WO2010146983A1 - 低誘電率インプリント材料 - Google Patents

低誘電率インプリント材料 Download PDF

Info

Publication number
WO2010146983A1
WO2010146983A1 PCT/JP2010/059187 JP2010059187W WO2010146983A1 WO 2010146983 A1 WO2010146983 A1 WO 2010146983A1 JP 2010059187 W JP2010059187 W JP 2010059187W WO 2010146983 A1 WO2010146983 A1 WO 2010146983A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
pni
film
group
imprint material
Prior art date
Application number
PCT/JP2010/059187
Other languages
English (en)
French (fr)
Inventor
淳平 小林
拓 加藤
正睦 鈴木
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2011519713A priority Critical patent/JP5348433B2/ja
Publication of WO2010146983A1 publication Critical patent/WO2010146983A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C2059/028Incorporating particles by impact in the surface, e.g. using fluid jets or explosive forces to implant particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to an imprint material and a film produced from the material and having a pattern transferred thereon. More specifically, the present invention relates to an imprint material for forming a low dielectric constant film having a high transmittance and a high refractive index, and a film produced from the material and having a pattern transferred thereto.
  • Nanoimprint lithography is a resin in which a mold is brought into contact with a substrate on which a resin film is formed, the resin film is pressed, the resin film is pressurized, and heat or light is used as an external stimulus to cure the target pattern. This is a technique for forming a film.
  • This nanoimprint lithography has an advantage that nanoscale processing can be performed easily and inexpensively compared to optical lithography or the like in conventional semiconductor device manufacturing. Therefore, nanoimprint lithography is a technique that is expected to be applied to the manufacture of semiconductor devices, opto-devices, displays, storage media, biochips and the like instead of optical lithography techniques. For this reason, various reports have been made on curable compositions for optical nanoimprint lithography used in nanoimprint lithography (Patent Documents 2 and 3).
  • imprint material interlayer insulating films and / or gate insulating films of semiconductor elements such as field effect transistors, etc.
  • materials that can be used suitably or advantageously for optical members specifically, nanoimprint materials that form films having low dielectric constant, high transmittance, and high refractive index have not been reported.
  • a material using a compound having a fluorene skeleton is conventionally known as one of materials for forming an optical member.
  • a coating material having a transmittance of 60% or more containing a resin-forming component mainly composed of a monomer or oligomer having a fluorene skeleton and a photopolymerization initiator for forming a surface irregularity shape on a substrate is reported.
  • Patent Documents 4 to 6 Patent Documents 4 to 6
  • these conventional documents are not intended to provide an application as an imprint material, and do not suggest using a compound having a bisarylfluorene skeleton as an imprint material.
  • Patent Document 7 a crosslinkable and casting polymer composition for producing optical articles having a high refractive index using full orange acrylate as a monomer has been reported (Patent Document 7).
  • the polymer having the fluorene structure reported in this document is described as having been adopted to have excellent properties in terms of refractive index, thermal stability, wear resistance and impact resistance. Therefore, this document does not suggest that the property of low dielectric constant is imparted to the polymer.
  • the polymer composition was developed for the purpose of manufacturing plastic optical articles such as video disks and ophthalmic lenses that require a high refractive index but do not require a low dielectric constant. Therefore, this document does not suggest anything about the applicability of the composition to a semiconductor element, particularly to an imprint material.
  • an object of the present invention is to provide an imprint material for forming a film having high transmittance, high refractive index, and low dielectric constant.
  • the refractive index is, for example, 1.57 or more
  • the dielectric constant is, for example, a low dielectric constant of 2.0 or more and 3.2 or less, preferably 3.0 or less. It is an object to provide a material for forming a film having the same.
  • a feature of the present invention is to provide an imprint material that forms a film having performances that satisfy all properties such as transmittance, refractive index, and dielectric constant.
  • the optical nanoimprint technique including the case where the pattern size to be formed is not limited to the nanometer order but is, for example, the micrometer order is referred to as optical imprint.
  • dielectric constant means relative dielectric constant.
  • the present inventors have found that a monomer of a compound having a bisarylfluorene skeleton imparts a property of low dielectric constant to a film containing the compound,
  • the present invention has been completed. That is, the present invention (A) component, (B) component, and (C) component are contained, Based on 100 mass parts of said (A) component and said (B) component in total, 50-95 mass parts (A) component, And an imprint material containing 50 to 5 parts by mass of the component (B).
  • Photopolymerization initiator In the formula, R represents an acryloyl group, a methacryloyl group or a vinyl group, A represents an alkylene group, and m and n each independently represents an integer of 0 to 3.
  • the film produced from the imprint material and having the pattern transferred thereon has a low dielectric constant and a high transmittance. And having a high refractive index.
  • the imprint material of the present invention can be photocured, and the cured film does not peel off part of the pattern when the mold is released, so that a film in which a desired pattern is accurately formed can be obtained. . Therefore, it is possible to form a good optical imprint pattern.
  • the imprint material of the present invention can be formed on an arbitrary substrate, and the film to which the pattern formed after imprint is transferred is not only an optical member but also a semiconductor element such as a field effect transistor. It can be suitably used for the interlayer insulating film and / or the gate insulating film. Furthermore, the imprint material of this invention can control a cure rate, dynamic viscosity, and a film thickness by changing the kind of compound which has at least 2 polymeric group in a molecule
  • the present invention is characterized in that a compound having a bisarylfluorene skeleton is used as a monomer, and a film having a low dielectric constant is imparted to a film formed from an imprint material containing the compound. That is, an imprint containing (A) a component having a bisarylfluorene skeleton, (B) a component having at least one polymerizable group in the molecule, and (C) a photopolymerization initiator. Material. Furthermore, in addition to the component (A), the component (B), and the component (C), the imprint material can contain a solvent as the component (D).
  • each component will be described in detail.
  • the compound having a bisarylfluorene skeleton as the component (A) is represented by the following formula (1).
  • R represents an acryloyl group, a methacryloyl group or a vinyl group
  • A represents an alkylene group
  • m and n each independently represents an integer of 0 to 3.
  • the alkylene group is, for example, an alkylene group having 1 to 3 carbon atoms.
  • the above m and n are 1, for example.
  • the compound having a bisarylfluorene skeleton can be used as a monomer, and can impart a property of low dielectric constant to a film formed from an imprint material containing the compound.
  • the above-mentioned compounds having a bisarylfluorene skeleton are available as commercial products. Specific examples thereof include OGSOL (registered trademark) EA-0200, EA-0500, EA-1000, EA-F5003, And EA-F5503 (Osaka Gas Chemical Co., Ltd.).
  • the compounds having the bisarylfluorene skeleton can be used alone or in combination of two or more.
  • the content of the component (A) in the imprint material of the present invention is preferably 50 to 95 parts by mass, more preferably 70 parts by mass, based on a total of 100 parts by mass of the component (A) and the component (B) described later. Or more. If this ratio is too small, the dielectric constant increases, making it difficult to obtain the desired physical properties.
  • the “compound having at least one polymerizable group in the molecule” as the component (B) is a compound having at least one polymerizable group in one molecule and having the polymerizable group at the molecular end.
  • the compound may be a monomer or an oligomer.
  • the polymerizable group refers to at least one organic group selected from the group consisting of an acryloyloxy group, a methacryloyloxy group, a vinyl group, and an allyl group.
  • the acryloyloxy group may be expressed as an acryloxy group
  • the methacryloyloxy group may be expressed as a methacryloxy group.
  • the number of the polymerizable groups in one molecule in the compound of the component (B) is generally 1 to 6, but may exceed 6.
  • Examples of the compound having at least one polymerizable group as the component (B) include dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, dipentaerythritol pentaacrylate, dipentaerythritol pentamethacrylate, pentaerythritol tetraacrylate, Pentaerythritol triacrylate, pentaerythritol trimethacrylate, pentaerythritol diacrylate, pentaerythritol dimethacrylate, tetramethylolpropane tetraacrylate, tetramethylolpropane tetramethacrylate, tetramethylolmethane tetraacrylate, tetramethylolmethane tetramethacrylate, trimethylolpropane triacrylate, Trimethylo Propropane trimethacrylate,
  • the above compounds are commercially available, and specific examples thereof include KAYARAD (registered trademark) T-1420, DPHA, DPHA-2C, D-310, D-330, and DPCA-20.
  • the component (B) may be, for example, a mixture of a compound having 5 polymerizable groups and 6 compounds in one molecule. Therefore, the said compound can be used individually or in combination of 2 or more types.
  • the component (B) plays a role in adjusting the viscosity of the compound having a bisarylfluorene skeleton, which is the component (A) having a high viscosity. Therefore, the content of the component (B) in the imprint material of the present invention is preferably 50 to 5 parts by mass, more preferably 10 based on the total of 100 parts by mass of the component (A) and the component (B). More than part by mass. If this proportion is excessive, the dielectric constant increases, while if this proportion is too small, the handleability deteriorates.
  • ⁇ (C) component examples include tert-butylperoxy-iso-butarate, 2,5-dimethyl-2,5-bis (benzoyldioxy) hexane, 1,4-bis [ ⁇ - (Tert-butyldioxy) -iso-propoxy] benzene, di-tert-butyl peroxide, 2,5-dimethyl-2,5-bis (tert-butyldioxy) hexene hydroperoxide, ⁇ - (iso-propylphenyl) -iso- Propyl hydroperoxide, 2,5-dimethylhexane, tert-butyl hydroperoxide, 1,1-bis (tert-butyldioxy) -3,3,5-trimethylcyclohexane, butyl-4,4-bis (tert-butyldioxy) valerate , Cyclohexanone peroxide
  • the above-mentioned compounds can be obtained as commercial products. Specific examples thereof include IRGACURE (registered trademark) 651, 184, 500, 2959, 127, 754, 907, 369, 379, 379EG, 819, 819DW, 1800, 1870, 784, OXE01, OXE02, 250, DAROCUR (registered trademark) 1173, MBF, TPO, 4265 (above, Ciba Japan Co., Ltd.) KAYACURE (registered trademark) DETX, MBP, DMBI, EPA, OA (above, Nippon Kayaku Co., Ltd.), VISURE-10, 55 (above, STAUFFER Co.
  • the above photopolymerization initiators can be used alone or in combination of two or more.
  • the content of the component (C) in the imprint material of the present invention is preferably 0.5 phr to 30 phr, and preferably 1 phr to 20 phr with respect to the total mass of the component (A) and the component (B). It is more preferable. When this ratio is 0.1 phr or less, sufficient curability cannot be obtained and patterning characteristics deteriorate.
