WO2011001906A1 - 培養細胞の評価方法およびバイオマーカーのスクリーニング方法 - Google Patents

培養細胞の評価方法およびバイオマーカーのスクリーニング方法 Download PDF

Info

Publication number
WO2011001906A1
WO2011001906A1 PCT/JP2010/060812 JP2010060812W WO2011001906A1 WO 2011001906 A1 WO2011001906 A1 WO 2011001906A1 JP 2010060812 W JP2010060812 W JP 2010060812W WO 2011001906 A1 WO2011001906 A1 WO 2011001906A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
seq
microrna
cell
differentiation
Prior art date
Application number
PCT/JP2010/060812
Other languages
English (en)
French (fr)
Inventor
佳之 堀田
和也 小見
麻子 岡
Original Assignee
富士レビオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士レビオ株式会社 filed Critical 富士レビオ株式会社
Priority to EP10794075A priority Critical patent/EP2450454A4/en
Priority to US13/381,384 priority patent/US20120178085A1/en
Priority to JP2011520895A priority patent/JPWO2011001906A1/ja
Publication of WO2011001906A1 publication Critical patent/WO2011001906A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present invention relates to a method for evaluating cultured cells and a method for screening biomarkers using nucleic acids such as microRNA (miRNA) released from cultured cells into the culture solution.
  • nucleic acids such as microRNA (miRNA) released from cultured cells into the culture solution.
  • Cultured cells are evaluated by methods such as immunostaining of cultured cells and analysis of proteins and genes expressed in the cells. For example, embryonic stem cells are evaluated by immunostaining targeting OCT4, NANOG, etc., and cells induced to differentiate from embryonic stem cells are evaluated based on a decrease in OCT4, NANOG gene expression or an increase in tissue-specific genes. ing.
  • the cultured cells In the evaluation method using cells such as immunostaining method and gene expression level, the cultured cells must be fixed and lysed. Therefore, in order to evaluate changes over time, culture under the same conditions A large amount of cells must be prepared. And there is a problem that the cells cultured over time must be consumed.
  • RNA precursor microRNA
  • RNA-degrading enzyme RNA-degrading enzyme to become single-stranded RNA of 17 to 24 bases.
  • This miRNA has a function of inhibiting the translation of messenger RNA having a base sequence complementary to itself, and differentiation from stem cells to tissue cells (Non-patent Document 1) and determination of each tissue cancer cell ( In Patent Document 1), it is reported that it plays an important role.
  • this miRNA exists in blood (Non-patent Document 2), and it has been noted that it may be used for diagnosis / prognosis prediction for diseases such as cancer.
  • a medium supplemented with serum is generally used from the viewpoint of increasing the culture efficiency. Since it is difficult to discriminate between added serum-derived nucleic acid and nucleic acid released from cultured cells, no method for evaluating cells with nucleic acid released from cultured cells or a method for screening biomarkers has been reported so far.
  • an object of the present invention is to provide a novel means capable of evaluating cultured cells and screening biomarkers without consuming cultured cells.
  • nucleic acids such as miRNA are released from the cultured cells into the culture solution, and further, stem cells, differentiated tissue cells, drug treatment, progression of malignancy of cancer cells, etc. It was found that the amount and type of nucleic acid such as miRNA released into the culture medium differ depending on the situation.
  • the inventors have found that the state of cells can be evaluated by using a nucleic acid such as miRNA as an indicator, and the present invention has been completed.
  • biomarker screening can be performed by measuring nucleic acids such as miRNA in a serum-free medium, thereby completing the present invention.
  • the present invention provides a method for evaluating cultured cells, comprising culturing cells in a serum-free medium and measuring at least one kind of nucleic acid released from the cells into the culture medium. Since the present method cultivates cells in a serum-free medium, it provides a screening method capable of easily finding nucleic acid candidates for biomarkers such as stem cells and cancer cells.
  • the present invention provides the following inventions.
  • a method for evaluating cultured cells comprising culturing cells in a serum-free medium and measuring at least one nucleic acid released from the cells into the culture medium.
  • the nucleic acid is microRNA.
  • the method according to (2), wherein at least one kind of microRNA having a base sequence represented by SEQ ID Nos. 1, 3 to 5, 7 to 19, 41 to 44 in the sequence listing is measured.
  • (4) The method according to (3), wherein at least one kind of microRNA comprising the nucleotide sequences shown in SEQ ID NOs: 1, 3 to 5, and 7 to 19 in the sequence listing is measured.
  • the cell is a mammal-derived cell
  • the serum-free medium is a medium containing a ligand for an endothelial cell differentiation gene (Edg) family receptor and a ligand for a serotonin receptor (1) to (4) The method according to any one of the above.
  • the ligand for the endothelial cell differentiation gene family receptor is selected from the group consisting of lysophosphatidic acid (LPA) and salts thereof, sphingosine monophosphate (S1P) and an agonist of the endothelial cell differentiation gene (Edg) family receptor.
  • LPA lysophosphatidic acid
  • S1P sphingosine monophosphate
  • Edg endothelial cell differentiation gene
  • the ligand for the serotonin receptor is at least one selected from the group consisting of serotonin, a salt thereof, and an agonist of the serotonin receptor.
  • the method according to (8), wherein the differentiation of stem cells is evaluated using at least one microRNA comprising the nucleotide sequences shown in SEQ ID NOs: 1 and 41 to 44 as an index.
  • the method according to (9), wherein the differentiation into bone cells is evaluated using the microRNA having the base sequence represented by SEQ ID NO: 1 or 44 as an index.
  • a novel cell evaluation method and biomarker screening method using a nucleic acid released into a culture solution as an index are provided.
  • the method of the present invention since it is not necessary to consume cells only for evaluation, it is not necessary to separately prepare cultured cells for evaluation, and labor and cost can be greatly reduced. Another significant advantage is that precious cell samples are not consumed.
  • the cell itself actually used can be directly evaluated, it is extremely useful for cell evaluation in fields such as regenerative medicine. It is also useful for easily screening biomarkers.
  • Example 1 it is the result of having investigated the pattern of the amount of miRNA in a culture solution at the time of differentiation-inducing a bone cell or an adipocyte from a mesenchymal stem cell.
  • Example 2 it is the result of having investigated the pattern of the amount of miRNA in a culture solution at the time of giving a cell injury by treating the cultured cell derived from human liver cancer with carbon tetrachloride.
  • FIG. 5 shows the results of examining patterns with relative expression levels obtained by correcting the amount of miRNA in the culture solution of human colon cancer-derived cell line SW480 and its lymph node metastasis cell line SW620 with the amount of hsa-miR-16 in Example 3.
  • Example 4 it is the result of having investigated the pattern of the miRNA amount in a culture solution at the time of differentiation-inducing a bone cell or an adipocyte from a human bone marrow origin mesenchymal stem cell.
  • the evaluation of a cell is to evaluate the state of the cell, including cell differentiation, chemical / biological substances (for example, nucleic acids, proteins and fragments thereof, carbohydrates, lipids, vitamins, etc.) / Environment. Effects, effects, and toxicity due to stimulation (eg, temperature decrease or increase, humidity decrease or increase, pressure decrease or increase, oxygen concentration decrease or increase, CO 2 concentration decrease or increase, ultraviolet irradiation, radiation irradiation, etc.)
  • the evaluation of various conditions such as the presence or absence of cancer cells, the malignancy of cancer cells, and the like is included.
  • the biomarker is a substance derived from a living body (for example, a nucleic acid, a protein and a fragment thereof, a carbohydrate, a lipid, an index for qualitatively or quantitatively grasping a state change of a cell, tissue, living body, etc. Vitamins).
  • the nucleic acid to be measured by the method of the present invention may be any kind as long as it is released from the cultured cells into the culture solution, and may be DNA or RNA, but is preferably microRNA (miRNA). is there.
  • miRNA is a single-stranded RNA in which RNA of about 60 to 100 bases transcribed from a gene encoding miRNA and folded into a hairpin type is decomposed to about 17 to 24 bases by RNase. It has a function of inhibiting the translation of messenger RNA having a base sequence complementary to itself.
  • the gene encoding miRNA is known, and various miRNAs are also known.
  • miRNAs to be measured include miRNAs consisting of the base sequences shown in SEQ ID NOs: 1, 3 to 5, and 7 to 19 in the sequence listing. In any of the following examples, it has been specifically confirmed that the abundance in the medium changes depending on cell differentiation, cell damage, presence or absence of cancer cells, progression of malignancy of cancer cells, etc. Is. However, the nucleic acid to be measured is not limited to these miRNAs.
  • miRNAs comprising the nucleotide sequences shown in SEQ ID NOs: 1 and 41 to 44 (hsa-miR-145, hsa-miR-130a, hsa-miR-143, hsa-miR- 214, hsa-miR-365) can be used as an indicator of cell differentiation.
  • the miRNAs of SEQ ID NOs: 1 and 44 are used as indicators of differentiation from stem cells to bone cells, and the miRNAs of SEQ ID NO: 41 (hsa-miR-130a) Can be used as indicators of differentiation into adipocytes, respectively.
  • the miRNA (hsa-miR-143) of SEQ ID NO: 42 is often measured when differentiated into either bone cells or adipocytes, it can be used as an index of differentiation into tissue cells such as bone cells and adipocytes. it can.
  • the miRNA (hsa-miR-214) of SEQ ID NO: 43 is often measured in the culture solution of undifferentiated stem cells before differentiation induction, it can be used as an indicator of the presence or absence of stem cell differentiation.
  • MiRNAs (hsa-miR-16, hsa-miR-21, hsa-miR-122) consisting of the base sequences shown in SEQ ID NOs: 3 to 5 are more specific because of cytotoxicity such as cytotoxicity caused by chemical substances. Can be used as an indicator of hepatocellular injury due to drug treatment.
  • MiRNAs consisting of the nucleotide sequences shown in SEQ ID NOs: 7 to 19 (hsa-miR-20a, hsa-miR-892a, hsa-miR-22 *, hsa-miR-19a, hsa-miR-484, hsa-miR-638 , Hsa-miR-125b, hsa-miR-339-5p, hsa-miR-532-3p, hsa-miR-142-3p, hsa-miR-138, hsa-miR-186, hsa-miR-223) It can be used as an index of malignancy of cancer, more specifically malignancy of colorectal cancer.
  • miRNAs comprising the nucleotide sequences shown in SEQ ID NOs: 7, 10 to 15 (hsa-miR-20a, hsa-miR-19a, hsa-miR-484, hsa-miR-638, hsa- miR-125b, hsa-miR-339-5p, hsa-miR-532-3p) are commonly detected in the culture medium regardless of the malignancy of the cancer and can be used as an indicator of the presence or absence of cancer cells it can.
  • MiRNAs (hsa-miR-892a, hsa-miR-22 *) consisting of the nucleotide sequences shown in SEQ ID NOs: 8 and 9 were specifically detected in the cell line culture medium derived from the primary site.
  • MiRNAs (hsa-miR-142-3p, hsa-miR-138, hsa-miR-186, hsa-miR-223) consisting of the nucleotide sequences shown in the cell line cultures derived from higher-grade metastases It is detected specifically.
  • the type of nucleic acid to be measured can be appropriately selected according to the evaluation purpose. For example, if you want to evaluate the differentiation of stem cells into bone cells, combine with hsa-miR-145 and hsa-miR-365, which are indicators of differentiation into bone cells, and hsa-miR, which is an indicator of undifferentiated cells. -214 and hsa-miR-143 which is an index of differentiation into tissue cells may be measured.
  • the cell cultured in the present invention is not particularly limited as long as it can be cultured under in vitro culture conditions, but is preferably a mammal-derived cell.
