WO2010150860A1 - 耐火物炉壁の冷却装置及び冷却方法 - Google Patents

耐火物炉壁の冷却装置及び冷却方法 Download PDF

Info

Publication number
WO2010150860A1
WO2010150860A1 PCT/JP2010/060786 JP2010060786W WO2010150860A1 WO 2010150860 A1 WO2010150860 A1 WO 2010150860A1 JP 2010060786 W JP2010060786 W JP 2010060786W WO 2010150860 A1 WO2010150860 A1 WO 2010150860A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
furnace wall
refractory
metal plate
refractory furnace
Prior art date
Application number
PCT/JP2010/060786
Other languages
English (en)
French (fr)
Inventor
勝美 東
宏 植田
幸一 神田
恭宏 柿本
真司 山村
Original Assignee
Agcセラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agcセラミックス株式会社 filed Critical Agcセラミックス株式会社
Priority to JP2011519940A priority Critical patent/JP5666440B2/ja
Publication of WO2010150860A1 publication Critical patent/WO2010150860A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0033Linings or walls comprising heat shields, e.g. heat shieldsd

Definitions

  • the present invention relates to a refractory furnace wall cooling apparatus and cooling method, and more particularly to a refractory furnace wall cooling apparatus and cooling suitable for effectively cooling a high temperature melting furnace wall such as a glass melting furnace. Regarding the method.
  • refractory furnaces such as electrocast bricks used in glass melting furnaces are eroded gradually because they are in direct contact with the glass melted at high temperatures in the melting furnace. The longer the contact time and the higher the heating temperature, the thinner.
  • the water injection method has a high heat transfer coefficient because water is brought into direct contact with the furnace wall of the refractory.
  • a nozzle is used for water injection, the cooling efficiency of the refractory is reduced.
  • the air cooling method generally has a low heat transfer rate from gas to solid and uses nozzles installed at regular intervals, so it is difficult to cool the entire furnace wall uniformly and the effect is small. There was a difficulty.
  • the present invention has been made to solve these problems, and quickly and effectively cooled the refractory furnace wall, suppressing erosion by molten glass in the furnace, and improving the durability of the refractory. It is an object of the present invention to provide a refractory furnace wall cooling device and a cooling method using the same, which can extend the life of the refractory furnace wall.
  • the refractory furnace wall cooling device of the present invention includes a refractory furnace wall, a metal plate joined to one side of the refractory furnace wall via a low melting point metal having a melting point of 100 to 500 ° C., and the metal plate. Cooling means for cooling.
  • the refractory furnace wall cooling method of the present invention is characterized by having a cooling step of supplying a cooling medium to a metal plate using the refractory furnace wall cooling device of the present invention.
  • the refractory forming the refractory furnace wall can be effectively cooled from the outside of the furnace.
  • the rate of erosion of objects can be reduced.
  • the durability of the refractory can be improved and the life can be extended.
  • the refractory furnace wall cooling device of the present invention includes a refractory furnace wall, a metal plate joined to one side of the refractory furnace wall via a low melting point metal having a melting point of 100 to 500 ° C., and the metal plate And a cooling means for cooling.
  • the refractory used for the refractory furnace wall of the present invention is not particularly limited as long as it is a known refractory. Among them, when the refractory becomes high temperature, heat from the glass melting furnace is obtained. An electroformed brick having a dense structure capable of smoothly discharging the outside to the outside is particularly effective.
  • Electrocast bricks have a smooth refractory surface due to their dense structure, and it is easy to form a low-melting-point metal layer with a uniform thickness on the surface, and the refractory surface outside the furnace is uniformly cooled. It is more advantageous than other refractories from the viewpoint that an effect can be obtained.
  • the low melting point metal used in the present invention preferably has a melting point in the range of 100 to 500 ° C, more preferably in the range of 150 to 300 ° C.
  • Examples of such a low melting point metal include metals such as indium, tin, bismuth, and zinc, and about 3% silver, about 0.5% copper, and about 0.2% nickel.
  • Examples thereof include alloys containing elements, and in particular, indium, tin, or an alloy containing them made of an element having a strong oxygen affinity is preferable.
  • the thickness of the low melting point metal may be appropriately set in the range of 50 ⁇ m to 3 mm. If the thickness is lower than 50 ⁇ m, there is a possibility that the fixation between the refractory and the metal plate for cooling may become unstable. If it is thick, heat conduction from the refractory to the cooling metal plate is hindered, and the cooling effect is reduced. Further, the thickness of the low melting point metal is preferably 50 to 500 ⁇ m, more preferably 100 to 300 ⁇ m in consideration of heat conduction.
  • the metal plate used in the present invention is a cooling metal plate that cools the refractory by the heat of the refractory passing through the low melting point metal and further transmitted to the refrigerant through the metal plate.
