WO2011004496A1 - ガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法 - Google Patents

ガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法 Download PDF

Info

Publication number
WO2011004496A1
WO2011004496A1 PCT/JP2009/062605 JP2009062605W WO2011004496A1 WO 2011004496 A1 WO2011004496 A1 WO 2011004496A1 JP 2009062605 W JP2009062605 W JP 2009062605W WO 2011004496 A1 WO2011004496 A1 WO 2011004496A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
tracking
track
recording
laser beam
Prior art date
Application number
PCT/JP2009/062605
Other languages
English (en)
French (fr)
Inventor
一雄 高橋
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2011521759A priority Critical patent/JP5116878B2/ja
Priority to US13/381,713 priority patent/US20120120783A1/en
Priority to PCT/JP2009/062605 priority patent/WO2011004496A1/ja
Priority to TW099122042A priority patent/TW201117203A/zh
Publication of WO2011004496A1 publication Critical patent/WO2011004496A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00718Groove and land recording, i.e. user data recorded both in the grooves and on the lands
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0938Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following servo format, e.g. guide tracks, pilot signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only

Definitions

  • the present invention relates to a guide layer separation type optical disc having multiple recording layers, an optical disc drive apparatus thereof, and a tracking control method.
  • the guide layer is a layer in which a servo guide structure or signal including position (address) information is formed as a guide track.
  • tracking control is possible using a guide track integrated with the recording layer even in an unrecorded portion where information on the recording layer is not recorded.
  • Information can be recorded on a track.
  • there is an advantage that information can be recorded and reproduced with a single laser beam.
  • a servo laser beam for reading a guide track from the guide layer and a recording / reproducing laser beam for writing information to the recording layer or reading the recorded information When recording information on one recording layer, the laser beam for recording / reproduction is applied to one recording layer while moving the focal position of the servo laser beam on the guide track of the guide layer by tracking control. Information is written by condensing the light (see Patent Document 1).
  • the optical disc drive apparatus is provided with a recording / reproducing optical system for detecting the reflected light.
  • this guide layer separation type disk since it has a structure in which recording layers having a simple structure are laminated, it is easy to manufacture and the manufacturing cost of the optical disk can be kept low.
  • the recording layer can be easily multi-layered as compared with the guide layer-integrated disc, there is an advantage that the recording capacity can be increased. JP 2001-202630 A
  • the wavelength of the servo laser beam of the servo optical system generally used for tracking the guide track of the guide layer is longer than the wavelength of the recording / reproducing laser beam, and the recording / reproducing optical Since the resolution of the servo optical system is coarser than that of the system, there is a problem that it is difficult to form a high-density recording track corresponding to the resolution of the recording / reproducing optical system.
  • the problems to be solved by the present invention include the above-mentioned drawbacks as an example, and the guide layer separation type optical disc, the optical disc drive apparatus, and the like, which can form spiral recording tracks in the recording layer with high density It is an object to provide a tracking control method.
  • a guide layer separation type optical disc is a guide layer separation type optical disc in which a guide layer having a guide structure and a plurality of recording layers are separated from each other.
  • the tracking guide track is divided into regions by discontinuous portions, and concentric arc-shaped guide tracks are formed at a certain track interval in each region, and in two adjacent regions across the discontinuous portion, The guide track is shifted in the radial direction of the disk by 1/4 of the track interval.
  • a guide layer having a guide structure and a plurality of recording layers are laminated separately, and the guide track for tracking of the guide structure is divided into regions by discontinuous portions.
  • the guide track for tracking of the guide structure is divided into regions by discontinuous portions.
  • concentric arc-shaped guide tracks are formed at a constant track interval, and in the two adjacent regions across the discontinuous portion, the guide track is 1 ⁇ 4 of the track interval in the disc radial direction.
  • a drive device for a guide layer separation type optical disk which is shifted to the above, and a servo optical system which detects a reflected light from the guide layer by irradiating the optical disk with a first laser beam for servo through an objective lens And irradiating the optical disc with a second laser beam for recording or reproduction via the objective lens to record any one of the plurality of recording layers.
  • a recording / reproducing optical system for detecting reflected light from the layer, and the servo optical system is configured to track the irradiation spot of the first laser beam each time it passes through the two discontinuous portions. Tracking servo control means for alternately switching between and between the guide tracks and between the guide tracks.
  • a guide layer having a guide structure and a plurality of recording layers are separately laminated, and the guide track for tracking of the guide structure is divided into regions by discontinuous portions.
  • concentric arc-shaped guide tracks are formed at a constant track interval, and in the two adjacent regions across the discontinuous portion, the guide track is 1 ⁇ 4 of the track interval in the disc radial direction.
  • a tracking control method of an optical drive drive device comprising: a tracking center of the irradiation spot of the first laser beam each time the irradiation spot of the first laser beam passes through the two discontinuous portions. Are alternately switched between the guide track and between the guide tracks.
  • the guide structure of the guide layer is divided into areas where the tracking guide track is divided by the discontinuous portion, and concentric arc-shaped guide tracks are arranged at constant track intervals in each area.
  • the guide track is displaced in the disc radial direction by 1/4 of the track interval.
  • the irradiation is performed every time the irradiation spot of the first laser beam passes through the two discontinuous portions. Since the spot tracking center is alternately switched between the guide track and between the guide tracks, a spiral recording track can be formed in the recording layer at a high density.
  • FIG. 1 It is a figure which shows the partial cross section of the optical disk of a guide layer separation type
  • FIG. 1 shows a guide layer separation type optical disc 10 as an embodiment of the present invention.
  • the optical disk 10 has a laminated structure including a glass substrate 1, a guide layer GL, three recording layers L0 to L2, an intermediate layer 2, and a protective layer 3.
  • the guide layer GL is formed on the substrate 1 and is made of a reflective film.
  • the recording layers L0 to L2 are composed of a translucent reflective film and a recording layer, and are formed in that order from the guide layer GL side.
  • the intermediate layer 2 is made of an ultraviolet curable resin, and is formed between the guide layer GL and the recording layers L0 to L2.
  • the reflective film of the guide layer GL is made of a metal such as Au
  • the recording films of the recording layers L0 to L2 are made of an organic material such as an azo dye
  • the translucent reflective film is a dielectric such as Nb 2 O 5 or TiO. It consists of two .
  • the protective layer 3 is formed on the recording layer L2 and forms a disk surface on which laser light is incident.
  • a penetrating clamp hole 4 is formed at the center of the optical disc 10.
  • the guide layer GL has a guide structure formed by grooves over the entire surface.
  • the guide structure is a structure for recording information in a spiral shape on a recording layer having no guide structure.
  • the groove forms a guide track, in which address information is recorded by wobble or the like.
  • a land is formed between adjacent guide tracks.
  • the guide layer GL has two areas A1 and A2 divided into two equal parts by a straight line passing through the center point of the disk.
  • arc-shaped lands L and grooves G are alternately formed with the same width from the inner peripheral side toward the outer peripheral side. The centers of these circles are concentric with the center point of the disc.
  • a dividing line between the regions A1 and A2 is a discontinuous portion of each of the land L and the groove G.
  • FIGS. 2B and 2C respectively show enlarged portions B1 and B2 of the guide layer GL.
  • the width of each of the land L and the groove G is Tp / 2.
  • the formation positions of the land L and the groove G are shifted in the disk radial direction by Tp / 4. That is, the land L and groove G formation positions in the area A2 are shifted outward by Tp / 4 (half the width of each of the land L and the groove G) with respect to the formation positions of the land L and the groove G in the area A1.
  • the guide layer GL of the optical disc 10 shown in FIGS. 1 and 2 is formed by molding from a mold (stamper) on which guide tracks are formed, and forming a reflective film thereon.
  • the stamper is usually created in the order of a glass substrate cleaning process, a photoresist forming process, an exposure process, a developing process, a conductive treatment process, and a nickel electroforming process.
  • the exposure process is called cutting, and guide tracks are recorded by a method similar to that for an ordinary optical disc such as a DVD.
  • the cutting apparatus used in the exposure process has a configuration as shown in FIG.
  • the cutting apparatus includes an optical system 71, a turntable 72, a spindle motor 73, a slide table 74, and a slide motor 75 as shown in FIG.
  • the optical system 71 includes a light source 81, a collimator lens 82, a beam modulator 83, a beam scanner 84, and an objective lens 85.
  • a feed position detector 91 As a control system of the cutting apparatus, a feed position detector 91, an optical system transfer control unit 92, a slide motor drive unit 93, a rotation detection unit 94, a master disk rotation controller 95, a spindle motor drive unit 96, and a beam scanning control unit 97. , A beam scanner driver 98, a beam modulation control unit 99, a beam modulator driver 100, and a main controller 101.
  • the master 70 set on the turntable 72 is a disk coated with a resist on the glass substrate by the glass substrate cleaning process and the photoresist forming process.
  • a laser having a wavelength of 350 nm is used as the light source 81, and a collimated lens 82 generates a parallel laser beam.
  • the beam modulator 83 passes or blocks the laser beam by a mechanism such as a shutter. When this beam modulator 83 is modulated at high speed, pits can be recorded.
  • the cutting apparatus cuts the groove G as a guide track.
  • the beam scanner 84 reflects the laser beam by a mechanism such as a galvanometer mirror and advances it toward the objective lens 85 and scans the irradiation direction of the laser beam in the radial direction of the master 70.
  • the beam modulator 83 and the beam scanner 84 can serve both functions by using an acousto-optic modulator (AOM).
  • AOM acousto-optic modulator
  • the objective lens 85 condenses the laser beam on the resist of the master 70, and the master 70 is exposed (recorded) by the focused beam spot.
  • the optical system 71 is fixed on the slide table 72, and a mechanism for moving the optical system 71 in the radial direction of the master 70 by a slide motor 75 is provided.
  • the feed position detector 91 detects the amount of movement of the turntable 72 using, for example, a position sensor and outputs a transfer amount detection signal.
  • the optical system transfer control unit 92 generates a transfer control signal from the transfer amount detection signal so that the speed is constant, for example.
  • the slide motor drive unit 93 drives the slide motor 75 according to the transfer control signal, and transfers the optical system 71 in the radial direction of the master 70 at a constant speed.
  • the turntable 72 has a structure for rotating the master 70 by a spindle motor 73 together with a mechanism for holding the master 70.
  • the rotation detector 94 outputs a rotation synchronization signal by a rotary encoder attached to the spindle motor, for example.
  • the rotation synchronization signal is used for rotation control of the spindle motor 73 and beam scanning control of the beam scanner 84.
  • the master disk rotation controller 95 generates a rotation control signal from the rotation synchronization signal so that, for example, the rotation speed is constant.
  • the spindle motor drive unit 96 drives the spindle motor 73 in accordance with the rotation control signal, and rotates the master 70 at a constant rotational speed.
  • the beam scanning control unit 97 generates a beam scanning control signal in order to scan the beam spot in the radial direction of the master 70 in synchronization with the rotation of the master 70.
  • the beam scanner driver 98 drives the beam scanner 84 in accordance with the beam scanning control signal and scans the laser beam, thereby scanning the focused beam spot in the radial direction of the master 70.
  • the beam spot may be scanned in the reverse direction at the same speed as the transfer speed of the optical system 71 by the beam scanner 84. At this time, the beam spot seems to stop in the radial direction of the master 70.
  • the beam spot is scanned by the beam scanner 84 by one track pitch once per rotation, the beam spot advances by the track pitch in the radial direction of the master 70. By repeating this, a concentric guide track can be cut. Therefore, when cutting a concentric guide track, the beam spot is scanned in a sawtooth shape with one rotation period.
  • the beam modulation control unit 99 generates a beam modulation control signal in order to control the exposure timing in synchronization with the rotation of the master 70.
  • the beam modulator driver 100 drives the beam modulator 83 according to the beam modulation control signal, and turns on / off the exposure by passing / blocking the laser beam. For example, when cutting a concentric guide track, the exposure is turned off while canceling the beam spot scanned by the beam scanner 84 by one track pitch once per rotation.
  • FIG. 4 shows an operation when cutting the guide track of the guide layer GL formed on the optical disc 10 of FIG.
  • the track pitch Tp of the guide track in FIG. 1 is constant. Therefore, the optical system 71 is transferred together with the slide table 74 at a constant speed that advances by the track pitch Tp per one rotation.
  • the beam scanner 84 scans the beam spot in the reverse direction at the same speed, the beam spot stops in the radial direction of the master 70.
  • the guide track of FIG. 1 has two discontinuous portions every 180 ° in one circumference. When the guide track is cut clockwise from the inner circumference to the outer circumference, at one of the discontinuous portions, the beam scan is returned by the 1/4 track pitch Tp, and the guide track is moved outward by the 1/4 track pitch Tp. Shift.
  • the beam scan is returned by the 3/4 track pitch Tp, and the guide track is shifted outward by the 3/4 track pitch Tp.
  • the exposure is turned off when returning the beam scan.
  • FIG. 5 shows a configuration of an optical disk drive device according to the present invention.
  • This optical disk drive apparatus optically records / reproduces information with respect to the optical disk 10 and includes a disk drive system, an optical system, and a signal processing system.
  • the disk drive system has a structure in which the optical disk 10 is held by the clamp mechanism 6 and is rotated by the spindle motor 7.
  • the optical system is further divided into a servo optical system and a recording / reproducing optical system.
  • the servo optical system includes a light source 11, a collimator lens 12, a beam splitter 13, a dichroic prism 14, a wave plate 15, an objective lens 16, a condenser lens 17, and a photodetector 18.
  • the light source 11 is a semiconductor laser element that emits a servo laser beam having a wavelength of 660 nm.
  • the light source 11 is driven by a servo light source driving unit (not shown).
  • the collimator lens 12 converts the servo laser beam emitted from the light source 11 into parallel light and supplies it to the beam splitter 13.
  • the beam splitter 13 supplies the parallel laser beam supplied from the collimator lens 12 to the dichroic prism 14 as it is.
  • the dichroic prism 14 is a composite prism having a composite surface whose reflection / transmission characteristics differ depending on the wavelength of light.
  • the dichroic prism 14 reflects a wavelength in the vicinity of 405 nm, which is the wavelength of a recording / reproducing laser beam, and provides a servo laser beam, That is, it has a characteristic of transmitting light with respect to a wavelength around 660 nm which is the wavelength of the guide light. Therefore, the dichroic prism 14 supplies the servo laser beam incident from the beam splitter 13 to the wave plate 15 as it is.
  • the wavelength plate 15 passes the laser beam twice on the forward path to the optical disk 10 and on the return path from the optical disk 10, thereby changing the direction of polarization of the beam by 90 degrees. This is to make the recording / reproducing light returned from the dichroic prism 14 side to the separation surface of the beam splitter 13 into s-polarized light. Therefore, the beam splitter 13 acts to reflect the return beam. The same applies to the return recording / reproducing light in the beam splitter 23 of the recording / reproducing optical system described later.
  • the wave plate 15 is a broadband plate, and acts as a quarter wave plate for at least the outgoing beam wavelength of the light source 11 and the outgoing beam wavelength of the light source 11.
