WO2011001784A1 - 半導体集積回路 - Google Patents
半導体集積回路 Download PDFInfo
- Publication number
- WO2011001784A1 WO2011001784A1 PCT/JP2010/059469 JP2010059469W WO2011001784A1 WO 2011001784 A1 WO2011001784 A1 WO 2011001784A1 JP 2010059469 W JP2010059469 W JP 2010059469W WO 2011001784 A1 WO2011001784 A1 WO 2011001784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- voltage
- external terminal
- semiconductor integrated
- integrated circuit
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 46
- 239000003990 capacitor Substances 0.000 claims abstract description 19
- 230000015556 catabolic process Effects 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 9
- 230000001681 protective effect Effects 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 13
- 230000006378 damage Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0248—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
- H01L27/0251—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
- H01L27/0266—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Definitions
- the present disclosure relates to a semiconductor integrated circuit of a DC / DC converter using a bootstrap circuit.
- FIG. 4 is a block diagram showing an example of a conventional DC / DC converter semiconductor integrated circuit.
- a capacitor C1 is connected between the external terminal BS and the external terminal SW of the semiconductor integrated circuit 10
- a Schottky diode SD is connected between the external terminal SW and the external terminal GND.
- the external terminal SW is connected to the output terminal 11 via the inductor L1.
- Resistors R1 and R2 are connected in series between the output terminal 11 and the external terminal GND, and a capacitor C2 is connected.
- the connection point of the resistors R1 and R2 is connected to the external terminal FB of the semiconductor integrated circuit 10.
- a DC voltage of 12 V for example, is applied from the outside to the external terminal VIN of the semiconductor integrated circuit 10.
- the regulator 12 In the semiconductor integrated circuit 10, the regulator 12 generates a DC voltage of, for example, 5 V from a DC voltage (for example, 12 V) supplied from the external terminal VIN and supplies it to each part of the semiconductor integrated circuit 10. A voltage is applied to the external terminal BS via the diode D1.
- the external terminal SW is connected to the source of the n-channel MOS transistor M1, which is a switching element, and the drain of the n-channel MOS transistor M2.
- the drain of the MOS transistor M1 is connected to the external terminal VIN, and the switching signal output from the driver circuit 13 is supplied to the gate.
- the driver circuit 13 is supplied with operating power from external terminals BS and SW.
- the source of the MOS transistor M2 is connected to the external terminal GND, and the switching signal output from the driver circuit 14 is supplied to the gate.
- the switch control unit 15 supplies the driver circuits 13 and 14 with a switching signal whose polarity is inverted, whereby the MOS transistors M1 and M2 are alternately turned on.
- the MOS transistor M1 is turned off (when M2 is turned on)
- the external terminal SW becomes the ground level
- the capacitor C1 is charged with a voltage of 5V
- the external terminal BS becomes 5V.
- the capacitor C1 is provided between the external terminal SW and the external terminal BS.
- a voltage higher than the voltage of the external terminal VIN is applied to the external terminal BS by the charging voltage of the capacitor, and this high voltage is supplied as a drive voltage to the driver circuit 13 of the HIGH-side switching element M1.
- the high-side switching element M1 can be completely turned on.
- a circuit that supplies this high driving voltage is a bootstrap circuit.
- the output voltage of the terminal 11 is divided by resistors R 1 and R 2 and supplied from the external terminal FB of the semiconductor integrated circuit 20 to the inverting input terminal of the error amplifier 16.
- the reference voltage Vref is supplied to the non-inverting input terminal of the error amplifier 16, and the error amplifier 16 generates an error voltage of the output voltage with respect to the reference voltage Vref and supplies it to the inverting input terminal of the PWM comparator 17.
- a non-inverting input terminal of the PWM comparator 17 is supplied with a triangular wave having a predetermined frequency from the oscillator 18, and the PWM comparator 17 compares the error voltage with the triangular wave to generate a PWM (pulse width modulation) signal and supplies it to the switch control unit 15.
- the switch control unit 15 generates a signal obtained by inverting the PWM signal, supplies the signal to the driver circuit 13 from the terminal DRH, and supplies the PWM signal from the terminal DRL to the driver circuit 14 when the PWM signal rises.
