WO2011001520A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2011001520A1
WO2011001520A1 PCT/JP2009/062037 JP2009062037W WO2011001520A1 WO 2011001520 A1 WO2011001520 A1 WO 2011001520A1 JP 2009062037 W JP2009062037 W JP 2009062037W WO 2011001520 A1 WO2011001520 A1 WO 2011001520A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
wiring
semiconductor device
metal wiring
metal
Prior art date
Application number
PCT/JP2009/062037
Other languages
English (en)
French (fr)
Inventor
真由 青木
武田 健一
一幸 朴澤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2009/062037 priority Critical patent/WO2011001520A1/ja
Priority to JP2011520711A priority patent/JP5451762B2/ja
Priority to US13/381,070 priority patent/US8749028B2/en
Publication of WO2011001520A1 publication Critical patent/WO2011001520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the dielectric constant of the interlayer insulating film made of the low-k material increases, which increases the parasitic capacitance of the metal wiring, causing an increase in wiring delay and power consumption. May interfere with operation. Further, the moisture that has been absorbed may then oxidize the metal material that constitutes the metal wiring, leading to an increase in wiring resistance or poor conduction. In the process of forming the silicon through hole from the back surface of the substrate, unlike the previous process, it is impossible to perform a high-temperature process. Therefore, once the moisture-absorbed Low-k material is returned to the characteristics before moisture absorption, There is a problem that it is difficult.
  • the moisture barrier film is characterized by having metal wiring formed in two or more different wiring layers and connection vias connecting the metal wiring formed in the upper and lower wiring layers.
  • the low-k insulating film is preferably composed mainly of a compound selected from silicon oxide and hydrocarbon.
  • the metal wiring is formed using copper, aluminum, or tungsten as a main component.
  • the silicon through electrode is electrically connected to the metal electrode inside the ring-shaped enclosure, and the metal electrode is also electrically connected to the outside of the enclosure.
  • the low-k insulating film is mainly composed of a compound selected from silicon oxide and hydrocarbon.
  • connection via is mainly formed of any one of copper, aluminum, and tungsten.
  • the silicon through electrode is made of a metal mainly composed of copper.
  • FIG. 13 is a cross-sectional schematic diagram for major components showing a manufacturing process subsequent to FIG. 12 (e) of the semiconductor device of the present invention in Example 4;
  • (A) is a principal part cross-sectional schematic diagram of the manufacturing process of the semiconductor device of this invention in Example 5,
  • (b) follows (a),
  • (c) follows (b),
  • (d) is
  • (E) is a principal part cross-sectional schematic diagram of the manufacturing process following (d) following (c).
  • FIG. 13 is a cross-sectional schematic diagram for major components showing a manufacturing process subsequent to FIG. 12 (e) of the semiconductor device of the present invention in Example 4;
  • (A) is a principal part cross-sectional schematic diagram of the manufacturing process of the semiconductor device of this invention in Example 5,
  • (b) follows (a),
  • (c) follows (b),
  • (d) is
  • (E) is a principal part cross-sectional schematic diagram of the manufacturing process following (d) following (c).
  • FIG. 21 is a schematic cross-sectional view of the essential part of the manufacturing process following FIG. 20 (e) of the semiconductor device of the present invention in Example 7;
  • FIG. 10 is a schematic plan layout diagram of the present invention in Example 7.
  • FIG. 24 is a schematic cross-sectional view of the essential part of the manufacturing process following FIG. 23 (e) of the semiconductor device of the present invention in Example 8;
  • FIG. 10 is a schematic plan layout diagram of the present invention in Example 8.
  • FIG. 5, and FIG. 1 are cross-sectional views showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention
  • FIG. 6 is a plan layout view of FIG. In the following, description will be given in order.
  • An under-wiring insulating film 200 made of a silicon oxide film with a thickness of 250 nm and silicon nitride with a thickness of 50 nm is formed on a substrate 100 on which a semiconductor element is formed, and an opening is formed in a desired region of the insulating film 200 under the wiring. Tungsten plugs were formed using the provided CVD and chemical mechanical polishing methods.
  • a first interlayer insulating film 201 using a low-k material made of carbon-containing silicon oxide (SiOC) having a thickness of 100 nm is formed by plasma CVD, and the first interlayer insulating film 201 is formed using lithography and dry etching.
  • a first metal wiring opening 300 is formed in at least a region of the interlayer insulating film 201 where the metal wiring is to be formed (FIG. 4A).
  • a tantalum film having a film thickness of 50 nm is formed by sputtering so as to fill the metal wiring opening 300, and a copper film is sequentially formed by sputtering and electrolytic plating, and then chemical mechanical polishing is used.
  • the tantalum film and the copper film in regions other than the first metal wiring opening 300 were removed to form a first metal wiring 400 as shown in FIG.
  • the second metal wiring opening 301 was formed so that a part of the first metal wiring 400 was exposed (FIG. 4C).
  • a 50-nm-thick tantalum film was formed by sputtering and a 500-nm-thick copper film were sequentially formed by sputtering and electrolytic plating so as to fill the third metal wiring opening 302. Thereafter, the tantalum film and the copper film in regions other than the opening were removed using a chemical mechanical polishing method, and a third metal wiring 402 was formed.
  • a third protective insulating film 206 made of SiCN having a film thickness of 25 nm is formed by plasma CVD, and at least a metal pad of the third protective insulating film 206 is formed by lithography and dry etching.
  • an opening is formed so that the lower layer metal wiring is exposed, and a titanium nitride film having a thickness of 50 nm and an aluminum film having a thickness of 500 nm are formed by sputtering so as to cover the opening, and lithography and dry etching are performed.
  • lithography and dry etching are performed.
  • the back surface insulating film is used as an etching mask, and dry etching is used to penetrate at least the substrate 100 on which the semiconductor device is formed until etching reaches the first metal wiring 400, as shown in FIG. A silicon through-hole 701 was formed.
  • a second back insulating film 601 having an insulating film was formed.
  • a tantalum film with a thickness of 50 nm and a plating seed film made of copper with a thickness of 50 nm are sequentially formed by sputtering, and the silicon through-hole 701 is completely filled with copper by using electrolytic plating. .
  • the tantalum film and the copper film in a region other than the silicon through hole 701 are removed using a chemical mechanical polishing method, and a silicon through electrode 800 opened from the back surface of the substrate on which the semiconductor element as shown in FIG. A semiconductor device was formed.
  • FIG. 6 shows a part of a planar layout diagram (silicon through holes, first and second metal wirings, first connection vias, and adjacent parallel metal wirings) in the semiconductor device formed by the above process.
  • the cross-sectional view shown in FIG. 1 is a cross section taken along line A-A ′ in FIG. 6.
  • connection via regions 505A, 505B, 505C, and 505D constituting the second metal wiring form a ring-shaped enclosure 505 and include a silicon through-hole region 550.
  • the lengths in the short side direction of the connection via regions 505A, 505B, 505C, and 505D constituting the second metal wiring were each 100 nm.
  • the ring-shaped enclosure 505 is disposed so as to be completely enclosed by the first metal wiring region 500 and the second metal wiring region 501. Further, an adjacent parallel metal wiring region 503A and an adjacent parallel metal wiring region 503B are laid outside the ring-shaped enclosure 505.
  • Example 1 As a comparative example of Example 1, a structure without a ring-shaped enclosure 505 was also produced. There is no difference in layout and manufacturing process other than the presence or absence of a ring-shaped enclosure.
  • the performance of the semiconductor device thus formed was examined.
  • the semiconductor device without the ring-shaped enclosure 505 was compared with the case where the ring-shaped enclosure 505 was provided.
  • the capacitance between wirings increased by 15%.
  • the resistance of the connection via chain provided in the same layer as the first metal wiring 500 and the second metal wiring 501 is measured separately, as compared with the case where the ring-shaped enclosure 505 is provided, In the semiconductor device without the ring-shaped enclosure 505, the via chain resistance increased by 15%.
  • TEM transmission electron microscope
  • the barrier metal tantalum at the bottom of the connection via was observed. Some were oxidized.
  • the tantalum of the barrier metal at the bottom of the connection via was not oxidized. As a result of detailed examination, it has been found that the tantalum oxidation is caused by moisture diffused in the low-k material of the interlayer insulating film.
  • a plurality of layers of metal wiring are formed so as to completely include a region where the silicon through hole is formed, and further, the silicon through hole is included using a connection via between the metal wirings.
  • two layers of metal wirings of the first metal wiring 400 and the second metal wiring 401 are used as the moisture barrier film for preventing moisture absorption of the Low-k material. It is also possible to use. As the number of wiring layers used increases, the margin for over-etching can be increased in etching when opening through silicon vias. On the other hand, since the region where the moisture barrier film is formed cannot be used as circuit wiring, the wiring layout is restricted.
  • etching of the silicon through hole 701 is stopped in the middle of the second interlayer insulating film 202 using the low-k material.
  • the effectiveness of the present invention is limited to this case. is not. Since the etching through at least the substrate 100 on which the semiconductor device is formed and reaches the first metal wiring 400 is a condition for the silicon through electrode to function, the second interlayer insulating film using a low-k material is used. Etching may progress to 202 or more upper wiring layers. However, when the etching progresses to a layer higher than the third interlayer insulating film 203 using the Low-k material and the Low-k material and the silicon through-hole 701 are in contact with each other, a region where moisture permeates the Low-k material is formed. In order to limit, the ring-shaped enclosure 505 in FIG. 6 must be provided also in the upper wiring layer where the etching of the silicon through hole 701 reaches.
  • the third metal wiring 402 is used as a method for extracting the wiring electrically connected to the silicon through electrode 800, but it may be extracted by the second metal wiring layer.
  • tantalum and copper are used for the material of the ring-shaped enclosure 505, but other materials can be used as long as the material can be expected to prevent moisture from passing through, such as SiCN. is there.
  • the metal is made of a ring-shaped enclosure material
  • the ring-shaped enclosure has a thickness of about 10 nm and can be expected to prevent moisture from passing therethrough.
  • the ring-shaped enclosure may not be a quadrangle, and may surround the through silicon vias in multiple layers.
  • the metal wiring does not have an opening, but it is not always necessary.
  • the metal wiring may include an opening in order to improve flatness.
  • the first, second, and third metal wirings are made of a material mainly composed of copper, but may be a material mainly composed of tungsten.
  • tantalum is used as the barrier metal in the first, second, and third metal wirings, but the present invention is not limited to this material.
  • a tantalum compound, titanium, tungsten, ruthenium, manganese, or a compound thereof can be used.
  • the barrier metal structure may be formed by laminating a plurality of films.
  • an insulating film made of SiOC formed by plasma CVD is used for the interlayer insulating film, but the effect of the present invention is not limited to this material. The same effect can be expected with a porous Low-k film or an organic Low-k film. Further, it is possible to use a method other than the CVD method as the film forming method.
  • the first, second, and third protective insulating films are made of an insulating film made of SiCN formed by using a plasma CVD method.
  • the present invention is not limited to this material. .
  • SiN, SiC, or a stacked structure thereof may be used.
  • FIG 7 and 8 are cross-sectional views showing the manufacturing steps of the semiconductor device according to the second embodiment of the present invention. In the following, description will be given in order.
  • An under-wiring insulating film 200 made of a silicon oxide film with a thickness of 250 nm and silicon nitride with a thickness of 50 nm is formed on a substrate 100 on which a semiconductor element is formed, and an opening is formed in a desired region of the insulating film 200 under the wiring. Tungsten plugs were formed using the provided CVD and chemical mechanical polishing methods.
  • a laminated structure of a titanium nitride film with a thickness of 50 nm, an aluminum film with a thickness of 300 nm and a titanium nitride film with a thickness of 50 nm is formed by sputtering, and metal wiring is formed by using lithography and dry etching.
  • the titanium nitride film and the aluminum film other than the region were removed, and a first metal wiring 400 made of titanium nitride and aluminum was formed (FIG. 7A).
  • the surface was planarized using a chemical mechanical polishing method to form a first interlayer insulating film 201.
  • a first interlayer insulating film 201 using this Low-k material, an opening is provided in a desired region to form a first connection via opening 304.
  • the first connection via opening 304 was formed so that a part of the first metal wiring 400 was exposed (FIG. 7B).
  • a tungsten film in a region other than the opening is formed using a chemical mechanical polishing method.
  • the first connection via 404 was removed as shown in FIG.
  • a laminated structure of a titanium nitride film with a thickness of 50 nm, an aluminum film with a thickness of 300 nm and a titanium nitride film with a thickness of 50 nm is formed by sputtering, and metal wiring is formed by using lithography and dry etching.
  • the titanium nitride film and the aluminum film other than the region were removed, and the parallel metal wiring 403A adjacent to the second metal wiring 401 made of titanium nitride and aluminum and the parallel metal wiring 403B adjacent to each other were formed.
  • the second metal wiring 401 was formed so as to cover the first connection via 404 (FIG. 7D).
  • an interlayer insulating film made of carbon-containing silicon oxide (SiOC) having a thickness of 750 nm was formed, the surface was planarized using a chemical mechanical polishing method.
  • an opening was formed in a region where a connection via was to be formed.
  • an opening was formed so that a part of the second metal wiring 401 was exposed.
  • the tungsten film in the region other than the opening is removed by using a chemical mechanical polishing method, as shown in FIG.
  • a second connection via 406 as shown was formed.
  • a laminated structure of a titanium nitride film with a thickness of 50 nm, an aluminum film with a thickness of 300 nm and a titanium nitride film with a thickness of 50 nm is formed by sputtering, and metal wiring is formed by using lithography and dry etching.
  • the titanium nitride film and the aluminum film other than the region were removed, and a third metal wiring 402 made of titanium nitride and aluminum was formed. At this time, the third metal wiring 402 was formed so as to cover the second connection via 406 (FIG. 7F).
  • an interlayer insulating film made of carbon-containing silicon oxide (SiOC) having a thickness of 750 nm is formed, the surface is planarized using a chemical mechanical polishing method, and the interlayer is then formed using lithography and dry etching. Openings were made so that the third metal wiring 402 was exposed at least in the region where the metal pad was to be formed.
  • a titanium nitride film with a thickness of 50 nm and an aluminum film with a thickness of 500 nm are formed by sputtering to cover the opening, and the titanium nitride film and aluminum other than the desired region are formed by lithography and dry etching. The film was removed, and an aluminum pad made of titanium nitride and aluminum was formed.
  • a passivation film 207 including a silicon oxide film having a thickness of 200 nm and a silicon nitride film having a thickness of 250 nm was formed by a plasma CVD method. At this time, an opening was formed using lithography and dry etching so that the aluminum pad was exposed in a desired region. Through the above steps, a semiconductor device having a multilayer wiring as shown in FIG. 7G can be formed.
  • a first back surface insulating film 600 made of silicon oxide is formed on the back surface of the substrate 100 on which the semiconductor element is formed as shown in FIG. After the formation, an opening was provided in a region of the first back surface insulating film 600 where a silicon through electrode was to be formed by using lithography and dry etching, thereby forming a first back surface insulating film opening 700.
  • the back surface insulating film is used as an etching mask and etching is performed using dry etching until at least the substrate 100 on which the semiconductor device is formed is reached until reaching the first metal wiring 400, as shown in FIG. Such a silicon through hole 701 was formed.
  • a silicon oxide film having a thickness of 1 ⁇ m is formed so as to cover the silicon through hole 701 by plasma CVD. Thereafter, the entire surface was etched back to form a second back surface insulating film 601 having a side wall insulating film on the side surface of the silicon through hole as shown in FIG.
  • a tantalum film with a thickness of 50 nm and a plating seed film made of copper with a thickness of 50 nm are sequentially formed by sputtering, and the silicon through-hole 701 is completely filled with copper by using electrolytic plating. .
  • the tantalum film and the copper film in a region other than the silicon through hole 701 are removed using a chemical mechanical polishing method, and the silicon through hole opened from the back surface of the substrate on which the semiconductor element as shown in FIG. A semiconductor device having the electrode 800 was formed.
  • the semiconductor device without the ring-shaped enclosure 505 was compared with the case where the ring-shaped enclosure 505 was provided. In the same way, an increase in parasitic capacitance, an increase in via chain resistance, and poor conduction were observed.
  • a plurality of layers of metal wiring are formed so as to completely include a region where the silicon through hole is formed, and further, the silicon through hole is included using a connection via between the metal wirings.
  • the interlayer insulating film using the Low-k material exposed at the opening of the silicon through hole and the interlayer insulating film using the Low-k material formed in the circuit wiring region Forming a semiconductor device having wiring with low parasitic capacitance and low via resistance in the circuit region in the vicinity of the silicon through-hole by forming a film that hardly allows moisture to pass through, such as metal wiring, connection via, and insulating film under the wiring region Is possible.
  • the first metal via 400 and the second metal interconnect 401 are connected to the first metal via 400 and the first connection via 404 connecting between them.
  • connection vias connecting three or more wiring layers and each wiring layer. As the number of wiring layers used increases, the margin for over-etching can be increased in etching when opening through silicon vias. On the other hand, since the region where the moisture barrier film is formed cannot be used as circuit wiring, the wiring layout is restricted.
  • the etching of the silicon through hole 701 is stopped in the middle of the layer in which the first connection via 404 is formed, but the effectiveness of the present invention is not limited to this case.
  • Etching through at least the substrate 100 on which the semiconductor device is formed and reaching the first metal wiring 400 is a condition for the silicon through electrode to function. Therefore, etching is performed up to the upper wiring layer above the second metal wiring layer. May progress.
  • silicon is limited in order to limit the region where moisture penetrates the low-k material.
  • a ring-shaped enclosure 505 must also be provided in the upper wiring layer where the etching of the through-hole 701 reaches, and the upper metal wiring having a shape including the ring-shaped enclosure 505 must be formed. .
  • the third metal wiring 402 is used as a method for extracting the wiring electrically connected to the silicon through electrode 800, but it may be extracted by the second metal wiring layer.
  • tungsten is used as the material for the first and second connection vias, but the material is not limited to this material. For example, the same effect can be expected with aluminum.
  • tungsten is used as the material for the ring-shaped enclosure 505, but other materials can be used as long as the material can be expected to prevent moisture from passing through, such as Al or SiCN. is there.