  • the objective lens 16 includes a focus actuator 16a for moving in the optical axis direction and a tracking actuator 16b for moving in a direction perpendicular to the optical axis, and electrically performs fine movement in the focus direction and the tracking direction. Can be controlled.
  • the objective lens 16 can focus the servo laser beam on the guide layer of the optical disk 10 by the focus actuator 16a, and simultaneously apply the recording or reproducing laser beam to any one of the plurality of recording layers L0 to L2. Can be focused. Further, the tracking actuator 16b can position the light spot of the servo laser beam on the guide track of the guide layer GL, and at the same time, the recording or reproducing laser at the position corresponding to the guide track in the one recording layer. The light spot of the beam can be irradiated.
  • the servo laser beam reflected by the guide layer of the optical disc 10 returns to the dichroic prism 15 as a parallel laser beam through the objective lens 16 and the wave plate 16.
  • the dichroic prism 15 supplies the reflected servo laser beam to the beam splitter 13 as it is.
  • the beam splitter 13 reflects the laser beam from the dichroic prism 15 at an angle of approximately 90 degrees with respect to the incident light, and supplies it to the condenser lens 24.
  • the condensing lens 17 condenses the reflected servo laser beam on the light receiving surface of the photodetector 18 to form a spot there.
  • the photodetector 18 has, for example, four divided light receiving surfaces, and generates a voltage signal having a level corresponding to the light reception intensity for each divided surface.
  • the recording / reproducing optical system shares the dichroic prism 14, the wave plate 15, and the objective lens 16 of the servo optical system.
  • the light source 21, collimator lens 22, beam splitter 23, beam expander 24, condenser lens 25, and light are used.
  • a detector 26 is provided.
  • the light source 21 is a semiconductor laser element that emits a blue laser beam for recording or reproduction having a wavelength of 405 nm.
  • the light source 21 is driven by a recording / reproducing light source driving unit (not shown).
  • the laser beam emitted from the light source 21 is adjusted to be p-polarized light.
  • the collimator lens 22 converts the laser beam emitted from the light source 21 into parallel light and supplies it to the beam splitter 23.
  • the beam splitter 23 is a polarization beam splitter (PBS), has a separation surface of 45 degrees with respect to the laser beam incident surface from the collimator lens 22, and separates the p-polarized parallel laser beam supplied from the collimator lens 22. Is passed through and supplied to the beam expander 24.
  • PBS polarization beam splitter
  • the beam expander 24 includes a Kepler-type expander lens, and includes first and second correction lenses 24a and 24b.
  • the first correction lens 24a is driven by an actuator 24c and is movable in the optical axis direction. Yes.
  • the lens interval is adjusted so that the light is emitted as parallel light when it is incident as parallel light.
  • the correction lens 24a By moving the correction lens 24a in the optical axis direction, the emitted beam changes to diffused light or convergent light, and thereby the focal difference of the recording / reproducing laser beam condensed by the objective lens 16 with respect to the servo laser beam. And spherical aberration can be given.
  • the spherical aberration correcting means replacing the beam expander 24, there are a Galileo type expander lens and a liquid crystal element.
  • the dichroic prism 14 reflects the wavelength near 405 nm, which is the wavelength of the recording / reproducing laser beam, so that the recording / reproducing laser beam is reflected and travels toward the optical disc 10.
  • the objective lens 16 can focus the recording or reproducing laser beam on any one of the recording layers L0 to L2 as described above.
  • the recording / reproducing laser beam reflected by one of the recording layers of the optical disk 10 returns to the beam splitter 23 as a parallel laser beam through the objective lens 16, the wave plate 15, the dichroic prism 14, and the beam expander 24. Since the reflected laser beam is s-polarized light, the beam splitter 23 reflects the reflected laser beam at an angle of about 90 degrees with respect to the incident surface and supplies the reflected laser beam to the condenser lens 25.
  • the condensing lens 25 condenses the reflected laser beam on the light receiving surface of the photodetector 26 to form a spot there.
  • the photodetector 26 has a light receiving surface divided into four parts, and generates a voltage signal of a level corresponding to the light receiving intensity for each divided surface.
  • the above optical system is movable in the radial direction of the optical disc 10 by a transfer driving unit (not shown).
  • the signal processing system includes a recording medium rotation control unit 31, a recording medium rotation drive unit 32, a guide layer focus error generation unit 33, a guide layer focus control unit 34, a guide layer tracking error generation unit 35, a tracking control unit 36, and an objective lens drive.
  • the recording medium rotation control unit 31 controls the recording medium rotation driving unit 32 according to a command from the main controller 45.
  • the recording medium rotation drive unit 32 rotates the optical disk 10 by driving the motor 7 to rotate when the recording medium is driven.
  • the recording medium rotation drive unit 32 performs spindle servo control in order to rotate the optical disk 10 at a constant linear velocity.
  • the guide layer focus error generation unit 33 generates a guide layer focus error signal according to the output voltage signal of the photodetector 18.
  • a known signal generation method such as an astigmatism method can be used.
  • the guide layer focus error signal is an S-characteristic signal that becomes zero level when the focus position of the servo beam is in the guide layer GL.
  • the guide layer focus control unit 34 performs a control operation according to a command from the main controller 45, and generates a focus control signal so that the guide layer focus error signal becomes zero level during force servo control.
  • the focus control signal is supplied to the objective lens driving unit 37 for controlling the focus portion by the objective lens 16.
  • the guide layer tracking error generation unit 35 generates a guide layer tracking error signal according to the output voltage signal of the photodetector 18.
  • the guide layer tracking error signal is a signal indicating an error from the center of the land or groove guide track of the focused spot position on the guide layer GL of the servo laser beam. For example, as shown in FIG. 6, when the light receiving surface of the photodetector 18 is divided into four equal parts by the disk radial direction and the track tangential direction perpendicular thereto, it is positioned on the inner peripheral side from the track tangential direction.
  • the output signals of the photodetecting elements 18a and 18b are added by the adder 51, and the output signals of the photodetecting elements 18c and 18d located on the outer peripheral side from the track tangential direction are added by the adder 52.
  • the difference from the output signal of the adder 52 is calculated by the subtractor 53, whereby a guide layer tracking error signal is generated.
  • a tracking control unit 36 is connected to the output of the guide layer tracking error generation unit 35.
  • the tracking control unit 36 performs tracking servo control in accordance with a command from the main controller 45, inputs a guide layer tracking error signal generated by the guide layer tracking error generation unit 35, and controls the tracking portion by the objective lens 16.
  • a tracking control signal is supplied to the objective lens driving unit 37. The tracking control signal is generated so that the guide tracking error signal is at the level of the tracking target value during tracking servo control.
  • the tracking control unit 36 includes a subtractor 61, a phase compensator 62, a low frequency gain compensator 63, a gain adjuster 64, a polarity inverter 65, a land / groove switch 66, a hold.
  • a processing unit 67, a tracking servo / hold switch 68, and a tracking on / off switch 69 are provided.
  • the subtractor 61 calculates the level difference between the tracking target value and the tracking error signal.
  • the phase compensator 62 advances the phase with respect to the output signal of the subtractor 61 to ensure the tracking servo stability.
  • the low-frequency gain compensator 63 increases the gain of the low-frequency component of the output signal of the phase compensator 62, and improves the suppression performance against low frequency disturbances such as eccentricity.
  • the gain adjuster 64 adjusts the gain of the output signal of the low frequency gain compensator 63 so that the servo becomes stable.
  • the polarity inverter 65 inverts the polarity of the output signal from the gain adjuster 64.
  • the land / groove switch 66 outputs either the output signal of the gain adjuster 64 or the output signal of the polarity inverter 65 according to the land / groove selection signal from the main controller 45. By selecting the polarity of the tracking servo, it is determined whether to follow the land L or the groove G. When tracking on the groove G, the output signal of the gain adjuster 64 is selected by the land / groove switch 66, and when tracking on the land L, the output signal of the polarity inverter 65 by the land / groove switch 66. Is selected.
  • the hold processing unit 67 holds and outputs the output signal from the land / groove switch 66 immediately before the tracking servo / hold switch 68 is switched from the servo side to the hold side.
  • the tracking servo / hold switch 68 switches to the servo side during tracking servo control and relays the output signal of the land / groove switch 66, and switches to the hold side during tracking hold control and relays the hold output signal from the hold processing unit 67. To do.
  • the tracking on / off switch 69 outputs the output signal of the tracking servo / hold switch 68 as a tracking control signal when the tracking control is on, and outputs a zero level as a tracking control signal when the tracking control is off.
  • the objective lens driving unit 27 drives the focus actuator 16a in accordance with the focus control signal from the guide layer focus control unit 34, and condenses the servo beam by moving the objective lens 16 in the optical axis direction, thereby guiding the guide layer GL. Connect the beam spot on top.
  • the objective lens drive unit 27 drives the tracking actuator 16b in accordance with the tracking control signal from the tracking control unit 36, moves the objective lens 16 in the radial direction of the optical disc 10 perpendicular to the optical axis, and guides the guide layer GL.
  • the guide layer reproduction signal generation unit 38 reads the recording data (wobble) of the guide track according to the output voltage signal of the photodetector 18 and generates address information thereof.
  • the guide layer reproduction signal generation unit 38 detects a discontinuous portion of the guide layer GL from the output voltage signal of the photodetector 18 and generates a timing signal. Detection of the discontinuous portion is performed by applying a push-pull signal in the circumferential direction by a method similar to the generation of the tracking error signal, or by reading the data and confirming the reproduction position.
  • the timing signal is used in the main controller 45 to switch the polarity of the tracking error and the tracking servo on / off / hold.
  • the recording layer focus error generation unit 41 generates a recording layer focus error signal according to the output voltage signal of the photodetector 26.
  • a known signal generation method such as an astigmatism method can be used.
  • the recording layer focus error signal is an S-characteristic signal that becomes zero level when the focus position of the recording / reproducing beam is in each of the recording layers L0 to L2.
  • a recording layer focus control unit 42 is connected to the output of the recording layer focus error signal generation unit 41.
  • the recording layer focus control unit 42 supplies a recording layer focus control signal to the beam expander driving unit 43 for control in accordance with the recording layer focus error signal in the reproduction mode.
  • the recording layer focus drive signal is generated so that the recording layer focus error signal becomes zero level during focus servo control for the recording layer.
  • the beam expander driving unit 43 adjusts the diffusion and convergence of the beam toward the objective lens 16 by driving the actuator 24c according to the recording layer focus control signal and changing the distance between the correction lenses 24a and 24b of the beam expander.
  • the focusing position of the recording / reproducing beam with respect to the focusing position of the servo beam on the optical axis is changed. That is, by supplying a voltage level corresponding to a desired recording layer as a recording layer focus control signal to the beam expander driving unit 43, recording is performed on any one of the recording layers separated by a desired distance from the guide layer GL. Focus the beam for playback.
  • the recording layer reproduction signal generation unit 44 reproduces a signal recorded in any one of the recording layers according to the output voltage signal of the photodetector 26.
  • the main controller 45 controls on / off of the disk rotation control by the recording medium control unit 31, on / off of the focus servo control by the guide layer focus control unit 34, and on / off of the focus servo control by the recording layer focus control unit 42.
  • each of the land / groove switching unit 66, the tracking servo / hold switching unit 68, and the tracking on / off switching unit 69 of the tracking control unit 36 is controlled.
  • FIG. 8 shows the relationship between the spot position of the servo laser beam in the disk radial direction and the tracking error signal.
  • the position of the beam spot shown in FIG. 8 is moved by Tp / 8 on the land L and the groove G from the inner peripheral side toward the outer peripheral side.
  • the tracking error signal becomes zero when the position of the beam spot is at the center of the land L or the groove G.
  • the tracking error signal shows a peak.
  • the tracking error signal shows a voltage level of ⁇ Vt.
  • the tracking error signal indicates + Vt, when tracking to the land L, when trying to track to the inner circumference side by Tp / 8, and when tracking to the groove G, only Tp / 8 minutes.
  • the track is shifted to the outer periphery.
  • the tracking error signal indicates -Vt, when trying to track to the land L, it is Tp / 8 minutes toward the outer circumference, and when tracking to the groove G, it is Tp / 8 minutes towards the inner circumference.
  • the track is out of position.
  • the control operation is executed so that the tracking error signal is at the same level as the tracking target value.
  • the tracking target value is normally zero indicating the center of the track (land L or groove G). However, by giving a target value that is not zero, the guide track can be followed in a state of being shifted from the track center. For example, when Vt in FIG. 8 is given as the tracking target value, it is possible to follow the guide track in a state shifted by Tp / 8 from the track center. At this time, the tracking error signal is not at zero level but at substantially Vt level.
  • FIG. 9 shows changes in the tracking error signal when the servo laser beam crosses the guide track composed of the land L and the groove G of the guide layer GL at a constant speed.
  • the servo laser beam spot is on groove G, and when the tracking error signal falls to the right and reaches zero level, it is for servo.
  • the spot of the laser beam is on the land L.
  • the servo laser beam spot is at the boundary between the land L and the groove G at the apex of the tracking error signal.
  • the groove G is switched to the boundary with the land (mirror surface) of the discontinuous portion, so that the tracking error signal becomes discontinuous and the phase of the tracking error signal is 90. ° Change.
  • the main controller 45 starts a recording mode operation in response to a recording command from an operation unit (not shown). As shown in FIG. 10, first, the main controller 45 issues a rotation start command to the recording medium rotation control unit 31 to perform a spindle motor. 7, the optical disk 10 is driven to rotate (step S1), and a light emission drive command is issued to the servo light source drive unit described above (step S2). The servo light source driving unit drives the light source 11 to emit a servo laser beam.
  • the main controller 45 commands the guide layer focus control unit 34 to turn on focus servo control (step S3).
  • a focus servo loop including a servo optical system, a guide layer focus error generation unit 33, a guide layer focus control unit 34, and an objective lens driving unit 37 is formed.
  • a guide layer focus control signal is generated so that the focus error signal generated by the layer focus error signal generation unit 33 becomes zero level, and the focus actuator 16 a is driven by the objective lens driving unit 37. Accordingly, since the position of the objective lens 16 in the optical axis direction is controlled, the focal point of the servo laser beam is positioned on the guide layer GL of the optical disc 10 and a condensed spot is formed on the guide layer GL.
  • the main controller 45 issues a light emission drive command to the recording / reproducing light source drive unit (step S4), and commands the recording layer focus control unit 42 to turn on focus servo control (step S4). S5).
  • the recording / reproducing light source driving unit drives the light source 21 with reproducing power to emit a reproducing laser beam.
  • a focus servo loop including the recording / reproducing optical system, the recording layer focus error generating unit 41, the recording layer focus control unit 42, and the beam expander driving unit 43 is formed.
  • the focus control unit 42 generates a recording layer focus control signal so that the focus error signal generated by the recording layer focus error signal generation unit 41 becomes zero level, and the actuator 24 c is driven by the beam expander driving unit 43.