  • cells that form tissues extracted from mammals are also included as long as they can be cultured under in vitro conditions.
  • Mammalian cells that can be cultured in vitro include stem cells (embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, neural stem cells, skin stem cells, etc.), tissue precursor cells and tissue cells (bone cells, Osteoblasts, adipocytes, chondrocytes, skin cells, nerve cells, muscle cells, blood cells, fibroblasts, liver cells, etc.), cancer cells and cancer-derived cell lines (HepG2, HuH-7, SW480, SW620, Caco-2, CH-4, CH-5, CoLo-205, Hc110, PMP-1, etc.), but are not limited thereto.
  • stem cells embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, neural stem cells, skin stem cells, etc.
  • tissue precursor cells and tissue cells bone cells, Osteoblasts, adipocytes, chondrocytes, skin cells, nerve cells, muscle
  • the medium used for culturing cells in the present invention may be a medium that is generally called a serum-free medium and does not contain animal serum as an additive.
  • a known basic medium having a composition containing other additives (excluding animal serum) can be used.
  • the composition of the basic medium can be appropriately selected according to the type of cells to be cultured.
  • Minimum Essential Medium such as Eagle Medium, Dulbecco's Modified Eagle Medium (DMEM), Minimum Essential Medium ⁇ (MEM- ⁇ ), Mesenchymal Cell Basal Medium (MSCBM), Ham's F-12 and F -10 medium, DMEM / F12 medium, Williams medium E, RPMI-1640 medium, MCDB medium, 199 medium, Fisher medium, Iscove modified Dulbecco medium (IMDM), McCoy modified medium, and the like.
  • MEM Minimum Essential Medium
  • DMEM Dulbecco's Modified Eagle Medium
  • MSCBM Mesenchymal Cell Basal Medium
  • Ham's F-12 and F -10 medium Ham's F-12 and F -10 medium
  • DMEM / F12 medium Williams medium E
  • RPMI-1640 medium RPMI-1640 medium
  • MCDB medium 199 medium
  • Fisher medium Iscove modified Dulbecco medium (IMDM), McCoy modified medium, and the like.
  • additives added to the basic medium include amino acids, inorganic salts, vitamins, and other additives such as carbon sources and antibiotics.
  • concentration of these additives is not particularly limited, and can be used at a concentration used in a normal medium for mammalian cells.
  • Amino acids include glycine, L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cysteine, L-cystine, L-glutamic acid, L-glutamine, L-histidine, L-isoleucine, L- Mention may be made of leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine.
  • inorganic salts include calcium chloride, copper sulfate, iron (III) nitrate, iron sulfate, magnesium chloride, magnesium sulfate, potassium chloride, sodium bicarbonate, sodium chloride, disodium hydrogen phosphate and sodium dihydrogen phosphate. be able to.
  • vitamin B1 As vitamins, choline, vitamin A, vitamin B1, vitamin B2, vitamin B3, vitamin B4, vitamin B5, vitamin B6, vitamin B7, vitamin B12, vitamin B13, vitamin B15, vitamin B17, vitamin Bh, vitamin Bt, vitamin Mention may be made of Bx, vitamin C, vitamin D, vitamin E, vitamin F, vitamin K, vitamin M and vitamin P.
  • FGF fibroblast growth factor
  • EGF endothelial cell growth factor
  • PDGF platelet derived growth factor
  • FGF growth factors
  • penicillin streptomycin
  • gentamicin kanamycin
  • carbon sources such as glucose, galactose, fructose and sucrose
  • magnesium iron, zinc, calcium, potassium, sodium, copper, selenium, cobalt, tin, molybdenum, nickel and silicon, etc.
  • ⁇ -glycerophosphate dexamethasone, rosiglitazone, isobutylmethylxanthine, 5-azacytidine and other stem cell differentiation inducers
  • 2-mercaptoethanol catalase, superoxide dismutase and N-acetylcysteine Antiacid such as Agents, as well as adenosine 5'-monophosphate, corticosterone, ethanolamine, insulin, reduced glutathione, lipoic acid, melatonin, hypoxanthine, phenol red, progesterone, putrescine, pyruvate, thymidine, triiodothyronine, transferrin And other additives such as lactoferrin.
  • a medium capable of effectively growing mammalian cells without serum a medium containing a ligand for endothelial cell differentiation gene (Edg) family receptor and a ligand for serotonin receptor (hereinafter, this medium is referred to as “high efficiency” for convenience).
  • Edg endothelial cell differentiation gene
  • serotonin receptor a medium containing a ligand for serotonin receptor
  • serum-free medium can be preferably used as a medium capable of effectively growing mammalian cells without serum.
  • the highly efficient serum-free medium contains a ligand for the Edg family receptor as one of the essential components.
  • the Edg family receptors are a group of G protein-coupled receptors having high homology in their gene sequences.
  • Edg-1 to Edg-8 have been identified in mammals such as humans, mice, and sheep. (Science. Vol. 294, pp. 1875-1878, 2001, and J Biol Chem. Vol. 277, No. 29, pp. 25851-25854, 2002).
  • Edg-2, Edg-4 and Edg-7 function as LPA receptors
  • Edg-1, Edg-3, Edg-5, Edg-6 and Edg-8 are known to function as S1P receptors. It has been.
  • a “ligand for a receptor” is a substance that specifically binds to the receptor, and includes not only natural ligands existing in the body, but also other natural or synthesized compounds known as agonists and antagonists. Include.
  • the ligand for the Edg family receptor includes lysophosphatidic acid (LPA) and salts thereof, sphingosine monophosphate (S1P), and an agonist of the Edg family receptor.
  • LPA lysophosphatidic acid
  • S1P sphingosine monophosphate
  • One or more compounds selected from the above are preferred.
  • An agonist of an Edg family receptor is a substance that binds to an Edg family receptor and acts similarly to LPA and S1P.
  • dihydrosphingosine monophosphate platelet activating factor (PAF), sphingosylphosphorylcholine, alkyl LPA analog, FTY720 etc. are mentioned.
  • LPA is the following general formula (I): R—O—CH 2 CH (OH) CH 2 PO 4 H 2 (I) (Wherein R is an alkyl group having 10 to 30 carbon atoms, an alkenyl group having 10 to 30 carbon atoms, or an acyl group having 10 to 30 carbon atoms) It is a compound represented by these.
  • the carbon number of the acyl group for the R group of the above formula (I) does not include the carbon number of the carbonyl group.
  • the salt of LPA a conventionally known salt can be used, and examples thereof include alkali metal salts such as sodium salt and potassium salt, ammonium salt and the like.
  • Examples of the salt of LPA or LPA include 1-oleoyl lysophosphatidic acid sodium salt and LPA potassium salt.
  • Edg ligands can be used alone or in combination of two or more.
  • the high-efficiency serum-free medium described above further contains a ligand for serotonin receptors (hereinafter sometimes referred to as “serotonin ligand” for convenience).
  • Serotonin receptors are a type of G protein-coupled receptor mainly found in the central nervous system.
  • the serotonin ligand is preferably one or more compounds selected from serotonin, salts thereof and serotonin agonists. Serotonin is also called 5-hydroxytryptamine and is known to act as a neurotransmitter.
  • a serotonin agonist is a substance known to bind to a serotonin receptor and act similarly to serotonin.
  • PADD 1- [2- (4-aminophenyl) ethyl] -4- (3-bifluoromethylphenyl) piperazine
  • DP-5CT N-dipropyl-5-carboxyamidotryptamine
  • HT ⁇ -methyl-5-hydroxytryptamine
  • 2-methyl-5-HT etc.
  • the salt of serotonin a conventionally known salt can be used, and examples thereof include hydrochloride.
  • Serotonin ligands can be used alone or in combination of two or more.
  • the concentration of Edg ligand in the medium (when multiple types are included, the total concentration) is usually about 0.01 to 100 ⁇ M.
  • the concentration in the medium is preferably 0.25 to 10 ⁇ M.
  • the concentration in the medium is preferably 0.01 ⁇ M to 0.2 ⁇ M.
  • the concentration of serotonin ligand in the medium (the total concentration when multiple types are included) is preferably 0.1 to 100 ⁇ M, more preferably 0.25 to 20 ⁇ M.
  • the highly efficient serum-free medium further contains an antioxidant.
  • the antioxidant include at least one selected from the group consisting of N-acetylcysteine (NAC), L-cysteine, catalase, superoxide dismutase and 2-mercaptoethanol, more preferably N-acetylcysteine and There may be mentioned at least one selected from the group consisting of L-cysteine.
  • NAC N-acetylcysteine
  • L-cysteine catalase
  • superoxide dismutase and 2-mercaptoethanol more preferably N-acetylcysteine
  • 2-mercaptoethanol more preferably N-acetylcysteine
  • L-cysteine L-cysteine
  • These antioxidants are known to have an apoptosis-inhibiting action and are therefore effective for maintaining and growing cultured cells.
  • Antioxidants can be used alone or in combination of two or more.
  • the concentration of the antioxidant in the medium is preferably 0.01 mM to 10 mM, more preferably 0.1 mM to 1 mM.
  • the high-efficiency serum-free medium preferably further contains animal serum albumin.
  • Albumin is a major component of serum, and is known to play a role such as drug transport in blood. Inclusion of animal serum albumin further promotes the growth of cultured cells.
  • animal serum albumin include human serum albumin (HSA), recombinant human serum albumin (rHSA), bovine serum albumin (BSA) and the like. These albumins can be used alone or in combination of two or more.
  • the concentration of albumin in the medium (the total concentration when multiple types are included) is preferably 0.0001 to 10% by weight, more preferably 0.0001 to 1% by weight.
  • the high-efficiency serum-free medium preferably further contains a growth factor.
  • a growth factor By containing a growth factor, the proliferation of cultured cells is further promoted.
  • growth factors include epidermal growth factor (EGF), insulin-like growth factor (IGF), transforming growth factor (TGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), vascular endothelial cells
  • growth factor VEGF
  • G-CSF granulocyte colony stimulating factor
  • GM-CSF granulocyte macrophage colony stimulating factor
  • EPO erythropoietin
  • TPO thrombopoietin
  • HGF hepatocyte growth factor
  • More preferred examples include platelet derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). All of these growth factors are well known in the art.
  • a growth factor can also be used independently and can also be used in combination of 2 or more types.
  • PDGF platelet-derived growth factor
  • bFGF basic fibroblast growth factor
  • mesenchymal stem cells proliferate. Since it is sufficiently achieved, in the medium used for culturing mesenchymal stem cells, these two kinds of growth factors are sufficient as the growth factors contained in the medium.
  • the high-efficiency serum-free medium may further contain a ligand (PDGF) for platelet-derived growth factor receptor (PDGFR).
  • a medium for culturing mesenchymal stem cells preferably contains this.
  • PDGFR is a kind of tyrosine kinase-related receptor that is mainly present in mesenchymal cells. By containing a ligand for PDGFR, it is possible to efficiently proliferate mesenchymal stem cells.
  • PDGFR ligands include PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC, and PDGF-DD, all of which are well known. PDGFR ligands can be used alone or in combination of two or more.
  • the high-efficiency serum-free medium may contain a ligand (FGF) for basic fibroblast growth factor receptor (FGFR), and in particular, when culturing mesenchymal stem cells, it is preferable to contain this.
  • FGF ligand
  • FGFR is known to exist mainly in mesenchymal cells, and by including a ligand for this, the life span of mesenchymal stem cells is improved.
  • ligands for PDGFR it is known that there are a total of 20 or more types such as basic fibroblast growth factor (bFGF) and acidic fibroblast growth factor (aFGF). Examples thereof include FGF-1 and FGF-4.
  • bFGF is known to be strongly involved in tissue formation. These are all well known.
  • the concentration of growth factor (the total concentration when multiple types are included) is preferably 0.1 to 100 ng / mL, more preferably 1 to 10 ng / mL.
  • the high-efficiency serum-free medium may further contain a surfactant. It is considered that the inclusion of a low concentration of the surfactant has an effect of reducing adverse effects on the cell membrane. On the other hand, it is known that when a high concentration surfactant is added to a medium, cell growth inhibition or cell death is induced.