  • the metal is made of a ring-shaped enclosure material
  • the ring-shaped enclosure has a thickness of about 10 nm and can be expected to prevent moisture from passing therethrough.
  • the ring-shaped enclosure may not be a quadrangle, and may surround the through silicon vias in multiple layers.
  • the first, second and third metal wirings are made of a material mainly composed of aluminum, but may be a material mainly composed of tungsten.
  • titanium nitride is used as the barrier metal in the first, second, and third metal wirings, but the present invention is not limited to this material.
  • tungsten, molybdenum, nickel, or a compound thereof can be used.
  • the barrier metal structure may be formed by laminating a plurality of films.
  • an insulating film made of SiOC is used for the interlayer insulating film, but the effect of the present invention is not limited to this material. The same effect can be expected with a porous Low-k film or an organic Low-k film.
  • FIG. 11 is a plan layout diagram of FIG. In the following, description will be given in order.
  • An under-wiring insulating film 200 made of a silicon oxide film with a thickness of 250 nm and silicon nitride with a thickness of 50 nm is formed on a substrate 100 on which a semiconductor element is formed, and an opening is formed in a desired region of the insulating film 200 under the wiring. Tungsten plugs were formed using the provided CVD and chemical mechanical polishing methods.
  • a first interlayer insulating film 201 using a low-k material made of carbon-containing silicon oxide (SiOC) having a thickness of 100 nm is formed by plasma CVD, and the first interlayer insulating film 201 is formed using lithography and dry etching.
  • a first metal wiring opening 300 is formed in at least a region of the interlayer insulating film 201 where the metal wiring is to be formed (FIG. 9A).
  • a tantalum film having a film thickness of 50 nm is formed by sputtering so as to fill the metal wiring opening 300, and a copper film is sequentially formed by sputtering and electrolytic plating, and then chemical mechanical polishing is used.
  • the tantalum film and the copper film in regions other than the first metal wiring opening 300 were removed, and a first metal wiring 400 as shown in FIG. 9B was formed.
  • the second metal wiring opening 301 was formed so that a part of the first metal wiring 400 was exposed (FIG. 9C).
  • a 50-nm-thick tantalum film is formed using a sputtering method so as to fill the second metal wiring opening 301 and the adjacent parallel metal wiring openings 303A and 303B, and a sputtering method and an electrolytic plating method are used.
  • a copper film having a thickness of 500 nm the tantalum film and the copper film in a region other than the opening are removed using a chemical mechanical polishing method, and a second metal wiring as shown in FIG. Parallel metal wirings 403A and 403B adjacent to 401 were formed.
  • the semiconductor device having the multilayer wiring described above in this example (FIG. 9E)
  • the silicon through electrode manufacturing process of Example 1 the first back surface insulating film 600 made of silicon oxide and the second A semiconductor device having a plurality of second back surface insulating films 601 and a plurality of through silicon vias 800 made of tantalum and copper was formed (FIG. 10).
  • FIG. 11 shows a part of a planar layout diagram (silicon through-hole, first and second metal wirings, first connection vias, and adjacent parallel metal wirings) in the semiconductor device formed by the above process.
  • the cross-sectional view shown in FIG. 10 is a cross section taken along line A-A ′ in FIG. 11.
  • connection via regions 505A, 505B, 505C, and 505D constituting the second metal wiring form a ring-shaped enclosure 505 and include a plurality of silicon through-hole regions 550 and 550A.
  • the lengths in the short side direction of the connection via regions 505A, 505B, 505C, and 505D constituting the second metal wiring were each 100 nm.
  • the ring-shaped enclosure 505 is disposed so as to be completely enclosed by the first metal wiring region 500 and the second metal wiring region 501. Further, an adjacent parallel metal wiring region 503A and an adjacent parallel metal wiring region 503B are laid outside the ring-shaped enclosure 505.
  • the semiconductor device in which the ring-shaped enclosure 505 was not provided as compared with the case in which the ring-shaped enclosure 505 was provided was shown in the first embodiment. Similarly, increased parasitic capacitance, increased via chain resistance, and poor conduction were observed.
  • a plurality of layers of metal wiring are formed so as to completely include a region where the silicon through hole is formed, and further, the silicon through hole is included using a connection via between the metal wirings.
  • a metal is interposed between the interlayer insulating film using the low-k material exposed in the opening of the silicon through hole and the interlayer insulating film using the low-k material formed in the circuit wiring region.
  • this embodiment unlike the first embodiment, a plurality of through silicon vias are included in a ring-shaped enclosure. Compared with the first embodiment, this embodiment has an advantage that reliability of electrical connection can be improved because a plurality of through silicon vias are connected to one metal wiring.
  • two layers of metal wirings of the first metal wiring 400 and the second metal wiring 401 are used as the moisture barrier film for preventing moisture absorption of the Low-k material. It is also possible to use. As the number of wiring layers used increases, the margin for over-etching can be increased in etching when opening through silicon vias. On the other hand, since the region where the moisture barrier film is formed cannot be used as circuit wiring, the wiring layout is restricted.
  • etching of the silicon through hole 701 is stopped in the middle of the second interlayer insulating film 202 using the low-k material.
  • the effectiveness of the present invention is limited to this case. is not. Since the etching through at least the substrate 100 on which the semiconductor device is formed and reaches the first metal wiring 400 is a condition for the silicon through electrode to function, the second interlayer insulating film using a low-k material is used. Etching may progress to 202 or more upper wiring layers. However, when the etching progresses to a layer higher than the third interlayer insulating film 203 using the Low-k material and the Low-k material and the silicon through-hole 701 are in contact with each other, a region where moisture permeates the Low-k material is formed. In order to limit, a ring-shaped enclosure 505 must also be provided in the upper wiring layer where the etching of the silicon through hole 701 reaches.
  • the third metal wiring 402 is used as a method for extracting the wiring electrically connected to the silicon through electrode 800, but it may be extracted by the second metal wiring layer.
  • tantalum and copper are used for the material of the ring-shaped enclosure 505, but other materials can be used as long as the material can be expected to prevent moisture from passing through, such as SiCN. is there.
  • the metal is made of a ring-shaped enclosure material
  • the ring-shaped enclosure has a thickness of about 10 nm and can be expected to prevent moisture from passing therethrough.
  • the ring-shaped enclosure may not be a quadrangle, and may surround the through silicon vias in multiple layers.
  • the metal wiring does not have an opening, but it is not always necessary.
  • the metal wiring may include an opening in order to improve flatness.
  • the first, second and third metal wirings are made of a material mainly composed of copper, but may be a material mainly composed of tungsten.
  • tantalum is used as the barrier metal in the first, second, and third metal wirings, but the present invention is not limited to this material.
  • a tantalum compound, titanium, tungsten, ruthenium, manganese, or a compound thereof can be used.
  • the barrier metal structure may be formed by laminating a plurality of films.
  • an insulating film made of SiOC formed by plasma CVD is used for the interlayer insulating film, but the effect of the present invention is not limited to this material. The same effect can be expected with a porous Low-k film or an organic Low-k film. Further, it is possible to use a method other than the CVD method as the film forming method.
  • the first, second, and third protective insulating films are made of an insulating film made of SiCN formed by using a plasma CVD method.
  • the present invention is not limited to this material. .
  • SiN, SiC, or a stacked structure thereof may be used.
  • This embodiment is one application example of the second embodiment, and the embodiments will be described below in order with reference to cross-sectional views (FIGS. 12 and 13) showing the manufacturing process of the semiconductor device.
  • An under-wiring insulating film 200 made of a silicon oxide film with a thickness of 250 nm and silicon nitride with a thickness of 50 nm is formed on a substrate 100 on which a semiconductor element is formed, and an opening is formed in a desired region of the insulating film 200 under the wiring. Tungsten plugs were formed using the provided CVD and chemical mechanical polishing methods.
  • a laminated structure of a titanium nitride film with a thickness of 50 nm, an aluminum film with a thickness of 300 nm and a titanium nitride film with a thickness of 50 nm is formed by sputtering, and metal wiring is formed by using lithography and dry etching.
  • the titanium nitride film and the aluminum film other than the region were removed, and a first metal wiring 400 made of titanium nitride and aluminum was formed (FIG. 12A).
  • the surface was planarized using a chemical mechanical polishing method to form a first interlayer insulating film 201.
  • a first interlayer insulating film 201 using this Low-k material, an opening is provided in a desired region to form a first connection via opening 304.
  • the first connection via opening 304 was formed so that a part of the first metal wiring 400 was exposed (FIG. 12B).
  • a tungsten film in a region other than the opening is formed using a chemical mechanical polishing method.
  • the first connection via 404 was removed as shown in FIG.
  • a laminated structure of a titanium nitride film with a thickness of 50 nm, an aluminum film with a thickness of 300 nm and a titanium nitride film with a thickness of 50 nm is formed by sputtering, and metal wiring is formed by using lithography and dry etching.
  • the titanium nitride film and the aluminum film other than the region were removed, and the second parallel metal wiring 403A and the second parallel metal wiring 403B adjacent to the second metal wiring 401 made of titanium nitride and aluminum were formed.
  • the second metal wiring 401 was formed so as to cover the first connection via 404 (FIG. 12D).
  • a passivation film 207 made of was formed.
  • the first back surface insulating film 600 made of silicon oxide is obtained in accordance with the silicon through electrode manufacturing process of Example 2.
  • the semiconductor device which has the 2nd back surface insulating film 601 the silicon penetration electrode 800 comprised from a tantalum and copper was formed (FIG. 13).
  • the semiconductor device without the ring-shaped enclosure 505 was compared with the case where the ring-shaped enclosure 505 was provided. In the same way, an increase in parasitic capacitance, an increase in via chain resistance, and poor conduction were observed.
  • a plurality of layers of metal wiring are formed so as to completely include a region where the silicon through hole is formed, and further, the silicon through hole is included using a connection via between the metal wirings.
  • the interlayer insulating film using the Low-k material exposed at the opening of the silicon through hole and the interlayer insulating film using the Low-k material formed in the circuit wiring region By forming a film that hardly allows moisture to pass through, such as an insulating film under a metal wiring or a connection via wiring area, a semiconductor device having a wiring with low parasitic capacitance and low via resistance in a circuit area near the silicon through hole can be formed. It becomes possible.
  • This embodiment differs from the second embodiment in that a plurality of through silicon vias are enclosed in a ring-shaped enclosure. Compared with the second embodiment, this embodiment has an advantage that reliability of electrical connection can be improved because a plurality of through silicon vias are connected to one metal wiring.
  • the first metal via 400 and the second metal interconnect 401 are connected to the first metal via 400 and the first connection via 404 connecting between them.
  • connection vias connecting three or more wiring layers and each wiring layer. As the number of wiring layers used increases, the margin for over-etching can be increased in etching when opening through silicon vias. On the other hand, since the region where the moisture barrier film is formed cannot be used as circuit wiring, the wiring layout is restricted.
  • the etching of the silicon through hole 701 is stopped in the middle of the layer in which the first connection via 404 is formed, but the effectiveness of the present invention is not limited to this case.
  • Etching through at least the substrate 100 on which the semiconductor device is formed and reaching the first metal wiring 400 is a condition for the silicon through electrode to function. Therefore, etching is performed up to the upper wiring layer above the second metal wiring layer. May progress.
  • silicon is limited in order to limit the region where moisture penetrates the low-k material.
  • a ring-shaped enclosure 505 must also be provided in the upper wiring layer where the etching of the through-hole 701 reaches, and the upper metal wiring having a shape including the ring-shaped enclosure 505 must be formed. .
  • the etching of the silicon through hole 701 is stopped in the middle of the layer in which the first connection via 404 is formed, but the effectiveness of the present invention is not limited to this case.
  • Etching through at least the substrate 100 on which the semiconductor device is formed and reaching the first metal wiring 400 is a condition for the silicon through electrode to function. Therefore, etching is performed up to the upper wiring layer above the second metal wiring layer. May progress.
  • silicon is limited in order to limit the region where moisture penetrates the low-k material.
  • a ring-shaped enclosure 505 must also be provided in the upper wiring layer where the etching of the through-hole 701 reaches, and the upper metal wiring having a shape including the ring-shaped enclosure 505 must be formed. .
  • the third metal wiring 402 is used as a method for extracting the wiring electrically connected to the silicon through electrode 800, but it may be extracted by the second metal wiring layer.
  • the first, second and third metal wirings are made of a material mainly composed of aluminum, but may be a material mainly composed of tungsten.
  • tungsten is used as the material for the ring-shaped enclosure 505, but other materials can be used as long as the material can be expected to prevent moisture from passing through, such as Al or SiCN. is there.
  • the metal is made of a ring-shaped enclosure material
  • the ring-shaped enclosure has a thickness of about 10 nm and can be expected to prevent moisture from passing therethrough.
  • the ring-shaped enclosure may not be a quadrangle, and may surround the through silicon vias in multiple layers.
  • aluminum is used as the main component in the first, second, and third metal wirings, but tungsten may be used.
  • titanium nitride is used as the barrier metal in the first, second, and third metal wirings, but the present invention is not limited to this material.
  • tungsten, molybdenum, nickel, or a compound thereof can be used.
  • the barrier metal structure may be formed by laminating a plurality of films.
  • an insulating film made of SiOC is used for the interlayer insulating film, but the effect of the present invention is not limited to this material. The same effect can be expected with a porous Low-k film or an organic Low-k film.
  • FIG. 16 is a plan layout diagram of FIG. In the following, description will be given in order.
  • An under-wiring insulating film 200 made of a silicon oxide film with a thickness of 250 nm and silicon nitride with a thickness of 50 nm is formed on a substrate 100 on which a semiconductor element is formed, and an opening is formed in a desired region of the insulating film 200 under the wiring. Tungsten plugs were formed using the provided CVD and chemical mechanical polishing methods.
  • a first interlayer insulating film 201 using a low-k material made of carbon-containing silicon oxide (SiOC) having a thickness of 100 nm is formed by plasma CVD, and the first interlayer insulating film 201 is formed using lithography and dry etching.
  • the first metal wiring openings 300, 300A, 300B were formed in at least a region of the interlayer insulating film 201 where the metal wiring is to be formed (FIG. 14A).
  • a tantalum film having a thickness of 50 nm and a copper film are formed sequentially using a sputtering method and an electrolytic plating method, followed by chemical mechanical polishing.
  • the tantalum film and the copper film in regions other than the first metal wiring openings 300, 300A, 300B were removed to form first metal wirings 400, 400A, 400B as shown in FIG. .
  • first protective insulating film 204 made of nitrogen-containing silicon carbide (SiCN) is formed by plasma CVD, and is formed on the first protective insulating film 204 by using plasma CVD.
  • An opening is provided in a desired region in the interlayer insulating film 202 by using lithography and dry etching twice, and this is formed into second metal wiring openings 301, 301A, 301B, adjacent parallel metal wiring openings 303A, 303B.
  • the second metal wiring opening 301 is exposed so that a part of the first metal wiring 400 is exposed, and the second metal wiring opening 301A is exposed so that a part of the first metal wiring 400A is exposed.
  • the second metal wiring opening 301B was formed so that a part of the first metal wiring 400B was exposed (FIG. 14C).
  • a tantalum film having a film thickness of 50 nm is formed by sputtering so as to fill the second metal wiring openings 301, 301A, 301B and the adjacent parallel metal wiring openings 303A, 303B, and sputtering and electrolytic plating.
  • the tantalum film and the copper film in a region other than the opening are removed using a chemical mechanical polishing method, and the first film as shown in FIG. Two metal wirings 401, 401A, 401B and adjacent parallel metal wirings 403A, 403B were formed.
  • the first metal wiring 400A and the second metal wiring 401A, and the first metal wiring 400B and the second metal wiring 401B are connected in the same layer to form a ring-shaped enclosure 405.
  • the first backside insulating film 600 made of silicon oxide and the A semiconductor device having a second back insulating film 601 and a silicon through electrode 800 made of tantalum and copper was formed (FIG. 15).
  • FIG. 16 shows a part of a planar layout diagram (silicon through-hole, second metal wiring, adjacent parallel metal wiring) in the semiconductor device formed by the above process.
  • the cross-sectional view shown in FIG. 15 is obtained by adding a silicon through hole to the cross section between A-A ′ in FIG. 16.
  • regions 501A, 501B, 501C, and 501D constituting the second metal wiring form a ring-shaped enclosure 505 and include a silicon through-hole region 550.
  • the second metal wiring region 501 was disposed so as to be completely enclosed in the ring-shaped enclosure 505.
  • an adjacent parallel metal wiring region 503A and an adjacent parallel metal wiring region 503B are laid outside the ring-shaped enclosure 505.
  • the semiconductor device without the ring-shaped enclosure 505 was compared with the case where the ring-shaped enclosure 505 was provided. In the same way, an increase in parasitic capacitance, an increase in via chain resistance, and poor conduction were observed.
  • a plurality of layers of metal wiring is formed so as to include a region for forming a silicon through hole, a ring-shaped structure is formed using the metal wiring and the connection via, and a protective insulating film is further formed.
  • the semiconductor device it is possible to form a semiconductor device including the silicon through hole, and having a wiring having a low parasitic capacitance and a low via resistance in a circuit region near the silicon through hole.
  • a metal is interposed between the interlayer insulating film using the low-k material exposed in the opening of the silicon through hole and the interlayer insulating film using the low-k material formed in the circuit wiring region.
  • a metal wiring for directly connecting to the silicon through electrode and a metal wiring serving as a moisture permeation barrier are laid out separately, and a gap is formed between the two metal wirings. Is provided. Therefore, the metal wiring for establishing electrical connection does not necessarily need to play the role of a moisture permeation barrier, so that the degree of freedom in wiring layout can be increased.
  • a two-layer metal wiring of a first metal wiring (400A, 400B) and a second metal wiring (401A, 401B) was used as a moisture barrier film for preventing moisture absorption of the Low-k material.
  • etching of the silicon through hole 701 is stopped in the middle of the second interlayer insulating film 202 using the low-k material.
