WO2010150800A1 - 移動端末装置、無線基地局装置及び無線通信方法 - Google Patents

移動端末装置、無線基地局装置及び無線通信方法 Download PDF

Info

Publication number
WO2010150800A1
WO2010150800A1 PCT/JP2010/060612 JP2010060612W WO2010150800A1 WO 2010150800 A1 WO2010150800 A1 WO 2010150800A1 JP 2010060612 W JP2010060612 W JP 2010060612W WO 2010150800 A1 WO2010150800 A1 WO 2010150800A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
control signal
layer
data signal
fdma symbol
Prior art date
Application number
PCT/JP2010/060612
Other languages
English (en)
French (fr)
Inventor
輝雄 川村
信彦 三木
祥久 岸山
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to EP10792118.1A priority Critical patent/EP2448161B1/en
Priority to CA 2765253 priority patent/CA2765253C/en
Priority to KR20117029629A priority patent/KR101388577B1/ko
Priority to US13/378,685 priority patent/US10033441B2/en
Priority to CN201080028166.4A priority patent/CN102460993B/zh
Priority to RU2012101076/07A priority patent/RU2518464C2/ru
Publication of WO2010150800A1 publication Critical patent/WO2010150800A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a mobile terminal apparatus, a radio base station apparatus, and a radio communication method in a next generation mobile communication system.
  • UMTS Universal Mobile Telecommunications System
  • WSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • CDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • SC-FDMA Single Carrier
  • the signal transmitted on the uplink is mapped to an appropriate radio resource and transmitted from the mobile terminal apparatus to the radio base station apparatus.
  • the uplink L1 / L2 control signal is transmitted in the format shown in FIG. That is, when there is uplink data transmission, the uplink L1 / L2 control signal is transmitted using a resource block (RB) allocated to the uplink shared channel (PUSCH).
  • the uplink L1 / L2 control signal includes downlink quality information (CQI: Channel Quality Indicator), downlink precoding information (PMI: Precoding Matrix Indicator), rank adaptation parameters (RI: Rank Indicator), Delivery confirmation information (ACK, NACK) and the like are included.
  • the L1 / L2 control signal and the data signal are time-multiplexed in order to realize a low peak-to-average power ratio (PAPR).
  • PAPR peak-to-average power ratio
  • the L1 / L2 control signal for transmission using PUSCH is time-multiplexed with a data signal in one SC-FDMA symbol.
  • RS indicates a reference signal.
  • the uplink L1 / L2 control signal uses a narrowband uplink control channel (PUCCH: Physical Uplink Control Channel) independent of the shared channel.
  • PUCCH Physical Uplink Control Channel
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a maximum transmission rate of about 300 Mbps on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE Advanced
  • the present invention has been made in view of the above points, and when a data signal is transmitted using spatial multiplexing and a control signal is also transmitted in the same subframe, the control signal is received efficiently with high quality.
  • An object of the present invention is to provide a wireless communication method.
  • the mobile terminal apparatus includes a downlink signal receiving unit that receives a downlink signal including precoding information, an allocation unit that separates a data signal and a control signal and allocates them to different radio resources, and a base station based on the precoding information. And transmitting means for performing MIMO transmission of signals of each transmission layer.
  • the radio base station apparatus of the present invention includes an uplink signal receiving means for receiving an uplink signal including a data signal and a control signal transmitted by MIMO, and signal separation for separating the uplink signal into a data signal for each transmission layer Means and signal reproduction means for reproducing the control signal from the uplink signal.
  • the wireless communication method of the present invention is based on the precoding information, a step of receiving a downlink signal including precoding information, a step of separating a data signal and a control signal and allocating them to different radio resources in a mobile terminal apparatus. Transmitting the signal of each transmission layer by MIMO, receiving the uplink signal including the data signal and the control signal transmitted by the MIMO in the radio base station apparatus, and transmitting the uplink signal to the transmission layer Separating each data signal, and regenerating the control signal from the uplink signal.
  • the data signal and the control signal are separated and allocated to different radio resources in the mobile terminal apparatus, the data signal is transmitted using spatial multiplexing transmission, and the control signal is also transmitted in the same subframe. In some cases, the control signal can be received efficiently with high quality.
  • FIG. 1 It is a figure which shows the multiplexing format of an uplink L1 / L2 control signal. It is a figure for demonstrating multiplexing of the control signal in PUSCH. In this invention, it is a figure for demonstrating the multiplexing of the time direction of a data signal and a control signal.
  • (A)-(c) is a figure which shows the multiplexing format of aspect SU1 of Embodiment 1 of this invention.
  • FIG.-(c) is a figure which shows the multiplexing format of aspect SU2 of Embodiment 1 of this invention.
  • (A)-(c) is a figure which shows the multiplexing format of aspect SU3 of Embodiment 1 of this invention.
  • (A)-(c) is a figure which shows the multiplexing format of aspect SU4 of Embodiment 1 of this invention.
  • (A)-(c) is a figure which shows the multiplexing format of aspect SU5 of Embodiment 1 of this invention.
  • (A), (b) is a figure which shows the multiplexing format of aspect SU6 of Embodiment 1 of this invention.
  • (A)-(c) is a figure which shows the multiplexing format of aspect SU7 of Embodiment 1 of this invention. It is a figure which shows the multiplexing format of aspect SU8 of Embodiment 1 of this invention. It is a block diagram which shows a part of structure of the mobile terminal apparatus which concerns on Embodiment 1 of this invention.
  • FIG. 1 It is a block diagram which shows a part of structure of the wireless base station apparatus which concerns on Embodiment 1 of this invention.
  • (A)-(c) is a figure which shows the multiplexing format of aspect MU1 of Embodiment 2 of this invention.
  • (A)-(c) is a figure which shows the multiplexing format of aspect MU2 of Embodiment 2 of this invention.
  • (A), (b) is a figure which shows the multiplexing format of aspect MU3 of Embodiment 2 of this invention.
  • (A)-(c) is a figure which shows the multiplexing format of aspect MU4 of Embodiment 2 of this invention. It is a figure which shows the multiplexing format of aspect MU5 of Embodiment 2 of this invention.
  • (A)-(d) is a figure for demonstrating the orthogonal multiplexing between users in Embodiment 2 of this invention. It is a block diagram which shows a part of structure of the mobile terminal apparatus which concerns on Embodiment 2 of this invention. It is a block diagram which shows a part of structure of the wireless base station apparatus which concerns on Embodiment 2 of this invention.
  • a mobile terminal apparatus receives a downlink signal including precoding information, separates a data signal and a control signal, assigns them to different radio resources, and assigns signals of each transmission layer based on the precoding information.
  • the uplink signal including the data signal and the control signal transmitted by the MIMO is received, the uplink signal is separated into data signals for each transmission layer, and the uplink The control signal is reproduced from the signal.
  • the data signal and the control signal are separated and allocated to different radio resources, so that the data signal is transmitted using spatial multiplexing transmission and the same sub
  • the control signal can be received efficiently with high quality and the present invention has been achieved.
  • the gist of the present invention is that a mobile terminal apparatus receives a downlink signal including precoding information, separates a data signal and a control signal, assigns them to different radio resources, and transmits each transmission layer based on the precoding information.
  • the radio base station apparatus receives the uplink signal including the data signal and the control signal, and separates the uplink signal into a data signal for each transmission layer.
  • the control signal is transmitted using spatial multiplexing transmission and the control signal is also transmitted in the same subframe, and the control signal is received efficiently with high quality. It is to be.
  • Embodiment 1 In the present embodiment, a case will be described in which one mobile terminal apparatus performs MIMO transmission using the same radio resource and different transmission layers (Single-User MIMO: SU-MIMO).
  • Single-User MIMO: SU-MIMO Single-User MIMO
  • the data signal and the control signal are separated and assigned to different radio resources, and the signals of the transmission layers assigned in this way are MIMO-transmitted.
  • Layer # 1, Layer # 2 the case where there are two transmission layers (Layer # 1, Layer # 2) has been described.
  • the present invention is not limited to this, and the same applies when there are three or more transmission layers. Can be applied to.
  • FIGS. 5 to 11 are diagrams showing multiplexing formats of the mode SU1.
  • RS and CP are omitted (the same applies to FIGS. 5 to 11).
  • the control signal 1 is transmitted from one slot.
  • the control signal 1 is transmitted from only one radio resource of a transmission layer in a certain subframe.
  • the multiplexing format shown in FIG. 4A is a format in which the SC-FDMA symbol of the control signal 1 and the SC-FDMA symbol of the data signal 2 are time-division multiplexed (TDM (Time Division Multiplex)) in one slot. That is, as shown in FIG. 4A, a specific SC-FDMA symbol in one slot is a control signal 1 and another SC-FDMA symbol is a data signal 2 in the allocated band. Further, the SC-FDMA symbol of the control signal 1 is transmitted only from one transmission layer (layer # 1 in FIG. 4A) and transmitted in the other transmission layer (layer # 2 in FIG. 4A). Do not.
  • TDM Time Division Multiplex
  • the multiplexing format shown in FIG. 4B is a frequency division multiplexing (FDM (Frequency Division Multiplex)) of the signal for one slot composed of the control signal 1 and the signal for one slot composed of the data signal 2.
  • FDM Frequency Division Multiplex
  • Format That is, as shown in FIG. 4B, in the allocated band, one slot signal with the SC-FDMA symbol as the control signal 1 is allocated to a specific frequency band, and one slot with the SC-FDMA symbol as the data signal 2 is allocated. Are assigned to other frequency bands. Further, the SC-FDMA symbol of the control signal 1 is transmitted only from one transmission layer (layer # 1 in FIG. 4B) and transmitted in the other transmission layer (layer # 2 in FIG. 4B). Do not.
  • the SC-FDMA symbol of the control signal 1 is time-division multiplexed with the SC-FDMA symbol of the data signal 2 in the predetermined SC-FDMA symbol, and the predetermined signal configured by the control signal 1 is used.
  • This is a format for frequency division multiplexing (FDM / TDM hybrid) of a signal for SC-FDMA symbols and a predetermined SC-FDMA symbol composed of data signal 2. That is, as shown in FIG. 4 (c), in the allocated band, a specific SC-FDMA symbol of one slot is set as the control signal 1, and a signal obtained by time division multiplexing with the other SC-FDMA symbol as the data signal 2 is specified.
  • the transmission layer for transmitting the control signal may be fixed in advance or may be switched as appropriate.
  • it may be switched to semi-static, and the radio base station device measures the reception quality for each layer and feeds back the measurement result to the mobile terminal device. Then, the layer with the best reception quality may be switched.
  • the transmission layer is switched as appropriate, the layer number for transmitting the control signal is notified by PUSCH or PUCCH.
  • FIGS. 5A to 5C are diagrams showing multiplexing formats of the mode SU2.
  • the control signal 1 is transmitted from one slot.
  • the control signal 1 is transmitted by a plurality of transmission layers (layer # 1 and layer # 2 in FIG. 5). Since transmission diversity can be applied by transmitting in this multiplexed format, the radio base station apparatus can receive the control signal 1 with high quality by diversity gain.
  • the control signal 1 for layer # 1 and the control signal for layer # 2 are the same signal.
  • transmission diversity applied here is not particularly limited, and any applicable transmission diversity may be used.
  • the multiplexing format shown in FIG. 5A is a format in which the SC-FDMA symbol of the control signal 1 and the SC-FDMA symbol of the data signal 2 are time division multiplexed (TDM) in one slot. That is, as shown in FIG. 5A, a specific SC-FDMA symbol in one slot is a control signal 1 and another SC-FDMA symbol is a data signal 2 in the allocated band.
  • the SC-FDMA symbol of control signal 1 is transmitted from two transmission layers.
  • the multiplexing format shown in FIG. 5 (b) is a format for frequency division multiplexing (FDM) of a signal for one slot composed of the control signal 1 and a signal for one slot composed of the data signal 2. That is, as shown in FIG. 5B, in the allocation band, one slot signal with SC-FDMA symbol as control signal 1 is allocated to a specific frequency band, and one slot with SC-FDMA symbol as data signal 2 is allocated. Are assigned to other frequency bands. The SC-FDMA symbol of control signal 1 is transmitted from two transmission layers.
  • FDM frequency division multiplexing
  • the multiplex format shown in FIG. 5 (c) is a predetermined SC-FDMA symbol in which the SC-FDMA symbol of the control signal 1 is time-division multiplexed with the SC-FDMA symbol of the data signal 2 and the control signal 1 is used.
  • This is a format for frequency division multiplexing (FDM / TDM hybrid) of a signal for SC-FDMA symbols and a predetermined SC-FDMA symbol composed of data signal 2. That is, as shown in FIG. 5 (c), in the allocated band, a specific SC-FDMA symbol in one slot is set as the control signal 1 and a signal obtained by time division multiplexing with the other SC-FDMA symbol as the data signal 2 is specified. 1 slot signal with SC-FDMA symbol as a data signal is assigned to another frequency band.
  • the SC-FDMA symbol of control signal 1 is transmitted from two transmission layers.
  • FIGS. 6A to 6C are diagrams showing multiplexing formats of the mode SU3.
  • the control signal 1 is transmitted from two slots.
  • the control signal 1 is transmitted from only one radio resource of a transmission layer in a certain subframe.
  • the multiplexing format shown in FIG. 6A is a format in which the SC-FDMA symbol of the control signal 1 and the SC-FDMA symbol of the data signal 2 are time-division multiplexed (TDM) in two slots, respectively. That is, as shown in FIG. 6A, a specific SC-FDMA symbol in each slot is a control signal 1 and another SC-FDMA symbol is a data signal 2 in the allocated band. Further, the SC-FDMA symbol of the control signal 1 is transmitted only from one transmission layer (layer # 1 in FIG. 6A) and transmitted in the other transmission layer (layer # 2 in FIG. 6A). Do not.
  • the multiplexing format shown in FIG. 6 (b) is a format for frequency division multiplexing (FDM) of a signal for two slots composed of the control signal 1 and a signal for two slots composed of the data signal 2. That is, as shown in FIG. 6B, in the allocation band, a signal of one slot with the SC-FDMA symbol as the control signal 1 is allocated to a specific frequency band, and two slots with the SC-FDMA symbol as the data signal 2 are allocated. Are assigned to other frequency bands. Further, the SC-FDMA symbol of the control signal 1 is transmitted only from one transmission layer (layer # 1 in FIG. 6B) and transmitted in the other transmission layer (layer # 2 in FIG. 6B). Do not.
  • FDM frequency division multiplexing
  • the multiplex format shown in FIG. 6 (c) is a format in which a predetermined SC-FDMA symbol in a specific frequency domain is used as the control signal 1, and the SC-FDMA symbol of the control signal 1 is replaced with the SC-FDMA symbol of the data signal 2.
  • This is a format for performing time division multiplexing and frequency division multiplexing (FDM / TDM hybrid) of a signal for a predetermined SC-FDMA symbol composed of a control signal 1 and a signal for a predetermined SC-FDMA symbol composed of a data signal 2. . That is, as shown in FIG.
  • a specific SC-FDMA symbol in each slot is used as a control signal 1
  • other SC-FDMA symbols are used as a data signal 2 in a time division multiplexed signal.
  • a 2-slot signal using SC-FDMA symbols as data signals is assigned to another frequency band.
  • the SC-FDMA symbol of control signal 1 is transmitted only from one transmission layer (layer # 1 in FIG. 6 (c)), and is transmitted in the other transmission layer (layer # 2 in FIG. 6 (c)). Do not.
  • the transmission layer for transmitting the control signal may be fixed in advance or may be switched as appropriate.
  • it may be switched to semi-static, and the radio base station device measures the reception quality for each layer and feeds back the measurement result to the mobile terminal device. Then, the layer with the best reception quality may be switched.
  • the transmission layer is switched as appropriate, the layer number for transmitting the control signal is notified by PUSCH or PUCCH.
  • FIGS. 7A to 7C are diagrams showing multiplexing formats of the mode SU4.
  • the control signal 1 is transmitted from two slots.
  • the transmission layer for transmitting the control signal 1 is switched for each slot.
  • the multiplexing format shown in FIG. 7A is a format in which the SC-FDMA symbol of the control signal 1 and the SC-FDMA symbol of the data signal 2 are time division multiplexed (TDM) in two slots, respectively. That is, as shown in FIG. 7A, a specific SC-FDMA symbol in each slot is a control signal 1 and another SC-FDMA symbol is a data signal 2 in the allocated band. Also, the SC-FDMA symbol of control signal 1 in the first slot is transmitted from one transmission layer (layer # 1 in FIG. 7A), and the SC-FDMA symbol of control signal 1 in the next slot is the other. Transmission layer (layer # 2 in FIG. 7A).
  • TDM time division multiplexed
  • the multiplexing format shown in FIG. 7 (b) is a format for frequency division multiplexing (FDM) of a signal for two slots composed of the control signal 1 and a signal for two slots composed of the data signal 2. That is, as shown in FIG. 7 (b), in the allocated band, one slot signal with the SC-FDMA symbol as the control signal 1 is allocated to a specific frequency band, and two slots with the SC-FDMA symbol as the data signal 2 are allocated. Are assigned to other frequency bands. Also, the SC-FDMA symbol of control signal 1 in the first slot is transmitted from one transmission layer (layer # 1 in FIG. 7B), and the SC-FDMA symbol of control signal 1 in the next slot is other. From the transmission layer (layer # 2 in FIG. 7B).
  • FDM frequency division multiplexing
  • the SC-FDMA symbol of the control signal 1 is time-division multiplexed with the SC-FDMA symbol of the data signal 2 in the predetermined SC-FDMA symbol, and the predetermined signal configured by the control signal 1 is used.
  • This is a format for frequency division multiplexing (FDM / TDM hybrid) of a signal for SC-FDMA symbols and a predetermined SC-FDMA symbol composed of data signal 2. That is, as shown in FIG. 7 (c), in the allocated band, a specific SC-FDMA symbol in one slot is used as a control signal 1, and a signal obtained by time-division multiplexing using another SC-FDMA symbol as a data signal 2 is specified.
  • a 2-slot signal using SC-FDMA symbols as data signals is assigned to another frequency band.
  • the SC-FDMA symbol of the control signal 1 of the first slot is transmitted from one transmission layer (layer # 1 in FIG. 7C), and the SC-FDMA symbol of the control signal 1 of the next slot is the other. From the transmission layer (layer # 2 in FIG. 7C).
  • the transmission layer for transmitting the control signal follows a predetermined transmission layer pattern. This pattern may be fixed or switched as appropriate. When the transmission layer pattern for transmitting the control signal is switched, for example, the transmission layer pattern is switched to semi-static. When the transmission layer pattern is switched as appropriate, the layer pattern number for transmitting the control signal is notified by PUSCH or PUCCH.
  • FIGS. 8A to 8C are diagrams showing multiplexing formats of the mode SU5.
  • the control signal 1 is transmitted from two slots.
  • the control signal 1 is transmitted in a plurality of transmission layers (layer # 1 and layer # 2 in FIG. 8). Since transmission diversity can be applied by transmitting in this multiplexed format, the radio base station apparatus can receive the control signal 1 with high quality by diversity gain.
  • the control signal 1 for layer # 1 and the control signal for layer # 2 are the same signal. Further, transmission diversity applied here is not particularly limited, and any applicable transmission diversity may be used.
  • the multiplexing format shown in FIG. 8 (a) is a format in which the SC-FDMA symbol of the control signal 1 and the SC-FDMA symbol of the data signal 2 are time division multiplexed (TDM) in each slot. That is, as shown in FIG. 8A, a specific SC-FDMA symbol in one slot is a control signal 1 and another SC-FDMA symbol is a data signal 2 in the allocated band.
  • the SC-FDMA symbol of control signal 1 is transmitted from two transmission layers.
  • the multiplexing format shown in FIG. 8 (b) is a format for frequency division multiplexing (FDM) of a signal for two slots composed of the control signal 1 and a signal for two slots composed of the data signal 2. That is, as shown in FIG. 8B, in the allocation band, a 2-slot signal with the SC-FDMA symbol as the control signal 1 is allocated to a specific frequency band, and a 2-slot with the SC-FDMA symbol as the data signal 2 is allocated. Are assigned to other frequency bands.
  • the SC-FDMA symbol of control signal 1 is transmitted from two transmission layers.
  • the SC-FDMA symbol of the control signal 1 is time-division multiplexed with the SC-FDMA symbol of the data signal 2 in the predetermined SC-FDMA symbol, and the predetermined signal configured by the control signal 1 is used.