  • Surfactants include polyoxyethylene sorbitan fatty acid esters (trade names Tween 20, Tween 40, Tween 60, Tween 80, etc.), alkylphenoxy polyethylene glycols (trade name, Triton X-100, etc.), alkyl phenyl polyethylene glycols (trade names)
  • Nonionic surfactants such as Triton® X-114 and NP-40 are preferred. Surfactants can be used alone or in combination of two or more.
  • the concentration of the surfactant (when multiple types are included, the total concentration thereof) is usually 0.1 to 100 ng / mL, preferably 1 to 10 ng / mL.
  • a high-efficiency serum-free medium is a known mammal except that it contains one or more of the above-mentioned Edg ligand and serotonin ligand, preferably, the above-mentioned antioxidant, animal serum albumin, growth factor and surfactant. It may be the same as the cell culture medium. Therefore, basically, a highly efficient serum-free medium can be obtained by adding one or more of the above-mentioned two essential components, preferably one of the above-mentioned preferred components, to a known basic medium. Examples of known basic media are as described above.
  • Optional additives are also as described above, and may include one or more of the above-described additives.
  • a differentiation-inducing agent can be added and used as a differentiation-inducing medium.
  • a differentiation inducer is not limited to said illustration, According to the kind of cell which should be prepared by differentiation induction, it can select from a well-known differentiation inducer suitably and can be used.
  • Culture of the cultured cells of the present invention can be carried out in the same manner as before, and is usually carried out at a temperature of 30 to 37 ° C., in a 5% CO 2 environment, and in a 5 to 21% O 2 environment. .
  • the culture time required for differentiation induction is appropriately set depending on the differentiation inducer used, the type of cells, and the like, and can be appropriately selected while observing the state of the cells.
  • Extraction of nucleic acid in the culture solution can be performed using a conventional method well known in this field.
  • Various reagent kits for nucleic acid extraction from a liquid sample are commercially available and can be easily performed using them.
  • Nucleic acid measurement methods themselves are well known.
  • examples of the measurement method by nucleic acid amplification method using primers include real-time PCR and NASBA method.
  • examples of the measurement method using the probe include an array analysis method using a solid phase probe. Any known measurement method may be used in the method of the present invention.
  • the measurement method by real-time PCR as described in the following examples, after preparing a cDNA by introducing a primer site into the 3 ′ end of an RNA sample extracted from a culture solution, The presence or amount of miRNA can be measured by performing real-time PCR using specific primers.
  • a primer specific for the miRNA consisting of the base sequences shown in SEQ ID NOs: 1 to 19, for example, those consisting of the base sequences shown in SEQ ID NOs: 22 to 40 can be used.
  • Commercially available TaqMan Probe MicroRNA Assays developed by Applied Biosystems can also be used.
  • the kit is compatible with various known miRNAs, and a desired miRNA can be measured by real-time PCR.
  • “measurement” includes detection, quantification, and semi-quantification.
  • the relative amount of nucleic acid in the culture medium after the reference time is determined by relative evaluation of the amount of nucleic acid in the culture solution after the reference time, with the start time of culture being the reference time and the reference amount of nucleic acid being 1. Can be measured.
  • the time point or the amount of nucleic acid used as a reference for relative evaluation can be set as appropriate. Evaluation can be performed by correcting the amount of nucleic acid with an internal standard substance (for example, miR-16).
  • stem cells and stem cell-derived tissue cells For example, by analyzing the amount and pattern of nucleic acids released from stem cells and stem cell-derived tissue cells, it becomes possible to evaluate stem cells and stem cell-derived tissue cells. Analyzing the amount and pattern of nucleic acid released from cells based on the amount of drug treated, etc. makes it possible to evaluate the effect and toxicity of the drug. By analyzing the amount and pattern of nucleic acids released from cancer cells with different malignancy, the malignancy of cancer cells can be evaluated. By analyzing the amount and pattern of nucleic acids released from cancer cells and normal tissue cells, the presence or absence of cancer cells can be evaluated.
  • Example 1 MicroRNA sample preparation and analysis 1 Human bone marrow-derived mesenchymal stem cells (manufactured by LONZA) are seeded in a culture container of a 12-well culture plate so as to have a cell density of 20000 cells / cm 2 , and a serum-free maintenance medium, bone cell differentiation induction medium or fat Differentiation into bone cells or adipocytes was induced by culturing in a cell differentiation induction medium for 21 days.
  • the composition of each medium used is as follows.
  • Cell maintenance additive final concentration: 5 ⁇ M LPA (Cayman), 10 ⁇ M serotonin (SIGMA), 1 nM PDGF (Wako Pure Chemicals), 2.5 nM bFGF) to MEM-Alpha (Wako Pure Chemicals) (Wako Pure Chemical Industries, Ltd.)).
  • Bone cell differentiation induction medium BMEM differentiation inducer (final concentration: 10 mM ⁇ -glycerophosphate (SIGMA), 100 nM dexamethasone, 1 mM vitamin C (Wako Pure Chemical Industries), 5 ⁇ M LPA (Cayman))
  • Serum-free medium supplemented with Adipocyte differentiation induction medium A serum-free medium in which an adipocyte differentiation inducer (final concentration: 1 ⁇ M dexamethasone, 1 ⁇ M rosiglitazone, 500 ⁇ M isobutylmethylxanthine, 1 ⁇ M insulin, 5 ⁇ M LPA (Cayman)) is added to DMEM (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the culture broth cultured for 7 days from the 14th day to the 21st day after the start of the culture was collected, and the suspended cells were removed with a 0.22 ⁇ m filter to prepare a sample.
  • TriZOL LS reagent manufactured by Invitrogen
  • 200 ⁇ L of chloroform was added, vigorously stirred, and centrifuged at 12,000 ⁇ g to collect the supernatant.
  • 500 ⁇ L of isopropanol was added, allowed to stand at ⁇ 30 ° C. for 12 hours or more, and then centrifuged at 12000 ⁇ g to discard the supernatant.
  • 500 ⁇ L of a 75% ethanol solution the mixture was centrifuged at 12000 ⁇ g, and the supernatant was discarded to recover a nucleic acid sample.
  • This nucleic acid sample was dissolved in 14 ⁇ L of H 2 O, and then Poly (A) Tailing was modified with Poly (A) Tailing Kit (manufactured by Ambion) (Poly (A) miRNA).
  • This Poly (A) miRNA sample was dissolved in 10 ⁇ L of H 2 O, and RNA was reversed to DNA with RT primer (5′-GCGAGCACAGAATTAATACGACTCACTATAGGTTTTTTTTTTTTVN-3 ′, SEQ ID NO: 20) and Super Script II reverse transcriptase (Invitrogen).
  • RT primer 5′-GCGAGCACAGAATTAATACGACTCACTATAGGTTTTTTTTTTTTVN-3 ′, SEQ ID NO: 20
  • Super Script II reverse transcriptase Invitrogen.
  • a cDNA sample was obtained by adding 25 ⁇ L of H 2 O.
  • Hsa-miR-145, hsa-miR-24 and hsa-miR-16 contained in this cDNA sample were confirmed by a real-time PCR method using Platinum SYBR Green (manufactured by Invitrogen). The following primers were used.
  • hsa-miR-145 (SEQ ID NO: 1): Forward (CCGCGTCCAGTTTTCCCAGGAA, SEQ ID NO: 22) hsa-miR-24 (SEQ ID NO: 2): Forward (CCGCTGGCTCAGTTCAGCAG, SEQ ID NO: 23) hsa-miR-16 (SEQ ID NO: 3): Forward (CGCGCTAGCAGCACGTAAAT, SEQ ID NO: 24) Reverse common (GCGAGCACAGAATTAATACGAC, SEQ ID NO: 21)
  • Example 2 Preparation and analysis of microRNA samples 2
  • Cell lines derived from human liver cancer (HuH-7, purchased from ATCC) are seeded in a culture container of a 12-well culture plate so as to have a cell density of 20000 cells / cm 2 , and damage to liver tissue and hepatocytes Serum-free maintenance with the known carbon tetrachloride added at a relatively low concentration of 0-1000 ⁇ M used in World J Gastroenterol. 2008 Jun 21; 14 (23): 3693-709 Cultured in the medium for 7 days. A maintenance medium similar to that used in Example 1 was used.
  • the culture solution cultured for 7 days was collected, and the centrifuged supernatant was removed with a 0.22 ⁇ m filter to prepare a sample.
  • Hsa-miR-21, hsa-miR-122, hsa-miR-451 and hsa-miR-16 contained in this cDNA sample were confirmed by real-time PCR using Platinum SYBR Green (Invitrogen). . The following primers were used.
  • hsa-miR-21 (SEQ ID NO: 4): Forward (GCCCGCTAGCTTATCAGACTGATG, SEQ ID NO: 25) hsa-miR-122 (SEQ ID NO: 5): Forward (GCGCTGGAGTGTGACAATGGT, SEQ ID NO: 26) hsa-miR-451 (SEQ ID NO: 6): Forward (GCCGCAAACCGTTACCATTACT, SEQ ID NO: 27) hsa-miR-16 (SEQ ID NO: 3): Forward (CGCGCTAGCAGCACGTAAAT, SEQ ID NO: 24) Reverse common (GCGAGCACAGAATTAATACGAC, SEQ ID NO: 21)
  • Example 3 MicroRNA sample preparation and analysis 3
  • a cell line derived from human colorectal cancer and its lymph node metastasis cell line (SW480 and SW620, purchased from ATCC) are seeded in a culture vessel of a 6-well culture plate so as to have a cell density of 20000 cells / cm 2 , and serum Culturing was carried out in a maintenance medium without containing for 3 days.
  • a maintenance medium similar to that used in Example 1 was used.
  • the culture solution cultured for 3 days was collected, and the centrifuged supernatant was removed with a 0.22 ⁇ m filter to prepare a sample.
  • hsa-miR-20a (SEQ ID NO: 7): Forward (CCGCCGCTAAAGTGCTTATAGTG, SEQ ID NO: 28) hsa-miR-892a (SEQ ID NO: 8): Forward (CCGCCACTGTGTCCTTTCTGC, SEQ ID NO: 29) hsa-miR-22 * (SEQ ID NO: 9): Forward (CCGCGAGTTCTTCAGTGGCAA, SEQ ID NO: 30) hsa-miR-19a (SEQ ID NO: 10): Forward (CCGCCTGTGCAAATCTATGCA, SEQ ID NO: 31) hsa-miR-484 (SEQ ID NO: 11): Forward (CCGTCAGGCTCAGTCCCCT, SEQ ID NO: 32) hsa-miR-638 (SEQ ID NO: 12): Forward (CCGCAGGGATCGCGGGC, SEQ ID NO: 33) hsa-miR-
  • SW620 is a lymph node metastasis cell line, it has higher malignancy than the original colon cancer-derived cell line SW480. From FIG. 3, increase / decrease in miRNA released from the cells due to the progression of malignancy of the cancer cells was confirmed. This result suggests that the pattern of the amount of miRNA released into the medium changes with the progression of malignancy of cancer cells. In addition, it was confirmed that miRNAs commonly released from cancer cells exist regardless of the progression of cancer malignancy. This result suggests the presence of miRNAs that are commonly released by cancer cells, that is, it is possible to evaluate the presence or absence of cancer cells.
  • Example 4 Preparation and analysis of microRNA samples 4
  • human bone marrow-derived mesenchymal stem cells manufactured by LONZA
  • serum-free maintenance medium bone cells Differentiation induction into bone cells or adipocytes was performed by culturing in a differentiation induction medium or adipocyte differentiation induction medium for 21 days.
  • the culture solution cultured for 7 days from the 14th day to the 21st day after the start of differentiation induction was collected, and the suspended cells were removed with a 0.22 ⁇ m filter to prepare a sample.
  • Trizol® LS reagent manufactured by Invitrogen
  • 200 ⁇ L of chloroform was added, vigorously stirred, and centrifuged at 12,000 ⁇ g to collect the supernatant.
  • 500 ⁇ L of isopropanol was added, allowed to stand at ⁇ 30 ° C. for 12 hours or more, and then centrifuged at 12000 ⁇ g to discard the supernatant.
  • 500 ⁇ L of a 75% ethanol solution the mixture was centrifuged at 12000 ⁇ g, and the supernatant was discarded to recover a nucleic acid sample.
  • This nucleic acid sample was dissolved in 14 ⁇ L of H 2 O, and a cDNA sample was obtained using TaqMan (registered trademark) MicroRNA RT primer (Applied Biosystems).
  • This cDNA sample was quantified by a real-time PCR method using TaqMan (registered trademark) MicroRNA Realtime Primer (Applied Biosystems) and confirmed by correcting with hsa-miR-16.
  • TaqMan registered trademark
  • MicroRNA ASSAY Probe manufactured by Applied Biosystems
  • hsa-miR-130a SEQ ID NO: 41: 000454 (ASSAY ID) hsa-miR-143 (SEQ ID NO: 42): 002249 (ASSAY ID) hsa-miR-214 (SEQ ID NO: 43): 002306 (ASSAY ID) hsa-miR-365 (SEQ ID NO: 44): 00120 (ASSAY ID) hsa-miR-16 (SEQ ID NO: 3): 000391 (ASSAY ID)