  • the effectiveness of the present invention is limited to this case. is not. Since the etching through at least the substrate 100 on which the semiconductor device is formed and reaches the first metal wiring 400 is a condition for the silicon through electrode to function, the second interlayer insulating film using a low-k material is used. Etching may progress to 202 or more upper wiring layers. However, when the etching progresses to a layer higher than the third interlayer insulating film 203 using the Low-k material and the Low-k material and the silicon through-hole 701 are in contact with each other, a region where moisture permeates the Low-k material is formed. In order to limit, a ring-shaped enclosure 505 must also be provided in the upper wiring layer where the etching of the silicon through hole 701 reaches.
  • the third metal wiring 402 is used as a method for extracting the wiring electrically connected to the silicon through electrode 800, but it may be extracted by the second metal wiring layer.
  • tantalum and copper are used for the material of the ring-shaped enclosure 505, but other materials can be used as long as the material can be expected to prevent moisture from passing through, such as SiCN. is there.
  • the metal is made of a ring-shaped enclosure material
  • the ring-shaped enclosure has a thickness of about 10 nm and can be expected to prevent moisture from passing therethrough.
  • the ring-shaped enclosure may not be a quadrangle, and may surround the through silicon vias in multiple layers.
  • the metal wiring does not have an opening, but it is not always necessary.
  • the metal wiring may include an opening in order to improve flatness.
  • the first, second, and third metal wirings use a material mainly composed of copper, but may be a material mainly composed of tungsten.
  • tantalum is used as the barrier metal in the first, second, and third metal wirings, but the present invention is not limited to this material.
  • a tantalum compound, titanium, tungsten, ruthenium, manganese, or a compound thereof can be used.
  • the barrier metal structure may be formed by laminating a plurality of films.
  • an insulating film made of SiOC formed by plasma CVD is used for the interlayer insulating film, but the effect of the present invention is not limited to this material. The same effect can be expected with a porous Low-k film or an organic Low-k film. Further, it is possible to use a method other than the CVD method as the film forming method.
  • the first, second, and third protective insulating films are made of an insulating film made of SiCN formed by using a plasma CVD method.
  • the present invention is not limited to this material. .
  • SiN, SiC, or a stacked structure thereof may be used.
  • Example 2 This example is one application example of Example 2, and the embodiment will be described with reference to cross-sectional views (FIGS. 17 and 18) showing the manufacturing process of the semiconductor device.
  • FIG. 19 is a plan layout diagram of FIG. In the following, description will be given in order.
  • An under-wiring insulating film 200 made of a silicon oxide film with a thickness of 250 nm and silicon nitride with a thickness of 50 nm is formed on a substrate 100 on which a semiconductor element is formed, and an opening is formed in a desired region of the insulating film 200 under the wiring.
  • Tungsten plugs were formed using the provided CVD and chemical mechanical polishing methods.
  • a laminated structure of a titanium nitride film with a thickness of 50 nm, an aluminum film with a thickness of 300 nm and a titanium nitride film with a thickness of 50 nm is formed by sputtering, and metal wiring is formed by using lithography and dry etching.
  • the titanium nitride film and the aluminum film other than the region are removed, and the first metal wiring 400, the first metal wiring 400A, the first metal wiring 400B, and the adjacent parallel metal wiring 403A made of titanium nitride and aluminum, The metal wiring 403 was formed (FIG. 17A).
  • first interlayer insulating film 201 After carbon-containing silicon oxide (SiOC) having a thickness of 750 nm is formed, the surface is planarized using a chemical mechanical polishing method to form a first interlayer insulating film 201, and a plasma CVD method is used. A first protective insulating film 204 having a thickness of 25 nm made of silicon oxide (SiO) was formed. In the first interlayer insulating film 201 and the first protective insulating film 204 using the low-k material, openings are provided in desired regions to form first connection via openings 304, 304A, and 304B.
  • the first connection via opening 304 is exposed so that a part of the first metal wiring 400 is exposed, and the first connection via opening 304A is exposed so that a part of the first metal wiring 400A is exposed.
  • the first connection via opening 304B was formed so that a part of the first metal wiring 400B was exposed (FIG. 17B).
  • a tungsten film is filled using a sputtering method and a CVD method so as to fill the first connection via openings 304, 304A, and 304B, and then a region other than the opening is formed using a chemical mechanical polishing method.
  • the tungsten film was removed to form first connection vias 404, 404A, 404B as shown in FIG.
  • a stacked structure of a titanium nitride film with a thickness of 50 nm, an aluminum film with a thickness of 300 nm, and a titanium nitride film with a thickness of 50 nm is formed by sputtering, and lithography and dry etching are used to form a layer outside a desired region.
  • the titanium nitride film and the aluminum film were removed, and second metal wirings 401, 401A, 401B made of titanium nitride and aluminum were formed.
  • the second metal wiring 401B covers the first connection via 404
  • the second metal wiring 401A covers the first connection via 404A
  • the second metal wiring 401B covers the first connection via 404A.
  • the connection via 404B was formed so as to cover (FIG. 17D).
  • a passivation film 207 made of was formed.
  • the first back surface insulating film 600 made of silicon oxide is obtained in accordance with the silicon through electrode manufacturing process of Embodiment 2.
  • the semiconductor device which has the 2nd back surface insulating film 601, and the silicon penetration electrode 800 comprised from a tantalum and copper was formed (FIG. 18).
  • FIG. 19 shows a part of a planar layout diagram (silicon through-hole, first metal wiring, adjacent parallel metal wiring) in the semiconductor device formed by the above process.
  • the cross-sectional view shown in FIG. 18 is a cross section taken along the line A-A 'in FIG.
  • regions 501A, 501B, 501C, and 501D constituting the first metal wiring form a ring-shaped enclosure 505 and include a silicon through-hole region 550.
  • the first metal wiring region 500 is disposed so as to be completely enclosed in the ring-shaped enclosure 505.
  • an adjacent parallel metal wiring region 503A and an adjacent parallel metal wiring region 503B are laid outside the ring-shaped enclosure 505.
  • the semiconductor device without the ring-shaped enclosure 505 was compared with the case where the ring-shaped enclosure 505 was provided. In the same way, an increase in parasitic capacitance, an increase in via chain resistance, and poor conduction were observed.
  • tungsten and Al are used as the material of the ring-shaped enclosure 505.
  • other materials can be used as long as the material can be expected to prevent moisture from passing through, such as SiCN. is there.
  • the metal is made of a ring-shaped enclosure material
  • the ring-shaped enclosure has a thickness of about 10 nm and can be expected to prevent moisture from passing therethrough.
  • the ring-shaped enclosure may not be a quadrangle, and may surround the through silicon vias in multiple layers.
  • the etching of the silicon through hole 701 is stopped in the middle of the second interlayer insulating film 202 using the low-k material.
  • the effectiveness of the present invention is limited to this case. Do not mean. Since the etching through at least the substrate 100 on which the semiconductor device is formed and reaches the first metal wiring 400 is a condition for the silicon through electrode to function, the second interlayer insulating film using a low-k material is used. Etching may progress to 202 or more upper wiring layers.
  • a passivation film 207 made of was formed.
  • a moisture barrier film for preventing moisture absorption of the Low-k material two layers of metal wirings of the first metal wiring (400A, 400B) and the second metal wiring (401A, 401B), The first connection vias (404A, 404B) that connect the two are used, but it is also possible to use connection vias that connect three or more wiring layers and each wiring layer. As the number of wiring layers used increases, the margin for overetching can be increased in etching when opening through silicon vias. On the other hand, since the region where the moisture barrier film is formed cannot be used as circuit wiring, the wiring layout is restricted.
  • one metal wiring is included in the ring-shaped enclosure, but a plurality of metal wirings including at least one silicon through electrode may be included in the ring-shaped enclosure. Further, it is not necessary to electrically connect the metal wirings to which the through silicon vias are connected.

Abstract

 シリコン基板の裏面(半導体デバイスが形成されていない面)からシリコン貫通電極を形成する際、Low-k材料からなる広範囲の層間絶縁膜が吸湿し、配線の電気的特性が低下する課題がある。上記課題は、シリコン貫通電極によって貫通されたLow-k材料層において、複数層の金属配線と、前記金属配線の上下間をつなぐ接続ビアとを用いて、シリコン貫通電極を内包するようにレイアウトした少なくとも1重のリング状の囲いを形成し、該シリコン貫通電極と該シリコン貫通電極近傍に形成された回路配線との間に少なくとも金属配線と接続ビアからなる水分バリア膜を形成することで達成される。

Description

半導体装置およびその製造方法
 本発明は、シリコン貫通電極を有する高性能な半導体装置およびその製造方法に関する。