  • This metal plate is preferably formed of a metal having a thermal conductivity of 40 W / m / K or more.
  • the thickness of this metal plate is preferably 8 to 30 mm, more preferably 10 to 25 mm. This is also required to be excellent in workability so that the cooling means can be fixed outside without significantly reducing the heat conduction.
  • a metal used for this metal plate for example, iron, copper, stainless steel, aluminum, titanium and the like are preferable.
  • the metals used for the low melting point metal and the metal plate may be appropriately combined so that the joining can be sufficiently performed.
  • the cooling means used in the present invention may employ either air cooling or water cooling.
  • the cooling means is continuously cooled to efficiently transfer the heat transmitted from the refractory furnace wall. It is to be able to escape.
  • cooling means known cooling means can be used, for example, a method in which a jacket is formed outside the metal plate for cooling as shown in FIG. As shown in FIG. 2, a cooling metal plate is covered with a cover by screws, welding or the like to form a closed space, a nozzle is installed on the cover, and water is injected from the nozzle into the closed space. And a method of brazing fins for promoting a cooling effect to a metal plate for cooling as shown in FIG. 3 and fixing it by welding or the like to increase the heat transfer area and air cooling.
  • the refractory furnace wall cooling device 1 provided with the water cooling jacket of FIG. 1 is for cooling the refractory 2, the metal plate 4 joined to one side of the refractory via the low melting point metal 3, and the metal plate 4. And a water cooling jacket 5.
  • cooling water is introduced into the water cooling jacket 5 from the inlet 5 a and comes into contact with the metal plate 4, so that the heat transferred from the refractory 2 is transferred to the cooling water.
  • the cooling water warmed by is discharged from the discharge port 5b.
  • the cooling water discharged from the discharge port 5b may be cooled by a heat exchanger or the like and circulated and supplied as cooling water from the inflow port 5a again.
  • cooling water channel forming guides 6 inside the water cooling jacket 5 to increase the number of cooling water channel paths 7 as shown in FIG.
  • the guide is not limited to the form shown in FIG. 6, and there is no particular limitation on the number, shape, etc., as long as it forms a water channel.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • This refractory furnace wall cooling device 11 has the same configuration as that of FIG. 1 except that the cooling method is different.
  • cooling water is jetted by the nozzle 12 to cool the metal plate 4, and the water used for cooling is discharged from the discharge port 13a.
  • the discharged cooling water may also be cooled by a heat exchanger or the like outside and circulated and supplied as cooling water from the nozzle 12 again.
  • the refractory furnace wall cooling device 21 that performs air cooling provided with fins in FIG. 3 includes a refractory 2, a metal plate 4 joined to one side of the refractory via a low melting point metal 3, and the metal plate 4. And it is comprised from the fin 22 which can enlarge the area to cool, and the nozzle 23 which injects air in order to cool the metal plate 4 and the fin 22.
  • the cooling method in FIG. 3 is different from that in FIGS. 1 and 2 in that it is based on air, which is a gas. However, since the method uses a gas that is easy to handle without contaminating the surroundings, the apparatus configuration is simplified. Cost can be reduced.
  • the low melting point metal is preferably set to have a melting point higher than 200 ° C. and higher than that of water cooling.
  • the metal plate 4 can be cooled and the temperature of the refractory 2 can be lowered effectively and evenly.
  • the cooling medium used at this time water and air have been described, but other cooling mediums such as water vapor and mist-containing air can also be used.
  • the temperature of a cooling medium is 150 degrees C or less, and it is more preferable that it is 75 degrees C or less.
  • the refractory to be the refractory furnace wall and the cooling metal plate are heated to a temperature equal to or higher than the melting point of the low melting point metal. Then, a low melting point metal layer is formed by melting and spreading a low melting point metal on each of the surfaces. At this time, the low melting point metal is spread and heated while applying an ultrasonic wave, whereby a low melting point metal layer that has been difficult to form on the refractory surface can be uniformly formed.
  • the refractory having the low melting point metal layer on the surface and the metal plate for cooling are combined with the respective low melting point metal forming surfaces, and the refractory and the metal plate for cooling are cooled with the low melting point metal. What is necessary is just to melt-bond and fix through.
  • a low melting point metal sheet may be sandwiched and melt bonded, or a resin paste mixed with low melting point metal particles may be formed on the surface of the refractory and the metal plate for bonding.
  • the metal plate for cooling is fixed to the refractory, various processing can be applied to the outside (opposite side of the joint surface with the refractory), so the cooling means or metal that can cool the metal plate