  • This is a format for frequency division multiplexing (FDM / TDM hybrid) of a signal for SC-FDMA symbols and a predetermined SC-FDMA symbol composed of data signal 2. That is, as shown in FIG. 8 (c), in the allocated band, a specific SC-FDMA symbol in each slot is set as the control signal 1 and the other SC-FDMA symbol is set as the data signal 2 to specify a time division multiplexed signal. 2 slot signals having SC-FDMA symbols as data signals are allocated to other frequency bands.
  • the SC-FDMA symbol of control signal 1 is transmitted from two transmission layers.
  • FIGS. 9A and 9B are diagrams showing a multiplexing format of the mode SU6.
  • control signal 1 is transmitted on PUCCH and only data signal 2 is transmitted on PUSCH.
  • PUSCH transmission and PUCCH transmission are performed simultaneously.
  • the control signal 1 is transmitted in a different frequency band for each slot in the PUCCH.
  • the PUCCH control signal 1 is frequency hopped between slots. That is, as shown in FIG. 9A, the data signal 2 is transmitted in two transmission layers in the PUSCH, and the control signal 1 is transmitted in a different frequency region for each slot in the PUCCH. It has become. Control signal 1 is transmitted only from one transmission layer (layer # 1 in FIG. 9A), and is not transmitted from the other transmission layer (layer # 2 in FIG. 9A). .
  • the transmission layer for transmitting the control signal may be fixed in advance or may be switched as appropriate.
  • it may be switched to semi-static, and the radio base station device measures the reception quality for each layer and feeds back the measurement result to the mobile terminal device. Then, the layer with the best reception quality may be switched.
  • the transmission layer is switched as appropriate, the layer number for transmitting the control signal is notified by PUSCH or PUCCH.
  • the mobile terminal apparatus refers to the UL scheduling grant included in the downlink control signal from the radio base station apparatus, and when there is an instruction to transmit the uplink signal by MIMO transmission, FIG. A data signal is transmitted in the multiplexing format shown in FIG.
  • FIGS. 10A to 10C are diagrams showing multiplexing formats of the mode SU7.
  • the radio resource for transmitting the control signal is between the slots. Frequency hopping may be performed.
  • the multiplexing format shown in FIG. 10A is a format for frequency division multiplexing (FDM) of a signal for one slot composed of the control signal 1 and a signal for two slots composed of the data signal 2. That is, as shown in FIG. 10A, in the allocated band, a 1-slot signal with SC-FDMA symbol as control signal 1 and a 1-slot signal with SC-FDMA symbol as data signal 2 are time-multiplexed. A signal is assigned to a specific frequency band, and a 2-slot signal in which an SC-FDMA symbol is a data signal 2 is assigned to another frequency band. At this time, inter-slot frequency hopping is applied by changing the frequency band to which the control signal is assigned in each slot. Further, the SC-FDMA symbol of the control signal 1 is transmitted only from one transmission layer (layer # 1 in FIG. 10A) and transmitted in the other transmission layer (layer # 2 in FIG. 10A). Do not.
  • FDM frequency division multiplexing
  • the multiplex format shown in FIG. 10 (b) is a format in which a predetermined SC-FDMA symbol in a specific frequency domain is used as the control signal 1, and the SC-FDMA symbol of the control signal 1 is replaced with the SC-FDMA symbol of the data signal 2.
  • This is a format for performing time division multiplexing and frequency division multiplexing (FDM / TDM hybrid) of a signal for a predetermined SC-FDMA symbol composed of a control signal 1 and a signal for a predetermined SC-FDMA symbol composed of a data signal 2. . That is, as shown in FIG.
  • a specific SC-FDMA symbol in each slot is set as the control signal 1
  • the other SC-FDMA symbol is set as the data signal 2 in a time division multiplexed signal.
  • a 2-slot signal using SC-FDMA symbols as data signals is assigned to another frequency band.
  • inter-slot frequency hopping is applied by changing the frequency band to which the control signal is assigned in each slot.
  • the SC-FDMA symbol of the control signal 1 is transmitted only from one transmission layer (layer # 1 in FIG. 10B) and transmitted in the other transmission layer (layer # 2 in FIG. 10B). Do not.
  • the multiplexing format shown in FIG. 10 (c) is a Distributed FDM format (the control signal and the data signal are multiplexed by a comb-like spectrum) when the control signal 1 and the data signal 2 are multiplexed by TDM. That is, as shown in FIG. 10 (c), for a specific SC-FDMA symbol in one slot, the allocation band is divided into comb-shaped frequency regions, and the control signal 1 and the data signal 2 are arranged alternately. Assign to. Further, the SC-FDMA symbol of the control signal 1 is transmitted only from one transmission layer (layer # 1 in FIG. 10C) and transmitted in the other transmission layer (layer # 2 in FIG. 10C). Do not. By applying such distributed FDM, the overhead of the control signal can be reduced.
  • a Distributed FDM format the control signal and the data signal are multiplexed by a comb-like spectrum
  • FIG. 11 is a diagram showing a multiplexing format of aspect SU8.
  • the control signal 1 is a radio resource that is separated (not continuous) from the radio resource that transmits the data signal 2 May be used.
  • the multiplexing format shown in FIG. 11 is a format for frequency division multiplexing (FDM) of a signal for two slots composed of the control signal 1 and a signal for two slots composed of the data signal 2. That is, as shown in FIG. 11, in the allocation band, a 2-slot signal with SC-FDMA symbol as control signal 1 is allocated to a specific frequency band, and a 2-slot signal with SC-FDMA symbol as data signal 2 is assigned. The control signal 1 is assigned to a frequency band away from the assigned frequency band. Further, the SC-FDMA symbol of the control signal 1 is transmitted only from one transmission layer (layer # 1 in FIG. 11), and is not transmitted from the other transmission layer (layer # 2 in FIG. 11). In this aspect, similarly to aspect SU7, inter-slot frequency hopping may be applied by changing the frequency band to which the control signal is assigned in each slot.
  • FDM frequency division multiplexing
  • the radio resources for transmitting the control signal 1 can be adaptively changed in consideration of the type of control signal to be transmitted, the data size of the control signal, information on reception quality, and the like. it can.
  • FIG. 12 is a block diagram showing a part of the configuration of the mobile terminal apparatus according to Embodiment 1 of the present invention.
  • the mobile terminal apparatus shown in FIG. 12 is a mobile terminal apparatus capable of MIMO transmission, and its transmission unit includes a layer switching unit 101, a time / frequency multiplexing switching unit 102, and a discrete Fourier transform (DFT) unit. 103a and 103b, a subcarrier mapping unit 104, an inverse fast Fourier transform (IFFT) unit 105, a CP adding unit 106, and a precoding unit 107.
  • Each transmission layer processing unit has time / frequency multiplexing switching unit 102, DFT units 103a and 103b, subcarrier mapping unit 104, IFFT unit 105, and CP assigning unit 106.
  • the layer switching unit 101 adaptively switches layers that transmit control signals. That is, the control signal is switched to be output to a different transmission layer. This transmission layer switching is performed according to the layer number included in the control information notified from the radio base station apparatus. In the above aspects SU1 and SU3, the layer switching unit 101 performs switching so as to output a control signal to one transmission layer. In the aspect SU4, the layer switching unit 101 performs switching so as to output a control signal to a different transmission layer for each slot. In the above aspects SU2 and SU5, since transmission diversity is applied, the layer switching unit 101 performs switching so as to output control signals to all transmission layers to be transmitted diversity.
  • the time / frequency multiplexing switching unit 102 switches the multiplexing method of the control signal and the data signal. That is, the time / frequency multiplexing switching unit 102 outputs only one of the data signal and the control signal to the DFT units 103a and 103b when the data signal and the control signal are time multiplexed, and when the frequency multiplexing is performed, The data signal and the control signal are output to the DFT units 103a and 103b, respectively.
  • the subcarrier mapping unit 104 maps the frequency domain signal to the subcarrier based on the RB allocation information. That is, in the case of frequency multiplexing, the subcarrier mapping unit 104 separates the data signal and control signal after DFT and assigns them to different radio resources. Moreover, the subcarrier mapping part 104 is also provided with the function which allocates a data signal to PUSCH and allocates a control signal to PUCCH like the said aspect SU6. Further, the subcarrier mapping unit 104 also has allocation functions such as frequency hopping between slots and distributed FDMA, as in the above-described aspects SU7 and SU8.
  • the DFT units 103a and 103b perform DFT on the data signal and convert it into a frequency domain signal.
  • the IFFT unit 105 performs IFFT on the mapped signal and converts it into a time domain signal.
  • CP assigning section 106 assigns a CP to the signal after IFFT.
  • the precoding unit 107 multiplies a signal for each transmission layer by a precoding weight based on precoding information, and supports each antenna (antenna # 1 and # 2). A transmission signal to be generated is generated.
  • the layer number, RB allocation information, and precoding information are reported as control information from the radio base station apparatus. This notification is performed by higher layer signaling via PUSCH or L1 / L2 signaling via PUCCH.
  • FIG. 13 is a block diagram showing a part of the configuration of the radio base station apparatus according to Embodiment 1 of the present invention.
  • the radio base station apparatus illustrated in FIG. 13 is a radio base station apparatus capable of MIMO reception, and the reception unit includes a CP removal unit 201, a fast Fourier transform (FFT) unit 202, and subcarrier demapping. It mainly comprises a unit 203, a signal separation unit 204, a frequency equalization unit / synthesizing unit 205, and inverse discrete Fourier transform (IDFT) units 206a and 206b.
  • the CP removal unit 201, the FFT unit 202, and the subcarrier demapping unit 203 are included in each antenna reception processing unit, and the data signal IDFT unit 206a is included in each layer processing unit. ing.
  • the subcarrier demapping section 203 separates the control signal and the data signal (in terms of time and / or frequency) for each SC-FDMA symbol based on the RB allocation information. Since the radio base station apparatus knows how the control signal and the data signal are multiplexed, the control signal and the data signal can be separated by this processing block.
  • the signal separation unit 204 separates the signal after the subcarrier demapping into data signals for each transmission layer using the propagation path estimation value.
  • This propagation path estimated value is obtained by synchronization detection and channel estimation from the CQI signal extracted from the received signal.
  • the data signal separated for each layer is converted into a time domain signal by the IDFT unit 206a of the signal processing unit (Layer # 1, # 2) for each layer, and then demodulated and decoded to be reproduced as a data signal.
  • the frequency equalization unit / combination unit 205 performs channel compensation for each control signal received for each layer according to the layer number using the channel estimation value. This propagation path estimated value is obtained by synchronization detection and channel estimation from the CQI signal extracted from the received signal.
  • the channel-compensated control signal is converted into a time domain signal by the IDFT unit 206b, and then demodulated and decoded to reproduce the signal.
  • the frequency equalizing / combining unit 205 synthesizes the control signal when transmission diversity is applied to the control signal as in the above-described aspects SU2 and SU5. Thereby, the gain of transmission diversity can be obtained.
  • CP removing section 201 uses the estimated value of the reception timing estimated from the received signal to remove a portion corresponding to CP and extract an effective signal portion.
  • the FFT unit 202 performs FFT on the received signal and converts it to a frequency domain signal.
  • the IDFT units 206a and 206b convert frequency domain signals into time domain signals.
  • the layer switching unit 101 switches the output of the control signal.
  • the layer switching unit 101 performs the time / time of the processing unit in the transmission layer 1 (Layer # 1).
  • the frequency multiplexing switching unit 102 is switched so as to output a control signal.
  • the layer switching unit 101 is the processing unit of the transmission layer 1
  • the output of the control signal to the time / frequency multiplexing switching unit 102 is stopped.
  • the time / frequency multiplexing switching unit 102 switches the multiplexing method of the control signal and the data signal.
  • TDM multiplexing format
  • FDM frequency division multiplexing
  • the data signal and the control signal are respectively transferred to the DFT unit.
  • the output is switched to 103a and 103b.
  • the multiplexing format shown in FIGS. 4C, 6C, and 10B is used (FDM / TDM hybrid)
  • only one of the data signal and the control signal is transmitted in the TDM portion. It outputs to DFT part 103a, 103b, and it switches so that a data signal and a control signal may be output to DFT part 103a, 103b in the part of FDM, respectively.
  • the data signal and control signal from the time / frequency multiplexing switching unit 102 are converted into frequency domain signals by the DFT units 103a and 103b, and the subcarrier mapping unit 104 in FIGS. 4 (a) to 4 (c) and FIG. 6 (a). ) To (c), FIG. 9A, FIG. 10A to FIG. 10C, and FIG. The signal mapped in this way is converted into a time-domain signal by the IFFT unit 105 and then CP is given by the CP giving unit 106.
  • the processing unit of transmission layer 2 (Layer # 2) that does not transmit the control signal
  • the data signal is converted into a frequency domain signal by the DFT unit
  • the subcarrier mapping unit performs FIGS. ), FIGS. 6 (a) to (c), FIG. 9 (a), FIGS. 10 (a) to (c), and FIG.
  • FIG. 9B in which the control signal is not transmitted during MIMO transmission
  • only the data signal is transmitted to the DFT unit in the transmission layer 1 and transmission layer 2 processing units.
  • the signal is converted into a region signal, and is mapped to the multiplexed format shown in FIG. 9B by the subcarrier mapping unit. These mappings are performed based on the RB allocation information.
  • the signal mapped in this manner is converted into a time domain signal by the IFFT unit, and then CP is given by the CP giving unit.
  • the signal from the processing unit of the transmission layer 1 and the signal from the processing unit of the transmission layer 2 are respectively multiplied by precoding weights based on the precoding information in the precoding unit 107 to become transmission signals corresponding to the respective antennas, Transmitted as uplink signals from antennas # 1 and # 2, respectively (MIMO transmission).
  • the MIMO-transmitted signal is received by the signal processing unit for each antenna, the CP removing unit 201 removes the CP, and the FFT unit 202 sets the signal in the frequency domain.
  • This frequency domain signal is received by the subcarrier demapping unit 203 as shown in FIGS. 4 (a) to 4 (c), FIGS. 6 (a) to 6 (c), FIGS. Demapping is performed from any of the multiple formats shown in (c) and FIG. This demapping is performed based on the RB allocation information.
  • the data signal after subcarrier demapping from the processing unit of each antenna is separated into data signals for each transmission layer by the signal separation unit 204.
  • the data signal separated for each layer is converted into a time domain signal by the IDFT unit 206a in the signal processing unit for each layer, and then demodulated and decoded to be reproduced as a data signal.
  • the control signal after the subcarrier demapping from the processing unit of antenna # 1 is subjected to channel compensation using the channel estimation value by the frequency equalization unit / combination unit 205, and then the time is received by the IDFT unit 206a.
  • the signal is converted into an area signal, and then demodulated and decoded to be reproduced as a control signal.
  • the layer switching unit 101 switches the output of the control signal.
  • the layer switching unit 101 since the control signal is transmitted in the transmission layer 1 and the transmission layer 2, the layer switching unit 101 performs processing of the transmission layer 1 (Layer # 1) and the transmission layer 2 (Layer # 2).
  • the time / frequency multiplexing switching unit 102 of the unit is switched to output a control signal.
  • the time / frequency multiplexing switching unit 102 switches the multiplexing method of the control signal and the data signal.
  • TDM multiplexing format
  • FDM multiplexed format
  • the data signal and the control signal are switched to be output to the DFT units 103a and 103b, respectively.
  • 5C and FIG. 8C FDM / TDM hybrid
  • only one of the data signal and the control signal is transmitted to the DFT units 103a and 103b in the TDM part.
  • the data signal and the control signal are switched to be output to the DFT units 103a and 103b, respectively.
  • the data signal and the control signal from the time / frequency multiplexing switching unit 102 are converted into frequency domain signals by the DFT units 103a and 103b, and the subcarrier mapping unit 104 in FIG. 5A to FIG. 5C or FIG. ) To (c).
  • the signal mapped in this way is converted into a time-domain signal by the IFFT unit 105 and then CP is given by the CP giving unit 106.
  • the signal from the processing unit of the transmission layer 1 and the signal from the processing unit of the transmission layer 2 are respectively multiplied by precoding weights based on the precoding information in the precoding unit 107 to become transmission signals corresponding to the respective antennas, Transmitted as uplink signals from antennas # 1 and # 2, respectively (MIMO transmission).
  • the MIMO-transmitted signal is received by the signal processing unit for each antenna, the CP removing unit 201 removes the CP, and the FFT unit 202 sets the signal in the frequency domain.
  • the signal in the frequency domain is demapped by the subcarrier demapping unit 203 from one of the multiple formats shown in FIGS. 5 (a) to 5 (c) and FIGS. 8 (a) to 8 (c). This demapping is performed based on the RB allocation information.
  • the data signal after subcarrier demapping from the processing unit of each antenna is separated into data signals for each transmission layer by the signal separation unit 204.
  • the data signal separated for each layer is converted into a time domain signal by the IDFT unit 206a in the signal processing unit for each layer, and then demodulated and decoded to be reproduced as a data signal.
  • the control signal after the subcarrier demapping from the processing unit of each antenna is synthesized by the frequency equalization unit / combining unit 205 after being subjected to channel compensation using the channel estimation value, and then synthesized by the IDFT unit 206a.
  • the signal is converted into a time domain signal, and then demodulated and decoded to be reproduced as a control signal.
  • the layer switching unit 101 switches the output of the control signal.
  • the layer switching unit 101 transmits the transmission layer 1 (Layer # 1) and the transmission layer 2 (Layer # 2). Is switched to output a control signal to the time / frequency multiplexing switching unit 102 of the processing unit.
  • the time / frequency multiplexing switching unit 102 switches the multiplexing method of the control signal and the data signal.
  • TDM multiplex format
  • FDM multiplex format shown in FIG. 7B
  • FDM multiplex format shown in FIG. 7B
  • FDM multiplex format shown in FIG. 7C
  • only one of the data signal and the control signal is output to the DFT units 103a and 103b in the TDM part, and the FDM part is output.
  • the data signal and the control signal are switched so as to be output to the DFT units 103a and 103b, respectively.
  • the data signal and control signal from the time / frequency multiplexing switching unit 102 are converted into frequency domain signals by the DFT units 103a and 103b, and the subcarrier mapping unit 104 performs multiplexing of any one of the multiplexing signals shown in FIGS. Mapped to format.
  • the signal mapped in this way is converted into a time-domain signal by the IFFT unit 105 and then CP is given by the CP giving unit 106.
  • the signal from the processing unit of the transmission layer 1 and the signal from the processing unit of the transmission layer 2 are respectively multiplied by precoding weights based on the precoding information in the precoding unit 107 to become transmission signals corresponding to the respective antennas, Transmitted as uplink signals from antennas # 1 and # 2, respectively (MIMO transmission).
  • the MIMO-transmitted signal is received by the signal processing unit for each antenna, the CP removing unit 201 removes the CP, and the FFT unit 202 sets the signal in the frequency domain.
  • This frequency domain signal is demapped from one of the multiple formats shown in FIGS. 7A to 7C by the subcarrier demapping unit 203. This demapping is performed based on the RB allocation information.
  • the data signal after subcarrier demapping from the processing unit of each antenna is separated into data signals for each transmission layer by the signal separation unit 204.
  • the data signal separated for each layer is converted into a time domain signal by the IDFT unit 206a in the signal processing unit for each layer, and then demodulated and decoded to be reproduced as a data signal.
  • the control signal after subcarrier demapping from the processing units of antenna # 1 and antenna # 2 is subjected to channel compensation by using the channel estimation value in frequency equalization unit / combination unit 205, respectively, and then IDFT.