 半導体LSIの高機能化・高性能化を達成するために、配線の微細化技術が発展してきた。より高性能化・低消費電力化するために、近年、LSIが搭載された複数の半導体チップを三次元方向に積層し一つのパッケージに実装するという技術が注目されている。その三次元積層における接続方式として、ワイヤボンディング法やフリップチップ法が挙げられる。ワイヤボンディング法では、チップ上のパッド電極がチップ周辺に限られ、積層したチップ間で通信する場合には、必ずチップ外縁近傍に形成したパッド電極を経由するため、配線長が長くなり、配線遅延が増大する問題がある。また、パッド電極の設置数も限られるため、伝送帯域が狭くなる問題がある。一方、フリップチップ法では、チップ全面に形成したバンプ接続が可能となり配線長は短いが、積層チップ数は2個に限定される。これらの課題を解決する三次元接続方式として、シリコン貫通電極を用いて積層チップを電気接続する方法がある。
 シリコン貫通電極を用いた接続方式とは、半導体素子が形成されたシリコン基板に多数の貫通孔を形成し、貫通孔内に銅に代表される導体を充填し、それを電極として積層半導体チップ間を電気接続する方法である。シリコン貫通電極を備えたチップを複数接続することで、チップを最短距離で多点接続することが可能となり、且つ、積層する半導体チップの数に原理上の上限はない。
 非特許文献1は、シリコン貫通電極を有する三次元接続方式の一例であり、素子を有する半導体装置の裏面から貫通孔を開け、上部パッドと接触させて配線層と接続する方法である。この文献に記載されている三次元接続方式の典型的従来例とその課題について、図2と図3を用いて説明する。
 まず、シリコン貫通電極を有する三次元接続方式を用いた半導体装置の典型的従来例の製造工程を示す。半導体素子が形成された基板100上に、膜厚250nmの酸化シリコン膜、膜厚50nmの窒化シリコンからなる配線下絶縁膜200を形成し、該配線下絶縁膜にタングステン・プラグを形成した。次に、膜厚100nmの炭素含有酸化シリコン(SiOC)からなるLow-k材料を用いた第一の層間絶縁膜201を形成し、該層間絶縁膜にタンタルと銅からなる第一の金属配線400を順次形成した。次に、窒素含有炭化シリコン(SiCN)からなる膜厚25nmの第一の保護絶縁膜204、膜厚250nmのSiOCからなるLow-k材料を用いた第二の層間絶縁膜202を順次形成し、該層間絶縁膜にタンタルと銅からなる第二の金属配線401と隣接する並行金属配線403A、403Bを形成した。次に、SiCNからなる膜厚25nmの第二の保護絶縁膜205、SiOCからなるLow-k材料を用いた第三の層間絶縁膜203を順次形成し、該層間絶縁膜203にタンタルと銅からなる第三の金属配線402を形成した。次に、膜厚25nmのSiCNからなる第三の保護絶縁膜206を形成し、膜厚50nmの窒化チタン膜と膜厚500nmのアルミ膜からなるアルミパッドを形成し、膜厚200nmの酸化シリコン膜と膜厚250nmの窒化シリコン膜からなるパシベーション膜207を形成した。上記工程を経て、多層配線を有する半導体装置を形成することが可能となる。
 次に、図3(a)に示すように半導体素子が形成された基板100の裏面に、プラズマCVD法により酸化シリコンから成る第一の裏面絶縁膜600を形成した後、リソグラフィーとドライエッチングを用いて、第一の裏面絶縁膜600のシリコン貫通電極を形成したい領域に開口部を設け、第一の裏面絶縁膜開口部700とした。次に、該裏面絶縁膜をエッチングマスクにし、ドライエッチングを用いて、少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達するまでエッチングし、図3(b)のようなシリコン貫通孔701を形成した。次に、プラズマCVD法によりシリコン貫通孔701を被覆するように膜厚1μmの酸化シリコン膜を形成した後、全面エッチバックを行い、図3(c)に示すようなシリコン貫通孔の側壁に側壁絶縁膜を有する第二の裏面絶縁膜601を形成した。次に、スパッタ法を用いて膜厚50nmのタンタル膜と、膜厚50nmの銅からなるめっきシード膜を順次成膜し、電解めっき法を用いて、シリコン貫通孔701を完全に銅で充填した。その後、化学的機械研磨法を用いてシリコン貫通孔701以外の領域のタンタル膜と銅膜を除去し、図3(d)に示すような半導体素子が形成された基板の裏面から開口したシリコン貫通電極800を有する半導体装置を形成した。以下では、上記の工程に準じて形成されたシリコン貫通電極が形成された半導体装置を従来例と呼ぶことにする。
 図3(b)に示すように、ドライエッチングを用いて、数十μmの深さのシリコン基板を十分に貫通し、厚さ100nmの第一の金属配線400の層に達するようなシリコン貫通孔701を形成する際、オーバーエッチングのマージンが足らず、第一の接続ビア層、もしくは上層の金属配線層までエッチングが進行してしまう。Low-k材料を用いた層間絶縁膜と、シリコン貫通孔が接触するまでドライエッチングが進行すると、Low-k材料にはプラズマダメージが入る。さらに、ドライエッチング工程後の洗浄工程において、Low-k材料が洗浄によって供給される水分で吸湿する。Low-k材料が吸湿してしまうと、Low-k材料からなる層間絶縁膜の誘電率が上昇するため、金属配線の寄生容量が増大し、配線遅延の増大や消費電力の増大を引き起こし、回路動作に支障を来すおそれがある。また、吸湿した水分がその後、金属配線を構成する金属材料を酸化し、配線抵抗の増大や導通不良の原因となるおそれがある。基板の裏面からシリコン貫通孔を形成する工程においては、前工程とは異なり高温プロセスを行うことが不可能なため、一旦、吸湿してしまったLow-k材料を吸湿前の特性に戻すことは困難であるという問題がある。
S.Denda、"Process Examination of Through Silicon Via Technologies"IEEE Polytronic 2007 Conference、p149、2007
 発明が解決しようとする問題は、シリコン基板の裏面(半導体デバイスが形成されていない面)からシリコン貫通電極を形成する際、Low-k材料からなる層間絶縁膜が吸湿し、配線の電気的特性が低下することである。
 上記課題は、一部がLow-k材料を貫通して形成されたシリコン貫通電極と該シリコン貫通電極近傍に形成された回路配線との間に、水分バリア膜を形成することで達成される。
 上記課題は、シリコン貫通電極によって貫通されたLow-k材料層において、複数層の金属配線と、前記金属配線の上下間をつなぐ接続ビアとを用いて、シリコン貫通電極を内包するようにレイアウトした少なくとも1重のリング状の囲いを形成し、該シリコン貫通電極と該シリコン貫通電極近傍に形成された回路配線との間に少なくとも金属配線と接続ビアからなる水分バリア膜を形成することで達成される。
 上記課題は、シリコン貫通電極が接触するLow-k材料を用いた層間絶縁膜に、複数層の金属配線の開口部と、前記金属配線の上下間をつなぐ接続ビアの開口部を形成する工程において、シリコン貫通電極を内包するリング状の開口部を形成することで達成される。
 第1の本発明の特徴は、(1)半導体素子がその表面側に形成された基板と、前記基板上に形成された金属配線と、前記金属配線で構成され、かつ、前記半導体素子に電気的に接続され、回路網の一部を構成する回路配線と、前記金属配線および前記回路配線とを埋設するLow-k絶縁膜と、前記基板の裏面側から前記Low-k絶縁膜中まで形成されたシリコン貫通電極とを有し、前記シリコン貫通電極と前記回路配線との間に水分バリア膜が形成されている半導体装置にある。
 (1)において、(2)前記水分バリア膜は、2層以上の異なる配線層に形成された金属配線と、上下配線層に形成された前記金属配線間をつなぐ接続ビアを有する特徴がある。
 (2)において、(3)前記水分バリア膜は、前記金属配線と、前記接続ビアとによって、1重以上のリング状の囲いが構成されており、前記リング状の囲いの内部に1つ以上のシリコン貫通電極が含まれていても良い。
 (3)において、(4)前記シリコン貫通電極は、前記リング状の囲いの内部において、金属電極と電気的に接続されており、さらに、前記金属電極は前記囲いの外部とも電気的に接続されている特徴がある。
 (1)において、(5)前記Low-k絶縁膜は、酸化シリコン、炭化水素から選ばれる化合物が主たる成分であることが好ましい。
 (1)において、(6)前記金属配線が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることが好ましい。
 (4)において、(7)前記金属電極が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることが好ましい。
 (2)において、(8)前記接続ビアが、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることが好ましい。
 (1)において、(9)前記シリコン貫通電極が、銅を主成分とした金属で構成されていることが好ましい。
 第2の本発明の特徴は、(10)基板の表面側に半導体素子を形成する工程と、前記基板上に金属配線、および、前記半導体素子に電気的に接続され、かつ、回路網の一部を構成する金属配線からなる回路配線を形成する工程と、前記基板を裏面側からLow-k絶縁膜中までシリコン貫通電極の開口部を形成する工程以前に、前記金属配線および前記回路配線を埋設するように前記Low-k絶縁膜を形成する工程とを有し、前記シリコン貫通電極と前記回路配線との間に水分バリア膜を形成する半導体装置の製造方法にある。
 (10)において、(11)前記シリコン貫通電極は、前記半導体素子が形成された基板の裏面側から開口し、金属が充填されている。
 (10)において、(12)前記水分バリア膜は、2層以上の異なる配線層に形成された金属配線と、上下配線層に形成された前記金属配線間をつなぐ接続ビアを有する特徴がある。
 (12)において、(13)前記水分バリア膜は、前記金属配線と、前記接続ビアとによって、1重以上のリング状の囲いが構成されており、前記リング状の囲いの内部に1つ以上のシリコン貫通電極が含まれていても良い。
 (13)において、(14)前記シリコン貫通電極は、前記リング状の囲いの内部において、金属電極と電気的に接続されており、さらに、前記金属電極は前記囲いの外部とも電気的に接続されている特徴がある。
 (10)において、(15)前記Low-k絶縁膜は、酸化シリコン、炭化水素から選ばれる化合物が主たる成分であることが好ましい。
 (10)において、(16)前記金属配線が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることが好ましい。
 (14)において、(17)前記金属電極が、それぞれ、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることが好ましい。
 (12)において、(18)前記接続ビアが、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることが好ましい。
 (10)において、(19)前記シリコン貫通電極が、銅を主成分とした金属で構成されていることが好ましい。
 第3の本発明の特徴は、(20)半導体素子がその表面側に形成された基板と、前記基板上に形成され、Low-k絶縁膜に埋設された複数層の金属配線と1つ以上の接続ビアを有する水分バリア膜と、前記基板の裏面側から前記Low-k絶縁膜中まで形成されたシリコン貫通電極とを有し、前記接続ビアを用いて少なくとも1重のリング状の囲いが構成され、前記リング状の囲いの内部に1つ以上の前記シリコン貫通電極を含み、かつ、前記シリコン貫通電極を内包するようにレイアウトされた前記複数層の金属配線が配置されている半導体装置にある。
 (20)において、(21)前記シリコン貫通電極は、前記リング状の囲いの内部において、金属電極と電気的に接続されており、さらに、前記金属電極は前記囲いの外部とも電気的に接続されている特徴がある。
 (20)において、(22)前記Low-k絶縁膜は、酸化シリコン、炭化水素から選ばれる化合物が主たる成分であることが好ましい。
 (20)において、(23)前記金属配線が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることが好ましい。
 (21)において、(24)前記金属電極が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることが好ましい。
 (20)において、(25)前記接続ビアが、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることが好ましい。
 (20)において、(26)前記シリコン貫通電極が、銅を主成分とした金属で構成されていることが好ましい。
 本発明に基づけば、Low-k材料を用いた層間絶縁膜にシリコン貫通電極を形成する工程において、Low-k材料を用いた該層間絶縁膜が吸湿する領域を大幅に制限することが可能となり、該層間絶縁膜の誘電率の上昇を回避でき、かつ配線の抵抗上昇も回避できるため、配線の電気的特性が良好で信頼度の高い半導体装置を得ることが可能となる。
実施例1における本発明の半導体装置の製造工程の要部断面模式図である。 従来例における半導体装置の製造工程の要部断面模式図である。 従来例における半導体装置の製造工程の要部断面模式図であって、(a)は図2に続き、(b)は(a)に続き、(c)は(b)に続き、(d)は(c)に続く製造工程の要部断面模式図である。 (a)は実施例1における本発明の半導体装置の製造工程の要部断面模式図であって、(b)は(a)に続き、(c)は(b)に続き、(d)は(c)に続き、(e)は(d)に続き、(f)は(e)に続く製造工程の要部断面模式図である。 実施例1における本発明の半導体装置の製造工程の要部断面模式図であって、(a)は図4(f)に続き、(b)は(a)に続き、(c)は(b)に続く製造工程の要部断面模式図である。 実施例1における本発明の平面レイアウト模式図である。 (a)は実施例2における本発明の半導体装置の製造工程の要部断面模式図であって、(b)は(a)に続き、(c)は(b)に続き、(d)は(c)に続き、(e)は(d)に続き、(f)は(e)に続き、(g)は(f)に続く製造工程の要部断面模式図である。 実施例2における本発明の半導体装置の製造工程の要部断面模式図であって、(a)は図7(g)に続き、(b)は(a)に続き、(c)は(b)に続き、(d)は(c)に続き、(e)は(d)に続く製造工程の要部断面模式図である。 (a)は実施例3における本発明の半導体装置の製造工程の要部断面模式図であって、(b)は(a)に続き、(c)は(b)に続き、(d)は(c)に続き、(e)は(d)に続く製造工程の要部断面模式図である。 実施例3における本発明の半導体装置の、図9(e)に続く製造工程の要部断面模式図である。 実施例3における本発明の平面レイアウト模式図である。 (a)は実施例4における本発明の半導体装置の製造工程の要部断面模式図であって、(b)は(a)に続き、(c)は(b)に続き、(d)は(c)に続き、(e)は(d)に続く製造工程の要部断面模式図である。 実施例4における本発明の半導体装置の、図12(e)に続く製造工程の要部断面模式図である。 (a)は実施例5における本発明の半導体装置の製造工程の要部断面模式図であって、(b)は(a)に続き、(c)は(b)に続き、(d)は(c)に続き、(e)は(d)に続く製造工程の要部断面模式図である。 実施例5における本発明の半導体装置の、図14(e)に続く製造工程の要部断面模式図である。 実施例5における本発明の平面レイアウト模式図である。 (a)は実施例6における本発明の半導体装置の製造工程の要部断面模式図であって、(b)は(a)に続き、(c)は(b)に続き、(d)は(c)に続き、(e)は(d)に続く製造工程の要部断面模式図である。 実施例6における本発明の半導体装置の、図17(e)に続く製造工程の要部断面模式図である。 実施例6における本発明の平面レイアウト模式図である。 (a)は実施例7における本発明の半導体装置の製造工程の要部断面模式図であって、(b)は(a)に続き、(c)は(b)に続き、(d)は(c)に続き、(e)は(d)に続く製造工程の要部断面模式図である。 実施例7における本発明の半導体装置の、図20(e)に続く製造工程の要部断面模式図である。 実施例7における本発明の平面レイアウト模式図である。 (a)は実施例8における本発明の半導体装置の製造工程の要部断面模式図であって、(b)は(a)に続き、(c)は(b)に続き、(d)は(c)に続き、(e)は(d)に続く製造工程の要部断面模式図である。 実施例8における本発明の半導体装置の、図23(e)に続く製造工程の要部断面模式図である。 実施例8における本発明の平面レイアウト模式図である。
 以下、図面を用いて本発明の実施例について説明する。なお、各図面は模式的に描いており、説明に不用な箇所は省略している。
 図4、図5、図1は本発明の実施例1に基づく半導体装置の製造工程を示す断面図であり、図6は図1の平面レイアウト図である。以下、順を追って説明する。
 半導体素子が形成された基板100上に、膜厚250nmの酸化シリコン膜、膜厚50nmの窒化シリコンからなる配線下絶縁膜200を形成し、該配線下絶縁膜200の所望の領域に開口部を設けCVD法と化学的機械研磨法を用いてタングステン・プラグを形成した。次に、プラズマCVD法を用いて膜厚100nmの炭素含有酸化シリコン(SiOC)からなるLow-k材料を用いた第一の層間絶縁膜201を形成し、リソグラフィーとドライエッチングを用いて、第一の層間絶縁膜201の少なくとも金属配線を形成したい領域に、第一の金属配線開口部300を形成した(図4(a))。該金属配線開口部300を充填するように、スパッタ法を用いて膜厚50nmのタンタル膜と、スパッタ法と電解めっき法を用いて銅膜を順次形成した後、化学的機械研磨法を用いて第一の金属配線開口部300以外の領域のタンタル膜と銅膜を取り除き、図4(b)に示すような第一の金属配線400を形成した。
 次に、プラズマCVD法を用いて、窒素含有炭化シリコン(SiCN)からなる膜厚25nmの第一の保護絶縁膜204を形成し、プラズマCVD法を用いて、第一の保護絶縁膜204上に膜厚250nmのSiOCからなるLow-k材料を用いた第二の層間絶縁膜202を形成した。2回のリソグラフィーとドライエッチングを用いて、該層間絶縁膜202において所望の領域に開口部を設け、これを第二の金属配線開口部301、隣接する並行金属配線開口部303A、303Bとした。この際、第一の金属配線400の一部が露出するように第二の金属配線開口部301を形成した(図4(c))。
 次に、第二の金属配線開口部301、隣接する並行金属配線開口部303A、303Bを充填するように、スパッタ法を用いて膜厚50nmのタンタル膜と、スパッタ法と電解めっき法を用いて膜厚500nmの銅膜とを順次形成した後、化学的機械研磨法を用いて該開口部以外の領域のタンタル膜と銅膜を取り除き、図4(d)に示すような第二の金属配線401と隣接する並行金属配線403A、403Bを形成した。
 次に、プラズマCVD法を用いて、SiCNからなる膜厚25nmの第二の保護絶縁膜205を形成し、プラズマCVD法を用いて、第二の保護絶縁膜205上に膜厚250nmのSiOCからなるLow-k材料を用いた第三の層間絶縁膜203を形成した。2回のリソグラフィーとドライエッチングを用いて、該層間絶縁膜203において所望の領域に第二の金属配線401を露出するように開口部を設け、これを第三の金属配線開口部302とした(図4(e))。
 次に、第三の金属配線開口部302を充填するように、スパッタ法を用いて膜厚50nmのタンタル膜と、スパッタ法と電解めっき法を用いて膜厚500nmの銅膜とを順次形成した後、化学的機械研磨法を用いて該開口部以外の領域のタンタル膜と銅膜を取り除き、第三の金属配線402を形成した。
 次に、プラズマCVD法を用いて、膜厚25nmのSiCNからなる第三の保護絶縁膜206を形成し、リソグラフィーとドライエッチングを用いて、第三の保護絶縁膜206の少なくとも金属パッドを形成したい領域において、下層金属配線が露出するように開口し、該開口部を被覆するように、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚500nmのアルミ膜を形成し、リソグラフィーとドライエッチングを用いて、所望の領域以外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなるアルミパッドを形成した。次に、プラズマCVD法を用いて、膜厚200nmの酸化シリコン膜と膜厚250nmの窒化シリコン膜を形成し、リソグラフィーとドライエッチングを用いてアルミパッドが露出するように開口し、図4(f)に示すような酸化シリコン膜と窒化シリコン膜からなるパシベーション膜207を形成した。上記工程を経て、多層配線を有する半導体装置を形成することが可能となる。
 次に、多層配線を有する半導体装置において、図5(a)に示すように半導体素子が形成された基板100の裏面に、プラズマCVD法により酸化シリコンから成る第一の裏面絶縁膜600を形成した後、リソグラフィーとドライエッチングを用いて、第一の裏面絶縁膜600のシリコン貫通電極を形成したい領域に開口部を設け、第一の裏面絶縁膜開口部700とした。
 次に、該裏面絶縁膜をエッチングマスクにし、ドライエッチングを用いて、少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達するまでエッチングし、図5(b)のようなシリコン貫通孔701を形成した。
 次に、プラズマCVD法によりシリコン貫通孔701を被覆するように膜厚1μmの酸化シリコン膜を形成した後、全面エッチバックを行い、図5(c)に示すようなシリコン貫通孔の側面に側壁絶縁膜を有する第二の裏面絶縁膜601を形成した。
 次に、スパッタ法を用いて膜厚50nmのタンタル膜と、膜厚50nmの銅からなるめっきシード膜を順次成膜し、電解めっき法を用いて、シリコン貫通孔701を完全に銅で充填した。その後、化学的機械研磨法を用いてシリコン貫通孔701以外の領域のタンタル膜と銅膜を除去し、図1に示すような半導体素子が形成された基板の裏面から開口したシリコン貫通電極800を有する半導体装置を形成した。
 上記の工程で形成した半導体装置における平面レイアウト図の一部(シリコン貫通孔、第一、第二の金属配線、第一の接続ビア、隣接する並行金属配線)を図6に示す。図1に示した断面図は、図6中のA-A’間の断面である。図6において、第二の金属配線を構成する接続ビア領域505A、505B、505C、505Dはリング状の囲い505を形成しており、シリコン貫通孔領域550を内包している。ここで、第二の金属配線を構成する接続ビア領域505A、505B、505C、505Dの短辺方向の長さをそれぞれ100nmとした。且つ、リング状の囲い505は、第一の金属配線領域500および第二の金属配線領域501に完全に内包されるように配置した。さらに前記リング状の囲い505の外側に、隣接する並行金属配線領域503A、隣接する並行金属配線領域503Bが敷設してある。