  • the correction lens 24a is moved in advance to a position corresponding to the desired recording layer. Therefore, since the position of the correction lens 24a, that is, the distance between the correction lenses 24a and 24b is controlled by the focus servo control, the focal point of the recording / reproducing laser beam is surely positioned on a desired recording layer of the optical disc 10. become.
  • step S6 the main controller 45 instructs the tracking control unit 36 to turn on tracking servo control (step S6). Since the tracking on / off switch 69 is turned on by the tracking servo control ON command, a tracking servo loop including the servo optical system, the guide layer tracking error generation unit 35, the tracking control unit 36, and the objective lens driving unit 37 is formed. Therefore, the tracking control unit 36 generates a tracking control signal so that the tracking error signal generated by the guide layer tracking error generation unit 35 becomes the level of the tracking target value, and the tracking actuator 16b is moved by the objective lens driving unit 37. Driven.
  • the converging spot of the servo laser beam is positioned on the guide track of the guide layer GL of the optical disc 10.
  • the focused spot of the recording or reproducing laser beam is located at a position corresponding to the guide track in the desired recording layer.
  • step S6 the main controller 45 reads the address of the current track of the guide layer GL from the output signal of the guide layer reproduction signal generation unit 38 (step S7), and the servo laser beam according to the read current track address. It is determined whether or not the spot position is the recording start position (step S8). If it is not the recording start position, the tracking controller 36 is instructed to turn off the tracking servo control (step S9). The control operation when tracking servo control described later in FIG. 11 is turned on is stopped by the tracking servo control OFF command. Then, the optical system is transferred by the transfer drive unit so that the spot position by the servo laser beam moves to the track of the recording start position (step S10), and then the process returns to the execution of step S6.
  • step S8 If it is determined in step S8 that the recording start position is reached, the recording operation of the recording / reproducing laser beam is started from the recording start position of the desired recording layer (step S11).
  • the recording / reproducing light source driving unit drives the light source 21 with recording power to emit a recording laser beam, and the laser beam is modulated in accordance with recording data supplied from means (not shown).
  • the recording operation may be temporarily stopped depending on the tracking servo control state.
  • the main controller 45 determines whether or not the recording is finished after the recording operation is started (step S12). For example, if all the recording data is supplied and the recording operation is to be terminated, the recording operation is terminated (step S13). At the end of the recording operation, the recording / reproducing light source driving unit drives the light source 21 with the reproducing power to return to the emitting state of the reproducing laser beam.
  • the main controller 45 When the tracking servo control is turned on in step S6, the main controller 45 starts a control operation for the discontinuous portion of the guide layer GL. In this control, as shown in FIG. 11, a command for temporarily stopping the recording operation is generated (step S21), and the tracking servo polarity is set by the land / groove switch 66 (step S22). For tracking servo polarity setting, the main controller 45 generates a land / groove selection signal. When tracking on the groove G after passing through the discontinuous portion, the land / groove switch 66 adjusts the gain according to the land / groove selection signal.
  • the output signal of the polarity inverter 65 is selected by the land / groove switch 66 in accordance with the land / groove selection signal when tracking the land L after passing through the discontinuous portion. Every time the optical disk 10 makes one rotation (two discontinuous portions), the selection position of the land / groove switch 66, that is, the tracking servo polarity is switched according to the land / groove selection signal.
  • step S22 it is determined whether the spot position of the servo laser beam is a continuous guide track (step S23).
  • the guide track continuous portion is a portion of the region A1 or A2 other than the discontinuous portion.
  • the tracking hold control state and the recording stop state are entered.
  • the spot position is in the guide track continuous portion, the tracking servo is instructed to be closed (step S24).
  • the tracking servo / hold switch 68 is switched to the tracking-on side by the tracking servo close command, and the tracking mode becomes the tracking servo control state. After the tracking servo is closed, it is determined whether or not the tracking servo control is stable (step S25).
  • the stability of the tracking servo control is determined according to, for example, the magnitude of the tracking error signal amplitude. That is, it is determined that the tracking servo control is stable when the tracking error signal becomes the tracking target value ⁇ allowable value.
  • the recording operation is resumed (step S26).
  • step S27 it is determined whether or not the spot position of the servo laser beam is at a discontinuous portion of the guide track.
  • the tracking servo / hold switch 68 shifts the tracking mode to the hold state (step S28), and returns to step S21 to repeat the above operation.
  • a tracking servo control operation for a guide track including a discontinuous portion of the guide layer GL in the optical disc drive apparatus having such a configuration will be described with reference to FIG.
  • the polarity of the tracking error signal (the level of the land / groove selection signal) is determined by the land / groove switch 66 so that the spot of the servo laser beam follows the groove G, and when the tracking servo control is on, As in state 1 in FIG. 12, the tracking error signal is substantially zero level, and the beam spot moves following the center of the groove G of the guide track. At this time, because of the stable state, recording is performed on any one of the recording layers L0 to L3.
  • the tracking hold control is performed by executing the above step S23.
  • the tracking servo / hold switch 68 switches to the hold side and relays the hold output signal from the hold processing unit 67 to the objective lens driving unit 37 as a tracking control signal.
  • the recording operation is stopped by executing step S22. That is, in the tracking hold control state, the beam spot travels on the extension line of the groove G of the guide track.
  • the tracking servo control is turned on by executing step S26.
  • the tracking servo control is disturbed to increase the amplitude of the tracking error signal as shown in the state 3 in FIG. 12 in order to pull back the beam spot onto the groove G of the guide track.
  • the disturbance of the tracking servo control is settled and the tracking error signal becomes almost zero. Since this is the same state as state 1, recording is performed again.
  • the recording is stopped and the tracking hold state is set.
  • the polarity of the tracking error is reversed by the land / groove switch 66 so that the beam spot follows the land L.
  • the tracking servo control is turned on again in response to the start of state 6 in FIG. 12, the beam spot is controlled to be drawn back onto the land L from the boundary between the land L and the groove G of the guide track.
  • the tracking servo control is disturbed as in the state 3 described above.
  • the disturbance of the tracking servo control is settled, and the tracking error signal becomes almost zero. Since the beam spot stably follows the groove G, the recording operation is resumed.
  • the tracking servo control is turned on (closed) at the end of the discontinuous portion, the beam spot is automatically drawn to the center of the land L or the groove G. If the interval between state 2 and state 5 is sufficiently small with respect to the response time of tracking servo control, hold processing is unnecessary and branching to land L or groove G is possible with tracking servo control kept on (closed). It is. Further, by selecting the polarity of the tracking servo control at an appropriate timing by the land / groove switch 66, it is possible to select which of the land L and the groove G is traced.
  • FIG. 13 shows the movement of the beam spot at the discontinuity when the beam spot traces the guide track of the guide layer GL clockwise. While the beam spot makes one round along the guide track, it passes through the two discontinuities.
  • the beam spot In the movement of the beam spot in FIG. 13 (a), one discontinuity (the upper part of FIG. Since the tracking polarity is kept as it is in the continuous portion), the beam spot is controlled to move from the land L to the land L or from the groove G to the groove G across the discontinuous portion. Since the tracking polarity is reversed in the other discontinuous portion (the discontinuous portion in the lower part of FIG. 13A), the beam spot changes from the land L to the groove G or from the groove G to the land L across the discontinuous portion. Controlled to move. Therefore, in any discontinuous portion, the beam spot moves to a track arranged outside by Tp / 4 and gradually moves from the inner periphery to the outer periphery of the disk 10.
  • the tracking polarity is reversed at one of the discontinuous portions (the discontinuous portion at the top of FIG. 13 (b)). It is controlled to move from L to groove G or from groove G to land L. Since the tracking polarity is left as it is in the other discontinuous portion (discontinuous portion in the lower part of FIG. 13B), the beam spot is from land L to land L or from groove G to groove G across the discontinuous portion. Controlled to move to. Therefore, in any discontinuous portion, the beam spot moves to the track arranged on the inner side by Tp / 4, and gradually moves from the outer periphery to the inner periphery of the disk 10.
  • an opposite path can be realized with one guide track.
  • recording data is recorded across a plurality of recording layers L0 and L1
  • a beam is directed from the inner track to the outer track of the guide layer GL.
  • the beam spot is moved from the outer peripheral track of the guide layer GL toward the inner peripheral track as shown in FIG. 13B.
  • high-density and spiral recording tracks can be formed on the recording layers L0 to L2 of the optical disc 10. Further, as shown in FIG. 13, the opposite path can be realized by only one guide layer GL. Further, there is an advantage that the tracking servo control hold process and the polarity inversion frequency are low, and the effective guide track area used for recording clock generation and address acquisition increases. Further, the guide track may be a concentric circle, and the cutting of the guide layer can be realized relatively easily.
  • the recording / reproducing light source driving unit reproduces the light source 21 in the reproducing mode for reproducing the optical disk 10 in which the recording data is recorded on at least one of the recording layers L0 to L2. Since the spot of the laser beam for reproduction traces the recorded track by executing the tracking servo control in the same way as at the time of recording, it is driven according to the output signal of the photodetector 21 at that time. Thus, reproduction data is obtained from the recording layer reproduction signal generation unit 44.
  • the reproduction mode since a recording track exists on the recording layer of the optical disc, a tracking error signal can be obtained for the recording layer according to the output signal of the photodetector 21. Therefore, in the reproduction mode, data can be read out by directly applying servo to the recording track by the recording / reproducing optical system without using the guide track of the guide layer.
  • the recording track formed in the recording layer as in the above-described embodiment is a spiral track distorted in the portion P corresponding to the discontinuous portion of the guide track.
  • the tracking servo control in the portion P corresponding to the discontinuous portion cannot catch up with a sudden change in the recording track, and the servo may become unstable, or data may not be read due to detracking. is there. Further, in order to detect the portion P corresponding to the discontinuous portion, redundant data for detection must be recorded, which causes a reduction in recording capacity.
  • the recording track since recording is performed using both the land and groove of the guide layer, the recording track has a track pitch (Tp / 2) that is half of the guide track.
  • FIG. 15 shows a change in the recording position that proceeds from the inner periphery to the outer periphery when the spiral recording track of FIG. 14 is formed.
  • the recording position is linear as shown by the solid line in FIG. Proceed to
  • the recording position advances stepwise every half-circle as shown by the broken line in FIG.
  • the recording track advances by 1/4 track pitch of the guide track in one continuous section (half circle).
  • the step-like recording track (broken line) is shifted by ⁇ Tp / 8 of the guide track in the discontinuous section with respect to the spiral recording track (solid line) of constant change. Therefore, when recording is performed while intentionally shifting from ⁇ Tp / 8 to + Tp / 8 with respect to the guide track during recording, a spiral recording track having a constant change can be formed.
  • intentionally shifting the recording track with respect to the guide track can be realized by setting a tracking target value. That is, when the tracking target value is gradually changed from ⁇ Vt to Vt during recording, the beam spot of the guide layer gradually changes from ⁇ Tp / 8 to + Tp / 8 with respect to the guide track.
  • the beam spot of the recording layer and the beam spot of the guide layer move in the same manner, and as a result, the recording track recorded in this way is -Tp / 8 to + Tp with respect to the guide track.
  • FIG. 16 shows the setting of the tracking target value in the discontinuous portion of the guide track and the movement of the servo beam spot on the guide track when the spiral recording track has a constant change from the inner periphery to the outer periphery.
  • the state is shifted to the outer peripheral side by Tp / 8 with respect to the groove G center. It will be in a state shifted to For such a tracking operation, the tracking target value is switched from ⁇ Vt (predetermined negative level) to + Vt (predetermined positive level) in the discontinuous portion. Since the tracking servo control is in the hold state at the discontinuous portion, there is no shock due to switching of the tracking target value.
  • the tracking target value is gradually changed from ⁇ Vt to + Vt, and the tracking servo control is performed to follow the land L. In this case, the tracking target value is gradually changed from + Vt to -Vt.
  • FIG. 17 shows, by arrows, the movement of the beam spot at the discontinuous portion when the beam spot is traced spirally with a constant change in the clockwise direction according to the guide track of the guide layer GL.
  • the beam spot passes through two discontinuities while making a round along the guide track.
  • one discontinuity (the upper part of FIG. 17 (a) In the continuous portion)
  • the tracking target value is inverted and the tracking polarity is left as it is, so that the beam spot is controlled to move from the land L to the land L or from the groove G to the groove G across the discontinuous portion.
  • the other discontinuous part discontinuous part in the lower part of FIG.
  • the tracking target value remains unchanged and the tracking polarity is reversed, so that the beam spot moves from the land L to the groove G across the discontinuous part.
  • it is controlled to move from the groove G to the land L. Therefore, as shown in FIG. 18, the tracking target value and the tracking polarity are changed according to the movement of the beam spot, so that the disk 10 moves spirally with a constant change from the inner periphery to the outer periphery.
  • the tracking polarity is inverted at one of the discontinuous portions (the discontinuous portion at the top of FIG. 17B) and the tracking polarity is inverted. It is controlled to move from the land L to the groove G or from the groove G to the land L across the discontinuous portion. In the other discontinuous part (discontinuous part in the lower part of FIG. 17B), the tracking target value is reversed and the tracking polarity is left as it is, so that the beam spot is changed from the land L to the land L across the discontinuous part. Alternatively, control is performed so as to move from the groove G to the groove G. Therefore, as shown in FIG. 19, the tracking target value and the tracking polarity are changed in accordance with the movement of the beam spot, so that the disk 10 moves in a spiral shape with a constant change from the outer periphery to the inner periphery.
  • the opposite path can be realized by one guide track by controlling the polarity of the tracking servo at the discontinuous portion.
  • the guide layer of the optical disc shown in the above embodiment is divided into two regions A1 and A2, but it may be divided into four regions by two dividing lines orthogonal to each other as shown in FIG.
  • the dividing line becomes a discontinuous portion, and there are four discontinuous portions in one turn.
  • recording is performed by moving from the inner periphery to the outer periphery, recording is performed by following the groove G or land L in the order indicated by the numbers in FIG.
  • the tracking on the groove G or the land L is performed in the order indicated by the numbers in FIG.
  • the discontinuous portion forming the area dividing line of the optical disc 10 is a straight line, but it may be a curve divided into a plurality of areas as shown in FIG.
  • the present invention can be applied not only to the optical disk drive apparatus but also to other apparatuses such as a hard disk recording / reproducing apparatus including the optical disk drive apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 ガイド層に形成された案内構造のトラッキング用のガイドトラックが不連続部によって領域分けされ、その各領域には同心の円弧状のガイドトラックが一定のトラック間隔で形成され、不連続部を挟んで隣り合う2つの領域ではガイドトラックが前記トラック間隔の1/4だけディスク半径方向にずれているガイド層分離型の光ディスク。サーボ光学系では、第1レーザビームの照射スポットが2つの不連続部を通過する毎にその照射スポットのトラッキング中心をガイドトラック上とガイドトラック間との間で交互に切り替える光ディスクドライブ装置及びトラッキング制御方法。