  • phr represents the mass of the photopolymerization initiator with respect to 100 g of the total mass of the components (A) and (B).
  • a solvent may be contained as the component (D).
  • the solvent as the component (D) plays a role in adjusting the viscosity of the compound having the bisarylfluorene skeleton as the component (A).
  • solvent examples include toluene, p-xylene, o-xylene, styrene, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol.
  • Monoisopropyl ether ethylene glycol methyl ether acetate, propylene glycol monomethyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether Diethylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol, 1-octanol, ethylene glycol, hexylene glycol, diacetone alcohol, furfuryl alcohol, tetrahydrofur Furyl alcohol, propylene glycol, benzyl alcohol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol,
  • the solvent is preferably propylene glycol monomethyl ether acetate, propylene Glycol monomethyl ether, ⁇ -butyrolactone, N-methylpyrrolidone, methanol, ethanol, isopropanol, butanol, diacetone alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol, propylene glycol, hexylene glycol, methyl cellosolve, ethylene cellosolve, butyl cellosolve , Ethyl carbitol, butyl carbitol, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, pro Glycol monobutyl ether, cyclohexanone, methyl acetate,
  • the above solvents can be used alone or in combination of two or more.
  • the imprint material of the present invention can contain a photosensitizer, an ultraviolet absorber, an antioxidant, a surfactant, an adhesion aid, and the like as necessary as long as the effects of the present invention are not impaired. .
  • photosensitizer examples include, for example, thioxanthene series, xanthene series, ketone series, thiopyrylium salt series, base styryl series, merocyanine series, 3-substituted coumarin series, 3,4-substituted coumarin series, cyanine series, acridine series. , Thiazine, phenothiazine, anthracene, coronene, benzanthracene, perylene, ketocoumarin, fumarine, borate and the like.
  • the above photosensitizers can be used alone or in combination of two or more.
  • the wavelength in the UV region can also be adjusted by using the photosensitizer.
  • Examples of the ultraviolet absorber include TINUVIN (registered trademark) PS, 99-2, 109, 328, 384-2, 400, 405, 460, 477, 479, 900, 928, 1130, 111FDL, 123, 144, 152, 292, 5100, 400-DW, 477-DW, 99-DW, 123-DW, 5050, 5060, 5151 (Ciba Japan Co., Ltd.) and the like.
  • TINUVIN registered trademark
  • PS 99-2, 109, 328, 384-2
  • 400 405, 460, 477, 479, 900, 928, 1130, 111FDL, 123, 144, 152, 292, 5100, 400-DW, 477-DW, 99-DW, 123-DW, 5050, 5060, 5151 (Ciba Japan Co., Ltd.) and the like.
  • the above ultraviolet absorbers can be used alone or in combination of two or more. By using the ultraviolet absorber, it is possible to control the curing speed of the outermost surface of the film during photocuring and to improve the mold release property.
  • antioxidants examples include IRGANOX (registered trademark) 1010, 1035, 1076, 1135, 1520L (above, Ciba Japan Co., Ltd.) and the like.
  • the above antioxidants can be used alone or in combination of two or more. By using the antioxidant, it is possible to prevent the film from turning yellow due to oxidation.
  • surfactant examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene acetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene olein ether, polyoxyethylene octylphenol ether, polyoxyethylene Nonielphenol ethers polyoxyethylene alkyl allyl ethers, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan Sorbitan fatty acid esters such as tristearate, polyoxyethylene sorbitan monolaurate, polyoxy Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters, such as Tylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate
  • the above surfactants can be used alone or in combination of two or more.
  • the ratio is preferably 0.01 phr to 10 phr, more preferably 0.01 phr to 5 phr, with respect to the total mass of the component (A) and the component (B).
  • adhesion aid examples include 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, and the like. By using the adhesion aid, the adhesion with the substrate is improved.
  • the content of the adhesion aid is preferably 5 phr to 50 phr, more preferably 10 phr to 50 phr, with respect to the total mass of the component (A) and the component (B).
  • the method for preparing the imprint material of the present invention is not particularly limited as long as the component (A), the component (B), the component (C), and the component (D) are uniformly mixed. Further, the order of mixing the components (A) to (D) is not particularly limited as long as a uniform solution can be obtained.
  • the preparation method include a method of mixing the component (B) and the component (C) in a predetermined ratio with the component (A). Moreover, the method etc. which further mix (D) component with this and make it a uniform solution are mentioned. Furthermore, in an appropriate stage of this preparation method, there may be mentioned a method in which other additives are further added and mixed as necessary.
  • the solvent which is the component (D) it may be fired for the purpose of evaporating the solvent with respect to at least one of the film before light irradiation and the film after light irradiation.
  • the baking equipment is not particularly limited. For example, it can be fired in a suitable atmosphere, that is, in an inert gas such as air or nitrogen, in a vacuum, using a hot plate, an oven, or a furnace. I just need it.
  • the firing temperature is not particularly limited for the purpose of evaporating the solvent, but can be performed at 40 to 200 ° C., for example.
  • the imprint material of the present invention can be applied to a substrate, photocured, and then heated as necessary to obtain a desired film.
  • a coating method a known or well-known method such as a spin coating method, a dip method, a flow coating method, an ink jet method, a spray method, a bar coating method, a gravure coating method, a slit coating method, a roll coating method, a transfer printing method, Examples thereof include brush coating, blade coating, and air knife coating.
  • Examples of the base material on which the imprint material of the present invention is applied include silicon, glass on which indium tin oxide (ITO) is formed (hereinafter abbreviated as “ITO substrate”), and silicon nitride (SiN). And a substrate made of indium zinc oxide (IZO), polyethylene terephthalate (PET), plastic, glass, quartz, ceramics, and the like. It is also possible to use a flexible base material having flexibility.
  • ITO substrate glass on which indium tin oxide
  • SiN silicon nitride
  • IZO indium zinc oxide
  • PET polyethylene terephthalate
  • plastic glass, quartz, ceramics, and the like. It is also possible to use a flexible base material having flexibility.
  • a light source for curing the imprintable material of the present invention is not particularly limited, for example, a high pressure mercury lamp, low pressure mercury lamp, a metal halide lamp, KrF excimer laser, ArF excimer laser, F 2 excimer laser, electron beam (EB), And extreme ultraviolet (EUV).
  • a 436 nm G line, a 405 nm H line, a 365 nm I line, or a GHI mixed line can be used.
  • the exposure dose is preferably 30 to 2000 mJ / cm 2 , more preferably 30 to 1000 mJ / cm 2 .
  • the optical imprinting apparatus is not particularly limited as long as a target pattern can be obtained.
  • ST50 manufactured by Toshiba Machine Co., Ltd.
  • Sindre registered trademark
  • NM-0801HB manufactured by Meisho Agency, etc.
  • a commercially available apparatus can be used.
  • Examples of the mold material used for optical imprinting used in the present invention include quartz, silicon, nickel, carbonylsilane, glassy carbon and the like, but are not particularly limited as long as a target pattern can be obtained. Further, the mold may be subjected to a mold release treatment for forming a thin film such as a fluorine compound on the surface thereof in order to improve the mold release property. Examples of the mold release agent used for the mold release treatment include OPTOOL (registered trademark) HD manufactured by Daikin Industries, Ltd., but are not particularly limited as long as the target pattern can be obtained.
  • a pattern suitable for the target electronic device may be selected, and the pattern size conforms to this.
  • the pattern size is, for example, nanometer order and micrometer order.
  • Ogsol registered trademark
  • EA-0200 Osaka Gas Chemical Co., Ltd.
  • NPGDA neopentyl glycol diacrylate
  • IRGACURE registered trademark
  • OXE01 manufactured by Ciba Japan Co., Ltd.
  • Example 2 An imprint material PNI-2 was prepared in the same manner except that NPGDA in Example 1 was changed to pentaerythritol triacrylate (manufactured by Aldrich) (hereinafter abbreviated as “PTA”).
  • PTA pentaerythritol triacrylate
  • Example 3 13.1 g of propylene glycol monomethyl ether acetate (hereinafter abbreviated as “PGMEA”) was added to PNI-1 obtained in Example 1 to prepare imprint material PNI-3.
  • PGMEA propylene glycol monomethyl ether acetate
  • Imprint material PNI-4 was prepared by adding 13.1 g of PGMEA to PNI-2 obtained in Example 2.
  • Imprint material PNI-a was prepared by adding 0.5 g of OXE01 (5 phr with respect to NPGDA) to 10 g of NPGDA.
  • Imprint material PNI-d was prepared by adding 10.5 g of PGEMA to PNI-a obtained in Comparative Example 1.
  • Imprint material PNI-f was prepared by adding 10.5 g of PGEMA to PNI-c obtained in Comparative Example 3.
  • the PNI-2 obtained in Example 2 was spin-coated on a quartz substrate to obtain a film for optical imprint (PNI-2F).
  • the PNI-3 obtained in Example 3 was spin-coated on a quartz substrate and pre-baked for 1 minute on a hot plate at 100 ° C. to obtain a film for photoimprinting (PNI-3F).
  • the PNI-4 obtained in Example 4 was spin-coated on a quartz substrate and pre-baked for 1 minute on a hot plate at 100 ° C. to obtain a film for photoimprinting (PNI-4F).
  • the PNI-a obtained in Comparative Example 1 was spin-coated on a quartz substrate to obtain a film for optical imprint (PNI-aF).
  • the PNI-b obtained in Comparative Example 2 was spin-coated on a quartz substrate to obtain a film for optical imprint (PNI-bF).
  • the PNI-c obtained in Comparative Example 3 was spin-coated on a quartz substrate to obtain a film for optical imprint (PNI-cF).
  • the PNI-d obtained in Comparative Example 4 was spin-coated on a quartz substrate and pre-baked for 1 minute on a hot plate at 100 ° C. to obtain a film for photoimprinting (PNI-dF).
  • the PNI-e obtained in Comparative Example 5 was spin-coated on a quartz substrate and pre-baked for 1 minute on a hot plate at 100 ° C. to obtain a film for photoimprinting (PNI-eF).
  • the PNI-f obtained in Comparative Example 6 was spin-coated on a quartz substrate and pre-baked for 1 minute on a hot plate at 100 ° C. to obtain a film for photoimprinting (PNI-fF).
  • NM-0801HB manufactured by Meisho Agency
  • NM-0801HB manufactured by Meisho Agency
  • Each of the coating films for optical imprint obtained in Examples 1 to 4 and Comparative Examples 1 to 6 was subjected to a patterning test.
  • the mold used was made of silicon, and the pattern was 120 nm line and space.
  • the mold is immersed in Optool (registered trademark) HD (manufactured by Daikin Industries, Ltd.) in advance, treated for 2 hours using a high-temperature and high-humidity device with a temperature of 90 ° C and a humidity of 90RH%, rinsed with pure water, What was dried with was used.
  • Optool registered trademark
  • HD manufactured by Daikin Industries, Ltd.
  • the silicon mold was adhered to the PNI-1F produced from the PNI-1 obtained in Example 1 and installed in the optical imprint apparatus.
  • Optical imprinting is always performed at 23 ° C. under conditions of a) pressurization to 1000 N over 10 seconds, b) exposure at 500 mJ / cm 2 using a high-pressure mercury lamp, c) pressure removal over 10 seconds, d) mold And the substrate were separated and released.