 この実施例1の比較例として、リング状の囲い505のない構造も作製した。リング状の囲いの有無以外、レイアウトおよび製造工程の差異はない。
 このようにして形成した半導体装置の性能を調べた。隣接する並行金属配線503Aと隣接する並行金属配線503Bの間の配線間容量を測定したところ、リング状の囲い505を設けた場合と比較して、リング状の囲い505を設けなかった半導体装置では配線間容量が15%高くなった。また、これとは別に第一の金属配線500および第二の金属配線501と同一層に設けられた接続ビアチェーンの抵抗を測定したところ、リング状の囲い505を設けた場合と比較して、リング状の囲い505を設けなかった半導体装置ではビアチェーンの抵抗が15%上がった。抵抗が上がった理由を調べるために、両試料の接続ビア部分のTEM(透過型電子線顕微鏡)観察を行ったところ、リング状の囲いのない試料では、接続ビア底部にあるバリア金属のタンタルの一部が酸化されていた。一方、リング状の囲いがある試料では、接続ビア底部にあるバリア金属のタンタルは酸化されていないことが分かった。詳細に検討した結果、このタンタルの酸化は、層間絶縁膜のLow-k材料中を拡散してきた水分によることが判明した。
 つまり、本実施例に従い、シリコン貫通孔を形成する領域を完全に内包するように複数層の金属配線を形成し、さらに、この金属配線間の接続ビアを用いて前記シリコン貫通孔を内包するようにリング状の構造を形成することにより、シリコン貫通孔近傍の回路領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成することが可能となる。
 また、本実施例に従い、シリコン貫通孔の開口部に露出したLow-k材料を用いた層間絶縁膜と回路配線領域に形成されたLow-k材料を用いた層間絶縁膜との間に、金属配線、配線下絶縁膜などの水分を通しにくい膜を形成することにより、シリコン貫通孔近傍の回路領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成することが可能となる。
 本実施例では、Low-k材料の吸湿を防ぐための水分バリア膜として、第一の金属配線400、第二の金属配線401の2層の金属配線を用いたが、3層以上の配線層を利用することも可能である。使用する配線層数が多いほど、シリコン貫通ビアを開口するときのエッチングにおいて、オーバーエッチングに対するマージンを大きくすることができる。一方、水分バリア膜を形成した領域は回路配線としては使用できないため、配線レイアウトに制約が加わる。
 また本実施例では、Low-k材料を用いた第二の層間絶縁膜202の途中で、シリコン貫通孔701のエッチングがストップしているが、本発明の有効性はこの場合に限定されるわけではない。エッチングが少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達することが、シリコン貫通電極が機能する条件であるため、Low-k材料を用いた第二の層間絶縁膜202以上の上位配線層までエッチングが進行する場合があってもよい。ただし、Low-k材料を用いた第三の層間絶縁膜203以上の層までエッチングが進行し、Low-k材料とシリコン貫通孔701が接する場合は、水分がLow-k材料へ浸透する領域を限定するために、シリコン貫通孔701のエッチングが到達する上位配線層にも、図6中のリング状の囲い505を設けなければならない。
 また本実施例では、シリコン貫通電極800と電気的に接続する配線の引き出し方法として、第三の金属配線402を用いているが、第二の金属配線層で引き出しても良い。
 また本実施例では、リング状の囲い505の材料に、タンタルと銅を用いているが、SiCNのように水分を通さない効果が期待できる材料であれば、他の材料を用いることが可能である。金属をリング状の囲いの材料にしている場合、リング状の囲いは厚さ10nm程度で水分を通さない効果が期待できる。さらに、平面レイアウト図において、リング状の囲いの形状は、四角形でなくてもよく、シリコン貫通電極の周囲を何重にも囲んでいてもよい。
 また本実施例では、金属配線は開口部を持たないが、必ずしもその必要はなく、例えば、平坦性を向上させるために金属配線の一部に開口部が含まれていてもよい。
 また本実施例では、第一、第二、第三の金属配線において、銅を主たる成分とする材料を用いているが、タングステンを主たる成分とする材料であってもよい。
 また本実施例では、第一、第二、第三の金属配線において、バリア金属としてタンタルを用いているが、この材料に限定されるわけではない。たとえば、タンタルの化合物や、チタン、タングステン、ルテニウム、マンガンやその化合物を用いることも可能である。さらに、バリア金属の構造は、複数の膜が積層されていても構わない。
 また本実施例では、層間絶縁膜にプラズマCVD法を用いて形成されたSiOCからなる絶縁膜を用いているが、本発明の効果はこの材料に限定される物ではない。多孔質Low-k膜や有機系Low-k膜でも同様の効果が期待できる。また、成膜方法としてCVD法以外の手法を用いることも可能である。
 また本実施例では、第一、第二、第三の保護絶縁膜の材料にプラズマCVD法を用いて形成されたSiCNからなる絶縁膜を用いているが、この材料に限定されるわけではない。例えば、SiN、SiC、それらの積層構造であっても構わない。
 図7、図8は、本発明の実施例2に基づく半導体装置の製造工程を示す断面図である。以下、順を追って説明する。
 半導体素子が形成された基板100上に、膜厚250nmの酸化シリコン膜、膜厚50nmの窒化シリコンからなる配線下絶縁膜200を形成し、該配線下絶縁膜200の所望の領域に開口部を設けCVD法と化学的機械研磨法を用いてタングステン・プラグを形成した。次に、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚300nmのアルミ膜及び膜厚50nmの窒化チタン膜の積層構造を形成し、リソグラフィーとドライエッチングを用いて、金属配線を形成したい領域以外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなる第一の金属配線400を形成した(図7(a))。
 次に、膜厚750nmの炭素含有酸化シリコン(SiOC)を形成した後、化学的機械研磨法を用いて表面の平坦化を行い、第一の層間絶縁膜201とした。このLow-k材料を用いた第一の層間絶縁膜201において、所望の領域に開口部を設け、第一の接続ビア開口部304とした。この際、第一の金属配線400の一部が露出するように第一の接続ビア開口部304を形成した(図7(b))。
 次に、第一の接続ビア開口部304を充填するように、スパッタ法とCVD法を用いてタングステン膜を充填した後、化学的機械研磨法を用いて該開口部以外の領域のタングステン膜を取り除き、図7(c)に示すような第一の接続ビア404を形成した。
 次に、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚300nmのアルミ膜及び膜厚50nmの窒化チタン膜の積層構造を形成し、リソグラフィーとドライエッチングを用いて、金属配線を形成したい領域以外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなる第二の金属配線401と隣接する並行金属配線403Aと隣接する並行金属配線403Bを形成した。この際、第二の金属配線401は、第一の接続ビア404を被覆するように形成した(図7(d))。
 次に、膜厚750nmの炭素含有酸化シリコン(SiOC)からなる層間絶縁膜を形成した後、化学的機械研磨法を用いて表面の平坦化を行った。該層間絶縁膜において、接続ビアを形成したい領域に開口部を形成した。この際、第二の金属配線401の一部が露出するように開口部を形成した。該開口部を充填するように、スパッタ法とCVD法を用いてタングステン膜を形成した後、化学的機械研磨法を用いて該開口部以外の領域のタングステン膜を取り除き、図7(e)に示すような第二の接続ビア406を形成した。
 次に、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚300nmのアルミ膜及び膜厚50nmの窒化チタン膜の積層構造を形成し、リソグラフィーとドライエッチングを用いて、金属配線を形成したい領域以外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなる第三の金属配線402を形成した。この際、第三の金属配線402は、第二の接続ビア406を被覆するように形成した(図7(f))。
 次に、膜厚750nmの炭素含有酸化シリコン(SiOC)からなる層間絶縁膜を形成し、化学的機械研磨法を用いて表面の平坦化を行った後、リソグラフィーとドライエッチングを用いて、該層間絶縁膜の少なくとも金属パッドを形成したい領域において、第三の金属配線402が露出するように開口した。該開口部を被覆するように、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚500nmのアルミ膜を形成し、リソグラフィーとドライエッチングを用いて、所望の領域以外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなるアルミパッドを形成した。次に、プラズマCVD法を用いて、膜厚200nmの酸化シリコン膜と膜厚250nmの窒化シリコン膜からなるパシベーション膜207を形成した。この際、リソグラフィーとドライエッチングを用いて所望の領域にアルミパッドが露出するように開口部を形成した。上記工程を経て、図7(g)に示したような多層配線を有する半導体装置を形成することが可能となる。
 次に、前記多層配線を有する半導体装置に対し、図8(a)に示すように半導体素子が形成された基板100の裏面に、プラズマCVD法により酸化シリコンから成る第一の裏面絶縁膜600を形成した後、リソグラフィーとドライエッチングを用いて、第一の裏面絶縁膜600のシリコン貫通電極を形成したい領域に開口部を設け、第一の裏面絶縁膜開口部700とした。
 次に、該裏面絶縁膜をエッチングマスクにし、ドライエッチングを用いて、少なくとも半導体装置が形成された基板100を貫通し、少なくとも第一の金属配線400に達するまでエッチングし、図8(b)のようなシリコン貫通孔701を形成した。
 次に、図8(c)に示すように、プラズマCVD法により、シリコン貫通孔701を被覆するように膜厚1μmの酸化シリコン膜を形成する。その後、全面エッチバックを行い、図8(d)に示すようなシリコン貫通孔の側面に側壁絶縁膜を有する第二の裏面絶縁膜601を形成した。
 次に、スパッタ法を用いて膜厚50nmのタンタル膜と、膜厚50nmの銅からなるめっきシード膜を順次成膜し、電解めっき法を用いて、シリコン貫通孔701を完全に銅で充填した。その後、化学的機械研磨法を用いてシリコン貫通孔701以外の領域のタンタル膜と銅膜を除去し、図8(e)に示すような半導体素子が形成された基板の裏面から開口したシリコン貫通電極800を有する半導体装置を形成した。
 この実施例2では、上記の工程で形成した半導体装置における平面レイアウト図の一部(シリコン貫通孔、第一、第二の金属配線、第一の接続ビア、隣接する並行金属配線)を、実施例1のようには示していないが、図6のレイアウト図に準じている。
 このようにして形成した半導体装置の性能を調べたところ、リング状の囲い505を設けた場合と比較して、リング状の囲い505を設けなかった半導体装置では、実施例1の比較例として示したのと同様、寄生容量の増大やビアチェーン抵抗の増大、導通不良が見られた。
 つまり、本実施例に従い、シリコン貫通孔を形成する領域を完全に内包するように複数層の金属配線を形成し、さらに、この金属配線間の接続ビアを用いて前記シリコン貫通孔を内包するようにリング状の構造を形成することにより、シリコン貫通孔近傍の回路領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成可能となる。
 また、本実施例に従い、シリコン貫通孔の開口部に露出したLow-k材料を用いた層間絶縁膜と、回路配線領域に形成されたLow-k材料を用いた層間絶縁膜との間に、金属配線、接続ビア、配線領域下絶縁膜などの水分を通しにくい膜を形成することにより、シリコン貫通孔近傍の回路領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成することが可能となる。
 本実施例では、Low-k材料の吸湿を防ぐための水分バリア膜として、第一の金属配線400、第二の金属配線401の2層の金属配線とその間をつなぐ第一の接続ビア404を用いたが、3層以上の配線層と各配線層をつなぐ接続ビアを利用することも可能である。使用する配線層数が多いほど、シリコン貫通ビアを開口するときのエッチングにおいて、オーバーエッチングに対するマージンを大きくすることができる。一方、水分バリア膜を形成した領域は回路配線としては使用できないため、配線レイアウトに制約が加わる。
 また本実施例では、第一の接続ビア404が形成された層の途中で、シリコン貫通孔701のエッチングがストップしているが、本発明の有効性はこの場合に限定されるわけではない。エッチングが少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達することが、シリコン貫通電極が機能する条件であるため、第二の金属配線層以上の上位配線層までエッチングが進行する場合があってもよい。ただし、第二の金属配線層以上の上位配線層までエッチングが進行し、Low-k材料とシリコン貫通孔701が接する場合は、水分がLow-k材料へ浸透する領域を限定するために、シリコン貫通孔701のエッチングが到達する上位配線層にも、リング状の囲い505を設けなければならず、且つ、リング状の囲い505を内包するような形状の該上位金属配線を形成しなければならない。
 また本実施例では、シリコン貫通電極800と電気的に接続する配線の引き出し方法として、第三の金属配線402を用いているが、第二の金属配線層で引き出しても良い。また本実施例では、第一、第二の接続ビアの材料にタングステンを用いているが、この材料に限定されない。例えば、アルミでも同様の効果が期待できる。
 また本実施例では、リング状の囲い505の材料に、タングステンを用いているが、AlやSiCNのように水分を通さない効果が期待できる材料であれば、他の材料を用いることが可能である。金属をリング状の囲いの材料にしている場合、リング状の囲いは厚さ10nm程度で水分を通さない効果が期待できる。さらに、平面レイアウト図において、リング状の囲いの形状は、四角形でなくてもよく、シリコン貫通電極の周囲を何重にも囲んでいてもよい。
 また本実施例では、第一、第二、第三の金属配線において、アルミを主成分とする材料を用いているが、タングステンを主たる成分とする材料であってもよい。
 また本実施例では、第一、第二、第三の金属配線において、バリア金属として窒化チタンを用いているが、この材料に限定されるわけではない。たとえば、タングステン、モリブデン、ニッケルやその化合物を用いることも可能である。さらに、バリア金属の構造は、複数の膜が積層されていても構わない。
 また本実施例では、層間絶縁膜にSiOCからなる絶縁膜を用いているが、本発明の効果はこの材料に限定される物ではない。多孔質Low-k膜や有機系Low-k膜でも同様の効果が期待できる。
 本実施例は実施例1の応用例の1つであり、半導体装置の製造工程を示す断面図(図9、図10)を用いて、実施の形態を説明する。また、図11は図10の平面レイアウト図である。以下、順を追って説明する。
 半導体素子が形成された基板100上に、膜厚250nmの酸化シリコン膜、膜厚50nmの窒化シリコンからなる配線下絶縁膜200を形成し、該配線下絶縁膜200の所望の領域に開口部を設けCVD法と化学的機械研磨法を用いてタングステン・プラグを形成した。次に、プラズマCVD法を用いて膜厚100nmの炭素含有酸化シリコン(SiOC)からなるLow-k材料を用いた第一の層間絶縁膜201を形成し、リソグラフィーとドライエッチングを用いて、第一の層間絶縁膜201の少なくとも金属配線を形成したい領域に、第一の金属配線開口部300を形成した(図9(a))。該金属配線開口部300を充填するように、スパッタ法を用いて膜厚50nmのタンタル膜と、スパッタ法と電解めっき法を用いて銅膜を順次形成した後、化学的機械研磨法を用いて第一の金属配線開口部300以外の領域のタンタル膜と銅膜を取り除き、図9(b)に示すような第一の金属配線400を形成した。
 次に、プラズマCVD法を用いて、窒素含有炭化シリコン(SiCN)からなる膜厚25nmの第一の保護絶縁膜204を形成し、プラズマCVD法を用いて、第一の保護絶縁膜204上に膜厚250nmのSiOCからなるLow-k材料を用いた第二の層間絶縁膜202を形成した。2回のリソグラフィーとドライエッチングを用いて、該層間絶縁膜202において所望の領域に開口部を設け、これを第二の金属配線開口部301、隣接する並行金属配線開口部303A、303Bとした。この際、第一の金属配線400の一部が露出するように第二の金属配線開口部301を形成した(図9(c))。
 次に、第二の金属配線開口部301、隣接する並行金属配線開口部303A、303Bを充填するように、スパッタ法を用いて膜厚50nmのタンタル膜と、スパッタ法と電解めっき法を用いて膜厚500nmの銅膜とを順次形成した後、化学的機械研磨法を用いて該開口部以外の領域のタンタル膜と銅膜を取り除き、図9(d)に示すような第二の金属配線401と隣接する並行金属配線403A、403Bを形成した。
 次に、実施例1に示した工程に準じ、SiCNからなる膜厚25nmの第二の保護絶縁膜205、膜厚250nmのSiOCからなるLow-k材料を用いた第三の層間絶縁膜203、膜厚50nmのタンタル膜と銅膜からなる第三の金属配線402を順次形成した。更に、膜厚25nmのSiCNからなる第三の保護絶縁膜206、窒化チタンとアルミからなるアルミパッドを形成し、膜厚200nmの酸化シリコン膜と膜厚250nmの窒化シリコンからなるパシベーション膜207を形成し、図9(e)に示すような多層配線を有する半導体装置を形成することが可能となる。
 次に、本実施例で上記した多層配線を有する半導体装置(図9(e))において、実施例1のシリコン貫通電極の製造工程に準じ、酸化シリコンから成る第一の裏面絶縁膜600及び第二の裏面絶縁膜601、タンタルと銅から構成されるシリコン貫通電極800を複数有する半導体装置を形成した(図10)。
 上記の工程で形成した半導体装置における平面レイアウト図の一部(シリコン貫通孔、第一、第二の金属配線、第一の接続ビア、隣接する並行金属配線)を図11に示す。図10に示した断面図は、図11中のA-A’間の断面である。図11において、第二の金属配線を構成する接続ビア領域505A、505B、505C、505Dはリング状の囲い505を形成しており、複数のシリコン貫通孔領域550、550Aを内包している。ここで、第二の金属配線を構成する接続ビア領域505A、505B、505C、505Dの短辺方向の長さをそれぞれ100nmとした。且つ、リング状の囲い505は、第一の金属配線領域500および第二の金属配線領域501に完全に内包されるように配置した。さらに前記リング状の囲い505の外側に、隣接する並行金属配線領域503A、隣接する並行金属配線領域503Bが敷設してある。
 このようにして形成した半導体装置の性能を調べたところ、リング状の囲い505を設けた場合と比較して、リング状の囲い505を設けなかった半導体装置では、実施例1に示したのと同様、寄生容量の増大やビアチェーン抵抗の増大、導通不良が見られた。
 つまり、本実施例に従い、シリコン貫通孔を形成する領域を完全に内包するように複数層の金属配線を形成し、さらに、この金属配線間の接続ビアを用いて前記シリコン貫通孔を内包するようにリング状の構造を形成することにより、シリコン貫通孔近傍の回路領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成可能となる。
 また、本実施例に従い、シリコン貫通孔の開口部に露出したLow-k材料を用いた層間絶縁膜と回路配線領域に形成されたLow-k材料を用いた層間絶縁膜との間に、金属配線、配線下絶縁膜などの水分を通しにくい膜を形成することにより、シリコン貫通孔近傍の回路領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成することが可能となる。
 本実施例は、実施例1とは異なり、複数のシリコン貫通電極がリング状の囲いに内包されている。実施例1と比較し、本実施例では、ひとつの金属配線に複数のシリコン貫通電極が接続されているので、電気的な接続の信頼度が向上できるという長所がある。
 本実施例では、Low-k材料の吸湿を防ぐための水分バリア膜として、第一の金属配線400、第二の金属配線401の2層の金属配線を用いたが、3層以上の配線層を利用することも可能である。使用する配線層数が多いほど、シリコン貫通ビアを開口するときのエッチングにおいて、オーバーエッチングに対するマージンを大きくすることができる。一方、水分バリア膜を形成した領域は回路配線としては使用できないため、配線レイアウトに制約が加わる。
 また本実施例では、Low-k材料を用いた第二の層間絶縁膜202の途中で、シリコン貫通孔701のエッチングがストップしているが、本発明の有効性はこの場合に限定されるわけではない。エッチングが少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達することが、シリコン貫通電極が機能する条件であるため、Low-k材料を用いた第二の層間絶縁膜202以上の上位配線層までエッチングが進行する場合があってもよい。ただし、Low-k材料を用いた第三の層間絶縁膜203以上の層までエッチングが進行し、Low-k材料とシリコン貫通孔701が接する場合は、水分がLow-k材料へ浸透する領域を限定するために、シリコン貫通孔701のエッチングが到達する上位配線層にも、リング状の囲い505を設けなければならない。
 また本実施例では、シリコン貫通電極800と電気的に接続する配線の引き出し方法として、第三の金属配線402を用いているが、第二の金属配線層で引き出しても良い。