Abstract

培養細胞を消費することなく培養細胞の評価やバイオマーカーのスクリーニングをすることができる新規な手段が開示されている。本発明の培養細胞の評価方法は、無血清培地中で細胞を培養し、該細胞から培養液中に放出される核酸の少なくとも1種を測定することを含む。また、本発明のバイオマーカーのスクリーニング方法は、無血清培地中で細胞を培養し、該細胞から培養液中に放出される核酸を測定することを含む。指標とする核酸は、例えばマイクロRNAである。

Description

培養細胞の評価方法およびバイオマーカーのスクリーニング方法
 本発明は、培養細胞から培養液中へ放出されるマイクロRNA(miRNA)などの核酸を指標とした培養細胞の評価方法およびバイオマーカーのスクリーニング方法に関する。
 培養細胞の評価は、培養した細胞の免疫染色や、細胞内に発現しているタンパク質や遺伝子などを解析する方法で評価されている。例えば、胚性幹細胞は、OCT4、NANOGなどを標的とした免疫染色法で、胚性幹細胞から分化誘導した細胞は、OCT4、NANOGの遺伝子発現量の減少や組織特異的な遺伝子の増加から評価している。
 免疫染色法、遺伝子発現量などの細胞を使用した評価方法は、培養した細胞を固定、溶解などしなければならないということから、経時的な変化を評価するためには、同一条件で培養する培養細胞を多量に準備しなければならない。そして、経時的に培養した細胞を消費しなければならないという問題点がある。
 新しい治療法として注目されている再生医療(細胞医療)分野では、移植細胞の評価は、同一条件で培養した細胞を細胞染色などで間接的に評価しなければならないという問題点がある。移植に用いる細胞自体を評価することは従来法では不可能である。
 近年、miRNAをコードする遺伝子から転写されたヘアピン型に折りたたまれた60から100塩基程度のRNA(前駆体マイクロRNA)がRNA分解酵素で分解され、17から24塩基の一本鎖RNAなったmiRNAが注目されている。このmiRNAは、自身と相補的な塩基配列をもったメッセンジャーRNAの翻訳を阻害する機能を有しており、幹細胞から組織細胞への分化(非特許文献1)や各組織がん細胞の判定(特許文献1)で重要な役割を果たしているという報告がされている。さらに、このmiRNAが血液中に存在している報告(非特許文献2)があり、がん等の疾病に対する診断・予後予測等に利用できる可能性があることも注目されている。
 培養細胞の培養には、培養効率を高める観点から、血清を添加した培地が一般的に使用される。添加した血清由来の核酸と培養細胞から放出された核酸との区別が難しいことから、これまでに培養細胞から放出された核酸で細胞を評価する方法やバイオマーカーのスクリーニング方法は報告されていない。
特開2009-100687号
Exp. Hematol. 2008;36:1354-1369 Proc. Natl. Acad. Sci. USA. 2008;105:10513-8
 従って、本発明の目的は、培養細胞を消費することなく培養細胞の評価やバイオマーカーのスクリーニングをすることができる新規な手段を提供することにある。
 本願発明者は、鋭意研究の結果、培養細胞から培養液中にmiRNA等の核酸が放出されていることを見出し、さらに、幹細胞、分化した組織細胞、薬剤処理、がん細胞の悪性度進展等に応じて、培養液中に放出されるmiRNA等の核酸の量や種類が異なることを見出した。そして該miRNA等の核酸を指標とすれば細胞の状態を評価できることを見出し、本願発明を完成した。また、無血清培地で該miRNA等の核酸を測定すれば、バイオマーカーのスクリーニングを行えることを見出し、本願発明を完成させた。
 すなわち、本発明は、無血清培地中で細胞を培養し、該細胞から培養液中に放出される核酸の少なくとも1種を測定することを含む、培養細胞の評価方法を提供する。本法は無血清培地で細胞を培養するので、幹細胞、がん細胞などのバイオマーカー候補となる核酸を容易に見出すことが可能な、スクリーニング方法を提供する。
 より具体的には、本発明は以下の発明を提供する。
(1) 無血清培地中で細胞を培養し、該細胞から培養液中に放出される核酸の少なくとも1種を測定することを含む、培養細胞の評価方法。
(2) 前記核酸がマイクロRNAである(1)記載の方法。
(3) 配列表の配列番号1、3~5、7~19、41~44に示される塩基配列からなるマイクロRNAの少なくとも1種を測定する(2)記載の方法。
(4) 配列表の配列番号1、3~5、7~19に示される塩基配列からなるマイクロRNAの少なくとも1種を測定する(3)記載の方法。
(5) 前記細胞は哺乳動物由来細胞であり、前記無血清培地は、内皮細胞分化遺伝子(Edg)ファミリーレセプターに対するリガンドと、セロトニンレセプターに対するリガンドとを含む培地である(1)ないし(4)のいずれか1つに記載の方法。
(6) 内皮細胞分化遺伝子ファミリーレセプターに対する前記リガンドが、リゾホスファチジン酸(LPA)及びその塩、スフィンゴシン1リン酸(S1P)並びに内皮細胞分化遺伝子(Edg)ファミリーレセプターのアゴニストから成る群より選択される少なくとも1種である(5)記載の方法。
(7) セロトニンレセプターに対する前記リガンドが、セロトニン、その塩及びセロトニンレセプターのアゴニストから成る群より選択される少なくとも1種である(5)又は(6)記載の方法。
(8) 幹細胞の分化を評価する方法である(1)ないし(7)のいずれか1つに記載の方法。
(9) 配列番号1、41~44に示される塩基配列からなるマイクロRNAの少なくとも1種を指標として幹細胞の分化を評価する(8)記載の方法。
(10) 配列番号1又は44に示される塩基配列からなるマイクロRNAを指標として骨細胞への分化を評価する(9)記載の方法。
(11) 配列番号1に示される塩基配列からなるマイクロRNAを指標として骨細胞への分化を評価する(10)記載の方法。
(12) 配列番号41に示される塩基配列からなるマイクロRNAを指標として脂肪細胞への分化を評価する(9)記載の方法。
(13) 配列番号42に示される塩基配列からなるマイクロRNAを指標として組織細胞への分化を評価する(9)記載の方法。
(14) 配列番号43に示される塩基配列からなるマイクロRNAを指標として幹細胞の分化の有無を評価する(9)記載の方法。
(15) 細胞障害を評価する方法である(1)ないし(7)のいずれか1つに記載の方法。
(16) 配列番号3~5に示される塩基配列からなるマイクロRNAの少なくとも1種を指標として培養細胞への障害を評価する(15)記載の方法。
(17) 前記培養細胞が肝細胞である(16)記載の方法。
(18) 培養細胞への化学物質・生物由来物質・環境刺激等による効果・影響・毒性等を評価する方法である(1)ないし(7)のいずれか1つに記載の方法。
(19) がん細胞の有無を評価する方法である(1)ないし(7)のいずれか1つに記載の方法。
(20) がん細胞の悪性度を評価する方法である(1)ないし(7)のいずれか1つに記載の方法。
(21) 配列番号7~19に示される塩基配列からなるマイクロRNAの少なくとも1種を指標とする(19)又は(20)記載の方法。
(22) 前記がん細胞が大腸がん細胞である(21)記載の方法。
(23) 無血清培地中で細胞を培養し、該細胞から培養液中に放出される核酸を測定することを含む、バイオマーカーのスクリーニング方法。
(24) 配列表の配列番号1、3~5、7~19、41~44に示される塩基配列からなるマイクロRNAの少なくとも1種を測定する(23)に記載の方法。
(25) 配列表の配列番号1、3~5、7~19に示される塩基配列からなるマイクロRNAの少なくとも1種を測定する(24)に記載の方法。
 本発明により、培養液中に放出される核酸を指標とした新規な細胞評価法およびバイオマーカーのスクリーニング方法が提供された。本発明の方法によれば、細胞を評価のためだけに消費する必要がないため、評価のために別途培養細胞を用意する必要がなく、手間とコストを大幅に軽減できる。貴重な細胞サンプルを消費しないで済むという点も大きな利点である。さらに、本発明によれば、実際に使用する細胞自体を直接評価することができるため、再生医療等の分野での細胞評価にも極めて有用である。また、バイオマーカーを容易にスクリーニングするために有用である。
実施例1において、間葉系幹細胞から骨細胞または脂肪細胞を分化誘導した際の培養液中miRNA量のパターンを調べた結果である。 実施例2において、ヒト肝臓がん由来の培養細胞を四塩化炭素処理することで細胞障害を与えた際の培養液中miRNA量のパターンを調べた結果である。 実施例3において、ヒト大腸がん由来細胞株SW480およびそのリンパ節転移巣細胞株SW620の培養液中miRNA量をhsa-miR-16量で補正した相対発現量でパターンを調べた結果である。 実施例4において、ヒト骨髄由来間葉系幹細胞から骨細胞または脂肪細胞を分化誘導した際の培養液中miRNA量のパターンを調べた結果である。
 本発明において、細胞の評価とは、細胞の状態を評価することであり、細胞の分化、化学物質・生物由来物質(例えば核酸、タンパク質およびその断片、糖質、脂質、ビタミン類等)・環境刺激(例えば温度の低下または上昇、湿度の低下または上昇、圧力の低下または上昇、酸素濃度の低下または上昇、CO濃度の低下または上昇、紫外線照射、放射線照射等)等による効果・影響・毒性等、がん細胞の有無、がん細胞の悪性度等の種々の状態の評価が包含される。また、本発明においてバイオマーカーとは、細胞、組織、生体等の状態変化を定性・定量的に把握するための指標となる生体由来の物質(例えば核酸、タンパク質およびその断片、糖質、脂質、ビタミン類等)である。
 本発明の方法で測定される核酸は、培養細胞から培養液中に放出されるものであればいかなる種類のものであってもよく、DNAでもRNAでもよいが、好ましくはマイクロRNA(miRNA)である。本発明において、miRNAとは、miRNAをコードする遺伝子から転写されヘアピン型に折りたたまれた60~100塩基程度のRNAがRNA分解酵素で17~24塩基程度に分解された一本鎖のRNAであり、自身と相補的な塩基配列をもったメッセンジャーRNAの翻訳を阻害する機能を有している。miRNAをコードする遺伝子は公知であり、miRNA自体も種々のものが公知である。
 測定対象となるmiRNAの具体例としては、配列表の配列番号1、3~5、7~19に示される塩基配列からなるmiRNAを挙げることができる。これらはいずれも、下記実施例において、細胞の分化、細胞障害、がん細胞の有無、がん細胞の悪性度進展等に応じて培地中存在量が変化することが具体的に確認されているものである。もっとも、測定対象となる核酸はこれらのmiRNAに限定されるものではない。