  • the signal is converted into a time domain signal by the unit 206a, and then demodulated and decoded to be reproduced as a control signal.
  • the data signal and the control signal are in SC-FDMA symbol units (FFT units) without mixing the data signal and the control signal in one SC-FDMA symbol.
  • FFT units SC-FDMA symbol units
  • interference from the data signal can be excluded. Therefore, by separating the data signal and the control signal and assigning them to different radio resources, the data signal is transmitted using spatial multiplexing and the control signal is also transmitted in the same subframe. The control signal can be received well.
  • Embodiment 2 In the present embodiment, a case will be described in which different mobile terminal apparatuses perform MIMO transmission using the same radio resource and different transmission layers (Multiple-User MIMO: MU-MIMO).
  • the data signal and the control signal are separated and assigned to different radio resources, and the signals of the transmission layers assigned in this way are MIMO-transmitted.
  • the case where there are two transmission layers (Layer # 1, Layer # 2) has been described.
  • the present invention is not limited to this, and the same applies when there are three or more transmission layers. Can be applied to.
  • FIGS. 14A to 14C are diagrams showing multiplexing formats of the mode MU1.
  • RS and CP Cyclic Prefix
  • the control signal 3 is transmitted from one slot.
  • FIG. 14 shows a multiplex format when received by the radio base station apparatus, where the user # 1 layer (Layer for UE # 1) and the user # 2 layer (Layer for UE # 2) have the same radio resources. Indicates that it will be sent.
  • the multiplexing format shown in FIG. 14A is a format in which the SC-FDMA symbol of the control signal 3 and the SC-FDMA symbol of the data signal 4 in one slot are time-division multiplexed in each user layer. That is, as shown in FIG. 14A, in the allocated band of the user # 1 layer, a specific SC-FDMA symbol in one slot is set as the control signal 3a, and the other SC-FDMA symbols are set as the data signal 4a. . Also, in the user # 2 layer allocated band, a specific SC-FDMA symbol in one slot is a control signal 3b, and the other SC-FDMA symbols are a data signal 4b.
  • the multiplexing format shown in FIG. 14 (b) is a format in which a signal for one slot composed of the control signal 3 and a signal for one slot composed of the data signal 4 are frequency division multiplexed in each user layer. It is. That is, as shown in FIG. 14B, in the allocation band of the user # 1 layer, a signal of one slot with the SC-FDMA symbol as the control signal 3a is allocated to a specific frequency band, and the SC-FDMA symbol is data. The signal of 1 slot, which is signal 4a, is assigned to another frequency band.
  • a 1-slot signal having the SC-FDMA symbol as the control signal 3b is allocated to a specific frequency band, and a 1-slot signal having the SC-FDMA symbol as the data signal 4b is assigned to the other band. Assigned to the frequency band.
  • the SC-FDMA symbol of the control signal 3 is time-division multiplexed with the SC-FDMA symbol of the data signal 4 at a predetermined SC-FDMA symbol in each user layer, and the control is performed.
  • This is a format for frequency division multiplexing (FDM / TDM hybrid) of a predetermined SC-FDMA symbol signal composed of signal 3 and a predetermined SC-FDMA symbol composed of data signal 4. That is, as shown in FIG. 14C, in the allocated band of the user # 1 layer, a specific SC-FDMA symbol in one slot is used as the control signal 3a, and the other SC-FDMA symbols are used as the data signal 4a.
  • the division multiplexed signal is assigned to a specific frequency band, and a one-slot signal with the SC-FDMA symbol as a data signal 4a is assigned to another frequency band.
  • a specific SC-FDMA symbol in one slot is used as a control signal 3b, and another SC-FDMA symbol is used as a data signal 4b in a time-division multiplexed signal to a specific frequency band. Allocating and assigning one slot signal with SC-FDMA symbol as data signal 4b to another frequency band.
  • control signals 3a and 3b in each user layer are signals that are orthogonally multiplexed between users.
  • orthogonal multiplexing between users TDMA (Time Division Multiple Access) as shown in FIG. 19A
  • FDMA Frequency Division Multiple Access
  • FIGS. 19B and 19C Localized FDMA, Distributed
  • FDMA control signal and data signal are multiplexed by comb-like spectrum
  • CDMA Code Division Multiple Access
  • FIGS. 15A to 15C are diagrams showing multiplexing formats of the mode MU2.
  • the control signal 1 is transmitted from two slots.
  • the control signal 3 is transmitted.
  • FIG. 15 shows a multiplexing format when received by the radio base station apparatus, where the user # 1 layer (Layer for UE # 1) and the user # 2 layer (Layer for UE # 2) have the same radio resources. Indicates that it will be sent.
  • the multiplexing format shown in FIG. 15A is a format in which the SC-FDMA symbol of the control signal 3 and the SC-FDMA symbol of the data signal 4 in each slot are time-division multiplexed in each user layer. That is, as shown in FIG. 15A, in the allocated band of the layer of user # 1, a specific SC-FDMA symbol in one slot is set as the control signal 3a, and the other SC-FDMA symbols are set as the data signal 4a. . Also, in the user # 2 layer allocated band, a specific SC-FDMA symbol in one slot is a control signal 3b, and the other SC-FDMA symbols are a data signal 4b.
  • the multiplexing format shown in FIG. 15 (b) is a format in which the signal for two slots constituted by the control signal 3 and the signal for two slots constituted by the data signal 4 are frequency division multiplexed in each user layer. It is. That is, as shown in FIG. 15 (b), in the allocation band of the user # 1 layer, a 2-slot signal having the SC-FDMA symbol as the control signal 3a is allocated to a specific frequency band, and the SC-FDMA symbol is converted into data. The signal of 2 slots, which is the signal 4a, is assigned to another frequency band.
  • a 2-slot signal having the SC-FDMA symbol as the control signal 3b is allocated to a specific frequency band, and the 2-slot signal having the SC-FDMA symbol as the data signal 4b is assigned to the other band. Assigned to the frequency band.
  • the SC-FDMA symbol of the control signal 3 is time-division multiplexed with the SC-FDMA symbol of the data signal 4 at a predetermined SC-FDMA symbol in each user layer, and the control is performed.
  • This is a format for frequency division multiplexing (FDM / TDM hybrid) of a predetermined SC-FDMA symbol signal composed of signal 3 and a predetermined SC-FDMA symbol composed of data signal 4. That is, as shown in FIG. 15 (c), in the allocated band of the user # 1 layer, a specific SC-FDMA symbol in each slot is used as the control signal 3a, and the other SC-FDMA symbols are used as the data signal 4a.
  • the division-multiplexed signal is assigned to a specific frequency band, and a 2-slot signal having an SC-FDMA symbol as a data signal is assigned to another frequency band. Also, in the user # 2 layer allocated band, a specific SC-FDMA symbol in each slot is used as a control signal 3b, and another SC-FDMA symbol is used as a data signal 4b in a time-division multiplexed signal in a specific frequency band. Allocation and signals of 2 slots using SC-FDMA symbols as data signals are allocated to other frequency bands.
  • control signals 3a and 3b in each user layer are signals that are orthogonally multiplexed between users.
  • orthogonal multiplexing between users TDMA as shown in FIG. 19A
  • FDMA Localized FDMA or Distributed FDMA
  • CDMA for example, block spreading
  • FIGS. 16A and 16B are diagrams showing a multiplexing format of the mode MU3.
  • the control signal 3 is transmitted on the PUCCH, and only the data signal 4 is transmitted on the PUSCH.
  • PUSCH transmission and PUCCH transmission are performed simultaneously.
  • FIG. 16 shows a multiplex format when received by the radio base station apparatus, where the user # 1 layer (Layer for UE # 1) and the user # 2 layer (Layer for UE # 2) have the same radio resources. Indicates that it will be sent.
  • the control signal 3 is transmitted in a different frequency band for each slot.
  • the PUCCH control signal 3 is frequency hopped between slots. That is, as shown in FIG. 16 (a), the data signal 4a is transmitted on the PUSCH in the band allocated to the layer of the user # 1, and the control signal 3a is transmitted in the frequency domain that is different for each slot on the PUCCH. Is supposed to send.
  • the data signal 4b is transmitted on the PUSCH, and the control signal 3b is transmitted on the PUCCH in a different frequency region for each slot.
  • the mobile terminal apparatus refers to the UL scheduling grant included in the downlink control signal from the radio base station apparatus, and when there is an instruction to transmit an uplink signal by MIMO transmission, FIG. A data signal is transmitted in the multiplexing format shown in FIG.
  • control signals 3a and 3b in each user layer are signals that are orthogonally multiplexed between users.
  • orthogonal multiplexing between users TDMA as shown in FIG. 19A
  • FDMA Localized FDMA or Distributed FDMA
  • CDMA for example, block spreading
  • FIGS. 17A to 17C are diagrams showing multiplexing formats of the mode MU4.
  • the radio resource for transmitting the control signal is between the slots. Frequency hopping may be performed.
  • FIG. 17 shows a multiplex format when received by the radio base station apparatus, and the user # 1 layer (Layer for UE # 1) and the user # 2 layer (Layer for UE # 2) have the same radio resource. Indicates that it will be sent.
  • the multiplexing format shown in FIG. 17 (a) is a format for frequency-division multiplexing a signal for one slot composed of the control signal 3 and a signal for two slots composed of the data signal 4. That is, as shown in FIG. 17A, in the allocation band of the user # 1 layer, a 1-slot signal with the SC-FDMA symbol as the control signal 3a and a 1-slot signal with the SC-FDMA symbol as the data signal 4a. A signal time-multiplexed with the signal is assigned to a specific frequency band, and a 2-slot signal having the SC-FDMA symbol as a data signal 4a is assigned to another frequency band.
  • a signal obtained by time-multiplexing a 1-slot signal having the SC-FDMA symbol as the control signal 3b and a 1-slot signal having the SC-FDMA symbol as the data signal 4b is specified.
  • a 2-slot signal with the SC-FDMA symbol as a data signal 4b is assigned to another frequency band.
  • inter-slot frequency hopping is applied by changing the frequency band to which the control signal is assigned in each slot.
  • the multiplex format shown in FIG. 17B is a format in which a predetermined SC-FDMA symbol in a specific frequency region is used as the control signal 3, and the SC-FDMA symbol of the control signal 3 is replaced with the SC-FDMA symbol of the data signal 4.
  • This is a format for performing time division multiplexing and frequency division multiplexing (FDM / TDM hybrid) of a signal for a predetermined SC-FDMA symbol composed of a control signal 3 and a signal for a predetermined SC-FDMA symbol composed of a data signal 4. . That is, as shown in FIG.
  • a specific SC-FDMA symbol of each slot is used as a control signal 3a, and other SC-FDMA symbols are used as a data signal 4a for time division.
  • a multiplexed signal is assigned to a specific frequency band, and a 2-slot signal using SC-FDMA symbols as data signals is assigned to another frequency band.
  • a specific SC-FDMA symbol in each slot is used as a control signal 3b, and another SC-FDMA symbol is used as a data signal 4b.
  • -A 2-slot signal using FDMA symbols as data signals is assigned to another frequency band. At this time, inter-slot frequency hopping is applied by changing the frequency band to which the control signal is assigned in each slot.
  • the multiplexing format shown in FIG. 17C is a Distributed FDM format when the control signal 3 and the data signal 4 are multiplexed by TDM. That is, as shown in FIG. 17 (c), for a specific SC-FDMA symbol in one slot, the allocation band of the user # 1 layer is divided into comb-shaped frequency regions, and the control signal 3a and the data signal 4a Are assigned alternately. Further, the allocation band of the layer of the user # 2 is divided into comb-shaped frequency regions, and the control signal 3b and the data signal 4b are allocated so as to be alternately arranged.
  • control signals 3a and 3b in each user layer are signals that are orthogonally multiplexed between users.
  • orthogonal multiplexing between users TDMA as shown in FIG. 19A
  • FDMA Localized FDMA or Distributed FDMA
  • CDMA for example, block spreading
  • FIG. 18 is a diagram illustrating a multiplexing format of the mode MU5.
  • the control signal 3 is a radio that is separated (not continuous) from the radio resource that transmits the data signal 4. Resources may be used.
  • FIG. 18 shows a multiplexing format when received by the radio base station apparatus, and the user # 1 layer (Layer for UE # 1) and the user # 2 layer (Layer for UE # 2) have the same radio resources. Indicates that it will be sent.
  • the multiplexing format shown in FIG. 18 is a format for frequency-division-multiplexing a signal for two slots composed of the control signal 3 and a signal for two slots composed of the data signal 4. That is, as shown in FIG. 18, in the allocation band of the user # 1 layer, a 2-slot signal having the SC-FDMA symbol as the control signal 3a is allocated to a specific frequency band, and the SC-FDMA symbol is assigned to the data signal 4a. The two-slot signals thus assigned are allocated to a frequency band separated from the frequency band to which the control signal 3a is allocated.
  • a 2-slot signal having the SC-FDMA symbol as the control signal 3b is allocated to a specific frequency band, and a 2-slot signal having the SC-FDMA symbol as the data signal 4b is used as the control signal.
  • 3b is assigned to a frequency band away from the assigned frequency band.
  • inter-slot frequency hopping may be applied by changing the frequency band to which the control signal is assigned in each slot.
  • the radio resource for transmitting the control signal can be adaptively changed in consideration of the type of control signal to be transmitted, the data size of the control signal, information on reception quality, and the like. .
  • FIG. 20 is a block diagram showing a part of the configuration of the mobile terminal apparatus according to Embodiment 2 of the present invention.
  • the mobile terminal apparatus shown in FIG. 20 mainly includes a time / frequency multiplexing switching unit 102, DFT units 103a and 103b, a subcarrier mapping unit 104, an IFFT unit 105, and a CP adding unit 106. It is configured.
  • the time / frequency multiplexing switching unit 102 switches the multiplexing method of the control signal and the data signal. That is, the time / frequency multiplexing switching unit 102 outputs only one of the data signal and the control signal to the DFT units 103a and 103b when the data signal and the control signal are time multiplexed, and when the frequency multiplexing is performed, The data signal and the control signal are output to the DFT units 103a and 103b, respectively.
  • the subcarrier mapping unit 104 maps the frequency domain signal to the subcarrier based on the RB allocation information. That is, in the case of frequency multiplexing, the subcarrier mapping unit 104 separates the data signal and control signal after DFT and assigns them to different radio resources. Moreover, the subcarrier mapping part 104 is also provided with the function which allocates a data signal to PUSCH and allocates a control signal to PUCCH like the said aspect MU3. Further, the subcarrier mapping unit 104 also has an allocation function such as frequency hopping between slots and Distributed FDMA as in the above-described aspects MU4 and MU5.
  • the DFT units 103a and 103b perform DFT on the data signal and convert it into a frequency domain signal.
  • the IFFT unit 105 performs IFFT on the mapped signal and converts it into a time domain signal.
  • CP assigning section 106 assigns a CP to the signal after IFFT.
  • the RB allocation information is notified as control information from the radio base station apparatus. This notification is performed by higher layer signaling via PUSCH or L1 / L2 signaling via PUCCH.
  • FIG. 21 is a block diagram showing a part of the configuration of the radio base station apparatus according to Embodiment 2 of the present invention.
  • the radio base station apparatus illustrated in FIG. 21 is a radio base station apparatus capable of MIMO reception, and the reception unit includes a CP removal unit 201, an FFT unit 202, a subcarrier demapping unit 203, and a signal separation unit 204. , The user separation unit 207, the frequency equalization unit 208, and the IDFT units 206a and 206b.
  • the CP removal unit 201, the FFT unit 202, and the subcarrier demapping unit 203 are respectively included in the reception processing unit of each antenna, and the data signal IDFT units 206a and 206b and the frequency equalization unit 208 are user
  • Each layer processing unit has it.
  • the subcarrier demapping section 203 separates the control signal and the data signal (in terms of time and / or frequency) for each SC-FDMA symbol based on the RB allocation information. Since the radio base station apparatus knows how the control signal and the data signal are multiplexed, the control signal and the data signal can be separated by this processing block.
  • the signal demultiplexing section 204 demultiplexes the signal after subcarrier demapping into a data signal for each transmission layer, using the propagation path estimation value of each user (UE # 1, UE # 2).
  • the channel estimation value is obtained by synchronization detection and channel estimation from the CQI signal for each user extracted from the received signal.
  • the data signal separated into the layer for each user is converted into a time domain signal in the IDFT unit 206a of the signal processing unit (UE # 1, # 2) for each user, and then demodulated and decoded as a data signal. Played.
  • the frequency equalization unit 208 performs channel compensation on the control signal for each user using each channel estimation value.
  • the channel estimation value is obtained by synchronization detection and channel estimation from the CQI signal for each user extracted from the received signal.
  • the channel-compensated control signal is converted into a time domain signal by the IDFT unit 206b, and then demodulated and decoded to reproduce the signal.
  • the user separation unit 207 separates the control signals orthogonalized between users in the mobile terminal device for each user.
  • control signals orthogonalized between users by TDMA are separated by TDMA
  • users are orthogonalized by FDMA as shown in FIGS. 19 (b) and 19 (c).
  • the control signal is separated by FDMA
  • the control signal orthogonalized between users by CDMA is separated by CDMA as shown in FIG.
  • CP removing section 201 uses the estimated value of the reception timing estimated from the received signal to remove a portion corresponding to CP and extract an effective signal portion.
  • the FFT unit 202 performs FFT on the received signal and converts it to a frequency domain signal.
  • the IDFT units 206a and 206b convert frequency domain signals into time domain signals.
  • the time / frequency multiplexing switching unit 102 switches the multiplexing method of the control signal and the data signal.
  • TDM multiplexing format shown in FIGS. 14A, 15A, and 17C
  • FDM multiplex format shown in FIGS. 14B, 15B, 16, 17A, and 18
  • the data signal and the control signal are respectively sent to the DFT units 103a and 103b. Switch to output to.
  • FIGS. 14B, 15B, 16, 17A, and 18 FDM
  • 14C, 15C, and 17B is used (FDM / TDM hybrid), only one of the data signal and the control signal is transmitted in the TDM portion. It outputs to DFT part 103a, 103b, and it switches so that a data signal and a control signal may be output to DFT part 103a, 103b in the part of FDM, respectively.
  • the data signal and control signal from the time / frequency multiplexing switching unit 102 are converted into frequency domain signals by the DFT units 103a and 103b, and the subcarrier mapping unit 104 in FIGS. 14 (a) to 14 (c) and 15 (a). ) To (c), FIG. 16A, FIG. 17A to FIG. 17C, and FIG. The signal mapped in this way is converted into a time-domain signal by the IFFT unit 105 and then CP is given by the CP giving unit 106.
  • the MIMO-transmitted signal is received by the signal processing unit for each antenna, the CP removing unit 201 removes the CP, and the FFT unit 202 sets the signal in the frequency domain.
  • This frequency domain signal is sent from the subcarrier demapping unit 203 to FIGS. 14 (a) to (c), FIGS. 15 (a) to (c), FIGS. 16 (a), (b), and FIGS.
  • Demapping is performed from any of the multiple formats shown in (c) and FIG. This demapping is performed based on the RB allocation information.
  • the data signal after the subcarrier demapping from the processing unit of each antenna is separated into a data signal for each user by the signal separation unit 204.
  • the data signal separated for each user is converted into a time domain signal by the IDFT unit 206a in the signal processing unit for each user, and then demodulated and decoded to be reproduced as a data signal.
  • the control signal after the subcarrier demapping from the processing unit of each antenna is separated into a control signal for each user by the user separation unit 207.
  • the control signal separated for each user is subjected to propagation path compensation by the frequency equalization unit 208 of the signal processing unit for each user, converted into a time domain signal by the IDFT unit 206a, and then demodulated and decoded as a data signal.
  • the signal is played back.
  • the data signal and the control signal are in SC-FDMA symbol units (FFT units) without mixing the data signal and the control signal in one SC-FDMA symbol.
  • FFT units SC-FDMA symbol units
  • interference from the data signal can be excluded. Therefore, by separating the data signal and the control signal and assigning them to different radio resources, the data signal is transmitted using spatial multiplexing and the control signal is also transmitted in the same subframe. The control signal can be received well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

