WO2010146818A1 - 3軸加速度センサ - Google Patents
3軸加速度センサ Download PDFInfo
- Publication number
- WO2010146818A1 WO2010146818A1 PCT/JP2010/003910 JP2010003910W WO2010146818A1 WO 2010146818 A1 WO2010146818 A1 WO 2010146818A1 JP 2010003910 W JP2010003910 W JP 2010003910W WO 2010146818 A1 WO2010146818 A1 WO 2010146818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoresistive
- axis direction
- sensitivity
- axis
- piezoresistive elements
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/12—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
- G01P15/123—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/18—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/084—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
- G01P2015/0842—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass the mass being of clover leaf shape
Definitions
- the present invention relates to a three-axis acceleration sensor that detects acceleration in the X-, Y-, and Z-axis directions using a piezoresistive element.
- the triaxial acceleration sensor 1 includes a frame 2, a weight 3 (3a to 3d) provided in the frame 2, and a cross beam 4 (4a to 4a) that connects the frame 2 and the weight 3. 4d).
- the beams 4a to 4d constituting the cross beam 4 is a thin flexible member having a piezoresistive element.
- the piezoresistive elements x1 to x4, y1 to y4, and z1 to z4 are formed on the beams 4a to 4d. Specifically, piezoresistive elements x1 to x4 for the X-axis direction and piezoresistive elements z1 to z4 for the Z-axis direction are formed on the beam 4a and the beam 4c opposite thereto. Also, Y-axis piezoresistive elements y1 to y4 are formed on the beam 4d and the beam 4b opposite to the beam 4d.
- FIG. 3 shows an A-A ′ cross section (a cross section including the piezoresistive elements x1 to x4) in FIG.
- FIG. 4 shows an enlarged plan view of the beam 4a.
- the piezoresistive elements x1 to x4, y1 to y4, and z1 to z4 for each axis are respectively connected to a Wheatstone bridge, and the triaxial acceleration sensor 1 is connected to the resistance of the piezoresistive elements x1 to x4, y1 to y4, and z1 to z4. Based on the output of the Wheatstone bridge that changes accordingly, the acceleration in the X, Y, and Z axis directions is detected.
- the beams 4a to 4d bend according to the inertial force received by the weight 3 due to the acceleration, and the piezoresistive elements x1 to x4 and y1 to be formed on the beams 4a to 4d according to this.
- the resistances of y4, z1 to z4 change, and accelerations in the X, Y, and Z axis directions are detected according to the resistance change.
- the piezoresistive elements x1 to x4 for the X-axis direction (or Y-axis direction) and the piezoresistive elements z1 to z4 for the Z-axis direction are made up of the beams 4a and 4c. It is arranged at the same position in the longitudinal direction.
- the piezoresistive elements are simply arranged at the same position in the longitudinal direction of the beam, a difference in sensitivity occurs between the acceleration sensitivity in the X-axis direction and the Y-axis direction and the acceleration sensitivity in the Z-axis direction. This is because the deformation force to the beam in the X-axis direction and the Y-axis direction is given by the rotational moment, whereas the deformation force to the beam in the Z-axis direction is simply given by the mass x acceleration of the weight. is there.
- the acceleration in the X-axis direction and the Y-axis direction are received by two beams, respectively, and appear as deformation amounts of the two beams, whereas the acceleration in the Z-axis direction is received by four beams, This is because it appears as a deformation amount.
- the output obtained through the piezoresistive elements for the X-axis, Y-axis, and Z-axis directions is amplified by an amplifier. If there is a difference in acceleration sensitivity in the X, Y, and Z axis directions, the amplification factor of the amplifier for amplifying the output must be changed according to the axial direction. There is a problem that the circuit configuration becomes complicated by that amount. On the other hand, if the acceleration sensitivity of the piezoresistive elements for the X-axis, Y-axis, and Z-axis directions is substantially the same, there is no need to change the amplification factor of the amplifier, so only one amplifier is provided.