 例えば、下記実施例に記載されるように、配列番号1、41~44に示される塩基配列からなるmiRNA(hsa-miR-145、hsa-miR-130a、hsa-miR-143、hsa-miR-214、hsa-miR-365)は、細胞の分化の指標として用いることができる。より具体的には、配列番号1及び44のmiRNA(hsa-miR-145、hsa-miR-365)は幹細胞から骨細胞への分化の指標として、配列番号41のmiRNA(hsa-miR-130a)は脂肪細胞への分化の指標として、それぞれ用いることができる。配列番号42のmiRNA(hsa-miR-143)は、骨細胞および脂肪細胞のいずれに分化した場合でも多く測定されるため、骨細胞および脂肪細胞等の組織細胞への分化の指標として用いることができる。配列番号43のmiRNA(hsa-miR-214)は、分化誘導前の未分化幹細胞の培養液中で多く測定されるため、幹細胞の分化の有無の指標として用いることができる。
 配列番号3~5に示される塩基配列からなるmiRNA(hsa-miR-16、hsa-miR-21、hsa-miR-122)は、細胞障害、例えば化学物質による細胞毒性等があり、より具体的には薬剤処理による肝細胞障害の指標として用いることができる。
 配列番号7~19に示される塩基配列からなるmiRNA(hsa-miR-20a、hsa-miR-892a、hsa-miR-22*、hsa-miR-19a、hsa-miR-484、hsa-miR-638、hsa-miR-125b、hsa-miR-339-5p、hsa-miR-532-3p、hsa-miR-142-3p、hsa-miR-138、hsa-miR-186、hsa-miR-223)は、がんの悪性度、より具体的には大腸がんの悪性度の指標として用いることができる。配列番号7~19のうち、配列番号7、10~15に示される塩基配列からなるmiRNA(hsa-miR-20a、hsa-miR-19a、hsa-miR-484、hsa-miR-638、hsa-miR-125b、hsa-miR-339-5p、hsa-miR-532-3p)はがんの悪性度にかかわらず共通して培養液中に検出され、がん細胞の有無の指標として用いることができる。配列番号8、9に示される塩基配列からなるmiRNA(hsa-miR-892a、hsa-miR-22*)は原発部由来の細胞株培養液中に特異的に検出され、配列番号16~19に示される塩基配列からなるmiRNA(hsa-miR-142-3p、hsa-miR-138、hsa-miR-186、hsa-miR-223)はより悪性度の高い転移巣由来の細胞株培養液中に特異的に検出される。
 上記したmiRNAは、いずれか1種類のみを測定してもよいし、また、複数種類を測定してもよい。評価目的に応じて測定する核酸の種類は適宜選択することができる。例えば、幹細胞の骨細胞への分化を評価したい場合には、骨細胞への分化の指標となるhsa-miR-145及びhsa-miR-365と組み合わせて、未分化細胞の指標となるhsa-miR-214及び組織細胞への分化の指標となるhsa-miR-143を測定してもよい。
 本発明において培養される細胞は、試験管内培養(in vitro)条件下で培養できる細胞であれば特に限定されないが、好ましくは哺乳動物由来の細胞である。また、in vitro条件下で培養できるのであれば、哺乳動物より摘出した組織を形成する細胞も含まれる。
 in vitroで培養できる哺乳類由来の細胞としては、幹細胞(胚性幹細胞、人工多能性幹細胞、間葉系幹細胞、造血幹細胞、神経幹細胞、皮膚幹細胞など)、組織前駆細胞および組織細胞(骨細胞、骨芽細胞、脂肪細胞、軟骨細胞、皮膚細胞、神経細胞、筋肉細胞、血液系細胞、繊維芽細胞、肝臓細胞など)、がん細胞およびがん由来細胞株(HepG2、HuH-7、SW480、SW620、Caco-2、CH-4、CH-5、CoLo-205、Hc110、PMP-1など)を挙げることができるが、これらに限定されるものではない。
 本発明で細胞の培養に用いる培地は、一般に無血清培地と呼ばれる、添加剤としての動物血清を含まない培地であればよい。公知の基本培地にその他添加剤(動物血清を除く)を含有した組成を有するものを用いることができる。基本培地の組成は、培養するべき細胞の種類に応じて適宜選択することができる。例えば、イーグル培地のような最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、最小必須培地α(MEM-α)、間葉系細胞基礎培地(MSCBM)、Ham’s F-12およびF-10培地、DMEM/F12培地、Williams培地E、RPMI-1640培地、MCDB培地、199培地、Fisher培地、Iscove改変ダルベッコ培地(IMDM)、McCoy改変培地などが挙げられる。これらの培地は、いずれもこの分野において周知の培地である。
 基本培地に加えるその他の添加剤としては、アミノ酸類、無機塩類、ビタミン類および炭素源や抗生物質等の他の添加剤を挙げることができる。これらの添加剤の使用濃度は特に限定されず、通常の哺乳動物細胞用培地に用いられる濃度で用いることができる。
 アミノ酸類としては、グリシン、L-アラニン、L-アルギニン、L-アスパラギン、L-アスパラギン酸、L-システイン、L-シスチン、L-グルタミン酸、L-グルタミン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシンおよびL-バリンを挙げることができる。
 無機塩類としては、塩化カルシウム、硫酸銅、硝酸鉄(III)、硫酸鉄、塩化マグネシウム、硫酸マグネシウム、塩化カリウム、炭酸水素ナトリウム、塩化ナトリウム、リン酸水素二ナトリウムおよびリン酸二水素ナトリウム等を挙げることができる。
 ビタミン類としては、コリン、ビタミンA、ビタミンB1、ビタミンB2、ビタミンB3、ビタミンB4、ビタミンB5、ビタミンB6、ビタミンB7、ビタミンB12、ビタミンB13、ビタミンB15、ビタミンB17、ビタミンBh、ビタミンBt、ビタミンBx、ビタミンC、ビタミンD、ビタミンE、ビタミンF、ビタミンK、ビタミンMおよびビタミンPを挙げることができる。
 他の添加剤としては、(1)繊維芽細胞増殖因子(FGF)、内皮細胞増殖因子(EGF)、および血小板由来増殖因子(PDGF)等の増殖因子、(2)ペニシリン、ストレプトマイシン、ゲンタマイシンおよびカナマイシン等の抗生物質、(3)グルコース、ガラクトース、フルクトースおよびスクロース等の炭素源、(4)マグネシウム、鉄、亜鉛、カルシウム、カリウム、ナトリウム、銅、セレン、コバルト、スズ、モリブデン、ニッケルおよびケイ素等の微量金属)、(5)β-グリセロリン酸、デキサメタゾン、ロシグリタゾン、イソブチルメチルキサンチン、および5-アザシチジン等の幹細胞分化誘導剤、(6)2-メルカプトエタノール、カタラーゼ、スーパーオキシドジスムターゼおよびN-アセチルシステイン等の抗酸化剤、並びにアデノシン 5'-一リン酸、コルチコステロン、エタノールアミン、インスリン、還元型グルタチオン、リポ酸、メラトニン、ヒポキサンチン、フェノールレッド、プロゲステロン、プトレシン、ピルビン酸、チミジン、トリヨードチロニン、トランスフェリンおよびラクトフェリン等の他の添加剤を挙げることができる。
 無血清条件で動物細胞を培養できる培地や培養法は種々のものが公知であり、本発明ではそのいずれを用いてもよい。とりわけ、無血清でも哺乳動物細胞を効果的に増殖できる培地として、内皮細胞分化遺伝子(Edg)ファミリーレセプターに対するリガンドと、セロトニンレセプターに対するリガンドとを含む培地(以下、便宜的にこの培地を「高効率無血清培地」と呼ぶ)を好ましく用いることができる。
 高効率無血清培地は、上記の通り、必須成分の一つとしてEdgファミリーレセプターに対するリガンドを含む。Edgファミリーレセプターとは、その遺伝子配列の相同性が高いGタンパク質共役型のレセプターの一群であり、現在までにヒト、マウス、ヒツジなどの哺乳類でEdg-1からEdg-8までが同定されている(Science. Vol. 294,pp. 1875-1878,2001、及びJ Biol Chem. Vol. 277, No.29, pp. 25851-25854, 2002)。これらのうち、Edg-2、Edg-4およびEdg-7はLPAレセプターとして機能し、Edg-1、Edg-3、Edg-5、Edg-6およびEdg-8はS1Pレセプターとして機能することが知られている。また、「レセプターに対するリガンド」とは、該レセプターと特異的に結合する物質であり、生体内に存在する天然のリガンドのみならず、アゴニストやアンタゴニストとして知られる天然または合成された他の化合物をも包含する。
 Edgファミリーレセプターに対するリガンド(以下、便宜的に「Edgリガンド」と呼ぶことがある)としては、リゾホスファチジン酸(LPA)およびその塩、スフィンゴシン1リン酸(S1P)並びにEdgファミリーレセプターのアゴニストからなる群より選択される1または複数種の化合物が好ましい。
 Edgファミリーレセプターのアゴニストとは、Edgファミリーレセプターと結合してLPAおよびS1Pと同様に作用する物質であり、例えばジヒドロスフィンゴシン1リン酸、血小板活性化因子(PAF)、スフィンゴシルホスホリルコリン、アルキルLPAアナログ、FTY720などが挙げられる。
 LPAとは、下記の一般式(I):
R-O-CHCH(OH)CHPO          (I)
(式中、Rは、炭素数10~30のアルキル基、炭素数10~30のアルケニル基または炭素数10~30のアシル基である)
で表される化合物である。
 上記の式(I)のR基についてのアシル基の炭素数は、カルボニル基の炭素数を含まない。
 LPAの塩としては、従来公知の塩を用いることができ、例えばナトリウム塩、カリウム塩などのアルカリ金属塩、アンモニウム塩などが挙げられる。
 LPAまたはLPAの塩としては、例えば1-オレオイルリゾホスファチジン酸ナトリウム塩、LPAカリウム塩などが挙げられる。
 Edgリガンドは、単独で用いることもできるし、2種以上のものを組み合わせて用いることもできる。
 また、上記した高効率無血清培地は、さらに、セロトニンレセプターに対するリガンド(以下、便宜的に「セロトニンリガンド」と呼ぶことがある)を含む。セロトニンレセプターは主に中枢神経系にあるGタンパク質結合レセプターの一種である。セロトニンリガンドとしては、セロトニン、その塩およびセロトニンアゴニストから選択される1または複数種の化合物が好ましい。セロトニンは、5-ヒドロキシトリプタミンともよばれ、神経伝達物質として作用することが知られている。セロトニンアゴニストとは、セロトニンレセプターと結合してセロトニンと同様に作用することが知られている物質であり、例えばイプサピロン、ゼロピン、ブスピロン、1-[2-(4-アミノフェニル)エチル]-4-(3-ビフルオロメチルフェニル)ピペラジン(PADD)、N,N-ジプロピル-5-カルボキシアミドトリプタミン(DP-5CT)、α-メチル-5-ヒドロキシトリプタミン(HT)、2-メチル-5-HTなどが挙げられる。セロトニンの塩は、従来公知の塩を用いることができ、例えば塩酸塩などが挙げられる。
 セロトニンリガンドは、単独で用いることもできるし、2種以上のものを組み合わせて用いることもできる。
 培地中のEdgリガンドの濃度(複数種類のものが含まれる場合にはその合計濃度)は、通常、0.01~100μM程度である。Edgリガンドが、リゾホスファチジン酸(LPA)およびその塩から成る群より選択される少なくとも1種である場合には、その培地中の濃度は、0.25~10μMが好ましい。また、Edgリガンドが、スフィンゴシン1リン酸(S1P)である場合には、その培地中の濃度は、0.01μM~0.2μMが好ましい。また、培地中のセロトニンリガンドの濃度(複数種類のものが含まれる場合にはその合計濃度)は、0.1~100μMが好ましく、0.25~20μMがさらに好ましい。