 データ信号について空間多重伝送を用いて伝送し、かつ、同一サブフレームで制御信号も送信する場合において、高品質で効率的良く制御信号を受信できる無線通信方法を提供すること。本発明の無線通信方法は、移動端末装置において、プリコーディング情報を含む下りリンク信号を受信し、データ信号及び制御信号を分離して異なる無線リソースに割り当て、前記プリコーディング情報に基づいて各送信レイヤの信号をMIMO送信し、無線基地局装置において、前記MIMO送信された、前記データ信号及び前記制御信号を含む上りリンク信号を受信し、前記上りリンク信号を送信レイヤ毎のデータ信号に分離し、前記上りリンク信号から前記制御信号を再生する。

Description

移動端末装置、無線基地局装置及び無線通信方法
 本発明は、次世代移動通信システムにおける移動端末装置、無線基地局装置及び無線通信方法に関する。
 UMTS(Universal  Mobile Telecommunications System)ネットワークにおいては、周波数利用効率及びピークデータレートの向上などを目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる周波数利用効率及びピークデータレートの向上、遅延の低減などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が検討されている(非特許文献1)。LTEではW-CDMAとは異なり、マルチアクセス方式として、下り回線(下りリンク)にOFDMA(Orthogonal Frequency Division Multiple Access)をベースとした方式を用い、上り回線(上りリンク)にSC-FDMA(Single Carrier Frequency Division Multiple Access)をベースとした方式を用いている。
 上りリンクで送信される信号は、適切な無線リソースにマッピングされて移動端末装置から無線基地局装置に送信される。この場合において、上りリンクのL1/L2制御信号は、図1に示すフォーマットにより送信される。すなわち、上りデータ送信がある場合には、上りリンクのL1/L2制御信号は、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)に割り当てられたリソースブロック(RB:Resource Block)を使用して送信される。なお、上りリンクのL1/L2制御信号には、下りリンクの品質情報(CQI:Channel Quality Indicator)、下りプリコーディング情報(PMI:Precoding Matrix Indicator)、ランクアダプテーション用のパラメータ(RI:Rank Indicator)、送達確認情報(ACK、NACK)などが含まれる。
 この場合においては、低いピーク対平均電力比(PAPR:Peak-to-Average Power Ratio)を実現するために、L1/L2制御信号とデータ信号とは時間多重する。PUSCHで送信する場合のL1/L2制御信号は、図2に概念的に示されるように、1SC-FDMAシンボル中にデータ信号と共に時間多重されている。図2においてRSは参照信号(Reference Signal)を示す。
 一方、上りデータ送信がない場合には、上りリンクのL1/L2制御信号は、共有チャネルと独立した狭帯域の上り制御チャネル(PUCCH:Physical Uplink Control Channel)を使用する。この場合においては、スロット間の周波数ホッピングにより大きな周波数ダイバーシチ利得を得ることができる。
3GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN", Sept. 2006
 第3世代のシステム(W-CMDA)は、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTEのシステムでは、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる周波数利用効率及びピークデータレートの向上などを目的として、LTEの後継のシステムが検討されている(例えば、LTEアドバンスト(LTE-A))。
 LTE-Aシステムの上り回線では、更なる周波数利用効率の向上が求められており、LTEシステムの約4倍の周波数利用効率が求められている。このような周波数利用効率を大幅に向上させるためには、LTEシステムでは導入されていない上りリンクでの空間多重(MIMO:Multiple-Input Multiple-Output)伝送の適用が必須となると考えられる。
 しかしながら、データ信号について空間多重伝送を用いて伝送し、かつ、同一サブフレームで制御信号も送信する場合において、図1に示すLTEシステムの多重フォーマットをそのまま適用すると、無線基地局装置において、制御信号を復調・復号するために、複雑な受信処理を要する(処理遅延が増大する)ことになる。あるいは、受信処理により完全には干渉を除去できないので、他ストリームからの干渉を受け、制御信号の受信品質が劣化することが考えられる。したがって、データ信号について空間多重伝送を用いて伝送し、かつ、同一サブフレームで制御信号も送信する場合において、高品質で効率的良く制御信号を受信できる無線通信方法が望まれている。
 本発明はかかる点に鑑みてなされたものであり、データ信号について空間多重伝送を用いて伝送し、かつ、同一サブフレームで制御信号も送信する場合において、高品質で効率的良く制御信号を受信できる無線通信方法を提供することを目的とする。
 本発明の移動端末装置は、プリコーディング情報を含む下りリンク信号を受信する下りリンク信号受信手段と、データ信号及び制御信号を分離して異なる無線リソースに割り当てる割り当て手段と、前記プリコーディング情報に基づいて各送信レイヤの信号をMIMO送信する送信手段と、を具備することを特徴とする。
 本発明の無線基地局装置は、MIMO送信された、データ信号及び制御信号を含む上りリンク信号を受信する上りリンク信号受信手段と、前記上りリンク信号を送信レイヤ毎のデータ信号に分離する信号分離手段と、前記上りリンク信号から前記制御信号を再生する信号再生手段と、を具備することを特徴とする。
 本発明の無線通信方法は、移動端末装置において、プリコーディング情報を含む下りリンク信号を受信する工程と、データ信号及び制御信号を分離して異なる無線リソースに割り当てる工程と、前記プリコーディング情報に基づいて各送信レイヤの信号をMIMO送信する工程と、無線基地局装置において、前記MIMO送信された、前記データ信号及び前記制御信号を含む上りリンク信号を受信する工程と、前記上りリンク信号を送信レイヤ毎のデータ信号に分離する工程と、前記上りリンク信号から前記制御信号を再生する工程と、を具備することを特徴とする。
 本発明によれば、移動端末装置において、データ信号及び制御信号を分離して異なる無線リソースに割り当てるので、データ信号について空間多重伝送を用いて伝送し、かつ、同一サブフレームで制御信号も送信する場合において、高品質で効率的良く制御信号を受信できる。
上りリンクL1/L2制御信号の多重フォーマットを示す図である。 PUSCHにおける制御信号の多重を説明するための図である。 本発明において、データ信号と制御信号の時間方向の多重を説明するための図である。 (a)~(c)は、本発明の実施の形態1の態様SU1の多重フォーマットを示す図である。 (a)~(c)は、本発明の実施の形態1の態様SU2の多重フォーマットを示す図である。 (a)~(c)は、本発明の実施の形態1の態様SU3の多重フォーマットを示す図である。 (a)~(c)は、本発明の実施の形態1の態様SU4の多重フォーマットを示す図である。 (a)~(c)は、本発明の実施の形態1の態様SU5の多重フォーマットを示す図である。 (a),(b)は、本発明の実施の形態1の態様SU6の多重フォーマットを示す図である。 (a)~(c)は、本発明の実施の形態1の態様SU7の多重フォーマットを示す図である。 本発明の実施の形態1の態様SU8の多重フォーマットを示す図である。 本発明の実施の形態1に係る移動端末装置の構成の一部を示すブロック図である。 本発明の実施の形態1に係る無線基地局装置の構成の一部を示すブロック図である。 (a)~(c)は、本発明の実施の形態2の態様MU1の多重フォーマットを示す図である。 (a)~(c)は、本発明の実施の形態2の態様MU2の多重フォーマットを示す図である。 (a),(b)は、本発明の実施の形態2の態様MU3の多重フォーマットを示す図である。 (a)~(c)は、本発明の実施の形態2の態様MU4の多重フォーマットを示す図である。 本発明の実施の形態2の態様MU5の多重フォーマットを示す図である。 (a)~(d)は、本発明の実施の形態2におけるユーザ間直交多重を説明するための図である。 本発明の実施の形態2に係る移動端末装置の構成の一部を示すブロック図である。 本発明の実施の形態2に係る無線基地局装置の構成の一部を示すブロック図である。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
 本発明においては、移動端末装置において、プリコーディング情報を含む下りリンク信号を受信し、データ信号及び制御信号を分離して異なる無線リソースに割り当て、前記プリコーディング情報に基づいて各送信レイヤの信号をMIMO送信し、無線基地局装置において、前記MIMO送信された、前記データ信号及び前記制御信号を含む上りリンク信号を受信し、前記上りリンク信号を送信レイヤ毎のデータ信号に分離し、前記上りリンク信号から前記制御信号を再生する。
 上述したようにLTE-AシステムのようなLTEシステムの後継のシステムにおいては、更なる周波数利用効率の向上が求められており、上りリンクでの空間多重伝送の適用が必須となる。データ信号について空間多重伝送を用いて伝送し、かつ、同一サブフレームで制御信号も送信する場合において、LTEシステムの多重フォーマットをそのまま適用すると、無線基地局装置において、処理遅延が増大したり、制御信号の受信品質が劣化することが考えられる。
 LTEシステムの多重フォーマットにおいては、図2に示すように、受信処理の単位である1SC-FDMAシンボル内に、データ信号と制御信号とが混在するため、マルチパスの存在する移動通信環境では、制御信号を復調する場合に、データ信号からの干渉の影響を受ける。本発明者は、図3に示すように、1SC-FDMAシンボル内にデータ信号と制御信号とを混在させずに、SC-FDMAシンボル単位(FFT処理をする単位)でデータ信号と制御信号とを時間多重すれば、データ信号からの干渉を除外できることに着目し、データ信号及び制御信号を分離して異なる無線リソースに割り当てることにより、データ信号について空間多重伝送を用いて伝送し、かつ、同一サブフレームで制御信号も送信する場合において、高品質で効率的良く制御信号を受信できることを見出し本発明をするに至った。
 すなわち、本発明の骨子は、移動端末装置において、プリコーディング情報を含む下りリンク信号を受信し、データ信号及び制御信号を分離して異なる無線リソースに割り当て、前記プリコーディング情報に基づいて各送信レイヤの信号をMIMO送信し、無線基地局装置において、前記MIMO送信された、前記データ信号及び前記制御信号を含む上りリンク信号を受信し、前記上りリンク信号を送信レイヤ毎のデータ信号に分離し、前記上りリンク信号から前記制御信号を再生することにより、データ信号について空間多重伝送を用いて伝送し、かつ、同一サブフレームで制御信号も送信する場合において、高品質で効率的良く制御信号を受信することである。
(実施の形態1)
 本実施の形態においては、一つの移動端末装置が同じ無線リソースで異なる送信レイヤを用いてMIMO伝送する場合(Single-User MIMO:SU-MIMO)について説明する。本実施の形態においては、データ信号及び制御信号を分離して異なる無線リソースに割り当て、このように割り当てた各送信レイヤの信号をMIMO送信する。なお、本実施の形態において、送信レイヤが2つの場合(Layer #1,Layer #2)について説明しているが、本発明はこれに限定されず、送信レイヤが3つ以上の場合にも同様に適用することができる。
(態様SU1)
 図4(a)~(c)は、態様SU1の多重フォーマットを示す図である。なお、図4において、RS及びCP(Cyclic Prefix)は省略している(図5~図11についても同じ)。この多重フォーマットにおいては、一つのスロットから制御信号1を送信するようになっている。また、この多重フォーマットにおいては、あるサブフレームで、制御信号1が一つの送信レイヤの無線リソースのみから送信するようになっている。
 図4(a)に示す多重フォーマットは、1スロットにおいて、制御信号1のSC-FDMAシンボルとデータ信号2のSC-FDMAシンボルとを時間分割多重(TDM(Time Division Multiplex))するフォーマットである。すなわち、図4(a)に示すように、割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2とする。また、制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図4(a)においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図4(a)においてレイヤ#2)では送信しないようにする。
 図4(b)に示す多重フォーマットは、制御信号1で構成される1スロット分の信号とデータ信号2で構成される1スロット分の信号とを周波数分割多重(FDM(Frequency Division Multiplex))するフォーマットである。すなわち、図4(b)に示すように、割り当て帯域において、SC-FDMAシンボルを制御信号1とした1スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号2とした1スロットの信号を他の周波数帯域に割り当てる。また、制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図4(b)においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図4(b)においてレイヤ#2)では送信しないようにする。
 図4(c)に示す多重フォーマットは、所定SC-FDMAシンボルにおいて、制御信号1のSC-FDMAシンボルをデータ信号2のSC-FDMAシンボルと時間分割多重すると共に、制御信号1で構成される所定SC-FDMAシンボル分の信号とデータ信号2で構成される所定SC-FDMAシンボル分とを周波数分割多重(FDM/TDMハイブリッド)するフォーマットである。すなわち、図4(c)に示すように、割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2として時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号とした1スロットの信号を他の周波数帯域に割り当てる。また、制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図4(c)においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図4(c)においてレイヤ#2)では送信しないようにする。
 本態様において、制御信号を送信する送信レイヤについては、予め固定しても良く、適宜切り替えても良い。制御信号を送信する送信レイヤを切り替える場合には、準静的(semi-static)に切り替えても良く、無線基地局装置でレイヤ毎の受信品質を測定し、その測定結果を移動端末装置にフィードバックして最も受信品質の良いレイヤに切り替えても良い。送信レイヤを適宜切り替える場合には、制御信号を送信するレイヤの番号をPUSCHやPUCCHで通知する。
(態様SU2)
 図5(a)~(c)は、態様SU2の多重フォーマットを示す図である。この多重フォーマットにおいては、一つのスロットから制御信号1を送信するようになっている。また、この多重フォーマットにおいては、制御信号1を複数の送信レイヤ(図5においては、レイヤ#1、レイヤ#2)で送信するようになっている。この多重フォーマットで送信することにより、送信ダイバーシチを適用することができるので、ダイバーシチ利得により、無線基地局装置において制御信号1を高品質で受信することができる。なお、レイヤ#1の制御信号1とレイヤ#2の制御信号は同じ信号である。また、ここで適用する送信ダイバーシチについては、特に制限はなく、適用可能ないかなる送信ダイバーシチであれば良い。
 図5(a)に示す多重フォーマットは、1スロットにおいて、制御信号1のSC-FDMAシンボルとデータ信号2のSC-FDMAシンボルとを時間分割多重(TDM)するフォーマットである。すなわち、図5(a)に示すように、割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2とする。制御信号1のSC-FDMAシンボルは2つの送信レイヤから送信するようにする。
 図5(b)に示す多重フォーマットは、制御信号1で構成される1スロット分の信号とデータ信号2で構成される1スロット分の信号とを周波数分割多重(FDM)するフォーマットである。すなわち、図5(b)に示すように、割り当て帯域において、SC-FDMAシンボルを制御信号1とした1スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号2とした1スロットの信号を他の周波数帯域に割り当てる。制御信号1のSC-FDMAシンボルは2つの送信レイヤから送信するようにする。
 図5(c)に示す多重フォーマットは、所定SC-FDMAシンボルにおいて、制御信号1のSC-FDMAシンボルをデータ信号2のSC-FDMAシンボルと時間分割多重すると共に、制御信号1で構成される所定SC-FDMAシンボル分の信号とデータ信号2で構成される所定SC-FDMAシンボル分とを周波数分割多重(FDM/TDMハイブリッド)するフォーマットである。すなわち、図5(c)に示すように、割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2として時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号とした1スロットの信号を他の周波数帯域に割り当てる。制御信号1のSC-FDMAシンボルは2つの送信レイヤから送信するようにする。
(態様SU3)
 図6(a)~(c)は、態様SU3の多重フォーマットを示す図である。この多重フォーマットにおいては、2つのスロットから制御信号1を送信するようになっている。また、この多重フォーマットにおいては、あるサブフレームで、制御信号1が一つの送信レイヤの無線リソースのみから送信するようになっている。
 図6(a)に示す多重フォーマットは、2つのスロットにおいて、それぞれ制御信号1のSC-FDMAシンボルとデータ信号2のSC-FDMAシンボルとを時間分割多重(TDM)するフォーマットである。すなわち、図6(a)に示すように、割り当て帯域において、それぞれのスロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2とする。また、制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図6(a)においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図6(a)においてレイヤ#2)では送信しないようにする。
