が入射するマイクロ波入射部を一面側に有し、入射したマイクロ波の波長を短縮させる誘電体板と、該誘電体板の他面側に面接触しており、波長短縮したマイクロ波を前記処理室に向けて放射する複数のマイクロ波放射スロットを有するスロット板とを備え、前記誘電体板の前記他面側の面粗さは、前記一面側の面粗さよりも小さいことを特徴とする。
 本発明にあっては、誘電体板の他面側の面粗さ、即ちスロット板側の面粗さは、マイクロ波入射部が設けられた誘電体板の一面側の面粗さよりも小さい。
 従って、他面側の面粗さを低減することにより、誘電体板及びスロット板間の局所放電は低減し、マイクロ波の伝播を均一に保ち、プラズマの安定性が向上する。
 また、一面側を除いて他面側の面粗さを低減する構成であるため、低コストで前記誘電体板を形成することが可能である。
 本発明に係るマイクロ波プラズマ処理装置は、マイクロ波によって処理室内にプラズマを生成し、該プラズマにて被処理体にプラズマ処理を施すマイクロ波プラズマ処理装置において、マイクロ波が入射するマイクロ波入射部を一面側に有し、入射したマイクロ波の波長を短縮させる誘電体板と、該誘電体板の他面側に面接触しており、波長短縮したマイクロ波を前記処理室に向けて放射する複数のマイクロ波放射スロットを有するスロット板とを備え、前記誘電体板の前記他面側は研磨加工にて形成され、前記一面側は非研磨加工にて表面処理されてなることを特徴とする。
 本発明にあっては、誘電体板の他面側、即ちスロット板側は、研磨加工が施されている。
 従って、他面側の面粗さを低減することにより、誘電体板及びスロット板間の局所放電は低減し、プラズマの安定性が向上する。
 また、誘電体板を非研磨加工にて形成し、一面側を除いて他面側に研磨加工を施す構成であるため、低コストで前記誘電体板を形成することが可能である。例えば、マイクロ波入射部を有する誘電体板の全体形状を切削加工にて形成し、次いで、他面側に研磨加工を施すことによって、他面側の面粗さを一面側に比べて小さくすれば良い。この加工方法によれば、低コストで、本発明に係るマイクロ波プラズマ処理装置を構成することが可能になる。
 本発明に係るマイクロ波プラズマ処理装置は、前記誘電体板の前記他面側の面粗さは、Ra≦0.2を満たすことを特徴とする。
 本発明にあっては、誘電体板の前記他面側の面粗さが、Ra≦0.2を満たすため、誘電体板及びスロット板間の局所放電は低減し、プラズマの安定性が向上する。
 本発明に係るマイクロ波プラズマ処理装置は、前記スロット板の前記処理室側には誘電体窓が面接触しており、前記誘電体窓の前記スロット板側の面粗さは、Ra≦0.2を満たすことを特徴とする。
 本発明にあっては、スロット板の処理室側には誘電体窓が面接触しており、誘電体窓の前記スロット板側の面粗さは、Ra≦0.2を満たす。
 従って、スロット板及び誘電体窓間の局所放電も低減し、プラズマの安定性はより向上する。
 本発明に係るマイクロ波プラズマ処理装置は、マイクロ波を発生させるマイクロ波発生源と、該マイクロ波発生源で発生したマイクロ波を前記処理室へ導く同軸導波管とを備え、前記誘電体板及び前記スロット板は、円板状をなし、前記マイクロ波入射部は、前記誘電体板の前記一面側の略中央部から前記同軸導波管側へ突出し、該同軸導波管に内嵌する筒状部材であることを特徴とする。
 本発明にあっては、マイクロ波入射部を、誘電体板の一面側から同軸導波管側へ突出し、同軸導波管に内嵌する筒状部材にて形成している。
 従って、マイクロ波発生源から導かれたマイクロ波を効果的に誘電体板に導入可能であり、かつ誘電体板及びスロット板間の局所放電を低減し、プラズマの安定性を向上させることが可能である。
 本発明に係る誘電体板は、マイクロ波が入射するマイクロ波入射部を一面側に有し、入射したマイクロ波の波長を短縮させる誘電体板において、他面側の面粗さは、前記一面側の面粗さよりも小さいことを特徴とする。
 本発明にあっては、前記誘電体板を、マイクロ波によって処理室内にプラズマを生成し、該プラズマにて被処理体にプラズマ処理を施すマイクロ波プラズマ処理装置に備え、前記誘電体板の他面側にスロット板を面接触させて配置した場合、上述の作用を奏するマイクロ波プラズマ処理装置が構成される。即ち、前記誘電体板及びスロット板間の局所放電は低減し、マイクロ波の伝播を均一に保ち、プラズマの安定性が向上する。
 また、一面側を除いて他面側の面粗さを低減する構成であるため、低コストで前記誘電体板を形成することが可能である。