- each of the external terminals VIN, BS, SW of the semiconductor integrated circuit 10 has a high withstand voltage ESD (electro) such as a diode having a cathode connected to the external terminals VIN, BS, SW and an anode grounded.
- ESD electro-electro
- -A static discharge (electrostatic discharge) protection element withstand voltage is, for example, several tens of volts) is provided.
- FIG. 5 shows a circuit configuration diagram of an example of the driver circuit 13.
- the driver circuit 13 has a level shift circuit 13a, a latch circuit 13b, and a drive stage inverter 13c.
- the level shift circuit 13a converts an input signal having a high level / low level of 5V / 0V into a signal having a high level / low level of 17V / 12V when the MOS transistor M1 is turned on and outputs it, and converts it when the MOS transistor M1 is turned off.
- the latch circuit 13b latches the output signal of the level shift circuit 13a.
- the drive stage inverter 13c includes a p-channel MOS transistor M11 and an n-channel MOS transistor M12 having a CMOS configuration that constitute the first-stage inverter, and a p-channel MOS transistor M13 and an n-channel MOS transistor having a CMOS configuration that constitutes a second-stage inverter. M14.
- a semiconductor integrated circuit of a DC / DC converter using a bootstrap circuit has a maximum voltage applied to the capacitor between a first terminal and a second terminal to which the capacitor of the bootstrap circuit is connected.
- a protective element having a standard breakdown voltage that breaks down at a large voltage is provided.
- the semiconductor integrated circuit operates using a voltage between the first external terminal, the second external terminal, and the voltage between the first external terminal and the second external terminal as a drive voltage.
- the circuit elements of the driver circuit can be protected from danger of destruction.
- FIG. 1 is a block diagram of an embodiment of a semiconductor integrated circuit 20 of a DC / DC converter.
- a capacitor C1 is connected between the external terminal BS and the external terminal SW of the semiconductor integrated circuit 20, and a Schottky diode SD is connected between the external terminal SW and the external terminal GND.
- the external terminal SW is connected to the output terminal 21 via the inductor L1.
- Resistors R1 and R2 are connected in series between the output terminal 21 and the external terminal GND, and a capacitor C2 is connected.
- the connection point of the resistors R1 and R2 is connected to the external terminal FB of the semiconductor integrated circuit 20.
- a DC voltage of 12 V, for example, is applied from the outside to the external terminal VIN of the semiconductor integrated circuit 20.
- a protective element 30 having a standard withstand voltage (withstand voltage of several volts, for example) is connected between the external terminals BS and SW in the semiconductor integrated circuit 20.
- the external terminal VIN is provided with a high breakdown voltage ESD protection element (withstand voltage of, for example, several tens of volts) such as a diode whose cathode is connected to the external terminal VIN and whose anode is grounded.
- the regulator 22 In the semiconductor integrated circuit 20, the regulator 22 generates a DC voltage of, for example, 5 V from a DC voltage (for example, 12 V) supplied from the external terminal VIN and supplies it to each part of the semiconductor integrated circuit 20. A voltage is applied to the external terminal BS via the diode D1.
- the external terminal SW is connected to the source of an n-channel MOS transistor M1, which is a switching element, and the drain of an n-channel MOS transistor M2.
- the drain of the MOS transistor M1 is connected to the external terminal VIN, and the switching signal output from the driver circuit 23 is supplied to the gate.
- the driver circuit 23 is supplied with operating power from external terminals BS and SW.
- the source of the MOS transistor M2 is connected to the external terminal GND, and the switching signal output from the driver circuit 24 is supplied to the gate.
- the switch control unit 25 supplies the switching signals whose polarities are inverted to the driver circuits 23 and 24, whereby the MOS transistors M1 and M2 are alternately turned on.
- the MOS transistor M1 is turned off (when M2 is turned on)
- the external terminal SW becomes the ground level
- the capacitor C1 is charged with a voltage of 5V
- the external terminal BS becomes 5V.