 図6(b)に示す多重フォーマットは、制御信号1で構成される2スロット分の信号とデータ信号2で構成される2スロット分の信号とを周波数分割多重(FDM)するフォーマットである。すなわち、図6(b)に示すように、割り当て帯域において、SC-FDMAシンボルを制御信号1とした1スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号2とした2スロットの信号を他の周波数帯域に割り当てる。また、制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図6(b)においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図6(b)においてレイヤ#2)では送信しないようにする。
 図6(c)に示す多重フォーマットは、特定の周波数領域における所定SC-FDMAシンボル分を制御信号1とするフォーマットであり、制御信号1のSC-FDMAシンボルをデータ信号2のSC-FDMAシンボルと時間分割多重すると共に、制御信号1で構成される所定SC-FDMAシンボル分の信号とデータ信号2で構成される所定SC-FDMAシンボル分とを周波数分割多重(FDM/TDMハイブリッド)するフォーマットである。すなわち、図6(c)に示すように、割り当て帯域において、各スロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2として時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号とした2スロットの信号を他の周波数帯域に割り当てる。また、制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図6(c)においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図6(c)においてレイヤ#2)では送信しないようにする。
 本態様において、制御信号を送信する送信レイヤについては、予め固定しても良く、適宜切り替えても良い。制御信号を送信する送信レイヤを切り替える場合には、準静的(semi-static)に切り替えても良く、無線基地局装置でレイヤ毎の受信品質を測定し、その測定結果を移動端末装置にフィードバックして最も受信品質の良いレイヤに切り替えても良い。送信レイヤを適宜切り替える場合には、制御信号を送信するレイヤの番号をPUSCHやPUCCHで通知する。
(態様SU4)
 図7(a)~(c)は、態様SU4の多重フォーマットを示す図である。この多重フォーマットにおいては、2つのスロットから制御信号1を送信するようになっている。また、この多重フォーマットにおいては、スロット毎に、制御信号1を送信する送信レイヤを切り替えるようになっている。
 図7(a)に示す多重フォーマットは、2つのスロットにおいて、それぞれ制御信号1のSC-FDMAシンボルとデータ信号2のSC-FDMAシンボルとを時間分割多重(TDM)するフォーマットである。すなわち、図7(a)に示すように、割り当て帯域において、それぞれのスロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2とする。また、始めのスロットの制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図7(a)においてレイヤ#1)から送信するようにし、次のスロットの制御信号1のSC-FDMAシンボルは他の送信レイヤ(図7(a)においてレイヤ#2)から送信するようにする。
 図7(b)に示す多重フォーマットは、制御信号1で構成される2スロット分の信号とデータ信号2で構成される2スロット分の信号とを周波数分割多重(FDM)するフォーマットである。すなわち、図7(b)に示すように、割り当て帯域において、SC-FDMAシンボルを制御信号1とした1スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号2とした2スロットの信号を他の周波数帯域に割り当てる。また、始めのスロットの制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図7(b)においてレイヤ#1)から送信するようにし、次のスロットの制御信号1のSC-FDMAシンボルは他の送信レイヤ(図7(b)においてレイヤ#2)から送信するようにする。
 図7(c)に示す多重フォーマットは、所定SC-FDMAシンボルにおいて、制御信号1のSC-FDMAシンボルをデータ信号2のSC-FDMAシンボルと時間分割多重すると共に、制御信号1で構成される所定SC-FDMAシンボル分の信号とデータ信号2で構成される所定SC-FDMAシンボル分とを周波数分割多重(FDM/TDMハイブリッド)するフォーマットである。すなわち、図7(c)に示すように、割り当て帯域において、1スロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2として時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号とした2スロットの信号を他の周波数帯域に割り当てる。また、始めのスロットの制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図7(c)においてレイヤ#1)から送信するようにし、次のスロットの制御信号1のSC-FDMAシンボルは他の送信レイヤ(図7(c)においてレイヤ#2)から送信するようにする。
 本態様において、制御信号を送信する送信レイヤについては、予め決められた送信レイヤのパターンにしたがう。このパターンは固定しても良く、適宜切り替えても良い。制御信号を送信する送信レイヤパターンを切り替える場合には、例えば、準静的(semi-static)に切り替える。送信レイヤパターンを適宜切り替える場合には、制御信号を送信するレイヤパターンの番号をPUSCHやPUCCHで通知する。
(態様SU5)
 図8(a)~(c)は、態様SU5の多重フォーマットを示す図である。この多重フォーマットにおいては、2つのスロットから制御信号1を送信するようになっている。また、この多重フォーマットにおいては、制御信号1を複数の送信レイヤ(図8においては、レイヤ#1、レイヤ#2)で送信するようになっている。この多重フォーマットで送信することにより、送信ダイバーシチを適用することができるので、ダイバーシチ利得により、無線基地局装置において制御信号1を高品質で受信することができる。なお、レイヤ#1の制御信号1とレイヤ#2の制御信号は同じ信号である。また、ここで適用する送信ダイバーシチについては、特に制限はなく、適用可能ないかなる送信ダイバーシチであれば良い。
 図8(a)に示す多重フォーマットは、それぞれのスロットにおいて、制御信号1のSC-FDMAシンボルとデータ信号2のSC-FDMAシンボルとを時間分割多重(TDM)するフォーマットである。すなわち、図8(a)に示すように、割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2とする。制御信号1のSC-FDMAシンボルは2つの送信レイヤから送信するようにする。
 図8(b)に示す多重フォーマットは、制御信号1で構成される2スロット分の信号とデータ信号2で構成される2スロット分の信号とを周波数分割多重(FDM)するフォーマットである。すなわち、図8(b)に示すように、割り当て帯域において、SC-FDMAシンボルを制御信号1とした2スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号2とした2スロットの信号を他の周波数帯域に割り当てる。制御信号1のSC-FDMAシンボルは2つの送信レイヤから送信するようにする。
 図8(c)に示す多重フォーマットは、所定SC-FDMAシンボルにおいて、制御信号1のSC-FDMAシンボルをデータ信号2のSC-FDMAシンボルと時間分割多重すると共に、制御信号1で構成される所定SC-FDMAシンボル分の信号とデータ信号2で構成される所定SC-FDMAシンボル分とを周波数分割多重(FDM/TDMハイブリッド)するフォーマットである。すなわち、図8(c)に示すように、割り当て帯域において、それぞれのスロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2として時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号とした2スロットの信号を他の周波数帯域に割り当てる。制御信号1のSC-FDMAシンボルは2つの送信レイヤから送信するようにする。
(態様SU6)
 図9(a),(b)は、態様SU6の多重フォーマットを示す図である。この多重フォーマットにおいては、PUCCHで制御信号1を送信し、PUSCHでデータ信号2のみを送信するようになっている。本態様では、PUSCH送信とPUCCH送信とを同時に行う。
 図9(a)に示す多重フォーマットは、PUSCHではデータ信号2のみを送信するようにし、PUCCHでは、スロット毎に異なる周波数帯域で制御信号1を送信する。この場合において、PUCCHの制御信号1はスロット間周波数ホッピングされている。すなわち、図9(a)に示すように、PUSCHでは、2つの送信レイヤでデータ信号2を送信するようになっており、PUCCHでは、スロット毎に異なる周波数領域で制御信号1を送信するようになっている。また、制御信号1は、一つの送信レイヤ(図9(a)においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図9(a)においてレイヤ#2)では送信しないようにする。
 本態様において、制御信号を送信する送信レイヤについては、予め固定しても良く、適宜切り替えても良い。制御信号を送信する送信レイヤを切り替える場合には、準静的(semi-static)に切り替えても良く、無線基地局装置でレイヤ毎の受信品質を測定し、その測定結果を移動端末装置にフィードバックして最も受信品質の良いレイヤに切り替えても良い。送信レイヤを適宜切り替える場合には、制御信号を送信するレイヤの番号をPUSCHやPUCCHで通知する。
 図9(b)に示す多重フォーマットは、PUSCHでデータ信号2のみを送信するようになっており、PUSCHでMIMO伝送を行う場合には、PUCCHで制御信号を送信しないようになっている。すなわち、PUSCHでMIMO伝送を行う場合に、制御信号1の送信をスキップする。この場合においては、移動端末装置は、無線基地局装置からの下り制御信号に含まれるULスケジューリンググラントを参照し、MIMO伝送で上りリンク信号を送信する指示があったときに、図9(b)に示す多重フォーマットでデータ信号を送信する。
(態様SU7)
 図10(a)~(c)は、態様SU7の多重フォーマットを示す図である。上記態様SU3のように、2つのスロットから制御信号1を送信する場合において、制御信号とデータ信号とをFDM又はFDM/TDMハイブリッドで多重するときには、制御信号を送信する無線リソースは、スロット間で周波数ホッピングしても良い。
 図10(a)に示す多重フォーマットは、制御信号1で構成される1スロット分の信号とデータ信号2で構成される2スロット分の信号とを周波数分割多重(FDM)するフォーマットである。すなわち、図10(a)に示すように、割り当て帯域において、SC-FDMAシンボルを制御信号1とした1スロットの信号とSC-FDMAシンボルをデータ信号2とした1スロットの信号とを時間多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号2とした2スロットの信号を他の周波数帯域に割り当てる。このとき、各スロットで制御信号を割り当てる周波数帯域を変えてスロット間周波数ホッピングを適用する。また、制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図10(a)においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図10(a)においてレイヤ#2)では送信しないようにする。
 図10(b)に示す多重フォーマットは、特定の周波数領域における所定SC-FDMAシンボル分を制御信号1とするフォーマットであり、制御信号1のSC-FDMAシンボルをデータ信号2のSC-FDMAシンボルと時間分割多重すると共に、制御信号1で構成される所定SC-FDMAシンボル分の信号とデータ信号2で構成される所定SC-FDMAシンボル分とを周波数分割多重(FDM/TDMハイブリッド)するフォーマットである。すなわち、図10(b)に示すように、割り当て帯域において、各スロットの特定のSC-FDMAシンボルを制御信号1とし、その他のSC-FDMAシンボルをデータ信号2として時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号とした2スロットの信号を他の周波数帯域に割り当てる。このとき、各スロットで制御信号を割り当てる周波数帯域を変えてスロット間周波数ホッピングを適用する。また、制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図10(b)においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図10(b)においてレイヤ#2)では送信しないようにする。
 図10(c)に示す多重フォーマットは、制御信号1とデータ信号2とをTDMで多重する場合のDistributed FDM(くし歯状のスペクトルにより制御信号とデータ信号とを多重)のフォーマットである。すなわち、図10(c)に示すように、1つのスロットの特定のSC-FDMAシンボルについて、割り当て帯域をくし歯状の周波数領域に分け、制御信号1とデータ信号2とが交互に配置するように割り当てる。また、制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図10(c)においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図10(c)においてレイヤ#2)では送信しないようにする。このようなDistributed FDMを適用することにより、制御信号のオーバーヘッドを低減することができる。
(態様SU8)
 図11は、態様SU8の多重フォーマットを示す図である。サブフレーム内の2つのスロットから制御信号を送信し、制御信号1とデータ信号2とをFDMで多重する場合、制御信号1はデータ信号2を送信する無線リソースと離れた(連続しない)無線リソースを用いても良い。
 図11に示す多重フォーマットは、制御信号1で構成される2スロット分の信号とデータ信号2で構成される2スロット分の信号とを周波数分割多重(FDM)するフォーマットである。すなわち、図11に示すように、割り当て帯域において、SC-FDMAシンボルを制御信号1とした2スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号2とした2スロットの信号を、制御信号1を割り当てた周波数帯域から離れた周波数帯域に割り当てる。また、制御信号1のSC-FDMAシンボルは一つの送信レイヤ(図11においてレイヤ#1)からのみ送信するようにし、他の送信レイヤ(図11においてレイヤ#2)では送信しないようにする。本態様においては、態様SU7と同様に、各スロットで制御信号を割り当てる周波数帯域を変えてスロット間周波数ホッピングを適用しても良い。
 上記態様SU1から態様SU8において、制御信号1を送信するための無線リソースは、送信する制御信号の種類、制御信号のデータサイズ、受信品質の情報などを考慮して、適応的に変更することができる。
 図12は、本発明の実施の形態1に係る移動端末装置の構成の一部を示すブロック図である。図12に示す移動端末装置は、MIMO伝送可能な移動端末装置であり、その送信部は、レイヤ切替え部101と、時間/周波数多重切替え部102と、離散フーリエ変換(DFT:Discrete Fourier Transform)部103a,103bと、サブキャリアマッピング部104と、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)部105と、CP付与部106と、プリコーディング部107とから主に構成されている。時間/周波数多重切替え部102、DFT部103a,103b、サブキャリアマッピング部104、IFFT部105、及びCP付与部106については、各送信レイヤの処理部がそれぞれ有している。
 レイヤ切替え部101は、制御信号を送信するレイヤを適応的に切り替える。すなわち、制御信号を異なる送信レイヤに出力するように切り替える。この送信レイヤの切り替えは、無線基地局装置から通知される制御情報に含まれるレイヤ番号にしたがって行われる。上記態様SU1及び態様SU3において、レイヤ切替え部101は、制御信号を一つの送信レイヤに出力するように切り替える。上記態様SU4において、レイヤ切替え部101は、スロット毎に制御信号を異なる送信レイヤに出力するように切り替える。上記態様SU2及び態様SU5においては、送信ダイバーシチを適用するので、レイヤ切替え部101は、送信ダイバーシチするすべての送信レイヤに制御信号を出力するように切り替える。
 時間/周波数多重切替え部102は、制御信号とデータ信号の多重方式を切り替える。すなわち、時間/周波数多重切替え部102は、データ信号と制御信号とを時間多重する場合は、データ信号と制御信号のどちらか一方のみをDFT部103a,103bに出力し、周波数多重する場合は、データ信号と制御信号をそれぞれDFT部103a,103bに出力する。
 サブキャリアマッピング部104は、周波数領域の信号をRB割り当て情報に基づいてサブキャリアにマッピングする。すなわち、サブキャリアマッピング部104は、周波数多重の場合に、DFT後のデータ信号及び制御信号を分離して異なる無線リソースに割り当てる。また、サブキャリアマッピング部104は、上記態様SU6のように、データ信号をPUSCHに割り当て、制御信号をPUCCHに割り当てる機能も備えている。また、サブキャリアマッピング部104は、上記態様SU7及び態様SU8のように、スロット間の周波数ホッピングやDistributed FDMAなどの割り当ての機能も備えている。
 DFT部103a,103bは、データ信号をDFTして周波数領域の信号に変換する。IFFT部105は、マッピングされた信号をIFFTして時間領域の信号に変換する。CP付与部106は、IFFT後の信号にCPを付与する。プリコーディング部107は、MIMO伝送(送信ダイバーシチを含む)する際に、プリコーディング情報に基づいて送信レイヤ毎の信号にプリコーディングウェイトを乗算して、各アンテナ(アンテナ#1,#2)に対応する送信信号を生成する。
 なお、レイヤ番号、RB割り当て情報及びプリコーディング情報は、無線基地局装置から制御情報として通知される。この通知は、PUSCHを介するHigher Layer signalingや、PUCCHを介するL1/L2 signalingにより行われる。