- the amplifier can be shared in three axis directions, the circuit configuration can be simplified. Specifically, only one amplifier is obtained by sequentially inputting the output obtained through the piezoresistive elements for the X-axis, Y-axis, and Z-axis directions to one amplifier in time series using a multiplexer or the like. The detection output in three directions can be obtained.
- equalizing the acceleration sensitivity of the piezoresistive elements for the X-axis, Y-axis, and Z-axis directions has an advantage of simplifying the circuit configuration.
- Patent Document 2 There is a method disclosed in Patent Document 2 as one method for equalizing the acceleration sensitivity of the piezoresistive elements between the respective axial directions.
- the method disclosed in Patent Document 2 is a beam 4 a made up of piezoresistive elements x1 and x2 in the X-axis direction (or Y-axis direction) and piezoresistive elements z1 and z2 in the Z-axis direction.
- the acceleration sensitivity in the X-axis direction (or Y-axis direction) and the Z-axis direction are made equal by shifting the relative arrangement position in the longitudinal direction (that is, the output difference between the X-axis direction and the Z-axis direction is reduced). Is. FIG.
- Patent Document 3 As another method, there is a method disclosed in Patent Document 3.
- the method disclosed in Patent Document 3 reduces the average stress applied to the piezoresistive element by changing the length of the piezoresistive element, thereby equalizing the acceleration sensitivity of the piezoresistive element between the respective axial directions. It is.
- Patent Document 2 and Patent Document 3 break the symmetry on the beam. For example, an unbalance of the temperature distribution due to heat generation occurs between the piezoresistive elements during energization. It is predicted that an offset will occur between piezoresistive elements. Further, since an offset correction circuit is separately required to correct the offset, the circuit configuration is complicated accordingly.
- Patent Document 2 has a large difference in resistance value between the piezoresistive elements for each axial direction, so that a difference in flowing current becomes large and an unbalance in temperature distribution is more likely to occur. There is a fear.
- the present invention has been made in consideration of such points, and provides a triaxial acceleration sensor with good characteristics that can adjust acceleration sensitivity in the X-axis, Y-axis, and Z-axis directions while suppressing the occurrence of offset. .
- One aspect of the three-axis acceleration sensor of the present invention includes a frame portion, a weight portion, and a flexible member, and a beam portion that connects the frame portion and the weight portion, and each of the beam portions. It is formed over the longitudinal direction of the beam, and is formed over the X-axis direction, Y-axis direction and Z-axis direction acceleration detecting piezoresistive elements and in a direction substantially orthogonal to the longitudinal direction of the beam constituting the beam portion. And a sensitivity adjusting piezoresistive element electrically connected to the acceleration detecting piezo element.
- the sensitivity can be adjusted efficiently while suppressing the occurrence of offset, so that a three-axis acceleration sensor with good characteristics can be obtained.
- the perspective view which shows the external appearance structure of the triaxial acceleration sensor which concerns on embodiment of this invention Plan view showing schematic arrangement of piezoresistive elements on cross beam Connection diagram showing configuration example of amplifier circuit Cross-sectional view for explanation of beam deformation Cross-sectional view for explanation of beam deformation
- positioning of the piezoresistive element and the sensitivity adjustment element in other embodiment The top view which shows arrangement
- FIG. 6 shows an external configuration of the triaxial acceleration sensor according to the embodiment of the present invention.
- the triaxial acceleration sensor 10 includes a frame 12, a weight 13 (13a to 13d) provided in the frame 12, and a cross beam 14 (14a to 14d) that connects the frame 12 and the weight 13.
- Each of the beams 14a to 14d constituting the cross beam 14 is a thin flexible member having a piezoresistive element.
- the cross beam 14 is connected to the clover-shaped weight 13 at the center. Since the thin and flexible cross beam 14 bends in response to acceleration, the center portion of the cross beam 14 does not bend while supporting the weight 13 even when acceleration is applied. Let's call it 15.