 また本実施例では、リング状の囲い505の材料に、タンタルと銅を用いているが、SiCNのように水分を通さない効果が期待できる材料であれば、他の材料を用いることが可能である。金属をリング状の囲いの材料にしている場合、リング状の囲いは厚さ10nm程度で水分を通さない効果が期待できる。さらに、平面レイアウト図において、リング状の囲いの形状は、四角形でなくてもよく、シリコン貫通電極の周囲を何重にも囲んでいてもよい。
 また本実施例では、金属配線は開口部を持たないが、必ずしもその必要はなく、例えば、平坦性を向上させるために金属配線の一部に開口部が含まれていてもよい。
 また本実施例では、第一、第二、第三の金属配線において、銅を主成分とする材料を用いているが、タングステンを主たる成分とする材料であってもよい。
 また本実施例では、第一、第二、第三の金属配線において、バリア金属としてタンタルを用いているが、この材料に限定されるわけではない。たとえば、タンタルの化合物や、チタン、タングステン、ルテニウム、マンガンやその化合物を用いることも可能である。さらに、バリア金属の構造は、複数の膜が積層されていても構わない。
 また本実施例では、層間絶縁膜にプラズマCVD法を用いて形成されたSiOCからなる絶縁膜を用いているが、本発明の効果はこの材料に限定される物ではない。多孔質Low-k膜や有機系Low-k膜でも同様の効果が期待できる。また、成膜方法としてCVD法以外の手法を用いることも可能である。
 また本実施例では、第一、第二、第三の保護絶縁膜の材料にプラズマCVD法を用いて形成されたSiCNからなる絶縁膜を用いているが、この材料に限定されるわけではない。例えば、SiN、SiC、それらの積層構造であっても構わない。
 本実施例は実施例2の応用例の1つであり、半導体装置の製造工程を示す断面図(図12、図13)を用いて、以下、順を追って実施の形態を説明する。
 半導体素子が形成された基板100上に、膜厚250nmの酸化シリコン膜、膜厚50nmの窒化シリコンからなる配線下絶縁膜200を形成し、該配線下絶縁膜200の所望の領域に開口部を設けCVD法と化学的機械研磨法を用いてタングステン・プラグを形成した。次に、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚300nmのアルミ膜及び膜厚50nmの窒化チタン膜の積層構造を形成し、リソグラフィーとドライエッチングを用いて、金属配線を形成したい領域以外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなる第一の金属配線400を形成した(図12(a))。
 次に、膜厚750nmの炭素含有酸化シリコン(SiOC)を形成した後、化学的機械研磨法を用いて表面の平坦化を行い、第一の層間絶縁膜201とした。このLow-k材料を用いた第一の層間絶縁膜201において、所望の領域に開口部を設け、第一の接続ビア開口部304とした。この際、第一の金属配線400の一部が露出するように第一の接続ビア開口部304を形成した(図12(b))。
 次に、第一の接続ビア開口部304を充填するように、スパッタ法とCVD法を用いてタングステン膜を充填した後、化学的機械研磨法を用いて該開口部以外の領域のタングステン膜を取り除き、図12(c)に示すような第一の接続ビア404を形成した。
 次に、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚300nmのアルミ膜及び膜厚50nmの窒化チタン膜の積層構造を形成し、リソグラフィーとドライエッチングを用いて、金属配線を形成したい領域以外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなる第二の金属配線401と隣接する第二の並行金属配線403Aと第二の並行金属配線403Bを形成した。この際、第二の金属配線401は、第一の接続ビア404を被覆するように形成した(図12(d))。
 次に、実施例2に示した工程に準じることで、膜厚750nmの炭素含有酸化シリコン(SiOC)からなる層間絶縁膜、タングステンからなる第二の接続ビア406、膜厚50nmの窒化チタンとアルミからなる第三の金属配線402、膜厚750nmの炭素含有酸化シリコン(SiOC)からなる層間絶縁膜、窒化チタンとアルミからなるアルミパッド、膜厚200nmの酸化シリコン膜と膜厚250nmの窒化シリコン膜からなるパシベーション膜207を形成した。上記工程を経て、図12(e)に示したような多層配線を有する半導体装置を形成することが可能となる。
 次に、本実施例で上記した多層配線を有する半導体装置(図12(e))において、実施例2のシリコン貫通電極の製造工程に準じることで、酸化シリコンから成る第一の裏面絶縁膜600及び第二の裏面絶縁膜601、タンタルと銅から構成されるシリコン貫通電極800を複数有する半導体装置を形成した(図13)。
 この実施例4では、上記の工程で形成した半導体装置における平面レイアウト図の一部(シリコン貫通孔、第一、第二の金属配線、第一の接続ビア、隣接する並行金属配線)は、実施例3のようには示していないが、図11のレイアウト図に準じている。
 このようにして形成した半導体装置の性能を調べたところ、リング状の囲い505を設けた場合と比較して、リング状の囲い505を設けなかった半導体装置では、実施例1の比較例として示したのと同様、寄生容量の増大やビアチェーン抵抗の増大、導通不良が見られた。
 つまり、本実施例に従い、シリコン貫通孔を形成する領域を完全に内包するように複数層の金属配線を形成し、さらに、この金属配線間の接続ビアを用いて前記シリコン貫通孔を内包するようにリング状の構造を形成することにより、シリコン貫通孔近傍の回路配線領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成可能となる。
 また、本実施例に従い、シリコン貫通孔の開口部に露出したLow-k材料を用いた層間絶縁膜と、回路配線領域に形成されたLow-k材料を用いた層間絶縁膜との間に、金属配線、接続ビア配線領域下絶縁膜などの水分を通しにくい膜を形成することにより、シリコン貫通孔近傍の回路領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成することが可能となる。
 本実施例は、実施例2とは異なり、複数のシリコン貫通電極がリング状の囲いに内包されている。実施例2と比較し、本実施例では、ひとつの金属配線に複数のシリコン貫通電極が接続されているので、電気的な接続の信頼度が向上できるという長所がある。
 本実施例では、Low-k材料の吸湿を防ぐための水分バリア膜として、第一の金属配線400、第二の金属配線401の2層の金属配線とその間をつなぐ第一の接続ビア404を用いたが、3層以上の配線層と各配線層をつなぐ接続ビアを利用することも可能である。使用する配線層数が多いほど、シリコン貫通ビアを開口するときのエッチングにおいて、オーバーエッチングに対するマージンを大きくすることができる。一方、水分バリア膜を形成した領域は回路配線としては使用できないため、配線レイアウトに制約が加わる。
 また本実施例では、第一の接続ビア404が形成された層の途中で、シリコン貫通孔701のエッチングがストップしているが、本発明の有効性はこの場合に限定されるわけではない。エッチングが少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達することが、シリコン貫通電極が機能する条件であるため、第二の金属配線層以上の上位配線層までエッチングが進行する場合があってもよい。ただし、第二の金属配線層以上の上位配線層までエッチングが進行し、Low-k材料とシリコン貫通孔701が接する場合は、水分がLow-k材料へ浸透する領域を限定するために、シリコン貫通孔701のエッチングが到達する上位配線層にも、リング状の囲い505を設けなければならず、且つ、リング状の囲い505を内包するような形状の該上位金属配線を形成しなければならない。
 また本実施例では、第一の接続ビア404が形成された層の途中で、シリコン貫通孔701のエッチングがストップしているが、本発明の有効性はこの場合に限定されるわけではない。エッチングが少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達することが、シリコン貫通電極が機能する条件であるため、第二の金属配線層以上の上位配線層までエッチングが進行する場合があってもよい。ただし、第二の金属配線層以上の上位配線層までエッチングが進行し、Low-k材料とシリコン貫通孔701が接する場合は、水分がLow-k材料へ浸透する領域を限定するために、シリコン貫通孔701のエッチングが到達する上位配線層にも、リング状の囲い505を設けなければならず、且つ、リング状の囲い505を内包するような形状の該上位金属配線を形成しなければならない。
 また本実施例では、シリコン貫通電極800と電気的に接続する配線の引き出し方法として、第三の金属配線402を用いているが、第二の金属配線層で引き出しても良い。
 また本実施例では、第一、第二、第三の金属配線において、アルミを主成分とする材料を用いているが、タングステンを主たる成分とする材料であってもよい。
 また本実施例では、リング状の囲い505の材料に、タングステンを用いているが、AlやSiCNのように水分を通さない効果が期待できる材料であれば、他の材料を用いることが可能である。金属をリング状の囲いの材料にしている場合、リング状の囲いは厚さ10nm程度で水分を通さない効果が期待できる。さらに、平面レイアウト図において、リング状の囲いの形状は、四角形でなくてもよく、シリコン貫通電極の周囲を何重にも囲んでいてもよい。
 また本実施例では、第一、第二、第三の金属配線において、主成分にアルミを用いているが、タングステンであってもよい。
 また本実施例では、第一、第二、第三の金属配線において、バリア金属として窒化チタンを用いているが、この材料に限定されるわけではない。たとえば、タングステン、モリブデン、ニッケルやその化合物を用いることも可能である。さらに、バリア金属の構造は、複数の膜が積層されていても構わない。
 また本実施例では、層間絶縁膜にSiOCからなる絶縁膜を用いているが、本発明の効果はこの材料に限定される物ではない。多孔質Low-k膜や有機系Low-k膜でも同様の効果が期待できる。
 本実施例は実施例1の応用例の1つであり、半導体装置の製造工程を示す断面図(図14、図15)を用いて、実施の形態を説明する。また、図16は図15の平面レイアウト図である。以下、順を追って説明する。
 半導体素子が形成された基板100上に、膜厚250nmの酸化シリコン膜、膜厚50nmの窒化シリコンからなる配線下絶縁膜200を形成し、該配線下絶縁膜200の所望の領域に開口部を設けCVD法と化学的機械研磨法を用いてタングステン・プラグを形成した。次に、プラズマCVD法を用いて膜厚100nmの炭素含有酸化シリコン(SiOC)からなるLow-k材料を用いた第一の層間絶縁膜201を形成し、リソグラフィーとドライエッチングを用いて、第一の層間絶縁膜201の少なくとも金属配線を形成したい領域に、第一の金属配線開口部300、300A、300Bを形成した(図14(a))。該金属配線開口部300、300A、300Bを充填するように、スパッタ法を用いて膜厚50nmのタンタル膜と、スパッタ法と電解めっき法を用いて銅膜を順次形成した後、化学的機械研磨法を用いて第一の金属配線開口部300、300A、300B以外の領域のタンタル膜と銅膜を取り除き、図14(b)に示すような第一の金属配線400、400A、400Bを形成した。
 次に、プラズマCVD法を用いて、窒素含有炭化シリコン(SiCN)からなる膜厚25nmの第一の保護絶縁膜204を形成し、プラズマCVD法を用いて、第一の保護絶縁膜204上に膜厚250nmのSiOCからなるLow-k材料を用いた第二の層間絶縁膜202を形成した。2回のリソグラフィーとドライエッチングを用いて、該層間絶縁膜202において所望の領域に開口部を設け、これを第二の金属配線開口部301、301A、301B、隣接する並行金属配線開口部303A、303Bとした。この際、第一の金属配線400の一部が露出するように第二の金属配線開口部301を、第一の金属配線400Aの一部が露出するように第二の金属配線開口部301Aを、第一の金属配線400Bの一部が露出するように第二の金属配線開口部301Bを形成した(図14(c))。
 次に、第二の金属配線開口部301、301A、301B、隣接する並行金属配線開口部303A、303Bを充填するように、スパッタ法を用いて膜厚50nmのタンタル膜と、スパッタ法と電解めっき法を用いて膜厚500nmの銅膜とを順次形成した後、化学的機械研磨法を用いて該開口部以外の領域のタンタル膜と銅膜を取り除き、図14(d)に示すような第二の金属配線401、401A、401B、隣接する並行金属配線403A、403Bを形成した。ここで、第一の金属配線400Aと第二の金属配線401Aおよび第一の金属配線400Bと第二の金属配線401Bは同一層で繋がっており、リング状の囲い405を形成している。
 次に、実施例1に示した工程に準じ、SiCNからなる膜厚25nmの第二の保護絶縁膜205、膜厚250nmのSiOCからなるLow-k材料を用いた第三の層間絶縁膜203、膜厚50nmのタンタル膜と銅膜からなる第三の金属配線402を順次形成した。更に、膜厚25nmのSiCNからなる第三の保護絶縁膜206、窒化チタンとアルミからなるアルミパッドを形成し、膜厚200nmの酸化シリコン膜と膜厚250nmの窒化シリコンからなるパシベーション膜207を形成し、図14(e)に示すような多層配線を有する半導体装置を形成することが可能となる。
 次に、本実施例で上記した多層配線を有する半導体装置(図14(e))において、実施例1のシリコン貫通電極の製造工程に準じ、酸化シリコンから成る第一の裏面絶縁膜600及び第二の裏面絶縁膜601、タンタルと銅から構成されるシリコン貫通電極800を有する半導体装置を形成した(図15)。
 上記の工程で形成した半導体装置における平面レイアウト図の一部(シリコン貫通孔、第二の金属配線、隣接する並行金属配線)を図16に示す。図15に示した断面図は、図16中のA-A’間の断面にシリコン貫通孔を付け加えたものである。図16において、第二の金属配線を構成する領域501A、501B、501C、501Dは、リング状の囲い505を形成しており、シリコン貫通孔領域550を内包している。ここで、第二の金属配線領域501は、リング状の囲い505に完全に内包されるように配置した。さらに前記リング状の囲い505の外側に、隣接する並行金属配線領域503A、隣接する並行金属配線領域503Bが敷設してある。
 このようにして形成した半導体装置の性能を調べたところ、リング状の囲い505を設けた場合と比較して、リング状の囲い505を設けなかった半導体装置では、実施例1の比較例として示したのと同様、寄生容量の増大やビアチェーン抵抗の増大、導通不良が見られた。
 つまり、本実施例に従い、シリコン貫通孔を形成する領域を内包するように複数層の金属配線を形成し、この金属配線と接続ビアを用いてリング状の構造を形成し、更に保護絶縁膜を形成することにより、前記シリコン貫通孔を内包し、シリコン貫通孔近傍の回路領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成可能となる。
 また、本実施例に従い、シリコン貫通孔の開口部に露出したLow-k材料を用いた層間絶縁膜と回路配線領域に形成されたLow-k材料を用いた層間絶縁膜との間に、金属配線、配線下絶縁膜、保護絶縁膜などの水分を通しにくい膜を形成することにより、シリコン貫通孔近傍の回路領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成することが可能となる。
 本実施例では、実施例1と異なり、シリコン貫通電極と直接、電気的な接続をとるための金属配線と、水分透過のバリアとなる金属配線とを別個にレイアウトし、両金属配線間に空隙を設けている。従って、電気的な接続をとるための金属配線は必ずしも水分透過バリアの役割を果たす必要がないため、配線レイアウトの自由度を高くすることができる。
 本実施例では、Low-k材料の吸湿を防ぐための水分バリア膜として、第一の金属配線(400A、400B)、第二の金属配線(401A、401B)の2層の金属配線を用いたが、3層以上の配線層を利用することも可能である。使用する配線層数が多いほど、シリコン貫通ビアを開口するときのエッチングにおいて、オーバーエッチに対するマージンを大きくすることができる。一方、水分バリア膜を形成した領域は回路配線としては使用できないため、配線レイアウトに制約が加わる。
 また本実施例では、Low-k材料を用いた第二の層間絶縁膜202の途中で、シリコン貫通孔701のエッチングがストップしているが、本発明の有効性はこの場合に限定されるわけではない。エッチングが少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達することが、シリコン貫通電極が機能する条件であるため、Low-k材料を用いた第二の層間絶縁膜202以上の上位配線層までエッチングが進行する場合があってもよい。ただし、Low-k材料を用いた第三の層間絶縁膜203以上の層までエッチングが進行し、Low-k材料とシリコン貫通孔701が接する場合は、水分がLow-k材料へ浸透する領域を限定するために、シリコン貫通孔701のエッチングが到達する上位配線層にも、リング状の囲い505を設けなければならない。
 また本実施例では、シリコン貫通電極800と電気的に接続する配線の引き出し方法として、第三の金属配線402を用いているが、第二の金属配線層で引き出しても良い。
 また本実施例では、リング状の囲い505の材料に、タンタルと銅を用いているが、SiCNのように水分を通さない効果が期待できる材料であれば、他の材料を用いることが可能である。金属をリング状の囲いの材料にしている場合、リング状の囲いは厚さ10nm程度で水分を通さない効果が期待できる。さらに、平面レイアウト図において、リング状の囲いの形状は、四角形でなくてもよく、シリコン貫通電極の周囲を何重にも囲んでいてもよい。
 また本実施例では、金属配線は開口部を持たないが、必ずしもその必要はなく、例えば、平坦性を向上させるために金属配線の一部に開口部が含まれていてもよい。
 また本実施例では、第一、第二、第三の金属配線において、銅を主成分とする材料用いているが、タングステンを主たる成分とする材料であってもよい。
 また本実施例では、第一、第二、第三の金属配線において、バリア金属としてタンタルを用いているが、この材料に限定されるわけではない。たとえば、タンタルの化合物や、チタン、タングステン、ルテニウム、マンガンやその化合物を用いることも可能である。さらに、バリア金属の構造は、複数の膜が積層されていても構わない。
 また本実施例では、層間絶縁膜にプラズマCVD法を用いて形成されたSiOCからなる絶縁膜を用いているが、本発明の効果はこの材料に限定される物ではない。多孔質Low-k膜や有機系Low-k膜でも同様の効果が期待できる。また、成膜方法としてCVD法以外の手法を用いることも可能である。
 また本実施例では、第一、第二、第三の保護絶縁膜の材料にプラズマCVD法を用いて形成されたSiCNからなる絶縁膜を用いているが、この材料に限定されるわけではない。例えば、SiN、SiC、それらの積層構造であっても構わない。
 本実施例は実施例2の応用例の1つであり、半導体装置の製造工程を示す断面図(図17、図18)を用いて、実施の形態を説明する。また、図19は図18の平面レイアウト図である。以下、順を追って説明する。
 半導体素子が形成された基板100上に、膜厚250nmの酸化シリコン膜、膜厚50nmの窒化シリコンからなる配線下絶縁膜200を形成し、該配線下絶縁膜200の所望の領域に開口部を設けCVD法と化学的機械研磨法を用いてタングステン・プラグを形成した。次に、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚300nmのアルミ膜及び膜厚50nmの窒化チタン膜の積層構造を形成し、リソグラフィーとドライエッチングを用いて、金属配線を形成したい領域以外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなる第一の金属配線400、第一の金属配線400A、第一の金属配線400B、および隣接する平行金属配線403A、第一の金属配線403を形成した(図17(a))。
 次に、膜厚750nmの炭素含有酸化シリコン(SiOC)を形成した後、化学的機械研磨法を用いて表面の平坦化を行い、第一の層間絶縁膜201とし、プラズマCVD法を用いて、酸化シリコン(SiO)からなる膜厚25nmの第一の保護絶縁膜204を形成した。このLow-k材料を用いた第一の層間絶縁膜201、および第一の保護絶縁膜204において、所望の領域に開口部を設け、第一の接続ビア開口部304、304A、304Bとした。この際、第一の金属配線400の一部が露出するように第一の接続ビア開口部304を、第一の金属配線400Aの一部が露出するように第一の接続ビア開口部304Aを、第一の金属配線400Bの一部が露出するように第一の接続ビア開口部304Bを形成した(図17(b))。
 次に、第一の接続ビア開口部304、304A、304Bを充填するように、スパッタ法とCVD法を用いてタングステン膜を充填した後、化学的機械研磨法を用いて該開口部以外の領域のタングステン膜を取り除き、図17(c)に示すような第一の接続ビア404、404A、404Bを形成した。
 次に、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚300nmのアルミ膜及び膜厚50nmの窒化チタン膜の積層構造を形成し、リソグラフィーとドライエッチングを用いて、所望の領域外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなる第二の金属配線401、401A、401Bを形成した。この際、第二の金属配線401は第一の接続ビア404を被覆するように、第二の金属配線401Aは第一の接続ビア404Aを被覆するように、第二の金属配線401Bは第一の接続ビア404Bを被覆するように形成した(図17(d))。