 図13は、本発明の実施の形態1に係る無線基地局装置の構成の一部を示すブロック図である。図13に示す無線基地局装置は、MIMO受信可能な無線基地局装置であり、その受信部は、CP除去部201と、高速フーリエ変換(FFT:Fast Fourier Transform)部202と、サブキャリアデマッピング部203と、信号分離部204と、周波数等化部・合成部205と、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)部206a,206bから主に構成されている。CP除去部201、FFT部202及びサブキャリアデマッピング部203については、各アンテナの受信処理部がそれぞれ有しており、データ信号用のIDFT部206aについては、レイヤ毎の処理部がそれぞれ有している。
 サブキャリアデマッピング部203は、RB割り当て情報に基づいて、SC-FDMAシンボル毎に、制御信号とデータ信号とを(時間的及び/又は周波数的に)分離する。無線基地局装置においては、制御信号とデータ信号とがどのように多重されているかについて既知であるので、この処理ブロックで制御信号とデータ信号を分離することができる。
 信号分離部204は、伝搬路推定値を用いて、サブキャリアデマッピング後の信号を送信レイヤ毎のデータ信号に分離する。この伝搬路推定値は、受信信号から抽出されたCQI信号から同期検出・チャネル推定により求められる。レイヤ毎に分離されたデータ信号は、レイヤ毎の信号処理部(Layer #1,#2)のIDFT部206aにおいて時間領域の信号に変換された後に、復調、復号されてデータ信号として信号再生される。
 周波数等化部・合成部205は、レイヤ番号にしたがって、レイヤ毎に受信した制御信号について、それぞれ伝搬路推定値を用いて伝搬路補償する。この伝搬路推定値は、受信信号から抽出されたCQI信号から同期検出・チャネル推定により求められる。伝搬路補償された制御信号は、IDFT部206bで時間領域の信号に変換された後に、復調、復号されて信号再生される。周波数等化部・合成部205は、上記態様SU2及び態様SU5のように、制御信号に送信ダイバーシチが適用された場合に、制御信号が合成される。これにより、送信ダイバーシチの利得を得ることができる。
 CP除去部201は、受信信号から推定された受信タイミングの推定値を用いて、CPに相当する部分を除去して有効な信号部分を抽出する。FFT部202は、受信信号をFFTして周波数領域の信号に変換する。IDFT部206a,206bは、周波数領域の信号を時間領域の信号に変換する。
 上記構成を有する無線基地局装置と移動端末装置とを用いた本実施の形態に係る無線通信方法について態様毎に説明する。
(態様SU1、態様SU3及び態様SU6~態様SU8)
 移動端末装置において、レイヤ切替え部101が制御信号の出力を切り替える。図4、図6、図9、図10又は図11に示す例では、送信レイヤ1で制御信号を送信するので、レイヤ切替え部101は、送信レイヤ1(Layer #1)の処理部の時間/周波数多重切替え部102に制御信号を出力するように切り替える。なお、態様SU6の場合においては、データ信号をMIMO送信するときに、制御信号を送信しない態様(図9(b))もあるので、そのときには、レイヤ切替え部101は、送信レイヤ1の処理部の時間/周波数多重切替え部102への制御信号の出力を停止する。
 次いで、時間/周波数多重切替え部102が、制御信号とデータ信号の多重方式を切り替える。図4(a)、図6(a)及び図10(c)に示す多重フォーマットを用いる場合(TDM)には、データ信号と制御信号のどちらか一方のみをDFT部103a,103bに出力するように切り替える。また、図4(b)、図6(b)、図9(a)、図10(a)及び図11に示す多重フォーマットを用いる場合(FDM)には、データ信号と制御信号をそれぞれDFT部103a,103bに出力するように切り替える。また、図4(c)、図6(c)及び図10(b)に示す多重フォーマットを用いる場合(FDM/TDMハイブリッド)には、TDMの部分ではデータ信号と制御信号のどちらか一方のみをDFT部103a,103bに出力し、FDMの部分ではデータ信号と制御信号をそれぞれDFT部103a,103bに出力するように切り替える。
 時間/周波数多重切替え部102からのデータ信号及び制御信号は、DFT部103a,103bで周波数領域の信号に変換され、サブキャリアマッピング部104で図4(a)~(c)、図6(a)~(c)、図9(a)、図10(a)~(c)及び図11のいずれかの多重フォーマットにマッピングされる。このようにマッピングされた信号は、IFFT部105で時間領域の信号に変換された後に、CP付与部106でCPが付与される。
 一方、制御信号を送信しない送信レイヤ2(Layer #2)の処理部においては、データ信号のみが、DFT部で周波数領域の信号に変換され、サブキャリアマッピング部で図4(a)~(c)、図6(a)~(c)、図9(a)、図10(a)~(c)及び図11のいずれかの多重フォーマットにマッピングされる。なお、図9(b)に示す態様(MIMO送信の際に制御信号を送信しない態様)の場合には、送信レイヤ1及び送信レイヤ2の処理部においては、データ信号のみが、DFT部で周波数領域の信号に変換され、サブキャリアマッピング部で図9(b)の多重フォーマットにマッピングされる。これらのマッピングは、RB割り当て情報に基づいて行われる。このようにマッピングされた信号は、IFFT部で時間領域の信号に変換された後に、CP付与部でCPが付与される。
 送信レイヤ1の処理部からの信号及び送信レイヤ2の処理部からの信号は、プリコーディング部107において、プリコーディング情報に基づいてプリコーディングウェイトがそれぞれ乗算され、各アンテナに対応する送信信号となり、アンテナ#1,#2からそれぞれ上りリンク信号として送信される(MIMO送信)。
 無線基地局装置においては、MIMO送信された信号を、アンテナ毎の信号処理部で受信し、CP除去部201でCPを除去した後にFFT部202で周波数領域の信号とする。この周波数領域の信号は、サブキャリアデマッピング部203で図4(a)~(c)、図6(a)~(c)、図9(a),(b)、図10(a)~(c)及び図11のいずれかの多重フォーマットからデマッピングされる。このデマッピングは、RB割り当て情報に基づいて行われる。
 各アンテナの処理部からのサブキャリアデマッピング後のデータ信号は、信号分離部204で、送信レイヤ毎のデータ信号に分離される。レイヤ毎に分離されたデータ信号は、レイヤ毎の信号処理部においてIDFT部206aで時間領域の信号に変換された後に、復調、復号されてデータ信号として信号再生される。一方、アンテナ#1の処理部からのサブキャリアデマッピング後の制御信号は、周波数等化部・合成部205で、それぞれ伝搬路推定値を用いて伝搬路補償された後に、IDFT部206aで時間領域の信号に変換され、その後、復調、復号されて制御信号として信号再生される。
(態様SU2及び態様SU5)
 移動端末装置において、レイヤ切替え部101が制御信号の出力を切り替える。図5又は図8に示す例では、送信レイヤ1及び送信レイヤ2で制御信号を送信するので、レイヤ切替え部101は、送信レイヤ1(Layer #1)及び送信レイヤ2(Layer #2)の処理部の時間/周波数多重切替え部102に制御信号を出力するように切り替える。
 次いで、時間/周波数多重切替え部102が、制御信号とデータ信号の多重方式を切り替える。図5(a)及び図8(a)に示す多重フォーマットを用いる場合(TDM)には、データ信号と制御信号のどちらか一方のみをDFT部103a,103bに出力するように切り替える。また、図5(b)及び図8(b)に示す多重フォーマットを用いる場合(FDM)には、データ信号と制御信号をそれぞれDFT部103a,103bに出力するように切り替える。また、図5(c)及び図8(c)に示す多重フォーマットを用いる場合(FDM/TDMハイブリッド)には、TDMの部分ではデータ信号と制御信号のどちらか一方のみをDFT部103a,103bに出力し、FDMの部分ではデータ信号と制御信号をそれぞれDFT部103a,103bに出力するように切り替える。
 時間/周波数多重切替え部102からのデータ信号及び制御信号は、DFT部103a,103bで周波数領域の信号に変換され、サブキャリアマッピング部104で図5(a)~(c)又は図8(a)~(c)のいずれかの多重フォーマットにマッピングされる。このようにマッピングされた信号は、IFFT部105で時間領域の信号に変換された後に、CP付与部106でCPが付与される。
 送信レイヤ1の処理部からの信号及び送信レイヤ2の処理部からの信号は、プリコーディング部107において、プリコーディング情報に基づいてプリコーディングウェイトがそれぞれ乗算され、各アンテナに対応する送信信号となり、アンテナ#1,#2からそれぞれ上りリンク信号として送信される(MIMO送信)。
 無線基地局装置においては、MIMO送信された信号を、アンテナ毎の信号処理部で受信し、CP除去部201でCPを除去した後にFFT部202で周波数領域の信号とする。この周波数領域の信号は、サブキャリアデマッピング部203で図5(a)~(c)又は図8(a)~(c)のいずれかの多重フォーマットからデマッピングされる。このデマッピングは、RB割り当て情報に基づいて行われる。
 各アンテナの処理部からのサブキャリアデマッピング後のデータ信号は、信号分離部204で、送信レイヤ毎のデータ信号に分離される。レイヤ毎に分離されたデータ信号は、レイヤ毎の信号処理部においてIDFT部206aで時間領域の信号に変換された後に、復調、復号されてデータ信号として信号再生される。一方、各アンテナの処理部からのサブキャリアデマッピング後の制御信号は、周波数等化部・合成部205で、それぞれ伝搬路推定値を用いて伝搬路補償された後に合成され、IDFT部206aで時間領域の信号に変換され、その後、復調、復号されて制御信号として信号再生される。
(態様SU4)
 移動端末装置において、レイヤ切替え部101が制御信号の出力を切り替える。図7に示す例では、送信レイヤ1及び送信レイヤ2で制御信号をスロット毎に切り替えて送信するので、レイヤ切替え部101は、送信レイヤ1(Layer #1)及び送信レイヤ2(Layer #2)の処理部の時間/周波数多重切替え部102に制御信号を出力するように切り替える。
 次いで、時間/周波数多重切替え部102が、制御信号とデータ信号の多重方式を切り替える。図7(a)に示す多重フォーマットを用いる場合(TDM)には、データ信号と制御信号のどちらか一方のみをDFT部103a,103bに出力するように切り替える。また、図7(b)に示す多重フォーマットを用いる場合(FDM)には、データ信号と制御信号をそれぞれDFT部103a,103bに出力するように切り替える。また、図7(c)に示す多重フォーマットを用いる場合(FDM/TDMハイブリッド)には、TDMの部分ではデータ信号と制御信号のどちらか一方のみをDFT部103a,103bに出力し、FDMの部分ではデータ信号と制御信号をそれぞれDFT部103a,103bに出力するように切り替える。
 時間/周波数多重切替え部102からのデータ信号及び制御信号は、DFT部103a,103bで周波数領域の信号に変換され、サブキャリアマッピング部104で図7(a)~(c)のいずれかの多重フォーマットにマッピングされる。このようにマッピングされた信号は、IFFT部105で時間領域の信号に変換された後に、CP付与部106でCPが付与される。
 送信レイヤ1の処理部からの信号及び送信レイヤ2の処理部からの信号は、プリコーディング部107において、プリコーディング情報に基づいてプリコーディングウェイトがそれぞれ乗算され、各アンテナに対応する送信信号となり、アンテナ#1,#2からそれぞれ上りリンク信号として送信される(MIMO送信)。
 無線基地局装置においては、MIMO送信された信号を、アンテナ毎の信号処理部で受信し、CP除去部201でCPを除去した後にFFT部202で周波数領域の信号とする。この周波数領域の信号は、サブキャリアデマッピング部203で図7(a)~(c)のいずれかの多重フォーマットからデマッピングされる。このデマッピングは、RB割り当て情報に基づいて行われる。
 各アンテナの処理部からのサブキャリアデマッピング後のデータ信号は、信号分離部204で、送信レイヤ毎のデータ信号に分離される。レイヤ毎に分離されたデータ信号は、レイヤ毎の信号処理部においてIDFT部206aで時間領域の信号に変換された後に、復調、復号されてデータ信号として信号再生される。一方、アンテナ#1及びアンテナ#2の処理部からのサブキャリアデマッピング後の制御信号は、周波数等化部・合成部205で、それぞれ伝搬路推定値を用いて伝搬路補償された後に、IDFT部206aで時間領域の信号に変換され、その後、復調、復号されて制御信号として信号再生される。
 このように、本実施の形態に係る無線通信方法においては、1SC-FDMAシンボル内にデータ信号と制御信号とを混在させずに、SC-FDMAシンボル単位(FFTする単位)でデータ信号と制御信号とを時間多重しているので、データ信号からの干渉を除外することができる。このため、データ信号及び制御信号を分離して異なる無線リソースに割り当てることにより、データ信号について空間多重伝送を用いて伝送し、かつ、同一サブフレームで制御信号も送信する場合において、高品質で効率的良く制御信号を受信できる。
(実施の形態2)
 本実施の形態においては、異なる移動端末装置が同じ無線リソースで異なる送信レイヤを用いてMIMO伝送する場合(Multiple-User MIMO:MU-MIMO)について説明する。本実施の形態においては、データ信号及び制御信号を分離して異なる無線リソースに割り当て、このように割り当てた各送信レイヤの信号をMIMO送信する。なお、本実施の形態において、送信レイヤが2つの場合(Layer #1,Layer #2)について説明しているが、本発明はこれに限定されず、送信レイヤが3つ以上の場合にも同様に適用することができる。
(態様MU1)
 図14(a)~(c)は、態様MU1の多重フォーマットを示す図である。なお、図14において、RS及びCP(Cyclic Prefix)は省略している(図15~図19についても同じ)。この多重フォーマットにおいては、一つのスロットから制御信号3を送信するようになっている。図14は、無線基地局装置で受信した際の多重フォーマットを示しており、ユーザ#1のレイヤ(Layer for UE#1)とユーザ#2のレイヤ(Layer for UE#2)とが同じ無線リソースで送信されることを示している。
 図14(a)に示す多重フォーマットは、それぞれのユーザのレイヤにおいて、1スロットにおける制御信号3のSC-FDMAシンボルとデータ信号4のSC-FDMAシンボルとを時間分割多重するフォーマットである。すなわち、図14(a)に示すように、ユーザ#1のレイヤの割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号3aとし、その他のSC-FDMAシンボルをデータ信号4aとする。また、ユーザ#2のレイヤの割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号3bとし、その他のSC-FDMAシンボルをデータ信号4bとする。
 図14(b)に示す多重フォーマットは、それぞれのユーザのレイヤにおいて、制御信号3で構成される1スロット分の信号とデータ信号4で構成される1スロット分の信号とを周波数分割多重するフォーマットである。すなわち、図14(b)に示すように、ユーザ#1のレイヤの割り当て帯域において、SC-FDMAシンボルを制御信号3aとした1スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号4aとした1スロットの信号を他の周波数帯域に割り当てる。また、ユーザ#2のレイヤの割り当て帯域において、SC-FDMAシンボルを制御信号3bとした1スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号4bとした1スロットの信号を他の周波数帯域に割り当てる。
 図14(c)に示す多重フォーマットは、それぞれのユーザのレイヤにおいて、所定SC-FDMAシンボルで、制御信号3のSC-FDMAシンボルをデータ信号4のSC-FDMAシンボルと時間分割多重すると共に、制御信号3で構成される所定SC-FDMAシンボル分の信号とデータ信号4で構成される所定SC-FDMAシンボル分とを周波数分割多重(FDM/TDMハイブリッド)するフォーマットである。すなわち、図14(c)に示すように、ユーザ#1のレイヤの割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号3aとし、その他のSC-FDMAシンボルをデータ信号4aとして時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号4aとした1スロットの信号を他の周波数帯域に割り当てる。また、ユーザ#2のレイヤの割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号3bとし、その他のSC-FDMAシンボルをデータ信号4bとして時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号4bとした1スロットの信号を他の周波数帯域に割り当てる。
 図14において、各ユーザのレイヤにおける制御信号3a,3bは、互いにユーザ間直交多重された信号である。このユーザ間直交多重としては、図19(a)に示すようなTDMA(Time Division Multiple Access)、図19(b),(c)に示すようなFDMA(Frequency Division Multiple Access)(Localized FDMAやDistributed FDMA(くし歯状のスペクトルにより制御信号とデータ信号とを多重))及び/又は図19(d)に示すようなCDMA(Code Division Multiple Access)(例えば、ブロック拡散)を挙げることができる。
(態様MU2)
 図15(a)~(c)は、態様MU2の多重フォーマットを示す図である。この多重フォーマットにおいては、2つのスロットから制御信号1を送信するようになっている。また、この多重フォーマットにおいては、制御信号3を送信するようになっている。図15は、無線基地局装置で受信した際の多重フォーマットを示しており、ユーザ#1のレイヤ(Layer for UE#1)とユーザ#2のレイヤ(Layer for UE#2)とが同じ無線リソースで送信されることを示している。
 図15(a)に示す多重フォーマットは、それぞれのユーザのレイヤにおいて、それぞれのスロットにおける制御信号3のSC-FDMAシンボルとデータ信号4のSC-FDMAシンボルとを時間分割多重するフォーマットである。すなわち、図15(a)に示すように、ユーザ#1のレイヤの割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号3aとし、その他のSC-FDMAシンボルをデータ信号4aとする。また、ユーザ#2のレイヤの割り当て帯域において、一つのスロットの特定のSC-FDMAシンボルを制御信号3bとし、その他のSC-FDMAシンボルをデータ信号4bとする。