 本発明に係るマイクロ波プラズマ処理装置は、マイクロ波によって処理室内にプラズマを生成し、該プラズマにて被処理体にプラズマ処理を施すマイクロ波プラズマ処理装置において、マイクロ波が入射するマイクロ波入射部を一面側に有し、入射したマイクロ波の波長を短縮させる誘電体板と、該誘電体板の他面側に面接触しており、波長短縮したマイクロ波を前記処理室に向けて放射する複数のマイクロ波放射スロットを有するスロット板とを備え、前記誘電体板の前記他面側の面粗さは、Ra≦0.2を満たすことを特徴とする。
 本発明に係るマイクロ波プラズマ処理装置は、マイクロ波によって処理室内にプラズマを生成し、該プラズマにて被処理体にプラズマ処理を施すマイクロ波プラズマ処理装置において、マイクロ波が入射するマイクロ波入射部を一面側に有し、入射したマイクロ波の波長を短縮させる誘電体板と、該誘電体板の他面側に面接触しており、波長短縮したマイクロ波を前記処理室に向けて放射する複数のマイクロ波放射スロットを有するスロット板とを備え、前記誘電体板の少なくとも前記他面側は、研磨加工にて形成されていることを特徴とする。
 本発明にあっては、低コストで誘電体板及びスロット板間の局所放電を低減し、マイクロ波を均一に導入することができ、プラズマの安定性を向上させることができる。
本発明の実施形態に係るマイクロ波プラズマ処理装置の一例を模式的に示す断面図である。 誘電体板の平面図である。 誘電体板の側面図である。 誘電体板の底面図である。 誘電体板の側断面図である。 誘電体板の要部を拡大した側断面図である。 スロット板の構造を模式的に示した平面図である。 本実施の形態に係る使用前のスロット板の平面図である。 本実施の形態に係る一定期間使用後のスロット板の平面図である。 従来技術に係る使用前のスロット板の平面図である。 従来技術に係る一定期間使用後のスロット板の平面図である。
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。図1は、本発明の実施形態に係るマイクロ波プラズマ処理装置の一例を模式的に示す断面図である。以下、マイクロ波プラズマ処理装置の全体構成を説明し、次いで本発明の実施の形態に係る誘電体板33、スロット板31及び誘電体窓28の詳細、特に面粗さについて説明する。
 本発明の実施の形態に係るマイクロ波プラズマ処理装置は、例えばRLSA型であり、気密に構成されかつ接地された略円筒状の処理室1を備える。処理室1は、例えば、アルミ(Al)製であり、略中央部に円形の開口部10が形成された平板円環状の底壁1aと、底壁1aに周設された側壁とを有し、上部が開口している。処理室1の内周には、石英からなる円筒状のライナ7が設けられている。
 処理室1の側壁には環状をなすガス導入部材15が設けられており、このガス導入部材15には処理ガス供給系16が接続されている。ガス導入部材15は、例えばシャワー状に配置されている。処理ガス供給系16から所定の処理ガスがガス導入部材15を介して処理室1内に導入される。処理ガスとしては、プラズマ処理の種類に応じて適宜のものが用いられる。例えば、タングステン系ゲート電極の選択酸化処理のような酸化処理を行う場合には、Arガス、H2 ガス、O2 ガス等が用いられる。
 また、処理室1の側壁には、マイクロ波プラズマ処理装置に隣接する搬送室(図示せず)との間で半導体ウエハWの搬入出を行うための搬入出口25と、この搬入出口25を開閉するゲートバルブ26とが設けられている。
 処理室1の底壁1aには、開口部10と連通するように、下方へ突出した有底円筒状の排気室11が設けられている。排気室11の側壁には排気管23が設けられており、排気管23には高速真空ポンプを含む排気装置24が接続されている。排気装置24を作動させることにより処理室1内のガスが、排気室11の空間11a内へ均一に排出され、排気管23を介して排気される。従って、処理室1内を所定の真空度、例えば0.133Paまで高速に減圧することが可能である。
 排気室11の底部中央には、AlN等のセラミックスからなる柱状部材3が略垂直に突設され、柱状部材の先端部に、被処理体である半導体ウエハWを支持するサセプタ2が設けられている。サセプタ2は、AlN等のセラミックスからなる円盤状をなし、その外縁部には半導体ウエハWをガイドするためのガイドリング4が設けられている。サセプタ2には抵抗加熱型のヒータ5が埋め込まれている。ヒータ5は、ヒータ電源6から給電されることにより半導体ウエハWを加熱する。また、サセプタ2には、半導体ウエハWを支持して昇降させるためのウエハ支持ピン(不図示)がサセプタ2の表面に対して突没可能に設けられている。