- the frame 12 is formed with terminal portions 16 (16a to 16d) connected to the piezoresistive element, for applying a voltage to the piezoresistive element and taking out an output from the piezoresistive element.
- FIG. 7 shows an outline of the position on the cross beam 14 where the piezoresistive elements for the X-axis, Y-axis, and Z-axis directions are arranged. The detailed arrangement of the piezoresistive elements will be described later.
- the X-axis direction and Z-axis direction piezoresistive elements x1, x2, z1, and z2 are formed on the beam 14a.
- piezoresistive elements x3, x4, z3, and z4 for the X-axis direction and the Z-axis direction are formed on the beam 14c.
- the piezoresistive elements x1 to x4 for the X-axis direction and the piezoresistive elements z1 to z4 for the Z-axis direction are arranged in parallel at the same position in the longitudinal direction (X direction) of the beams 14a and 14c. Therefore, the symmetry is ensured.
- Piezoresistive elements y1 to y4 for the Y-axis direction are formed on the beams 14d and 14b.
- the piezoresistive elements x1 to x4, y1 to y4, and z1 to z4 are formed in the beam 14 in the vicinity of the frame 12 and in the vicinity of the center non-movable portion 15. That is, the piezoresistive elements x1 to x4, y1 to y4, and z1 to z4 are formed at the base portion of the beam 14 where the beam 14 is easily bent by acceleration.
- the piezoresistive elements x1 to x4 for the X-axis direction and the piezoresistive elements z1 to z4 for the Z-axis direction are formed on the same beam, but the three-axis acceleration of the present embodiment Since the sensor 10 is structurally equivalent to the X axis and the Y axis, the piezoresistive elements y1 to y4 for the Y axis direction and the piezoresistive elements z1 to z4 for the Z axis direction are arranged in parallel at the same position on the same beam. May be.
- the piezoresistive elements x1 to x4, y1 to y4, and z1 to z4 for each axial direction are connected to the Wheatstone bridge on the beam 14 or the frame 12 by metal wiring or high concentration diffusion wiring.
- resistance changes corresponding to the amount of bending occur in the piezoresistive elements x1 to x4, y1 to y4, and z1 to z4.
- the resistance change of the piezoresistive elements x1 to x4, y1 to y4, and z1 to z4 appears as a change in the output voltage of the Wheatstone bridge.
- FIG. 8 shows the configuration of the amplifier circuit.
- the output of each axis output from the terminal unit 16 is input to the multiplexer.
- the multiplexer selects any one of the X output 1 and the X output 2, the Y output 1 and the Y output 2, and the Z output 1 and the Z output 2 in a time division manner and outputs them to the amplifier.
- an amplifier that amplifies the sensor output of each axis is shared.
- the amplifier can be shared because the triaxial acceleration sensor 10 of the present embodiment can equalize the acceleration sensitivity obtained on each axis. Its configuration will be described later.
- the beam 14 is manufactured by a semiconductor process using a Si substrate as a material.
- a Si substrate As the Si substrate, an SOI substrate in which a SiO 2 oxide film layer is sandwiched between Si is used.
- the piezoresistive elements x1 to x4, y1 to y4, and z1 to z4 are formed by injecting impurities such as B (boron) or P (phosphorus) into the Si substrate by ion implantation. After forming a high-concentration diffusion wiring or a metal wiring (Al or the like), a structure is formed by dry etching.
- FIG. 9 schematically illustrates the deformation in the X-axis direction and the Y-axis
- FIG. 10 schematically illustrates the deformation in the Z-axis direction.
- the beam 14 Upon receiving acceleration in the X-axis direction (or Y-axis direction), the beam 14 is deformed as shown in FIG.
- the beam Upon receiving acceleration in the Z-axis direction, the beam deforms as shown in FIG.
- bending stress is generated on the beam surface.
- the bending stress generated on the beam surface changes the resistance value of the piezoresistive element.