- the external terminal SW becomes 12V supplied from the external terminal VIN, and the external terminal BS becomes 17V by the charging voltage of the capacitor C1.
- This switching is repeated, smoothed by the inductor L1 or the like, and a predetermined DC voltage is output from the terminal 21.
- the capacitor C1 is provided between the external terminal SW and the external terminal BS.
- a voltage higher than the voltage of the external terminal SW is applied to the external terminal BS by the charging voltage of the capacitor, and the voltage between the external terminal BS and the external terminal SW is applied to the driver circuit 23 of the HIGH-side switching element M1 as a driving voltage.
- Supply as. This makes it possible to completely turn on the HIGH-side switching element M1 that intermittently conducts between the external terminal VIN and the external terminal SW.
- a circuit that supplies this high driving voltage is a bootstrap circuit.
- the voltage between the external terminals SW and BS does not exceed 5V during normal operation.
- the voltage between the external terminals SW and BS exceeds 5V when an abnormality such as ESD occurs.
- the output voltage of the terminal 21 is divided by the resistors R1 and R2 and supplied from the external terminal FB of the semiconductor integrated circuit 20 to the inverting input terminal of the error amplifier 26.
- the reference voltage Vref is supplied to the non-inverting input terminal of the error amplifier 26, and the error amplifier 26 generates an error voltage of the output voltage with respect to the reference voltage Vref and supplies it to the inverting input terminal of the PWM comparator 27.
- a non-inverting input terminal of the PWM comparator 27 is supplied with a triangular wave having a predetermined frequency from the oscillator 28, and the PWM comparator 27 compares the error voltage with the triangular wave to generate a PWM (pulse width modulation) signal and supplies it to the switch control unit 25.
- the switch control unit 25 generates a signal obtained by inverting the PWM signal, supplies the signal to the driver circuit 23 from the terminal DRH, and supplies the PWM signal from the terminal DRL to the driver circuit 24 when the PWM signal rises.
- FIG. 2 shows a circuit configuration diagram of an embodiment of the driver circuit 23 and the protection element 30.
- the driver circuit 23 includes a level shift circuit 23a, a latch circuit 23b, and a drive stage inverter 23c.
- the level shift circuit 23a converts the high level / low level 5V / 0V input signal to a high level / low level 17V / 12V signal when the MOS transistor M1 is on and outputs it, and converts it when the MOS transistor M1 is off. Output without The latch circuit 23b latches the output signal of the level shift circuit 23a.
- the drive stage inverter 23c includes a p-channel MOS transistor M11 and an n-channel MOS transistor M12 having a CMOS configuration that constitute a first-stage inverter, and a p-channel MOS transistor M13 and an n-channel MOS transistor having a CMOS configuration that constitute a second-stage inverter. M14.
- the drains of the MOS transistors M13 and M14 are connected to the gate of the MOS transistor M1.
- the protection element 30 is composed of an n-channel MOS transistor 20.
- the drain of the MOS transistor 20 is connected to the external terminal BS, and the gate, source, and back gate are connected to the external terminal SW.
- FIG. 3 shows a cross-sectional configuration diagram of an embodiment of the protection element 30.
- the protection element 30 has a triple well structure.
- an n-type well 42 is formed from the surface of a p-type semiconductor substrate 41 to a predetermined depth.
- a p-type well 43 serving as a back gate is formed in the n-type well 42.
- an n-type region 44 serving as a source and an n-type region 45 serving as a drain are formed in the p-type well 43 so as to be separated from each other.
- An insulating layer 46 is formed on the surface of the semiconductor substrate 41, and a gate electrode 47 is formed on the insulating layer 46.
- the p-type semiconductor substrate 41 is connected from the terminal 51 to the external terminal GND, and the n-type well 42 and the n-type region 45 serving as the drain are connected from the terminal 52 to the external terminal BS.
- the p-type well 43 serving as the back gate, the n-type region 44 serving as the source, and the gate electrode 47 are connected from the terminal 53 to the external terminal SW.
- the semiconductor substrate 41 at the ground level and the p-type well 43 of the back gate are separated by the n-type well 42, the external terminals GND and the external terminals BS, and the external terminals GND and the external terminals SW have a high breakdown voltage (for example, several 10V).