 次に、実施例2に示した工程に準じることで、膜厚750nmの炭素含有酸化シリコン(SiOC)からなる層間絶縁膜、タングステンからなる第二の接続ビア406、膜厚50nmの窒化チタンとアルミからなる第三の金属配線402、膜厚750nmの炭素含有酸化シリコン(SiOC)からなる層間絶縁膜、窒化チタンとアルミからなるアルミパッド、膜厚200nmの酸化シリコン膜と膜厚250nmの窒化シリコン膜からなるパシベーション膜207を形成した。上記工程を経て、図17(e)に示したような多層配線を有する半導体装置を形成することが可能となる。
 次に、本実施例で上記した多層配線を有する半導体装置(図17(e))において、実施例2のシリコン貫通電極の製造工程に準じることで、酸化シリコンから成る第一の裏面絶縁膜600及び第二の裏面絶縁膜601、タンタルと銅から構成されるシリコン貫通電極800を有する半導体装置を形成した(図18)。
 上記の工程で形成した半導体装置における平面レイアウト図の一部(シリコン貫通孔、第一の金属配線、隣接する並行金属配線)を図19に示す。図18に示した断面図は、図19中のA-A’間の断面である。図19において、第一の金属配線を構成する領域501A、501B、501C、501Dは、リング状の囲い505を形成しており、シリコン貫通孔領域550を内包している。ここで、第一の金属配線領域500は、リング状の囲い505に完全に内包されるように配置した。さらに前記リング状の囲い505の外側に、隣接する並行金属配線領域503A、隣接する並行金属配線領域503Bが敷設してある。
 このようにして形成した半導体装置の性能を調べたところ、リング状の囲い505を設けた場合と比較して、リング状の囲い505を設けなかった半導体装置では、実施例1の比較例として示したのと同様、寄生容量の増大やビアチェーン抵抗の増大、導通不良が見られた。
 つまり、本実施例に従い、シリコン貫通孔を形成する領域を内包するように複数層の金属配線を形成し、この金属配線と接続ビアを用いてリング状の構造を形成し、更に保護絶縁膜を形成することにより、前記シリコン貫通孔を内包し、シリコン貫通孔近傍の回路配線領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成することが可能となる。
 また、本実施例に従い、シリコン貫通孔の開口部に露出したLow-k材料を用いた層間絶縁膜と回路配線領域に形成されたLow-k材料を用いた層間絶縁膜との間に、金属配線、接続ビア、配線領域下絶縁膜、保護絶縁膜などの水分を通しにくい膜を形成することにより、シリコン貫通孔近傍の回路配線領域において、寄生容量が低く、抵抗が低い配線を有する半導体装置を形成することが可能となる。
 本実施例では、実施例1と異なり、シリコン貫通電極と直接、電気的な接続をとるための金属配線と、水分透過のバリアとなる金属配線とを別個にレイアウトし、両金属配線間に空隙を設けている。従って、電気的な接続をとるための金属配線は必ずしも水分透過バリアの役割を果たす必要がないため、配線レイアウトの自由度を高くすることができる。
 本実施例では、Low-k材料の吸湿を防ぐための水分バリア膜として、第一の金属配線(400A、400B)、第二の金属配線(401A、401B)の2層の金属配線と、その間をつなぐ第一の接続ビア(404A、404B)を用いたが、3層以上の配線層と各配線層をつなぐ接続ビアを利用することも可能である。使用する配線層数が多いほど、シリコン貫通ビアを開口するときのエッチングにおいて、オーバーエッチングに対するマージンを大きくすることができる。一方、水分バリア膜を形成した領域は回路配線としては使用できないため、配線レイアウトに制約が加わる。
 また本実施例では、第一の接続ビア404が形成された層の途中で、シリコン貫通孔701のエッチングがストップしているが、本発明の有効性はこの場合に限定されるわけではない。エッチングが少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達することが、シリコン貫通電極が機能する条件であるため、第二の金属配線層以上の上位配線層までエッチングが進行する場合があってもよい。ただし、第二の金属配線層以上の上位配線層までエッチングが進行し、Low-k材料とシリコン貫通孔701が接する場合は、水分がLow-k材料へ浸透する領域を限定しなければならず、且つ、リング状の囲い505を内包するような形状の該上位金属配線をするために、シリコン貫通孔701のエッチングが到達する上位配線層にも、リング状の囲い505形成しなければならない。
 また本実施例では、シリコン貫通電極800と電気的に接続する配線の引き出し方法として、第三の金属配線402を用いているが、第二の金属配線層で引き出しても良い。
 また本実施例では、第一、第二、第三の金属配線において、アルミを主成分とする材料を用いているが、タングステンを主たる成分とする材料であってもよい。
 また本実施例では、リング状の囲い505の材料に、タングステンとAlを用いているが、SiCNのように水分を通さない効果が期待できる材料であれば、他の材料を用いることが可能である。金属をリング状の囲いの材料にしている場合、リング状の囲いは厚さ10nm程度で水分を通さない効果が期待できる。さらに、平面レイアウト図において、リング状の囲いの形状は、四角形でなくてもよく、シリコン貫通電極の周囲を何重にも囲んでいてもよい。
 また本実施例では、第一、第二、第三の金属配線において、主成分にアルミを用いているが、タングステンであってもよい。
 また本実施例では、第一、第二、第三の金属配線において、バリア金属として窒化チタンを用いているが、この材料に限定されるわけではない。たとえば、タングステン、モリブデン、ニッケルやその化合物を用いることも可能である。さらに、バリア金属の構造は、複数の膜が積層されていても構わない。
 また本実施例では、層間絶縁膜にSiOCからなる絶縁膜を用いているが、本発明の効果はこの材料に限定される物ではない。多孔質Low-k膜や有機系Low-k膜でも同様の効果が期待できる。
 また本実施例では、第一の保護絶縁膜の材料にプラズマCVD法を用いて形成された酸化シリコンからなる絶縁膜を用いているが、この材料に限定されるわけではない。例えば、SiN、SiCN、それらの積層構造であっても構わない。
 本実施例は実施例5の応用例の1つであり、半導体装置の製造工程を示す断面図(図20、図21)を用いて、実施の形態を説明する。また、図22は図21の平面レイアウト図である。以下、順を追って説明する。
 半導体素子が形成された基板100上に、膜厚250nmの酸化シリコン膜、膜厚50nmの窒化シリコンからなる配線下絶縁膜200を形成し、該配線下絶縁膜200の所望の領域に開口部を設けCVD法と化学的機械研磨法を用いてタングステン・プラグを形成した。次に、プラズマCVD法を用いて膜厚100nmの炭素含有酸化シリコン(SiOC)からなるLow-k材料を用いた第一の層間絶縁膜201を形成し、リソグラフィーとドライエッチングを用いて、第一の層間絶縁膜201の少なくとも金属配線を形成したい領域に、第一の金属配線開口部300、300A、300Bを形成した(図20(a))。該金属配線開口部300、300A、300Bを充填するように、スパッタ法を用いて膜厚50nmのタンタル膜と、スパッタ法と電解めっき法を用いて銅膜を順次形成した後、化学的機械研磨法を用いて第一の金属配線開口部300、300A、300B以外の領域のタンタル膜と銅膜を取り除き、図20(b)に示すような第一の金属配線400、400A、400Bを形成した。
 次に、プラズマCVD法を用いて、窒素含有炭化シリコン(SiCN)からなる膜厚25nmの第一の保護絶縁膜204を形成し、プラズマCVD法を用いて、第一の保護絶縁膜204上に膜厚250nmのSiOCからなるLow-k材料を用いた第二の層間絶縁膜202を形成した。2回のリソグラフィーとドライエッチングを用いて、該層間絶縁膜202において所望の領域に開口部を設け、これを第二の金属配線開口部301、301A、301B、隣接する並行金属配線開口部303A、303Bとした。この際、第一の金属配線400の一部が露出するように第二の金属配線開口部301を、第一の金属配線400Aの一部が露出するように第二の金属配線開口部301Aを、第一の金属配線400Bの一部が露出するように第二の金属配線開口部301Bを形成した(図20(c))。
 次に、第二の金属配線開口部301、301A、301B、隣接する並行金属配線開口部303A、303Bを充填するように、スパッタ法を用いて膜厚50nmのタンタル膜と、スパッタ法と電解めっき法を用いて膜厚500nmの銅膜とを順次形成した後、化学的機械研磨法を用いて該開口部以外の領域のタンタル膜と銅膜を取り除き、図20(d)に示すような第二の金属配線401、401A、401B、隣接する並行金属配線403A、403Bを形成した。ここで、第一の金属配線400Aと第二の金属配線401Aおよび第一の金属配線400Bと第二の金属配線401Bは同一層で繋がっており、リング状の囲い505を形成している。
 次に、実施例1に示した工程に準じ、SiCNからなる膜厚25nmの第二の保護絶縁膜205、膜厚250nmのSiOCからなるLow-k材料を用いた第三の層間絶縁膜203、膜厚50nmのタンタル膜と銅膜からなる第三の金属配線402を順次形成した。更に、膜厚25nmのSiCNからなる第三の保護絶縁膜206、窒化チタンとアルミからなるアルミパッドを形成し、膜厚200nmの酸化シリコン膜と膜厚250nmの窒化シリコンからなるパシベーション膜207を形成し、図20(e)に示すような多層配線を有する半導体装置を形成することが可能となる。
 次に、本実施例で上記した多層配線を有する半導体装置(図20(e))において、実施例1のシリコン貫通電極の製造工程に準じ、酸化シリコンから成る第一の裏面絶縁膜600及び第二の裏面絶縁膜601、タンタルと銅から構成されるシリコン貫通電極800を複数有する半導体装置を形成した(図21)。
 上記の工程で形成した半導体装置における平面レイアウト図の一部(シリコン貫通孔、第二の金属配線、隣接する並行金属配線)を図22に示す。図21に示した断面図は、図22中のA-A’間の断面にシリコン貫通孔を付け加えたものである。図22において、第二の金属配線を構成する領域501A、501B、501C、501Dは、リング状の囲い505を形成しており、複数のシリコン貫通孔領域550、550Aを内包している。ここで、第二の金属配線領域501は、リング状の囲い505に完全に内包されるように配置した。さらに前記リング状の囲い505の外側に、隣接する並行金属配線領域503A、隣接する並行金属配線領域503Bが敷設してある。
 このようにして形成した半導体装置の性能を調べたところ、リング状の囲い505を設けた場合と比較して、リング状の囲い505を設けなかった半導体装置では、実施例1の比較例として示したのと同様、寄生容量の増大やビアチェーン抵抗の増大、導通不良が見られた。
 つまり、本実施例に従い、シリコン貫通孔を形成する領域を内包するように複数層の金属配線を形成し、この金属配線と接続ビアを用いてリング状の構造を形成し、更に保護絶縁膜を形成することにより、前記シリコン貫通孔を内包し、シリコン貫通孔近傍の回路配線領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成することが可能となる。
 また、本実施例に従い、シリコン貫通孔の開口部に露出したLow-k材料を用いた層間絶縁膜と回路配線領域に形成されたLow-k材料を用いた層間絶縁膜との間に、金属配線、配線領域下絶縁膜、保護絶縁膜などの水分を通しにくい膜を形成することにより、シリコン貫通孔近傍の回路配線領域において、寄生容量が低く、抵抗が低い配線を有する半導体装置を形成することが可能となる。
 本実施例は、実施例5と異なり、複数のシリコン貫通電極がリング状の囲いに内包されている。実施例5と比較して、ひとつの金属配線に複数のシリコン貫通電極が接続されているので、電気的な接続の信頼度が向上できるという長所がある。
 本実施例では、Low-k材料の吸湿を防ぐための水分バリア膜として、第一の金属配線(400A、400B)、第二の金属配線(401A、401B)の2層の金属配線を用いたが、3層以上の配線層を利用することも可能である。使用する配線層数が多いほど、シリコン貫通ビアを開口するときのエッチングにおいて、オーバーエッチングに対するマージンを大きくすることができる。一方、水分バリア膜を形成した領域は回路配線としては使用できないため、配線レイアウトに制約が加わる。
 また本実施例では、Low-k材料を用いた第二の層間絶縁膜202での途中で、シリコン貫通孔701のエッチングがストップしているが、本発明の有効性はこの場合に限定されるわけではない。エッチングが少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達することが、シリコン貫通電極が機能する条件であるため、Low-k材料を用いた第二の層間絶縁膜202以上の上位配線層までエッチングが進行する場合があってもよい。ただし、Low-k材料を用いた第三の層間絶縁膜203以上の層までエッチングが進行し、Low-k材料とシリコン貫通孔701が接する場合は、水分がLow-k材料へ浸透する領域を限定するために、シリコン貫通孔701のエッチングが到達する上位配線層にも、リング状の囲い505を設けなければならない。
 また本実施例では、リング状の囲いに内包される金属配線はひとつであるが、少なくともひとつ以上のシリコン貫通電極を内包する金属配線がリング状の囲いに複数内包されていてもよい。また、このシリコン貫通電極が接続された金属配線は、それぞれ電気的に接続される必要はない。
 また本実施例では、シリコン貫通電極800と電気的に接続する配線の引き出し方法として、第三の金属配線402を用いているが、第二の金属配線層で引き出しても良い。
 また本実施例では、リング状の囲い505の材料に、タンタルと銅を用いているが、SiCNのように水分を通さない効果が期待できる材料であれば、他の材料を用いることが可能である。金属をリング状の囲いの材料にしている場合、リング状の囲いは厚さ10nm程度で水分を通さない効果が期待できる。さらに、平面レイアウト図において、リング状の囲いの形状は、四角形でなくてもよく、シリコン貫通電極の周囲を何重にも囲んでいてもよい。
 また本実施例では、金属配線は開口部を持たないが、必ずしもその必要はなく、例えば、平坦性を向上させるために金属配線の一部に開口部が含まれていてもよい。
 また本実施例では、第一、第二、第三の金属配線において、銅を主成分とする材料用いているが、タングステンを主たる成分とする材料であってもよい。
 また本実施例では、第一、第二、第三の金属配線において、バリア金属としてタンタルを用いているが、この材料に限定されるわけではない。たとえば、タンタルの化合物や、チタン、タングステン、ルテニウム、マンガンやその化合物を用いることも可能である。さらに、バリア金属の構造は、複数の膜が積層されていても構わない。
 また本実施例では、層間絶縁膜にプラズマCVD法を用いて形成されたSiOCからなる絶縁膜を用いているが、本発明の効果はこの材料に限定される物ではない。多孔質Low-k膜や有機系Low-k膜でも同様の効果が期待できる。また、成膜方法としてCVD法以外の手法を用いることも可能である。
 また本実施例では、第一、第二、第三の保護絶縁膜の材料にプラズマCVD法を用いて形成されたSiCNからなる絶縁膜を用いているが、この材料に限定されるわけではない。例えば、SiN、SiC、それらの積層構造であっても構わない。
 本実施例は実施例6の応用例の1つであり、半導体装置の製造工程を示す断面図(図23、図24)を用いて、実施の形態を説明する。また、図25は図24の平面レイアウト図である。以下、順を追って説明する。
 半導体素子が形成された基板100上に、膜厚250nmの酸化シリコン膜、膜厚50nmの窒化シリコンからなる配線下絶縁膜200を形成し、該配線下絶縁膜200の所望の領域に開口部を設けCVD法と化学的機械研磨法を用いてタングステン・プラグを形成した。次に、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚300nmのアルミ膜及び膜厚50nmの窒化チタン膜の積層構造を形成し、リソグラフィーとドライエッチングを用いて、金属配線を形成したい領域以外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなる第一の金属配線400、400A、400B、および隣接する金属配線403A、および隣接する金属配線403Bを形成した(図23(a))。
 次に、膜厚750nmの炭素含有酸化シリコン(SiOC)を形成した後、化学的機械研磨法を用いて表面の平坦化を行い、第一の層間絶縁膜201とし、プラズマCVD法を用いて酸化シリコン(SiO)からなる膜厚25nmの第一の保護絶縁膜204を形成した。このLow-k材料を用いた第一の層間絶縁膜201、および第一の保護絶縁膜204において、所望の領域に開口部を設け、第一の接続ビア開口部304、304A、304Bとした。この際、第一の金属配線400一部が露出するように第一の接続ビア開口部304を、第一の金属配線400Aの一部が露出するように第一の接続ビア開口部304Aを、第一の金属配線400Bの一部が露出するように第一の接続ビア開口部304Bを形成した(図23(b))。
 次に、第一の接続ビア開口部304、304A、304Bを充填するように、スパッタ法とCVD法を用いてタングステン膜を充填した後、化学的機械研磨法を用いて該開口部以外の領域のタングステン膜を取り除き、図23(c)に示すような複数の第一の接続ビア404、404A、404Bを形成した。
 次に、スパッタ法を用いて膜厚50nmの窒化チタン膜と膜厚300nmのアルミ膜及び膜厚50nmの窒化チタン膜の積層構造を形成し、リソグラフィーとドライエッチングを用いて、所望の領域外の窒化チタン膜とアルミ膜を除去し、窒化チタンとアルミからなる第二の金属配線401、401A、401Bを形成した。この際、第二の金属配線401は第一の接続ビア404を被覆するように、第二の金属配線401Aは第一の接続ビア404Aを被覆するように、第二の金属配線401Bは第一の接続ビア404Bを被覆するように形成した(図23(d))。
 次に、実施例2に示した工程に準じることで、膜厚750nmの炭素含有酸化シリコン(SiOC)からなる層間絶縁膜、タングステンからなる第二の接続ビア406、膜厚50nmの窒化チタンとアルミからなる第三の金属配線402、膜厚750nmの炭素含有酸化シリコン(SiOC)からなる層間絶縁膜、窒化チタンとアルミからなるアルミパッド、膜厚200nmの酸化シリコン膜と膜厚250nmの窒化シリコン膜からなるパシベーション膜207を形成した。上記工程を経て、図23(e)に示したような多層配線を有する半導体装置を形成することが可能となる。
 次に、本実施例で上記した多層配線を有する半導体装置(図23(e))において、実施例2のシリコン貫通電極の製造工程に準じることで、酸化シリコンから成る第一の裏面絶縁膜600及び第二の裏面絶縁膜601、タンタルと銅から構成されるシリコン貫通電極800を複数有する半導体装置を形成した(図24)。
 上記の工程で形成した半導体装置における平面レイアウト図の一部(シリコン貫通孔、第一の金属配線、隣接する並行金属配線)を図25に示す。図24に示した断面図は、図25中のA-A’間の断面である。図25において、第一の金属配線を構成する領域500A、500B、500C、500Dは、リング状の囲い505を形成しており、シリコン貫通孔領域550およびシリコン貫通孔領域550Aを内包している。ここで、第一の金属配線領域500は、リング状の囲い505に完全に内包されるように配置した。さらに前記リング状の囲い505の外側に、隣接する並行金属配線領域503A、隣接する並行金属配線領域503Bが敷設してある。
 このようにして形成した半導体装置の性能を調べたところ、リング状の囲い505を設けた場合と比較して、リング状の囲い505を設けなかった半導体装置では、実施例1の比較例として示したのと同様、寄生容量の増大やビアチェーン抵抗の増大、導通不良が見られた。
 つまり、本実施例に従い、複数のシリコン貫通孔を形成する領域を内包するように複数層の金属配線を形成し、この金属配線と接続ビアを用いてリング状の構造を形成し、更に保護絶縁膜を形成することにより、前記シリコン貫通孔を内包し、シリコン貫通孔近傍の回路配線領域において寄生容量が低く、ビア抵抗が低い配線を有する半導体装置を形成することが可能となる。
 また、本実施例に従い、シリコン貫通孔の開口部に露出したLow-k材料を用いた層間絶縁膜と回路配線領域に形成されたLow-k材料を用いた層間絶縁膜との間に、金属配線、接続ビア、配線領域下絶縁膜、保護絶縁膜などの水分を通しにくい膜を形成することにより、シリコン貫通孔近傍の回路配線領域において、寄生容量が低く、抵抗が低い配線を有する半導体装置を形成することが可能となる。
 本実施例は、実施例6と異なり、複数のシリコン貫通電極がリング状の囲いに内包されている。実施例6と比較して、ひとつの金属配線に複数のシリコン貫通電極が接続されているので、電気的な接続の信頼度が向上できるという長所がある。
 本実施例では、Low-k材料の吸湿を防ぐための水分バリア膜として、第一の金属配線(400A、400B)、第二の金属配線(401A、401B)の2層の金属配線と、その間をつなぐ第一の接続ビア(404A、404B)を用いたが、3層以上の配線層と各配線層をつなぐ接続ビアを利用することも可能である。使用する配線層数が多いほど、シリコン貫通ビアを開口するときのエッチングにおいて、オーバーエッチに対するマージンを大きくすることができる。一方、水分バリア膜を形成した領域は回路配線としては使用できないため、配線レイアウトに制約が加わる。
 また本実施例では、第一の接続ビア404が形成された層の途中で、シリコン貫通孔701のエッチングがストップしているが、本発明の有効性はこの場合に限定されるわけではない。エッチングが少なくとも半導体装置が形成された基板100を貫通し、第一の金属配線400に達することが、シリコン貫通電極が機能する条件であるため、第二の金属配線層以上の上位配線層までエッチングが進行する場合があってもよい。ただし、第二の金属配線層以上の上位配線層までエッチングが進行し、Low-k材料とシリコン貫通孔701が接する場合は、水分がLow-k材料へ浸透する領域を限定するために、シリコン貫通孔701のエッチングが到達する上位配線層にも、リング状の囲い505を設けなければならず、且つ、リング状の囲い505を内包するような形状の該上位金属配線を形成しなければならない。
 また本実施例では、リング状の囲いに内包される金属配線はひとつであるが、少なくともひとつ以上のシリコン貫通電極を内包する金属配線がリング状の囲いに複数内包されていてもよい。また、このシリコン貫通電極が接続された金属配線は、それぞれ電気的に接続される必要はない。