 高効率無血清培地は、抗酸化剤をさらに含むことが好ましい。抗酸化剤の好ましい例としては、N-アセチルシステイン(NAC)、L-システイン、カタラーゼ、スーパーオキシドジスムターゼおよび2-メルカプトエタノールから成る群より選ばれる少なくとも1種、さらに好ましくは、N-アセチルシステインおよびL-システインから成る群より選ばれる少なくとも1種を挙げることができる。これらの抗酸化剤は、アポトーシス阻害作用を有することが知られており、従って、培養細胞の維持、増殖に有効である。抗酸化剤は、単独で用いることもできるし、2種以上のものを組み合わせて用いることもできる。
 培地中の抗酸化剤の濃度(複数種類のものが含まれる場合にはその合計濃度)は、0.01mM~10mMが好ましく、さらに好ましくは0.1mM~1mMである。
 高効率無血清培地は、動物血清アルブミンをさらに含むことが好ましい。アルブミンは、血清の主要成分であり、血液中では薬物の輸送等の役割を担っていることが知られている。動物血清アルブミンを含むことにより、培養細胞の増殖が一層促進される。動物血清アルブミンの好ましい例として、ヒト血清アルブミン(HSA)および遺伝子組換えヒト血清アルブミン(rHSA)、ウシ血清アルブミン(BSA)などが挙げられる。これらのアルブミンは、単独で用いることもできるし、2種以上のものを組み合わせて用いることもできる。
 培地中のアルブミンの濃度(複数種類のものが含まれる場合にはその合計濃度)は、0.0001~10重量%が好ましく、0.0001~1重量%がさらに好ましい。
 高効率無血清培地は、成長因子をさらに含むことが好ましい。成長因子を含むことにより、培養細胞の増殖が一層促進される。成長因子の好ましい例としては、上皮成長因子(EGF)、インスリン様成長因子(IGF)、トランスフォーミング成長因子(TGF)、神経成長因子(NGF)、脳由来神経栄養因子(BDNF)、血管内皮細胞増殖因子(VEGF)、顆粒球コロニー刺激因子(G-CSF)、顆粒球マクロファージコロニー刺激因子(GM-CSF)、エリスロポエチン(EPO)、トロンボポエチン(TPO)、肝細胞増殖因子(HGF)等を挙げることができ、さらに好ましい例として、血小板由来成長因子(PDGF)、塩基性繊維芽細胞成長因子(bFGF)および上皮成長因子(EGF)を挙げることができる。これらの成長因子自体は、いずれもこの分野において周知である。成長因子は、単独で用いることもできるし、2種以上のものを組み合わせて用いることもできる。特に、下記実施例に具体的に示されるように、成長因子として血小板由来成長因子(PDGF)と塩基性繊維芽細胞成長因子(bFGF)の2種類のみを含むものでも間葉系幹細胞の増殖が十分に達成されるので、間葉系幹細胞の培養に用いられる培地では、培地中に含まれる成長因子は、これら2種類の成長因子だけでも十分である。
 高効率無血清培地は、さらに、血小板由来成長因子レセプター(PDGFR)に対するリガンド(PDGF)を含んでいてもよく、特に、間葉系幹細胞を培養する培地では、これを含むことが好ましい。PDGFRは、主に間葉系細胞にあるチロシンキナーゼ関連型受容体の一種であり、これに対するリガンドを含むことにより、間葉系幹細胞を効率良く細胞を増殖させることができる。PDGFRのリガンドとしては、PDGF-AA、PDGF-AB、PDGF-BB、PDGF-CC、PDGF-DDなどが挙げられ、これらはいずれも周知である。PDGFRのリガンドは、単独で用いることもできるし、2種以上のものを組み合わせて用いることもできる。
 高効率無血清培地は、塩基性線維芽細胞成長因子レセプター(FGFR)に対するリガンド(FGF)を含んでいてもよく、特に、間葉系幹細胞を培養する場合には、これを含むことが好ましい。FGFRは、主に間葉系細胞に存在することが知られており、これに対するリガンドを含むことにより、間葉系幹細胞の寿命を改善させる。PDGFRのリガンドとしては、塩基性線維芽細胞成長因子(bFGF)と酸性線維芽細胞成長因子(aFGF)など、計20種以上存在することが知られている。例えば、FGF-1、FGF-4などが挙げられる。特に、bFGFは組織の形成に強く関与していることが知られている。これらはいずれも周知である。
 成長因子の濃度(複数種類のものが含まれる場合にはその合計濃度)は、0.1~100ng/mLが好ましく、1~10ng/mLがさらに好ましい。
 高効率無血清培地は、界面活性剤をさらに含んでいてもよい。低濃度の界面活性剤を含むことにより、細胞膜への悪影響を減じる効果等があると考えられる。一方、高濃度の界面活性剤を培地に添加すると、細胞増殖阻害や細胞死の誘導をすることが知られている。界面活性剤としては、ポリオキシエチレンソルビタン脂肪酸エステル(商品名Tween 20、Tween 40、Tween 60、Tween 80等)、アルキルフェノキシポリエチレングリコール(商品名Triton X-100等)、アルキルフェニルポリエチレングリコール(商品名Triton X-114、NP-40等)の非イオン性界面活性剤が好ましい。界面活性剤は、単独で用いることもできるし、2種以上のものを組み合わせて用いることもできる。
 界面活性剤の濃度(複数種類のものが含まれる場合にはその合計濃度)は、通常、0.1~100ng/mLであり、好ましくは1~10ng/mLである。
 高効率無血清培地は、上記したEdgリガンドおよびセロトニンリガンド、好ましくは、さらに、上記した抗酸化剤、動物血清アルブミン、成長因子および界面活性剤の1種以上を含むことを除き、公知の哺乳動物細胞用培地と同様でよい。従って、基本的に、公知の基本培地に、上記した2種類の必須成分、好ましくはさらに上記した好ましい成分の1種以上を添加することにより、高効率無血清培地を得ることができる。公知の基本培地の例は上記の通りである。任意の添加剤も上記の通りであり、上記した添加剤の1種または複数種を含むことができる。また、公知の基本培地と同様に、分化誘導剤を添加して分化誘導培地として用いることもできる。分化誘導剤の例は上記したが、上記の例示に限定されず、分化誘導により調製すべき細胞の種類に応じて、公知の分化誘導剤から適宜選択して用いることができる。
 本発明の培養細胞の培養自体は、従来と同様な方法で行うことができ、通常、30~37℃の温度、および5%CO環境下、および5~21%O環境下で行われる。また、分化誘導に必要な培養時間は、用いる分化誘導剤や細胞の種類等により適宜設定され、また、細胞の様子を観察しながら適宜選択することができる。
 培養液中の核酸の抽出は、この分野で周知の常法を用いて行うことができる。液体試料からの核酸抽出のための各種試薬キット類が市販されており、それらを用いて容易に行うことができる。
 核酸の測定方法自体は周知である。例えば、プライマーを用いた核酸増幅法による測定法としては、リアルタイムPCRやNASBA法等を挙げることができる。また、プローブを用いた測定法としては、ノーザンブロット、サザンブロットの他、固相化プローブを用いたアレイ解析法等を挙げることができる。本発明の方法では周知のいずれの測定法を用いてもよい。リアルタイムPCRによる測定法の具体的な例としては、下記実施例に記載されるように、培養液から抽出したRNA試料の3’末端にプライマーサイトを導入してcDNAを調製した後、各種miRNAに特異的なプライマーを用いてリアルタイムPCRを行うことにより、miRNAの有無ないしはその量を測定することができる。配列番号1~19に示す塩基配列からなるmiRNAに特異的なプライマーとしては、例えば、配列番号22~40に示す塩基配列からなるものを用いることができる。また、Applied Biosystems社が開発した市販のTaqMan Probe microRNA Assaysを用いることができる。該キットは、公知の各種miRNAに対応しており、所望のmiRNAをリアルタイムPCRにより測定できる。なお、本発明において、「測定」には、検出、定量、半定量が包含される。
 細胞の変化によって培養液中への放出が開始される核酸を測定する場合には、経時的に培養液の一部を採取して核酸を測定し、核酸が検出されるかどうかを調べればよい。核酸量の変化を測定する場合には、例えば、培養開始時を基準時とし、基準時の核酸量を1として、基準時以降の培養液中核酸量を相対評価することにより、核酸量の変化を測定することができる。相対評価の基準とする時点または核酸量は適宜設定することができる。内標準物質(例えば、miR-16など)で核酸量を補正することで評価することができる。例えば、幹細胞と該幹細胞由来の組織細胞から放出される核酸量およびパターン等を解析することで、幹細胞および該幹細胞由来の組織細胞の評価が可能となる。薬剤処理量等によって、細胞から放出される核酸量およびパターン等を解析することで、薬剤の効果・毒性の評価が可能となる。悪性度の異なるがん細胞から放出される核酸量およびパターン等を解析することで、がん細胞の悪性度の評価が可能となる。がん細胞と正常な組織細胞から放出されてくる核酸量およびパターン等を解析することで、がん細胞の有無を評価することが可能となる。
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
実施例1:マイクロRNAサンプルの調製および解析1
 ヒト骨髄由来間葉系幹細胞(LONZA社製)を20000細胞/cmの細胞密度となるように12穴培養プレートの培養容器に播種し、血清不含の維持培地、骨細胞分化誘導培地または脂肪細胞分化誘導培地で21日間培養することにより、骨細胞または脂肪細胞への分化誘導を行った。用いた各培地の組成は以下の通りである。
維持培地:
MEM-Alpha(和光純薬社製)に細胞維持用添加剤(最終濃度:5μM LPA(Cayman社製)、10μM セロトニン(SIGMA社製)、1nM PDGF(和光純薬社製)、2.5nM bFGF(和光純薬社製))を含んだ無血清培地。
骨細胞分化誘導培地:
DMEM(和光純薬社製)に骨細胞分化誘導剤(最終濃度:10mM β-グリセロリン酸(SIGMA社製)、100nM デキサメタゾン、1mM ビタミンC(和光純薬社製)、5μM LPA(Cayman社製))を添加した無血清培地。
脂肪細胞分化誘導培地:
DMEM(和光純薬社製)に脂肪細胞分化誘導剤(最終濃度:1μM デキサメタゾン、1μM ロシグリタゾン、500μM イソブチルメチルキサンチン、1μM インスリン、5μM LPA(Cayman社製))を添加した無血清培地。
 培養開始後14日目から21日目までの7日間培養した培養液を回収し、0.22μmのフィルターにて浮遊した細胞を除去し、サンプルとした。
 サンプル250μLに対して750μLのTriZOL LS試薬(インビトロジェン社製)と混和した後、クロロホルム200μLを添加、激しく攪拌、12000xgにて遠心分離してその上清を回収した。この上清に、イソプロパノール500μLを加え、マイナス30℃にて12時間以上静置後に12000xgにて遠心分離して上清を廃棄した。そして、75%エタノール溶液500μLを添加後、12000xgにて遠心分離、上清を廃棄して核酸サンプルを回収した。