  • the cooling device for a refractory furnace wall of the present invention can be obtained by attaching fins or the like that can promote cooling of the plate.
  • the method of spreading the low melting point metal on the surface of the refractory and the metal plate by applying ultrasonic waves is to use a metal such as indium, tin, bismuth, zinc, or an alloy containing silver, copper, nickel, etc. It can be performed by the same method as that used for soldering.
  • a low melting point metal is spread on the surface of a refractory and a metal plate with a trowel heated to 200 to 600 ° C. while applying vibration of 10 to 100 kHz by an ultrasonic vibrator.
  • a low-melting-point metal layer can be formed.
  • Sunbonder USM-28 (trade name, manufactured by Kuroda Techno Co., Ltd.) and the like can be mentioned.
  • Example 1 An electroformed brick having a width of 400 mm ⁇ a height of 230 mm ⁇ a thickness of 90 mm and an iron plate for cooling of a width of 400 mm ⁇ height of 230 mm ⁇ thickness of 12 mm on which 50 g of indium is placed on each surface of 10 cm square are placed on a hot plate at 200 ° C. And then using a Sun Bonder USM-28 (trade name, manufactured by Kuroda Techno Co., Ltd.) to spread the indium uniformly on each surface, and apply indium to each side of the electrocast brick and the cooling iron plate. The low melting point metal layer was formed by spreading.
  • the molten indium layers of these electroformed bricks and the iron plate are combined in a molten state and allowed to cool to room temperature, so that the iron plate is indium via the indium. And fixed to.
  • a water cooling jacket is formed by fixing an iron cover that constitutes a space in which cooling water flows inside the iron plate surface with bolts so as to have the configuration shown in FIG. 1, and cooling the refractory furnace wall of the present invention.
  • the device was manufactured.
  • the exposed surface side of the refractory was placed in the heating furnace, and this heating furnace was rated at 27 kW (each of the nine silicon carbide heating elements rated at 3 kW). Cooling was performed by supplying cooling water at 13.1 ° C. to the water-cooling jacket of the refractory furnace wall while heating at.
  • the heat transfer coefficient when using the cooling device for the refractory furnace wall at this time was 498 W / m 2 / K.
  • Example 2 (Example)
  • a water-cooled jacket was formed on the electroformed brick in the same manner as in Example 1 except that indium was changed to tin and the iron plate was changed to a copper plate, and the heating temperature on the hot plate was changed to 300 ° C.
  • a furnace wall cooling device was manufactured.
  • the heat transfer coefficient was determined in the same manner to be 749.3 W / m 2 / K.
  • Example 3 The water cooling jacket that configures the space where the cooling water flows is made of copper, and a water cooling jacket in which the number of cooling water passage paths is increased by adding cooling water passage forming guides inside the water cooling jacket is electroformed in the same manner as in Example 2.
  • a cooling device for a refractory furnace wall of the present invention joined to a brick was manufactured. With respect to the obtained refractory furnace wall cooling device, the heat transfer coefficient was determined in a similar manner to be 3637.2 W / m 2 / K.
  • Example 4 the heat transfer coefficient by the conventional cooling method was determined by the same test as in Example 1.
  • the water-cooled panel was pressed against the refractory in FIG. 4B, 116.0 W / m 2 / K (example) 4), and FIG. 4 (c) in the method of directly spraying water onto the surface of the refractory 251.2W / m 2 / K (example 5)
  • the thickness of the refractory is as shown in Table 1.
  • the heat transfer coefficient was calculated from the following equation by measuring the temperature at each location as shown in FIGS. The results are summarized in Table 1.
  • Heat transfer coefficient As shown in FIG. 4, the temperature of T1 and T2 is measured in each method, the temperature of the cooling medium Tw or Ta used at that time, the thickness of the refractory used in the test, From the thermal conductivity, the heat transfer coefficient h of each cooling device was calculated by the following formulas (1) and (2). In addition, the heat conductivity of the refractory used here is 3 W / m / K.
  • the heat transfer coefficient h of the cooling device of the present invention is preferably 300 W / m 2 / K or more.
  • the heat transfer coefficient h of the cooling device of the present invention is more preferably 400 W / m 2 / K or more, and particularly preferably 450 W / m 2 / K or more.
  • the refractory furnace wall cooling device of the present invention can effectively cool the refractory compared with the conventional method, and dramatically improves the cooling efficiency. It was found to be useful for suppressing the erosion of refractories due to, and extending the life of refractories.
  • the apparatus for cooling a refractory furnace wall of the present invention can be used to effectively cool the furnace wall of a high temperature melting furnace such as a glass melting furnace. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-152174 filed on June 26, 2009 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