 処理室1の上部に形成された開口部には、その周縁部に沿ってリング状の支持部27が設けられている。支持部27には、誘電体、例えば石英、Al2 O3 等のセラミックスからなり、マイクロ波を透過する円盤状の誘電体窓28がシール部材29を介して気密に設けられている。
 誘電体窓28の上方には、サセプタ2と対向するように、円板状のスロット板31が設けられている。スロット板31は、誘電体窓28に面接触するように設けられている。また、スロット板31の上面には、真空よりも大きい誘電率を有する誘電体板33が互いに面接触するように設けられている。誘電体板33及びスロット板31の詳細は、後述する。
 処理室1の上面には、スロット板31及び誘電体板33を覆うように、円盤状のシールド蓋体34が設けられている。シールド蓋体34は、例えばアルミニウムやステンレス鋼等の金属製である。処理室1の上面とシールド蓋体34との間は、シール部材35によりシールされている。
 シールド蓋体34の内部には、冷却水流路34aが形成されており、冷却水流路34aに冷却水を通流させることにより、スロット板31、誘電体窓28、誘電体板33、シールド蓋体34を冷却するように構成されている。なお、シールド蓋体34は接地されている。
 シールド蓋体34の上壁の中央には開口部36が形成されており、該開口部には導波管37が接続されている。導波管37は、シールド蓋体34の開口部36から上方へ延出する断面円形状の同軸導波管37aと、同軸導波管37aの上端部に接続された水平方向に延びる断面矩形状の矩形導波管37bとを有しており、矩形導波管37bの端部には、マッチング回路38を介してマイクロ波発生装置39が接続されている。マイクロ波発生装置39で発生したマイクロ波、例えば周波数2.45GHzのマイクロ波が導波管37を介して上記スロット板31へ伝搬されるようになっている。なお、マイクロ波の周波数としては、8.35GHz、1.98GHz等を用いることもできる。矩形導波管37bの同軸導波管37aとの接続部側の端部にはモード変換器40が設けられている。同軸導波管37aは、筒状の同軸外導体42と、該同軸外導体42の中心線に沿って配された同軸内導体41とを有し、同軸内導体41の下端部はスロット板31の中心に接続固定されている。また、誘電体板33のマイクロ波入射部332(図2A~図2C参照)は、同軸導波管37aに内嵌している。
 また、マイクロ波プラズマ処理装置は、マイクロ波プラズマ処理装置の各構成部を制御するプロセスコントローラ50を備える。プロセスコントローラ50には、工程管理者がマイクロ波プラズマ処理装置を管理するためにコマンドの入力操作等を行うキーボード、マイクロ波プラズマ処理装置の稼働状況を可視化して表示するディスプレイ等からなるユーザインタフェース51が接続されている。また、プロセスコントローラ50には、マイクロ波プラズマ処理装置で実行される各種処理をプロセスコントローラ50の制御にて実現するための制御プログラム、処理条件データ等が記録されたプロセス制御プログラムが格納された記憶部52が接続されている。プロセスコントローラ50は、ユーザインタフェース51からの指示に応じた任意のプロセス制御プログラムを記憶部52から呼び出して実行し、プロセスコントローラ50の制御下で、マイクロ波プラズマ処理装置において所望の処理が行われる。
 次に、本実施形態に係る誘電体板33及びスロット板31の詳細を説明する。
 図2A~図2Cは、誘電体板33の構造を示した模式図、図3A~図3Bは、誘電体板33の構造を模式的に示した断面図である。特に、図2Aは誘電体板33の平面図、図2Bは誘電体板33の側面図、図2Cは誘電体板33の底面図、図3Aは誘電体板33の側断面図、図3Bは誘電体板33の要部を拡大した側断面図である。
 誘電体板33は、平板状の誘電体円板部331を有する。誘電体円板部331の略中央部には孔部332aが形成されている。また孔部332aの周縁から、誘電体円板部331に対して略垂直に、円筒状のマイクロ波入射部332が突出している。誘電体円板部331の第1面331a、即ちマイクロ波入射部332が形成されている側の面粗さRaは、1以上であり、反対側の第2面331bの面粗さRaは0.2以下である。言い換えると、誘電体円板部331の第2面331bは、第1面331aに比べて面粗さが小さくなるように構成されている。
 このような面粗さを実現するには、誘電体部材を図2A~図2Cに示す形状に切削加工し、その後、第2面331b側を研磨加工によって、面粗さRaが0.2以下になるように加工すれば良い。