 この核酸サンプルを14μLのHOに溶解後、Poly(A) Tailing Kit(Ambion社製)にてmiRNAにPoly(A) Tailingを修飾した(Poly(A)miRNA)。
 このPoly(A)miRNA溶液に100μLのHOを添加後、375μLのTriZOL LS試薬(インビトロジェン社製)を添加、クロロホルム100μLを添加、激しく攪拌、12000xgにて遠心分離してその上清を回収した。この上清に、イソプロパノール500μLを加え、マイナス30℃にて12時間以上静置後に12000xgにて遠心分離して上清を廃棄した。そして、75%エタノール溶液500μLを添加後、12000xgにて遠心分離、上清を廃棄してPoly(A)miRNAサンプルを回収した。
 このPoly(A)miRNAサンプルを10μLのHOに溶解、RTプライマー(5’-GCGAGCACAGAATTAATACGACTCACTATAGGTTTTTTTTTTTTVN-3’、配列番号20)およびSuper Script II逆転写酵素(インビトロジェン社製)にてRNAをDNAに逆転写し、25μLのHOを添加してcDNAサンプルを得た。
 このcDNAサンプル中に含まれるhsa-miR-145、hsa-miR-24およびhsa-miR-16を、Platinum SYBR Green(インビトロジェン社製)を使用したリアルタイムPCR法にて確認した。プライマーは以下のものを使用した。
hsa-miR-145(配列番号1):フォワード(CCGCGTCCAGTTTTCCCAGGAA、配列番号22)
hsa-miR-24(配列番号2):フォワード(CCGCTGGCTCAGTTCAGCAG、配列番号23)
hsa-miR-16(配列番号3):フォワード(CGCGCTAGCAGCACGTAAAT、配列番号24)
リバース共通(GCGAGCACAGAATTAATACGAC、配列番号21)
 結果を図1に示す。図1より、培養細胞外へ放出されるmiRNAが存在していることが確認された。そして、培養細胞から放出されるmiRNA量のパターンが、組織細胞種によって変化することが確認された。例えば、間葉系幹細胞が骨細胞に分化と共にhsa-miR-145の放出量が著しく上昇する。この結果は、培養細胞の変化(幹細胞の分化)によって、放出されるmiRNA量のパターンが変化することを示唆するものである。つまり、放出されるmiRNAを解析することで、間葉系幹細胞からの分化誘導の進行度の予測を可能にすることを示唆するものである。骨細胞への分化確認は、アリザインレッドS染色、脂肪細胞への分化確認は、オイルレッドO染色にて確認した。
実施例2:マイクロRNAサンプルの調製および解析2
 ヒト肝臓がん由来の細胞株(HuH-7、ATCCより購入)を20000細胞/cmの細胞密度となるように12穴培養プレートの培養容器に播種し、肝組織および肝細胞に障害を与えることで知られている四塩化炭素を、World J Gastroenterol. 2008 Jun 21;14(23):3693-709にて用いられている比較的低濃度である0~1000μMで添加した血清不含の維持培地で7日間培養した。維持培地は実施例1と同様のものを用いた。
 7日間培養した培養液を回収し、遠心処理をした上清を0.22μmのフィルターにて細胞を除去し、サンプルとした。
 実施例1同様にPoly(A)miRNAサンプルのcDNAサンプルを得た。
 このcDNAサンプル中に含まれるhsa-miR-21、hsa-miR-122、hsa-miR-451およびhsa-miR-16を、Platinum SYBR Green(インビトロジェン社製)を使用したリアルタイムPCR法にて確認した。プライマーは以下のものを使用した。
hsa-miR-21(配列番号4):フォワード(GCCCGCTAGCTTATCAGACTGATG、配列番号25)
hsa-miR-122(配列番号5):フォワード(GCGCTGGAGTGTGACAATGGT、配列番号26)
hsa-miR-451(配列番号6):フォワード(GCCGCAAACCGTTACCATTACT、配列番号27)
hsa-miR-16(配列番号3):フォワード(CGCGCTAGCAGCACGTAAAT、配列番号24)
リバース共通(GCGAGCACAGAATTAATACGAC、配列番号21)
 結果を図2に示す。図2より、幹細胞以外の培養細胞でも細胞外に放出されるmiRNAが存在していることが確認された。そして、培養細胞の障害依存的に、細胞から放出されるmiRNAの上昇が確認された。この結果は、培養細胞の変化、例えば薬剤処理によって、培養液中へ放出されるmiRNA量のパターンが変化することを示唆するものである。つまり、本法は、培養液中へ放出されるmiRNA量を解析することで、薬剤等の効果または毒性を評価することが可能であることを示唆するものである。
実施例3:マイクロRNAサンプルの調製および解析3
 ヒト大腸がん由来の細胞株およびそのリンパ節転移巣細胞株(SW480およびSW620、ATCCより購入)を20000細胞/cmの細胞密度となるように6穴培養プレートの培養容器に播種し、血清不含の維持培地で3日間培養した。維持培地は実施例1と同様のものを用いた。
 3日間培養した培養液を回収し、遠心処理をした上清を0.22μmのフィルターにて細胞を除去し、サンプルとした。
 実施例1と同様にPoly(A)miRNAサンプルのcDNAサンプルを得た。
 このcDNAサンプル中に含まれるhsa-miR-20a、hsa-miR-892a、hsa-miR-22*、hsa-miR-19a、hsa-miR-484、hsa-miR-638、hsa-miR-125b、hsa-miR-339-5p、hsa-miR-532-3p、hsa-miR-142-3p、hsa-miR-138、hsa-miR-186、hsa-miR-223を、Platinum SYBR Green(インビトロジェン社製)を使用したリアルタイムPCR法にて確認した。プライマーは以下のものを使用した。
hsa-miR-20a(配列番号7):フォワード(CCGCCGCTAAAGTGCTTATAGTG、配列番号28)
hsa-miR-892a(配列番号8):フォワード(CCGCCACTGTGTCCTTTCTGC、配列番号29)
hsa-miR-22*(配列番号9):フォワード(CCGCGAGTTCTTCAGTGGCAA、配列番号30)
hsa-miR-19a(配列番号10):フォワード(CCGCCTGTGCAAATCTATGCA、配列番号31)
hsa-miR-484(配列番号11):フォワード(CCGTCAGGCTCAGTCCCCT、配列番号32)
hsa-miR-638(配列番号12):フォワード(CCGCAGGGATCGCGGGC、配列番号33)
hsa-miR-125b(配列番号13):フォワード(CCGCGTCCCTGAGACCCTAA、配列番号34)
hsa-miR-339-5p(配列番号14):フォワード(CCGTCCCTGTCCTCCAGGA、配列番号35)
hsa-miR-532-3p(配列番号15):フォワード(CCCTCCCACACCCAAGGCT、配列番号36)
hsa-miR-142-3p(配列番号16):フォワード(CCGCCTGTAGTGTTTCCTACTTT、配列番号37)
hsa-miR-138(配列番号17):フォワード(CCGGCAGCTGGTGTTGTGAA、配列番号38)
hsa-miR-186(配列番号18):フォワード(CCGCCGCAAAGAATTCTCCTTTT、配列番号39)
hsa-miR-223(配列番号19):フォワード(CCGCCGTGTCAGTTTGTCAAATA、配列番号40)
リバース共通(GCGAGCACAGAATTAATACGAC、配列番号21)
 結果を図3に示す。SW620は、リンパ節転移巣細胞株であるため、もとの大腸がん由来細胞株SW480よりも悪性度が高い。図3より、がん細胞の悪性度進展により細胞から放出されるmiRNAの増減が確認された。この結果は、がん細胞の悪性度進展によって、培地中へ放出されるmiRNA量のパターンが変化することを示唆するものである。また、がんの悪性度進展に関わらず、がん細胞から共通に放出されているmiRNAが存在することが確認された。この結果は、がん細胞が共通に放出しているmiRNAの存在を示唆するものであり、即ち、がん細胞の有無を評価することが可能であることを示唆するものである。
実施例4:マイクロRNAサンプルの調製および解析4
 実施例1同様、ヒト骨髄由来間葉系幹細胞(LONZA社製)を20000細胞/cmの細胞密度となるように12穴培養プレートの培養容器に播種し、血清不含の維持培地、骨細胞分化誘導培地または脂肪細胞分化誘導培地で21日間培養することにより、骨細胞または脂肪細胞への分化誘導を行った。
 分化誘導開始後14日目から21日目までの7日間培養した培養液を回収し、0.22μmのフィルターにて浮遊した細胞を除去し、サンプルとした。
 サンプル250μLに対して750μLのTrizol LS試薬(インビトロジェン社製)と混和した後、クロロホルム200μLを添加、激しく攪拌、12000xgにて遠心分離してその上清を回収した。この上清に、イソプロパノール500μLを加え、マイナス30℃にて12時間以上静置後に12000xgにて遠心分離して上清を廃棄した。そして、75%エタノール溶液500μLを添加後、12000xgにて遠心分離、上清を廃棄して核酸サンプルを回収した。
 この核酸サンプルを14μLのHOに溶解後、TaqMan(登録商標) MicroRNA RTプライマー(Applied Biosystems社製)にてcDNAサンプルを得た。
 このcDNAサンプルをTaqMan(登録商標) MicroRNA Realtimeプライマー(Applied Biosystems社製)を使用したリアルタイムPCR法にて定量し、hsa-miR-16にて補正することで確認した。プローブは、以下の各ASSAY IDで入手可能な市販のTaqMan(登録商標) MicroRNA ASSAY Probe(Applied Biosystems社製)を使用した。
hsa-miR-130a(配列番号41):000454 (ASSAY ID)
hsa-miR-143(配列番号42):002249 (ASSAY ID)
hsa-miR-214(配列番号43):002306 (ASSAY ID)
hsa-miR-365(配列番号44):001020 (ASSAY ID)
hsa-miR-16(配列番号3):000391 (ASSAY ID)
 結果を図4に示す。図4より、間葉系幹細胞から細胞外へ放出されるmiRNAは、脂肪細胞や骨細胞等の組織細胞へ分化することで変化することが確認された。この結果は、放出されるmiRNAを解析することで間葉系幹細胞、組織細胞の品質評価を可能とすることを示唆するものである。以下が間葉系幹細胞から分化誘導したときの各組織細胞のマーカー候補である。
未分化細胞(非誘導):hsa-miR-214
組織細胞(骨および脂肪細胞):hsa-miR-143
骨細胞:hsa-miR-365
脂肪細胞:hsa-miR-130a