 本発明は、炉内における侵食の速度を抑えて、耐火物の耐久性を向上させ、耐火物炉壁の寿命を延ばす耐火物炉壁の冷却装置及びそれを用いた冷却方法を提供する。 電鋳煉瓦等からなる耐火物炉壁を構成する耐火物2と、その耐火物2の片面に、100~500℃の融点を有する低融点金属3を介して融着、接合した冷却用の金属板4と、該金属板4を冷却することで耐火物2を冷却するための冷却手段5と、を有する耐火物炉壁の冷却装置1及び耐火物炉壁の冷却方法。

Description

耐火物炉壁の冷却装置及び冷却方法
 本発明は耐火物炉壁の冷却装置及び冷却方法に係り、特に、ガラス溶融炉等のように高温溶融炉の炉壁を効果的に冷却するのに好適な耐火物炉壁の冷却装置及び冷却方法に関する。
 ガラス溶融炉に使用される電鋳煉瓦等の耐火物炉壁は、溶融炉内の高温下で溶融されたガラスに直接接触するため、徐々に侵食されていき、その厚さは溶融ガラスとの接触時間が長くなるほど、また加熱温度が高くなるほど、薄くなっていく。
 このような侵食を抑え、耐火物の耐久性を向上させるために、耐火物を外部から冷却して温度を下げることが効果的であることがわかっている。現在、耐火物の温度を下げるためには、耐火物稼働面(溶融炉内の溶融ガラスなどに接触する面)の反対側から、金属製水冷ジャケットを押しあてたり、水流を直接吹き付けたりする水冷方法や、ノズルにより空気噴流を吹き付ける空冷方法等により行われている(例えば、特許文献1乃至3参照。)。
特開平9-101023号公報 特開平10-47861号公報 特開2002-115831号公報
 しかしながら、水冷による方法として水冷ジャケットを使用した場合、一般的に液体と固体間の熱伝達率は高い特性を有することより、水とジャケット壁との間では高い熱伝達が期待されるものの、ジャケット壁と炉壁との間の接触抵抗が大きいため、ここで総合的な熱伝達率が阻害され、効果的な冷却方法とはなっていないのが実情である。
 また、水噴射方式は、耐火物の炉壁に直接水を接触させるものであるため高い熱伝達率を有するものではあるが、水の噴射にはノズルが使用されるため、耐火物において冷却効率の良い面と冷却効率の悪い面とが顕著に存在し、全面に一様な冷却効果を得ることが困難であった。
 そして、空冷による方法では、一般的に気体から固体への熱伝達率が低い上に、一定間隔に設置したノズルを使用するため、やはり炉壁全体を一様に冷却することが難しく効果が小さいという難点があった。
 そこで、本発明は、これらの問題を解決すべくなされたものであり、耐火物炉壁を迅速かつ効果的に冷却し、炉内における溶融ガラスによる侵食を抑えて、耐火物の耐久性を向上させることで、耐火物炉壁の寿命を延ばすことを可能とした耐火物炉壁の冷却装置及びそれを用いた冷却方法を提供することを目的とするものである。
 本発明の耐火物炉壁の冷却装置は、耐火物炉壁と、耐火物炉壁の片面に、100~500℃の融点の低融点金属を介して接合された金属板と、該金属板を冷却する冷却手段と、を有することを特徴とするものである。
 また、本発明の耐火物炉壁の冷却方法は、本発明の耐火物炉壁の冷却装置を用い、金属板に冷却媒体を供給する冷却工程を有することを特徴とするものである。
 本発明の耐火物炉壁の冷却装置及び耐火物炉壁の冷却方法によれば、耐火物炉壁を形成する耐火物を炉外から効果的に冷却することができるため、溶融ガラス等による耐火物の侵食速度を低下させることができる。その結果、耐火物の耐久性向上、寿命延長を図ることができる。
本発明の冷却装置の一実施形態を示した図である。 本発明の冷却装置の他の実施形態を示した図である。 本発明の冷却装置のさらに他の実施形態を示した図である。 実施例及び比較例における熱伝達率の計算方法を説明する図である。 電鋳煉瓦の厚さの経時変化について熱伝達率による影響を示した図である。 本発明の冷却装置のさらに他の実施形態を示した図である。
 本発明の耐火物炉壁の冷却装置は、耐火物炉壁と、耐火物炉壁の片面に、100~500℃の融点を有する低融点金属を介して接合された金属板と、該金属板を冷却する冷却手段と、を有するものである。
 本発明の耐火物炉壁に用いられる耐火物としては、公知の耐火物であれば特に限定されるものではないが、その中でも、耐火物が高温になったときに、ガラス溶融炉からの熱を円滑に外部に排出できる緻密な構造を有する電鋳煉瓦が特に効果的である。
 電鋳煉瓦は、その緻密な構造から耐火物表面が滑らかであり、その表面に低融点金属の層を均一の厚みで形成することも容易にでき、炉外の耐火物表面において一様に冷却効果を得ることを可能とする点からも他の耐火物よりも有利である。
 次に、本発明に用いる低融点金属としては、融点が100~500℃の範囲のものが好ましく、150~300℃の範囲のものがより好ましい。このような金属を用いることにより、上記耐火物の表面に金属層を形成する際に、金属を溶融して形成することができ、表面に均一な厚みの層を簡便に形成することができる。