  • the results of optical imprint are shown in Table 1.
  • photocuring refers to the evaluation of whether the film is cured after exposure, “ ⁇ ” indicates curing, and “x” indicates that curing has not occurred.
  • Bond refers to an evaluation of whether or not a part of the pattern is peeled off from the mold at the time of mold release, “ ⁇ ” indicates that peeling has not occurred, and “ ⁇ ” indicates that peeling has been observed.
  • Shape refers to an evaluation of whether or not the mold pattern has been successfully transferred to the film after release, and “ ⁇ ” indicates that the film has been transferred well, and “x” indicates that the film has not been transferred well.
  • composition of the imprint material forming the low dielectric constant film capable of good photoimprinting is as follows: (A) component: compound having a bisarylfluorene skeleton represented by the above formula (1), ( It became clear that the component (B): a compound having at least two polymerizable groups in the molecule and the component (C): a photopolymerization initiator are essential. Furthermore, it became clear that (D) component: a solvent may be contained.
  • the dielectric constant was measured using a vacuum simple prober MJ-10 (manufactured by Major Jig Co., Ltd.) and AG-4411B LCR meter (manufactured by Ando Electric Co., Ltd.) at a frequency of 100 kHz.
  • the PNI-1 obtained in Example 1 was spin-coated on an ITO substrate, and a quartz substrate was placed on the ITO substrate.
  • the pressure was constantly increased to 1000 N over 10 seconds under the condition of 23 ° C., and b) a high-pressure mercury lamp was used.
  • a photocured film was formed on the ITO substrate in a sequence of exposure of 500 mJ / cm 2 , c) pressure removal over 10 seconds, and d) separation of the quartz substrate and the ITO substrate, and part of the film. was removed to expose the ITO.
  • the dielectric constant was measured in the same manner as described above except that PNI-2 obtained in Example 2 was used. The results are shown in Table 2.
  • the PNI-3 obtained in Example 3 was spin-coated on an ITO substrate, calcined for 1 minute on a 100 ° C. hot plate, and covered with a quartz substrate on the condition of 23 ° C. a) for 10 seconds.
  • ITO substrate in a sequence of pressurizing up to 1000 N, b) exposure at 500 mJ / cm 2 using a high-pressure mercury lamp, c) pressure removal over 10 seconds, d) separation of the quartz substrate and the ITO substrate and release.
  • a photocured film was prepared on top and baked on a hot plate at 200 ° C. for 1 minute. A part of the film was scraped to expose the ITO.
  • the dielectric constant was measured in the same manner as described above except that PNI-4 obtained in Example 4 was used instead of PNI-3. The results are shown in Table 2.
  • the PNI-a obtained in Comparative Example 1 was spin-coated on an ITO substrate, and a quartz substrate was placed on the ITO substrate, and a) pressurized to 1000 N over 10 seconds under the condition of 23 ° C., b) a high-pressure mercury lamp.
  • a photocured film was formed on the ITO substrate in a sequence of exposure of 500 mJ / cm 2 , c) pressure removal over 10 seconds, and d) separation of the quartz substrate and the ITO substrate, and part of the film. was removed to expose the ITO.
  • the dielectric constant was measured in the same manner as described above except that PNI-b obtained in Comparative Example 2 was used. The results are shown in Table 2.
  • the dielectric constant was measured in the same manner as described above except that PNI-c obtained in Comparative Example 3 was used. The results are shown in Table 2.
  • the PNI-d obtained in Comparative Example 4 was spin coated on an ITO substrate, pre-baked on a hot plate at 100 ° C. for 1 minute, and covered with a quartz substrate on the condition of 23 ° C. a) for 10 seconds.
  • ITO substrate in a sequence of pressurizing up to 1000 N, b) exposure at 500 mJ / cm 2 using a high-pressure mercury lamp, c) pressure removal over 10 seconds, d) separation of the quartz substrate and the ITO substrate and release.
  • a photocured film was prepared on top and baked on a hot plate at 200 ° C. for 1 minute. A part of the film was scraped to expose the ITO.
  • the dielectric constant was measured in the same manner as described above except that PNI-e obtained in Comparative Example 5 was used instead of PNI-d. The results are shown in Table 2.
  • the dielectric constant was measured in the same manner as described above except that PNI-f obtained in Comparative Example 6 was used instead of PNI-d. The results are shown in Table 2.
  • the PNI-1 obtained in Example 1 was spin-coated on a quartz substrate, and another quartz substrate was put on the quartz substrate, and the pressure was constantly increased to 1000 N over 10 seconds under the condition of 23 ° C.
  • a photocured film was prepared on a quartz substrate in the same manner as described above except that PNI-2 obtained in Example 2 was used, and the transmittance was measured. The results are shown in Table 3.
  • the PNI-3 obtained in Example 3 was spin-coated on a quartz substrate and pre-baked for 1 minute on a hot plate at 100 ° C. Then, it is covered with another quartz substrate, and a) pressurized to 1000 N over 10 seconds under the condition of 23 ° C., b) exposure at 500 mJ / cm 2 using a high-pressure mercury lamp, c) pressure removal over 10 seconds, d) After the covered quartz substrate is separated from the lower quartz substrate and released, a photocured film is produced on the quartz substrate and baked on a hot plate at 200 ° C., and the transmittance is measured. went. The results are shown in Table 3.
  • a photocured film was prepared on a quartz substrate in the same manner as above except that PNI-4 obtained in Example 4 was used instead of PNI-3, and the transmittance was measured. The results are shown in Table 3.
  • PNI-a obtained in Comparative Example 1 is spin-coated on a quartz substrate, and another quartz substrate is covered on the quartz substrate, and a) pressurized to 1000 N over 10 seconds under the condition of 23 ° C. b) high-pressure mercury A photocured film is formed on the quartz substrate in a sequence of exposure at 500 mJ / cm 2 using a lamp, c) pressure removal over 10 seconds, and d) separation of the covered quartz substrate from the lower quartz substrate and release. It produced and the transmittance
  • a photocured film was prepared on a quartz substrate in the same manner as described above except that PNI-b obtained in Comparative Example 2 was used, and the transmittance was measured. The results are shown in Table 3.
  • a photocured film was prepared on a quartz substrate in the same manner as described above except that PNI-c obtained in Comparative Example 3 was used, and the transmittance was measured. The results are shown in Table 3.
  • the PNI-d obtained in Comparative Example 4 was spin-coated on a quartz substrate and pre-baked for 1 minute on a hot plate at 100 ° C. Then, it is covered with another quartz substrate, and a) pressurized to 1000 N over 10 seconds under the condition of 23 ° C., b) exposure at 500 mJ / cm 2 using a high-pressure mercury lamp, c) pressure removal over 10 seconds, d) After the covered quartz substrate is separated from the lower quartz substrate and released, a photocured film is produced on the quartz substrate and baked on a hot plate at 200 ° C., and the transmittance is measured. went. The results are shown in Table 3.
  • a photocured film was prepared on a quartz substrate in the same manner as above except that PNI-e obtained in Comparative Example 5 was used instead of PNI-d, and the transmittance was measured. The results are shown in Table 3.
  • a photocured film was prepared on a quartz substrate in the same manner as described above except that PNI-f obtained in Comparative Example 6 was used instead of PNI-d, and the transmittance was measured. The results are shown in Table 3.
  • the PNI-1 obtained in Example 1 was spin-coated on a silicon wafer, and a quartz substrate was placed on the silicon wafer, and a) pressurized to 1000 N over 10 seconds under the condition of 23 ° C., b) a high-pressure mercury lamp.
  • a photocured film is produced on the silicon wafer in the sequence of exposure at 500 mJ / cm 2 , c) pressure removal over 10 seconds, and d) separation of the quartz substrate and the silicon wafer, and refractive index measurement. went.
  • the results are shown in Table 4.
  • a photocured film was prepared on a silicon wafer in the same manner as described above except that PNI-2 obtained in Example 2 was used, and the refractive index was measured. The results are shown in Table 4.
  • PNI-3 obtained in Example 3 was spin-coated on a silicon wafer and pre-baked for 1 minute on a hot plate at 100 ° C. Then, a quartz substrate is put on the substrate, and the pressure is constantly increased to 1000 N for 10 seconds under conditions of 23 ° C., b) exposure at 500 mJ / cm 2 using a high-pressure mercury lamp, and c) pressure removal for 10 seconds. D) A photocured film was prepared on a silicon wafer in a sequence of separating and releasing the quartz substrate and the silicon wafer and firing on a hot plate at 200 ° C., and then the refractive index was measured. The results are shown in Table 4.
  • a photocured film was prepared on a silicon wafer in the same manner as above except that PNI-4 obtained in Example 4 was used instead of PNI-3, and the refractive index was measured. The results are shown in Table 4.
  • the PNI-a obtained in Comparative Example 1 was spin-coated on a silicon wafer, and a quartz substrate was put on the silicon wafer, and the pressure was constantly increased to 1000 N for 10 seconds under the condition of 23 ° C., and b) a high-pressure mercury lamp was used.
  • a photocured film is produced on the silicon wafer in the sequence of exposure at 500 mJ / cm 2 , c) pressure removal over 10 seconds, and d) separation of the quartz substrate and the silicon wafer, and refractive index measurement. went.
  • the results are shown in Table 4.
  • a photocured film was prepared on a silicon wafer in the same manner as described above except that the PNI-b obtained in Comparative Example 2 was used, and the refractive index was measured. The results are shown in Table 4.
  • a photocured film was prepared on a silicon wafer in the same manner as above except that PNI-c obtained in Comparative Example 3 was used, and the refractive index was measured. The results are shown in Table 4.
  • the PNI-d obtained in Comparative Example 4 was spin-coated on a silicon wafer and pre-baked for 1 minute on a hot plate at 100 ° C. Then, a quartz substrate is put on the substrate, and the pressure is constantly increased to 1000 N for 10 seconds under conditions of 23 ° C., b) exposure at 500 mJ / cm 2 using a high-pressure mercury lamp, and c) pressure removal for 10 seconds. D) A photocured film was prepared on a silicon wafer in a sequence of separating and releasing the quartz substrate and the silicon wafer, and baked on a hot plate at 200 ° C., and then the refractive index was measured. The results are shown in Table 4.
  • a photocured film was prepared on a silicon wafer in the same manner as above except that PNI-e obtained in Comparative Example 5 was used instead of PNI-d, and the refractive index was measured. The results are shown in Table 4.
  • a photocured film was prepared on a silicon wafer in the same manner as described above except that PNI-f obtained in Comparative Example 6 was used instead of PNI-d, and the refractive index was measured. The results are shown in Table 4.
  • the film obtained from the imprint material of the present invention has good optical imprint properties and has a low dielectric constant, a high refractive index, and a high transmittance.
  • the film obtained from the imprint material of the present invention can be suitably used for electronic devices and optical members such as interlayer insulating films and / or gate insulating films of semiconductor elements such as field effect transistors.