- FIG. 11A shows the arrangement of piezoresistive elements (hereinafter also referred to as acceleration detecting piezoresistive elements) and sensitivity adjusting elements (hereinafter also referred to as sensitivity adjusting piezoresistive elements) formed on the beam 14a. It is a thing.
- FIG. 11B shows the arrangement of the piezoresistive elements and sensitivity adjusting elements formed on the beam 14c.
- the diagram is simplified to show the approximate position of the piezoresistive element, but actually, the piezoresistive element of the present embodiment is arranged at the position shown in FIGS. 11A and 11B.
- the piezoresistive element x1 in FIG. 7 corresponds to the piezoresistive elements x1-1 and x1-2 in FIG. 11A
- the piezoresistive element z2 in FIG. 7 corresponds to the piezoresistive elements z2-1 and z2 in FIG.
- the piezoresistive element x3 in FIG. 7 corresponds to the piezoresistive elements x3-1 and x3-2 in FIG. 11B
- the piezoresistive element x4 in FIG. 7 corresponds to the piezoresistive elements x4-1 and x4-2 in FIG. 11B
- the piezoresistive element z3 in FIG. 7 corresponds to the piezoresistive elements z3-1 and z3-2 in FIG. 11B
- the piezoresistive element z4 in FIG. 7 corresponds to the piezoresistive elements z4-1 and z4-2 in FIG. Correspond.
- the X-axis direction piezoresistive elements x1-1, x1-2, x2-1, x2-2, x3-1, x3-2, x4-1, x4-2, and the Z-axis direction Piezoresistive elements z1-1, z1-2, z2-1, z2-2, z3-1, z3-2, z4-1 and z4-2 are arranged along the longitudinal direction of the beams 14a and 14c. , 14c is formed so as to be parallel to the longitudinal direction.
- the piezoresistive elements x1-1 and x1-2 are electrically connected in series via wiring, and one end is connected to terminals T1 and T4.
- the piezoresistive elements x2-1 and x2-2 are electrically connected in series via wiring, and one end is connected to terminals T5 and T8.
- the piezoresistive elements z1-1 and z1-2 are electrically connected in series via wiring, and one end is connected to terminals T2 and T3.
- the piezoresistive elements z2-1 and z2-2 are electrically connected in series via wiring, and one end is connected to terminals T6 and T7.
- the piezoresistive elements x3-1 and x3-2 are electrically connected in series via wiring, and one end is connected to terminals T9 and T12.
- the piezoresistive elements x4-1 and x4-2 are electrically connected in series via wiring, and one end is connected to terminals T13 and T16.
- the piezoresistive elements z3-1 and z3-2 are electrically connected in series via wiring, and one end is connected to terminals T10 and T11.
- the piezoresistive elements z4-1 and z4-2 are electrically connected in series via wiring, and one end is connected to terminals T14 and T15.
- the X-axis terminals T1, T4, T5, and T8 are X-axis direction piezoresistive elements x1-1, x1-2, x2-1, x2-2, x3-1, x3-2, and x4.
- -1, x4-2 are connected by wiring (not shown) so that Wheatstone bridge connection is established.
- the Z-axis terminals T2, T3, T6, and T7 are connected to the Z-axis direction piezoresistive elements z1-1, z1-2, z2-1, z2-2, z3-1, z3-2, and z4.
- -1, z4-2 are connected by wiring (not shown) so that Wheatstone bridge connection is established.
- the triaxial acceleration sensor 10 of the present embodiment is provided with piezoresistive elements 21, 22, 23, and 24 for sensitivity adjustment.
- the sensitivity adjusting piezoresistive element 21 is electrically connected in series with the piezoresistive elements x1-1 and x1-2 between the piezoresistive element x1-1 and the piezoresistive element x1-2.
- the sensitivity adjusting piezoresistive element 22 is electrically connected in series with the piezoresistive elements x2-1 and x2-2 between the piezoresistive element x2-1 and the piezoresistive element x2-2.