- a standard breakdown voltage (for example, about 6 to 9 V) is applied between the n-type regions 44 and 45 formed in the p-type well 43 of the back gate, that is, between the external terminals SW and BS.
- the protection element 30 breaks down at a voltage lower than the voltage at which the transistor of the drive stage inverter 23c of the driver circuit 23 breaks down.
- the protective element 30 Since the protective element 30 has been subjected to processing such as increasing the contacts of the terminals 51 to 53 to the semiconductor substrate 41, the wells 42 and 43, and the n-type regions 44 and 45, the protective element 30 can be used even when it breaks down. It does not lead to destruction.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Dc-Dc Converters (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
図5はドライバ回路13の一例の回路構成図を示す。図5において、ドライバ回路13はレベルシフト回路13aとラッチ回路13bとドライブ段インバータ13cを有している。レベルシフト回路13aは、ハイレベル/ローレベルが5V/0Vの入力信号をMOSトランジスタM1のオン時にハイレベル/ローレベルが17V/12Vの信号に変換して出力し、MOSトランジスタM1のオフ時に変換せずに出力する。
図1はDC/DCコンバータの半導体集積回路20の一実施形態のブロック構成図を示す。図1において、半導体集積回路20の外部端子BS,外部端子SW間にはキャパシタC1が接続され、外部端子SW,外部端子GND間にはショットキーダイオードSDが接続されている。外部端子SWはインダクタL1を介して出力端子21に接続されている。
図2はドライバ回路23と保護素子30の一実施形態の回路構成図を示す。図2において、ドライバ回路23はレベルシフト回路23aとラッチ回路23bとドライブ段インバータ23cを有している。
図3は保護素子30の一実施形態の断面構成図を示す。この保護素子30はトリプルウェル構造である。図3において、p型の半導体基板41の表面から所定の深さまでn型ウェル42が形成されている。n型ウェル42内にはバックゲートとなるp型ウェル43が形成されている。更に、p型ウェル43内にソースとなるn型領域44とドレインとなるn型領域45が互いに離間して形成されている。半導体基板41の表面には絶縁層46が形成され、絶縁層46上にゲート電極47が形成されている。
21 出力端子
22 レギュレータ
23,24 ドライバ回路
25 スイッチコントロール部
26 エラーアンプ
27 PWMコンパレータ
28 発振器
30 保護回路
41 半導体基板
42 n型ウェル
43 p型ウェル
44,45 n型層
46 絶縁層
47 ゲート電極
C1,C2 キャパシタ
D1 ダイオード
L1 インダクタ
M1~M21 MOSトランジスタ
R1,R2 抵抗
SD ショットキーダイオード
Claims (5)
- ブートストラップ回路を用いたDC/DCコンバータの半導体集積回路であって、
前記ブートストラップ回路のキャパシタが接続される第1端子と第2端子間を前記キャパシタに印加される最大電圧より大きい電圧でブレークダウンする標準耐圧とする保護素子を
設けたことを特徴とする半導体集積回路。 - 請求項1記載の半導体集積回路において、
前記保護素子は、前記第1端子と接地端子間、前記第2端子と接地端子間それぞれを前記標準耐圧より大きい電圧でブレークダウンする高耐圧とすることを特徴とする半導体集積回路。 - 請求項2記載の半導体集積回路において、
前記保護素子は、
前記接地端子に接続される半導体基板内に形成され前記第1端子に接続される第1層と、
前記第1層内に形成され前記第2端子に接続される第2層と、
前記第2層内に形成され前記第1端子に接続されるドレイン領域と、
前記第2層内に形成され前記第2端子に接続されるソース領域と、
前記半導体基板と絶縁されて形成され前記第2端子に接続されるゲート電極と、
を有し、構成されることを特徴とする半導体集積回路。 - 請求項3記載の半導体集積回路において、
前記半導体基板と前記第2層は、p型であり、
前記第1層と前記ドレイン領域と前記ソース領域は、n型であることを特徴とする半導体集積回路。 - 第1の外部端子と、
第2の外部端子と、
前記第1の外部端子と前記第2の外部端子との間の電圧を駆動電圧として動作するドライバ回路と、
前記ドライバ回路により駆動され、電源電圧と前記第2の外部端子との間を間欠的に導通させるスイッチング素子と、
前記第1端子と前記第2端子との間に設けられ、前記ドライバ回路のトランジスタがブレークダウンする電圧より低い電圧でブレークダウンする保護素子と
を含むことを特徴とする半導体集積回路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/380,097 US20120099232A1 (en) | 2009-07-02 | 2010-06-03 | Semiconductor integrated circuit |