 また、このような低融点金属としては、例えば、インジウム、スズ、ビスマス、亜鉛等の金属や、これらに3%前後の銀、0.5%前後の銅、0.2%前後のニッケルなどの元素を含む合金等が挙げられ、なかでも酸素親和力の強い元素からなるインジウム、スズ、又は、それらを含む合金であることが好ましい。このような酸素親和力の強い金属を用いることで、これらの金属が空気中等の酸素と結合してできる金属酸化物は、セラミックスを構成する金属酸化物と強い結合力を有するため、結果として従来困難であったセラミックスの接合を可能とするものである。
 この低融点金属により、耐火物と冷却用の金属板とを確実に固定し、耐火物側の熱を冷却用の金属板側へと伝達して、耐火物炉壁の冷却を促進することができる。このとき低融点金属の厚さは、50μm~3mmの範囲で適宜設定すればよく、50μmよりも薄いと耐火物と冷却用の金属板との固定が不安定になる可能性があり3mmよりも厚いと耐火物から冷却用の金属板への熱伝導が阻害され、冷却効果を低下させてしまう。また、この低融点金属の厚さは、熱伝導を考慮すると50~500μmであることが好ましく、100~300μmであることがより好ましい。
 次に、本発明で用いる金属板は、耐火物の熱が低融点金属を経由し、さらに該金属板を経由して冷媒に伝達されることで耐火物を冷却する冷却用金属板である。この金属板としては、熱伝導率が40W/m/K以上の金属で形成されたものであることが好ましい。
 また、この金属板は、その厚さが8~30mmであることが好ましく、10~25mmであることがより好ましい。これは熱伝導を著しく低下させることなく、その外部に冷却手段を固定することができるように加工性に優れたものであることも求められる。以上の観点から、この金属板に用いられる金属としては、例えば、鉄、銅、ステンレス、アルミニウム、チタン等が好ましいものとして挙げられる。
 このとき、耐火物との接合に際しては、低融点金属との相性もあるので、それぞれ低融点金属と金属板とで用いる金属は、接合を十分に行うことができるように適宜組み合わせて行えばよい。
 本発明に用いる冷却手段は、空冷、水冷のいずれの方式を採用してもよく、上記冷却用の金属板を使用時には常に冷却し続けて、耐火物炉壁から伝達してくる熱を効率良く逃がすことができるようにするものである。
 この冷却手段としては、公知の冷却手段を用いることができ、例えば、図1のように冷却用の金属板の外側にジャケットを構成して、その内部に冷却用の水を流して行う方法、図2のように冷却用の金属板に、ネジ、溶接等の手段でカバーを被せ固定して閉鎖空間を形成し、そのカバーにノズルを設置して、閉鎖空間内にノズルから水噴射を行う方法、図3のように冷却用の金属板に冷却効果を促進するためのフィンをロウ付け、溶接等により固定し、伝熱面積を増やして空冷する方法、等が挙げられる。
 図1の水冷ジャケットを設けた耐火物炉壁の冷却装置1は、耐火物2と、耐火物の片面に低融点金属3を介して接合された金属板4と、金属板4を冷却するための水冷ジャケット5と、から構成されている。この水冷ジャケット5は、流入口5aから冷却水が水冷ジャケット5の内部に導入されて金属板4と接触し、耐火物2から伝達してきた熱を冷却水に伝えるようになっており、その熱により温められた冷却水は排出口5bから排出される。このとき、排出口5bから排出された冷却水は、熱交換器等により冷却されて、再度流入口5aから冷却水として循環供給されるようにしてもよい。
 また、冷却効果を高めるために、図6に示すように、水冷ジャケット5の内部に冷却水路形成用ガイド6を設けて、冷却水路のパス7の数を増やすことが好ましい。前記ガイドは図6の形態に限られるものではなく、水路を形成するものであれば数、形などに特に制限はない。なお、図1と同一部分には、同一符号を付して、その説明を省略する。
 図2のノズルにより水噴射を行う耐火物炉壁の冷却装置11は、耐火物2と、耐火物の片面に低融点金属3を介して接合された金属板4と、金属板4を冷却するために冷却水を噴射するノズル12と、ノズル12から噴射された冷却水を外部に漏出することなく排出口13aから排出することができるカバー13と、から構成されている。この耐火物炉壁の冷却装置11は、図1とは、冷却方法が異なるだけで、その他は同じ構成を有している。図2の冷却方法は、ノズル12により冷却水を噴射して、金属板4を冷却し、冷却に用いられた水は、排出口13aから排出される。この排出された冷却水も、外部で熱交換器等により冷却されて、再度ノズル12から冷却水として循環供給されるようにしてもよい。
 図3のフィンを設けた空冷を行う耐火物炉壁の冷却装置21は、耐火物2と、耐火物の片面に低融点金属3を介して接合された金属板4と、金属板4と接合し放冷する面積を大きくすることができるフィン22と、金属板4及びフィン22を冷却するために空気を噴射するノズル23と、から構成されている。図3の冷却方法は図1,2とは気体である空気によるものである点で異なるが、周囲を汚染することなく取り扱いの容易な気体を用いるものであるため、装置構成を簡素なものとし、コストの低減を図ることができる。なお、このとき低融点金属はその融点を200℃以上のものと水冷の場合よりも高めに設定することが好ましい。