 図15(b)に示す多重フォーマットは、それぞれのユーザのレイヤにおいて、制御信号3で構成される2スロット分の信号とデータ信号4で構成される2スロット分の信号とを周波数分割多重するフォーマットである。すなわち、図15(b)に示すように、ユーザ#1のレイヤの割り当て帯域において、SC-FDMAシンボルを制御信号3aとした2スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号4aとした2スロットの信号を他の周波数帯域に割り当てる。また、ユーザ#2のレイヤの割り当て帯域において、SC-FDMAシンボルを制御信号3bとした2スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号4bとした2スロットの信号を他の周波数帯域に割り当てる。
 図15(c)に示す多重フォーマットは、それぞれのユーザのレイヤにおいて、所定SC-FDMAシンボルで、制御信号3のSC-FDMAシンボルをデータ信号4のSC-FDMAシンボルと時間分割多重すると共に、制御信号3で構成される所定SC-FDMAシンボル分の信号とデータ信号4で構成される所定SC-FDMAシンボル分とを周波数分割多重(FDM/TDMハイブリッド)するフォーマットである。すなわち、図15(c)に示すように、ユーザ#1のレイヤの割り当て帯域において、それぞれのスロットの特定のSC-FDMAシンボルを制御信号3aとし、その他のSC-FDMAシンボルをデータ信号4aとして時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号とした2スロットの信号を他の周波数帯域に割り当てる。また、ユーザ#2のレイヤの割り当て帯域において、それぞれのスロットの特定のSC-FDMAシンボルを制御信号3bとし、その他のSC-FDMAシンボルをデータ信号4bとして時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号とした2スロットの信号を他の周波数帯域に割り当てる。
 図15において、各ユーザのレイヤにおける制御信号3a,3bは、互いにユーザ間直交多重された信号である。このユーザ間直交多重としては、図19(a)に示すようなTDMA、図19(b),(c)に示すようなFDMA(Localized FDMAやDistributed FDMA)及び/又は図19(d)に示すようなCDMA(例えば、ブロック拡散)を挙げることができる。
(態様MU3)
 図16(a),(b)は、態様MU3の多重フォーマットを示す図である。この多重フォーマットにおいては、PUCCHで制御信号3を送信し、PUSCHでデータ信号4のみを送信するようになっている。本態様では、PUSCH送信とPUCCH送信とを同時に行う。図16は、無線基地局装置で受信した際の多重フォーマットを示しており、ユーザ#1のレイヤ(Layer for UE#1)とユーザ#2のレイヤ(Layer for UE#2)とが同じ無線リソースで送信されることを示している。
 図16(a)に示す多重フォーマットは、それぞれのユーザのレイヤにおいて、PUSCHではデータ信号4のみを送信するようにし、PUCCHでは、スロット毎に異なる周波数帯域で制御信号3を送信する。この場合において、PUCCHの制御信号3はスロット間周波数ホッピングされている。すなわち、図16(a)に示すように、ユーザ#1のレイヤの割り当て帯域において、PUSCHでは、データ信号4aを送信するようになっており、PUCCHでは、スロット毎に異なる周波数領域で制御信号3aを送信するようになっている。また、ユーザ#2のレイヤの割り当て帯域において、PUSCHでは、データ信号4bを送信するようになっており、PUCCHでは、スロット毎に異なる周波数領域で制御信号3bを送信するようになっている。
 図16(b)に示す多重フォーマットは、PUSCHでデータ信号4a,4bのみを送信するようになっており、PUSCHでMIMO伝送を行う場合には、PUCCHで制御信号を送信しないようになっている。すなわち、PUSCHでMIMO伝送を行う場合に、制御信号3a,3bの送信をスキップする。この場合においては、移動端末装置は、無線基地局装置からの下り制御信号に含まれるULスケジューリンググラントを参照し、MIMO伝送で上りリンク信号を送信する指示があったときに、図16(b)に示す多重フォーマットでデータ信号を送信する。
 図16において、各ユーザのレイヤにおける制御信号3a,3bは、互いにユーザ間直交多重された信号である。このユーザ間直交多重としては、図19(a)に示すようなTDMA、図19(b),(c)に示すようなFDMA(Localized FDMAやDistributed FDMA)及び/又は図19(d)に示すようなCDMA(例えば、ブロック拡散)を挙げることができる。
(態様MU4)
 図17(a)~(c)は、態様MU4の多重フォーマットを示す図である。上記態様MU2のように、2つのスロットから制御信号3を送信する場合において、制御信号とデータ信号とをFDM又はFDM/TDMハイブリッドで多重するときには、制御信号を送信する無線リソースは、スロット間で周波数ホッピングしても良い。図17は、無線基地局装置で受信した際の多重フォーマットを示しており、ユーザ#1のレイヤ(Layer for UE#1)とユーザ#2のレイヤ(Layer for UE#2)とが同じ無線リソースで送信されることを示している。
 図17(a)に示す多重フォーマットは、制御信号3で構成される1スロット分の信号とデータ信号4で構成される2スロット分の信号とを周波数分割多重するフォーマットである。すなわち、図17(a)に示すように、ユーザ#1のレイヤの割り当て帯域において、SC-FDMAシンボルを制御信号3aとした1スロットの信号とSC-FDMAシンボルをデータ信号4aとした1スロットの信号とを時間多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号4aとした2スロットの信号を他の周波数帯域に割り当てる。また、ユーザ#2のレイヤの割り当て帯域において、SC-FDMAシンボルを制御信号3bとした1スロットの信号とSC-FDMAシンボルをデータ信号4bとした1スロットの信号とを時間多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号4bとした2スロットの信号を他の周波数帯域に割り当てる。このとき、各スロットで制御信号を割り当てる周波数帯域を変えてスロット間周波数ホッピングを適用する。
 図17(b)に示す多重フォーマットは、特定の周波数領域における所定SC-FDMAシンボル分を制御信号3とするフォーマットであり、制御信号3のSC-FDMAシンボルをデータ信号4のSC-FDMAシンボルと時間分割多重すると共に、制御信号3で構成される所定SC-FDMAシンボル分の信号とデータ信号4で構成される所定SC-FDMAシンボル分とを周波数分割多重(FDM/TDMハイブリッド)するフォーマットである。すなわち、図17(b)に示すように、ユーザ#1のレイヤの割り当て帯域において、各スロットの特定のSC-FDMAシンボルを制御信号3aとし、その他のSC-FDMAシンボルをデータ信号4aとして時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号とした2スロットの信号を他の周波数帯域に割り当てる。ユーザ#2のレイヤの割り当て帯域において、各スロットの特定のSC-FDMAシンボルを制御信号3bとし、その他のSC-FDMAシンボルをデータ信号4bとして時間分割多重した信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号とした2スロットの信号を他の周波数帯域に割り当てる。このとき、各スロットで制御信号を割り当てる周波数帯域を変えてスロット間周波数ホッピングを適用する。
 図17(c)に示す多重フォーマットは、制御信号3とデータ信号4とをTDMで多重する場合のDistributed FDMのフォーマットである。すなわち、図17(c)に示すように、1つのスロットの特定のSC-FDMAシンボルについて、ユーザ#1のレイヤの割り当て帯域をくし歯状の周波数領域に分け、制御信号3aとデータ信号4aとが交互に配置するように割り当てる。また、ユーザ#2のレイヤの割り当て帯域をくし歯状の周波数領域に分け、制御信号3bとデータ信号4bとが交互に配置するように割り当てる。
 図17において、各ユーザのレイヤにおける制御信号3a,3bは、互いにユーザ間直交多重された信号である。このユーザ間直交多重としては、図19(a)に示すようなTDMA、図19(b),(c)に示すようなFDMA(Localized FDMAやDistributed FDMA)及び/又は図19(d)に示すようなCDMA(例えば、ブロック拡散)を挙げることができる。
(態様MU5)
 図18は、態様MU5の多重フォーマットを示す図である。サブフレーム内の2つのスロットから制御信号3を送信し、制御信号3とデータ信号4とをFDMで多重する場合、制御信号3はデータ信号4を送信する無線リソースと離れた(連続しない)無線リソースを用いても良い。図18は、無線基地局装置で受信した際の多重フォーマットを示しており、ユーザ#1のレイヤ(Layer for UE#1)とユーザ#2のレイヤ(Layer for UE#2)とが同じ無線リソースで送信されることを示している。
 図18に示す多重フォーマットは、制御信号3で構成される2スロット分の信号とデータ信号4で構成される2スロット分の信号とを周波数分割多重するフォーマットである。すなわち、図18に示すように、ユーザ#1のレイヤの割り当て帯域において、SC-FDMAシンボルを制御信号3aとした2スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号4aとした2スロットの信号を、制御信号3aを割り当てた周波数帯域から離れた周波数帯域に割り当てる。ユーザ#2のレイヤの割り当て帯域において、SC-FDMAシンボルを制御信号3bとした2スロットの信号を特定の周波数帯域に割り当て、SC-FDMAシンボルをデータ信号4bとした2スロットの信号を、制御信号3bを割り当てた周波数帯域から離れた周波数帯域に割り当てる。本態様においては、態様SU7と同様に、各スロットで制御信号を割り当てる周波数帯域を変えてスロット間周波数ホッピングを適用しても良い。
 上記態様MU1から態様MU5において、制御信号を送信するための無線リソースは、送信する制御信号の種類、制御信号のデータサイズ、受信品質の情報などを考慮して、適応的に変更することができる。
 図20は、本発明の実施の形態2に係る移動端末装置の構成の一部を示すブロック図である。図20に示す移動端末装置は、その送信部は、時間/周波数多重切替え部102と、DFT部103a,103bと、サブキャリアマッピング部104と、IFFT部105と、CP付与部106とから主に構成されている。
 時間/周波数多重切替え部102は、制御信号とデータ信号の多重方式を切り替える。すなわち、時間/周波数多重切替え部102は、データ信号と制御信号とを時間多重する場合は、データ信号と制御信号のどちらか一方のみをDFT部103a,103bに出力し、周波数多重する場合は、データ信号と制御信号をそれぞれDFT部103a,103bに出力する。
 サブキャリアマッピング部104は、周波数領域の信号をRB割り当て情報に基づいてサブキャリアにマッピングする。すなわち、サブキャリアマッピング部104は、周波数多重の場合に、DFT後のデータ信号及び制御信号を分離して異なる無線リソースに割り当てる。また、サブキャリアマッピング部104は、上記態様MU3のように、データ信号をPUSCHに割り当て、制御信号をPUCCHに割り当てる機能も備えている。また、サブキャリアマッピング部104は、上記態様MU4及び態様MU5のように、スロット間の周波数ホッピングやDistributed FDMAなどの割り当ての機能も備えている。
 DFT部103a,103bは、データ信号をDFTして周波数領域の信号に変換する。IFFT部105は、マッピングされた信号をIFFTして時間領域の信号に変換する。CP付与部106は、IFFT後の信号にCPを付与する。
 なお、RB割り当て情報は、無線基地局装置から制御情報として通知される。この通知は、PUSCHを介するHigher Layer signalingや、PUCCHを介するL1/L2 signalingにより行われる。
 図21は、本発明の実施の形態2に係る無線基地局装置の構成の一部を示すブロック図である。図21に示す無線基地局装置は、MIMO受信可能な無線基地局装置であり、その受信部は、CP除去部201と、FFT部202と、サブキャリアデマッピング部203と、信号分離部204と、ユーザ分離部207と、周波数等化部208と、IDFT部206a,206bから主に構成されている。CP除去部201、FFT部202及びサブキャリアデマッピング部203については、各アンテナの受信処理部がそれぞれ有しており、データ信号用のIDFT部206a,206b、周波数等化部208については、ユーザ毎のレイヤ処理部がそれぞれ有している。
 サブキャリアデマッピング部203は、RB割り当て情報に基づいて、SC-FDMAシンボル毎に、制御信号とデータ信号とを(時間的及び/又は周波数的に)分離する。無線基地局装置においては、制御信号とデータ信号とがどのように多重されているかについて既知であるので、この処理ブロックで制御信号とデータ信号を分離することができる。
 信号分離部204は、それぞれのユーザ(UE#1,UE#2)の伝搬路推定値を用いて、サブキャリアデマッピング後の信号を送信レイヤ毎のデータ信号に分離する。この伝搬路推定値は、受信信号から抽出されたユーザ毎のCQI信号から同期検出・チャネル推定により求められる。ユーザ毎のレイヤに分離されたデータ信号は、ユーザ毎の信号処理部(UE #1,#2)のIDFT部206aにおいて時間領域の信号に変換された後に、復調、復号されてデータ信号として信号再生される。
 周波数等化部208は、ユーザ毎の制御信号について、それぞれの伝搬路推定値を用いて伝搬路補償する。この伝搬路推定値は、受信信号から抽出されたユーザ毎のCQI信号から同期検出・チャネル推定により求められる。伝搬路補償された制御信号は、IDFT部206bで時間領域の信号に変換された後に、復調、復号されて信号再生される。
 ユーザ分離部207は、移動端末装置においてユーザ間直交された制御信号をユーザ毎に分離する。このユーザ分離においては、図19(a)に示すようにTDMAでユーザ間直交された制御信号をTDMAで分離し、図19(b),(c)に示すようにFDMAでユーザ間直交された制御信号をFDMAで分離し、図19(d)に示すようにCDMAでユーザ間直交された制御信号をCDMAで分離する。
 CP除去部201は、受信信号から推定された受信タイミングの推定値を用いて、CPに相当する部分を除去して有効な信号部分を抽出する。FFT部202は、受信信号をFFTして周波数領域の信号に変換する。IDFT部206a,206bは、周波数領域の信号を時間領域の信号に変換する。
 上記構成を有する無線基地局装置と移動端末装置とを用いた本実施の形態に係る無線通信方法について説明する。
 移動端末装置において、時間/周波数多重切替え部102が、制御信号とデータ信号の多重方式を切り替える。図14(a)、図15(a)及び図17(c)に示す多重フォーマットを用いる場合(TDM)には、データ信号と制御信号のどちらか一方のみをDFT部103a,103bに出力するように切り替える。また、図14(b)、図15(b)、図16、図17(a)及び図18に示す多重フォーマットを用いる場合(FDM)には、データ信号と制御信号をそれぞれDFT部103a,103bに出力するように切り替える。また、図14(c)、図15(c)及び図17(b)に示す多重フォーマットを用いる場合(FDM/TDMハイブリッド)には、TDMの部分ではデータ信号と制御信号のどちらか一方のみをDFT部103a,103bに出力し、FDMの部分ではデータ信号と制御信号をそれぞれDFT部103a,103bに出力するように切り替える。
 時間/周波数多重切替え部102からのデータ信号及び制御信号は、DFT部103a,103bで周波数領域の信号に変換され、サブキャリアマッピング部104で図14(a)~(c)、図15(a)~(c)、図16(a)、図17(a)~(c)及び図18のいずれかの多重フォーマットにマッピングされる。このようにマッピングされた信号は、IFFT部105で時間領域の信号に変換された後に、CP付与部106でCPが付与される。
 図16(b)に示す態様(MIMO送信の際に制御信号を送信しない態様)の場合には、データ信号のみが、DFT部で周波数領域の信号に変換され、サブキャリアマッピング部で図16(b)の多重フォーマットにマッピングされる。これらのマッピングは、RB割り当て情報に基づいて行われる。このようにマッピングされた信号は、IFFT部で時間領域の信号に変換された後に、CP付与部でCPが付与される。このように処理された信号が上りリンク信号として送信される。このような上りリンク信号が、同じ無線リソースで異なる送信レイヤでMIMO伝送される。
 無線基地局装置においては、MIMO送信された信号を、アンテナ毎の信号処理部で受信し、CP除去部201でCPを除去した後にFFT部202で周波数領域の信号とする。この周波数領域の信号は、サブキャリアデマッピング部203で図14(a)~(c)、図15(a)~(c)、図16(a),(b)、図17(a)~(c)及び図18のいずれかの多重フォーマットからデマッピングされる。このデマッピングは、RB割り当て情報に基づいて行われる。
 各アンテナの処理部からのサブキャリアデマッピング後のデータ信号は、信号分離部204で、ユーザ毎のデータ信号に分離される。ユーザ毎に分離されたデータ信号は、ユーザ毎の信号処理部においてIDFT部206aで時間領域の信号に変換された後に、復調、復号されてデータ信号として信号再生される。一方、各アンテナの処理部からのサブキャリアデマッピング後の制御信号は、ユーザ分離部207で、ユーザ毎の制御信号に分離される。ユーザ毎に分離された制御信号は、ユーザ毎の信号処理部の周波数等化部208で伝搬路補償され、IDFT部206aで時間領域の信号に変換された後に、復調、復号されてデータ信号として信号再生される。
 このように、本実施の形態に係る無線通信方法においては、1SC-FDMAシンボル内にデータ信号と制御信号とを混在させずに、SC-FDMAシンボル単位(FFTする単位)でデータ信号と制御信号とを時間多重しているので、データ信号からの干渉を除外することができる。このため、データ信号及び制御信号を分離して異なる無線リソースに割り当てることにより、データ信号について空間多重伝送を用いて伝送し、かつ、同一サブフレームで制御信号も送信する場合において、高品質で効率的良く制御信号を受信できる。
 本発明の範囲を逸脱しない限りにおいて、上記説明における処理部の数、処理手順については適宜変更して実施することが可能である。また、図に示される要素の各々は機能を示しており、各機能ブロックがハードウエアで実現されても良く、ソフトウエアで実現されてもよい。その他、本発明の範囲を逸脱しないで適宜変更して実施することが可能である。
 本出願は、2009年6月23日出願の特願2009-148999に基づく。この内容は、全てここに含めておく。