 また本実施例では、説明を簡単にするために、配線の積層数を三層に限定したが、配線を何層積層してもなんら問題はない。
 また本実施例では、シリコン貫通電極800と電気的に接続する配線の引き出し方法として、第三の金属配線402を用いているが、第二の金属配線層で引き出しても良い。
 また本実施例では、リング状の囲い505の材料に、タングステンとAlを用いているが、SiCNのように水分を通さない効果が期待できる材料であれば、他の材料を用いることが可能である。金属をリング状の囲いの材料にしている場合、リング状の囲いは厚さ10nm程度で水分を通さない効果が期待できる。さらに、平面レイアウト図において、リング状の囲いの形状は、四角形でなくてもよく、シリコン貫通電極の周囲を何重にも囲んでいてもよい。
 また本実施例では、第一、第二、第三の金属配線において、アルミを主成分とする材料を用いているが、タングステンを主たる成分とする材料であってもよい。
 また本実施例では、第一、第二、第三の金属配線において、バリア金属として窒化チタンを用いているが、この材料に限定されるわけではない。たとえば、タングステン、モリブデン、ニッケルやその化合物を用いることも可能である。さらに、バリア金属の構造は、複数の膜が積層されていても構わない。
 また本実施例では、層間絶縁膜にSiOCからなる絶縁膜を用いているが、本発明の効果はこの材料に限定される物ではない。多孔質Low-k膜や有機系Low-k膜でも同様の効果が期待できる。
 また本実施例では、第一の保護絶縁膜の材料にプラズマCVD法を用いて形成された酸化シリコンからなる絶縁膜を用いているが、この材料に限定されるわけではない。例えば、SiN、SiCN、それらの積層構造であっても構わない。
 本発明は、Low-k材料を用いた層間絶縁膜中までシリコン貫通電極を形成する半導体装置において、該層間絶縁膜の誘電率の上昇を回避でき、かつ配線の抵抗上昇も回避できるため、配線の電気的特性が良好で信頼度の高い半導体装置の提供が可能となる。
 100…半導体素子が形成された基板
 200…配線下絶縁膜
 201…Low-k材料を用いた第一の層間絶縁膜
 202…Low-k材料を用いた第二の層間絶縁膜
 203…Low-k材料を用いた第三の層間絶縁膜
 204…第一の保護絶縁膜
 205…第二の保護絶縁膜
 206…第三の保護絶縁膜
 207…パシベーション膜
 300…第一の金属配線開口部
 300A…第一の金属配線開口部
 300B…第一の金属配線開口部
 301…第二の金属配線開口部
 301A…第二の金属配線開口部
 301B…第二の金属配線開口部
 302…第三の金属配線開口部
 303A…隣接する並行金属配線開口部
 303B…隣接する並行金属配線開口部
 304…第一の接続ビア開口部
 304A…第一の接続ビア開口部
 304B…第一の接続ビア開口部
 400…第一の金属配線
 400A…第一の金属配線
 400B…第一の金属配線
 401…第二の金属配線
 401A…第二の金属配線
 401B…第二の金属配線
 402…第三の金属配線
 403A…隣接する並行金属配線
 403B…隣接する並行金属配線
 404…第一の接続ビア
 404A…第一の接続ビア
 404B…第一の接続ビア
 405…リング状の囲い
 406…第二の接続ビア
 500…第一の金属配線を構成する配線領域
 500A…第一の金属配線を構成する配線領域
 500B…第一の金属配線を構成する配線領域
 500C…第一の金属配線を構成する配線領域
 500D…第一の金属配線を構成する配線領域
 501…第二の金属配線を構成する配線領域
 501A…第二の金属配線を構成する配線領域
 501B…第二の金属配線を構成する配線領域
 501C…第二の金属配線を構成する配線領域
 501D…第二の金属配線を構成する配線領域
 503A…隣接する並行金属配線領域
 503B…隣接する並行金属配線領域
 504…シリコン貫通電極と第二の金属配線とを接続する接続ビア領域
 504A…シリコン貫通電極と第二の金属配線とを接続する接続ビア領域
 505…リング状の囲い
 505A…第二の金属配線を構成する接続ビア領域
 505B…第二の金属配線を構成する接続ビア領域
 505C…第二の金属配線を構成する接続ビア領域
 505D…第二の金属配線を構成する接続ビア領域
 550…シリコン貫通孔領域
 550A…シリコン貫通孔領域
 600…第一の裏面絶縁膜
 601…第二の裏面絶縁膜
 700…第一の裏面絶縁膜開口部
 701…シリコン貫通孔
 800…シリコン貫通電極

Claims (26)

  1.  半導体素子がその表面側に形成された基板と、前記基板上に形成された金属配線と、前記金属配線で構成され、かつ、前記半導体素子に電気的に接続され、回路網の一部を構成する回路配線と、前記金属配線および前記回路配線とを埋設するLow-k絶縁膜と、前記基板の裏面側から前記Low-k絶縁膜中まで形成されたシリコン貫通電極とを有し、前記シリコン貫通電極と前記回路配線との間に水分バリア膜が形成されていることを特徴とする半導体装置。
  2.  前記水分バリア膜は、2層以上の異なる配線層に形成された金属配線と、上下配線層に形成された前記金属配線間をつなぐ接続ビアを有することを特徴とする請求項1記載の半導体装置。
  3.  前記水分バリア膜は、前記金属配線と、前記接続ビアとによって、1重以上のリング状の囲いが構成されており、前記リング状の囲いの内部に1つ以上のシリコン貫通電極を含むことを特徴とする請求項2記載の半導体装置。
  4.  前記シリコン貫通電極は、前記リング状の囲いの内部において、金属電極と電気的に接続されており、さらに、前記金属電極は前記囲いの外部とも電気的に接続されていることを特徴とする請求項3記載の半導体装置。
  5.  前記Low-k絶縁膜は、酸化シリコン、炭化水素から選ばれる化合物が主たる成分であることを特徴とする請求項1記載の半導体装置。
  6.  前記金属配線が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることを特徴とする請求項1記載の半導体装置。
  7.  前記金属電極が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることを特徴とする請求項4記載の半導体装置。
  8.  前記接続ビアが、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることを特徴とする請求項2記載の半導体装置。
  9.  前記シリコン貫通電極が、銅を主成分とした金属で構成されていることを特徴とする請求項1記載の半導体装置。
  10.  基板の表面側に半導体素子を形成した後、前記基板上に金属配線、および、前記半導体素子に電気的に接続され、回路網の一部を構成する金属配線からなる回路配線を形成する工程と、前記基板の裏面側からLow-k絶縁膜中までシリコン貫通電極の開口部を形成する工程以前に、前記金属配線および前記回路配線を埋設するように前記Low-k絶縁膜を形成する工程とを有し、前記シリコン貫通電極と前記回路配線との間に水分バリア膜を形成することを特徴とする半導体装置の製造方法。
  11.  前記シリコン貫通電極は、前記半導体素子が形成された基板の裏面側から開口し、金属を充填することを特徴とする請求項10記載の半導体装置の製造方法。
  12.  前記水分バリア膜は、2層以上の異なる配線層に形成された金属配線と、上下配線層に形成された前記金属配線間をつなぐ接続ビアを有することを特徴とする請求項10記載の半導体装置の製造方法。
  13.  前記水分バリア膜は、前記金属配線と、前記接続ビアとによって、1重以上のリング状の囲いが構成されており、前記リング状の囲いの内部に1つ以上のシリコン貫通電極を含むことを特徴とする請求項12記載の半導体装置の製造方法。
  14.  前記シリコン貫通電極は、前記リング状の囲いの内部において、金属電極と電気的に接続されており、さらに、前記金属電極は前記囲いの外部とも電気的に接続されていることを特徴とする請求項13記載の半導体装置の製造方法。
  15.  前記Low-k絶縁膜は、酸化シリコン、炭化水素から選ばれる化合物が主たる成分であることを特徴とする請求項10記載の半導体装置の製造方法。
  16.  前記金属配線が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることを特徴とする請求項10記載の半導体装置の製造方法。
  17.  前記金属電極が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることを特徴とする請求項14記載の半導体装置の製造方法。
  18.  前記接続ビアが、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることを特徴とする請求項12記載の半導体装置の製造方法。
  19.  前記シリコン貫通電極が、銅を主成分とした金属で構成されていることを特徴とする請求項10記載の半導体装置の製造方法。
  20.  半導体素子がその表面側に形成された基板と、前記基板上に形成され、Low-k絶縁膜に埋設された複数層の金属配線と1つ以上の接続ビアを有する水分バリア膜と、前記基板の裏面側から前記Low-k絶縁膜中まで形成されたシリコン貫通電極とを有し、前記接続ビアを用いて少なくとも1重のリング状の囲いが構成され、前記リング状の囲いの内部に1つ以上の前記シリコン貫通電極を含み、かつ、前記シリコン貫通電極を内包するようにレイアウトされた前記複数層の金属配線が配置されていることを特徴とする半導体装置。
  21.  前記シリコン貫通電極は、前記リング状の囲いの内部において、金属電極と電気的に接続されており、さらに、前記金属電極は前記囲いの外部とも電気的に接続されていることを特徴とする請求項20記載の半導体装置。
  22.  前記Low-k絶縁膜は、酸化シリコン、炭化水素から選ばれる化合物が主たる成分であることを特徴とする請求項20記載の半導体装置。
  23.  前記金属配線が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることを特徴とする請求項20記載の半導体装置。
  24.  前記金属電極が、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることを特徴とする請求項21記載の半導体装置。
  25.  前記接続ビアが、銅、アルミ、タングステンのいずれかを主たる成分として形成されていることを特徴とする請求項20記載の半導体装置。
  26.  前記シリコン貫通電極が、銅を主成分とした金属で構成されていることを特徴とする請求項20記載の半導体装置。
PCT/JP2009/062037 2009-07-01 2009-07-01 半導体装置およびその製造方法 WO2011001520A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/062037 WO2011001520A1 (ja) 2009-07-01 2009-07-01 半導体装置およびその製造方法
JP2011520711A JP5451762B2 (ja) 2009-07-01 2009-07-01 半導体装置およびその製造方法
US13/381,070 US8749028B2 (en) 2009-07-01 2009-07-01 Semiconductor device with silicon through electrode and moisture barrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062037 WO2011001520A1 (ja) 2009-07-01 2009-07-01 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2011001520A1 true WO2011001520A1 (ja) 2011-01-06

Family

ID=43410618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062037 WO2011001520A1 (ja) 2009-07-01 2009-07-01 半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US8749028B2 (ja)
JP (1) JP5451762B2 (ja)
WO (1) WO2011001520A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150043933A (ko) * 2013-10-15 2015-04-23 삼성전자주식회사 Tsv 구조를 구비한 집적회로 소자 및 그 제조 방법
JP2018531520A (ja) * 2015-12-29 2018-10-25 チャイナ ウェイファー レベル シーエスピー カンパニー リミテッド 半田パッド、半田パッドを含む半導体チップ及びその形成方法
JPWO2017150146A1 (ja) * 2016-02-29 2018-12-20 パナソニック・タワージャズセミコンダクター株式会社 半導体装置及びその製造方法
WO2021162127A1 (ja) * 2020-02-13 2021-08-19 ソニーセミコンダクタソリューションズ株式会社 半導体装置および半導体装置の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552548B1 (en) 2011-11-29 2013-10-08 Amkor Technology, Inc. Conductive pad on protruding through electrode semiconductor device
JP2013247139A (ja) * 2012-05-23 2013-12-09 Ps4 Luxco S A R L 半導体装置及びその製造方法
KR102521658B1 (ko) * 2018-09-03 2023-04-13 삼성전자주식회사 반도체 칩 및 이의 제조 방법
CN114512469A (zh) * 2020-11-16 2022-05-17 长鑫存储技术有限公司 半导体结构及其制作方法
US20220301981A1 (en) * 2021-03-18 2022-09-22 Taiwan Semiconductor Manufacturing Company Limited Semiconductor die including through substrate via barrier structure and methods for forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012894A (ja) * 2005-06-30 2007-01-18 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2007123857A (ja) * 2005-09-29 2007-05-17 Nec Electronics Corp 半導体装置およびその製造方法
JP2007221103A (ja) * 2006-01-20 2007-08-30 Fujitsu Ltd 半導体装置の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070069634A1 (en) 2003-11-28 2007-03-29 Pixdro Ltd. Method and system for patterning an organic light emitting diode display by printing
US7633167B2 (en) 2005-09-29 2009-12-15 Nec Electronics Corporation Semiconductor device and method for manufacturing same
US7825024B2 (en) * 2008-11-25 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming through-silicon vias
US8227889B2 (en) * 2008-12-08 2012-07-24 United Microelectronics Corp. Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012894A (ja) * 2005-06-30 2007-01-18 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2007123857A (ja) * 2005-09-29 2007-05-17 Nec Electronics Corp 半導体装置およびその製造方法
JP2007221103A (ja) * 2006-01-20 2007-08-30 Fujitsu Ltd 半導体装置の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150043933A (ko) * 2013-10-15 2015-04-23 삼성전자주식회사 Tsv 구조를 구비한 집적회로 소자 및 그 제조 방법
JP2015079961A (ja) * 2013-10-15 2015-04-23 三星電子株式会社Samsung Electronics Co.,Ltd. Tsv構造を具備した集積回路素子及びその製造方法
KR102094473B1 (ko) 2013-10-15 2020-03-27 삼성전자주식회사 Tsv 구조를 구비한 집적회로 소자 및 그 제조 방법
JP2018531520A (ja) * 2015-12-29 2018-10-25 チャイナ ウェイファー レベル シーエスピー カンパニー リミテッド 半田パッド、半田パッドを含む半導体チップ及びその形成方法
JPWO2017150146A1 (ja) * 2016-02-29 2018-12-20 パナソニック・タワージャズセミコンダクター株式会社 半導体装置及びその製造方法
WO2021162127A1 (ja) * 2020-02-13 2021-08-19 ソニーセミコンダクタソリューションズ株式会社 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
US20120098106A1 (en) 2012-04-26
JPWO2011001520A1 (ja) 2012-12-10
JP5451762B2 (ja) 2014-03-26
US8749028B2 (en) 2014-06-10

Similar Documents

Publication Publication Date Title
JP5451762B2 (ja) 半導体装置およびその製造方法
US11398405B2 (en) Method and apparatus for back end of line semiconductor device processing
US9966336B2 (en) Hybrid interconnect scheme and methods for forming the same
JP4776618B2 (ja) 半導体装置用のバックエンド工程伝送線路構造(バックエンド工程処理におけるサスペンデッド伝送線路構造の形成方法)
US20220208749A1 (en) Semiconductor devices and methods of manufacture thereof
US7268434B2 (en) Semiconductor device and method of manufacturing the same
US7615841B2 (en) Design structure for coupling noise prevention
TWI752285B (zh) 積體電路及製造半導體裝置的方法
CN102456751B (zh) 低成本金属-绝缘体-金属电容器
US7675175B2 (en) Semiconductor device having isolated pockets of insulation in conductive seal ring
US8822329B2 (en) Method for making conductive interconnects
US8426855B2 (en) Pad structure having a metalized region and a non-metalized region
JP2004297022A (ja) 半導体装置及びその製造方法
JP2009147218A (ja) 半導体装置とその製造方法
KR102539779B1 (ko) 반도체 장치, 촬상 장치, 및 반도체 장치의 제조 방법
JP2012243953A (ja) 半導体装置及びその製造方法並びに積層型半導体装置
CN100479133C (zh) 半导体器件
JP2003068740A (ja) 半導体集積回路装置およびその製造方法
KR20190076516A (ko) 금속 배선 하부의 절연층 구조를 갖는 반도체 장치
KR20140024179A (ko) 반도체 소자 및 그 제조 방법
KR20210022402A (ko) 저유전율 절연층을 가지는 반도체 칩
US20230360946A1 (en) Method for forming semiconductor structure
JP2006324388A (ja) 半導体装置およびその製造方法
KR20090052087A (ko) 다층 웨이퍼 구조
JP2010016229A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011520711

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13381070

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846813

Country of ref document: EP

Kind code of ref document: A1