 上記したような冷却手段により、金属板4を冷却して耐火物2の温度を、効果的、かつ、偏りなく一様に下げることができる。そして、このとき用いる冷却媒体としては、水、空気で説明したが、例えば、水蒸気、ミスト含有空気等のその他の冷却媒体を用いることもできる。また、冷却媒体の温度は、150℃以下であることが好ましく、75℃以下であることがより好ましい。
 次に、本発明の耐火物炉壁の冷却装置を製造するには、まず、耐火物炉壁となる耐火物及び冷却用の金属板をそれぞれ用いる低融点金属の融点以上の温度に加熱しておき、それらの表面それぞれに低融点金属を溶融展延して低融点金属層を形成する。このとき、低融点金属の展延は、超音波を与えながら加熱して行うことにより、従来、耐火物表面に形成が困難であった低融点金属層を均一に形成することができる。
 このように低融点金属層を表面に有した耐火物と冷却用の金属板とを、それぞれの低融点金属形成面を合わせ、冷却して耐火物と冷却用の金属板とを低融点金属を介して溶融接合、固定すればよい。この方法以外にも、低融点金属シートを挟み込んで溶融接合したり、低融点金属粒子を混合した樹脂ペーストを耐火物と金属板の表面に形成して接合したりしてもよい。
 冷却用の金属板が耐火物に固定されれば、その外側(耐火物との接合面の反対側)に様々な加工を施すことができるので、金属板を冷却することができる冷却手段又は金属板の冷却を促進することができるフィン等を取り付けて本発明の耐火物炉壁の冷却装置を得ることができる。
 なお、超音波を与えながら加熱して低融点金属を耐火物及び金属板の表面に展延する方法は、インジウム、スズ、ビスマス、亜鉛等の金属や、銀、銅、ニッケル等を含む合金を用い、はんだ付けを行う方法と同様の手法により行うことができる。この方法は、超音波振動子により10~100kHzの振動を与えながら、さらに、200~600℃に加熱されたコテにより、低融点金属を耐火物及び金属板の表面に展延するだけで、均一な低融点金属層を形成することができるものである。このような方法を行うことができる装置としては、例えば、サンボンダ USM-28(黒田テクノ株式会社製、商品名)等が挙げられる。
 以下に、本発明を実施例(例1~3)及び比較例(例4~6)によって具体的に説明するが、本発明はこれらの記載によってなんら限定されるものではない。
[例1(実施例)]
 それぞれの表面にインジウムを10cm四方あたり50g置いた幅400mm×高さ230mm×厚さ90mmの電鋳煉瓦及び幅400mm×高さ230mm×厚さ12mmの冷却用の鉄板を、ホットプレート上で200℃に加熱し、サンボンダ USM-28(黒田テクノ株式会社製、商品名)を用いて、各表面にインジウムが一様になるように広げて、電鋳煉瓦及び冷却用の鉄板のそれぞれ片面にインジウムを展延して低融点金属層を形成した。
 インジウムの溶融金属層が一様に広がっていることを確認し、これら電鋳煉瓦と鉄板の溶融インジウム層同士を溶融状態で合わせ、室温まで放冷することで鉄板をインジウムを介して電鋳煉瓦に接合、固定した。
 さらに、鉄板表面に図1に示した構成となるように内部に冷却水が流れる空間を構成する鉄製のカバーをボルトで固定して水冷用ジャケットを形成し、本発明の耐火物炉壁の冷却装置を製造した。
 得られた耐火物炉壁の冷却装置について、耐火物の露出面側を加熱炉内に向けて配置し、この加熱炉を27kWの定格出力(炭化ケイ素発熱体9本のそれぞれが定格出力3kW)で加熱しながら、耐火物炉壁の水冷ジャケットには13.1℃の冷却水を供給して冷却を行った。このときの耐火物炉壁の冷却装置を使用した際の熱伝達率を求めたところ、498W/m/Kであった。
[例2(実施例)]
 インジウムをスズに、鉄板を銅板に、それぞれ変更し、ホットプレート上での加熱温度を300℃にした以外は例1と同様の方法で、電鋳煉瓦に水冷ジャケットを形成し、本発明の耐火物炉壁の冷却装置を製造した。得られた耐火物炉壁の冷却装置について、同様に熱伝達率を求めたところ、749.3W/m/Kであった。
[例3(実施例)]
 冷却水が流れる空間を構成する水冷ジャケットを銅製に変更し、また水冷ジャケット内部に冷却水路形成用ガイドを追加して冷却水路のパス数を増やした水冷ジャケットを例2と同様の方法で電鋳煉瓦に接合した本発明の耐火物炉壁の冷却装置を製造した。得られた耐火物炉壁の冷却装置について、同様に熱伝達率を求めたところ、3637.2W/m/Kであった。
[例4~6(比較例)]