 図4は、スロット板31の構造を模式的に示した平面図である。スロット板31は、導体、例えば表面が金メッキされた銅板またはアルミニウム板からなり、スロット板31の上面及び下面の面粗さRaは0.2以下である。スロット板31は、複数のマイクロ波放射スロット32が所定のパターンで貫通して形成された構成となっている。すなわち、スロット板31はRLSAアンテナを構成している。マイクロ波放射スロット32は、例えば長溝状をなし、隣接する一対のマイクロ波放射スロット32同士が略L字状をなすように近接して配されている。対をなす複数のマイクロ波放射スロット32は、同心円状に配置されている。詳細には、内周側に7対、外周側に26対のマイクロ波放射スロット32が形成されている。マイクロ波放射スロット32の長さや配列間隔は、マイクロ波の波長等に応じて決定される。
 一方、誘電体窓28の上面、即ちスロット板31に面接触する側の面粗さも0.2以下になるように表面加工されている。
 本実施形態においては図1に示すように、スロット板31と誘電体窓28との間が密着した状態となっており、従来のようなエアーギャップが形成されていない。また、誘電体板33とスロット板31との間も密着されている。
 このように構成されたマイクロ波プラズマ処理装置及び誘電体板33にあっては、誘電体板33及びスロット板31間の局所放電を低減させ、マイクロ波の伝播を均一に保ち、プラズマの安定性を向上させることができる。
 図5A~図5Dは、本実施の形態及び従来技術に係る使用後のスロット板31を模式的に示した平面図である。図5Aは、本実施の形態に係る使用前のスロット板31の平面図、図5Bは、本実施の形態に係る一定期間使用後のスロット板31の平面図である。図5Cは、従来技術に係る使用前のスロット板31の平面図、図5Dは、従来技術に係る一定期間使用後のスロット板31の平面図である。なお、上述のように、従来技術に係る誘電体板の面粗さRaは第1面及び第2面とも1以上である。
 図5Dに示すように、従来技術においては、スロット板31に変色、擦れA、放電痕Bが発生しているが、図5Bに示すように、本実施の形態にあっては、スロット板31に変色、擦れA、放電痕Bがほとんど発見されなかった。
 スロット板31に変色、擦れA、放電痕Bのようなものが発生し、スロット板31が劣化すると、マイクロ波の伝播が不均一となり、生成されるプラズマが不安定になるところ、本実施の形態にあっては、誘電体板33及びスロット板31間の局所放電を低減させることによって、マイクロ波の伝播を均一に保ち、プラズマの安定性を向上させることができることが確認された。
 また、本実施の形態では、マイクロ波入射部332を有する誘電体板33を切削加工によって形成し、次いで、第2面331b側を研磨加工することによって製造しているため、誘電体板33の面粗さを第1面331a及び第2面331bとも均一にRa0.2以下にする場合に比べて、低コストでマイクロ波プラズマ処理装置を構成することができる。なお、誘電体板33の第1面331a側の面粗さに関しては1.0以上であっても、プラズマの安定性に悪影響を及ぼすような不具合は発見されなかった。
 更に、誘電体窓28の面粗さRaも0.2以下に構成されているため、スロット板31及び誘電体窓28間の局所放電も低減させ、マイクロ波の伝播を均一に保ち、プラズマの安定性をより向上させることができる。
 更にまた、誘電体板33に筒状のマイクロ波入射部332を備えているため、マイクロ波発生源から導かれたマイクロ波を効果的に誘電体板33に導入可能であり、かつ誘電体板33及びスロット板31間の局所放電を低減させ、マイクロ波の伝播を均一に保ち、プラズマの安定性を向上させることができる。
 更に、本実施形態においては、スロット板31と誘電体窓28との間が密着した状態となっており、従来のようなエアーギャップが形成されていないため、エアーギャップでマイクロ波パワーロスが生じることがない。
 更にまた、本実施の形態にあっては、誘電体板と、スロット板とが密着するため、冷却効率を向上させることができる。
 なお、本実施の形態にあっては、加工の困難性から誘電体板の少なくとも下面側を研磨加工し、面粗さRaを0.2以下としたが、誘電体板の上面側も研磨加工し面粗さRaを0.2以下とすることも可能である。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 処理室
 28 誘電体窓
 31 スロット板
 32 マイクロ波放射スロット
 33 誘電体板
 37 導波管
 37a 同軸導波管
 37b 矩形導波管
 39 マイクロ波発生装置
 41 同軸内導体
 42 同軸外導体
 50 プロセスコントローラ
 331 誘電体円板部
 331a 第1面
 331b 第2面
 332 マイクロ波入射部
 W 半導体ウエハ(被処理体)