Abstract

【課題】高透過率及び高屈折率を有する低誘電率膜を形成するインプリント材料の提供。 【解決手段】 (A)成分、(B)成分、及び(C)成分を含有し、前記(A)成分及び前記(B)成分の合計100質量部に基づいて、50乃至95質量部の(A)成分、及び50乃至5質量部の(B)成分をそれぞれ含有するインプリント材料。 (A)成分:下記式(1)で表されるビスアリールフルオレン骨格を有する化合物 (B)成分:分子内に少なくとも1個の重合性基を有する化合物 (C)成分:光重合開始剤  (式中、Rはアクリロイル基、メタアクリロイル基又はビニル基を表し、Aはアルキレン基を表し、m及びnは互いに独立して0乃至3の整数を表す。)

Description

低誘電率インプリント材料
 本発明は、インプリント材料及び当該材料から作製され、パターンが転写された膜に関する。より詳しくは、本発明は、高透過率及び高屈折率を有する低誘電率膜を形成するインプリント材料、並びに当該材料から作製され、パターンが転写された膜に関するものである。
 1995年、現プリンストン大学のチョウ教授らがナノインプリントリソグラフィという新たな技術を提唱した(特許文献1)。ナノインプリントリソグラフィは、任意のパターンを有する、モールドを樹脂膜が形成された基材と接触させ、当該樹脂膜を加圧すると共に、熱又は光を外部刺激として用い、目的のパターンを硬化された当該樹脂膜に形成する技術である。このナノインプリントリソグラフィは、従来の半導体デバイス製造における光リソグラフィ等に比べて簡便・安価にナノスケールの加工が可能であるという利点を有する。
 したがって、ナノインプリントリソグラフィは、光リソグラフィ技術に代わり、半導体デバイス、オプトデバイス、ディスプレイ、記憶媒体、バイオチップ等の製造への適用が期待されている技術である。このことから、ナノインプリントリソグラフィに用いる光ナノインプリントリソグラフィ用硬化性組成物について様々な報告がなされている(特許文献2、3)。
 しかし、これまでにナノインプリントリソグラフィに用いる材料(以下、「インプリント材料」という。)として種々の材料が開示されているものの、電界効果トランジスタ等の半導体素子の層間絶縁膜及び/又はゲート絶縁膜等、及び光学部材に好適に或いは有利に使用することができる材料、具体的には低誘電率、高透過率及び高屈折率を有する膜を形成するナノインプリント材料については報告されていない。
 ところで、光学部材を形成する材料の一つとして、フルオレン骨格を有する化合物を用いたものが従来知られている。例えば、基板上に表面凹凸形状を形成するための、フルオレン骨格を有するモノマー又はオリゴマーを主とする樹脂形成成分と光重合開始剤を含有した、透過率が60%以上のコーティング材等が報告されている(特許文献4~6)。しかし、これら従来文献は、インプリント材料としての用途の提供を目的とするものでなく、かつ、ビスアリールフルオレン骨格を有する化合物をインプリント材料として用いることを示唆するものでもない。
 また、フルオレンジアクリレートをモノマーとして使用し、高屈折率を有する光学的物品を製造するための架橋性、注型用ポリマー組成物も報告されている(特許文献7)。しかし、この文献に報告されたフルオレン構造を持つポリマーは、屈折率、熱安定性、耐摩耗性及び耐衝撃性の点で優れた性質を有するものとするために採用されたものであると説明されており、この文献は当該ポリマーに対して低誘電率という性質を付与することまでは示唆していない。さらに、当該ポリマー組成物は高屈折率を必要とするが、低誘電率までは必要としないところのビデオディスクや眼科用レンズのようなプラスチック光学物品の製造に用いられることを目的として開発されたものであり、この文献では、当該組成物について半導体素子、特にインプリント材料への適用の可能性については何も示唆していない。
米国特許第5772905号明細書 特開2008-105414号公報 特開2008-202022号公報 特開2001-294800号公報 特開2002-182017号公報 特開2003-5368号公報 特開平7-2939号公報
 本発明は、上記の事情に基づいてなされたものであり、その解決しようとする課題は、高透過率及び高屈折率を有する低誘電率膜を形成するインプリント材料を提供することであり、また、当該材料から作製され、パターンが転写された膜を提供することである。
 ここで、上述より、本発明の課題は、高透過率、高屈折率及び低誘電率を有する膜を形成するインプリント材料を提供することである。具体的には、透過率については、例えば、95%以上、好ましくは98%以上の高い透過率を有する膜を形成する材料の提供を目的とし、屈折率については、例えば、1.57以上、好ましくは1.60以上の高い屈折率を有する膜を形成する材料の提供を目的とし、誘電率については、例えば、2.0以上3.2以下、好ましくは3.0以下の低い誘電率を有する膜を形成する材料の提供を目的とする。
 とりわけ、本発明の特徴は、透過率、屈折率及び誘電率等の諸特性について全て満足する性能を有する膜を形成するインプリント材料を提供することにある。
 また、本明細書では、形成されるパターンサイズがナノメートルオーダーに限らず、例えば、マイクロメートルオーダーである場合を含む光ナノインプリント技術を光インプリントと称する。さらに、本明細書では、“誘電率”とは比誘電率を意味する。
 本発明者らは、上記の課題を解決するべく鋭意検討を行った結果、ビスアリールフルオレン骨格を有する化合物の単量体が、それを含む膜に低誘電率という性質を付与することを見出し、本発明を完成するに至った。
 すなわち、本発明は、
 (A)成分、(B)成分、及び(C)成分を含有し、前記(A)成分及び前記(B)成分の合計100質量部に基づいて、50乃至95質量部の(A)成分、及び50乃至5質量部の(B)成分をそれぞれ含有するインプリント材料。
(A)成分:下記式(1)で表されるビスアリールフルオレン骨格を有する化合物
(B)成分:分子内に少なくとも1個の重合性基を有する化合物
(C)成分:光重合開始剤
Figure JPOXMLDOC01-appb-C000002
(式中、Rはアクリロイル基、メタアクリロイル基又はビニル基を表し、Aはアルキレン基を表し、m及びnは互いに独立して0乃至3の整数を表す。)
 本発明では、低誘電率を与えるビスアリールフルオレン骨格を有する化合物がインプリント材料に含有されているため、当該インプリント材料から作製され、パターンが転写された膜は、低誘電率、高透過率及び高屈折率を有する。
 本発明のインプリント材料は、光硬化が可能であり、かつその硬化膜は、モールドの離型時にパターンの一部の剥がれが生じないため、所望のパターンが正確に形成された膜が得られる。したがって、良好な光インプリントのパターン形成が可能である。
 また、本発明のインプリント材料は、任意の基材上に成膜することができ、インプリント後に形成されるパターンが転写された膜は、光学部材だけでなく、電界効果トランジスタ等の半導体素子の層間絶縁膜及び/又はゲート絶縁膜に好適に用いることができる。
 さらに、本発明のインプリント材料は、分子内に少なくとも2個の重合性基を有する化合物の種類を変更することで、硬化速度、動的粘度、膜厚をコントロールすることができる。したがって、本発明のインプリント材料は、製造するデバイス種と露光プロセス及び焼成プロセスの種類に対応した材料の設計が可能であり、プロセスマージンを拡大できるため、光学部材の製造に好適に用いることができる。
 本発明は、ビスアリールフルオレン骨格を有する化合物を単量体で用いて、それを含むインプリント材料から形成される膜に低誘電率という性質を付与した点に特徴がある。すなわち、(A)成分のビスアリールフルオレン骨格を有する化合物と、(B)成分の分子内に少なくとも1個の重合性基を有する化合物と、(C)成分の光重合開始剤を含有するインプリント材料である。更には、(A)成分、(B)成分、(C)成分に加えて、(D)成分として溶剤をも含有することのできるインプリント材料である。
 以下、各成分について詳細に説明する。
<(A)成分>
 (A)成分であるビスアリールフルオレン骨格を有する化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000003
(式中、Rはアクリロイル基、メタアクリロイル基又はビニル基を表し、Aはアルキレン基を表し、m及びnは互いに独立して0乃至3の整数を表す。)
 上記アルキレン基は、例えば炭素原子数1乃至3のアルキレン基である。上記m及びnは、例えば1である。
 本発明では、上記ビスアリールフルオレン骨格を有する化合物は、単量体で用いることができ、それを含むインプリント材料から形成される膜に低誘電率という性質を付与することができる。
 上記ビスアリールフルオレン骨格を有する化合物は、市販品として入手が可能であり、その具体例としては、オグゾール(登録商標)EA-0200、同EA-0500、同EA-1000、同EA-F5003、同EA-F5503(以上、大阪ガスケミカル株式会社)等が挙げられる。
 上記ビスアリールフルオレン骨格を有する化合物は、単独又は2種以上の組み合わせで使用することができる。
 本発明のインプリント材料における(A)成分の含有量は、当該(A)成分及び後述する(B)成分の合計100質量部に基づいて、好ましくは50乃至95質量部、より好ましくは70質量部以上である。この割合が過少である場合には、誘電率は増大するため、目的とする物性を得ることが困難となる。
<(B)成分>
 (B)成分の「分子内に少なくとも1個の重合性基を有する化合物」とは、一分子中に重合性基を1個以上有し、かつ該重合性基が分子末端にある化合物のことを表す。そして、当該化合物は単量体であるか、又はオリゴマーであってもよい。また、当該重合性基としては、例えば、アクリロイルオキシ基、メタアクリロイルオキシ基、ビニル基及びアリル基からなる群から選ばれる少なくとも1種類の有機基のことを指す。ここで、アクリロイルオキシ基はアクリロキシ基と、メタアクリロイルオキシ基はメタアクリロキシ基と表現されることがある。また、(B)成分の化合物における一分子中の当該重合性基の数は、一般的には1個乃至6個であるが、6個を超えても良い。
 上記(B)成分である重合性基を少なくとも1個有する化合物としては、例えば、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタメタクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールジメタクリレート、テトラメチロールプロパンテトラアクリレート、テトラメチロールプロパンテトラメタクリレート、テトラメチロールメタンテトラアクリレート、テトラメチロールメタンテトラメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、1,3,5-トリアクリロイルヘキサヒドロ-S-トリアジン、1,3,5-トリメタクリロイルヘキサヒドロ-S-トリアジン、トリス(ヒドロキシエチルアクリロイル)イソシアヌレート、トリス(ヒドロキシエチルメタクリロイル)イソシアヌレート、トリアクリロイルホルマール、トリメタクリロイルホルマール、1,6-ヘキサンジオールアクリレート、1,6-ヘキサンジオールメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、エタンジオールジアクリレート、エタンジオールジメタクリレート、2-ヒドロキシプロパンジオールジアクリレート、2-ヒドロキシプロパンジオールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、イソプロピレングリコールジアクリレート、イソプロピレングリコールジメタクリレート、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、N,N’-ビス(アクリロイル)システイン、N,N’-ビス(メタクリロイル)システイン、チオジグリコールジアクリレート、チオジグリコールジメタクリレート、ビスフェノールAジアクリレート、ビスフェノールAメタクリレート、ビスフェノールFジアクリレート、ビスフェノールFメタクリレート、ビスフェノールSジアクリレート、ビスフェノキシエタノールフルオレンジメタクリレート、ジアリルエーテルビスフェノールA、o-ジアリルビスフェノールA、マレイン酸ジアリル、トリアリルトリメリテート、ベンジルアクリレート、2-フェノキシエチルアクリレート等が挙げられる。
 上記化合物は、市販品として入手が可能であり、その具体例としては、KAYARAD(登録商標)T-1420、同DPHA、同DPHA-2C、同D-310、同D-330、同DPCA-20、同DPCA-30、同DPCA-60、同DPCA-120、同DN-0075、同DN-2475、同R-526、同NPGDA、同PEG400DA、同MANDA、同R-167、同HX-220、同HX620、同R-551、同R-712、同R-604、同R-684、同GPO-303、同TMPTA、同THE-330、同TPA-320、同TPA-330、同PET-30、同RP-1040(以上、日本化薬株式会社製)、アロニックス(登録商標)M-210、同M-240、同M-6200、同M-309、同M-400、同M-402、同M-405、同M-450、同M-7100、同M-8030、同M-8060、同M-1310、同M-1600、同M-1960、同M-8100、同M-8530、同M-8560、同M-9050(以上、東亜合成株式会社製)、ビスコート295、同300、同360、同GPT、同3PA、同400、同260、同312、同335HP(以上、大阪有機化学工業株式会社製)等を挙げることができる。
 上記(B)成分は、例えば、一分子中に当該重合性基を5個有する化合物と6個有する化合物との混合物であっても良い。したがって、上記化合物は、単独又は2種以上の組み合わせで使用することができる。
 (B)成分は、粘性が高い(A)成分であるビスアリールフルオレン骨格を有する化合物の粘度調節の役割を果たす。
 したがって、本発明のインプリント材料における(B)成分の含有量は、上記(A)成分及び上記(B)成分の合計100質量部に基づいて、好ましくは50乃至5質量部、より好ましくは10質量部以上である。この割合が過大である場合には、誘電率は増大し、一方、この割合が過少である場合には、ハンドリング性が悪化する。
<(C)成分>
 (C)成分である光重合開始剤としては、例えば、tert-ブチルペルオキシ-iso-ブタレート、2,5-ジメチル-2,5-ビス(ベンゾイルジオキシ)ヘキサン、1,4-ビス[α-(tert-ブチルジオキシ)-iso-プロポキシ]ベンゼン、ジ-tert-ブチルペルオキシド、2,5-ジメチル-2,5-ビス(tert-ブチルジオキシ)ヘキセンヒドロペルオキシド、α-(iso-プロピルフェニル)-iso-プロピルヒドロペルオキシド、2,5-ジメチルヘキサン、tert-ブチルヒドロペルオキシド、1,1-ビス(tert-ブチルジオキシ)-3,3,5-トリメチルシクロヘキサン、ブチル-4,4-ビス(tert-ブチルジオキシ)バレレート、シクロヘキサノンペルオキシド、2,2’,5,5’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-アミルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ビス(tert-ブチルペルオキシカルボニル)-4,4’-ジカルボキシベンゾフェノン、tert-ブチルペルオキシベンゾエート、ジ-tert-ブチルジペルオキシイソフタレート等の有機過酸化物や、9,10-アントラキノン、1-クロロアントラキノン、2-クロロアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン等のキノン類や、ベンゾインメチル、ベンゾインエチルエーテル、α-メチルベンゾイン、α-フェニルベンゾイン等のベンゾイン誘導体、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-[4-{4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル}-フェニル]-2-メチル-プロパン-1-オン、フェニルグリオキシリックアシッドメチルエステル、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等が挙げられるが、光硬化時に使用する光源に吸収をもつものであれば、特に限定されるものではない。
 上記化合物は、市販品として入手が可能であり、その具体例としては、IRGACURE(登録商標)651、同184、同500、同2959、同127、同754、同907、同369、同379、同379EG、同819、同819DW、同1800、同1870、同784、同OXE01、同OXE02、同250、DAROCUR(登録商標)1173、同MBF、同TPO、同4265(以上、チバ・ジャパン株式会社製)、KAYACURE(登録商標)DETX、同MBP、同DMBI、同EPA、同OA(以上、日本化薬株式会社製)、VICURE-10、同55(以上、STAUFFER Co. LTD製)、ESACURE KIP150、同TZT、同1001、同KTO46、同KB1、同KL200、同KS300、同EB3、トリアジン-PMS、トリアジンA、トリアジンB(以上、日本シイベルヘグナー株式会社製)、アデカオプトマ-N-1717、同N-1414、同N-1606(株式会社ADEKA(旧旭電子工業株式会社)製)等が挙げられる。
 上記光重合開始剤は、単独又は2種以上の組み合わせで使用することができる。
 本発明のインプリント材料における(C)成分の含有量は、上記(A)成分及び上記(B)成分の総質量に対して、0.5phr乃至30phrであることが好ましく、1phr乃至20phrであることがより好ましい。この割合が0.1phr以下の場合には、十分な硬化性が得られず、パターニング特性が悪化するからである。ここで、phrとは、(A)成分及び(B)成分の総質量100gに対する、光重合開始剤の質量を表す。
<(D)成分>
 本発明においては(D)成分として溶剤を含有しても良い。
 (D)成分である溶剤は、(A)成分であるビスアリールフルオレン骨格を有する化合物の粘度調節の役割を果たす。
 上記溶剤としては、例えば、トルエン、p-キシレン、o-キシレン、スチレン、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコ-ルジメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコール、1-オクタノール、エチレングリコール、ヘキシレングリコール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、プロピレングリコール、ベンジルアルコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、γ-ブチロラクトン、アセトン、メチルエチルケトン、メチルイソプロピルケトン、ジエチルケトン、メチルイソブチルケトン、メチル-n-ブチルケトン、シクロヘキサノン、2-ヘプタノン、酢酸エチル、酢酸イソプロピルケトン、酢酸n-プロピル、酢酸イソブチル、酢酸n-ブチル、乳酸エチル、メタノール、エタノール、イソプロパノール、tert-ブタノール、アリルアルコール、n-プロパノール、2-メチル-2-ブタノール、イソブタノール、n-ブタノール、2-メチル-1-ブタノール、1-ペンタノール、2-メチルー1-ペンタノール、2-エチルヘキサノール、1-オクタノール、エチレングリコール、ヘキシレングリコール、トリメチレングリコール、1-メトキシ-2-ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフリフリルアルコール、プロピレングリコール、ベンジルアルコール、イソプロピルエーテル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、N-シクロヘキシル-2-ピロリジン等が挙げられ、上記(A)成分の粘度を調節することができるものであれば、特に限定されるものではない。
 しかし、ビスアリールフルオレン骨格を有する化合物、分子内に少なくとも2個の重合性基を有する化合物及び光重合開始剤との相溶性の観点から、上記溶剤は、好ましくは、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、γ-ブチロラクトン、N-メチルピロリドン、メタノール、エタノール、イソプロパノール、ブタノール、ジアセトンアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコール、プロピレングリコール、ヘキシレングリコール、メチルセロソルブ、エチレンセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、シクロヘキサノン、酢酸メチルエステル、酢酸エチルエステル等である。
 上記溶剤は、単独又は2種以上の組み合わせで使用することができる。
 本発明のインプリント材料は、本発明の効果を損なわない限りにおいて、必要に応じて、光増感剤、紫外線吸収剤、酸化防止剤、界面活性剤、密着補助剤等を含有することができる。
 上記光増感剤としては、例えば、チオキサンテン系、キサンテン系、ケトン系、チオピリリウム塩系、ベーススチリル系、メロシアニン系、3-置換クマリン系、3,4-置換クマリン系、シアニン系、アクリジン系、チアジン系、フェノチアジン系、アントラセン系、コロネン系、ベンズアントラセン系、ペリレン系、ケトクマリン系、フマリン系、ボレート系等が挙げられる。
 上記光増感剤は、単独又は2種以上の組み合わせで使用することができる。当該光増感剤を用いることによって、UV領域の波長を調整することもできる。
 上記紫外線吸収剤としては、例えば、TINUVIN(登録商標)PS、同99-2、同109、同328、同384-2、同400、同405、同460、同477、同479、同900、同928、同1130、同111FDL、同123、同144、同152、同292、同5100、同400-DW、同477-DW、同99-DW、同123-DW、同5050、同5060、同5151(以上、チバ・ジャパン株式会社)等が挙げられる。
 上記紫外線吸収剤は、単独又は2種以上の組み合わせで使用することができる。当該紫外線吸収剤を用いることによって、光硬化時に膜の最表面の硬化速度を制御することができ、離型性を向上できる場合がある。
 上記酸化防止剤としては、例えば、IRGANOX(登録商標)1010、同1035、同1076、同1135、同1520L(以上、チバ・ジャパン株式会社)等が挙げられる。
 上記酸化防止剤は、単独又は2種以上の組み合わせで使用することができる。当該酸化防止剤を用いることで、酸化によって膜が黄色に変色することを防止することができる。
 上記界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンアセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニエルフェノールエーテル類のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、商品名エフトップ(登録商標)EF301、Ef303、EF352(三菱マテリアル電子化成株式会社(旧株式会社ジェムコ製))、商品名メガファック(登録商標)F171、F173、R-08、R-30(DIC株式会社製)、フロラードFC430、FC431(住友スリーエム株式会社製)、商品名アサヒガード(登録商標)AG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子株式会社製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマーKP341(信越化学工業株式会社製)、BYK-302、BYK-307、BYK-322、BYK-323、BYK-330、BYK-333、BYK-370、BYK-375、BYK-378(ビックケミー・ジャパン株式会社製)等を挙げることができる。
 上記界面活性剤は、単独又は2種以上の組み合わせで使用することができる。界面活性剤が使用される場合、その割合は、上記(A)成分及び上記(B)成分の総質量に対して、好ましくは0.01phr乃至10phr、より好ましくは0.01phr乃至5phrである。
 上記密着補助剤としては、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等が挙げられる。当該密着補助剤を用いることによって、基材との密着性が向上する。当該密着補助剤の含有量は、上記(A)成分及び上記(B)成分の総質量に対して、好ましくは5phr乃至50phr、より好ましくは10phr乃至50phrである。
 本発明のインプリント材料の調製方法は、特に限定されないが、(A)成分、(B)成分、(C)成分及び(D)成分が均一に混合した状態であれば良い。また、(A)成分乃至(D)成分を混合する際の順序は、均一な溶液が得られるなら問題なく、特に限定されない。当該調製方法としては、例えば、(A)成分に(B)成分及び(C)成分を所定の割合で混合する方法等が挙げられる。また、これに更に(D)成分を混合し、均一な溶液とする方法等も挙げられる。さらに、この調製方法の適当な段階において、必要に応じて、その他の添加剤を更に添加して混合する方法が挙げられる。
 また、(D)成分である溶剤を用いる場合には、光照射前の被膜及び光照射後の被膜の少なくとも一方に対し、溶剤を蒸発させる目的で、焼成しても良い。焼成機器としては、特に限定されるものではなく、例えば、ホットプレート、オーブン、ファーネスを用いて、適切な雰囲気下、すなわち大気、窒素等の不活性ガス、真空中等で焼成することができるものであればよい。焼成温度は、溶剤を蒸発させる目的では、特に限定されないが、例えば、40乃至200℃で行うことができる。
 本発明のインプリント材料は、基材に塗布し光硬化し、その後必要に応じて、加熱することで所望の被膜を得ることができる。塗布方法としては、公知又は周知の方法、例えば、スピンコート法、ディップ法、フローコート法、インクジェット法、スプレー法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法等を挙げることができる。
 本発明のインプリント材料を塗布するための基材としては、例えば、シリコン、インジウム錫酸化物(ITO)が成膜されたガラス(以下、「ITO基板」と略す)、シリコンナイトライド(SiN)が成膜されたガラス、インジウム亜鉛酸化物(IZO)が成膜されたガラス、ポリエチレンテレフタレート(PET)、プラスチック、ガラス、石英、セラミックス等からなる基材を挙げることができる。また、可撓性を有するフレキシブル基材を用いることも可能である。
 本発明のインプリント材料を硬化させる光源としては、特に限定されないが、例えば、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、KrFエキシマーレーザー、ArFエキシマーレーザー、F2エキシマーレーザー、電子線(EB)、極端紫外線(EUV)等を挙げることができる。また、波長は、一般的には、436nmのG線、405nmのH線、365nmのI線、又はGHI混合線を用いることができる。さらに、露光量は、好ましくは、30乃至2000mJ/cm2、より好ましくは30乃至1000mJ/cm2である。
 光インプリントを行う装置は、目的のパターンが得られれば、特に限定されないが、例えば、東芝機械株式会社のST50、Obducat製のSindre(登録商標)60、明昌機構株式会社製のNM-0801HB等の市販されている装置を用いることができる。
 本発明で用いる光インプリント用に使用するモールド材としては、例えば、石英、シリコン、ニッケル、カルボニルシラン、グラッシーカーボン等を挙げることができるが、目的のパターンが得られるなら、特に限定されない。また、モールドは、離型性を高めるために、その表面にフッ素系化合物等の薄膜を形成する離型処理を行っても良い。離型処理に用いる離型剤としては、例えば、ダイキン工業株式会社製のオプツール(登録商標)HD等が挙げられるが、目的のパターンが得られるなら、特に限定されない。
 光インプリントのパターンは、目的の電子デバイスに適合したパターンを選択すればよく、パターンサイズもこれに準ずる。パターンサイズは、例えば、ナノメートルオーダー及びマイクロメートルオーダーである。
 以下、実施例及び比較例を挙げて、本発明を更に詳しく説明するが、本発明は、これら実施例に限定されるものでない。
[被膜形成用塗布液の調製]
<実施例1>
 オグソール(登録商標)EA-0200(大阪ガスケミカル株式会社製)(以下、「オグソール」と略す) 10gにKAYARAD(登録商標)ネオペンチルグリコールジアクリレート(日本化薬株式会社製)(以下、「NPGDA」と略す)を2.5g(オグソール100質量部に対して25質量部)、IRGACURE(登録商標)OXE01(チバ・ジャパン株式会社製)(以下、「OXE01」と略す)を0.62g(オグソール及びNPGDAの総質量に対して5phr)を加え、インプリント材料PNI-1を調製した。
<実施例2>
 実施例1のNPGDAをペンタエリスリトールトリアクリレート(アルドリッチ社製)(以下、「PTA」と略す)に変更した以外は同様にインプリント材料PNI-2を調製した。
<実施例3>
 実施例1で得られたPNI-1にプロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と略す)を13.1g加えてインプリント材料PNI-3を調製した。
<実施例4>
 実施例2で得られたPNI-2にPGMEAを13.1g加えてインプリント材料PNI-4を調製した。
<比較例1>
 NPGDA 10gにOXE01 0.5g(NPGDAに対して5phr)を加えてインプリント材料PNI-aを調製した。
<比較例2>
 比較例1のNPGDAをPTAに変更した以外は同様にインプリント材料PNI-bを調製した。
<比較例3>
 実施例1のオグソールをPTAに変更した以外は同様にインプリント材料PNI-cを調製した。
<比較例4>
 比較例1で得られたPNI-aにPGEMAを10.5g加えてインプリント材料PNI-dを調製した。
<比較例5>
 比較例2で得られたPNI-bにPGEMAを10.5g加えてインプリント材料PNI-eを調製した。
<比較例6>
 比較例3で得られたPNI-cにPGEMAを10.5g加えてインプリント材料PNI-fを調製した。
[光インプリント用被膜の作製]
 実施例1で得たPNI-1を石英基板上にスピンコートし、光インプリント用被膜(PNI-1F)を得た。
 実施例2で得たPNI-2を石英基板上にスピンコートし、光インプリント用被膜(PNI-2F)を得た。
 実施例3で得たPNI-3を石英基板上にスピンコートし、100℃のホットプレートで1分間仮焼成を行い、光インプリント用被膜(PNI-3F)を得た。
 実施例4で得たPNI-4を石英基板上にスピンコートし、100℃のホットプレートで1分間仮焼成を行い、光インプリント用被膜(PNI-4F)を得た。
 比較例1で得たPNI-aを石英基板上にスピンコートし、光インプリント用被膜(PNI-aF)を得た。
 比較例2で得たPNI-bを石英基板上にスピンコートし、光インプリント用被膜(PNI-bF)を得た。
 比較例3で得たPNI-cを石英基板上にスピンコートし、光インプリント用被膜(PNI-cF)を得た。
 比較例4で得たPNI-dを石英基板上にスピンコートし、100℃のホットプレートで1分間仮焼成を行い、光インプリント用被膜(PNI-dF)を得た。
 比較例5で得たPNI-eを石英基板上にスピンコートし、100℃のホットプレートで1分間仮焼成を行い、光インプリント用被膜(PNI-eF)を得た。
 比較例6で得たPNI-fを石英基板上にスピンコートし、100℃のホットプレートで1分間仮焼成を行い、光インプリント用被膜(PNI-fF)を得た。
[光インプリント]
 ナノインプリント装置は、NM-0801HB(明昌機構株式会社製)を使用した。
 実施例1乃至実施例4並びに比較例1乃至比較例6で得られた各光インプリント用被膜をパターニング試験した。用いたモールドはシリコン製であり、パターンは120nmのラインアンドスペースとした。モールドは事前にオプツール(登録商標)HD(ダイキン工業株式会社製)に浸漬し、温度が90℃、湿度が90RH%の高温高湿装置を用いて2時間処理し、純水でリンス後、エアーで乾燥させたものを使用した。
 実施例1で得たPNI-1から作製されたPNI-1Fにシリコンモールドを接着させた状態で、光インプリント装置に設置した。光インプリントは、常時23℃の条件で、a)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)モールドと基板を分離して離型、というシーケンスで行った。光インプリントの結果を表1に示す。
 実施例2で得たPNI-2から作製されたPNI-2Fを用いた以外は上記と同様に光インプリントを行った。光インプリントの結果を表1に示す。
 実施例3で得たPNI-3から作製されたPNI-3Fを用いた以外は上記と同様に光インプリントを行った。光インプリントの結果を表1に示す。
 実施例4で得たPNI-4から作製されたPNI-4Fを用いた以外は上記と同様に光インプリントを行った。光インプリントの結果を表1に示す。
 比較例1で得たPNI-aから作製されたPNI-aFを用いた以外は上記と同様に光インプリントを行った。光インプリントの結果を表1に示す。
 比較例2で得たPNI-bから作製されたPNI-bFを用いた以外は上記と同様に光インプリントを行った。光インプリントの結果を表1に示す。
 比較例3で得たPNI-cから作製されたPNI-cFを用いた以外は上記と同様に光インプリントを行った。光インプリントの結果を表1に示す。
 比較例4で得たPNI-dから作製されたPNI-dFを用いた以外は上記と同様に光インプリントを行った。光インプリントの結果を表1に示す。
 比較例5で得たPNI-eから作製されたPNI-eFを用いた以外は上記と同様に光インプリントを行った。光インプリントの結果を表1に示す。
 比較例6で得たPNI-fから作製されたPNI-fFを用いた以外は上記と同様に光インプリントを行った。光インプリントの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1において、「光硬化」とは露光後に膜が硬化したかどうかの評価をいい、“○”は硬化した、“×”は硬化しなかった、を示す。「剥がれ」とは、離型時にパターンの一部がモールドに付着する等により剥がれたかどうかの評価をいい、“○”は剥がれなかった、“×”は剥がれがみられた、を示す。「形状」とは、離型後の膜にモールドのパターンが良好に転写されたかどうかの評価をいい、○は良好に転写された、×は良好に転写されなかった、を示す。
 表1の結果から、実施例1乃至4は、良好な光インプリントにおけるパターン形成が可能であった。一方、比較例1乃至6は、露光により膜が硬化したが、いずれも離型時にパターンの一部が剥がれ、離型後の膜にモールドのパターンが良好に転写されなかった。
 以上の結果から、良好な光インプリントが可能な低誘電率膜を形成するインプリント材料の構成は、(A)成分:上記式(1)で表されるビスアリールフルオレン骨格を有する化合物、(B)成分:分子内に少なくとも重合性基を2個有する化合物、及び(C)成分:光重合開始剤、が必須であることが明らかとなった。さらに、(D)成分:溶剤を含有しても良いことが明らかとなった。
[誘電率の測定]
 誘電率測定は、真空簡易プローバMJ-10((株)メジャージグ製)及びAG-4311B LCRメータ(安藤電機(株)製)を使用し、周波数100kHzで測定を行った。
 実施例1で得たPNI-1をITO基板上にスピンコートし、その上に石英基板を被せて常時23℃の条件で、a)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)石英基板とITO基板を分離して離型、というシーケンスでITO基板上に光硬化膜を作製し、膜の一部を削り取りITOを剥き出しにした。そして剥き出しになったITO上および硬化膜上へそれぞれアルミニウムを直径1mm、厚さ0.1μmとなるように蒸着を行い、プローブを接触させて誘電率測定を行った。結果を表2に示す。
 実施例2で得たPNI-2を使用した以外は上記と同様に誘電率測定を行った。結果を表2に示す。
 実施例3で得たPNI-3をITO基板上にスピンコートし、100℃のホットプレートで1分間仮焼成を行い、その上に石英基板を被せて常時23℃の条件で、a)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)石英基板とITO基板を分離して離型、というシーケンスでITO基板上に光硬化膜を作製し、200℃のホットプレートで1分間焼成を行った。膜の一部を削り取りITOを剥き出しにした。そして剥き出しになったITO上および硬化膜上へそれぞれアルミニウムを直径1mm、厚さ0.1μmとなるように蒸着を行い、プローブを接触させて誘電率測定を行った。結果を表2に示す。
 実施例4で得たPNI-4をPNI-3の代わりに使用した以外は上記と同様に誘電率測定を行った。結果を表2に示す。
 比較例1で得たPNI-aをITO基板上にスピンコートし、その上に石英基板を被せて常時23℃の条件で、a)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)石英基板とITO基板を分離して離型、というシーケンスでITO基板上に光硬化膜を作製し、膜の一部を削り取りITOを剥き出しにした。そして剥き出しになったITO上および硬化膜上へそれぞれアルミニウムを直径1mm、厚さ0.1μmとなるように蒸着を行い、プローブを接触させて誘電率測定を行った。結果を表2に示す。
 比較例2で得たPNI-bを使用した以外は上記と同様に誘電率測定を行った。結果を表2に示す。
 比較例3で得たPNI-cを使用した以外は上記と同様に誘電率測定を行った。結果を表2に示す。
 比較例4で得たPNI-dをITO基板上にスピンコートし、100℃のホットプレートで1分間仮焼成を行い、その上に石英基板を被せて常時23℃の条件で、a)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)石英基板とITO基板を分離して離型、というシーケンスでITO基板上に光硬化膜を作製し、200℃のホットプレートで1分間焼成を行った。膜の一部を削り取りITOを剥き出しにした。そして剥き出しになったITO上および硬化膜上へそれぞれアルミニウムを直径1mm、厚さ0.1μmとなるように蒸着を行い、プローブを接触させて誘電率測定を行った。結果を表2に示す。
 比較例5で得たPNI-eをPNI-dの代わりに使用した以外は上記と同様に誘電率測定を行った。結果を表2に示す。
 比較例6で得たPNI-fをPNI-dの代わりに使用した以外は上記の同様に誘電率測定を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 表2の結果から、実施例1乃至4は、低誘電率を有する被膜の形成が可能であった。一方、比較例1乃至6は、実施例1乃至4に比べて、誘電率が高い結果となった。
 以上の結果から、本発明のインプリント材料により得られる膜は、3.0以下の低誘電率を有するものとなる。
[透過率の測定]
 透過率測定は、UV-2550 UV-VISIBLE SPECTROPHOTOMETER(株式会社島津製作所製)を使用し、波長400nmにおけるサンプル膜厚1μmでの透過率を算出した。
 実施例1で得たPNI-1を石英基板上にスピンコートし、その上に別の石英基板を被せて常時23℃の条件で、a)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)被せた石英基板を下側の石英基板より分離して離型、というシーケンスで石英基板上に光硬化膜を作製し、透過率測定を行った。結果を表3に示す。
 実施例2で得たPNI-2を使用した以外は上記と同様に石英基板上に光硬化膜を作製し、透過率測定を行った。結果を表3に示す。
 実施例3で得たPNI-3を石英基板上にスピンコートし、100℃のホットプレートで1分間仮焼成を行った。その後、別の石英基板を被せて常時23℃の条件でa)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)被せた石英基板を下側の石英基板より分離して離型、というシーケンスで石英基板上に光硬化膜を作製して200℃のホットプレート上で焼成を行った後、透過率測定を行った。結果を表3に示す。
 実施例4で得たPNI-4をPNI-3の代わりに使用した以外は上記と同様に石英基板上に光硬化膜を作製し、透過率測定を行った。結果を表3に示す。
 比較例1で得たPNI-aを石英基板上にスピンコートし、その上に別の石英基板を被せて常時23℃の条件で、a)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)被せた石英基板を下側の石英基板より分離して離型、というシーケンスで石英基板上に光硬化膜を作製し、透過率測定を行った。結果を表3に示す。
 比較例2で得たPNI-bを使用した以外は上記と同様に石英基板上に光硬化膜を作製し、透過率測定を行った。結果を表3に示す。
 比較例3で得たPNI-cを使用した以外は上記と同様に石英基板上に光硬化膜を作製し、透過率測定を行った。結果を表3に示す。
 比較例4で得たPNI-dを石英基板上にスピンコートし、100℃のホットプレートで1分間仮焼成を行った。その後、別の石英基板を被せて常時23℃の条件でa)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)被せた石英基板を下側の石英基板より分離して離型、というシーケンスで石英基板上に光硬化膜を作製して200℃のホットプレート上で焼成を行った後、透過率測定を行った。結果を表3に示す。
 比較例5で得たPNI-eをPNI-dの代わりに使用した以外は上記と同様に石英基板上に光硬化膜を作製し、透過率測定を行った。結果を表3に示す。
 比較例6で得たPNI-fをPNI-dの代わりに使用した以外は上記と同様に石英基板上に光硬化膜を作製し、透過率測定を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 表3の結果から、実施例1乃至4及び比較例1乃至6のいずれについても高透過率を達成した。
[屈折率の測定]
 屈折率測定は、n&k Technology 1512RT(n&k Technology,  Inc製)を使用し、波長633nmの屈折率を測定した。
 実施例1で得たPNI-1をシリコンウエハ上にスピンコートし、その上に石英基板を被せて常時23℃の条件で、a)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)石英基板とシリコンウエハを分離して離型、というシーケンスでシリコンウエハ上に光硬化膜を作製し、屈折率測定を行った。結果を表4に示す。
 実施例2で得たPNI-2を使用した以外は上記と同様にシリコンウエハ上に光硬化膜を作製し、屈折率測定を行った。結果を表4に示す。
 実施例3で得たPNI-3をシリコンウエハ上にスピンコートし、100℃のホットプレートで1分間仮焼成を行った。その後、その上に石英基板を被せて常時23℃の条件でa)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)石英基板とシリコンウエハを分離して離型、というシーケンスでシリコンウエハ上に光硬化膜を作製して200℃のホットプレート上で焼成を行った後、屈折率測定を行った。結果を表4に示す。
 実施例4で得たPNI-4をPNI-3の代わりに使用した以外は上記と同様にシリコンウエハ上に光硬化膜を作製し、屈折率測定を行った。結果を表4に示す。
 比較例1で得たPNI-aをシリコンウエハ上にスピンコートし、その上に石英基板を被せて常時23℃の条件で、a)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)石英基板とシリコンウエハを分離して離型、というシーケンスでシリコンウエハ上に光硬化膜を作製し、屈折率測定を行った。結果を表4に示す。
 比較例2で得たPNI-bを使用した以外は上記と同様にシリコンウエハ上に光硬化膜を作製し、屈折率測定を行った。結果を表4に示す。
 比較例3で得たPNI-cを使用した以外は上記と同様にシリコンウエハ上に光硬化膜を作製し、屈折率測定を行った。結果を表4に示す。
 比較例4で得たPNI-dをシリコンウエハ上にスピンコートし、100℃のホットプレートで1分間仮焼成を行った。その後、その上に石英基板を被せて常時23℃の条件でa)10秒間かけて1000Nまで加圧、b)高圧水銀ランプを用いて500mJ/cm2の露光、c)10秒間かけて除圧、d)石英基板とシリコンウエハを分離して離型、というシーケンスでシリコンウエハ上に光硬化膜を作製して200℃のホットプレート上で焼成を行った後、屈折率測定を行った。結果を表4に示す。
 比較例5で得たPNI-eをPNI-dの代わりに使用した以外は上記と同様にシリコンウエハ上に光硬化膜を作製し、屈折率測定を行った。結果を表4に示す。
 比較例6で得たPNI-fをPNI-dの代わりに使用した以外は上記と同様にシリコンウエハ上に光硬化膜を作製し、屈折率測定を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000007
 表4の結果から、実施例1乃至4は、高屈折率を有する膜の形成が可能であった。一方、比較例1乃至6は、実施例1乃至4に比べて、屈折率が劣る結果となった。
 以上の結果から、本発明のインプリント材料により得られる膜は、1.6を超える高屈折率を有するものとなる。
 以上の結果から、本発明のインプリント材料から得られる膜は、光インプリント性が良好であり、かつ低誘電率、高屈折率、及び高透過率を有する。
 本発明のインプリント材料により得られる膜は、電界効果トランジスタ等の半導体素子の層間絶縁膜及び/又はゲート絶縁膜等、電子デバイス及び光学部材に好適に用いることができる。

Claims (8)

  1.  (A)成分、(B)成分、及び(C)成分を含有し、前記(A)成分及び前記(B)成分の合計100質量部に基づいて、50乃至95質量部の(A)成分、及び50乃至5質量部の(B)成分をそれぞれ含有するインプリント材料。
    (A)成分:下記式(1)で表されるビスアリールフルオレン骨格を有する化合物
    (B)成分:分子内に少なくとも1個の重合性基を有する化合物
    (C)成分:光重合開始剤
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはアクリロイル基、メタアクリロイル基又はビニル基を表し、Aはアルキレン基を表し、m及びnは互いに独立して0乃至3の整数を表す。)
  2.  更に(D)成分として溶剤を含有する、請求項1に記載のインプリント材料。
  3.  前記(A)成分及び前記(B)成分の合計100質量部に基づいて、70質量部以上の前記(A)成分を含有する、請求項1に記載のインプリント材料。
  4.  前記(B)成分は重合性基として、アクリロイルオキシ基、メタアクリロイルオキシ基、ビニル基及びアリル基からなる群から選ばれる少なくとも1種の基を有する化合物であることを特徴とする、請求項1乃至請求項3のうちいずれか一項に記載のインプリント材料。
  5.  請求項1乃至請求項4のうちいずれか一項に記載のインプリント材料から作製され、パターンが転写された膜。
  6.  請求項5に記載のパターンが転写された膜を基材上に備えた光学部材。
  7.  請求項5に記載のパターンが転写された膜を備えた半導体素子。
  8.  請求項5に記載のパターンが転写された膜を備えた電子デバイス。
PCT/JP2010/059187 2009-06-19 2010-05-31 低誘電率インプリント材料 WO2010146983A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519713A JP5348433B2 (ja) 2009-06-19 2010-05-31 低誘電率インプリント材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009146354 2009-06-19
JP2009-146354 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010146983A1 true WO2010146983A1 (ja) 2010-12-23

Family

ID=43356303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059187 WO2010146983A1 (ja) 2009-06-19 2010-05-31 低誘電率インプリント材料

Country Status (4)

Country Link
JP (1) JP5348433B2 (ja)
KR (1) KR101560249B1 (ja)
TW (1) TWI475029B (ja)
WO (1) WO2010146983A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224845A (ja) * 2011-04-08 2012-11-15 Osaka Gas Chem Kk 硬化性組成物およびその硬化物
KR20140077889A (ko) * 2011-09-27 2014-06-24 마루젠 세끼유가가꾸 가부시키가이샤 광학 소자 재료, 및 그 제조 방법
TWI553408B (zh) * 2011-09-30 2016-10-11 富士軟片股份有限公司 奈米壓印方法以及用於該奈米壓印方法的抗蝕劑組成物
JP2017212394A (ja) * 2016-05-27 2017-11-30 Jsr株式会社 インプリント用感放射線性組成物及びパターン
CN107710385A (zh) * 2015-06-29 2018-02-16 日产化学工业株式会社 压印材料
US10295901B2 (en) 2013-06-06 2019-05-21 Dic Corporation Curable composition for imprinting

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6170288B2 (ja) 2012-09-11 2017-07-26 富士フイルム株式会社 転写材料、静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置
JP6494185B2 (ja) 2013-06-26 2019-04-03 キヤノン株式会社 インプリント方法および装置
JP6327948B2 (ja) 2013-06-26 2018-05-23 キヤノン株式会社 光硬化性組成物、硬化物、これを用いた、膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法
JP6327947B2 (ja) 2013-06-26 2018-05-23 キヤノン株式会社 光硬化性組成物、これを用いた、膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、硬化物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010231A (ja) * 2003-06-16 2005-01-13 Dainippon Printing Co Ltd 凹凸パターン形成材料、凹凸パターン受容体、凹凸パターン形成方法、転写箔、及び光学物品
JP2009031764A (ja) * 2007-07-04 2009-02-12 Mitsubishi Rayon Co Ltd 反射防止物品、およびこれより得られる成形品、ならびにこれらを備えた自動車用部品
WO2009145061A1 (ja) * 2008-05-29 2009-12-03 旭硝子株式会社 光硬化性組成物および表面に微細パターンを有する成形体の製造方法
JP2010001419A (ja) * 2008-06-23 2010-01-07 Alps Electric Co Ltd Uvナノインプリント成型体及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500092B1 (ko) * 1999-11-29 2005-07-11 오므론 가부시키가이샤 내광성 마이크로 렌즈 어레이 및 그것에 사용되는 수지조성물
JP4756977B2 (ja) * 2005-09-28 2011-08-24 大阪瓦斯株式会社 重合性組成物およびその硬化物
JP2007291321A (ja) * 2006-03-27 2007-11-08 Sanyo Electric Co Ltd 硬化型有機金属組成物及び有機金属ポリマー材料並びに光学部品
JP2009051017A (ja) 2007-08-23 2009-03-12 Fujifilm Corp 光ナノインプリントリソグラフィ用光硬化性組成物、及びパターン付き基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010231A (ja) * 2003-06-16 2005-01-13 Dainippon Printing Co Ltd 凹凸パターン形成材料、凹凸パターン受容体、凹凸パターン形成方法、転写箔、及び光学物品
JP2009031764A (ja) * 2007-07-04 2009-02-12 Mitsubishi Rayon Co Ltd 反射防止物品、およびこれより得られる成形品、ならびにこれらを備えた自動車用部品
WO2009145061A1 (ja) * 2008-05-29 2009-12-03 旭硝子株式会社 光硬化性組成物および表面に微細パターンを有する成形体の製造方法
JP2010001419A (ja) * 2008-06-23 2010-01-07 Alps Electric Co Ltd Uvナノインプリント成型体及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224845A (ja) * 2011-04-08 2012-11-15 Osaka Gas Chem Kk 硬化性組成物およびその硬化物
KR20140077889A (ko) * 2011-09-27 2014-06-24 마루젠 세끼유가가꾸 가부시키가이샤 광학 소자 재료, 및 그 제조 방법
KR101864920B1 (ko) * 2011-09-27 2018-06-05 마루젠 세끼유가가꾸 가부시키가이샤 광학 소자 재료, 및 그 제조 방법
TWI553408B (zh) * 2011-09-30 2016-10-11 富士軟片股份有限公司 奈米壓印方法以及用於該奈米壓印方法的抗蝕劑組成物
US10295901B2 (en) 2013-06-06 2019-05-21 Dic Corporation Curable composition for imprinting
CN107710385A (zh) * 2015-06-29 2018-02-16 日产化学工业株式会社 压印材料
JP2017212394A (ja) * 2016-05-27 2017-11-30 Jsr株式会社 インプリント用感放射線性組成物及びパターン

Also Published As

Publication number Publication date
KR20120034105A (ko) 2012-04-09
JPWO2010146983A1 (ja) 2012-12-06
KR101560249B1 (ko) 2015-10-14
JP5348433B2 (ja) 2013-11-20
TWI475029B (zh) 2015-03-01
TW201120061A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5348433B2 (ja) 低誘電率インプリント材料
JP6319596B2 (ja) 高耐擦傷性インプリント材料
JP5263560B2 (ja) 高硬度インプリント材料
JP6429031B2 (ja) シルセスキオキサン化合物及び変性シリコーン化合物を含むインプリント材料
JP5445743B2 (ja) 光インプリント用被膜形成用組成物
KR101740498B1 (ko) 우레탄 화합물을 포함하는 고내찰상성 임프린트 재료
JP2013095833A (ja) 高屈折率インプリント材料
JP5794420B2 (ja) シリコーン骨格を有する化合物を含む光インプリント材料
CN109563194B (zh) 压印材料
US9533467B2 (en) Imprint material having low mold release property
JPWO2019031359A1 (ja) インプリント用レプリカモールド材料
JPWO2019031360A1 (ja) インプリント用レプリカモールド材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789358

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519713

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127001224

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10789358

Country of ref document: EP

Kind code of ref document: A1