Description

ガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法
 本発明は、多記録層を有するガイド層分離型の光ディスク、その光ディスクドライブ装置及びトラッキング制御方法に関する。
 多数の記録層を備える光ディスクとしては、記録層毎に記録層とガイド層とが同一の層に形成されたガイド層一体型の光ディスクと、各記録層とガイド層とが分離形成されたガイド層分離型の光ディスクとが知られている。ガイド層は位置(アドレス)情報を含むサーボ用の案内構造又は信号がガイドトラックとして形成されている層である。
 ガイド層一体型のディスクの場合には、記録層の情報が記録されていない未記録部分であってもその記録層と一体のガイドトラックを用いてトラッキング制御が可能であり、ガイドトラックによって定められたトラックに情報を記録することができる。また、単一のレーザビームで情報の記録再生が可能であるという利点もある。
 一方、ガイド層分離型のディスクの場合には、ガイド層からガイドトラックを読み取るためのサーボ用のレーザビームと、記録層に対して情報を書き込む又は記録情報を読み取るための記録再生用のレーザビームとが必要となり、1つの記録層への情報記録時には、サーボ用のレーザビームの焦点位置をトラッキング制御によりガイド層のガイドトラック上を移動させつつ記録再生用のレーザビームを1つの記録層に対して集光させて情報を書き込むことが行われる(特許文献1参照)。このため、サーボ用のレーザビームをガイド層に照射してその反射光を検出するためのサーボ光学系と、サーボ光学系と同一の対物レンズを用いて記録再生用のレーザビームを記録層に照射してその反射光を検出するための記録再生光学系とが光ディスクドライブ装置には備えられている。このガイド層分離型のディスクの場合、簡単な構造の記録層を積層する構造であるので製造が容易で光ディスクの製造コストを低く抑えることができる。また、ガイド層一体型のディスクよりも記録層の多層化が容易であるため記録容量を大きくすることができるという利点がある。
特開2001-202630号公報
 しかしながら、ガイド層分離型の光ディスクにおいては、一般にガイド層のガイドトラックのトラッキングのために用いられるサーボ光学系のサーボ用のレーザビームの波長は記録再生用のレーザビームの波長より長く、記録再生光学系に比べてサーボ光学系の分解能が粗いため記録再生光学系が有する分解能に対応した高密度の記録トラックを螺旋状に形成することが難しいという問題があった。
 そこで、本発明が解決しようとする課題には、上記の欠点が一例として挙げられ、記録層に螺旋状の記録トラックを高密度で形成することができるガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法を提供することを目的とする。
 請求項1に係る発明のガイド層分離型の光ディスクは、案内構造を有するガイド層と、複数の記録層とが各々分離して積層されたガイド層分離型の光ディスクであって、前記案内構造のトラッキング用のガイドトラックが不連続部によって領域分けされ、その各領域には同心の円弧状のガイドトラックがある一定のトラック間隔で形成され、前記不連続部を挟んで隣り合う2つの領域では前記ガイドトラックが前記トラック間隔の1/4だけディスク半径方向にずれていることを特徴としている。
 請求項4に係る発明の光ディスクドライブ装置は、案内構造を有するガイド層と、複数の記録層とが各々分離して積層され、前記案内構造のトラッキング用のガイドトラックが不連続部によって領域分けされ、その各領域には同心の円弧状のガイドトラックが一定のトラック間隔で形成され、前記不連続部を挟んで隣り合う2つの領域では前記ガイドトラックが前記トラック間隔の1/4だけディスク半径方向にずれているガイド層分離型の光ディスクのドライブ装置であって、サーボ用の第1レーザビームを対物レンズを介して前記光ディスクに照射して前記ガイド層からの反射光の検出を行うサーボ光学系と、記録又は再生用の第2レーザビームを前記対物レンズを介して前記光ディスクに照射して前記複数の記録層のいずれか1の記録層からの反射光の検出を行う記録再生光学系と、を備え、前記サーボ光学系は、前記第1レーザビームの照射スポットが2つの前記不連続部を通過する毎にその照射スポットのトラッキング中心を前記ガイドトラック上と前記ガイドトラック間との間で交互に切り替えるトラッキングサーボ制御手段を有することを特徴としている。
 請求項11に係る発明のトラッキング制御方法は、案内構造を有するガイド層と、複数の記録層とが各々分離して積層され、前記案内構造のトラッキング用のガイドトラックが不連続部によって領域分けされ、その各領域には同心の円弧状のガイドトラックが一定のトラック間隔で形成され、前記不連続部を挟んで隣り合う2つの領域では前記ガイドトラックが前記トラック間隔の1/4だけディスク半径方向にずれているガイド層分離型の光ディスクにサーボ用の第1レーザビームを対物レンズを介して照射して前記ガイド層からの反射光の検出を行うサーボ光学系と、記録又は再生用の第2レーザビームを前記対物レンズを介して前記光ディスクに照射して前記複数の記録層のいずれか1の記録層からの反射光の検出を行う記録再生光学系と、を備えた光ドライブドライブ装置のトラッキング制御方法であって、前記サーボ光学系では、前記第1レーザビームの照射スポットが2つの前記不連続部を通過する毎にその照射スポットのトラッキング中心を前記ガイドトラック上と前記ガイドトラック間との間で交互に切り替えることを特徴としている。
 請求項1に係る発明の光ディスクによれば、ガイド層の案内構造がトラッキング用のガイドトラックが不連続部によって領域分けされ、その各領域には同心の円弧状のガイドトラックが一定のトラック間隔で形成され、前記不連続部を挟んで隣り合う2つの領域では前記ガイドトラックが前記トラック間隔の1/4だけディスク半径方向にずれているので、不連続部を2回通過する毎にランドからグルーブ又はグルーブからランドにトラッキング中心を切り替えることにより螺旋状の記録トラックを高密度で記録層に形成することができる。
 請求項6に係る発明の光ディスクドライブ装置及び請求項11に係る発明のトラッキング制御方法によれば、サーボ光学系では、第1レーザビームの照射スポットが2つの不連続部を通過する毎にその照射スポットのトラッキング中心をガイドトラック上とガイドトラック間との間で交互に切り替えるので、螺旋状の記録トラックを高密度で記録層に形成することができる。
本発明のガイド層分離型の光ディスクの一部断面を示す図である。 図1の光ディスクのガイド層を示す図である。 カッティング装置の構成を示す図である。 ガイド層のガイドトラックのカッティング動作を示す図である。 本発明の光ディスクドライブ装置の構成を示す図である。 図5の装置中のトラッキングエラー信号生成部の構成を示す図である。 図5の装置中のトラッキング制御部の構成を示す図である。 ビームスポット位置とトラッキングエラー信号との関係を示す図である。 ビームスポットがガイドトラックを横切る場合のトラッキングエラー信号の変化を示す図である。 記録モードにおけるメインコントローラの制御動作を示すフローチャートである。 トラッキングサーボ制御オン時の不連続部に対する制御動作を示すフローチャートである。 不連続部を含むガイドトラックに対するトラッキングサーボ制御を示す図である。 ビームスポットがガイドトラックを時計回りにトレースする場合の不連続部におけるビームスポットの動きを示す図である。 記録層に形成された螺旋状の記録トラックを示す図である。 記録位置が内周から外周に記録する場合の記録位置の変化を示す図である。 一定した変化の螺旋状の記録トラックとする場合のガイドトラックの不連続部における目標値の設定とビームスポットの動きを示す図である。 一定した変化の螺旋状の記録トラックとする場合のビームスポットがガイドトラックを時計回りにトレースする場合の不連続部におけるビームスポットの動きを示す図である。 内周から外周に向けて一定した変化の螺旋状の記録トラックを形成する場合のトラッキング目標値及びトラッキング極性の変化を示す図である。 外周から内周に向けて一定した変化の螺旋状の記録トラックを形成する場合のトラッキング目標値及びトラッキング極性の変化を示す図である。 ガイド層を4つの領域に分けた光ディスクにおいてビームスポットがガイドトラックを時計回りにトレースする場合の不連続部におけるビームスポットの動きを示す図である。 光ディスクのガイド層の不連続部の他の形成例を示す図である。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は本発明の実施例としてガイド層分離型の光ディスク10を示している。この光ディスク10は、図1に示すようにガラス基板1と、ガイド層GLと、3つの記録層L0~L2と、中間層2と、保護層3とによる積層構造となっている。ガイド層GLは基板1上に形成されており、反射膜からなる。記録層L0~L2は半透明反射膜及び記録層からなり、ガイド層GL側からその順に形成されている。中間層2は紫外線硬化樹脂からなり、ガイド層GL及び記録層L0~L2各々の間に形成されている。ガイド層GLの反射膜は金属、例えば、Auからなり、記録層L0~L2の記録膜は有機材料、例えば、アゾ色素からなり、半透明反射膜は誘電体、例えば、NbやTiOからなる。保護層3は記録層L2上に形成され、レーザ光が入射するディスク表面をなす。光ディスク10の中心には貫通したクランプ孔4が形成されている。
 ガイド層GLには全面に亘ってグルーブによって案内構造が形成されている。案内構造は案内構造がない記録層に情報を螺旋状に記録するための構造である。グルーブがガイドトラックをなし、そこにはウォブル等によってアドレス情報が記録されている。また、隣接するガイドトラックの間にはランドが形成されている。
 図2(a)に示すように、ガイド層GLはディスク中心点を通る直線によって2等分に分割された2つの領域A1,A2を有している。領域A1,A2各々において円弧状のランドLとグルーブGとが内周側から外周側に向けて同一幅で交互に形成されている。それらの円の中心は、ディスクの中心点を同心としている。領域A1とA2との間の分割線はランドL及びグルーブG各々の不連続部となっている。
 図2(b)及び図2(c)各々はガイド層GLの一部B1及びB2を拡大して示している。グルーブGのトラックピッチをTpとすると、ランドL及びグルーブG各々の幅はTp/2である。図2(b)及び図2(c)に示されたように、領域A1とA2とではランドL及びグルーブGの形成位置がTp/4だけディスク半径方向にずれている。すなわち、領域A1のランドL及びグルーブGの形成位置に対して領域A2のランドL及びグルーブGの形成位置が外側にTp/4(ランドL及びグルーブG各々の幅の半分)だけずれている。
 図1及び図2に示した光ディスク10のガイド層GLは、ガイドトラックが形成された金型(スタンパ)から成形加工され、そこに反射膜を成膜することによって作成される。スタンパの作成は、通常、ガラス基板洗浄工程、フォトレジスト形成工程、露光工程、現像工程、導電処理工程、そしてニッケル電鋳工程の順に実行される。このうち、露光工程は、カッティングと呼ばれ、通常のDVD等の光ディスクと同じような方法でガイドトラックを記録することが行われる。露光工程で用いられるカッティング装置は図3に示すような構成を備えている。
 カッティング装置は、図3に示すように、光学系71、ターンテーブル72、スピンドルモータ73、スライドテーブル74、スライドモータ75を備えている。光学系71は光源81、コリメータレンズ82、ビームモジュレータ83、ビームスキャナ84及び対物レンズ85を備えている。
 また、カッティング装置の制御系として、送り位置検出器91、光学系移送制御部92、スライドモータ駆動部93、回転検出部94、原盤回転制御器95、スピンドルモータ駆動部96、ビーム走査制御部97、ビームスキャナ駆動器98、ビーム変調制御部99、ビームモジュレータ駆動器100及びメインコントローラ101を備えている。
 ターンテーブル72上にセットされた原盤70は、上記のガラス基板洗浄工程及びフォトレジスト形成工程によりガラス基板上にレジスト塗布されたディスクである。光源81には例えば波長350nmのレーザが用いられ、コリメータレンズ82によって平行光のレーザビームとされる。ビームモジュレータ83は、例えば、シャッター等の機構によりレーザービームを通過または遮断する。このビームモジュレータ83を高速に変調するとピットを記録することできるが、本実施例ではカッティング装置は、ガイドトラックとして、グルーブGをカッティングするものとする。ビームスキャナ84は、例えば、ガルバノミラー等の機構によってレーザビームを反射して対物レンズ85に向けて進めると共にレーザビームの照射方向を原盤70の半径方向に走査可能にされている。ビームモジュレータ83及びビームスキャナ84は音響光学変調器(AOM)を用いることによって、両方の機能を兼ねることもできる。対物レンズ85はレーザビームを原盤70のレジスト上に集光し、集光されたビームスポットにより原盤70が露光(記録)される。
 スライドテーブル72上には、光学系71が固定されており、スライドモータ75によって、原盤70の半径方向に光学系71を移送する機構を備えている。送り位置検出器91は、例えば、ポジションセンサ等によってターンテーブル72の移動量を検出し、移送量検出信号を出力する。光学系移送制御部92は移送量検出信号から、例えば速度一定になるように移送制御信号を生成する。スライドモータ駆動部93は移送制御信号に応じてスライドモータ75を駆動し、光学系71を一定速度で原盤70の半径方向に移送する。
 ターンテーブル72は、原盤70を保持する機構と共に、スピンドルモータ73によって、原盤70を回転させる構造を備えている。回転検出部94は、例えば、スピンドルモータに取りつけられたロータリーエンコーダによって回転同期信号を出力する。回転同期信号は、スピンドルモータ73の回転制御やビームスキャナ84のビーム走査制御に利用される。原盤回転制御器95は、回転同期信号から、例えば回転数一定となるように回転制御信号を生成する。スピンドルモータ駆動部96は回転制御信号に応じてスピンドルモータ73を駆動し、原盤70を一定の回転数で回転させる。
 ビーム走査制御部97は、原盤70の回転に同期してビームスポットを原盤70の半径方向に走査するために、ビーム走査制御信号を生成する。ビームスキャナ駆動器98は、ビーム走査制御信号に応じてビームスキャナ84を駆動し、レーザビームを走査することによって、集光されたビームスポットを原盤70の半径方向に走査する。例えば、円状のガイドトラック(溝)を記録する場合は、ビームスキャナ84によってビームスポットを光学系71の移送速度と同じ速度で逆向きに走査すれば良い。このとき、ビームスポットは原盤70の半径方向に止まっているように見える。さらに、1回転に1回、1トラックピッチ分ビームスキャナ84によってビームスポットを走査した分をキャンセルすると、ビームスポットは原盤70の半径方向にトラックピッチ分だけ進むことになる。これを繰り返すことによって、同心円状のガイドトラックをカッティングすることができる。従って、同心円状のガイドトラックをカッティングする場合、ビームスポットは1回転周期の鋸波状に走査される。
 ビーム変調制御部99は、原盤70の回転に同期して、露光のタイミングを制御するためにビーム変調制御信号を生成する。ビームモジュレータ駆動器100は、ビーム変調制御信号に応じてビームモジュレータ83を駆動し、レーザビームを通過/遮断することによって、露光のオン/オフを行う。例えば、同心円状のガイドトラックをカッティングする場合、1回転に1回、1トラックピッチ分だけビームスキャナ84によってビームスポットを走査した分をキャンセルする間において露光はオフされる。
 図4は図1の光ディスク10に形成されたガイド層GLのガイドトラックのカッティングを行う場合の動作を示している。
 図1のガイドトラックは、トラックピッチTpは一定である。よって、1回転当たりトラックピッチTp分だけ進むような一定速度で光学系71がスライドテーブル74と共に移送される。同様の速度で、ビームスキャナ84が逆向きにビームスポットを走査すると、ビームスポットは原盤70の半径方向に静止する。また、図1のガイドトラックは、1周に180°毎に2箇所の不連続部を有する。時計回りに内周から外周に向けてガイドトラックをカッティングする場合、一方の不連続部では、1/4トラックピッチTp分だけビームの走査を戻し、1/4トラックピッチTp分外側にガイドトラックをずらす。もう一方の不連続部では、3/4トラックピッチTp分だけビームの走査を戻し、3/4トラックピッチTp分だけ外側にガイドトラックをずらす。そのビーム走査を戻す際は、露光はオフされる。これらの手順を1回転毎に繰り返すことによって図1のようなガイドトラックのカッティングを行うことができる。
 図5は、本発明による光ディスクドライブ装置の構成を示している。この光ディスクドライブ装置は、上記の光ディスク10に対して情報の記録/再生を光学的に行うものであり、ディスク駆動系、光学系と、信号処理系とからなる。
 ディスク駆動系は光ディスク10をクランプ機構6によって挟み込むように保持してそれをスピンドルモータ7によって回転させる構造を備えている。
 光学系は更にサーボ光学系と記録再生光学系とに分けられる。
 サーボ光学系は、光源11、コリメータレンズ12、ビームスプリッタ13、ダイクロイックプリズム14、波長板15、対物レンズ16、集光レンズ17、及び光検出器18を備えている。
 光源11は波長660nmのサーボ用のレーザビームを出射する半導体レーザ素子である。光源11は図示しないサーボ用光源駆動部によって駆動される。コリメータレンズ12は光源11によって出射されたサーボ用のレーザビームを平行光に変換してビームスプリッタ13に供給する。ビームスプリッタ13はコリメータレンズ12から供給された平行レーザビームをそのままダイクロイックプリズム14に供給する。ダイクロイックプリズム14は反射・透過特性が光の波長により異なる合成面を有する合成プリズムであり、記録再生用のレーザビームの波長である405nm付近の波長に対しては反射し、サーボ用のレーザビーム、すなわちガイド光の波長である660nm付近の波長に対しては透過となる特性を持っている。よって、ダイクロイックプリズム14はビームスプリッタ13から入射したサーボ用のレーザビームをそのまま波長板15に供給する。
 波長板15はレーザビームが光ディスク10への往路と光ディスク10からの復路とで2度通過し、それによりビームの偏光の向きを90度変化させる。これはビームスプリッタ13の分離面へのダイクロイックプリズム14側からの戻り記録再生光をs偏光にすることである。よって、復路のビームに対してビームスプリッタ13が反射の作用をすることとなる。このことは後述の記録再生光学系のビームスプリッタ23における戻り記録再生光についても同様である。また、波長板15は広帯域のものが使用され、少なくとも光源11の出射ビーム波長と光源11の出射ビーム波長に対して1/4波長板として作用する。
 対物レンズ16は光軸方向への移動を行うためのフォーカスアクチュエータ16aと、光軸に垂直な方向への移動を行うためのトラッキングアクチュエータ16bとを備え、フォーカス方向及びトラッキング方向への微動を電気的に制御することができるようになっている。
 対物レンズ16はフォーカスアクチュエータ16aによりサーボ用のレーザビームを光ディスク10のガイド層に収束させることができ、同時に記録又は再生用のレーザビームを複数の記録層L0~L2のいずれか1の記録層に合焦させることができる。また、トラッキングアクチュエータ16bによりそのガイド層GLのガイドトラック上にサーボ用のレーザビームの光スポットを位置させることができ、同時にその1の記録層においてガイドトラックに対応した位置に記録又は再生用のレーザビームの光スポットを照射させることができる。
 光ディスク10のガイド層で反射したサーボ用のレーザビームは対物レンズ16、そして波長板16を介して平行光のレーザビームとしてダイクロイックプリズム15に戻る。ダイクロイックプリズム15はその反射のサーボ用のレーザビームをそのままビームスプリッタ13に供給する。ビームスプリッタ13はダイクロイックプリズム15からのレーザビームをその入射に対してほぼ90度の角度で反射して集光レンズ24に供給する。集光レンズ17は反射のサーボ用のレーザビームを光検出器18の受光面に集光させてそこにスポットを形成させる。光検出器18は例えば、4分割の受光面を有し、分割面毎に受光強度に応じたレベルの電圧信号を生成する。
 記録再生光学系は、サーボ光学系のダイクロイックプリズム14、波長板15、対物レンズ16を共用し、その他に光源21、コリメータレンズ22、ビームスプリッタ23、ビームエキスパンダ24、集光レンズ25、及び光検出器26を備えている。
 光源21は波長405nmの記録又は再生用の青色レーザビームを出射する半導体レーザ素子である。光源21は図示しない記録再生用光源駆動部によって駆動される。光源21から出射されるレーザビームはp偏光となるように調整されている。コリメータレンズ22は光源21によって出射されたレーザビームを平行光に変換してビームスプリッタ23に供給する。ビームスプリッタ23は偏光ビームスプリッタ(PBS)であり、コリメータレンズ22からのレーザビーム入射面に対して45度の分離面を有し、コリメータレンズ22から供給されたp偏光の平行レーザビームを分離面をそのまま通過させてビームエキスパンダ24に供給する。
 ビームエキスパンダ24はケプラー型のエキスパンダレンズからなり、第1及び第2の補正レンズ24a,24bを備え、第1の補正レンズ24aはアクチュエータ24cによって駆動され、光軸方向に移動可能にされている。初期状態では平行光で入射したときに平行光で出射するようにレンズ間隔が調整されている。補正レンズ24aを光軸方向に移動させることで、出射するビームが拡散光あるいは収束光へと変化し、それにより対物レンズ16で集光した記録再生用のレーザビームのサーボ用レーザビームに対する焦点差を与え、かつ球面収差を与えることができる。すなわち、第1の補正レンズ24aの位置を変更することにより第1及び第2の補正レンズ24a,24b間の距離が変化して光ディスク10の記録層毎のフォーカス制御及び球面収差補正が可能にされている。このビームエキスパンダ24に代わる球面収差補正手段としては、ガリレオ型のエキスパンダレンズや液晶素子がある。
 ダイクロイックプリズム14は上記したように記録再生用のレーザビームの波長である405nm付近の波長に対しては反射するので、記録再生用のレーザビームは反射されて光ディスク10の方向へ向かうことになる。
 対物レンズ16は上記のように記録又は再生用のレーザビームを複数の記録層L0~L2のいずれか1の記録層に合焦させることができる。
 光ディスク10のいずれかの記録層で反射した記録再生用のレーザビームは対物レンズ16、波長板15、ダイクロイックプリズム14、そしてビームエキスパンダ24を介して平行光のレーザビームとしてビームスプリッタ23に戻る。その反射レーザビームはs偏光となっているので、ビームスプリッタ23は反射レーザビームをその入射に対して分離面でほぼ90度の角度で反射して集光レンズ25に供給する。集光レンズ25は反射レーザビームを光検出器26の受光面に集光させてそこにスポットを形成させる。光検出器26は例えば、4分割の受光面を有し、分割面毎に受光強度に応じたレベルの電圧信号を生成する。
 なお、上記の光学系は図示しない移送駆動部によって光ディスク10の半径方向に移動可能にされている。
 信号処理系は、記録媒体回転制御部31、記録媒体回転駆動部32、ガイド層フォーカスエラー生成部33、ガイド層フォーカス制御部34、ガイド層トラッキングエラー生成部35、トラッキング制御部36、対物レンズ駆動部37、ガイド層再生信号生成部38、記録層フォーカスエラー生成部41、記録層フォーカス制御部42、ビームエキスパンダ駆動部43、記録層再生信号生成部44及びメインコントローラ45を備えている。
 記録媒体回転制御部31はメインコントローラ45からの指令に応じて記録媒体回転駆動部32を制御する。記録媒体回転駆動部32は記録媒体駆動時にはモータ7を回転駆動して光ディスク10を回転させる。記録媒体回転駆動部32では光ディスク10を線速度一定で回転させるためにスピンドルサーボ制御が行われる。
 ガイド層フォーカスエラー生成部33は光検出器18の出力電圧信号に応じてガイド層フォーカスエラー信号を生成する。そのフォーカスエラー信号の生成のためには例えば、非点収差法等の公知の信号生成方法を用いることができる。ガイド層フォーカスエラー信号はサーボ用ビームのフォーカス位置がガイド層GLにあるときゼロレベルとなるS字特性の信号である。
 ガイド層フォーカス制御部34はメインコントローラ45からの指令に応じて制御動作し、フォースサーボ制御時にはガイド層フォーカスエラー信号がゼロレベルになるようにフォーカス制御信号を生成する。フォーカス制御信号は対物レンズ16によるフォーカス部分の制御のために対物レンズ駆動部37に供給される。
 ガイド層トラッキングエラー生成部35は光検出器18の出力電圧信号に応じてガイド層トラッキングエラー信号を生成する。ガイド層トラッキングエラー信号はサーボ用のレーザビームのガイド層GLへの集光スポット位置のランド又はグルーブのガイドトラック中心からの誤差を示す信号である。例えば、図6に示すように、光検出器18の受光面がディスク半径方向とそれに垂直なトラック接線方向とによって4等分に分割されている場合にはトラック接線方向より内周側に位置する光検出素子18a,18bの出力信号が加算器51によって加算され、トラック接線方向より外周側に位置する光検出素子18c,18dの出力信号が加算器52によって加算され、加算器51の出力信号と加算器52の出力信号との差が減算器53によって算出されることによりガイド層トラッキングエラー信号は生成される。
 ガイド層トラッキングエラー生成部35の出力にはトラッキング制御部36が接続されている。トラッキング制御部36はメインコントローラ45からの指令に応じてトラッキングサーボ制御を行い、ガイド層トラッキングエラー生成部35によって生成されたガイド層トラッキングエラー信号を入力し、対物レンズ16によるトラッキング部分の制御のために対物レンズ駆動部37に対してトラッキング制御信号を供給する。トラッキング制御信号はトラッキングサーボ制御時にはガイドトラッキングエラー信号がトラッキング目標値のレベルになるように生成される。
 トラッキング制御部36は具体的には図7に示すように、減算器61、位相補償器62、低域ゲイン補償器63、ゲイン調整器64、極性反転器65、ランド/グルーブ切替器66、ホールド処理部67、トラッキングサーボ/ホールド切替器68、及びトラッキングオン/オフ切替器69を備えている。減算器61はトラッキング目標値のレベルとトラッキングエラー信号とレベル差を算出する。位相補償器62は減算器61の出力信号に対して位相を進ませ、トラッキングサーボの安定性を確保する。低域ゲイン補償器63は位相補償器62の出力信号の低域成分のゲインを増大させ、偏芯などの周波数の低い外乱に対する抑圧性能を向上させる。ゲイン調整器64は低域ゲイン補償器63の出力信号のゲインをサーボが安定するように調整する。極性反転器65はゲイン調整器64の出力信号の極性を反転させる。
 ランド/グルーブ切替器66はメインコントローラ45からのランドグルーブ選択信号に応じてゲイン調整器64の出力信号及び極性反転器65の出力信号のうちのいずれか一方を出力する。トラッキングサーボの極性を選択することによりランドL上を追従するかグルーブG上を追従するかが決定される。グルーブG上をトラッキングする場合にはランド/グルーブ切替器66によりゲイン調整器64の出力信号が選択され、ランドL上をトラッキングする場合にはランド/グルーブ切替器66により極性反転器65の出力信号が選択される。
 ホールド処理部67はトラッキングサーボ/ホールド切替器68がサーボ側からホールド側に切り替えられた直前におけるランド/グルーブ切替器66からの出力信号を保持して出力する。トラッキングサーボ/ホールド切替器68はトラッキングサーボ制御時にはサーボ側に切り替わってランド/グルーブ切替器66の出力信号を中継し、トラッキングホールド制御時にはホールド側に切り替わってホールド処理部67からの保持出力信号を中継する。
 トラッキングオン/オフ切替器69はトラッキング制御のオン時にはトラッキングサーボ/ホールド切替器68の出力信号をトラッキング制御信号として出力し、トラッキング制御のオフ時にはゼロレベルをトラッキング制御信号として出力する。
 対物レンズ駆動部27はガイド層フォーカス制御部34からのフォーカス制御信号に応じてフォーカスアクチュエータ16aを駆動し、対物レンズ16を光軸方向に移動させることによりサーボ用ビームを集光し、ガイド層GL上にビームスポットを結ばせる。また、対物レンズ駆動部27はトラッキング制御部36からのトラッキング制御信号に応じてトラッキングアクチュエータ16bを駆動し、対物レンズ16を光軸に垂直な光ディスク10の半径方向に移動させ、ガイド層GLのガイドトラックにサーボ用ビームスポットを沿わせて追従させる。
 ガイド層再生信号生成部38は光検出器18の出力電圧信号に応じてガイドトラックの記録データ(ウォブル)を読み出してそのアドレス情報を生成する。また、ガイド層再生信号生成部38は、光検出器18の出力電圧信号からガイド層GLの不連続部を検出してタイミング信号を生成する。不連続部の検出は、トラッキングエラー信号の生成と同様の方法によりプッシュプル信号を円周方向に適用したり、データを読み出して再生位置を確認することによって行われる。タイミング信号は、メインコントローラ45においてトラッキングエラーの極性やトラッキングサーボのオン・オフ・ホールド等の切り替えに利用される。
 記録層フォーカスエラー生成部41は、光検出器26の出力電圧信号に応じて記録層フォーカスエラー信号を生成する。その記録層フォーカスエラー信号の生成のためには例えば、非点収差法等の公知の信号生成方法を用いることができる。記録層フォーカスエラー信号は記録再生用ビームのフォーカス位置が記録層L0~L2各々にあるときにゼロレベルとなるS字特性の信号である。記録層フォーカスエラー信号生成部41の出力には記録層フォーカス制御部42が接続されている。記録層フォーカス制御部42は再生モードにおいて記録層フォーカスエラー信号に応じて制御のためにビームエキスパンダ駆動部43に記録層フォーカス制御信号を供給する。記録層フォーカス駆動信号は記録層についてのフォーカスサーボ制御時に記録層フォーカスエラー信号がゼロレベルになるように生成される。
 ビームエキスパンダ駆動部43は記録層フォーカス制御信号に応じてアクチュエータ24cを駆動してビームエキスパンダの補正レンズ24a,24b間の距離を変えることにより対物レンズ16に向かうビームの拡散・収束を調整し、光軸上におけるサーボ用ビームの集光位置に対する記録再生用ビームの集光位置を変化させる。すなわち、記録層フォーカス制御信号として所望の記録層に対応する電圧レベルをビームエキスパンダ駆動部43に供給することにより、ガイド層GLに対して所望の距離だけ離れたいずれか1の記録層に記録再生用ビームを集光させる。
 記録層再生信号生成部44は光検出器26の出力電圧信号に応じていずれか1の記録層に記録してある信号を再生する。
 メインコントローラ45は、記録媒体制御部31によるディスク回転制御のオンオフ、ガイド層フォーカス制御部34によるフォーカスサーボ制御のオンオフ、及び記録層フォーカス制御部42によるフォーカスサーボ制御のオンオフを制御する。また、トラッキング制御部36のランド/グルーブ切替器66、トラッキングサーボ/ホールド切替器68、及びトラッキングオン/オフ切替器69各々の切り替えを制御する。
 図8はサーボ用レーザビームのディスク半径方向におけるスポット位置とトラッキングエラー信号との関係を示している。図8に示されたビームスポットの位置は内周側から外周側に向けてランドL及びグルーブG上をTp/8ずつ移動されている。トラッキングエラー信号は、ビームスポットの位置がランドL又はグルーブGの中心にあるときにゼロになる。ビームスポットの位置がランドLとグルーブGとの境界にあるとき、すなわちランドL又はグルーブGの中心からTp/4だけずれたときにトラッキングエラー信号はピークを示す。また、ビームスポットの位置がランドL又はグルーブGの中心からTp/8だけずれたときにトラッキングエラー信号は±Vtの電圧レベルを示す。逆に、トラッキングエラー信号が+Vtを示すときに、ランドLにトラッキングしようとする場合には、Tp/8分だけ内周側へ、グルーブGにトラッキングしようとする場合には、Tp/8分だけ外周側へトラックずれしている。トラッキングエラー信号が-Vtを示すときに、ランドLにトラッキングしようとする場合には、Tp/8分だけ外周側へ、グルーブGにトラッキングしようとする場合には、Tp/8分だけ内周側へトラックずれていることになる。
 トラッキング制御部36においてトラッキングサーボ制御がオンの時にはトラッキングエラー信号がトラッキング目標値と同じレベルになるように制御動作が実行される。トラッキング目標値は通常、トラック(ランドL又はグルーブG)中心を示すゼロとされるが、ゼロではない目標値を与えることにより、トラック中心からずれた状態でガイドトラックに追従することができる。例えば、図8のVtをトラッキング目標値として与えた場合には、トラック中心からTp/8分ずれた状態でガイドトラックに追従させることができる。このとき、トラッキングエラー信号はゼロレベルではなくほぼVtのレベルとなる。
 図9はサーボ用レーザビームがガイド層GLのランドL及びグルーブGからなるガイドトラックを一定の速度で横切った場合におけるトラッキングエラー信号の変化を示している。この横切りの際には、トラッキングエラー信号が右上がりでゼロレベルに達したときはサーボ用レーザビームのスポットはグルーブG上にあり、トラッキングエラー信号が右下がりでゼロレベルに達したときはサーボ用レーザビームのスポットはランドL上にある。一方、トラッキングエラー信号の頂点においてはサーボ用レーザビームのスポットはランドLとグルーブGとの境界にある。図9のビームスポットが不連続部を横切るときにおいて、グルーブG上から不連続部のランド(鏡面)との境界に切り換わるため、トラッキングエラー信号も不連続になり、トラッキングエラー信号の位相が90°変化する。
 次に、かかる光ディスクドライブ装置の記録モードにおいて、光ディスク10の所望の記録層(記録層L0~L2のいずれか1、例えば、記録層L0)に情報を記録する際の動作について説明する。
 メインコントローラ45は操作部(図示せず)からの記録指令に応じて記録モードの動作を開始し、図10に示すように、先ず、記録媒体回転制御部31に回転開始指令を行ってスピンドルモータ7により光ディスク10を回転駆動させ(ステップS1)、上記したサーボ用光源駆動部に対して発光駆動指令を発生する(ステップS2)。サーボ用光源駆動部は光源11を駆動してサーボ用のレーザビームを発射させる。
 メインコントローラ45は、ガイド層フォーカス制御部34にフォーカスサーボ制御のオンを指令する(ステップS3)。フォーカスサーボ制御のオンにより、サーボ光学系、ガイド層フォーカスエラー生成部33、ガイド層フォーカス制御部34及び対物レンズ駆動部37からなるフォーカスサーボループが形成されるので、ガイド層フォーカス制御部34はガイド層フォーカスエラー信号生成部33で生成されたフォーカスエラー信号がゼロレベルになるようにガイド層フォーカス制御信号を生成し、対物レンズ駆動部37によりフォーカスアクチュエータ16aが駆動される。よって、対物レンズ16の光軸方向における位置が制御されるので、サーボ用のレーザビームの焦点が光ディスク10のガイド層GLに位置し、ガイド層GL上に集光スポットが形成される。
 メインコントローラ45は、ステップS3の実行後、上記した記録再生用光源駆動部に対して発光駆動指令を発生し(ステップS4)、記録層フォーカス制御部42にフォーカスサーボ制御のオンを指令する(ステップS5)。記録再生用光源駆動部は光源21を再生用パワーにて駆動して再生用のレーザビームを発射させる。ステップS5のフォーカスサーボ制御のオンにより、記録再生光学系、記録層フォーカスエラー生成部41、記録層フォーカス制御部42、及びビームエキスパンダ駆動部43からなるフォーカスサーボループが形成されるので、記録層フォーカス制御部42は記録層フォーカスエラー信号生成部41で生成されたフォーカスエラー信号がゼロレベルになるように記録層フォーカス制御信号を生成し、ビームエキスパンダ駆動部43によりアクチュエータ24cが駆動される。補正レンズ24aは所望の記録層に対応した位置に予め移動されている。よって、フォーカスサーボ制御により補正レンズ24aの位置、すなわち、補正レンズ24a,24b間の距離が制御されるので、記録再生用のレーザビームの焦点が光ディスク10の所望の記録層に確実に位置することになる。
 メインコントローラ45は、ステップS5の実行後、トラッキング制御部36にトラッキングサーボ制御のオンを指令する(ステップS6)。トラッキングサーボ制御のオン指令によりトラッキングオン/オフ切替器69がオン側に切り替わるので、サーボ光学系、ガイド層トラッキングエラー生成部35、トラッキング制御部36及び対物レンズ駆動部37からなるトラッキングサーボループが形成されるので、トラッキング制御部36はガイド層トラッキングエラー生成部35で生成されたトラッキングエラー信号がトラッキング目標値のレベルになるようにトラッキング制御信号を生成し、対物レンズ駆動部37によりトラッキングアクチュエータ16bが駆動される。よって、対物レンズ16のディスク半径方向における位置が制御されるので、サーボ用のレーザビームの集光スポットが光ディスク10のガイド層GLのガイドトラック上に位置することになる。同時に、所望の記録層において記録又は再生用のレーザビームの集光スポットがガイドトラックに対応した位置に位置することになる。
 メインコントローラ45は、ステップS6の実行後、ガイド層GLの現トラックのアドレスをガイド層再生信号生成部38の出力信号から読み取り(ステップS7)、読み取った現トラックアドレスに応じてサーボ用のレーザビームのスポット位置が記録開始位置であるか否かを判別する(ステップS8)。記録開始位置でない場合にはトラッキング制御部36にトラッキングサーボ制御のオフを指令する(ステップS9)。トラッキングサーボ制御のオフ指令により図11の後述のトラッキングサーボ制御オン時の制御動作が停止される。そして、記録開始位置のトラックにサーボ用のレーザビームによるスポット位置が移動するように上記の移送駆動部によって光学系が移送され(ステップS10)、その後、ステップS6の実行に戻る。
 ステップS8において記録開始位置であると判別した場合には記録再生用のレーザビームを所望の記録層の記録開始位置からの記録動作を開始する(ステップS11)。記録動作では記録再生用光源駆動部は光源21を記録用パワーにて駆動して記録用のレーザビームを発射させ、そのレーザビームは図示しない手段から供給される記録データに応じて変調される。ただし、トラッキングサーボ制御の状態によっては記録動作を一時停止する場合もある。
 メインコントローラ45は、記録動作の開始後、記録終了か否かを判別する(ステップS12)。例えば、記録データが全て供給されて記録動作を終了すべき状態であるならば、記録動作を終了する(ステップS13)。記録動作の終了では記録再生用光源駆動部は光源21を再生用パワーにて駆動して再生用のレーザビームの発射状態に戻す。
 ステップS6のトラッキングサーボ制御オンが実行されると、メインコントローラ45は、ガイド層GLの不連続部に対する制御動作を開始する。この制御においては、図11に示すように、記録動作を一時的に停止させる指令を発生し(ステップS21)、ランド/グルーブ切替器66によってトラッキングサーボ極性を設定する(ステップS22)。トラッキングサーボ極性設定については、メインコントローラ45はランドグルーブ選択信号を発生し、不連続部の通過後にグルーブG上をトラッキングする場合にはランドグルーブ選択信号に応じてランド/グルーブ切替器66によりゲイン調整器64の出力信号が選択され、不連続部の通過後にランドL上をトラッキングする場合にはランドグルーブ選択信号に応じてランド/グルーブ切替器66により極性反転器65の出力信号が選択される。光ディスク10が1回転する(2つの不連続部)毎にランドグルーブ選択信号に応じてランド/グルーブ切替器66の選択位置、すなわちトラッキングサーボ極性は切り替えられる。
 ステップS22の実行後、サーボ用レーザビームのスポット位置がガイドトラック連続部か否かを判別する(ステップS23)。ガイドトラック連続部とは不連続部以外の領域A1又はA2の部分である。スポット位置が不連続部にあるときにはトラッキングホールド制御状態でかつ記録停止状態となる。スポット位置がガイドトラック連続部にあるときにはトラッキングサーボのクローズを指令する(ステップS24)。トラッキングサーボのクローズ指令によりトラッキングサーボ/ホールド切替器68がトラッキングオン側に切り替わり、トラッキングモードがトラッキングサーボ制御状態となる。トラッキングサーボのクローズ後、トラッキングサーボ制御が安定しているか否かを判別する(ステップS25)。トラッキングサーボ制御の安定は、例えば、トラッキングエラー信号の振幅の大きさに応じて判別される。すなわち、トラッキングエラー信号がトラッキング目標値±許容値になったときトラッキングサーボ制御が安定していると判別される。トラッキングサーボ制御の安定を判別すると、記録動作を再開する(ステップS26)。
 その後、サーボ用レーザビームのスポット位置がガイドトラックの不連続部にあるか否かを判別する(ステップS27)。不連続部にあるときにはトラッキングサーボ/ホールド切替器68によりトラッキングモードをホールド状態に移行させ(ステップS28)、そしてステップS21に戻って上記の動作を繰り返す。
 かかる構成の光ディスクドライブ装置において、ガイド層GLの不連続部を含むガイドトラックに対するトラッキングサーボ制御動作について図12を参照して説明する。
 先ず、サーボ用レーザビームのスポットがグルーブG上を追従するようにランド/グルーブ切替器66によってトラッキングエラー信号の極性(ランドグルーブ選択信号のレベル)が決められ、トラッキングサーボ制御がオンであるときには、図12の状態1のように、トラッキングエラー信号はほぼゼロレベルで、ビームスポットはガイドトラックのグルーブGの中心上を追従して移動する。このとき、安定状態なので記録層L0~L3のいずれか1の記録層への記録が行われる。
 不連続部においてはガイドトラックが無くなるのでトラッキングエラー信号も消滅する。不連続部における図12の状態2では上記のステップS23の実行によりトラッキングホールド制御となる。トラッキングサーボ/ホールド切替器68はホールド側に切り替わってホールド処理部67からの保持出力信号をトラッキング制御信号として対物レンズ駆動部37に中継する。このとき、トラッキングサーボ制御系はクローズしておらず不安定なので、ステップS22の実行により記録動作は停止される。すなわち、トラッキングホールド制御状態になると、ビームスポットはガイドトラックのグルーブGの延長線上を進むことになる。その後、再びガイドトラックが現れたとき、そのガイドトラックはTp/4だけ、すなわちランドL又はグルーブGの幅の半分だけずれているので、ビームスポットはガイドトラックのランドLとグルーブGとの境界上に位置することになる。ステップS25の判別により不連続部の終了が判別された時点でステップS26の実行によりトラッキングサーボ制御はオンとされる。トラッキングサーボ制御がオンすると、ビームスポットをガイドトラックのグルーブG上に引き戻そうとして、図12の状態3に示すようにトラッキングサーボ制御が乱れてトラッキングエラー信号の振幅が大きくなる。このときトラッキングサーボ制御はまだ不安定状態なので記録は行われない。状態3の開始から時間が経過すると、図12の状態4に示すように、トラッキングサーボ制御の乱れが収まり、トラッキングエラー信号もほぼゼロになる。これは状態1と同じ状態なので、再び記録が行われる。
 次に、図12の状態5では状態2と同じように不連続部の通過時であるので、記録は停止され、トラッキングホールド状態にされる。このときランド/グルーブ切替器66によってトラッキングエラーの極性を反転し、ビームスポットがランドL上を追従するように設定しておく。この結果、図12の状態6の開始に応じて再びトラッキングサーボ制御がオンされると、ビームスポットはガイドトラックのランドLとグルーブGとの境界上からのランドL上に引き戻されるように制御され、上記の状態3と同様にトラッキングサーボ制御が乱れる。それから時間が経過して、図12の状態7に示すように、トラッキングサーボ制御の乱れが収まり、トラッキングエラー信号もほぼゼロになる。ビームスポットがグルーブG上を安定して追従するので、再び記録動作が再開される。
 このように、不連続部の終了の際にトラッキングサーボ制御をオン(クローズ)しておけばビームスポットはランドL又はグルーブGの中心へ自動的に引き込まれる。もし、状態2及び状態5の区間がトラッキングサーボ制御の応答時間に対して十分小さければ、ホールド処理は必要なく、トラッキングサーボ制御をオン(クローズ)のままでランドL又はグルーブGへの分岐が可能である。また、ランド/グルーブ切替器66によってトラッキングサーボ制御の極性を適正なタイミングで選択することによりランドL及びグルーブGのいずれをトレースするかの選択が可能である。
 図13はビームスポットがガイド層GLのガイドトラックを時計回りにトレースする場合の不連続部におけるビームスポットの動きを矢印で示している。ビームスポットがガイドトラックに沿って一周する間に2つの不連続部を通過するが、図13(a)のビームスポットの動きにおいては、一方の不連続部(図13(a)の上部の不連続部)ではトラッキング極性はそのままにされるので、ビームスポットは不連続部を挟んでランドLからランドLに、又はグルーブGからグルーブGに移動するように制御される。他方の不連続部(図13(a)の下部の不連続部)ではトラッキング極性が反転されるので、ビームスポットが不連続部を挟んでランドLからグルーブGに、又はグルーブGからランドLに移動するように制御される。よって、いずれの不連続部においてもビームスポットはTp/4だけ外側に配置されたトラックへ移り、ディスク10の内周から外周に徐々に移動していくことになる。
 図13(b)のビームスポットの動きにおいては、一方の不連続部(図13(b)の上部の不連続部)ではトラッキング極性が反転されるので、ビームスポットが不連続部を挟んでランドLからグルーブGに、又はグルーブGからランドLに移動するように制御される。他方の不連続部(図13(b)の下部の不連続部)ではトラッキング極性はそのままにされるので、ビームスポットが不連続部を挟んでランドLからランドLに、又はグルーブGからグルーブGに移動するように制御される。よって、いずれの不連続部においてもビームスポットはTp/4だけ内側に配置されたトラックへ移り、ディスク10の外周から内周に徐々に移動していくことになる。
 このように、不連続部においてトラッキングサーボの極性を制御することにより、1つのガイドトラックでオポジットパスを実現することができる。例えば、記録データを複数の記録層L0,L1に亘って記録する場合には先ず、記録層L0の記録では図13(a)のようにガイド層GLの内周トラックから外周トラックに向けてビームスポットを移動させ、続いて記録層L1の記録では図13(b)のようにガイド層GLの外周トラックから内周トラックに向けてビームスポットを移動させることが行われる。
 上記の実施例によれば、光ディスク10の記録層L0~L2には高密度で螺旋状の記録トラックを形成することができる。また、図13に示したように、1つのガイド層GLだけでオポジットパスを実現することができる。更に、トラッキングサーボ制御のホールド処理や極性反転の頻度が少なく、記録用クロック生成やアドレス取得のために使われる有効なガイドトラックの領域が多くなるという利点もある。また、ガイドトラックは同心円でよく、ガイド層のカッティングを比較的容易に実現することができる。
 なお、図5のディスクドライブ装置においては、記録層L0~L2のうちの少なくとも1の記録層に記録データを記録した光ディスク10を再生する再生モードでは、記録再生用光源駆動部が光源21を再生用パワーで駆動し、記録のときと同じようにトラッキングサーボ制御を実行することにより再生用のレーザビームのスポットは記録済みのトラックをトレースするため、そのときの光検出器21の出力信号に応じて記録層再生信号生成部44から再生データが得られる。
 また、再生モードにおいては、光ディスクの記録層上に記録トラックが存在するので、その記録層について光検出器21の出力信号に応じてトラッキングエラー信号を得ることができる。よって、再生モードにおいてはガイド層のガイドトラックを利用しなくても、記録再生光学系で直接記録トラックにサーボをかけてデータの読み出しを行うことができる。
 上記した実施例のようにして記録層に形成された記録トラックは、図14に示すように、ガイドトラックの不連続部に対応する部分Pにおいて歪んだ螺旋状のトラックとなる。再生モードでは、この不連続部に対応する部分Pにおいてトラッキングサーボ制御が記録トラックの急激な変化に追いつけず、サーボが不安定になったり、デトラックによってデータの読み出しが不可能になる可能性がある。また、この不連続部に対応する部分Pを検出するためには、検出のための冗長なデータを記録しなければならず、記録容量の低下の原因となる。
 そこで、次に、記録後の記録トラックが内周又は外周に向かって一定して変化する螺旋状のトラックになるようなトラッキングサーボ制御について説明する。
 本実施例ではガイド層のランド及びグルーブ両方を利用して記録しているため、記録トラックはガイドトラックの半分のトラックピッチ(Tp/2)である。
 図15は、図14の螺旋状の記録トラックを形成する際の内周から外周に進む記録位置の変化を示したものである。横軸に記録位置の進行距離又は時間を、縦軸に半経方向の記録位置をとると、例えば、一定した変化の螺旋状の記録トラックでは、記録位置は図15の実線のように直線的に進む。図1のガイドトラックに追従しながら記録を行うと、図15の破線のように記録位置は半周毎に階段状に進んでいく。記録トラックは1つの連続区間(半周)でガイドトラックの1/4トラックピッチだけ進む。一定した変化の螺旋状の記録トラック(実線)に対して階段状の記録トラック(破線)は不連続区間でガイドトラックの±Tp/8だけずれている。従って、記録時にガイドトラックに対して-Tp/8から+Tp/8まで意図的にずらしながら記録を行うと、一定した変化の螺旋状の記録トラックを形成することができる。ガイドトラックに対して記録トラックを意図的にずらすことは、図8に示したように、トラッキング目標値を設定することによって実現できる。すなわち、記録中に、トラッキング目標値を-VtからVtまで徐々に変化させると、ガイド層のビームスポットがガイドトラックに対して-Tp/8から+Tp/8まで徐々に変化する。ディスク半径方向に関しては、記録層のビームスポットとガイド層のビームスポットは同様の動きをするので、このようにして記録された記録トラックは、結果として、ガイドトラックに対して-Tp/8から+Tp/8まで徐々にずれる螺旋状のトラックとなる。
 図16は内周から外周に向けて一定した変化の螺旋状の記録トラックとする場合のガイドトラックの不連続部におけるトラッキング目標値の設定とガイドトラック上のサーボビームスポットの動きを示している。例えば、不連続部においてグルーブGからグルーブGへトラッキングする場合、グルーブG中心に対してTp/8だけ外周側にずれた状態から、そのまま進むとグルーブG中心に対してTp/8だけ内周側にずれた状態になる。このようなトラッキング動作のために、トラッキング目標値は不連続部内において-Vt(所定の負レベル)から+Vt(所定の正レベル)に切り替えられる。不連続部においてはトラッキングサーボ制御はホールド状態になっているのでトラッキング目標値の切り換えによるショックはない。例えば、不連続部においてグルーブGからランドLへトラッキングを切り替える場合には、グルーブG中心に対してTp/8だけ外周側にずれた状態から、そのまま進むとランドL中心に対してTp/8だけ内周側にずれた状態になる。このようなトラッキング動作のためには,トラッキング目標値は不連続部内において+Vtのままととする。不連続部においてはトラッキングサーボの極性切り換えが行われているので、図8のようにグルーブG中心に対してTp/8だけ外周側にずれたトラッキングエラー信号とランドL中心に対してTp/8だけ内周側にずれたトラッキングエラー信号は同じレベルになるからである。不連続部外では、グルーブG上を追従するようにトラッキングサーボ制御を行う場合にはトラッキング目標値は-Vtから+Vtまで徐々に変化させ、ランドL上を追従するようにトラッキングサーボ制御を行う場合にはトラッキング目標値は+Vtから-Vtまで徐々に変化させる。
 図17はビームスポットがガイド層GLのガイドトラックに従って時計回りで一定した変化で螺旋状にトレースする場合の不連続部におけるビームスポットの動きを矢印で示している。ビームスポットがガイドトラックに沿って一周する間に2つの不連続部を通過するが、図17(a)のビームスポットの動きにおいては、一方の不連続部(図17(a)の上部の不連続部)ではトラッキング目標値が反転され、トラッキング極性はそのままにされるので、ビームスポットは不連続部を挟んでランドLからランドLに、又はグルーブGからグルーブGに移動するように制御される。他方の不連続部(図17(a)の下部の不連続部)ではトラッキング目標値がそのままで、トラッキング極性が反転されるので、ビームスポットが不連続部を挟んでランドLからグルーブGに、又はグルーブGからランドLに移動するように制御される。よって、図18に示すようにトラッキング目標値及びトラッキング極性をビームスポットの移動に応じて変化させることによりディスク10の内周から外周に一定した変化で螺旋状に移動していくことになる。
 図17(b)のビームスポットの動きにおいては、一方の不連続部(図17(b)の上部の不連続部)ではトラッキング目標値がそのままで、トラッキング極性が反転されるので、ビームスポットが不連続部を挟んでランドLからグルーブGに、又はグルーブGからランドLに移動するように制御される。他方の不連続部(図17(b)の下部の不連続部)ではトラッキング目標値が反転され、トラッキング極性はそのままにされるので、ビームスポットが不連続部を挟んでランドLからランドLに、又はグルーブGからグルーブGに移動するように制御される。よって、図19に示すようにトラッキング目標値及びトラッキング極性をビームスポットの移動に応じて変化させることによりディスク10の外周から内周に一定した変化で螺旋状に移動していくことになる。
 このように、記録トラックを一定した変化の螺旋状に形成する場合にも不連続部においてトラッキングサーボの極性を制御することにより、1つのガイドトラックでオポジットパスを実現することができる。
 このようなトラッキングサーボ制御によって歪みが少なく一定した変化の螺旋状の記録トラックが形成される。
 更に、このようなトラッキングサーボ制御を行うと、不連続部からランドL又はグルーブGへの移るときに、トラッキングサーボ制御をホールド状態から、サーボオンする場合にビームスポットを急激に移動させる必要がない。トラックが螺旋状に一定した変化で連続的に形成されていくことで、サーボの安定性も向上し、安定した記録を行うことができるという効果が得られる。
 なお、上記した実施例で示した光ディスクのガイド層は2つの領域A1,A2に分けられているが、図20に示すように互いに直交する2つの分割線によって4つの領域に分けても良い。分割線が不連続部となり、1周において4つの不連続部が存在することになる。この光ディスクでは内周から外周に移動して記録する場合には、図20(a)に番号で示す順にグルーブG又はランドL上を追従し、外周から内周に移動して記録する場合には、図20(b)に番号で示す順にグルーブG又はランドL上を追従することが行われる。
 また、上記した実施例では、光ディスク10の領域分割線をなす不連続部は直線であるが、図21に示すように複数の領域に分割する曲線であっても良い。
 本発明は光ディスクドライブ装置だけでなく光ディスクドライブ装置を備えたハードディスク記録再生装置等の他の装置にも適用することができる。