Claims (8)

  1.  マイクロ波によって処理室内にプラズマを生成し、該プラズマにて被処理体にプラズマ処理を施すマイクロ波プラズマ処理装置において、
     マイクロ波が入射するマイクロ波入射部を一面側に有し、入射したマイクロ波の波長を短縮させる誘電体板と、
     該誘電体板の他面側に面接触しており、波長短縮したマイクロ波を前記処理室に向けて放射する複数のマイクロ波放射スロットを有するスロット板と
     を備え、
     前記誘電体板の前記他面側の面粗さは、前記一面側の面粗さよりも小さい
     ことを特徴とするマイクロ波プラズマ処理装置。
  2.  マイクロ波によって処理室内にプラズマを生成し、該プラズマにて被処理体にプラズマ処理を施すマイクロ波プラズマ処理装置において、
     マイクロ波が入射するマイクロ波入射部を一面側に有し、入射したマイクロ波の波長を短縮させる誘電体板と、
     該誘電体板の他面側に面接触しており、波長短縮したマイクロ波を前記処理室に向けて放射する複数のマイクロ波放射スロットを有するスロット板と
     を備え、
     前記誘電体板の前記他面側は研磨加工にて形成され、前記一面側は非研磨加工にて表面処理されてなる
     ことを特徴とするマイクロ波プラズマ処理装置。
  3.  前記誘電体板の前記他面側の面粗さは、Ra≦0.2を満たす
     ことを特徴とする請求項1又は請求項2に記載のマイクロ波プラズマ処理装置。
  4.  前記スロット板の前記処理室側には誘電体窓が面接触しており、
     前記誘電体窓の前記スロット板側の面粗さは、Ra≦0.2を満たす
     ことを特徴とする請求項1乃至請求項3のいずれか一つに記載のマイクロ波プラズマ処理装置。
  5.  マイクロ波を発生させるマイクロ波発生源と、
     該マイクロ波発生源で発生したマイクロ波を前記処理室へ導く同軸導波管と
     を備え、
     前記誘電体板及び前記スロット板は、円板状をなし、
     前記マイクロ波入射部は、
     前記誘電体板の前記一面側の略中央部から前記同軸導波管側へ突出し、該同軸導波管に内嵌する筒状部材である
     ことを特徴とする請求項1乃至請求項4のいずれか一つに記載のマイクロ波プラズマ処理装置。
  6.  マイクロ波が入射するマイクロ波入射部を一面側に有し、入射したマイクロ波の波長を短縮させる誘電体板において、
     他面側の面粗さは、前記一面側の面粗さよりも小さい
     ことを特徴とする誘電体板。
  7.  マイクロ波によって処理室内にプラズマを生成し、該プラズマにて被処理体にプラズマ処理を施すマイクロ波プラズマ処理装置において、
     マイクロ波が入射するマイクロ波入射部を一面側に有し、入射したマイクロ波の波長を短縮させる誘電体板と、
     該誘電体板の他面側に面接触しており、波長短縮したマイクロ波を前記処理室に向けて放射する複数のマイクロ波放射スロットを有するスロット板と
     を備え、
     前記誘電体板の前記他面側の面粗さは、Ra≦0.2を満たす
     ことを特徴とするマイクロ波プラズマ処理装置。
  8.  マイクロ波によって処理室内にプラズマを生成し、該プラズマにて被処理体にプラズマ処理を施すマイクロ波プラズマ処理装置において、
     マイクロ波が入射するマイクロ波入射部を一面側に有し、入射したマイクロ波の波長を短縮させる誘電体板と、
     該誘電体板の他面側に面接触しており、波長短縮したマイクロ波を前記処理室に向けて放射する複数のマイクロ波放射スロットを有するスロット板と
     を備え、
     前記誘電体板の少なくとも前記他面側は、研磨加工にて形成されている
     ことを特徴とするマイクロ波プラズマ処理装置。
PCT/JP2010/061468 2009-07-10 2010-07-06 マイクロ波プラズマ処理装置及び誘電体板 WO2011004816A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-163850 2009-07-10
JP2009163850 2009-07-10