 比較のために、従来の冷却方法による熱伝達率を例1と同様の試験により求めたところ、図4(b)水冷パネルを耐火物に押しあてる方法では116.0W/m/K(例4)、図4(c)耐火物の表面に水を直接噴射させる方法では251.2W/m/K(例5)、図4(d)耐火物の表面に空気を直接噴射させる方法では86.5W/m/K(例6)であった。このとき耐火物厚みは表1記載の通りである。
 なお、この実施例及び比較例において、熱伝達率は図4(a)~(d)に示したように各箇所の温度を測定し、以下の式により算出した。その結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
[熱伝達率]:図4に示したように、各方法においてT1、T2の温度を測定し、そのときに用いた冷却媒体Tw又はTaの温度と、試験に用いた耐火物の厚さ、熱伝導率から、次の式(1)及び式(2)により各冷却装置の熱伝達率hを算出した。なお、ここで用いた耐火物の熱伝導率は、3W/m/Kである。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 なお、溶融炉を1670℃で稼働したときに、厚さ200mmの電鋳煉瓦が厚さ50mmとなるまでの経時変化について、熱伝達率の数値による影響を図5に示した。これは理論値であるが、耐火物外面を冷却したときの熱伝達率hを80W/m/K、250W/m/K、1000W/m/Kとしたときに、電鋳煉瓦の厚さが50mmとなるまでの時間を算出したものである。
 この結果によれば、熱伝達率hが80W/m/Kであるときは約1.5年、hが250W/m/Kであるときは約2.3年、hが1000W/m/Kであるときは約2.8年と、熱伝達率が向上したときの耐火物の寿命が見積もられる。耐火物の水冷を効果的に行うためには、本発明の冷却装置の熱伝達率hは300W/m/K以上であることが好ましい。本発明の冷却装置の熱伝達率hが400W/m/K以上であるとさらに好ましく、450W/m/K以上であると特に好ましい。
 以上の結果から、本発明の耐火物炉壁の冷却装置は、従来の方法に比べて耐火物の冷却を効果的に行うことができ飛躍的に冷却効率を向上させたものであり、溶融ガラスによる耐火物の侵食を抑制し、耐火物寿命を延ばすのに有用であることがわかった。
 本発明の耐火物炉壁の冷却装置は、ガラス溶融炉等のように高温溶融炉の炉壁を効果的に冷却するのに利用できる。
 なお、2009年6月26日に出願された日本特許出願2009-152174号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  耐火物炉壁と、
     前記耐火物炉壁の片面に、融点が100~500℃の低融点金属を介して接合された金属板と、
     該金属板を冷却する冷却手段と、
     を有することを特徴とする耐火物炉壁の冷却装置。
  2.  前記低融点金属の融点が、150~300℃である請求項1記載の耐火物炉壁の冷却装置。
  3.  前記接合が、前記低融点金属を、前記耐火物炉壁と前記金属板それぞれに超音波振動子により10~100kHzの振動を付与しながら200~600℃に加熱して溶融展延し、前記耐火物炉壁及び前記金属板に形成された低融点金属層を合わせた後、冷却・固化したものである請求項1又は2記載の耐火物炉壁の冷却装置。
  4.  前記冷却手段が、前記金属板の接合面の反対側に形成された液体を冷却媒体とする冷却ジャケットである請求項1乃至3のいずれか1項記載の耐火物炉壁の冷却装置。
  5.  冷却ジャケット内部に水路形成用ガイドを有する請求項4記載の耐火物炉壁の冷却装置。
  6.  前記冷却手段が、前記金属板の接合面の反対側に形成され、前記金属板に冷却媒体として液体を噴射できる液体噴射ノズルと、前記冷却媒体を排出するための排出口とを有し、前記冷却媒体を外部に漏出しないように形成されたカバーで構成される請求項1乃至3のいずれか1項記載の耐火物炉壁の冷却装置。
  7.  前記冷却手段が、前記金属板の接合面の反対側に形成された金属製のフィンである請求項1乃至3のいずれか1項記載の耐火物炉壁の冷却装置。
  8.  前記金属製のフィンに、冷却媒体として気体を噴射できる気体噴射ノズルを有することを特徴とする請求項7記載の耐火物炉壁の冷却装置。
  9.  請求項1乃至8のいずれか1項記載の耐火物炉壁の冷却装置を用い、前記金属板と冷却媒体とを接触させる冷却工程を有することを特徴とする耐火物炉壁の冷却方法。
PCT/JP2010/060786 2009-06-26 2010-06-24 耐火物炉壁の冷却装置及び冷却方法 WO2010150860A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519940A JP5666440B2 (ja) 2009-06-26 2010-06-24 耐火物炉壁の冷却装置及び冷却方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009152174 2009-06-26
JP2009-152174 2009-06-26

Publications (1)

Publication Number Publication Date
WO2010150860A1 true WO2010150860A1 (ja) 2010-12-29

Family

ID=43386629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060786 WO2010150860A1 (ja) 2009-06-26 2010-06-24 耐火物炉壁の冷却装置及び冷却方法

Country Status (2)

Country Link
JP (1) JP5666440B2 (ja)
WO (1) WO2010150860A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192040A1 (ja) * 2013-05-29 2014-12-04 三菱電機株式会社 光学素子支持体、波長変換装置、及び光学素子支持体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108343A (ja) * 1997-10-06 1999-04-23 Takuma Co Ltd 電気式溶融炉の炉壁冷却構造
JP2000046478A (ja) * 1998-07-29 2000-02-18 Daido Steel Co Ltd 水冷構造体
JP2002115831A (ja) * 2000-10-10 2002-04-19 Takuma Co Ltd 電気式溶融炉の炉壁構造及び炉壁冷却方法
JP2005188778A (ja) * 2003-12-24 2005-07-14 Eiichi Uratani ガラス溶解炉及びガラス溶解炉の耐熱補修方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108343A (ja) * 1997-10-06 1999-04-23 Takuma Co Ltd 電気式溶融炉の炉壁冷却構造
JP2000046478A (ja) * 1998-07-29 2000-02-18 Daido Steel Co Ltd 水冷構造体
JP2002115831A (ja) * 2000-10-10 2002-04-19 Takuma Co Ltd 電気式溶融炉の炉壁構造及び炉壁冷却方法
JP2005188778A (ja) * 2003-12-24 2005-07-14 Eiichi Uratani ガラス溶解炉及びガラス溶解炉の耐熱補修方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192040A1 (ja) * 2013-05-29 2014-12-04 三菱電機株式会社 光学素子支持体、波長変換装置、及び光学素子支持体の製造方法

Also Published As

Publication number Publication date
JPWO2010150860A1 (ja) 2012-12-10
JP5666440B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5711583B2 (ja) リフロー装置
JP5162621B2 (ja) 温度調節装置、冷却装置、及び温度調節装置の製造方法
JP5564150B2 (ja) 誘導コイル及び溶融炉一体型コールドクルーシブル誘導溶融炉
JP6324435B2 (ja) ガラス溶解炉
EP2455512A1 (en) Masking jig, substrate heating apparatus, and film formation method
TW201006776A (en) Nickel-containing flanges for use in direct resistance heating of platinum-containing vessels
JP2008283067A (ja) Al−AlN複合材料及びその製造方法並びに熱交換器
TWI377180B (ja)
CN109108431A (zh) 一种超厚铸钢件的焊接方法
CN110291048A (zh) 玻璃制造方法以及玻璃供给管的预热方法
CN102814568B (zh) 一种浇注式焊接方法
JP5666440B2 (ja) 耐火物炉壁の冷却装置及び冷却方法
JPH07218670A (ja) 冷却装置の製造方法
TWI484056B (zh) 接合裝置
JP2008255452A (ja) 冷却板
CN201792066U (zh) 铝钎焊热脱脂炉中的热风导流结构
TWI375780B (en) Cooling element for cooling the refractory lining of a metallurgical furnace (ac, dc)
CN104668686A (zh) 一种低温钎焊刀具的方法
JP4446093B2 (ja) 金属−セラミックス複合部材の製造用鋳型および製造装置
JP2008255453A (ja) 冷却板
JP4006748B2 (ja) 炉頂予熱装置の水冷フィンガー
RU2100728C1 (ru) Кессон плавильного агрегата и способ его изготовления
JP2007029953A (ja) 金属板の製造装置
KR100514696B1 (ko) 열교환기의 브레이징 방법 및 상기 방법으로 브레이징 처리된 열교환기.
TW408051B (en) Welding method for heterogeneous metals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519940

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792178

Country of ref document: EP

Kind code of ref document: A1