Claims (12)

  1.  プリコーディング情報を含む下りリンク信号を受信する下りリンク信号受信手段と、データ信号及び制御信号を分離して異なる無線リソースに割り当てる割り当て手段と、前記プリコーディング情報に基づいて各送信レイヤの信号をMIMO送信する送信手段と、を具備することを特徴とする移動端末装置。
  2.  前記データ信号及び前記制御信号は、SC-FDMAシンボル単位で時間多重されていることを特徴とする請求項1記載の移動端末装置。
  3.  前記制御信号が一つの送信レイヤの無線リソースに割り当てられることを特徴とする請求項1記載の移動端末装置。
  4.  前記制御信号が各送信レイヤで同じであり、送信ダイバーシチが適用されることを特徴とする請求項1記載の移動端末装置。
  5.  前記制御信号を異なる送信レイヤに出力するように切り替える切り替え手段を具備することを特徴とする請求項1記載の移動端末装置。
  6.  前記割り当て手段は、前記データ信号をPUSCHに割り当て、前記制御信号をPUCCHに割り当てることを特徴とする請求項1記載の移動端末装置。
  7.  MIMO送信された、データ信号及び制御信号を含む上りリンク信号を受信する上りリンク信号受信手段と、前記上りリンク信号を送信レイヤ毎のデータ信号に分離する信号分離手段と、前記上りリンク信号から前記制御信号を再生する信号再生手段と、を具備することを特徴とする無線基地局装置。
  8.  前記制御信号は複数の移動端末装置からの制御信号がユーザ間直交多重された信号であり、前記多重された制御信号についてユーザ間分離するユーザ分離手段を具備することを特徴とする請求項7記載の無線基地局装置。
  9.  前記ユーザ間直交多重は、TDMA、FDMA及び/又はCDMAによる直交多重であることを特徴とする請求項8記載の無線基地局装置。
  10.  移動端末装置において、プリコーディング情報を含む下りリンク信号を受信する工程と、データ信号及び制御信号を分離して異なる無線リソースに割り当てる工程と、前記プリコーディング情報に基づいて各送信レイヤの信号をMIMO送信する工程と、無線基地局装置において、前記MIMO送信された、前記データ信号及び前記制御信号を含む上りリンク信号を受信する工程と、前記上りリンク信号を送信レイヤ毎のデータ信号に分離する工程と、前記上りリンク信号から前記制御信号を再生する工程と、を具備することを特徴とする無線通信方法。
  11.  前記制御信号は複数の移動端末装置からの制御信号がユーザ間直交多重された信号であり、前記多重された制御信号についてユーザ間分離するユーザ分離手段を具備することを特徴とする請求項10記載の無線通信方法。
  12.  前記ユーザ間直交多重は、TDMA、FDMA及び/又はCDMAによる直交多重であることを特徴とする請求項11記載の無線通信方法。
PCT/JP2010/060612 2009-06-23 2010-06-23 移動端末装置、無線基地局装置及び無線通信方法 WO2010150800A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10792118.1A EP2448161B1 (en) 2009-06-23 2010-06-23 Mobile terminal device, wireless base station device, and wireless communication method
CA 2765253 CA2765253C (en) 2009-06-23 2010-06-23 Mobile terminal apparatus, radio base station apparatus, and radio communication method
KR20117029629A KR101388577B1 (ko) 2009-06-23 2010-06-23 이동단말장치, 무선기지국장치 및 무선통신방법
US13/378,685 US10033441B2 (en) 2009-06-23 2010-06-23 Mobile terminal apparatus, radio base station apparatus, and radio communication method
CN201080028166.4A CN102460993B (zh) 2009-06-23 2010-06-23 移动终端装置、无线基站装置以及无线通信方法
RU2012101076/07A RU2518464C2 (ru) 2009-06-23 2010-06-23 Мобильный терминал, базовая радиостанция и способ осуществления радиосвязи

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009148999A JP5122529B2 (ja) 2009-06-23 2009-06-23 移動端末装置、無線基地局装置、無線通信方法及び無線通信システム
JP2009-148999 2009-06-23

Publications (1)

Publication Number Publication Date
WO2010150800A1 true WO2010150800A1 (ja) 2010-12-29

Family

ID=43386569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060612 WO2010150800A1 (ja) 2009-06-23 2010-06-23 移動端末装置、無線基地局装置及び無線通信方法

Country Status (8)

Country Link
US (1) US10033441B2 (ja)
EP (1) EP2448161B1 (ja)
JP (1) JP5122529B2 (ja)
KR (1) KR101388577B1 (ja)
CN (1) CN102460993B (ja)
CA (1) CA2765253C (ja)
RU (1) RU2518464C2 (ja)
WO (1) WO2010150800A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2720505A1 (en) * 2011-07-07 2014-04-16 Huawei Technologies Co., Ltd Method for transmitting and receiving uplink control signaling and related device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8625554B2 (en) * 2009-01-30 2014-01-07 Samsung Electronics Co., Ltd. System and method for uplink data and control signal transmission in MIMO wireless systems
EP2634951A1 (en) 2009-10-01 2013-09-04 Electronics and Telecommunications Research Institute Method of transmitting control information using physical uplink shared channel region in MIMO antenna system
JP5707169B2 (ja) * 2011-02-24 2015-04-22 京セラ株式会社 信号処理装置、ベースバンド処理装置及び無線通信装置
US9264353B2 (en) * 2011-09-22 2016-02-16 Qualcomm Incorporated Dynamic subflow control for a multipath transport connection in a wireless communication network
FR2985152A1 (fr) 2011-12-23 2013-06-28 France Telecom Procede de groupement de couples emetteur-recepteur pour communiquer sur un reseau de communications
FR2985120A1 (fr) * 2011-12-23 2013-06-28 France Telecom Procedes d'emission et de reception de symboles de donnees
FR2985134A1 (fr) 2011-12-23 2013-06-28 France Telecom Procede d'emission d'au moins un signal multi-porteuse forme de symboles ofdm-oqam
CN107926019A (zh) * 2015-08-31 2018-04-17 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
EP3206353B1 (en) * 2016-02-09 2020-02-05 Technische Universität München Filter banks and methods for operating filter banks
WO2019097659A1 (ja) * 2017-11-16 2019-05-23 株式会社Nttドコモ ユーザ端末及び無線通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062587A1 (fr) * 2006-11-22 2008-05-29 Fujitsu Limited Système et procédé de communication mimo-ofdm
JP2009148999A (ja) 2007-12-21 2009-07-09 Kyocera Mita Corp インクジェット記録装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095709B2 (en) * 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
CN101405950B (zh) 2006-01-18 2013-09-11 株式会社Ntt都科摩 发送装置和发送方法
CA2637594C (en) 2006-01-18 2014-04-29 Ntt Docomo, Inc. Base station, communication terminal, transmission method and reception method
KR20080092222A (ko) * 2007-04-11 2008-10-15 엘지전자 주식회사 Tdd 시스템에서의 데이터 전송 방법
US8306140B2 (en) * 2007-04-30 2012-11-06 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission
JP5019966B2 (ja) * 2007-06-19 2012-09-05 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、基地局装置及びチャネル状態情報通信方法
KR101368105B1 (ko) * 2007-06-20 2014-02-27 삼성전자주식회사 직교주파수분할다중접속 시스템에서 ack/nack 신호전송 장치 및 방법
JP4558020B2 (ja) * 2007-08-14 2010-10-06 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、送信方法及び通信システム
US8009617B2 (en) * 2007-08-15 2011-08-30 Qualcomm Incorporated Beamforming of control information in a wireless communication system
JP4659804B2 (ja) 2007-10-01 2011-03-30 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、送信方法及び通信システム
US9007988B2 (en) * 2008-02-11 2015-04-14 Texas Instruments Incorporated Partial CQI feedback in wireless networks
KR101573072B1 (ko) * 2008-08-27 2015-12-01 엘지전자 주식회사 무선통신 시스템에서 제어정보 전송방법
US8625554B2 (en) * 2009-01-30 2014-01-07 Samsung Electronics Co., Ltd. System and method for uplink data and control signal transmission in MIMO wireless systems
ES2758778T3 (es) * 2009-01-30 2020-05-06 Samsung Electronics Co Ltd Transmitir información de control de enlace ascendente a través de un canal de datos o a través de un canal de control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062587A1 (fr) * 2006-11-22 2008-05-29 Fujitsu Limited Système et procédé de communication mimo-ofdm
JP2009148999A (ja) 2007-12-21 2009-07-09 Kyocera Mita Corp インクジェット記録装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3GPP TSG RAN WG1 Meeting #55bis, R1-090271, 2009.01.12", article ETRI: "Uplink SU MIMO with simple layer interleaving", XP050318197 *
"3GPP TSG RAN WG1 Meeting #56bis, Rl-091489, 2009.03.23", article NTT DOCOMO: "UL Transmit Diversity Schemes in LTE-Advanced", XP050339050 *
"Feasibility study for Evolved UTRA and UTRAN", 3GPP, TR25.912 (V7.1.0, September 2006 (2006-09-01)
See also references of EP2448161A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2720505A1 (en) * 2011-07-07 2014-04-16 Huawei Technologies Co., Ltd Method for transmitting and receiving uplink control signaling and related device
EP2720505A4 (en) * 2011-07-07 2014-07-02 Huawei Tech Co Ltd METHOD FOR TRANSMITTING AND RECEIVING UPLINK CONTROL SIGNALING AND CORRESPONDING DEVICE
US9660781B2 (en) 2011-07-07 2017-05-23 Huawei Technologies Co., Ltd. Methods and related devices for sending and receiving uplink control signaling
EP3337267A1 (en) * 2011-07-07 2018-06-20 Huawei Technologies Co., Ltd. Methods and related devices for sending and receiving uplink control signaling

Also Published As

Publication number Publication date
KR101388577B1 (ko) 2014-04-23
US20120127953A1 (en) 2012-05-24
EP2448161A4 (en) 2014-11-26
CA2765253C (en) 2015-01-20
EP2448161A1 (en) 2012-05-02
JP5122529B2 (ja) 2013-01-16
CN102460993B (zh) 2014-12-31
US10033441B2 (en) 2018-07-24
CN102460993A (zh) 2012-05-16
RU2012101076A (ru) 2013-07-27
RU2518464C2 (ru) 2014-06-10
CA2765253A1 (en) 2010-12-29
KR20120023081A (ko) 2012-03-12
EP2448161B1 (en) 2018-09-19
JP2011009867A (ja) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5122529B2 (ja) 移動端末装置、無線基地局装置、無線通信方法及び無線通信システム
JP5487229B2 (ja) 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法
JP5450389B2 (ja) パケット・ワイヤレス遠距離通信のための方法および装置
JP5554799B2 (ja) 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法
CA2824629C (en) Radio base station, user terminal and radio communication method
US8817753B2 (en) Mobile terminal apparatus and radio communication method
WO2012141054A1 (ja) 無線通信システム、移動局装置および基地局装置
JP5074007B2 (ja) ユーザ端末装置及び基地局装置
WO2013168542A1 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
JP5396427B2 (ja) 無線基地局装置、ユーザ端末装置、無線通信システム、及び無線通信方法
AU2006258593A1 (en) Transmitting apparatus, transmitting method, receiving apparatus and receiving method
Lunttila et al. EUTRAN uplink performance
CA2651188A1 (en) Transmission apparatus and reception apparatus
WO2007052649A1 (ja) 無線送信機、無線通信システム及び無線送信方法
WO2012020797A1 (ja) 送信機、受信機及び無線通信方法
WO2012023443A1 (ja) 基地局装置、移動端末装置および通信制御方法
WO2013168541A1 (ja) 無線通信システム、移動端末装置、無線基地局装置及び無線通信方法
WO2006137495A1 (ja) マルチキャリア通信における無線通信基地局装置および無線通信方法
JP6989368B2 (ja) 基地局、端末、及び無線通信方法
EP2467985B1 (en) Methods and device for operating a radio station in a mobile network
WO2010084821A1 (ja) 移動通信システム、基地局装置、移動局装置および移動通信方法
JP5280573B2 (ja) 無線通信システム、通信制御方法、基地局装置及び移動端末装置
KR20140129977A (ko) 상향링크 제어 및 데이터 채널 구성

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028166.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117029629

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2765253

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4987/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010792118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012101076

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13378685

Country of ref document: US