CN2010800299600A CN102473678A (zh) | 2009-07-02 | 2010-06-03 | 半导体集成电路 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-158080 | 2009-07-02 | ||
JP2009158080A JP2011014738A (ja) | 2009-07-02 | 2009-07-02 | 半導体集積回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011001784A1 true WO2011001784A1 (ja) | 2011-01-06 |
Family
ID=43410864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059469 WO2011001784A1 (ja) | 2009-07-02 | 2010-06-03 | 半導体集積回路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120099232A1 (ja) |
JP (1) | JP2011014738A (ja) |
CN (1) | CN102473678A (ja) |
WO (1) | WO2011001784A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5863027B2 (ja) * | 2011-02-14 | 2016-02-16 | ローム株式会社 | 半導体装置、スイッチングレギュレータ、テレビ |
JP6031883B2 (ja) | 2012-08-08 | 2016-11-24 | 富士通株式会社 | 半導体集積回路及び電源回路 |
US9659523B2 (en) | 2013-08-05 | 2017-05-23 | Joled Inc. | Display panel and display panel driving method |
JP5642245B1 (ja) * | 2013-10-09 | 2014-12-17 | 三菱電機株式会社 | 車載充電器 |
JP6368196B2 (ja) * | 2014-08-28 | 2018-08-01 | ローム株式会社 | 降圧dc/dcコンバータおよびそのコントロールic、オフィス用通信機器、電動自転車 |
JP2017085725A (ja) | 2015-10-26 | 2017-05-18 | ローム株式会社 | 降圧dc/dcコンバータおよびその制御回路、車載用電源装置 |
JP2017093158A (ja) | 2015-11-10 | 2017-05-25 | ローム株式会社 | 降圧dc/dcコンバータおよびその制御回路、制御方法、ならびに車載用電源装置 |
US10141845B2 (en) * | 2016-04-13 | 2018-11-27 | Texas Instruments Incorporated | DC-DC converter and control circuit with low-power clocked comparator referenced to switching node for zero voltage switching |
US10177658B2 (en) | 2016-04-14 | 2019-01-08 | Texas Instruments Incorporated | Methods and apparatus for adaptive timing for zero voltage transition power converters |
US10141846B2 (en) | 2016-04-15 | 2018-11-27 | Texas Instruments Incorporated | Methods and apparatus for adaptive timing for zero voltage transition power converters |
US10840797B2 (en) | 2018-11-26 | 2020-11-17 | Texas Instruments Incorporated | Load release detection circuit |
JP7236293B2 (ja) | 2019-03-15 | 2023-03-09 | ローム株式会社 | ハイサイドドライバ、スイッチング回路、モータドライバ |
CN114255714B (zh) * | 2021-12-15 | 2023-03-28 | Tcl华星光电技术有限公司 | 静电保护电路、电源管理芯片及显示终端 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007318891A (ja) * | 2006-05-25 | 2007-12-06 | Toyota Industries Corp | スイッチング素子駆動用電源回路 |
JP2008054469A (ja) * | 2006-08-28 | 2008-03-06 | Rohm Co Ltd | 昇圧回路 |
JP2009095214A (ja) * | 2007-10-12 | 2009-04-30 | Sony Corp | Dc−dcコンバータ回路 |
JP2009106115A (ja) * | 2007-10-24 | 2009-05-14 | Fuji Electric Device Technology Co Ltd | ブートストラップ回路及び該回路を用いる降圧コンバータ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2970054B2 (ja) * | 1991-06-03 | 1999-11-02 | 日本電気株式会社 | Dc−dcコンバータ |
JPH06334120A (ja) * | 1993-05-26 | 1994-12-02 | Toshiba Corp | 半導体装置 |