Publications (1)

Publication Number Publication Date
WO2011004816A1 true WO2011004816A1 (ja) 2011-01-13

Family

ID=43429240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061468 WO2011004816A1 (ja) 2009-07-10 2010-07-06 マイクロ波プラズマ処理装置及び誘電体板

Country Status (2)

Country Link
TW (1) TW201134315A (ja)
WO (1) WO2011004816A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200133763A (ko) * 2018-03-23 2020-11-30 도쿄엘렉트론가부시키가이샤 가열 처리 장치 및 가열 처리 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174099A (ja) * 1997-05-01 1999-03-16 Applied Materials Inc 自己クリーニングフォーカスリング
JP2003309109A (ja) * 2002-04-17 2003-10-31 Matsushita Electric Ind Co Ltd プラズマ処理装置用誘電体窓及びプラズマ処理装置用誘電体窓の製造方法
JP2004356311A (ja) * 2003-05-28 2004-12-16 Sony Corp プラズマ処理装置
JP2008251674A (ja) * 2007-03-29 2008-10-16 Tokyo Electron Ltd プラズマ処理装置
JP2009099807A (ja) * 2007-10-17 2009-05-07 Tokyo Electron Ltd プラズマ処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174099A (ja) * 1997-05-01 1999-03-16 Applied Materials Inc 自己クリーニングフォーカスリング
JP2003309109A (ja) * 2002-04-17 2003-10-31 Matsushita Electric Ind Co Ltd プラズマ処理装置用誘電体窓及びプラズマ処理装置用誘電体窓の製造方法
JP2004356311A (ja) * 2003-05-28 2004-12-16 Sony Corp プラズマ処理装置
JP2008251674A (ja) * 2007-03-29 2008-10-16 Tokyo Electron Ltd プラズマ処理装置
JP2009099807A (ja) * 2007-10-17 2009-05-07 Tokyo Electron Ltd プラズマ処理装置

Also Published As

Publication number Publication date
TW201134315A (en) 2011-10-01

Similar Documents

Publication Publication Date Title
EP2276328B1 (en) Microwave plasma processing device
JP4979389B2 (ja) プラズマ処理装置
JP2006244891A (ja) マイクロ波プラズマ処理装置
JP2007258585A (ja) 基板載置機構および基板処理装置
JP2007042951A (ja) プラズマ処理装置
JP2007213994A (ja) プラズマ処理装置及びプラズマ処理方法
JP5096047B2 (ja) マイクロ波プラズマ処理装置およびマイクロ波透過板
JP5358436B2 (ja) プラズマ処理方法およびプラズマ処理装置
JP5283835B2 (ja) マイクロ波プラズマ処理装置及びマイクロ波プラズマ処理装置用ゲートバルブ
JP4093212B2 (ja) プラズマ処理装置
US11508556B2 (en) Plasma processing apparatus
KR101432415B1 (ko) 플라즈마 질화 처리 방법 및 플라즈마 질화 처리 장치
JP5422396B2 (ja) マイクロ波プラズマ処理装置
JP5479013B2 (ja) プラズマ処理装置及びこれに用いる遅波板
JP2007335346A (ja) マイクロ波導入装置及びプラズマ処理装置
US7527706B2 (en) Plasma processing apparatus, process vessel for plasma processing apparatus and dielectric plate for plasma processing apparatus
WO2011004816A1 (ja) マイクロ波プラズマ処理装置及び誘電体板
WO2011013633A1 (ja) 平面アンテナ部材およびこれを備えたプラズマ処理装置
US20110114021A1 (en) Planar antenna member and plasma processing apparatus including the same
KR20210126092A (ko) 기판 처리 장치, 처리 용기, 반사체 및 반도체 장치의 제조 방법
JP5728565B2 (ja) プラズマ処理装置及びこれに用いる遅波板
KR102668439B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
JP5249689B2 (ja) プラズマ処理装置および基板載置台
KR20160002544A (ko) 기판 처리 장치
JP2013033979A (ja) マイクロ波プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP