WO2010149811A1 - Método y dispositivo de nanogravimetría en medios fluidos basado en resonadores piezoeléctricos - Google Patents

Método y dispositivo de nanogravimetría en medios fluidos basado en resonadores piezoeléctricos Download PDF

Info

Publication number
WO2010149811A1
WO2010149811A1 PCT/ES2010/070409 ES2010070409W WO2010149811A1 WO 2010149811 A1 WO2010149811 A1 WO 2010149811A1 ES 2010070409 W ES2010070409 W ES 2010070409W WO 2010149811 A1 WO2010149811 A1 WO 2010149811A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
sensor
phase
resonator
variation
Prior art date
Application number
PCT/ES2010/070409
Other languages
English (en)
French (fr)
Inventor
Antonio Arnau Vives
Pablo García Mollá
José Vicente García Narbon
Yolanda Jiménez Jiménez
Yeison Montagut Ferizzola
Antonio Reig Fabado
Original Assignee
Universidad Politécnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica De Valencia filed Critical Universidad Politécnica De Valencia
Priority to JP2012516806A priority Critical patent/JP5532500B2/ja
Priority to CN2010800377188A priority patent/CN102625906A/zh
Priority to EP10791645.4A priority patent/EP2447683A4/en
Priority to AU2010264598A priority patent/AU2010264598A1/en
Publication of WO2010149811A1 publication Critical patent/WO2010149811A1/es
Priority to US13/336,082 priority patent/US8869617B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/16Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of frequency of oscillations of the body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0255(Bio)chemical reactions, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors

Definitions

  • the present invention relates to the field of chemical sensors, in particular those that use electrical measurements to detect extraordinarily small changes in mass, and more particularly those that use piezoelectric resonators as micro or nano-scales in liquid media as a basis. .
  • Microbalance sensors and among them those based on piezoelectric quartz crystals, are devices that are used to accurately measure variations in the mass deposited on them per unit area, through the changes suffered by the resonance frequency of said crystals operating as resonators.
  • quartz resonators in AT cut where said type of cut corresponds to a cut according to an angle of 35 ° 15 'of inclination with respect to the optical axis z of the crystal and perpendicular to the plane and z of the same
  • AT cut where said type of cut corresponds to a cut according to an angle of 35 ° 15 'of inclination with respect to the optical axis z of the crystal and perpendicular to the plane and z of the same
  • it is desired to detect the presence of species in solution or characterize chemical processes with a resolution comparable in many cases to classical chemical techniques (See references: AW Czanderna and C.
  • the Sauerbrey equation establishes that the decrease in the resonance frequency of the resonator is proportional to the increase in the surface mass density of the coating on the sensor surface.
  • the Kanazawa equation (KK Kanazawa and JG Gordon Il (1985) "The oscillation frequency of a quartz resonator in contact with a liquid" Analytica Chimica Act 175: 99-105) provides the displacement in the resonance frequency of the resonator due to contact with the fluid.
  • the Martin equation (I) provides the quantitative relationship of the combination of the effects of the mass of the coating (Sauerbrey effect) and the liquid (effect Kanazawa) in the variation of the resonance frequency (SJ. Martin, VE Granstaff and GC Frye (1991) "Characterization of quartz crystal microbalance with simultaneous mass and liquid loading” Anal. Chem. 63: 2272-2281).
  • the first term of the second track corresponds to the Sauerbrey effect and the second to the Kanazawa effect, where f s is the resonance frequency of the sensor, Z cq is the characteristic acoustic impedance of quartz, p c and h c are, respectively, the density and thickness of the coating and p L and ⁇ L are, respectively, the density and depth of penetration of the acoustic wave in the liquid: M2p L ⁇ L is, in fact, the surface density of equivalent mass associated with the oscillating movement of the sensor surface in contact with the liquid medium.
  • the resonant frequency has always been the fundamental characterization parameter in the QCM sensors.
  • the resonant sensor is used as a control element of the oscillation frequency, allowing continuous monitoring of a frequency that corresponds to a specific phase of the resonator in the resonance range.
  • This frequency can be used in many applications as a reference of the resonance resonance frequency (see the following references: H. Ehahoun, C. Gabrielli, M. Keddam, H. Perrot and P. Rousseau
  • equation (I) establishes an ideal theoretical sensitivity that implicitly assumes an infinite stability of the components of the characterization system and the measurement process, so that there are no disturbances associated with the measurement system or instabilities arising of the electronic characterization system.
  • the sensitivity does not depend exclusively on the resonator but also on the design and configuration of the measurement system and the electronic characterization circuit.
  • Meter system is understood here to mean all the infrastructure necessary for carrying out the experiment, which includes the measuring cell, the flow elements, pumps, temperature regulation systems, etc., with the exception of the electronic characterization circuit.
  • the sensitivity of the set will depend on the precision in the measurement of the resonance frequency of the sensor which, in turn, will depend on the interference generated by the electronic characterization system itself. Therefore, the sensitivity cannot be properly evaluated without taking into account the system used to characterize the sensor.
  • the systems used to characterize the piezoelectric resonators in microbalance applications can be classified into two types: a) those that passively interrogate the sensor that is kept external to the characterization system, and b ) those in which the sensor is part of the same characterization system.
  • the first group are the network or impedance analyzers and decay techniques, while the second group can include oscillators; Hitch techniques can be considered to be found between both groups.
  • the advantages of the network or impedance analyzers are recognized and are associated with the fact that the sensor can be characterized after a calibration in which any external electrical influence to the sensor itself has been compensated.
  • the decay methods provide a high precision, provided that the precision in the acquisition of the decay signal is high, both in phase and in amplitude, which is complex for high frequency resonators. Therefore, for high frequency resonators, greater than 50MHz, only impedance analyzers are sufficiently accurate, but their high cost and dimensions make them unsuitable for applications such as sensors.
  • Coupling techniques provide simpler circuits than the relatively low frequency analyzers of the resonators; However, at high frequencies the complexity of the circuits increases and the advantages in terms of simplicity that they represented with respect to the analyzers or decay techniques are considerably reduced. Consequently, the oscillators become the alternative to monitor the resonance frequency in high frequency resonators; its low cost, its ability to integrate and continuously and quickly monitor the resonance frequency make it the alternative chosen to implement the sensors
  • the sensitivity is conditioned by the frequency stability and this by the phase stability, which depends on the phase response of all the components of the oscillator system.
  • the role of a resonator in an oscillator is to absorb the phase variations that occur in the other components of the oscillating system; The large slope of the phase-frequency response of the resonator causes these phase changes to be compensated with very small variations in the oscillation frequency.
  • a QCM sensor that is of particular interest is to measure the variations that the sensor experiences, so that any variation in the phase response of the other components that form the oscillator circuit will result in frequency instability.
  • the quality factor of the resonator as a sensor is greatly reduced in applications in liquid medium, so that relatively small changes in the phase response of the other oscillator components are will translate into relatively large variations in the frequency of oscillation, which will appear as noise.
  • This noise, of frequency and phase increases with the frequency of the system, so it is not obvious to say that an increase in the resonance frequency of the sensor will necessarily imply an increase in the sensitivity of the sensor system, as indicated by the equation (I ).
  • test signal a test signal
  • test frequency or test frequency
  • the stability of the test signal can be very high so that the precision in the characterization of the sensor response is not disturbed by the noise of the characterization signal itself.
  • the measurement of the offset is made between the original signal, at the circuit input, and the resulting signal affected by the sensor response; Therefore, the measurement of the offset is differential and any phase instability of the original test signal is transferred simultaneously to the output signal by mutually canceling the differential measurement.
  • the measurement of the offset can be performed with relatively simple circuits, even at very high frequencies, so the system can be implemented using simple and easily integrated electronics.
  • the same signal or one synthesized from it, can be used to simultaneously interrogate other sensors, which greatly facilitates the implementation of multi-resonator systems.
  • the method claimed in said invention assumes that the phase measurement provides a quantitative measure of the variation in mass of the sensitive coating deposited on the surface of the resonator; However, it does not provide any mathematical relationship between said phase variation and the corresponding mass variation. Therefore, to apply said method it would be necessary to perform a calibration of the sensor device, which complicates the application of the claimed method. Moreover, in said patent, it is assumed that the sensitivity given by the relationship between the variation of the phase insertion and the mass variation also increases proportionally to the frequency, in the same way as the relationship between the variation in the resonance frequency and mass variation. This assumption is caused by the lack of rigor in the analysis of the problem that is intended to be satisfied by the method and system presented in said patent.
  • test signal that must be used to establish the baseline or phase reference line must necessarily be, or be very close to, the so-called “dynamic series resonance frequency" of the sensor (referred to as said frequency as FRSD and defined in the description detailed of the invention); Otherwise, the measurements of the phase variation cannot be simply related to the mass variation, since this relationship would depend on the exact frequency of the test signal and the sensor used, that would invalidate any calibration performed at another frequency and make the application of the claimed method unfeasible.
  • FRSD dynamic series resonance frequency
  • the system that it claims based on the simultaneous differential measurement of the phase shifts produced by two resonators whose resonance bands overlap, one of which is used as a reference, to cancel external effects such as temperature, viscosity, etc., and in which the frequency of the test signal is set in the intermediate zone of the overlap band, does not provide the desired results since the sensors are interrogated in different zones of their phase-frequency response; therefore, external effects produce different responses in each resonator, which prevents its cancellation.
  • test frequency Once the test frequency is set, it remains constant throughout the entire measurement process.
  • the claimed method and system do not consider the displacement suffered by the test frequency, within the resonance zone during the measurement process, as a consequence of the displacement of the phase-frequency curve of the resonator.
  • no procedure is established to perform the selection of the appropriate test frequency within the sensor resonance zone. This aspect is very important, as already indicated and as will be shown in the detailed description of the invention below.
  • a non-trivial improvement to the claimed system and method, already presented in the previous point, is the introduction of a controlled feedback that allows to set the appropriate frequency of the test signal and, at the same time, determine how the frequency of the test signal moves away from its optimal value during the experiment to be monitored.
  • the object of the invention is to increase the sensitivity of the current microbalance systems, therefore it has a method and an electronic characterization system that must be accompanied by a suitable measuring cell that makes feasible both the application of the method and the electrical characterization of the resonant sensor
  • the present invention has a support and a measuring cell that solves these drawbacks.
  • the invention takes advantage of the deduction of an analytical expression that establishes a simple relationship between the phase variation of a fixed frequency signal, which interrogates the piezoelectric resonator, and the variation in the mass density of the coating deposited on the resonator.
  • the present invention has a substantial improvement and avoids the inconveniences of the previous systems.
  • the proposed method is valid for any resonator that operates in shear mode (said mode is defined as that in which the displacement of the particles is parallel to the surface of the sensor and the wave propagates in the direction perpendicular to the displacement, it is say a transverse propagation wave is generated) such as, for example, the AT-cut quartz resonators or thin-film and volume acoustic wave resonators, better known by its acronym FBAR (Film BuIk Acoustic Resonators), some of which they can also vibrate in shear mode. It is also an object of the present invention to provide a method and system that does not require the incorporation of sensor resonators in oscillator circuits.
  • a method to characterize the transfer, accumulation or loss of mass on a coating deposited on a piezoelectric sensor, and facing a fluid medium whose physical characteristics remain stable which includes the following operations:
  • an electronic system to characterize the transfer, accumulation or loss of mass on a coating deposited on a piezoelectric sensor, and facing a fluid medium whose physical characteristics remain stable, which allows to implement the method described above and which is composed of:
  • One of the branches is composed of components whose phase-frequency response does not change;
  • the other includes, in part, the same components as the first as a mirror, but a part of the components is replaced by the resonant sensor;
  • a power measurement subsystem that provides a voltage signal proportional to the difference between the power levels of the signals at their inputs; and characterized because:
  • the frequency synthesis subsystem provides, from the fixed frequency signal, a signal whose frequency can sweep the resonance frequency band of the sensor resonator;
  • the signal provided by the frequency synthesis subsystem is connected to the input of the signal conditioning circuit, which filters it properly and provides the appropriate power level;
  • the output of the signal conditioning circuit is connected to the input of the two-branch circuit where the resonant sensor is connected;
  • each of the outputs of the two-branch circuit is connected to one of the inputs of the phase detection subsystem, whose output provides a continuous voltage signal of proportional value to the phase difference between the signals at its inputs;
  • each of the outputs of the two-branch circuit is also connected to one of the inputs of the power measurement circuit, whose output provides a continuous voltage signal of proportional value to the difference in power levels between the signals at its inputs;
  • the outputs of the phase detection and power level circuits are acquired by the control system that can act on the frequency synthesis subsystem to control the frequency of the output signal of said subsystem;
  • a support and measuring cell is provided to characterize the transfer, accumulation or loss of mass on a coating deposited on a piezoelectric sensor, and facing a fluid medium whose physical characteristics remain stable, and which is composed by:
  • an upper block which includes the flow system and whose connection causes the support to be located between the two blocks, isolating one of the parts of the flow resonant sensor; and characterized in that it extends the electrical contacts of the resonator allowing its connection to the electronic characterization system described above, because it isolates one of the faces of the resonator from the liquid medium in contact with the coating, because it allows the carrying out of measurements in flow and because it provides handling safe of the sensor by the experimenters, without unduly disturbing the phase-frequency response of the sensor.
  • Figure 1 Represents the plant, the lower floor, and a cross section of the elevation of a support for depositing a piezoelectric sensor; The plant of a piezoelectric resonator is also shown.
  • Figure 2. It is an exploded view of the complete measurement cell object of the invention where some parts thereof have been made transparent for better visibility of certain details.
  • Figure 3. Represents an equivalent electric model of a piezoelectric resonator.
  • Figure 4. Schematically represents a circuit, object of the invention, for monitoring the phase variation in a fixed frequency signal as a result of the change in the phase-frequency response of the piezoelectric sensor that is in its path.
  • Figure 6. It is a graph that shows a comparison of the phase-mass sensitivities of three sensors of different resonance frequency.
  • Figure 1 shows the plant, the lower floor and a cross section of the elevation of a support specially designed to accommodate a resonant sensor.
  • the support aims to extend the electrical contacts of the resonator allowing its connection to an electronic characterization system, and provide robustness and ease of sensor handling by experimenters.
  • the design of said support is such that it provides said objectives without unduly disturbing the phase-frequency response of the sensor and therefore constitutes a preferred embodiment of one of the priority objects of the present invention.
  • a quartz resonator 2 is deposited between the projections 3 and on the ribs 6 and 9; the projections 3 serve as guides during the process of placing the resonator, such that the center of the resonator coincides with the center of the hole 8; in this position the ends of the resonator electrodes 4, properly protrude from the ribs 6 each of them reaching one of the grooves 5.
  • the gap 10 under the resonator is filled, prior to the placement of the resonant sensor 2, with a paste sealant of appropriate physical characteristics, it being important that said paste does not contract when dried.
  • the center of the electrode 4 located on the lower face of the quartz is accessible, through the hole 8, through the lower face of the support 1.
  • the ribs 6 and 9 act as a wall, so that the liquid paste that fills the hole 10, provided that the adequate amount is deposited, does not overflow above them.
  • the resonator is inserted in the support in such a way that the support is deposited on any of its sides on a flat surface, the resonator does not touch said surface; in this way, the support provides the necessary robustness for safe operation of the resonator, while allowing an extension of its electrical contacts.
  • the described design also does not substantially modify the response of the resonator.
  • This support is used in conjunction with other elements of the measuring cell, the hole 7 is used to fix the position of the support in relation to the rest of the elements of the cell.
  • Figure 2 shows a non-limiting example of the use of the support in a measuring cell.
  • the support is arranged between two blocks as a sandwich.
  • the lower block 13 incorporates a projection 14 which allows to fix the position of the support 1 when the projection 14 fits into the hole 7;
  • the block 13 incorporates electrical contacts 15 whose interior includes a spring so that the upper part of the electrical contact yields under a certain pressure;
  • the electrical contacts 15 are positioned in such a way that they fit at the ends of the grooves 5 when the support is deposited with the grooves 5 upside down, such that the electrodes of the resonator 4 are extended through the grooves and the electrical contacts 15 up to an external connector 16 that allows the connection of the resonator to an electronic characterization system.
  • the central area of one of the resonator electrodes is accessible from above through the hole 8 of the support.
  • the upper block 17 is placed on the support and this is pressed both by the upper block 17 and by the lower block 13, such that the washer 19 of suitable material, which fits into the groove 21 of the upper block, seals the contour from hole 8 of the support;
  • the pressure between the blocks and the support can be adjusted by screws, threads or other suitable system included in the lower and upper blocks, however, this pressure is not carried out directly on the sensor resonator but on the support, thus avoiding affecting important the response of the sensor.
  • the channels 20 of the upper block 17 allow a fluid to be guided through the fittings 18, which comes into contact with the central area of one of the electrodes 4 of the resonator 2; one of the fittings 18 is used as an input and the other as an output of the flow.
  • the assembly shown in Figure 2 shows a possible way to use a support 1, which extends the electrical contacts of the resonant sensor and gives the robustness suitable for a safe handling of the sensor by the experimenter, while isolating one of the electrodes of the resonant sensor of a fluid that is properly guided to come into contact, along its path, with the other electrode of the resonator, and all this without disturbing The sensor response. Consequently, the example shown is a non-limiting way of implementing one of the priority objectives of the present invention and can be considered as a preferred embodiment thereof.
  • the previous example has shown a support and measuring cell that allow to design an experiment in which a resonant sensor can be covered, by a single face, by a thin layer of material and this in contact with a fluid medium.
  • the coating on one of the faces of the resonator is a layer of mass whose thickness is sufficiently thin in comparison with the depth of penetration of the acoustic wave in the fluid medium in contact with The coating is solid and is rigidly attached to the surface of the resonator by a suitable technique; this ensures a synchronous movement with the oscillating surface of the resonator.
  • a resonator in contact on one of its faces with an acoustically thin layer of mass on which there is a sufficiently large fluid medium so that the acoustic wave generated in the resonator is attenuated in the middle before reaching its end, can be modeled electrically by the equivalent circuit shown in Figure 3.
  • the equivalent circuit shown in Figure 3 represents the electrical admittance of the resonator in contact with the coating and with the fluid;
  • the parameters of the equivalent model are related to the physical and geometric properties of the resonator and the media deposited on it.
  • the equivalent circuit is formed by the capacity C 0 , called static capacity, which corresponds to the capacity formed by the quartz crystal as a dielectric between the electrodes, the capacity C p which is the parasitic capacity external to the sensor seen between its electrodes, and The dynamic impedance constituted by the series circuit formed by L q , C q , R q , L c , L L and R L.
  • the displacement of the dynamic series resonance frequency (FRSD) can be obtained, defined as the frequency at which the dynamic impedance Z m has only real value, due to a variation in the mass of the coating;
  • the corresponding variation of the angular frequency, A ⁇ s, corresponding to the FRSD becomes: where Z cq is the characteristic impedance of the material with which the resonator is manufactured, ⁇ s is the resonance frequency of the resonator and Am 0 is the variation of the surface mass density of the coating.
  • Equation IV above coincides with the expression for the variation of the frequency angular resonance, as a result of a variation in the mass of the coating, given by Sauerbrey, described in the background and which constitutes the basis of the classical methods and systems of characterization of processes by microbalance.
  • the present invention provides a different method and electronic system to characterize processes where changes in the mass of the coating on the resonator occur.
  • the invention takes advantage of the deduction of an analytical expression that establishes a simple relationship between the phase variation of a fixed frequency signal, which interrogates the piezoelectric resonator, and the variation in the mass density of the coating.
  • ⁇ (rad) c - / ⁇ ⁇ ⁇ m q + m L
  • m q ⁇ q ⁇ / 2vq
  • c q is the modulus of elasticity in the vibration mode of the resonator
  • p q is the density of the material constituting the resonator
  • ⁇ q is the equivalent viscosity of the material that composes the resonator and that includes friction losses and others due to contacts with the electrodes and other non-ideal effects.
  • equation IX that relates the phase variation with the variation of the coating mass, will only be valid around the dynamic series resonance frequency; For this reason, it is essential to establish the baseline of an initial state, which is taken as a reference, using as frequency of the test signal the one corresponding to the FRSD of the resonator in said state. It is therefore clear that any frequency for the test signal is not valid, if not a substantially equal frequency (this term being understood as a frequency equal or very close) to the FRSD of the resonator in said reference state .
  • equation IX in contrast to the Sauerbrey equation (IV), in which the frequency shift, associated with the variation in the surface mass density of the coating, does not depend on the fluid medium, equation IX includes the additional consideration of the fluid medium. From this equation it is evident that the greater m L greater variation coating mass will be needed to provide a given shift in phase. This equation shows the greater sensitivity of the microbalance sensor in gaseous medium than in liquid medium for a certain phase stability, due to the reduction of the quality factor of the sensor due to the effect of contact with the liquid.
  • the Sauerbrey equation predicts the same displacement of the resonance frequency for a vacuum sensor than in liquid, for a change in the surface density of the determined coating mass;
  • the corresponding phase shift for the same change in the surface density of the coating mass is much lower for the sensor in liquid than in vacuum. Therefore, although the Sauerbrey equation ideally predicts the same frequency-mass sensitivity, much greater system stability will be necessary in the case of the sensor in a liquid medium than in a vacuum if it is desired to obtain, in practice, the same sensitivity.
  • ⁇ L in equation IX is reduced with the reduction of the depth of penetration of the acoustic wave in the liquid.
  • phase-mass sensitivity in a given fluid medium, for a given phase noise could be improved by increasing the resonance frequency, but only proportionally to the square root of the frequency, and not to the square of the resonance frequency as It has been assumed in some background of the present invention.
  • the phase-mass sensitivity does not increase significantly with the frequency in the case of sensors in a gaseous medium; in particular in the case of vacuum, where m L is null and where the phase-mass sensitivity is the maximum possible for a given piezoelectric material, the phase-mass sensitivity does not increase with the frequency.
  • Table II shows the detection capacity according to equation IX for microbalance sensors of AT quartz crystal for different resonance frequencies, and in contact with different means for a phase detection limit of 0.1 °; The corresponding frequency shift according to the Sauerbrey equation is also included by comparison.
  • Table II Mass sensitivity for a phase detection limit of 0.1 ° f s (MHz) 10 50 150 150
  • phase-mass sensitivity for gaseous media does not increase practically with increasing frequency, as announced; This aspect shows the error of previous inventions by assuming that the phase-mass sensitivity would increase in the same way as the frequency-mass sensitivity when increasing the frequency of the resonator.
  • the medium where the experiments are carried out is a liquid medium
  • an increase in phase-mass sensitivity is obtained by increasing the resonance frequency of the sensor, due to the reduction of the depth of penetration and, therefore, to the lower equivalent mass of liquid that moves the resonator when vibrating.
  • a large increase in frequency offset occurs as predicted by Sauerbrey, however, it is necessary to point out that this frequency offset corresponds to the same phase shift of
  • Modern phase detectors can detect phase shifts below 0.1 ° even at very high frequencies; therefore, if Ia Phase stability of the system is not reduced below 0.1 °, the real improvement in sensitivity will be 3.4 times and not 225 times, since the frequency sensitivity depends on the phase noise of the system.
  • the most important aspect to increase the mass sensitivity is to improve the phase stability of the characterization system and, at the same time, to make a system that is capable of detecting very small phase shifts in the sensor response; otherwise, it will be irrelevant to increase the frequency-mass sensitivity using resonators of higher resonance frequency, since the frequency noise in oscillators, due to the instability of the oscillating system phase, would be of the same magnitude as the associated frequency offset to the variation of mass that is intended to be detected, making the improvement of sensitivity impracticable.
  • the remaining priority objective is to provide an electronic characterization system where the frequency and phase noise are minimal.
  • - a signal conditioning circuit with filtering capacity and adaptation of power levels formed by the filter 43, and the amplifier 44; - a circuit 45 formed by two branches that share the input u, and has two outputs, Ui and U 2 , one for each branch.
  • One of the branches is composed of components 25, 26, 27, 29, 31, 32, 33, 34, whose phase-frequency response does not change;
  • the other includes, in part, the same components as the first 25, 26, 28, 30, 31, 32, as a mirror, but a part of the components is replaced by the resonant sensor 2;
  • an adjustable gain phase 35 detection subsystem consisting of multiplier 36 and low pass filter 37, which provides a voltage signal or 0 proportional to the phase difference between the signals at their inputs;
  • a power measurement subsystem 38 that provides a voltage signal or A proportional to the difference between the power levels of the signals at their inputs;
  • the frequency synthesis subsystem 41 provides, from the fixed frequency signal of the source 42, a signal whose frequency can sweep the resonance frequency band of the sensor resonator 2;
  • the signal provided by the frequency synthesis subsystem 41 is connected to the input of the filter 43, which filters it properly and whose output is connected to the amplifier 44 which provides the appropriate power level;
  • each of the outputs of the two-branch circuit, Ui and U 2 is connected to one of the inputs of the phase detection subsystem 35, whose output provides a continuous voltage signal U 0 of value proportional to the phase difference between the signals Ui and U 2 to their inputs;
  • each of the outputs, Ui and U 2 , of the two-branch circuit is also connected to one of the inputs of the power measurement circuit 38, whose output provides a continuous voltage signal or A of value proportional to the difference in power levels between the signals at their inputs;
  • the outputs of the phase detection and power level circuits are acquired by the control system 40 which can act on the frequency synthesis subsystem 41 to control the frequency of the output signal of said subsystem;
  • the data of the signals acquired by the control system are directly analyzed, or transferred to an external equipment 46 for real-time or subsequent treatment in accordance with the method object of the present invention.
  • the behavior of the phase based detector in multiplier it provides a voltage proportional to the offset between the signals at its inputs for small phase shifts around 90 °. Therefore, for proper operation of the phase detector it is necessary to offset the test signals by 90 ° in each branch of the sensor circuit 45 previously; for this purpose the circuits formed by resistors 26 and capacitors have been arranged
  • the output of the phase detector 35 is connected to the input of an amplifier 39.
  • the reference voltage V ref is used to set the output voltage of the amplifier 39 to zero volts in the reference state, compensating for any continuous voltage displacement; this allows to increase the gain of the amplifier 39 to provide the maximum resolution in the tracking of the offset, which will be provided by the output signal u ⁇ of the amplifier 39.
  • the output signals of the sensor circuit 45 are also connected to a power measurement circuit 38, which provides an output signal or A proportional to the relationship between the powers of the signals at their inputs.
  • This combination of phase and power measurement provides a complete characterization of the sensor and allows the selection of the appropriate test frequency by means of an appropriate control system.
  • the control system 40 includes an embedded programmable system that continuously monitors the offset and the power ratio between the signals Ui and U 2 from the signals u ⁇ yu A ;
  • the programmable system 40 controls the frequency synthesizer 41, and with it the frequency of the output signal thereof.
  • the frequency synthesizer uses as reference signal Ia provided by a source of great stability in frequency and phase 42.
  • the output signal of the synthesizer is connected to a filter pass-band 43 that filters it by providing its output with a sufficiently pure signal in the resonance frequency band of the sensor.
  • the output of the filter 43 is connected to the input of the amplifier 44 which provides a signal to its output U 1 of suitable power.
  • the variation of the offset between the signals Ui and U 2 is the main parameter, which must be related to the phase change experienced by the dynamic branch of the resonant sensor. This relationship will be obtained below in relation to the system represented in Figure 4.
  • the level of the signals at the output of the operational 29 and 30 is similar, which is convenient for the optimal operation of the phase detector, and the output voltage of the meter of power 38 is zero.
  • This configuration is also useful for selecting the frequency of the test signal in the reference state "1" since the voltages u ⁇ and u A are zero at said frequency.
  • Figure 5 shows a comparison between the offset variation values obtained for the dynamic impedance, and those provided by equation XVI and equation XVIII.
  • Equation XVI is an expression that provides the exact phase variation between the signals Ui and U 2
  • the results presented in Figure 5 are obtained from a non-limiting example and demonstrate the validity of the expression IX as an approximation of the variation in the offset associated with the dynamic impedance, and of the expression XVIII as an approximation of the equation XVI.
  • Table III Properties and parameters of the model represented in Figure 3 for three AT quartz sensors of different resonance frequencies and loaded with a thin layer of mass of 100nm of thickness and density equal to water, in contact with a liquid of properties such as water.
  • the variation in the mass of the coating was simulated by changing its thickness in steps of 1A, that is in steps of 100pg / mm 2 , from -50nm / mm 2 to 50nm / mm 2 .
  • steps of 1A that is in steps of 100pg / mm 2 , from -50nm / mm 2 to 50nm / mm 2 .
  • the phases ⁇ z m and ⁇ z m t in equation XVI were calculated; as can be seen by simple inspection of equations XII and XIII, the capacitor C t can be made null without any restrictions, so that it improves the operation at high frequencies.
  • Figure 6 is a local extension, extracted from each of the panels of Figure 5, showing a comparison of the sensitivities of the three microbalance sensors (10, 50 and 150MHz) in terms of phase variation as a function of the mass variation
  • the system object of the invention can be used to track the sensor's FRSD during the experimental process. Indeed, since the offset and the ratio of powers is measured by the system continuously, the excitation frequency can be changed in such a way that the voltages u ⁇ and U A are continuously maintained at zero, thus performing a continuous monitoring of Ia FRSD.
  • This continuous monitoring of the FRSD can also be performed by making a correction in the frequency of the test signal following a certain function, for example an integral or quasi-integral variation of the variations that occur in the voltage signal that provides the variation of sensor phase
  • Another aspect that is important to highlight is that eventually the frequency of the test signal can be located, when the change in the response of the sensor occurs due to the effect of mass variation, in a zone of low or zero phase-mass sensitivity .
  • the method object of the invention in conjunction with the system object of the invention facilitates a procedure to determine this eventuality and correct the frequency of the test signal conveniently.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

La invención proporciona un método, un dispositivo de caracterización electrónica y un soporte y celda de medida para monitorear un proceso químico o físico cuyo resultado puede evaluarse en términos de la variación de masa sobre un recubrimiento depositado sobre un sensor piezoeléctrico, enfrentado a un medio fluido cuyas características físicas permanecen estables. La invención aprovecha la deducción de una expresión analítica que establece una relación simple entre la variación de fase de una señal de frecuencia fija, que interroga al resonador piezoeléctrico, y la variación en la densidad de masa del recubrimiento. La invención tiene utilidad en aplicaciones en las que se utilizan resonadores piezoeléctricos para la caracterización de procesos bioquímicos y electroquímicos tales como: biosensores e inmunosensores piezoeléctricos, caracterización de procesos y materiales mediante electrogravimetría ac, detección de sustancias químicas o biológicas en disolución, entre otras.

Description

MÉTODO Y DISPOSITIVO DE NANOGRAVIMETRÍA EN MEDIOS FLUIDOS BASADO EN RESONADORES PIEZOELÉCTRICOS
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención está relacionada con el campo de los sensores químicos, en particular con los que utilizan medidas eléctricas para detectar cambios extraordinariamente pequeños de masa, y más particularmente con los que utilizan como base los resonadores piezoeléctricos como micro ó nano-balanzas en medios líquidos.
ANTECEDENTES DE LA INVENCIÓN
Los sensores de microbalanza, y entre ellos los basados en cristales de cuarzo piezoeléctrico, son dispositivos que se utilizan para medir de forma precisa variaciones en Ia masa depositada sobre ellos por unidad de superficie, a través de los cambios que sufre Ia frecuencia de resonancia de dichos cristales operando como resonadores. Dentro de Ia variedad de sensores de microbalanza existentes en el mercado, los denominados resonadores de cuarzo en corte AT (donde dicho tipo de corte corresponde a un corte según un ángulo de 35°15' de inclinación respecto al eje óptico z del cristal y perpendicular al plano y-z del mismo) se están convirtiendo en una herramienta analítica alternativa en una gran cantidad de aplicaciones, en las que se desea detectar Ia presencia de especies en disolución o caracterizar procesos químicos, con una resolución comparable en muchos casos a las técnicas químicas clásicas (Ver las referencias: A.W. Czanderna and C. Lu (1984) in "Applications of piezoelectric quartz crystal microbalances", CLu and A.W. Czanderna (eds), Elsevier, Amsterdam, VoI. 7; A. Janshoff, H-J Galla and C. Steinem (2000) "Piezoelectric mass- sensing devices as biosensors-an alternative to optical biosensors?" Angew. Chem. Int.
Ed. 39:4004-4032; MA. Cooper and VT. Singleton (2007) "A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions" Journal of Molecular Recognition 20 (3): 154-184; TA. Camesano, YT. Liu and M. Datta (2007) "Measuring bacterial adhesión at environmental interfaces with single-cell and single-molecule techniques" Advances in Water Resources 30 (6-7):1470-1491 ; O. Lazcka, FJ. Del Campo and FX, Muñoz (2007) "Pathogen detection: A perspective of traditional methods and biosensors" Biosensors & Bioelectronics 22 (7):1205-1217; TS. Hug (2003) "Biophysical methods fro monitoring cell-substrate interactions in drug discovery" Assay and Drug Development Technologies 1 (3): 479-488; FL. Dickert, P. Lieberzeit and O. Hayden (2003) "Sensor strategies for micro-organism detection - from physical principies to imprinting procedures" Analytical and Bioanalytical Chemistry 377 (3):540- 549; KA. Marx (2003) "Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface"
Biomacromolecules 4 (5): 1099-1120; KA. Fahnrich, M. Pravda and GG. Guilbault (2002) "Immunochemical detection of polycyclic aromatic hydrocarbons (PAHs)" Analytical Letters 35 (8): 1269-1300; J. Wegener, A Janshoff and C. Steinem (2001 ) "The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ" CeII Bio-chemistry and Biophysics 34 (1 ):121-151 ; CK. O'Sullivan and GG.
Guilbault "Commercial quartz crystal microbalances - theory and applications" Biosensors & Bioelectronics 14 (8-9):663-670; CK. O'Sullivan, R. Vaughan and GG. Guilbault (1999) "Piezoelectric immunosensors - theory and applications" Analytical Letters 32 (12):2353-2377; K.Bizet, C. Grabielli and H. Perrot (1999) "Biosensors based on piezoelectric transducers" Analusis EurJAC 27:609-616).
El uso del resonador a cristal de cuarzo en corte AT como microbalanza de cuarzo, más conocida por sus siglas en literatura anglosajona QCM (quartz crystal microbalance), se basa en Ia bien conocida, por los expertos en Ia materia, ecuación de Sauerbrey (G. Sauerbrey (1959) "Verwendung von schwingquarzen zur wágung dünner schichten und zur mikrowágung" Zeitschrift Fuer Physik 155
(2): 206-222). La ecuación de Sauerbrey establece que Ia disminución en Ia frecuencia de resonancia del resonador es proporcional al incremento en Ia densidad superficial de masa del recubrimiento sobre Ia superficie del sensor. Cuando el sensor está en contacto con un medio liquido Newtoniano, Ia ecuación de Kanazawa (K. K. Kanazawa and J. G. Gordon Il (1985) "The oscillation frequency of a quartz resonator in contact with a liquid" Analytica Chimica Acta 175:99-105) proporciona el desplazamiento en Ia frecuencia de resonancia del resonador debido al contacto con el fluido. Para un sensor QCM con una de sus superficies recubierta por una capa de material muy fina, tan fina que el desfase de Ia onda acústica a través del espesor del recubrimiento sea muy pequeño, y enfrentada a un medio líquido Newtoniano, Ia ecuación de Martin (I) proporciona Ia relación cuantitativa de Ia combinación de los efectos de Ia masa del recubrimiento (efecto Sauerbrey) y del líquido (efecto Kanazawa) en Ia variación de Ia frecuencia de resonancia (SJ. Martin, V. E. Granstaff and G. C. Frye (1991 ) "Characterization of quartz crystal microbalance with simultaneous mass and liquid loading" Anal. Chem. 63:2272-2281 ).
Figure imgf000004_0001
En Ia ecuación anterior, el pri mer térm ino del segu ndo m iem bro corresponde al efecto Sauerbrey y el segundo al efecto Kanazawa, donde fs es Ia frecuencia de resonancia del sensor, Zcq es Ia impedancia acústica característica del cuarzo, pc y hc son, respectivamente, Ia densidad y el espesor del recubrimiento y pL and δL son, respectivamente, Ia densidad y Ia profundidad de penetración de Ia onda acústica en el líquido: M2pLδL es, de hecho, Ia densidad superficial de masa equivalente asociada con el movimiento oscilante de Ia superficie del sensor en contacto con el medio líquido.
De acuerdo con Ia ecuación (I), para una densidad de masa superficial del recubrimiento determinada, el valor absoluto del desplazamiento de frecuencia se incrementa de forma directamente proporcional al cuadrado de Ia frecuencia de resonancia. Consecuentemente, parece lógico pensar que tanta mayor sensibilidad tendrá un sensor QCM cuanto mayor sea su frecuencia de resonancia.
De hecho, Ia frecuencia de resonancia ha sido siempre el parámetro de caracterización fundamental en los sensores QCM.
Efectivamente, en Ia práctica, Ia gran mayoría de las técnicas utilizadas en Ia caracterización de sensores QCM han sido utilizadas para determinar Ia variación en Ia frecuencia de resonancia del resonador, entre otros parámetros relevantes del mismo (Ia patente US5201215 concedida a Granstaff et al. "Method for simultaneous measurement of mass loading and fluid property changes using a quartz crystal microbalance", incluye otros parámetros del sensor que es conveniente monitorear; ver también las referencias: A. Arnau, V. Ferrari, D. Soares, H. Perrot, "Interface Electronic Systems for AT-Cut QCM Sensors. A comprehensive review", in Piezoelectric Transducers and Applications, 2nd Ed., pp 1 17, A.Arnau Ed., Springer-Verlag Berlin Heidelberg, (2008); F. Eichelbaum, R. Borngráber, J. Schroder, R. Lucklum, and P. Hauptmann (1999) "Interface circuits for quartz crystal microbalance sensors" Rev. Sci. Instrum. 70:2537-2545): los analizadores de redes o de impedancia se utilizan para determinar Ia conductancia del resonador en el margen de frecuencias de resonancia y determinar Ia frecuencia que corresponde con Ia máxima conductancia (J. Schroder, R. Borngráber, R. Lucklum and P. Hauptmann (2001 ) "Network analysis based interface electronics for quartz crystal microbalance" Review Scientific Instruments 72 (6):2750-2755; S. Doerner, T. Schneider, J. Schroder and P. Hauptmann (2003) "Universal impedance spectrum analyzer for sensor applications" in Proceedings of
IEEE Sensors 1 , pp. 596-594); Ia técnica de decaimiento, que está recogida en Ia patente US6006589 concedida a Rodahl et al., en 1999 (ver también Ia referencia M. Rodahl and B. Kasemo (1996) "A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance" Rev. Sci. Instrum. 67:3238-3241 ), procesa Ia señal resultante al desconectar Ia señal con Ia que ha sido excitado el resonador, durante un cierto tiempo, a una frecuencia cercana a Ia de resonancia. Este análisis proporciona finalmente información sobre Ia variación de Ia frecuencia de resonancia, serie o paralelo dependiendo de Ia configuración, y las pérdidas en el resonador; en las técnicas basadas en osciladores el sensor resonante se utiliza como elemento de control de Ia frecuencia de oscilación, permitiendo un seguimiento continuo de una frecuencia que corresponde a una fase específica del resonador en el margen de resonancia. Esta frecuencia puede utilizarse en muchas aplicaciones como referencia de Ia frecuencia de resonancia del resonador (ver las referencias siguientes: H. Ehahoun, C. Gabrielli, M. Keddam, H. Perrot and P. Rousseau
(2002) "Performances and limits of a parallel oscillator for electrochemical quartz crystal microbalances" Anal Chem. 74:1 1 19-1 127; C. Barnes (1992) "Some new concepts on factors influencing the operational frequency of liquid- immersed quartz microbalances" Sensors and Actuators A-Physical 30 (3): 197-202; K. O. Wessendorf (1993) "The lever oscillator for use in high resistance resonator applications" in Proceedings of the 1993 IEEE International Frequency Control Symposium, pp. 71 1-717; R. Borngráber, J. Schroder, R. Lucklum and P. Hauptmann (2002) "Is an oscillator-based measurement adequate in a liquid environment?" IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 49 (9): 1254-1259; S. J. Martin, J. J. Spates, K. O. Wessendorf, T. W. Schneider and R. J. Huber (1997) "Resonator/oscillator response to liquid loading" Anal. Chem. 69:2050-2054). Las técnicas basadas en osciladores son las más simples y rápidas en el seguimiento de Ia frecuencia pero tienen inconvenientes de funcionamiento en medios líquidos, donde tienen lugar numerosas aplicaciones de gran interés; por ello grandes esfuerzos se han realizado en el diseño de osciladores apropiados para estas aplicaciones que han dado lugar a diversas patentes tales como: Ia patente US 4,783,987 concedida a Hager en 1988 titulada "System for sustaining and monitoring the oscillation of piezoelectric elements exposed to energy-absortive media"; las patentes US_4788466 y US_6848299_B2 concedidas a Paul et al., en
1988 y en 1995, "Piezoelectric sensor Q loss compensation" y "Quartz crystal microbalance with feedback loop for automatic gain control"; las patentes US_5416448 y US_6169459 concedidas a Wessendorf en 1995 y 2001 "Oscillator circuit for use with high loss Quartz resonator sensor" y "Active bridge oscillator"; finalmente, existe un grupo de técnicas que podríamos denominar "técnicas de enganche" (ver referencias A. Arnau, T.Sogorb, Y. Jiménez (2002) "Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation" Rev. Sci. Instrum. 73 (7): 2724-2737; V. Ferrari, D. Marioli, and A. Taroni (2001 ) "Improving the accuracy and operating range of quartz microbalance sensors by purposely designed oscillator circuit" IEEE Trans. Instrum. Meas. 50:1 1 19-1 122; A. Arnau, J.V. García, Y. Jiménez, V. Ferrari and M. Ferrari (2007) "Improved Electronic Interfaces for Heavy Loaded at Cut Quartz Crystal Microbalance Sensors" in Proceedings of Frequency Control Symposium Joint with the 21 st European Frequency and Time Forum. IEEE International, pp.357-362; M. Ferrari, V. Ferrari,
D. Marioli, A. Taroni, M. Suman and E. Dalcanale (2006) "In-liquid sensing of chemical compounds by QCM sensors coupled with high-accuracy ACC oscillator" IEEE Trans. Instrum. Meas. 55 (3):828-834; B. Jakoby, G. Art and J. Bastemeijer (2005) "A novel analog readout electronics for microacoustic thickness shear-mode sensors" IEEE Sensors Journal 5 (5):1 106-1 1 1 1 ; C. Riesch and B. Jakoby (2007)
"Novel Readout Electronics for Thickness Shear-Mode Liquid Sensors Compensating for Spurious Conductivity and Capacitances" IEEE Sensors Journal 7 (3): 464-469) que pueden ser consideradas como sofisticados osciladores, en el sentido que incluyen un bucle de realimentación, donde Ia fuente de excitación del sensor puede considerarse externa al mismo y donde Ia condición de realimentación del bucle puede calibrarse de forma precisa. Estas técnicas permiten monitorizar con precisión Ia frecuencia de resonancia serie dinámica del resonador y algunas de ellas han sido protegidas mediante patentes (MI2003A000514, concedida a Ferrari et al, "Método e dispositivo per determinare
Ia frequenza di risonanza di sensori piezoelettrici risonanti" y Ia patente ES2197796 concedida a Arnau et al., en 2004 "Sistema de caracterización de sensores de cristal de cuarzo resonante en medios fluidos, y procedimiento de calibración y compensación de Ia capacidad del cristal de cuarzo". Otras patentes recientes que utilizan, de una u otra forma, alguna de las técnicas descritas o variaciones de las mismas pero con un objetivo común que es el seguimiento de Ia frecuencia de resonancia del sensor han sido revisadas (las concedidas a J . P. Dilger et al., en 2000 y 2001 , US 6161420 "High frequency measuring circuit" y US 6222366_B1 "High frequency measuring circuit with inherente noise reduction for resonating chemicals sensors"; Ia concedida a J. R.
Vig en 2001 , US 6247354_B1 , "Techniques for sensing the properties of fluids with resonators"; Ia patente concedida a Chang et al., en 2003, US 6557416 B2 "High resolution biosensor system"; Ia patente concedida a Nozaki en 2006, US 7036375 B2, "QCM sensor and QCM sensor device"; Ia concedida a Dayagi et al., en 2007, US 7159463 B2 "Sensitive and selective method and device for the detection of trace amounts of a substance"; Ia concedida a Itoh et al., en 2007, US 7201041 B2 "Analysis method using piezoelectric resonator"; Ia concedida a Zeng et al., en 2008, US 7329536 B2 "Piezoimmunosensor").
La principal razón para realizar el seguimiento de Ia frecuencia de resonancia del resonador y, por tanto, de su variación, es Ia existencia de una relación simple entre esta variación y las magnitudes físicas de interés en una aplicación real, en este caso Ia variación en Ia densidad superficial de masa sobre Ia superficie del sensor, que puede ser debida a cambios en Ia densidad del recubrimiento o de las propiedades del medio líquido, y que ha sido presentada en Ia ecuación (I). En muchas aplicaciones, por ejemplo en biosensores piezoeléctricos, que cubren una gran variedad de caracterización de procesos (ver referencia MA. Cooper and VT. Singleton (2007) "A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions" Journal of Molecular Recognition 20 (3):154-184), los desplazamientos experimentados por Ia frecuencia de resonancia del sensor son habitualmente muy pequeños, del orden de decenas de hercio en megahercios; y son debidos al incremento de masa sobre Ia capa fina sensible que recubre el resonador, donde el medio fluido mantiene sensiblemente constantes sus propiedades físicas. Por Io tanto, grandes esfuerzos se están realizando para mejorar Ia sensibilidad del sensor de microbalanza de cuarzo; Ia mayoría de estos esfuerzos están encaminados a incrementar Ia frecuencia de resonancia del resonador, como sugiere Ia ecuación (I). Sin embargo, Ia ecuación (I) establece una sensibilidad ideal teórica que asume, implícitamente, una estabilidad infinita de los componentes del sistema de caracterización y del proceso de medida, de tal forma que no existen ni perturbaciones asociadas al sistema de medida ni inestabilidades procedentes del sistema electrónico de caracterización. Desgraciadamente esto no es así, y Ia sensibilidad no depende exclusivamente del resonador sino también del diseño y configuración del sistema de medida y del circuito electrónico de caracterización. Se entiende aquí por sistema de medida toda Ia infraestructura necesaria para Ia realización del experimento, que incluye Ia celda de medida, los elementos de flujo, bombas, sistemas de regulación de temperatura, etc., a excepción del circuito electrónico de caracterización. Si se asume que el sistema de medida ha sido diseñado para minimizar las perturbaciones o interferencias que pueden afectar a Ia frecuencia de resonancia del resonador tales como: cambios en Ia temperatura, vibraciones, cambios en Ia presión del fluido por uso de bombas de inyección poco adecuadas, etc., Ia sensibilidad del conjunto dependerá de Ia precisión en Ia medida de Ia frecuencia de resonancia del sensor que, a su vez, dependerá de Ia interferencia generada por el propio sistema electrónico de caracterización. Por tanto, Ia sensibilidad no puede ser evaluada adecuadamente sin tener en cuenta el sistema empleado para caracterizar el sensor.
Los sistemas empleados para caracterizar a los resonadores piezoeléctricos en aplicaciones de microbalanza, Ia mayoría de los cuales han sido descritos anteriormente, pueden clasificarse en dos tipos: a) los que interrogan de forma pasiva al sensor que se mantiene externo al sistema de caracterización, y b) aquéllos en los que el sensor forma parte del mismo sistema de caracterización. En el primer grupo se encuentran los analizadores de redes o impedancia y las técnicas de decaimiento, mientras que en el segundo grupo pueden incluirse los osciladores; las técnicas de enganche se puede considerar que se encuentran entre ambos grupos.
Las ventajas de los analizadores de redes o de impedancia son reconocidas y están asociadas al hecho de que el sensor puede caracterizarse tras una calibración en Ia que se ha compensado cualquier influencia eléctrica externa al propio sensor. Por su parte, los métodos de decaimiento proporcionan una precisión elevada, siempre que Ia precisión en Ia adquisición de Ia señal de decaimiento sea alta, tanto en fase como en amplitud, Io que resulta complejo para resonadores de altas frecuencias. Por Io tanto, para resonadores de alta frecuencia, mayor de 50MHz, sólo los analizadores de impedancia resultan suficientemente precisos, pero su gran coste y dimensiones los hace inadecuados para aplicaciones como sensores. Las técnicas de enganche aportan circuitos más simples que los analizadores a frecuencias relativamente bajas de los resonadores; sin embargo a frecuencias altas Ia complejidad de los circuitos aumenta y las ventajas en cuanto a simplicidad que representaban respecto de los analizadores o las técnicas de decaimiento se reducen considerablemente. En consecuencia, los osciladores se convierten en Ia alternativa para monitorear Ia frecuencia de resonancia en resonadores de alta frecuencia; su bajo coste, su capacidad de integración y seguimiento continuo y rápido de Ia frecuencia de resonancia hacen que sea Ia alternativa escogida para implementar los sensores
QCM a altas frecuencias de resonancia. Sin embargo, en un oscilador, Ia sensibilidad está condicionada por Ia estabilidad de frecuencia y ésta por Ia estabilidad de fase, que depende de Ia respuesta de fase de todos los componentes del sistema oscilador. En principio, el papel de un resonador en un oscilador es absorber las variaciones de fase que ocurren en el resto de componentes del sistema oscilante; Ia gran pendiente de Ia respuesta fase- frecuencia del resonador hace que estos cambios de fase se compensen con variaciones muy pequeñas en Ia frecuencia de oscilación. Sin embargo, en el caso de un sensor QCM Io que interesa precisamente es medir las variaciones que experimenta el sensor, por Io que cualquier variación en Ia respuesta de fase del resto de componentes que forma el circuito oscilador se traducirá en inestabilidad de frecuencia. Más aún, el factor de calidad del resonador como sensor se reduce enormemente en aplicaciones en medio líquido, por Io que cambios relativamente pequeños en Ia respuesta de fase del resto de componentes del oscilador se traducirá en variaciones relativamente grandes en Ia frecuencia de oscilación, que aparecerán como ruido. Este ruido, de frecuencia y de fase, aumenta con Ia frecuencia del sistema, por Io que no es evidente afirmar que un aumento en Ia frecuencia de resonancia del sensor supondrá necesariamente un aumento de Ia sensibilidad del sistema sensor, como indica Ia ecuación (I).
Un planteamiento alternativo sería interrogar al sensor con una señal de prueba (denominada señal test) procedente de una fuente externa de gran estabilidad en frecuencia y en fase, de forma similar como hacen los analizadores de impedancia o de redes, pero a una frecuencia de prueba (o frecuencia test) fija dentro de Ia banda de resonancia del sensor. Un cambio en Ia respuesta fase- frecuencia del resonador, por ejemplo debido a una variación en Ia densidad superficial de masa de Ia capa fina depositada sobre el resonador, sería detectado a partir del cambio de fase sufrido por Ia señal de test. En principio, este cambio de fase debería estar relacionado cuantitativamente con Ia variación de masa sobre Ia superficie del sensor. La patente US5932953 concedida a Drees et al., reivindica un método y un sistema basados en esta idea, que presenta las siguientes ventajas:
- La estabilidad de Ia señal de test puede ser muy elevada de manera que Ia precisión en Ia caracterización de Ia respuesta del sensor no se ve perturbada por el propio ruido de Ia señal de caracterización.
- La medida del desfase se realiza entre Ia señal original, a Ia entrada del circuito, y Ia señal resultante afectada por Ia respuesta del sensor; por Io tanto, Ia medida del desfase es diferencial y cualquier inestabilidad de fase de Ia señal original de test es transferida de forma simultánea a Ia señal de salida cancelándose mutuamente en Ia medida diferencial.
- La medida del desfase puede realizarse con circuitos relativamente simples, incluso a frecuencias muy elevadas, por Io que el sistema puede implementarse mediante una electrónica sencilla y fácilmente integrable.
- Al utilizar una señal de test de frecuencia fija, Ia misma señal, o una sintetizada a partir de ella, puede utilizarse para interrogar de forma simultánea a otros sensores, Io que facilita enormemente Ia implementación de sistemas de múltiples resonadores.
No obstante, estas ventajas aparentes que, en efecto, podrían ser proporcionadas por un método y un sistema de medida basados en Ia idea original de interrogar al dispositivo sensor con una señal de test de frecuencia fija, no terminan de conseguirse mediante el método y el sistema presentados en Ia patente US5932953 mencionada por los siguientes motivos:
1.- El método reivindicado en dicha invención asume que Ia medida de fase proporciona una medida cuantitativa de Ia variación de masa del recubrimiento sensible depositado sobre Ia superficie del resonador; sin embargo no proporciona ninguna relación matemática entre dicha variación de fase y Ia correspondiente variación de masa. Por tanto, para aplicar dicho método sería necesario previamente realizar una calibración del dispositivo sensor, Io que complica Ia aplicación del método reivindicado. Más aún, en dicha patente, se asume que Ia sensibilidad dada por Ia relación entre Ia variación de Ia inserción de fase y Ia variación de masa aumenta también de forma proporcional a Ia frecuencia, de Ia misma manera que Ia relación entre Ia variación en Ia frecuencia de resonancia y Ia variación de masa. Esta asunción viene originada por Ia falta de rigor en el análisis del problema que pretende ser satisfecho por el método y sistema presentados en dicha patente. Como se verá en Ia descripción detallada de Ia presente invención esto no es así; todavía más, para resonadores en vacío o en medio gaseoso, Ia sensibilidad dada por Ia relación entre Ia variación de Ia inserción de fase y Ia variación de masa no aumenta en vacío, y Io hace muy poco en medio gaseoso, al aumentar Ia frecuencia de resonancia del sensor, mientras que en medio líquido Io hace proporcionalmente a Ia raíz cuadrada de Ia frecuencia de resonancia. Este resultado que es demostrado por primera vez en Ia presente invención demuestra que el objeto de Ia misma no es una modificación simple o trivial de Ia patente anterior. 2.- El método y sistema reivindicados en Ia patente US5932953 asumen que Ia frecuencia de Ia señal de test puede ser cualquier frecuencia dentro de Ia banda de resonancia del sensor. Como se demostrará en Ia presente invención, esto no es así. La señal de test que debe utilizarse para establecer Ia línea base o de referencia de fase tiene necesariamente que ser, o estar muy próxima a, Ia denominada "frecuencia de resonancia serie dinámica" del sensor (denominada dicha frecuencia como FRSD y definida en Ia descripción detallada de Ia invención); de Io contrario las medidas de Ia variación de fase no pueden relacionarse de forma simple con Ia variación de masa, ya que esta relación dependería de Ia frecuencia exacta de Ia señal de test y del sensor utilizado, Io que invalidaría cualquier calibración realizada a otra frecuencia y haría inviable Ia aplicación del método reivindicado. En este sentido, el sistema que reivindica, basado en Ia medida diferencial simultánea de los desfases producidos por dos resonadores cuyas bandas de resonancia se solapan, uno de los cuales se utiliza como referencia, para cancelar los efectos externos tales como, temperatura, viscosidad, etc., y en los que Ia frecuencia de Ia señal de test es fijada en Ia zona intermedia de Ia banda de solapamiento, no proporciona los resultados deseados ya que los sensores son interrogados en zonas diferentes de su respuesta fase- frecuencia; por tanto, los efectos externos producen respuestas diferentes en cada resonador, Io que impide su cancelación.
3.- Más aún, Ia elección de Ia frecuencia de Ia señal de test, tal y como se ha puesto de manifiesto en el punto anterior, no ha sido prevista ni en el método, ni en el sistema reivindicados. En consecuencia, el sistema reivindicado no es adecuado para realizar una medida apropiada de Ia variación de fase a Ia frecuencia conveniente. El sistema objeto de Ia presente invención tiene en cuenta este aspecto, que resulta de un análisis riguroso del problema y, en consecuencia, no es resultado de una modificación simple o trivial del sistema mostrado en Ia patente anterior.
4.- El método y sistema reivindicados en Ia patente US5932953 únicamente establecen Ia medida de Ia variación de fase. Sin embargo, Ia medida exclusiva de Ia variación de fase no permite asegurar que las variaciones de fase estén relacionadas exclusivamente con las variaciones de masa en el sensor. En efecto, si las propiedades físicas del medio fluido sobre el resonador cambian, las variaciones de fase pueden verse perturbadas por dicho cambio induciendo error en Ia caracterización de las variaciones de masa. Es necesario pues incluir en el sistema una forma que permita establecer Ia validez de Ia relación entre las variaciones de fase y masa.
5.- Como se ha mencionado, Ia sensibilidad fase-frecuencia no aumenta con Ia frecuencia de resonancia para el caso del vacío o en medio gaseoso, incluso para medios líquidos no aumenta tanto como era de esperar; en consecuencia puede seguir siendo conveniente utilizar Ia medida de Ia variación de frecuencia de resonancia como parámetro de caracterización. Este aspecto, no es considerado por el sistema reivindicado en Ia patente US5932953 ya que no ha sido puesto de manifiesto hasta ahora. El sistema objeto de Ia presente invención considera este aspecto, tras el análisis que en Ia descripción detallada se incluye, implementando un sistema realimentado que permite establecer tanto Ia frecuencia de test adecuada como Ia medida opcional de Ia variación de Ia frecuencia de resonancia. 6.- La patente US5932953 reivindica un método y sistema en los que el sensor es interrogado con una señal de frecuencia fija dentro de Ia banda de resonancia del sensor. Una vez fijada Ia frecuencia de test ésta se mantiene constante durante todo el proceso de medida. El método y sistema reivindicados no consideran el desplazamiento que sufre Ia frecuencia de test, dentro de Ia zona de resonancia durante el proceso de medida, como consecuencia del desplazamiento de Ia curva fase-frecuencia del resonador. Además, no se establece ningún procedimiento para realizar Ia selección de Ia frecuencia de test adecuada dentro de Ia zona de resonancia del sensor. Este aspecto es muy importante, como ya se ha indicado y como se pondrá de manifiesto en Ia descripción detallada de Ia invención más adelante. Una mejora no trivial al sistema y método reivindicados, ya presentada en el punto anterior, es Ia introducción de una realimentación controlada que permita fijar Ia frecuencia adecuada de Ia señal de test y, al mismo tiempo, determinar cómo Ia frecuencia de Ia señal de test se aleja de su valor óptimo durante el experimento a monitorear. Este aspecto es muy relevante ya que Ia modificación de Ia respuesta fase- frecuencia del resonador durante el experimento, puede llevar a que Ia señal de test esté, eventualmente, interrogando al sensor en una región de su respuesta fase-frecuencia en donde no exista sensibilidad, o ésta se haya reducido en gran medida, es decir, donde no se produzca variación de fase frente a variaciones en Ia masa del recubrimiento; dicho de otra manera, Ia respuesta del sensor se haya saturado. En particular, en medio gaseoso Ia saturación del sensor puede producirse rápidamente, es decir Ia excursión de Ia respuesta entre Ia variación de fase y Ia variación de masa puede ser muy corta, ya que Ia respuesta fase- frecuencia del sensor es muy abrupta. Por tanto, es un objeto importante de mejora incluir un método y sistema que permitan evaluar el grado de desviación de
Ia frecuencia de Ia señal de test, respecto de su valor óptimo, durante el proceso de medida, y permitan corregir dicha frecuencia de test de forma adecuada y automática cuando Ia desviación de Ia frecuencia de test esté por encima de un valor previamente determinado. 7.- Finalmente, el sistema reivindicado en Ia patente US5932953 únicamente establece Ia medida de Ia variación de fase del sensor en su conjunto. Como se demostrará en Ia descripción detallada de Ia presente invención, es preciso diseñar un sistema que permita medir, de forma Io más precisa posible, Ia variación de fase debida al cambio en Ia respuesta de Ia impedancia asociada fundamentalmente a Ia rama dinámica del sensor, un diseño inadecuado reduciría Ia sensibilidad del sistema sensor.
Además de un método y un sistema electrónico de caracterización adecuados, otra de las dificultades a superar cuando se pretende trabajar con resonadores de frecuencias de resonancia fundamental muy altas, es su pequeño tamaño y fragilidad; estas características dificultan enormemente el diseño de una celda de medida que cumpla las siguientes especificaciones: extienda los contactos eléctricos del resonador para su conexión al sistema de caracterización electrónica y permita aislar una de las caras del resonador del medio fluido sin perturbar en exceso Ia respuesta del sensor, facilite Ia realización de experimentos en flujo, en los cuales se canaliza un fluido de forma que entre en contacto con al menos una de las superficies vibrantes de un resonador piezoeléctrico, y permita un manejo seguro del sensor por los experimentadores. La invención tiene por objeto aumentar Ia sensibilidad de los sistemas de microbalanza actuales, por Io tanto presenta un método y un sistema electrónico de caracterización que deben ir acompañados de una celda de medida adecuada que haga factible tanto Ia aplicación del método como Ia caracterización eléctrica del sensor resonante. Actualmente no existen celdas de medida preparadas para trabajar con resonadores piezoeléctricos de cuarzo en corte AT de frecuencias fundamentales superiores a 50MHz por las razones mencionadas. La presente invención presenta un soporte y una celda de medida que soluciona estos inconvenientes.
El análisis precedente ha servido para poner de manifiesto algunas características fundamentales y diferenciales del objeto de Ia presente invención, que no se limitan a las patentes mencionadas sino que son mayoritariamente generales a los sistemas existentes en Ia actualidad.
BREVE DESCRIPCIÓN DE LA INVENCIÓN Es pues un objeto prioritario de Ia invención proporcionar un método, un sistema electrónico y un soporte y celda de medida para caracterizar un proceso químico o físico cuyo resultado puede evaluarse en términos de transferencia, acumulación o pérdida de masa sobre un recubrimiento depositado sobre un sensor piezoeléctrico, y enfrentado a un medio fluido cuyas características físicas permanecen estables. La invención aprovecha Ia deducción de una expresión analítica que establece una relación simple entre Ia variación de fase de una señal de frecuencia fija, que interroga al resonador piezoeléctrico, y Ia variación en Ia densidad de masa del recubrimiento depositado sobre el resonador. La presente invención presenta una mejora sustancial y evita los inconvenientes que presentan los sistemas anteriores. Adicionalmente, el método propuesto es válido para cualquier resonador que opere en modo de cizalla (definido dicho modo como aquél en el que el desplazamiento de las partículas es paralelo a Ia superficie del sensor y Ia onda se propaga en Ia dirección perpendicular al desplazamiento, es decir se genera una onda de propagación transversal) como son, por ejemplo, los resonadores de cuarzo con corte AT o resonadores de onda acústica en volumen y de película delgada, más conocidos por sus siglas en inglés FBAR (Film BuIk Acoustic Resonators), algunos de los cuales también pueden vibrar en modo de cizalla. Es también un objeto de Ia presente invención proporcionar un método y sistema que no requiera Ia incorporación de los resonadores sensores en circuitos osciladores.
Es un objeto de Ia presente invención proporcionar un método y sistema que evite el uso de los complejos y costosos sistemas basados en analizadores de impedancia o sistemas de decaimiento para medir Ia transferencia, acumulación o pérdida de masa que ocurre sobre un recubrimiento depositado sobre un resonador piezoeléctrico, durante un proceso físico o químico, al mismo tiempo que proporciona un aumento de Ia sensibilidad.
Es un objeto prioritario de Ia presente invención proporcionar un método, que utiliza una relación matemática simple, para obtener una medida cuantitativa de Ia variación de masa sufrida por el recubrimiento, depositado sobre al menos una de las superficies del resonador sensor, a partir de Ia variación de fase sufrida por una señal de frecuencia fija y específica, dentro de Ia región de resonancia del sensor, al ser transmitida a través del sensor resonante durante el proceso físico o químico a caracterizar; evitando así Ia realización de complejos procedimientos de calibración.
Es otro objeto prioritario de Ia invención proporcionar un método y sistema que permitan establecer Ia frecuencia óptima de Ia señal de test utilizada para interrogar al sensor resonante, donde es válida Ia relación entre Ia variación de fase y Ia variación de masa mencionadas arriba; y cuyo método considere y el sistema permita Ia corrección de Ia frecuencia de Ia señal de test en caso de que Ia desviación de ésta, respecto de su valor óptimo, al desplazase Ia respuesta fase-frecuencia del resonador por efecto de Ia variación de masa del recubrimiento, sea mayor de un cierto valor previamente determinado; evitando así
Ia saturación en Ia respuesta del sensor resonante.
Es aún otro objeto de Ia presente invención proporcionar un método y sistema que permitan seleccionar entre el seguimiento de Ia frecuencia de resonancia serie dinámica o el seguimiento de Ia variación de fase de Ia señal de test, como parámetros de caracterización del sensor resonante durante el experimento.
Es un objeto de Ia presente invención proporcionar un método y sistema que permitan obtener una medida de Ia variación de fase que sufre una señal de frecuencia fija transmitida a través del sensor resonante, fundamentalmente por efecto de Ia variación de Ia respuesta fase-frecuencia de Ia rama dinámica del sensor, maximizando así Ia relación entre Ia variación de fase y Ia de masa.
Es aún otro objeto de Ia presente invención proporcionar un sistema donde Ia medida de Ia variación de fase este sustancialmente libre de factores externos al sensor procedentes del entorno ambiental. Es aún otro objeto de Ia presente invención proporcionar un soporte y celda de medida que extienda los contactos eléctricos del resonador permitiendo su conexión al sistema electrónico de caracterización, que aisle una de las caras del resonador del medio líquido en contacto con el recubrimiento, que permita Ia realización de medidas en flujo y que proporcione un manejo seguro del sensor por parte de los experimentadores, y todo ello sin perturbar en exceso Ia respuesta fase-frecuencia del sensor.
De acuerdo con éstos y otros objetivos de Ia invención, se proporciona un método para caracterizar Ia transferencia, acumulación o pérdida de masa sobre un recubrimiento depositado sobre un sensor piezoeléctrico, y enfrentado a un medio fluido cuyas características físicas permanecen estables, que incluye las siguientes operaciones:
1. -Aplicar una señal de tensión de test a un circuito donde está conectado el sensor resonante. 2. -Seleccionar Ia frecuencia de Ia señal de test sustancialmente igual
(entendido este término como una frecuencia igual o muy cercana) a Ia frecuencia de resonancia serie dinámica del resonador en el estado que se considera como referencia.
3.- Medir los valores de dos señales de tensión, una de las cuales establece Ia referencia de fase del sensor y Ia otra Ia referencia del nivel de pérdidas del mismo.
4.- Hacer un seguimiento de los valores de las tensiones tomadas como referencia anteriormente durante el proceso que se desea caracterizar o monitorear. 5.- Verificar que el valor de Ia tensión de referencia de pérdidas del sensor no se modifica sustancialmente durante el experimento.
6.- Corregir el valor de Ia frecuencia de Ia señal de test durante el proceso a monitorear, en caso de que Ia señal que proporciona Ia medida de Ia variación de fase se haya desviado, por encima o por debajo de un valor previamente determinado, del valor establecido como referencia de fase del sensor en el punto
3 anterior, hasta que Ia señal que proporciona Ia medida de Ia variación de fase tenga el mismo valor que el establecido como referencia de fase del sensor en el punto 3 anterior, o su diferencia en valor absoluto sea menor de una cierta cantidad previamente establecida. 7.- Obtener Ia variación de masa sobre el recubrimiento durante el proceso experimental que se ha monitoreado, a partir de las variaciones de Ia señal que proporciona Ia medida de Ia variación de fase, mediante Ia aplicación de una expresión analítica simple que relaciona Ia variación de fase que sufre Ia señal de test establecida en el paso 2, al atravesar el circuito al que está conectado el sensor, con Ia variación de masa buscada.
De acuerdo con los objetivos previamente indicados se proporciona un sistema electrónico para caracterizar Ia transferencia, acumulación o pérdida de masa sobre u n recubrimiento depositado sobre un sensor piezoeléctrico, y enfrentado a un medio fluido cuyas características físicas permanecen estables, que permite implementar el método anteriormente descrito y que está compuesto por:
- una fuente de señal de frecuencia fija determinada, de gran estabilidad y muy bajo ruido de fase; - un subsistema de síntesis de frecuencia;
- un subsistema de control y adquisición de señal;
- un circuito acondicionador de señal con capacidad de filtrado y adecuación de niveles de potencia;
- un circuito formado por dos ramas que comparten Ia entrada y tiene dos salidas, una para cada rama. Una de las ramas está compuesta por componentes cuya respuesta de fase-frecuencia no cambia; Ia otra incluye, en parte, los mismos componentes que Ia primera a modo de espejo, pero una parte de los componentes es sustituida por el sensor resonante;
- un subsistema de detección de fase de ganancia ajustable, que proporciona una señal de tensión proporcional a Ia diferencia de fase entre las señales a sus entradas; y
- un subsistema de medida de potencia que proporciona una señal de tensión proporcional a Ia diferencia entre los niveles de potencia de las señales a sus entradas; y caracterizado porque:
- el subsistema de síntesis de frecuencia proporciona, a partir de Ia señal de frecuencia fija, una señal cuya frecuencia puede barrer Ia banda de frecuencias de resonancia del resonador sensor;
- Ia señal proporcionada por el subsistema de síntesis de frecuencia está conectada a Ia entrada del circuito acondicionador de señal, que Ia filtra adecuadamente y Ie proporciona el nivel de potencia adecuado;
- Ia salida del circuito acondicionador de señal está conectada a Ia entrada del circuito de dos ramas donde está conectado el sensor resonante;
- cada una de las salidas del circuito de dos ramas está conectada a una de las entradas del subsistema de detección de fase, cuya salida proporciona una señal de tensión continua de valor proporcional a Ia diferencia de fases entre las señales a sus entradas;
- cada u na de las salidas del circuito de dos ramas también está conectada a una de las entradas del circuito de medida de potencia, cuya salida proporciona una señal de tensión continua de valor proporcional a Ia diferencia de niveles de potencia entre las señales a sus entradas;
- las salidas de los circuitos de detección de fase y de nivel de potencia son adquiridas por el sistema de control que puede actuar sobre el subsistema de síntesis de frecuencia para controlar Ia frecuencia de Ia señal de salida de dicho subsistema;
- los datos de Ia señales adquiridas por el sistema de control son directamente analizados de acuerdo con el paso 7 del método indicado anteriormente, o bien transferidos a un equipo exterior para su tratamiento en tiempo real o posterior de acuerdo con dicho método.
De acuerdo con los objetivos previamente indicados se proporciona un soporte y celda de medida para caracterizar Ia transferencia, acumulación o pérdida de masa sobre un recubrimiento depositado sobre un sensor piezoeléctrico, y enfrentado a un medio fluido cuyas características físicas permanecen estables, y que está compuesto por:
- un soporte sobre el que se deposita el sensor resonante y que extiende los contactos eléctricos del resonador al mismo tiempo que Ie proporciona robustez y facilidad de manejo;
- un bloque inferior sobre el que se deposita el soporte y que permite Ia conexión de los contactos eléctricos extendidos del resonador, mediante el soporte, a un conector convencional que facilita Ia conexión eléctrica del sensor resonante al sistema eléctrico de caracterización;
- un bloque superior, que incluye el sistema de flujo y cuya conexión hace que el soporte quede situado entre los dos bloques, aislando una de las partes del sensor resonante del flujo; y caracterizado porque extiende los contactos eléctricos del resonador permitiendo su conexión al sistema electrónico de caracterización anteriormente descrito, porque aisla una de las caras del resonador del medio líquido en contacto con el recubrimiento, porque permite Ia realización de medidas en flujo y porque proporciona un manejo seguro del sensor por parte de los experimentadores, sin perturbar en exceso Ia respuesta fase-frecuencia del sensor.
Los objetivos y ventajas de Ia presente invención se pondrán mejor de manifiesto a continuación mediante una descripción detallada de Ia invención. DESCRIPCIÓN DE LOS DIBUJOS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:
La figura 1.- Representa Ia planta, Ia planta inferior, y una sección trasversal del alzado de un soporte para depositar un sensor piezoeléctrico; también se muestra Ia planta de un resonador piezoeléctrico.
La figura 2.- Es una vista explotada de Ia celda completa de medida objeto de Ia invención donde se han hecho transparentes algunas partes de Ia misma para una mejor visibilidad de ciertos detalles. La figura 3.- Representa un modelo eléctrico equivalente de un resonador piezoeléctrico.
La figu ra 4.- Representa esquemáticamente un circuito, objeto de Ia invención, para el seguimiento de Ia variación de fase en una señal de frecuencia fija como consecuencia del cambio en Ia respuesta fase-frecuencia del sensor piezoeléctrico que se encuentra en su camino.
La figura 5.- Es un gráfico que muestra una comparativa de los resultados obtenidos, para Ia variación de fase de Ia impedancia dinámica y las ecuaciones
XVI y XVI I I, que se deducen en Ia siguiente descripción detallada, para tres sensores de cuarzo AT de diferentes frecuencias de resonancia, alrededor de Ia frecuencia de resonancia serie dinámica de cada uno.
La figura 6.- Es un gráfico que muestra una comparativa de las sensibilidades fase-masa de tres sensores de diferente frecuencia de resonancia.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La Figura 1 muestra Ia planta, Ia planta inferior y una sección transversal del alzado de un soporte especialmente diseñado para alojar un sensor resonante. El soporte tiene como objetivos extender los contactos eléctricos del resonador permitiendo su conexión a un sistema electrónico de caracterización, y proporcionar robustez y facilidad de manejo del sensor por parte de los experimentadores. El diseño de dicho soporte es tal que proporciona dichos objetivos sin perturbar en exceso Ia respuesta fase-frecuencia del sensor y constituye, por tanto, una realización preferente de uno de los objetos prioritarios de Ia presente invención.
En relación al objeto de Ia invención presentado en Ia figura 1 , sobre el soporte 1 , fabricado con material de características adecuadas para soportar el contacto con los elementos sólidos y líquidos que tengan que ser utilizados en un experimento concreto, se ha realizado un mecanizado compuesto por los siguientes elementos: los salientes 3, las ranuras 5, los nervios 6, los agujeros 7 y
8 y el nervio central 9, quedando el hueco 10 entre los salientes y los nervios 6 y 9. Con Ia realización del soporte mencionado 1 , un resonador de cuarzo 2, es depositado entre los salientes 3 y sobre los nervios 6 y 9; los salientes 3 sirven de guías durante el proceso de colocación del resonador, de tal manera que el centro del resonador coincide con el centro del agujero 8; en esta posición los extremos de los electrodos del resonador 4, sobresalen adecuadamente de los nervios 6 alcanzando cada uno de ellos una de las ranuras 5. El hueco 10 bajo el resonador se rellena, previamente a Ia colocación del sensor resonante 2, con una pasta sellante de características físicas apropiadas, siendo importante que dicha pasta no se contraiga al secar. En esta situación, el centro del electrodo 4 situado en Ia cara inferior del cuarzo queda accesible, a través del agujero 8, por Ia cara inferior del soporte 1. Los nervios 6 y 9 actúan como muro, de forma que Ia pasta líquida que rellena el hueco 10, siempre que se deposite Ia cantidad adecuada, no rebose por encima de ellos. Una vez depositado y sellado el sensor resonante, los extremos de los electrodos 4 quedan accesibles desde las ranuras 5; en esta posición se deposita una pasta líquida conductora en las ranuras 5 estableciendo contacto con los extremos de los electrodos 4, los nervios 6 actúan como muro y evitan que está pasta se extienda por Ia superficie del cristal fuera del área de las ranuras 5. Una vez Ia pasta conductora se seca, los electrodos del sensor 4 han quedado extendidos a través de Ia pasta conductora a Io largo de cada una de las ranuras 5. Una vez situado y sellado el resonador tal y como se ha descrito, el resonador queda insertado en el soporte de tal manera que depositado el soporte por cualquiera de sus lados sobre una superficie plana, el resonador no llega a tocar dicha superficie; de esta forma, el soporte proporciona Ia robustez necesaria para un manejo seguro del resonador, al mismo tiempo que permite una extensión de los contactos eléctricos del mismo. El diseño descrito, además, no modifica sustancialmente Ia respuesta del resonador. Este soporte es utilizado en unión con otros elementos de Ia celda de medida, el agujero 7 se utiliza para fijar Ia posición del soporte en relación con el resto de elementos de Ia celda.
La figura 2 muestra un ejemplo no limitativo del uso del soporte en una celda de medida. En Ia figura 2 el soporte se dispone entre dos bloques a modo de sandwich. El bloque inferior 13 incorpora un saliente 14 que permite fijar Ia posición del soporte 1 al encajar el saliente 14 en el agujero 7; el bloque 13 incorpora unos contactos eléctricos 15 cuyo interior incluye un muelle de forma que Ia parte superior del contacto eléctrico cede bajo cierta presión; los contactos eléctricos 15 están situados de tal forma que encajan en los extremos de las ranuras 5 al depositar el soporte con las ranuras 5 boca abajo, de tal forma que los electrodos del resonador 4 son extendidos a través de las ranuras y los contactos eléctricos 15 hasta un conector externo 16 que permite Ia conexión del resonador a un sistema electrónico de caracterización. En esta disposición Ia zona central de uno de los electrodos de resonador es accesible desde arriba a través del agujero 8 del soporte. El bloque superior 17 se coloca sobre el soporte y éste queda presionado tanto por el bloque superior 17 como por el bloque inferior 13, de tal forma que Ia arandela 19 de material adecuado, que encaja en Ia ranura 21 del bloque superior, sella el contorno del agujero 8 del soporte; Ia presión entre los bloques y el soporte se puede ajustar mediante tornillos, roscas u otro sistema adecuado incluido en los bloques inferior y superior, sin embargo, está presión no se realiza directamente sobre el resonador sensor sino sobre el soporte, evitando así afectar de forma importante Ia respuesta del sensor. En esta disposición los canales 20 del bloque superior 17 permiten guiar un fluido, a través de los racores 18, que entra en contacto con Ia zona central de uno de los electrodos 4 del resonador 2; uno de los racores 18 se utiliza como entrada y el otro como salida del flujo. El conjunto mostrado en Ia figura 2 muestra una forma posible de utilizar un soporte 1 , que extiende los contactos eléctricos del sensor resonante y da Ia robustez adecuada para un manejo seguro del sensor por parte del experimentador, al mismo tiempo que aisla uno de los electrodos del sensor resonante de un fluido que es guiado adecuadamente para entrar en contacto, a Io largo de su recorrido, con el otro electrodo del resonador, y todo ello sin perturbar Ia respuesta del sensor. En consecuencia, el ejemplo mostrado es una forma no limitativa de implementar uno de los objetivos prioritarios de Ia presente invención y puede considerarse como una realización preferente del mismo.
El ejemplo anterior ha mostrado un soporte y celda de medida que permiten diseñar un experimento en el cual un sensor resonante puede estar recubierto, por una sola de las caras, por una capa fina de material y ésta en contacto con un medio fluido. En el ámbito de aplicación del cual es objeto Ia presente invención, el recubrimiento sobre una de las caras del resonador es una capa de masa cuyo espesor es suficientemente fino en comparación con Ia profundidad de penetración de Ia onda acústica en el medio fluido en contacto con el recubrimiento, es sólido y está rígidamente unido a Ia superficie del resonador mediante una técnica adecuada; ello asegura un movimiento síncrono con Ia superficie oscilante del resonador.
Un resonador en contacto por una de sus caras con una capa acústicamente fina de masa sobre Ia que existe un medio fluido suficientemente extenso para que Ia onda acústica generada en el resonador se atenúe en el medio antes de llegar a su fin, puede modelarse eléctricamente mediante el circuito equivalente que se muestra en Ia figura 3. El circuito equivalente mostrado en Ia figura 3 representa Ia admitancia eléctrica del resonador en contacto con el recubrimiento y con el fluido; los parámetros del modelo equivalente están relacionados con las propiedades físicas y geométricas del resonador y los medios depositados sobre él. El circuito equivalente está formado por Ia capacidad C0, denominada capacidad estática, que corresponde a Ia capacidad formada por el cristal de cuarzo como dieléctrico entre los electrodos, Ia capacidad Cp que es Ia capacidad parásita externa al sensor vista entre sus electrodos, y Ia impedancia dinámica constituida por el circuito serie formado por Lq, Cq, Rq, Lc, LL y RL. Los parámetros Lq, Cq, Rq representan Ia contribución dinámica del sensor en vacío y dependen exclusivamente de las propiedades geométricas y físicas del resonador, mientras que Lc, LL y RL representan Ia contribución de Ia carga sobre el resonador: Lc modela Ia contribución del recubrimiento sobre Ia impedancia dinámica y es proporcional a Ia densidad superficial de masa del recubrimiento mc=pchc, donde pc es Ia densidad del material del recubrimiento y hc su espesor, es decir L0= Ktmc, donde Kt es Ia constante de transformación que relaciona las propiedades físicas con los parámetros eléctricos y viene dada por Kt = h2 ! 4e2As , donde hq es el espesor del resonador, eq es el coeficiente de esfuerzo piezoeléctrico del modo de vibración de interés del resonador en Ia aplicación y As es el área de los electrodos en Ia zona donde los electrodos de una y otra cara del resonador quedan enfrentados, es decir el área de Ia zona sensible a Ia variación de masa; LL y RL representan Ia contribución del medio fluido encima del recubrimiento sobre Ia impedancia dinámica del resonador, particularmente LL representa el efecto inercial de Ia masa equivalente de fluido desplazado por el movimiento oscilante del sensor, y RL representa el correspondiente efecto de pérdidas; estos parámetros eléctricos están también relacionados con las correspondientes propiedades físicas mediante las siguientes expresiones:
RL=ωKtmL y LL=KtmL, donde mL=pLδL/2, es Ia densidad superficial de masa equivalente de el líquido en contacto con el recubrimiento debida al movimiento oscilante del mismo, donde δL={2ηJωpL) es Ia profundidad de penetración de Ia onda acústica en el líquido, siendo ηL Ia viscosidad del fluido, pL Ia densidad del fluido y ω Ia velocidad angular del movimiento oscilante que coincide con Ia frecuencia de Ia señal eléctrica que excita al resonador. Consecuentemente, Ia admitancia eléctrica del sensor resonante, Y, en las condiciones descritas viene dada por Ia siguiente expresión:
Y = jωC¡ +— (II)
donde C0
Figure imgf000024_0001
y Zm viene dada por:
Zm = Rm + jXm = Rq + RL + + Lc + LL) - (III)
Figure imgf000024_0003
Figure imgf000024_0002
A partir de Ia ecuación anterior puede obtenerse el desplazamiento de Ia frecuencia de resonancia serie dinámica (FRSD), definida como Ia frecuencia a Ia cual Ia impedancia dinámica Zm únicamente tiene valor real, debido a una variación en Ia masa del recubrimiento; Ia correspondiente variación de Ia frecuencia angular, Aωs, correspondiente a Ia FRSD resulta ser:
Figure imgf000024_0004
donde Zcq es Ia impedancia característica del material con el que está fabricado el resonador, ωs es Ia frecuencia de resonancia del resonador y Am0 es Ia variación de Ia densidad superficial de masa del recubrimiento. La ecuación IV anterior coincide con Ia expresión para Ia variación de Ia frecuencia angular de resonancia, por efecto de una variación de masa del recubrimiento, dada por Sauerbrey, descrita en los antecedentes y que constituye Ia base de los métodos y sistemas clásicos de caracterización de procesos mediante microbalanza. La presente invención proporciona un método y un sistema electrónico diferentes para caracterizar procesos donde ocurren cambios en Ia masa del recubrimiento sobre el resonador. Como ya se ha mencionado, Ia invención aprovecha Ia deducción de una expresión analítica que establece una relación simple entre Ia variación de fase de una señal de frecuencia fija, que interroga al resonador piezoeléctrico, y Ia variación en Ia densidad de masa del recubrimiento.
Esta expresión, que muestra Ia relación entre Ia variación de fase de una señal de frecuencia determinada, dentro de Ia región de resonancia del sensor cargado, y Ia variación de masa del recubrimiento, es una parte crucial de Ia técnica y no ha sido demostrada con anterioridad. A partir del modelo equivalente representado en Ia figura 3, cuyas expresiones matemáticas se han incluido en las ecuaciones I l y I I I , es posible obtener el desplazamiento de Ia respuesta de fase, a una cierta frecuencia, debido a Ia variación en Ia densidad de masa del recubrimiento. En efecto, conforme al modelo representado en Ia figura 3, los cambios en Ia respuesta fase-frecuencia del resonador, debidos a pequeños cambios en Ia masa del recubrimiento, serán consecuencia del cambio en Ia respuesta fase-frecuencia de Ia impedancia dinámica Zm; en Ia deducción siguiente se asumirá que las propiedades del líquido permanecen sustancialmente constantes, es decir que Ia resistencia dinámica RL no cambia significativamente y que, por tanto, Ia pendiente de Ia respuesta fase- frecuencia del sensor se mantiene sin cambios. Esta restricción es válida en una gran variedad de aplicaciones, en las cuales se esperan cambios de frecuencia muy pequeños y donde es realmente necesario aumentar Ia sensibilidad de los sistemas de microbalanza, tal es el caso de los biosensores piezoeléctricos y de muchas aplicaciones electroquímicas. La fase proporcionada por Ia rama dinámica del modelo representado en Ia figura 3, en un estado de referencia determinado, 1 , viene dada por:
φγ = arctan — — (V)
Rml donde Xm= ω(L + Lc + LL) - l/ ωC y Rm=Rq+Rι_, indicando el subíndice 1 que son los valores correspondientes a dicho estado.
Alrededor de Ia FRSD Xm es pequeña y Ia tangente puede aproximarse a Ia fase, por Io tanto
Figure imgf000026_0001
Tras el cambio en Ia masa del recubrimiento, Ia nueva fase será ψ2~Xm2lRmi, ya que se asume que el líquido no cambia, y Ia variación de fase respecto del estado 1 vendrá dada por:
Aφ = φι - φ2 = ml ~ m2 (Vl)
Por otra parte, a Ia frecuencia de Ia señal de test, ft, Xm=Lmωt-MCmωt, donde Lm=Lq+Lc+LL and Cm=Cq; y Ia siguiente aproximación puede ser escrita para
Xm-
Figure imgf000026_0002
donde Aω=ωts. En consecuencia, el desplazamiento de fase dado por Ia ecuación Vl, será:
2(Δω, -Δω2) 2Δω.
Aφ = — — ι- τ^ = T t\ι\\\\
donde Aωs= ωs2- ω.
El cambio en Ia frecuencia angular de resonancia serie dinámica, debido a cambios pequeños en Ia densidad de masa superficial del recubrimiento, viene dado por Ia ecuación IV. Por tanto, utilizando Ia ecuación IV en Ia ecuación VIII, se obtiene Ia variación de fase entre los dos estados, el 1 y el 2 (Aφ = φi-φ)'-
Δφ (rad) = c— /\χ\ mq + mL donde mqqπ/2vq, siendo vq = (cq / pq)υ2 Ia velocidad de propagación de Ia onda en el material del cual está hecho el resonador, donde cq es el módulo de elasticidad en el modo de vibración del resonador y pq es Ia densidad del material que constituye el resonador; ηq es Ia viscosidad equivalente del material que compone el resonador y que incluye las pérdidas por rozamiento y otras debidas a los contactos con los electrodos y otros efectos no ideales. La validez de Ia ecuación anterior será confirmada más adelante.
Es importante poner de manifiesto que Ia ecuación IX que relaciona Ia variación de fase con Ia variación de masa del recubrimiento, sólo será válida alrededor de Ia frecuencia de resonancia serie dinámica; por esta razón, es fundamental establecer Ia línea base de un estado inicial, que es tomado como referencia, utilizando como frecuencia de Ia señal de test Ia correspondiente a Ia FRSD del resonador en dicho estado. Se pone pues de manifiesto que no es vál ida cualq u ier frecuencia para Ia señ al de test, si no u na frecuencia sustancialmente igual (entendiendo este término como una frecuencia igual o muy cercana) a Ia FRSD del resonador en dicho estado de referencia. En consecuencia, se demuestra que es un objeto prioritario de Ia invención establecer un método que establezca como frecuencia de Ia señal de test Ia FRSD del resonador en dicho estado de referencia y proporcionar un sistema que permita establecer dicha frecuencia utilizando para ello un procedimiento adecuado.
Por otra parte, Ia simplicidad de Ia ecuación IX no impide poner de manifiesto los siguientes aspectos clave: en contraste con Ia ecuación de Sauerbrey (IV), en Ia cual el desplazamiento de Ia frecuencia, asociado con Ia variación en Ia densidad superficial de masa del recubrimiento, no depende del medio fluido, Ia ecuación IX incluye Ia consideración adicional del medio fluido. A partir de dicha ecuación se pone de manifiesto que cuanto mayor sea mL mayor variación de masa de recubrimiento será necesaria para proporcionar un determinado desplazamiento en Ia fase. Está ecuación pone de manifiesto Ia mayor sensibilidad del sensor de microbalanza en medio gaseoso que en medio líquido para una estabilidad de fase determinada, debido a Ia reducción del factor de calidad del sensor por efecto del contacto con el líquido. En otras palabras, Ia ecuación de Sauerbrey predice el mismo desplazamiento de Ia frecuencia de resonancia para un sensor en vacío que en líquido, para un cambio en Ia densidad superficial de masa del recubrimiento determinada; sin embargo, el correspondiente desplazamiento de fase para el mismo cambio en Ia densidad superficial de masa del recubrimiento es mucho menor para el sensor en líquido que en vacío. Por tanto, aunque Ia ecuación de Sauerbrey idealmente predice Ia misma sensibilidad frecuencia-masa, mucha mayor estabilidad del sistema será necesaria para el caso del sensor en medio líquido que en vacío si se desea obtener, en Ia práctica, Ia misma sensibilidad. Más aún, mL en Ia ecuación IX se reduce con Ia reducción de Ia profundidad de penetración de Ia onda acústica en el líquido. Esta reducción es proporcional a ω1/2; por Io tanto Ia sensibilidad fase-masa en un medio fluido determinado, para un ruido de fase dado, podría mejorarse aumentando Ia frecuencia de resonancia, pero sólo proporcionalmente a Ia raíz cuadrada de Ia frecuencia, y no al cuadrado de Ia frecuencia de resonancia como se ha asumido en algunos antecedentes de Ia presente invención. Todavía más, Ia sensibilidad fase-masa no aumenta significativamente con Ia frecuencia para el caso de sensores en medio gaseoso; en particular para el caso del vacío, donde mL es nulo y donde Ia sensibilidad fase-masa es Ia máxima posible para un determinado material piezoeléctrico, Ia sensibilidad fase-masa no aumenta con Ia frecuencia. Este aspecto no ha sido tenido en cuenta hasta ahora y otras invenciones, mencionadas en el estado de Ia técnica, han pretendido utilizar un método basado en Ia medida de fase, para aumentar Ia sensibilidad en Ia medida de Ia variación de masa, aumentando Ia frecuencia de resonancia del sensor, cuando este aumento de sensibilidad fase-masa no es significativo en medio gaseoso. En consecuencia, aumentar Ia frecuencia de resonancia para aumentar Ia sensibilidad fase-masa tiene sentido en medios líquidos y aún así el aumento de sensibilidad sólo es proporcional a Ia raíz cuadrada de Ia frecuencia de resonancia; por tanto resulta interesante mantener Ia posibilidad de un seguimiento de Ia frecuencia de resonancia además de Ia medida del cambio de fase. Esto demuestra que es un objeto no trivial de Ia invención proporcionar un sistema que permita medir el cambio de fase y adicionalmente el cambio en Ia frecuencia de resonancia.
Estos aspectos clave son puestos de manifiesto a continuación a partir de un ejemplo no limitativo que aplica Ia ecuación IX al caso de resonadores basados en cristales de cuarzo AT de diferentes frecuencias de resonancia . Las propiedades físicas del cristal de cuarzo en corte AT se indican en Ia tabla I. Tabla I
Propiedades del cuarzo AT
Parámetro Valor Descripción e26 (A s m 2) ^ 9,657E-02 Constante piezoeléctrica
Z22 (A2S4Kg-V3) 3.982E-11 Permitividad
C66 (N m"2) 2,947E+10 Constante elástica ρq (Kg m"2) *2651 Densidad vq=(c66/Pq)1'2 (m s 2) * 3334,15 Velocidad de propagación de Ia onda
K0 2 7,947E-03 Factor de acoplamiento electromecánico
Zcq (Kg m V) ' 8,839E+06 Impedancia característica del cuarzo AT
Hq H (Pa s) 9,27E-03 Viscosidad efectiva del cuarzo AT maaπ/2va (nq/mnrf2) 4,37 mq en Ecuación IX
(*) Es una viscosidad efectiva obtenida para cristales de cuarzo AT de 10MHz en aire, a partir de los valores experimentales de Rq y Cq obtenidos con un analizador de impedancias.
En Ia tabla Il se muestra Ia capacidad de detección de acuerdo con Ia ecuación IX para sensores de microbalanza de cristal de cuarzo AT para diferentes frecuencias de resonancia, y en contacto con diferentes medios para un limite de detección de fase de 0,1°; el correspondiente desplazamiento de frecuencia de acuerdo con Ia ecuación de Sauerbrey es incluido también por comparación. Como puede observarse Ia misma sensibilidad fase-masa se obtiene en vacío para todos los sensores debido a que el mismo valor de ηq (ver tabla I) ha sido usado; en consecuencia, el mismo valor de Δmc se necesita para obtener el mismo desfase de Δφ = 0,1°. Por Io tanto, para incrementar Ia sensibilidad en vacío es necesario incrementar Ia velocidad de propagación de Ia onda utilizando otro material para el resonador, o disminuir las fuentes de pérdidas. Tabla II. Sensibilidad de masa para un límite de detección de fase de 0,1° fs (MHz) 10 50 150
Figure imgf000030_0001
Medio (Kg/m3) (Pa-s)
Vacío 0 o" 7,62 " 7,62 ' 7,62
Hidrógeno 0,08988 " 8,6 -10"6 Δmc 7,76 ' 7,68 + 7,66
Aire 1 ,18 * 1 ,783 -10"5 (pg/mm2) 8,34 ' 7,94 ' 7,81
Agua 1000 ' 0,001 ' 163,32* 77,25 ' 47,82
-
Vacío 0,17 " 4,31 * 38,81
Hidrógeno Δf, 0,18 ' 4,35' 38,99
Aire (Hz) 0,19 4,49 ' 39,75
Agua 3,70 " 43,70 ' 243,47
También puede observarse que Ia sensibilidad fase-masa para los medios gaseosos no aumenta prácticamente al aumentar Ia frecuencia, como se había anunciado; este aspecto pone de manifiesto el error de invenciones previas al asumir que Ia sensibilidad fase-masa aumentaría de igual forma que Ia de frecuencia-masa al aumentar Ia frecuencia del resonador.
Sin embargo, en el ámbito de aplicación de Ia presente invención, donde el medio donde se desarrollan los experimentos es un medio líquido, sí se obtiene un aumento de Ia sensibilidad fase-masa al aumentar Ia frecuencia de resonancia del sensor, debido a Ia reducción de Ia profundidad de penetración y, por tanto, a Ia menor masa equivalente de líquido que mueve el resonador al vibrar. Como puede observarse un gran incremento en el desplazamiento de frecuencia se produce según predice Sauerbrey, sin embargo, es necesario puntualizar que este desplazamiento de frecuencia corresponde al mismo desplazamiento de fase de
0,1 °; por Io tanto, aunque Ia sensibilidad frecuencia-masa se ha incrementado alrededor 225 veces entre el sensor de 150MHz y el de 10MHz, que corresponde a Ia relación de frecuencias al cuadrado, Ia sensibilidad fase-masa se ha incrementado solamente 3,4 veces, Io que corresponde, aproximadamente, a Ia raíz cuadrada de Ia relación de frecuencias, es decir inversamente proporcional a
Ia disminución relativa de Ia profundidad de penetración de Ia onda en el líquido.
Los detectores de fase modernos pueden detectar desplazamientos de fase por debajo de 0,1 ° incluso a muy altas frecuencias; por Io tanto, si Ia estabilidad de fase del sistema no se reduce por debajo de 0,1°, Ia mejora real en Ia sensibilidad será de 3,4 veces y no de 225 veces, ya que Ia sensibilidad de frecuencia depende del ruido de fase del sistema. Así, el aspecto más importante para incrementar Ia sensibilidad de masa, es mejorar Ia estabilidad de fase del sistema de caracterización y, al mismo tiempo, realizar un sistema que sea capaz de detectar desplazamientos de fase muy pequeños en Ia respuesta del sensor; de Io contrario, será irrelevante incrementar Ia sensibilidad frecuencia-masa utilizando resonadores de mayor frecuencia de resonancia, ya que el ruido de frecuencia en osciladores, debido a Ia inestabilidad de fase del sistema oscilante, sería de Ia misma magnitud que el desplazamiento de frecuencia asociado a Ia variación de masa que pretende detectarse, haciendo impracticable Ia mejora de Ia sensibilidad.
Asumiendo que Ia configuración del sistema experimental de medida ha sido diseñada de Ia forma más apropiada para reducir las perturbaciones sobre el sensor, el objetivo restante priorita rio es proporcion ar u n sistema de caracterización electrónico donde el ruido de frecuencia y de fase sean mínimos.
Se pone pues de manifiesto que es otro objeto prioritario y no trivial de Ia presente invención proporcionar un sistema electrónico para caracterizar el desplazamiento de fase de un sensor resonante donde el ruido de fase y de frecuencia sean mínimos.
Más aún, es un objeto fundamental que Ia realización del sistema proporcione un medida del desfase Io más aproximada posible al desfase producido por Ia impedancia dinámica del sensor, donde es válida Ia ecuación IX. Es otro objeto de Ia invención que el sistema de caracterización permita implementar un procedimiento para establecer Ia frecuencia de Ia señal de test sustancialmente igual (entendido este término como una frecuencia igual o muy cercana) a Ia frecuencia de resonancia serie dinámica del sensor en el estado que se considere como referencia, ya que Ia ecuación IX sólo es válida alrededor de dicha frecuencia. Es aún otro objeto importante de Ia invención proporcionar un sistema que permita determinar si las características del medio fluido cambian durante el experimento, para asegurar Ia validez de los resultados obtenidos al aplicar Ia ecuación IX. Un sistema de tales características permitiría aplicar el método de Ia invención cuyas operaciones han sido descritas con anterioridad. La figura 4 muestra una realización preferente del sistema de caracterización electrónico para sensores de microbalanza objeto de Ia invención que está compuesto por:
- una fuente de señal de frecuencia fija determinada, de gran estabilidad y muy bajo ruido de fase 42;
- un subsistema de síntesis de frecuencia 41 ;
- un subsistema de control y adquisición de señal 40;
- un circuito acondicionador de señal con capacidad de filtrado y adecuación de niveles de potencia formado por el filtro 43, y el amplificador 44; - un circuito 45 formado por dos ramas que comparten Ia entrada u, y tiene dos salidas, Ui y U2, una para cada rama. Una de las ramas está compuesta por componentes 25, 26, 27, 29, 31 , 32, 33, 34, cuya respuesta de fase-frecuencia no cambia; Ia otra incluye, en parte, los mismos componentes que Ia primera 25, 26, 28, 30, 31 , 32, a modo de espejo, pero una parte de los componentes es sustituida por el sensor resonante 2;
- un subsistema de detección de fase 35 de ganancia ajustable, compuesto por el multiplicador 36 y el filtro paso bajo 37, que proporciona una señal de tensión u0 proporcional a Ia diferencia de fase entre las señales a sus entradas; - un subsistema de medida de potencia 38 que proporciona una señal de tensión uA proporcional a Ia diferencia entre los niveles de potencia de las señales a sus entradas; y
- un elemento externo de procesado 46; y caracterizado porque: - el subsistema de síntesis de frecuencia 41 proporciona, a partir de Ia señal de frecuencia fija de Ia fuente 42, una señal cuya frecuencia puede barrer Ia banda de frecuencias de resonancia del resonador sensor 2;
- Ia señal proporcionada por el subsistema de síntesis de frecuencia 41 está conectada a Ia entrada del filtro 43, que Ia filtra adecuadamente y cuya salida está conectada al amplificador 44 que Ie proporciona el nivel de potencia adecuado;
- Ia salida u, del amplificador 44 está conectada a Ia entrada del circuito de dos ramas 45 donde está conectado el sensor resonante 2; - cada una de las salidas del circuito de dos ramas, Ui y U2, está conectada a una de las entradas del subsistema de detección de fase 35, cuya salida proporciona una señal de tensión continua U0 de valor proporcional a Ia diferencia de fases entre las señales Ui y U2 a sus entradas; - cada una de las salidas, Ui y U2, del circuito de dos ramas también está conectada a una de las entradas del circuito de medida de potencia 38, cuya salida proporciona una señal de tensión continua uA de valor proporcional a Ia diferencia de niveles de potencia entre las señales a sus entradas;
- las salidas de los circuitos de detección de fase y de nivel de potencia son adquiridas por el sistema de control 40 que puede actuar sobre el subsistema de síntesis de frecuencia 41 para controlar Ia frecuencia de Ia señal de salida de dicho subsistema;
- los datos de Ia señales adquiridas por el sistema de control son directamente analizados, o bien transferidos a un equipo exterior 46 para su tratamiento en tiempo real o posterior de acuerdo con el método objeto de Ia presente invención.
Como se ha mencionado anteriormente, es un objetivo prioritario que el sistema proporcione una señal proporcional a Ia variación de fase que ocurre en Ia impedancia dinámica del sensor; este aspecto no es trivial puesto que el sistema perturba a su vez Ia medida de fase. Se demostrará a continuación que mediante una selección adecuada de los componentes del sistema presentado es posible conseguir este objetivo.
En primer lugar Ia medida del desfase entre Ia señales Ui y U2 se obtiene a partir del detector de fase 35; en efecto, asumiendo que las señales Ui y U2 son senoidales de amplitud de pico Ui y U2, respectivamente, frecuencia angular ω y desplazadas en fase un cierta cantidad 90°-φD, Ia salida del multiplicador 36 será: U1 - U2 = U1 sin ωt U2 sin(ωt + 90° —φD ) =
= ^^[sin(0D) -cos(2ωí -0D +9O0)] (X)
Por tanto, Ia salida del filtro paso bajo U0, será: U0 = — - — -sin(φD) « (para desfases pequeños) « kmφD (Xl)
donde /cm=(ΛU2/2.
Como puede observarse, el comportamiento del detector de fase basado en multiplicador proporciona una tensión proporcional al desfase entre las señales a sus entradas para pequeños desfases alrededor de 90°. Por Io tanto, para un funcionamiento adecuado del detector de fase es necesario desfasar 90° las señales de test en cada rama del circuito sensor 45 previamente; para este fin se han dispuesto los circuitos formados por las resistencias 26 y los condensadores
25, iguales en ambas ramas. Estas redes de desfase deben diseñarse adecuadamente para que se obtengan señales desfasadas 90° y de amplitud similar a sus salidas. Este requisito que es necesario por utilizar un multiplicador como detector de fase podría evitarse mediante el uso de otros tipos de detectores de fase basados en circuitos digitales, sin embargo el ruido de fase de estos circuitos no los hacen convenientes para el objeto de Ia invención ya que incrementarían el ruido de fase. Por otra parte, el sistema diferencial planteado a partir del circuito sensor 45, es muy conveniente ya que el ruido de fase original en Ia señal de entrada u, es transmitido por igual hacia ambas ramas y puede ser cancelado, al menos parcialmente, en el detector de fase 35.
La salida del detector de fase 35 está conectada a Ia entrada de un amplificador 39. El voltaje de referencia Vref se utiliza para fijar Ia tensión de salida del amplificador 39 a cero voltios en el estado de referencia, compensando cualquier desplazamiento de tensión continua; esto permite incrementar Ia ganancia del amplificador 39 para proporcionar Ia máxima resolución en el seguimiento del desfase, que será proporcionado por Ia señal de salida uφ del amplificador 39.
Las señales de salida del circuito sensor 45 también están conectadas a un circuito de medida de potencia 38, que proporciona una señal de salida uA proporcional a Ia relación entre las potencias de las señales a sus entradas. Esta combinación de medida de fase y potencia proporciona una caracterización completa del sensor y permite seleccionar Ia frecuencia de test adecuada mediante un apropiado sistema de control. El sistema de control 40, incluye un sistema programable embebido que continuamente monitorea el desfase y Ia relación de potencias entre las señales Ui y U2 a partir de las señales uφ y uA; el sistema programable 40 controla el sintetizador de frecuencias 41 , y con ello Ia frecuencia de Ia señal de salida del mismo. El sintetizador de frecuencias utiliza como señal de referencia Ia proporcionada por una fuente de gran estabilidad en frecuencia y fase 42. La señal de salida del sintetizador está conectada a un filtro paso-banda 43 que Ia filtra proporcionando a su salida una señal suficientemente pura en Ia banda de frecuencias de resonancia del sensor. La salida del filtro 43 está conectada a Ia entrada del amplificador 44 que proporciona una señal a su salida U1 de potencia adecuada. La variación del desfase entre las señales Ui y U2 es el parámetro principal, que debe estar relacionado con el cambio de fase que experimenta Ia rama dinámica del sensor resonante. Está relación se obtendrá a continuación en relación al sistema representado en Ia figura 4.
Tras un análisis básico, Ia relación entre las señales Ui y U2 y Ia señal de entrada u, vienen dadas por las siguientes expresiones:
Figure imgf000035_0001
(R + jXm ϊ\ + jωRtCt ) 1
U2 = v m J m Λ j '—^ , U1 (XIII)
Rt + Rm - ωRt(Ct + Co)Xm + j[Xm + ωRtRJCt + Co)] l + Jc0R1C1 { }
En Ia obtención de las expresiones anteriores se ha asumido que los amplificadores operacionales 27, 28, 29 y 30 operan como seguidores ideales.
A partir de las ecuaciones XII y XIII es posible obtener Ia expresión de Ia variación del desfase entre Ia señales Ui y U2. En efecto, Ia fase de las señales Ui y U2 relativa a u, será φι = φZtZct + 90°-φ (XIVa)
Ψl = Ψzm + Ψzt ~ Ψzmt ~ Ψ Z1 (XIVb) donde ψzt - atan ωtRtCt, ψzct - atan ωtRtRc{Ct+Cc)/ [Rt+Rc), φ∑¡ = atan ωtR,C,, φZm =atan XJR171, y φZmt = atan [XmfRfRm(Cf+C0)]/[(Rf+Rm)-ωfRf(Cf+C0)Xm]. Por Io tanto, el desfase entre Ui y U2 vendrá dado por: φ2 - Ψι = φZm - φZmt + φZct - 90° (xv) En consecuencia, Ia variación entre el desfase en un estado de referencia
"1 " y un segundo estado "2", teniendo en cuenta que Ia frecuencia de test ft es constante, será:
Figure imgf000035_0002
Tras ciertas aproximaciones y cálculos, Ia siguiente expresión se obtiene a partir de Ia ecuación XVI: n
Δ(<P2 - <Pι t x Δφ ' (XVII)
donde Δφ es Ia variación en Ia fase de Ia impedancia dinámica dada por Ia ecuación IX. En consecuencia Ia ecuación XVII se transforma en:
A Í ϊi2 Amc Rt
MP2 -PIJ1 * mq + mL R Pt + RPm (XVIN)
Como puede observarse a partir de Ia ecuación XVIII, para un valor de Rt »Rm el segundo término del segundo miembro de Ia ecuación tiende a 1 y Ia variación del desfase dada en XVIII tiende a Ia de Ia impedancia dinámica dada por IX. Por razones prácticas, a fin de no reducir demasiado Ia amplitud de las señales a Ia entrada del detector de fase, es suficiente elegir /?f=10Rm. Ya que Ia frecuencia de test es mantenida constante, Ia red formada por Rc y Cc no contribuye a Ia variación del desfase, sin embargo es conveniente seleccionar Rc y C0 de valor similar a Rm y C0 respectivamente. En efecto, bajo estas condiciones, y a Ia FRSD del sensor, el nivel de las señales a Ia salida de los operacionales 29 y 30 es similar, Io que es conveniente para el funcionamiento óptimo del detector de fase, y Ia tensión de salida del medidor de potencia 38 es cero. Esta configuración es útil también para seleccionar Ia frecuencia de Ia señal de test en el estado de referencia "1 " ya que las tensiones uφ y uA son cero a dicha frecuencia.
La figura 5 muestra una comparación entre los valores de variación de desfase obtenidos para Ia impedancia dinámica, y los proporcionados por Ia ecuación XVI y Ia ecuación XVIII. La ecuación XVI es una expresión que proporciona Ia variación de fase exacta entre las señales Ui y U2, mientras que Ia ecuación XVIII es una expresión simplificada que se aproxima a Ia ecuación IX cuando Rt es mucho mayor que Rm (en el caso de Ia figura se ha escogido Rt='\ 0Rm). Los resultados presentados en Ia figura 5 son obtenidos a partir de un ejemplo no limitativo y demuestran Ia validez de Ia expresión IX como aproximación de Ia variación en el desfase asociado con Ia impedancia dinámica, y de Ia expresión XVIII como aproximación de Ia ecuación XVI.
Los resultados mostrados en Ia figura 5 han sido obtenidos a partir de simulaciones numéricas utilizando el circuito representado en Ia figura 3 como modelo equivalente del comportamiento del sensor resonante en contacto por una de sus caras con un recubrimiento acústicamente fino que está en contacto con un medio líquido Newtoniano; este es el caso de Ia mayoría de las aplicaciones de caracterización de procesos biológicos, tales como biosensores piezoeléctricos y muchas aplicaciones electroquímicas que entran dentro del ámbito de aplicación de Ia presente invención.
Las simulaciones numéricas se han realizado para tres sensores resonantes de cristal de cuarzo en corte AT y de frecuencias de resonancia 10, 50 y 150MHz, en contacto con una capa fina de 10Onm de espesor y densidad igual a Ia del agua; el líquido Newtoniano fue considerado con las mismas propiedades que el agua. Los parámetros del modelo equivalente fueron calculados de acuerdo con las expresiones proporcionadas en Ia siguiente referencia: R. Lucklum, D. Soares and K. K. Kanazawa, "Models for resonant sensors", in Piezoelectríc
Transducers and Applications, 2nd Ed., pp 63, A.Arnau Ed., Springer-Verlag Berlin Heidelberg, (2008), con las propiedades del cuarzo AT dadas en Ia tabla I, partiendo de Ia frecuencia del resonador y del diámetro típico del electrodo para sensores comerciales: para sensores de 10MHz 5,2mm, y para 50 y 150MHz 1 ,5mm. La viscosidad efectiva del cuarzo fue obten ida a partir de datos experimentales con los sensores de 10MHz en aire y el valor de Ia resistencia dinámica Rq obtenida con un analizador de impedancias, que fue de aproximadamente 10Ω. Los espesores de los resonadores fueron calculados a partir de Ia expresión: hq~vq/2fs. El resto de los parámetros del modelo y otras magnitudes se incluyen en Ia Tabla III.
Tabla III. Propiedades y parámetros del modelo representado en Ia figura 3 para tres sensores de cuarzo AT de frecuencias de resonancia diferentes y cargados con una capa fina de masa de 100nm de espesor y densidad igual al agua, en contacto con un líquido de propiedades como el agua.
Parámetro Sensor 1 Sensor 2 Sensor 3 Descripción fso (Hz) I OOOOOOO ' 50000000 150000000 Frecuencia RSD hq (m) 1 ,667E-04 3,334E-05 ^ 1 ,111 E-05 Espesor del cristal de (m) 5,20E-03 ' 1.50E-03 1.50E-03 Diámetro del electrodo
Ae (m2) 2,12E-05 + 1.77E-06 * 1.77E-06 Área del electrodo
Co (PF) 5,07 ' 2,11 6,33 Capacidad estática
Cp (PF) 2,00 2,00 ^ 2,00 Capacidad parásita paralelo
Co* (PF) 7,07 ' 4,11 8,33 Capacidad paralelo total
Cq (fF) 32,7 + 13,6 ' 40,8 Capacidad dinámica
Lq (μH) 7751 ,8 ' 745,28 27,603 Inductancia dinámica en vacío α 3,1416 3,1416 ^ 3,1416 Fase de Ia onda acústica
Kt (Ωm2skg 4) 3,51 E-02 ' 1 ,69E-02 1.87E-03 Constante electroacústica
Hq (Pa s) 9,27E-03 9,27E-03 9,27E-03 Viscosidad efectiva del cuarzo
Rq (Ω) 9,63 23,14 7,71 Resistencia dinámica en vacío
Parámetros asociados a Ia carga nric íng/nnm2) 10(T 100 100 Densidad de masa del recubrim.
U (μH) 3,51 ' 1 ,69 0,187 Inductancia del recubrimiento δL (nnn) 178,4 79,79 ^ 46,07 Profundidad de penetración
Densidad de masa eq. del mL (ng/mm2) 89,21 39,89 23,03 líquido
U (nH) 3129 ' 672,8 43,16 Inductancia asociada al líquido
Lm (μH) 7758,5 + 747,64 ' 27,833 Inductancia total
RL (Ω) 196,63 ' 211 ,36 40,68 Resistencia dinámica del agua
Rm (Ω) 206,25 234,49 ^ 48,39 Resistencia dinámica total
Cm (fF) 32,7 ' 13,6 40,8 Capacidad dinámica total f. L (Hz) 9995721 ,5 49921051 ,2 149377514,8 FRSD en carga
Bajo estas condiciones Ia variación en Ia masa del recubrimiento fue simulada cambiando el espesor del mismo en pasos de 1Á, es decir en pasos de 100pg/mm2, desde -50nm/mm2 a 50nm/mm2. Para cada paso las fases φzm y Ψzmt en Ia ecuación XVI fueron calculadas; como puede observarse por simple inspección de las ecuaciones XII y XIII, el condensador Ct puede hacerse nulo sin ninguna restricción, por Io que Io que mejora el funcionamiento a altas frecuencias. Finalmente, Ia simulación de Ia variación del desfase fue evaluada tomando como referencia el estado del sensor para Am0=O. Los resultados correspondientes al desfase en Ia impedancia dinámica, y los proporcionados por las ecuaciones XVI y XVIII en esta simulación se representan en Ia figura 5 para los sensores de 10MHz (panel superior), 50MHz (panel intermedio) y 150MHz (panel inferior). Estos resultados demuestran Ia validez de Ia ecuación IX que proporciona una expresión simple aproximada para el desfase de Ia impedancia dinámica y de Ia expresión XVIII y del sistema propuesto para medir dicho desfase y su variación.
La figura 6 es una ampliación local, extraída de cada uno de los paneles de Ia figura 5, que muestra una comparativa de las sensibilidades de los tres sensores de microbalanza (10, 50 y 150MHz) en términos de variación de fase en función de Ia variación de masa.
Una consideración importante es que el sistema objeto de Ia invención puede ser utilizado para realizar un seguimiento de Ia FRSD del sensor durante el proceso experimental. Efectivamente, ya que el desfase y Ia relación de potencias es medida por el sistema de forma continua, Ia frecuencia de excitación puede cambiarse de tal forma que las tensiones uφ y UA se mantengan continuamente a cero, realizando por tanto un seguimiento continuo de Ia FRSD. Este seguimiento continuo de Ia FRSD puede realizarse también realizando una corrección en Ia frecuencia de Ia señal de test siguiendo una determinada función, por ejemplo una variación integral o cuasi-integral de las variaciones que se producen en Ia señal de tensión que proporciona Ia variación de fase del sensor.
Otro aspecto que es importante poner de manifiesto, es que eventualmente Ia frecuencia de Ia señal de test puede situarse, al producirse el cambio en Ia respuesta del sensor por efecto de Ia variación de masa, en una zona de sensibilidad fase-masa baja o nula. El método objeto de Ia invención en unión con el sistema objeto de Ia invención facilita un procedimiento para determinar esta eventualidad y corregir Ia frecuencia de Ia señal de test convenientemente.
Es importante también poner de manifiesto que pueden utilizarse dos o más sistemas como los descritos, uno de los cuales incluye un sensor de referencia, sin recubrimiento y en contacto con el mismo medio líquido, en una configuración diferencial para minimizar los efectos externos que pueden perturbar Ia medida, tales como cambios en Ia temperatura, ambientales, etc; esto proporciona un sistema que permite Ia cancelación de los efectos externos al sensor, como era otro de los objetos de Ia invención.
La invención ha sido descrita detalladamente de forma genérica y ha sido descrita también en relación con una de sus posibles realizaciones. Obviamente, pueden presentarse modificaciones sobre esta realización que se pretenden incluir en Ia invención. Así, habiendo descrito una realización escogida para nuestra invención, reivindicamos que ésta sea:

Claims

REIVINDICACIONES
1.- Método para caracterizar Ia transferencia, acumulación o pérdida de masa sobre un recubrimiento depositado sobre un resonador piezoeléctrico que actúa como sensor, conectado a un circuito al que se Ie aplica una señal de test, y enfrentado a un medio fluido cuyas características físicas permanecen estables, caracterizado por las operaciones de: a) Seleccionar Ia frecuencia de Ia señal de test sustancialmente igual a Ia frecuencia de resonancia serie dinámica (FRSD) del resonador en su estado inicial, tomando dicho estado como referencia. b) Medir los valores de dos señales de tensión, una de las cuales establece Ia referencia de fase del sensor y Ia otra Ia referencia del nivel de pérdidas del mismo. c) Hacer un seguimiento de los valores de las tensiones tomadas como referencia en el paso anterior durante el proceso que se desea caracterizar o monitorear. d) Verificar que el valor de Ia tensión de referencia de pérdidas del sensor no se modifica sustancialmente durante el proceso de medida. e) Corregir el valor de Ia frecuencia de Ia señal de test durante el proceso a monitorear, en caso de que Ia señal que proporciona Ia medida de Ia variación de fase se haya desviado, por encima o por debajo de un valor previamente determinado en función de las características del experimento, del valor de tensión obtenido como referencia de fase del sensor en el paso b), hasta que Ia señal de tensión que proporciona Ia medida de Ia variación de fase vuelva a tener el mismo valor que el obtenido como referencia de fase del sensor en el paso b), o su diferencia en valor absoluto sea menor de una cierta cantidad previamente establecida en función de las características del experimento. f) Obtener Ia variación de masa sobre el recubrimiento, durante el proceso experimental que se ha monitoreado, a partir de las variaciones de Ia señal de tensión que proporciona Ia medida de Ia variación de fase, siendo calculada dicha variación de masa como una función de Ia variación de fase de Ia señal.
2.- Un método para caracterizar Ia transferencia, acumulación o pérdida de masa sobre un recubrimiento depositado sobre un sensor piezoeléctrico resonante según Ia reivindicación 1 , caracterizado porque Ia obtención de Ia variación de Ia masa sobre el recubrimiento se realiza mediante Ia aplicación de Ia siguiente expresión:
Δφ (rad) = -^^ . mq + mL
3.- Un método para caracterizar Ia transferencia, acumulación o pérdida de masa sobre un recubrimiento depositado sobre un sensor piezoeléctrico, y enfrentado a un medio fluido cuyas características físicas permanecen estables, según cualquiera de las reivindicaciones 1-2, caracterizado porque el paso e) donde se corrige Ia frecuencia de Ia señal de test, se realiza de forma continuada proporcionando una corrección en Ia frecuencia de Ia señal de test de acuerdo con una determinada función, y en particular de acuerdo a una variación integral o cuasi-integral de las variaciones que se producen en Ia señal de tensión que proporciona Ia variación de fase del sensor.
4.- Un método según cualquiera de las reivindicaciones 1-3, caracterizado porque el resonador piezoeléctrico es un resonador acústico de película delgada.
5.- Un método según cualquiera de las reivindicaciones 1-4, caracterizado porque el resonador piezoeléctrico es un resonador que vibra en modo de cizalla.
6.- Un método según cualquiera de las reivindicaciones 1-5, caracterizado porque Ia obtención de Ia variación de masa establecida en el paso f) es indicativa de Ia concentración de un determinado material o compuesto químico o biológico en Ia disolución líquida que está en contacto con el recubrimiento.
7.- Un método según cualquiera de las reivindicaciones 1-6, aplicado para interrogar simultáneamente a varios sensores piezoeléctricos.
8.- Un dispositivo para Ia detección de cambios de masa que implementa el método de las reivindicaciones 1-6, que comprende:
- un resonador piezoeléctrico integrado como un sensor resonante (2) sobre cuya superficie se ha depositado física o químicamente un material en forma de capa fina;
- un medio fluido en contacto con Ia capa fina depositada y cuyas propiedades físicas se mantienen sensiblemente constantes durante el proceso químico o físico que tenga lugar;
- una fuente de señal (42) de frecuencia determinada, de gran estabilidad en frecuencia y bajo ruido de fase;
- un subsistema de síntesis de frecuencia (41 );
- un subsistema de control y adquisición de señal (40);
- un circuito acondicionador de señal con capacidad de filtrado y adecuación de niveles de potencia, formado por un filtro (43) y un amplificador (44);
- un circuito (45) formado por dos ramas que comparten Ia entrada (U1) y tiene dos salidas, (Ui, U2), una para cada rama, estando una de las ramas compuesta por componentes (25, 26, 27, 29, 31 , 32, 33, 34), cuya respuesta de fase-frecuencia no cambia y Ia otra rama incluye, en parte, los mismos componentes que Ia primera (25, 26,
28, 30, 31 , 32), a modo de espejo, y el sensor resonante (2);
- un subsistema de detección de fase (35) de ganancia ajustable, compuesto por un multiplicador (36) y un filtro paso bajo (37), que proporciona una señal de tensión (u0) proporcional a Ia diferencia de fase entre las señales a sus entradas (Ui, U2); y
- un subsistema de medida de potencia (38) que proporciona una señal de tensión (UA) proporcional a Ia diferencia entre los niveles de potencia de las señales a sus entradas (Ui, U2); caracterizado porque: - el subsistema de síntesis de frecuencia (41 ) proporciona, a partir de
Ia señal de Ia fuente de frecuencia (42) determinada, una señal cuya frecuencia puede barrer Ia banda de frecuencias de resonancia del resonador sensor (2); - Ia señal proporcionada por el subsistema de síntesis de frecuencia (41 ) está conectada a Ia entrada del circuito acondicionador de señal, formado por el filtro (43) y el amplificador (44), que Ia filtra adecuadamente y Ie proporciona el nivel de potencia adecuado; - Ia salida (u,) del amplificador (44) está conectada a Ia entrada del circuito (45) de dos ramas donde está conectado el sensor resonante (2);
- cada una de las salidas (Ui, U2) del circuito (45) de dos ramas, está conectada a una de las entradas del subsistema de detección de fase (35), cuya salida proporciona una señal de tensión continua (u0) de valor proporcional a Ia diferencia de fases entre las señales (Ui, U2) a sus entradas;
- cada una de las salidas (Ui, U2) del circuito (45) de dos ramas también está conectada a una de las entradas del circuito de medida de potencia (38), cuya salida proporciona una señal de tensión continua (UA) de valor proporcional a Ia diferencia de niveles de potencia entre las señales (Ui, U2) a sus entradas;
- las salidas de los circuitos de detección de fase (35) y de nivel de potencia (38) son adquiridas por el sistema de control (40) que puede actuar sobre el subsistema de síntesis de frecuencia (41 ) para controlar Ia frecuencia de Ia señal de salida de dicho subsistema;
9.- Un dispositivo para Ia detección de cambios de masa que implementa el método de las reivindicaciones 1-6 y que permite Ia realización de experimentos en flujo con resonadores piezoeléctricos compuesto por:
- una pieza soporte (1 ) de forma cilindrica y caras circulares paralelas, sobre Ia que está depositado el sensor resonante (2);
- un bloque inferior (13) de dimensiones y forma adecuadas, sobre el que está depositada Ia pieza soporte (1 ) y conecta los electrodos del sensor resonante (2) a un conector externo (16); - un bloque superior (17) que está depositado sobre Ia pieza soporte (1 ) y que incorpora un conjunto de canales (20) y racores (18) como elementos de canalización de flujo; caracterizado porque:
- Ia pieza soporte (1 ) tiene un agujero (7) que fija su posición sobre el bloque inferior (13) y ha sido mecanizado de tal forma que incluye por su cara circular inferior: - un hueco central (10) donde está depositado el sensor resonante (2);
- un agujero central (8) pasante que deja accesible Ia zona central de uno de los electrodos (4) del resonador (2) por Ia cara circular superior de Ia pieza soporte (1 ); - unas ranuras (5) que parten del hueco central (10) donde se deposita el sensor (2) y se extienden hacia los bordes exteriores de Ia pieza soporte (1 ) sin alcanzarlos;
- unos nervios (6) que actúan de muro entre las ranuras y el hueco central (10); - otro nervio (9) que bordea el agujero central (8) del hueco (10), quedando a Ia misma altura que los otros nervios (6, 9), de forma que al introducir el sensor (2) en el hueco (10), éste queda depositado sobre todos los nervios (6, 9); y donde: - los extremos de los electrodos (4) del sensor resonante
(2) alcanzan las ranuras (5) por encima de los nervios (6,
9);
- un material sellante rellena el hueco entre Ia superficie inferior del sensor y los nervios (6,9); - un material conductor está depositado a Io largo y ancho de las ranuras (5) y hasta el límite de los nervios (6) que separan las ranuras (5) del hueco central (10), estableciendo contacto eléctrico con los extremos de los electrodos (4) del resonador piezoeléctrico (2); - el bloque inferior (13) ha sido mecanizado de tal forma que incluye:
- un hueco de forma y profundidad adecuadas donde están depositados Ia pieza soporte (1 ) y, sobre dicho soporte, el bloque superior (17), - al menos dos agujeros sobre el fondo del hueco anterior en cada uno de los cuales hay introducidos dos elementos de contacto (15), cuyos extremos superiores están en contacto con el material conductor depositado sobre las ranuras (5) de Ia pieza soporte (1 ) y ceden al realizar una presión sobre ellos, y cuyos extremos inferiores están conectados a un conector bipolar externo (16);
- el bloque superior (17) está depositado sobre Ia pieza soporte (1 ) y encajado en el hueco del bloque inferior (13), que Ie sirve de guía durante el proceso de colocación sobre dicha pieza soporte (1 ); y donde:
- una arandela (19) está encajada sobre una ranura (21 ) mecanizada para tal fin en Ia cara inferior del bloque superior (17) y presiona sobre Ia pieza soporte (1 ), rodeando el agujero central (8) del mismo a través del cual es accesible Ia zona central de uno los electrodos (4) del resonador piezoeléctrico (2); y
- dos canales tubulares (20) parten de unos racores (18) situados en Ia parte superior del bloque superior (17) y desembocan en Ia parte central inferior, dentro de Ia zona central interior a Ia arandela (19).
10.- Un dispositivo para Ia detección de cambios de masa que comprende, al menos, un dispositivo según Ia reivindicación 8, y que implementa el método de Ia reivindicación 7.
PCT/ES2010/070409 2009-06-23 2010-06-18 Método y dispositivo de nanogravimetría en medios fluidos basado en resonadores piezoeléctricos WO2010149811A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012516806A JP5532500B2 (ja) 2009-06-23 2010-06-18 圧電共振器を使用した流体媒質中でのナノ重量測定のための方法及びデバイス
CN2010800377188A CN102625906A (zh) 2009-06-23 2010-06-18 用于使用压电谐振器的流体介质中的纳米重量测定的方法和设备
EP10791645.4A EP2447683A4 (en) 2009-06-23 2010-06-18 METHOD AND DEVICE FOR NANOGRAPHIMETRY IN LIQUID MEDIA USING PIEZOELECTRIC RESONATORS
AU2010264598A AU2010264598A1 (en) 2009-06-23 2010-06-18 Method and device for nanogravimetry in fluid media using piezoelectric resonators
US13/336,082 US8869617B2 (en) 2009-06-23 2011-12-23 Method and device for nanogravimetry in fluid media using piezoelectric resonators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200901503A ES2333088B2 (es) 2009-06-23 2009-06-23 Metodo y dispositivo de nanogravimetria en medios fluidos basado en resonadores piezoelectricos.
ESP200901503 2009-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/336,082 Continuation US8869617B2 (en) 2009-06-23 2011-12-23 Method and device for nanogravimetry in fluid media using piezoelectric resonators

Publications (1)

Publication Number Publication Date
WO2010149811A1 true WO2010149811A1 (es) 2010-12-29

Family

ID=41609760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070409 WO2010149811A1 (es) 2009-06-23 2010-06-18 Método y dispositivo de nanogravimetría en medios fluidos basado en resonadores piezoeléctricos

Country Status (8)

Country Link
US (1) US8869617B2 (es)
EP (1) EP2447683A4 (es)
JP (1) JP5532500B2 (es)
KR (1) KR20120103542A (es)
CN (1) CN102625906A (es)
AU (1) AU2010264598A1 (es)
ES (1) ES2333088B2 (es)
WO (1) WO2010149811A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706362C1 (ru) * 2018-06-19 2019-11-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" Композиция покрытия пьезоэлектрического сенсора для определения фторхинолонов в жидких средах
CN111103213A (zh) * 2019-04-19 2020-05-05 宁德时代新能源科技股份有限公司 涂层面密度检测装置和方法
CN111103214A (zh) * 2019-04-19 2020-05-05 宁德时代新能源科技股份有限公司 涂层面密度检测装置和方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140162628A1 (en) * 2012-12-07 2014-06-12 Apple Inc. Methods for Validating Radio-Frequency Test Systems Using Statistical Weights
CN104181231B (zh) * 2014-07-07 2017-01-11 西安交通大学 一种测定薄膜材料屈服行为的装置及其测定方法
EP3187869B1 (en) * 2014-08-29 2023-03-08 Kyocera Corporation Sensor device and sensing method
CA2971568C (en) * 2014-12-19 2020-11-24 Micro Motion, Inc. Determining a vibration response parameter of a vibratory element
CN108025239B (zh) * 2015-09-23 2020-07-17 艾尼蒂斯科技公司 多用途声悬浮陷波器
JP6469736B2 (ja) * 2017-01-17 2019-02-13 太陽誘電株式会社 センサ回路およびセンシング方法
WO2018146348A1 (es) * 2017-02-13 2018-08-16 Advanced Wave Sensors, S.L. Celda de medida
DE102017119804B4 (de) * 2017-08-29 2019-06-19 Collini Holding Ag Verfahren und Sensoreinrichtung zur störungskompensierten Bestimmung des Materialauftrags oder -abtrags während nasschemischer Prozesse
ES2893574B2 (es) * 2020-07-30 2023-02-03 Univ Valencia Politecnica Metodo para la caracterizacion de la respuesta de sensores resonantes
CN112784514B (zh) * 2021-01-19 2023-09-19 东北大学 基于等效电路的纳米气体传感器建模方法
CN113092857B (zh) * 2021-03-05 2022-08-05 中国科学院紫金山天文台 一种MKIDs超导探测器阵列像元工作状态及位置的判别方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783987A (en) 1987-02-10 1988-11-15 The Board Of Regents Of The University Of Washington System for sustaining and monitoring the oscillation of piezoelectric elements exposed to energy-absorptive media
US4788466A (en) 1987-11-09 1988-11-29 University Of Arkansas Piezoelectric sensor Q-loss compensation
US5201215A (en) 1991-10-17 1993-04-13 The United States Of America As Represented By The United States Department Of Energy Method for simultaneous measurement of mass loading and fluid property changes using a quartz crystal microbalance
US5416448A (en) 1993-08-18 1995-05-16 Sandia Corporation Oscillator circuit for use with high loss quartz resonator sensors
US5932953A (en) 1997-06-30 1999-08-03 Iowa State University Research Foundation, Inc. Method and system for detecting material using piezoelectric resonators
US6006589A (en) 1995-05-04 1999-12-28 O-Sense Ab Piezoelectric crystal microbalance device
US6161420A (en) 1997-11-12 2000-12-19 Fisher Controls International, Inc. High frequency measuring circuit
US6169459B1 (en) 1999-05-19 2001-01-02 Sandia Corporation Active-bridge oscillator
ES2153740A1 (es) * 1998-07-08 2001-03-01 Univ Valencia Politecnica Sistema para compensar los efectos de rozamiento viscoso en la medida de la frecuencia de resonancia de un cristal piezometrico en un fluido
US6222366B1 (en) 1999-05-10 2001-04-24 Fisher Controls International, Inc. High frequency measuring circuit with inherent noise reduction for resonating chemical sensors
US6247354B1 (en) 1998-05-13 2001-06-19 The United States Of America As Represented By The Secretary Of The Army Techniques for sensing the properties of fluids with resonators
US6557416B2 (en) 2000-03-31 2003-05-06 Ant Technology Co., Ltd. High resolution biosensor system
ES2197796A1 (es) 2002-01-31 2004-01-01 Univ Valencia Politecnica Circuito para la caracterizacion de sensores de cristal de cuarzo resonante en medios fluidos.
US20040150296A1 (en) * 2003-01-24 2004-08-05 Lg Electronics Inc. Material sensing sensor and module using thin film bulk acoustic resonator
ITMI20030514A1 (it) 2003-03-18 2004-09-19 Uni Degli Studi Brescia Metodo e dispositivo per determinare la frequenza di
US6848299B2 (en) 1998-10-26 2005-02-01 Akubio Limited Quartz crystal microbalance with feedback loop for automatic gain control
EP1607725A1 (en) * 2003-03-25 2005-12-21 Seiko Epson Corporation Mass measuring method, circuit for exciting piezoelectric vibratory piece for mass measurement, and mass measuring instrument
US7036375B2 (en) 2003-03-28 2006-05-02 Citizen Watch Co., Ltd. QCM sensor and QCM sensor device
US7159463B2 (en) 2001-06-20 2007-01-09 M.S. Tech Ltd. Sensitive and selective method and device for the detection of trace amounts of a substance
US7201041B2 (en) 2002-12-26 2007-04-10 Ulvac Inc. Analysis method using piezoelectric resonator
US7329536B2 (en) 2003-06-05 2008-02-12 Oakland University Piezoimmunosensor
WO2009060100A2 (de) * 2007-11-09 2009-05-14 Universität Regensburg Impedanz scannende quarzmikrowaage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3700366A1 (de) * 1987-01-08 1988-07-21 Leybold Ag Einrichtung zum ermitteln der jeweiligen dicke von sich veraendernden material-schichten auf einem substrat waehrend des beschichtungsvorgangs
US5852229A (en) * 1996-05-29 1998-12-22 Kimberly-Clark Worldwide, Inc. Piezoelectric resonator chemical sensing device
SE520046C2 (sv) * 1997-11-24 2003-05-13 Sense Ab Q Förfarande för att mäta växelverkan mellan en målmolekyl och en receptormolekyl med piezoelektrisk kristallmikrovåg
CA2309160A1 (en) * 1997-12-02 1999-06-10 Allan L. Smith Mass and heat flow measurement sensor
AT411628B (de) * 1999-12-14 2004-03-25 Avl List Gmbh Anordnung und verfahren zur quantitativen und qualitativen analyse von partikeln in gasen
US6942782B2 (en) * 2000-03-07 2005-09-13 Nalco Company Method and apparatus for measuring deposit forming capacity of fluids using an electrochemically controlled pH change in the fluid proximate to a piezoelectric microbalance
US6626025B2 (en) * 2001-01-26 2003-09-30 General Electric Company Devices and methods for high throughput screening of abrasion resistance of coatings
SE0300375D0 (sv) * 2003-02-12 2003-02-12 Attana Ab Piezoelectric resonator
DE102004006823B4 (de) * 2004-02-11 2013-04-11 Saw Instruments Gmbh Verfahren zur Bestimmung der Massebelegung auf der Oberfläche von Oberflächenwellensensoren

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783987A (en) 1987-02-10 1988-11-15 The Board Of Regents Of The University Of Washington System for sustaining and monitoring the oscillation of piezoelectric elements exposed to energy-absorptive media
US4788466A (en) 1987-11-09 1988-11-29 University Of Arkansas Piezoelectric sensor Q-loss compensation
US5201215A (en) 1991-10-17 1993-04-13 The United States Of America As Represented By The United States Department Of Energy Method for simultaneous measurement of mass loading and fluid property changes using a quartz crystal microbalance
US5416448A (en) 1993-08-18 1995-05-16 Sandia Corporation Oscillator circuit for use with high loss quartz resonator sensors
US6006589A (en) 1995-05-04 1999-12-28 O-Sense Ab Piezoelectric crystal microbalance device
US5932953A (en) 1997-06-30 1999-08-03 Iowa State University Research Foundation, Inc. Method and system for detecting material using piezoelectric resonators
US6161420A (en) 1997-11-12 2000-12-19 Fisher Controls International, Inc. High frequency measuring circuit
US6247354B1 (en) 1998-05-13 2001-06-19 The United States Of America As Represented By The Secretary Of The Army Techniques for sensing the properties of fluids with resonators
ES2153740A1 (es) * 1998-07-08 2001-03-01 Univ Valencia Politecnica Sistema para compensar los efectos de rozamiento viscoso en la medida de la frecuencia de resonancia de un cristal piezometrico en un fluido
US6848299B2 (en) 1998-10-26 2005-02-01 Akubio Limited Quartz crystal microbalance with feedback loop for automatic gain control
US6222366B1 (en) 1999-05-10 2001-04-24 Fisher Controls International, Inc. High frequency measuring circuit with inherent noise reduction for resonating chemical sensors
US6169459B1 (en) 1999-05-19 2001-01-02 Sandia Corporation Active-bridge oscillator
US6557416B2 (en) 2000-03-31 2003-05-06 Ant Technology Co., Ltd. High resolution biosensor system
US7159463B2 (en) 2001-06-20 2007-01-09 M.S. Tech Ltd. Sensitive and selective method and device for the detection of trace amounts of a substance
ES2197796A1 (es) 2002-01-31 2004-01-01 Univ Valencia Politecnica Circuito para la caracterizacion de sensores de cristal de cuarzo resonante en medios fluidos.
US7201041B2 (en) 2002-12-26 2007-04-10 Ulvac Inc. Analysis method using piezoelectric resonator
US20040150296A1 (en) * 2003-01-24 2004-08-05 Lg Electronics Inc. Material sensing sensor and module using thin film bulk acoustic resonator
ITMI20030514A1 (it) 2003-03-18 2004-09-19 Uni Degli Studi Brescia Metodo e dispositivo per determinare la frequenza di
EP1607725A1 (en) * 2003-03-25 2005-12-21 Seiko Epson Corporation Mass measuring method, circuit for exciting piezoelectric vibratory piece for mass measurement, and mass measuring instrument
US7036375B2 (en) 2003-03-28 2006-05-02 Citizen Watch Co., Ltd. QCM sensor and QCM sensor device
US7329536B2 (en) 2003-06-05 2008-02-12 Oakland University Piezoimmunosensor
WO2009060100A2 (de) * 2007-11-09 2009-05-14 Universität Regensburg Impedanz scannende quarzmikrowaage

Non-Patent Citations (34)

* Cited by examiner, † Cited by third party
Title
A. ARNAU; J.V. GARCIA; Y. JIMÉNEZ; V. FERRARI; M. FERRARI: "Improved Electronic Interfaces for Heavy Loaded at Cut Quartz Crystal Micro-scale Sensors", PROCEEDINGS OF FREQUENCY CONTROL SYMPOSIUM JOINT WITH THE 21 ST EUROPEAN FREQUENCY AND TIME FORUM, 2007, pages 357 - 362
A. ARNAU; T.SOGORB; Y. JIMENEZ: "Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation", REV. SCI. INSTRUM., vol. 73, no. 7, 2002, pages 2724 - 2737, XP012040118, DOI: doi:10.1063/1.1484254
A. ARNAU; V. FERRARI; D. SOARES; H. PERROT: "Piezoelectric Transducers and Applications", 2008, SPRINGER-VERLAG, article "Interface Electronic Systems for AT-cut QCM Sensors. A comprehensive review", pages: 117
A. JANSHOFF; H-J GALLA; C. STEINEM: "Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors?", ANGEW. CHEM INT. ED., vol. 39, 2000, pages 4004 - 4032
A.W. CZANDERNA; C. LU: "Applications of piezoelectric quartz crystal microbalances", vol. 7, 1984, ELSEVIER
B. JAKOBY; G. ART; J. BASTEMEIJER: "A novel analog readout electronics for microacoustic thickness shear-mode sensors", IEEE SENSORS JOURNAL, vol. 5, no. 5, 2005, pages 1106 - 1111, XP011138639, DOI: doi:10.1109/JSEN.2005.844330
C. BARNES: "Some new concepts on factors influencing the operational frequency of liquid- immersed quartz microbalances", SENSORS AND ACTUATORS A-PHYSICAL, vol. 30, no. 3, 1992, pages 197 - 202, XP026486950, DOI: doi:10.1016/0924-4247(92)80120-R
C. RIESCH; B. JAKOBY: "Novel Readout Electronics for Thickness Shear-Mode Liquid Sensors Compensating for Spurious Conductivity and Capacitances", IEEE SENSORS JOURNAL, vol. 7, no. 3, 2007, pages 464 - 469, XP011165517, DOI: doi:10.1109/JSEN.2007.891931
CK. O'SULLIVAN; GG. GUILBAULT: "Commercial quartz crystal microbalances - theory and applications", BIOSENSORS & BIOELECTRONICS, vol. 14, no. 8-9, pages 663 - 670
CK. O'SULLIVAN; R. VAUGHAN; GG. GUILBAULT: "Piezoelectric immunosensors - theory and applications", ANALYTICAL LETTERS, vol. 32, no. 12, 1999, pages 2353 - 2377, XP008015693, DOI: doi:10.1080/00032719908542975
F. EICHELBAUM; R. BORNGRABER; J. SCHRODER; R. LUCKLUM; P. HAUPTMANN: "Rev. Sci Instrum.", vol. 70, 1999, article "Interface circuits for quartz crystal microbalance sensors", pages: 2537 - 2545
FL. DICKERT; P. LIEBERZEIT; O. HAYDEN: "Sensor strategies for microorganism detection - from physical principles to imprinting procedures", ANALYTICAL AND BIOANALYTICAL CHEMISTRY, vol. 377, no. 3, 2003, pages 540 - 549, XP002476941, DOI: doi:10.1007/s00216-003-2060-5
G. SAUERBREY: "Verwendung von schwingquarzen zur wagung dunner Schichten und zur mikrowagung", ZEITSCHRIFT FUER PHYSIK, vol. 155, no. 2, 1959, pages 206 - 222
H. EHAHOUN; C. GABRIELLI; M. KEDDAM; H. PERROT; P. ROUSSEAU: "Performances and limits of a parallel oscillator for electrochemical quartz crystal microbalances", ANAL CHEM., vol. 74, 2002, pages 1119 - 1127, XP001116806, DOI: doi:10.1021/ac010883s
J. SCHRODER; R. BORNGRABER; R. LUCKLUM; P. HAUPTMANN: "Network analysis based interface electronics for quartz crystal microbalance", REVIEW SCIENTIFIC INSTRUMENTS, vol. 72, no. 6, pages 2750 - 2755, XP012039198, DOI: doi:10.1063/1.1370560
J. WEGENER; A JANSHOFF; C. STEINEM: "The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ", CELL BIO-CHEMISTRY AND BIOPHYSICS, vol. 34, no. 1, 2001, pages 121 - 151
K.BIZET; C. GRABIELLI; H. PERROT: "Biosensors based on piezoelectric transducers", ANALYSIS EURJAC, vol. 27, 1999, pages 609 - 616
K.K. KANAZAWA; J.G. GORDON II: "The oscillation frequency of a quartz resonator in contact with a liquid", ANALYTICA CHIMICA ACTA, vol. 175, 1985, pages 99 - 105, XP002604127, DOI: doi:10.1016/S0003-2670(00)82721-X
K.O. WESSENDORF: "The lever oscillator for use in high resistance resonator applications", PROCEEDINGS OF THE 1993 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM, 1993, pages 711 - 717, XP000420191
KA. FAHNRICH; M. PRAVDA; GG. GUILBAULT: "Immunochemical detection of polycyclic aromatic hydrocarbons (PAHs", ANALYTICAL LETTERS, vol. 35, no. 8, 2002, pages 1269 - 1300
KA. MARX: "Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface", BIOMACROMOLECULES, vol. 4, no. 5, 2003, pages 1099 - 1120
M. FERRARI; V. FERRARI; D. MARIOLI; A. TARONI; M. SUMAN; E. DALCANALE: "In-liquid sensing of chemical compounds by QCM sensors coupled with high-accuracy ACC oscillator", IEEE TRANS. INSTRUM. MEAS., vol. 55, no. 3, 2006, pages 828 - 834
M. RODAHL; B. KASEMO: "A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance", REV. SCI INSTRUM., vol. 67, 1996, pages 3238 - 3241
MA. COOPER; VT. SINGLETON: "A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions", JOURNAL OF MOLECULAR RECOGNITION, vol. 20, no. 3, 2007, pages 154 - 184, XP002506573, DOI: doi:10.1002/jmr.826
O. LAZCKA; FJ. DEL CAMPO; FX, MUNOZ: "Pathogen detection: A perspective of traditional methods and biosensors", BIOSENSORS & BIOELECTRONICS, vol. 22, no. 7, 2007, pages 1205 - 1217, XP022022945, DOI: doi:10.1016/j.bios.2006.06.036
R. BORNGRABER; J. SCHRODER; R. LUCKLUM; P. HAUPTMANN: "Is an oscillator- based measurement adequate in a liquid environment?", IEEE TRANS. ULTRASON. FERROELECT. FREQ. CONTR., vol. 49, no. 9, 2002, pages 1254 - 1259, XP011438462, DOI: doi:10.1109/TUFFC.2002.1041542
R. LUCKLUM; D. SOARES; K.K. KANAZAWA: "Piezoelectric Transducers and Applications", 2008, SPRINGER-VERLAG, article "Models for resonant sensors", pages: 63
S. DOERNER; T. SCHNEIDER; J. SCHRODER; P. HAUPTMANN: "Universal impedance spectrum analyzer for sensor applications", PROCEEDINGS OF IEEE SENSORS, vol. 1, 2003, pages 596 - 594
S. J. MARTIN; J. J. SPATES; K. O. WESSENDORF; T. W. SCHNEIDER; R. J. HUBER: "Resonator/oscillator response to liquid loading", ANAL. CHEM., vol. 69, 1997, pages 2050 - 2054, XP000696543, DOI: doi:10.1021/ac961194x
S.J. MARTIN; V.E. GRANSTAFF; G.C. FRYE: "Characterization of quartz crystal microbalance with simultaneous mass and liquid loading", ANAL. CHEM., vol. 63, 1991, pages 2272 - 2281, XP000577312, DOI: doi:10.1021/ac00020a015
See also references of EP2447683A4
TA. CAMESANO; YT. LIU; M. DATTA: "Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques", ADVANCES IN WATER RESOURCES, vol. 30, no. 6-7, 2007, pages 1470 - 1491, XP022036730, DOI: doi:10.1016/j.advwatres.2006.05.023
TS. HUG: "Biophysical methods for monitoring cell-substrate interactions in drug discovery", ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES, vol. 1, no. 3, 2003, pages 479 - 488, XP002585567
V. FERRARI; D. MARIOLI; A. TARONI: "Improving the accuracy and operating range of quartz microbalance sensors by purposely designed oscillator circuit", IEEE TRANS. INSTRUM. MEAS., vol. 50, 2001, pages 1119 - 1122, XP002291913, DOI: doi:10.1109/19.963169

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706362C1 (ru) * 2018-06-19 2019-11-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" Композиция покрытия пьезоэлектрического сенсора для определения фторхинолонов в жидких средах
CN111103213A (zh) * 2019-04-19 2020-05-05 宁德时代新能源科技股份有限公司 涂层面密度检测装置和方法
CN111103214A (zh) * 2019-04-19 2020-05-05 宁德时代新能源科技股份有限公司 涂层面密度检测装置和方法
CN111103214B (zh) * 2019-04-19 2022-07-29 宁德时代新能源科技股份有限公司 涂层面密度检测装置和方法
CN111103213B (zh) * 2019-04-19 2022-07-29 宁德时代新能源科技股份有限公司 涂层面密度检测装置和方法

Also Published As

Publication number Publication date
EP2447683A1 (en) 2012-05-02
JP5532500B2 (ja) 2014-06-25
US8869617B2 (en) 2014-10-28
US20120152003A1 (en) 2012-06-21
EP2447683A4 (en) 2014-10-29
AU2010264598A1 (en) 2012-02-09
ES2333088B2 (es) 2011-02-07
JP2012530923A (ja) 2012-12-06
ES2333088A1 (es) 2010-02-16
KR20120103542A (ko) 2012-09-19
CN102625906A (zh) 2012-08-01

Similar Documents

Publication Publication Date Title
ES2333088B2 (es) Metodo y dispositivo de nanogravimetria en medios fluidos basado en resonadores piezoelectricos.
Buck et al. Piezoelectric chemical sensors (IUPAC technical report)
Mecea Is quartz crystal microbalance really a mass sensor?
US7201041B2 (en) Analysis method using piezoelectric resonator
CN109374729B (zh) 一种声学微质量传感器及检测方法
WO1996035103A9 (en) A piezoelectric crystal microbalance device
Cassiède et al. Characterization of the behaviour of a quartz crystal resonator fully immersed in a Newtonian liquid by impedance analysis
JP4083621B2 (ja) 振動子を用いた分析方法
Lucklum et al. Interface circuits for QCM sensors
BR112014010544B1 (pt) sensor de onda acústica de superfície
Kao et al. Fabrication and performance characteristics of high-frequency micromachined bulk acoustic wave quartz resonator arrays
Arnau et al. A different point of view on the sensitivity of quartz crystal microbalance sensors
US7331232B2 (en) Measurement method and biosensor apparatus using resonator
Zhao et al. Piezoelectric circuitry tailoring for resonant mass sensors providing ultra-high impedance sensitivity
Kao et al. Human serum albumin adsorption study on 62-MHz miniaturized quartz gravimetric sensors
Berg et al. Laterally coupled quartz resonators
Sindi et al. A strategy for chemical sensing based on frequency tunable acoustic devices
Hu et al. Exploration of the mass sensitivity of quartz crystal microbalance under overtone modes using electrodeposition method
Fischerauer et al. A simple model for the effect of nonuniform mass loading on the response of gravimetric chemical sensors
Dultsev et al. QCM operating in threshold mode as a gas sensor
Bucur et al. Quartz-crystal mass sensors with glued foil electrodes
JPH02226044A (ja) 検体セル
Barzinjy et al. Mathematical modeling of mass change in biosensor quartz crystal microbalance using matlab
Zhang et al. Miniature high-frequency longitudinal wave mass sensors in liquid
RU73488U1 (ru) Датчик механических и электрических параметров жидкости

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037718.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11177360

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2012516806

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010791645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010264598

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20127001778

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010264598

Country of ref document: AU

Date of ref document: 20100618

Kind code of ref document: A