US5545909A (en) * | 1994-10-19 | 1996-08-13 | Siliconix Incorporated | Electrostatic discharge protection device for integrated circuit |
JP3610890B2 (ja) * | 1999-09-20 | 2005-01-19 | 株式会社デンソー | 電気負荷駆動回路 |
JP2003023101A (ja) * | 2001-07-05 | 2003-01-24 | Mitsubishi Electric Corp | 半導体装置 |
US20080211569A1 (en) * | 2007-03-01 | 2008-09-04 | Hui Kelvin Yupak | Higher voltage switch based on a standard process |
-
2009
- 2009-07-02 JP JP2009158080A patent/JP2011014738A/ja active Pending
-
2010
- 2010-06-03 WO PCT/JP2010/059469 patent/WO2011001784A1/ja active Application Filing
- 2010-06-03 US US13/380,097 patent/US20120099232A1/en not_active Abandoned
- 2010-06-03 CN CN2010800299600A patent/CN102473678A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007318891A (ja) * | 2006-05-25 | 2007-12-06 | Toyota Industries Corp | スイッチング素子駆動用電源回路 |
JP2008054469A (ja) * | 2006-08-28 | 2008-03-06 | Rohm Co Ltd | 昇圧回路 |
JP2009095214A (ja) * | 2007-10-12 | 2009-04-30 | Sony Corp | Dc−dcコンバータ回路 |
JP2009106115A (ja) * | 2007-10-24 | 2009-05-14 | Fuji Electric Device Technology Co Ltd | ブートストラップ回路及び該回路を用いる降圧コンバータ |
Also Published As
Publication number | Publication date |
---|---|
JP2011014738A (ja) | 2011-01-20 |
CN102473678A (zh) | 2012-05-23 |
US20120099232A1 (en) | 2012-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011001784A1 (ja) | 半導体集積回路 | |
US7224204B2 (en) | Method and circuit for driving a gate of a MOS transistor negative | |
JP2012134690A (ja) | レベルシフト回路およびスイッチング電源装置 | |
JP4951907B2 (ja) | 半導体回路、インバータ回路および半導体装置 | |
JP2008147755A (ja) | 駆動回路及びこれを用いた半導体装置 | |
JP2006314154A (ja) | 電力変換器 | |
JP2006333694A (ja) | ハイサイド駆動回路用チャージポンプ回路及びドライバ駆動電圧回路 | |
JP2006302971A (ja) | 電源クランプ回路及び半導体装置 | |
US8823425B2 (en) | Output driving circuit and transistor output circuit | |
US11387826B1 (en) | Short circuit detection circuit | |
WO2012070174A1 (ja) | 半導体基板中の抵抗を利用するレベルシフト回路 | |
JP2008258939A (ja) | 多チャンネル半導体集積回路 | |
JP2009130949A (ja) | 電力供給制御回路 | |
JP2007116653A (ja) | スイッチ回路 | |
JP2009044304A (ja) | 半導体素子制御装置 | |
JP2006333595A (ja) | 端子保護回路 | |
JP7568502B2 (ja) | スイッチング電源用回路及びスイッチング電源装置 | |
JP2010028522A (ja) | 半導体装置 | |
JP6089850B2 (ja) | 回路装置及び電子機器 | |
US11418182B2 (en) | Switch circuitry | |
JP4168941B2 (ja) | 半導体集積回路装置用負荷駆動回路 | |
JP4198634B2 (ja) | 負ゲートバイアス電圧をもつmosfetゲートドライバ | |
JP3518310B2 (ja) | 容量性負荷駆動回路 | |
JP2017055453A (ja) | 回路装置及び電子機器 | |
JP5278229B2 (ja) | 半導体集積回路の保護装置および保護方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080029960.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10793954 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13380097 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10793954 Country of ref document: EP Kind code of ref document: A1 |