Claims (11)

  1.  案内構造を有するガイド層と、複数の記録層とが各々分離して積層されたガイド層分離型の光ディスクであって、
     前記案内構造のトラッキング用のガイドトラックが不連続部によって領域分けされ、
     その各領域には同心の円弧状のガイドトラックが一定のトラック間隔で形成され、
     前記不連続部を挟んで隣り合う2つの領域ではガイドトラックが前記トラック間隔の1/4だけディスク半径方向にずれていることを特徴とするガイド層分離型の光ディスク。
  2.  前記ガイドトラックにはアドレス情報が記録されていることを特徴とする請求項1記載のガイド層分離型の光ディスク。
  3.  前記案内構造は2つの前記不連続部によって2つの領域に分けられていることを特徴とする請求項1記載のガイド層分離型の光ディスク。
  4.  案内構造を有するガイド層と、複数の記録層とが各々分離して積層され、前記案内構造のトラッキング用のガイドトラックが不連続部によって領域分けされ、その各領域には同心の円弧状のガイドトラックが一定のトラック間隔で形成され、前記不連続部を挟んで隣り合う2つの領域では前記ガイドトラックが前記トラック間隔の1/4だけディスク半径方向にずれているガイド層分離型の光ディスクのドライブ装置であって、
     サーボ用の第1レーザビームを対物レンズを介して前記光ディスクに照射して前記ガイド層からの反射光の検出を行うサーボ光学系と、
     記録又は再生用の第2レーザビームを前記対物レンズを介して前記光ディスクに照射して前記複数の記録層のいずれか1の記録層からの反射光の検出を行う記録再生光学系と、を備え、
     前記サーボ光学系は、前記第1レーザビームの照射スポットが2つの前記不連続部を通過する毎にその照射スポットのトラッキング中心を前記ガイドトラック上と前記ガイドトラック間との間で交互に切り替えるトラッキングサーボ制御手段を有することを特徴とする光ディスクドライブ装置。
  5.  前記トラッキングサーボ制御手段は、前記サーボ光学系による反射光の検出レベルに基づいて前記第1レーザビームの照射スポットの前記ガイドトラック上又はガイドトラック間の中心からの誤差を示すトラッキングエラー信号を生成するトラッキングエラー信号生成手段と、
     前記トラッキングエラー信号とトラッキング目標値との差レベルに応じたトラッキング制御信号を生成するトラッキング制御信号生成手段と、
     前記トラッキング制御信号に応じて前記対物レンズを前記ディスク半径方向に駆動する駆動手段と、
     前記照射スポットのトラッキング中心を前記ガイドトラック上と前記ガイドトラック間との間で切り替えるために前記トラッキング制御信号の極性を反転する極性反転手段と、を備えることを特徴とする請求項4記載の光ディスクドライブ装置。
  6.  前記第1レーザビームの照射スポット位置が前記不連続部であることを検出する検出手段を備え、
     前記トラッキングサーボ制御手段は、前記検出手段により前記照射スポット位置が前記不連続部であることが検出されているとき、前記駆動手段に供給される前記トラッキング制御信号を前記不連続部検出直前のレベルで保持する保持手段を有することを特徴とする請求項5記載の光ディスクドライブ装置。
  7.  前記トラッキング目標値はゼロレベルであることを特徴とする請求項5記載の光ディスクドライブ装置。
  8.  前記トラッキングサーボ制御手段は、前記光ディスクを内周から外周に向けて前記第1レーザビームの照射スポットを移動させるときと、前記光ディスクを外周から内周に向けて前記第1レーザビームの照射スポットを移動させるときとでは、前記偶数の不連続部のうちの、前記照射スポットのトラッキング中心を前記ガイドトラック上と前記ガイドトラック間との間で交互に切り替える不連続部は異なることを特徴とする請求項4又は7記載の光ディスクドライブ装置。
  9.  前記光ディスクを内周から外周に向けて前記第1レーザビームの照射スポットが前記ガイドトラック上又は前記ガイドトラック間をトラッキングするとき前記トラッキング制御信号が一方の極性であれば、前記トラッキング目標値は所定の負レベルから前記所定の負レベルと絶対値が等しい所定の正レベルまで徐々に変化され、前記トラッキング制御信号が他方の極性であれば、前記トラッキング目標値は前記所定の正レベルから前記所定の負レベルまで徐々に変化され、
     前記光ディスクを外周から内周に向けて前記第1レーザビームの照射スポットが前記ガイドトラック上又はガイドトラック間をトラッキングするとき前記トラッキング制御信号が一方の極性であれば、前記トラッキング目標値は前記所定の正レベルから前記所定の負レベルまで徐々に変化され、前記トラッキング制御信号が他方の極性であれば、前記トラッキング目標値は前記所定の負レベルから前記所定の正レベルまで徐々に変化されることを特徴とする請求項5記載の光ディスクドライブ装置。
  10.  前記光ディスクを内周から外周に向けて前記第1レーザビームの照射スポットが前記ガイドトラック上をトラッキングするときその照射スポットの中心は前記ガイドトラック中心から内周側1/4幅の位置から外周側1/4幅の位置まで徐々に移動し、前記光ディスクを内周から外周に向けて前記第1レーザビームの照射スポットが前記ガイドトラック間をトラッキングするときその照射スポットの中心は前記ガイドトラック間中心から内周側1/4幅の位置から外周側1/4幅の位置まで徐々に移動し、
     前記光ディスクを外周から内周に向けて前記第1レーザビームの照射スポットが前記ガイドトラック上をトラッキングするときその照射スポットの中心は前記ガイドトラック中心から外周側1/4幅の位置から内周側1/4幅の位置まで徐々に移動し、前記光ディスクを外周から内周に向けて前記第1レーザビームの照射スポットが前記ガイドトラック間をトラッキングするときその照射スポットの中心は前記ガイドトラック間中心から外周側1/4幅の位置から内周側1/4幅の位置まで徐々に移動することを特徴とする請求項5又は9記載の光ディスクドライブ装置。
  11.  案内構造を有するガイド層と、複数の記録層とが各々分離して積層され、前記案内構造のトラッキング用のガイドトラックが不連続部によって領域分けされ、その各領域には同心の円弧状のガイドトラックが一定のトラック間隔で形成され、前記不連続部を挟んで隣り合う2つの領域では前記ガイドトラックが前記トラック間隔の1/4の半分だけディスク半径方向にずれているガイド層分離型の光ディスクにサーボ用の第1レーザビームを対物レンズを介して照射して前記ガイド層からの反射光の検出を行うサーボ光学系と、
     記録又は再生用の第2レーザビームを前記対物レンズを介して前記光ディスクに照射して前記複数の記録層のいずれか1の記録層からの反射光の検出を行う記録再生光学系と、を備えた光ドライブドライブ装置のトラッキング制御方法であって、
     前記サーボ光学系では、前記第1レーザビームの照射スポットが2つの前記不連続部を通過する毎にその照射スポットのトラッキング中心を前記ガイドトラック上と前記ガイドトラック間との間で交互に切り替えることを特徴とするトラッキング制御方法。
PCT/JP2009/062605 2009-07-10 2009-07-10 ガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法 WO2011004496A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011521759A JP5116878B2 (ja) 2009-07-10 2009-07-10 ガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法
US13/381,713 US20120120783A1 (en) 2009-07-10 2009-07-10 Guide-layer separated optical disk, optical disk drive apparatus, and tracking control method
PCT/JP2009/062605 WO2011004496A1 (ja) 2009-07-10 2009-07-10 ガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法
TW099122042A TW201117203A (en) 2009-07-10 2010-07-05 Guide-layer separated optical disk, optical disk drive apparatus, and tracking control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062605 WO2011004496A1 (ja) 2009-07-10 2009-07-10 ガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法

Publications (1)

Publication Number Publication Date
WO2011004496A1 true WO2011004496A1 (ja) 2011-01-13

Family

ID=43428933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062605 WO2011004496A1 (ja) 2009-07-10 2009-07-10 ガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法

Country Status (4)

Country Link
US (1) US20120120783A1 (ja)
JP (1) JP5116878B2 (ja)
TW (1) TW201117203A (ja)
WO (1) WO2011004496A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682792A (zh) * 2011-03-17 2012-09-19 株式会社东芝 聚焦伺服控制装置以及使用其的信息记录再生装置
JP2012226813A (ja) * 2011-04-22 2012-11-15 Hitachi Consumer Electronics Co Ltd 対物レンズ、およびそれを搭載した光ディスク装置
US20130194903A1 (en) * 2012-01-30 2013-08-01 Kazuo Watabe Electronic device and audio output method
JP2013246861A (ja) * 2012-05-29 2013-12-09 Pioneer Electronic Corp 記録媒体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097723A (ja) * 2006-10-12 2008-04-24 Sony Corp 光ディスク装置及びトラッキング制御方法並びに光ディスク

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896365A (en) * 1995-04-28 1999-04-20 Canon Kabushiki Kaisha Optical information recording medium capable of recording in lands and grooves without a track-jumping operation; optical information recording/reproducing apparatus using, and master disk exposure apparatus for producing the same
JP2000123421A (ja) * 1998-10-12 2000-04-28 Pioneer Electronic Corp 記録媒体、記録媒体製造装置及び情報記録再生装置
JP2001134961A (ja) * 1999-11-05 2001-05-18 Olympus Optical Co Ltd 光記録再生装置
US6738324B2 (en) * 2001-05-29 2004-05-18 Matsushita Electric Industrial Co. Recording and/or reproduction apparatus
JP4352009B2 (ja) * 2005-02-02 2009-10-28 株式会社東芝 光記録方法、光再生方法、光記録媒体、および光記録再生装置
WO2007069655A2 (ja) * 2005-12-15 2007-06-21 Matsushita Electric Ind Co Ltd 光ディスク装置、クロストーク補正方法および集積回路
WO2008099705A1 (ja) * 2007-02-16 2008-08-21 Sanyo Electric Co., Ltd. 記録媒体および記録再生装置
JP4973474B2 (ja) * 2007-12-05 2012-07-11 ソニー株式会社 光ディスク装置及び光情報記録方法
EP2243135A2 (en) * 2008-02-13 2010-10-27 Thomson Licensing Optical storage medium, mastering method and apparatus for reading of respective data
US8189433B2 (en) * 2008-10-03 2012-05-29 Pioneer Corporation Optical disk drive device and additional recording method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097723A (ja) * 2006-10-12 2008-04-24 Sony Corp 光ディスク装置及びトラッキング制御方法並びに光ディスク

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682792A (zh) * 2011-03-17 2012-09-19 株式会社东芝 聚焦伺服控制装置以及使用其的信息记录再生装置
JP2012226813A (ja) * 2011-04-22 2012-11-15 Hitachi Consumer Electronics Co Ltd 対物レンズ、およびそれを搭載した光ディスク装置
US20130194903A1 (en) * 2012-01-30 2013-08-01 Kazuo Watabe Electronic device and audio output method
JP2013246861A (ja) * 2012-05-29 2013-12-09 Pioneer Electronic Corp 記録媒体

Also Published As

Publication number Publication date
TW201117203A (en) 2011-05-16
JP5116878B2 (ja) 2013-01-09
US20120120783A1 (en) 2012-05-17
JPWO2011004496A1 (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
US8248900B2 (en) Optical disc apparatus, focus position control method and recording medium
US7936656B2 (en) Optical disc apparatus, focus position control method and optical disc
JP4973474B2 (ja) 光ディスク装置及び光情報記録方法
US7916585B2 (en) Optical disc drive and method of controlling focal position
JP5081092B2 (ja) 光記録媒体ドライブ装置及び追加記録方法
US7869330B2 (en) Optical disc apparatus and method for reproducing information
WO2010038311A1 (ja) 光ディスクドライブ装置及び追加記録方法
JP2004063025A (ja) 光ディスク装置と光ディスク装置のアクセス方法
TWI395214B (zh) A volume type information recording medium, an information recording apparatus, an information reproducing apparatus, and an optical pickup device
JP2005203070A (ja) 記録媒体並びに記録再生方法及び記録再生装置
JP5116878B2 (ja) ガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法
JP2008097723A (ja) 光ディスク装置及びトラッキング制御方法並びに光ディスク
US7978569B2 (en) Optical disc device and focus control method
US20070121433A1 (en) Optical information recording and reproducing apparatus
JP5403769B2 (ja) ガイド層分離型の光記録媒体、光記録媒体ドライブ装置及び記録層アクセス方法
JP2011216171A (ja) 光学ピックアップ、光学ドライブ装置、光照射方法
KR100982520B1 (ko) 광디스크, 광디스크에 대한 기록/재생 방법 및 장치
WO2010122659A1 (ja) 光記録媒体ドライブ装置及び記録方法
JP2012243347A (ja) 記録装置、サーボ制御方法
JP2011198427A (ja) 記録装置、記録方法
JP2011192322A (ja) 光ディスク装置、光ディスク、記録方法及び再生方法
JP5058204B2 (ja) 光スポット位置制御装置、光スポット位置制御方法
JP2924880B2 (ja) 光ディスクの記録再生装置及び記録再生方法
JP5675460B2 (ja) ディスク装置
JP2011146090A (ja) 光学ドライブ装置、フォーカスサーボ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521759

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13381713

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09847098

Country of ref document: EP

Kind code of ref document: A1