Claims (25)

  1.  無血清培地中で細胞を培養し、該細胞から培養液中に放出される核酸の少なくとも1種を測定することを含む、培養細胞の評価方法。
  2.  前記核酸がマイクロRNAである請求項1記載の方法。
  3.  配列表の配列番号1、3~5、7~19、41~44に示される塩基配列からなるマイクロRNAの少なくとも1種を測定する請求項2記載の方法。
  4.  配列表の配列番号1、3~5、7~19に示される塩基配列からなるマイクロRNAの少なくとも1種を測定する請求項3記載の方法。
  5.  前記細胞は哺乳動物由来細胞であり、前記無血清培地は、内皮細胞分化遺伝子(Edg)ファミリーレセプターに対するリガンドと、セロトニンレセプターに対するリガンドとを含む培地である請求項1ないし4のいずれか1項に記載の方法。
  6.  内皮細胞分化遺伝子ファミリーレセプターに対する前記リガンドが、リゾホスファチジン酸(LPA)及びその塩、スフィンゴシン1リン酸(S1P)並びに内皮細胞分化遺伝子(Edg)ファミリーレセプターのアゴニストから成る群より選択される少なくとも1種である請求項5記載の方法。
  7.  セロトニンレセプターに対する前記リガンドが、セロトニン、その塩及びセロトニンレセプターのアゴニストから成る群より選択される少なくとも1種である請求項5又は6記載の方法。
  8.  幹細胞の分化を評価する方法である請求項1ないし7のいずれか1項に記載の方法。
  9.  配列番号1、41~44に示される塩基配列からなるマイクロRNAの少なくとも1種を指標として幹細胞の分化を評価する請求項8記載の方法。
  10.  配列番号1又は44に示される塩基配列からなるマイクロRNAを指標として骨細胞への分化を評価する請求項9記載の方法。
  11.  配列番号1に示される塩基配列からなるマイクロRNAを指標として骨細胞への分化を評価する請求項10記載の方法。
  12.  配列番号41に示される塩基配列からなるマイクロRNAを指標として脂肪細胞への分化を評価する請求項9記載の方法。
  13.  配列番号42に示される塩基配列からなるマイクロRNAを指標として組織細胞への分化を評価する請求項9記載の方法。
  14.  配列番号43に示される塩基配列からなるマイクロRNAを指標として幹細胞の分化の有無を評価する請求項9記載の方法。
  15.  細胞障害を評価する方法である請求項1ないし7のいずれか1項に記載の方法。
  16.  配列番号3~5に示される塩基配列からなるマイクロRNAの少なくとも1種を指標として培養細胞への障害を評価する請求項15記載の方法。
  17.  前記培養細胞が肝細胞である請求項16記載の方法。
  18.  培養細胞への化学物質・生物由来物質・環境刺激等による効果・影響・毒性等を評価する方法である請求項1ないし7のいずれか1項に記載の方法。
  19.  がん細胞の有無を評価する方法である請求項1ないし7のいずれか1項に記載の方法。
  20.  がん細胞の悪性度を評価する方法である請求項1ないし7のいずれか1項に記載の方法。
  21.  配列番号7~19に示される塩基配列からなるマイクロRNAの少なくとも1種を指標とする請求項19又は20記載の方法。
  22.  前記がん細胞が大腸がん細胞である請求項21記載の方法。
  23.  無血清培地中で細胞を培養し、該細胞から培養液中に放出される核酸を測定することを含む、バイオマーカーのスクリーニング方法。
  24.  配列表の配列番号1、3~5、7~19、41~44に示される塩基配列からなるマイクロRNAの少なくとも1種を測定する請求項23に記載の方法。
  25.  配列表の配列番号1、3~5、7~19に示される塩基配列からなるマイクロRNAの少なくとも1種を測定する請求項24に記載の方法。
PCT/JP2010/060812 2009-06-30 2010-06-25 培養細胞の評価方法およびバイオマーカーのスクリーニング方法 WO2011001906A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10794075A EP2450454A4 (en) 2009-06-30 2010-06-25 METHOD FOR ASSESSING THE CULTIVATED CELLS, AND METHOD FOR EXAMINING A BIOMARKER
US13/381,384 US20120178085A1 (en) 2009-06-30 2010-06-25 Method for evaluation of cultured cells, and method for screening of biomarker
JP2011520895A JPWO2011001906A1 (ja) 2009-06-30 2010-06-25 培養細胞の評価方法およびバイオマーカーのスクリーニング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009154449 2009-06-30
JP2009-154449 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011001906A1 true WO2011001906A1 (ja) 2011-01-06

Family

ID=43410982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060812 WO2011001906A1 (ja) 2009-06-30 2010-06-25 培養細胞の評価方法およびバイオマーカーのスクリーニング方法

Country Status (4)

Country Link
US (1) US20120178085A1 (ja)
EP (2) EP2450454A4 (ja)
JP (1) JPWO2011001906A1 (ja)
WO (1) WO2011001906A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144439A (ja) * 2015-01-30 2016-08-12 ロート製薬株式会社 細胞の品質を評価する方法、及び細胞の品質判定キット
JP2019154320A (ja) * 2018-03-13 2019-09-19 ロート製薬株式会社 細胞の品質を評価する方法、及び細胞の品質判定キット

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103571929B (zh) * 2012-07-24 2016-05-11 中国科学院动物研究所 无损检测细胞miRNA的表达量及确定细胞类型与状态的方法
CN104450874A (zh) * 2014-04-11 2015-03-25 中国人民解放军军事医学科学院基础医学研究所 一种利用miR-145为标志物的肝癌患者血清检测试剂盒及方法
CN104195238B (zh) * 2014-08-15 2017-08-01 深圳市晋百慧生物有限公司 用于检测肠癌的标记物及其应用
ITUA20162556A1 (it) * 2016-04-13 2017-10-13 Massimo Dominici Metodo per analizzare le potenzialita' di cellule staminali/stromali mesenchimali nella rigenerazione tessutale
JP6629770B2 (ja) * 2017-01-19 2020-01-15 シスメックス株式会社 細胞の分化状態を評価する方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028036A (ja) * 2007-06-28 2009-02-12 Mitsubishi Chemical Medience Corp 組織傷害あるいは細胞増殖性疾患の検出方法
JP2009100687A (ja) 2007-10-24 2009-05-14 Chiba Univ microRNA発現プロファイリングに基づく膀胱癌の検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290071B1 (en) * 2004-05-28 2014-12-31 Asuragen, Inc. Methods and compositions involving microRNA
CA2703986A1 (en) * 2007-10-30 2009-05-07 Veridex, Llc Process for monitoring colorectal cancer
CN101424640B (zh) * 2007-11-02 2012-07-25 江苏命码生物科技有限公司 血清中微小核糖核酸的检测方法和用于检测的试剂盒、生物芯片及其制作和应用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028036A (ja) * 2007-06-28 2009-02-12 Mitsubishi Chemical Medience Corp 組織傷害あるいは細胞増殖性疾患の検出方法
JP2009100687A (ja) 2007-10-24 2009-05-14 Chiba Univ microRNA発現プロファイリングに基づく膀胱癌の検出方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
EXP. HEMATOL., vol. 36, 2008, pages 1354 - 1369
GOFF,L.A. ET AL.: "Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis.", EXP.HEMATOL., vol. 36, no. 10, 2008, pages 1354 - 1369, XP025465839 *
J BIOL CHEM., vol. 277, no. 29, 2002, pages 25851 - 25854
MITCHELL,P.S. ET AL.: "Circulating microRNAs as stable blood-based markers for cancer detection.", PROC.NATL.ACAD.SCI., vol. 105, no. 30, 2008, USA, pages 10513 - 10518, XP002518102 *
PROC. NATL. ACAD. SCI. USA., vol. 105, 2008, pages 10513 - 8
SCIENCE, vol. 294, 2001, pages 1875 - 1878
See also references of EP2450454A4 *
WORLD J GASTROENTEROL., vol. 14, no. 23, 21 June 2008 (2008-06-21), pages 3693 - 709

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144439A (ja) * 2015-01-30 2016-08-12 ロート製薬株式会社 細胞の品質を評価する方法、及び細胞の品質判定キット
JP2019154320A (ja) * 2018-03-13 2019-09-19 ロート製薬株式会社 細胞の品質を評価する方法、及び細胞の品質判定キット
JP7072770B2 (ja) 2018-03-13 2022-05-23 ロート製薬株式会社 細胞の品質を評価する方法、及び細胞の品質判定キット

Also Published As

Publication number Publication date
EP2450454A4 (en) 2012-11-14
US20120178085A1 (en) 2012-07-12
JPWO2011001906A1 (ja) 2012-12-13
EP2644706A3 (en) 2014-01-08
EP2450454A1 (en) 2012-05-09
EP2644706A2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP6694240B2 (ja) 細胞の品質を評価する方法、及び細胞の品質判定キット
WO2011001906A1 (ja) 培養細胞の評価方法およびバイオマーカーのスクリーニング方法
Yao et al. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m6A‐YTHDF2–dependent manner
Alt et al. Aging alters tissue resident mesenchymal stem cell properties
Tay et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1
Liu et al. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis
Tomé et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells
JPWO2018164228A1 (ja) Ror1陽性の間葉系幹細胞を含有する、線維症を伴う疾患の予防又は処置のための医薬組成物、及びその調製方法、並びにror1陽性の間葉系幹細胞を用いる線維症を伴う疾患の予防又は処置方法
Pek et al. Circulating and visceral adipose miR-100 is down-regulated in patients with obesity and Type 2 diabetes
KR101574989B1 (ko) 포유 동물 체세포용 배지 및 이를 위한 첨가제
WO2017038784A1 (ja) Ror1陽性の間葉系幹細胞及びその調製方法、ror1陽性の間葉系幹細胞を含む医薬組成物及びその調製方法、並びにror1陽性の間葉系幹細胞を用いる疾患の予防又は治療方法
Feng et al. LncRNA GAS5 overexpression alleviates the development of osteoporosis through promoting osteogenic differentiation of MSCs via targeting microRNA-498 to regulate RUNX2.
Vecellio et al. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors
Smith et al. IGF-I 3′ untranslated region: Strain-specific polymorphisms and motifs regulating IGF-I in osteoblasts
WO2019213796A1 (en) INDUCED REJUVENATED MESENCHYMAL STEM CELLS (irMSCs) AND USES THEREOF
Zhang et al. circAKT3 positively regulates osteogenic differentiation of human dental pulp stromal cells via miR-206/CX43 axis
Asadzadeh et al. A plausible anti-apoptotic role of up-regulated OCT4B1 in bladder tumors
Wang et al. MYOD1 inhibits avian adipocyte differentiation via miRNA-206/KLF4 axis
Liu et al. miR-221 modulates skeletal muscle satellite cells proliferation and differentiation
Scalise et al. In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes
JP7072770B2 (ja) 細胞の品質を評価する方法、及び細胞の品質判定キット
WO2014172340A1 (en) Immortalization of circulating tumor cells and methods of use
JP5804459B2 (ja) 癌疾患用細胞老化促進剤
Xu et al. Profiling of differentially expressed microRNAs (miRNAs) during differentiation of rat hepatic oval cells (HOCs) into hepatocellular carcinoma (HCC) cells.
Izumi et al. 12p microRNA expression in fibroblast cell lines from probands with Pallister-Killian syndrome

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520895

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13381384

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010794075

Country of ref document: EP