- the sensitivity adjusting piezoresistive element 23 is electrically connected in series with the piezoresistive elements x3-1 and x3-2 between the piezoresistive element x3-1 and the piezoresistive element x3-2.
- the piezoresistive element 24 for sensitivity adjustment is electrically connected in series with the piezoresistive elements x4-1 and x4-2 between the piezoresistive element x4-1 and the piezoresistive element x4-2.
- the sensitivity adjusting piezoresistive elements 21, 22, 23, 24 are formed in a direction substantially orthogonal to the longitudinal direction of the beam.
- the piezoresistive elements x1-1, x1-2, x2-1, x2-2, x3-1, x3-2, x4-1, x4-2 for the X-axis direction are beams 14a, 14c.
- the piezoresistive elements 21, 22, 23, and 24 for sensitivity adjustment are piezoresistive elements x1 for the X-axis direction.
- 1, x1-2, x2-1, x2-2, x3-1, x3-2, x4-1, x4-2 are formed in a direction substantially orthogonal to the direction in which they are formed. I can say that.
- the piezoresistive elements 21, 22, 23, and 24 for sensitivity adjustment are arranged symmetrically with respect to the center line in the width direction of the beams 14a and 14c.
- the sensitivity-adjusting piezoresistive elements 21 are the piezoresistive elements x1-1 and x1-2 for the X-axis direction, the piezoresistive elements z1-1 and z1-2 for the Z-axis direction, and the longitudinal direction of the beam 14a.
- the center line Lc is preferably disposed at a position other than the longitudinal center line Lc of the beam 14a and as close to the frame 12 as possible.
- the piezoresistive element 22 for sensitivity adjustment includes the piezoresistive elements x2-1 and x2-2 for the X-axis direction, the piezoresistive elements z2-1 and z2-2 for the Z-axis direction, and the longitudinal length of the beam 14a. It is preferably arranged between the center line Lc in the direction and at a position other than the center line Lc in the longitudinal direction of the beam 14a and as close to the center non-movable part 15 as possible.
- the piezoresistive element 23 for sensitivity adjustment is arranged in the same manner as the piezoresistive element 22 for sensitivity adjustment, and the piezoresistive elements x3-1 and x3-2 for the X-axis direction and the piezoresistive element for the Z-axis direction.
- Z3-1, z3-2 and the longitudinal center line Lc ′ of the beam 14c are arranged at positions other than the longitudinal center line Lc ′ of the beam 14c and as close to the center non-movable part 15 as possible. It is preferable that they are arranged at close positions.
- the piezoresistive element 24 for sensitivity adjustment is arranged in the same manner as the piezoresistive element 21 for sensitivity adjustment, and the piezoresistive elements x4-1 and x4-2 for the X-axis direction and the piezoresistive element for the Z-axis direction.
- Z4-1, z4-2 are arranged between the longitudinal direction center line Lc 'of the beam 14c and are located as close to the frame 12 as possible at positions other than the longitudinal center line Lc' of the beam 14c. It is preferable that they are arranged at different positions.
- the sensitivity adjustment piezoresistive element is arranged between the center in the beam longitudinal direction and the acceleration detection piezoresistive element close to the frame part side and the weight part side, thereby providing a large sensitivity adjustment effect. Obtainable.
- FIG. 12 shows a circuit image of the piezoresistive element for the X-axis direction in the present embodiment.
- Piezoresistive bodies 31 to 34 indicated by large squares in the figure are the piezoresistive elements x1-1, x1-2, x2-1, x2-2, x3-1, x3-2, x4 in FIGS. 11A and 11B. 1, x4-2.
- the piezoresistive body 31 shows piezoresistive elements x1-1 and x1-2
- the piezoresistive body 32 shows piezoresistive elements x2-1 and x2-2
- the piezoresistive body 33 shows a piezoresistive element x3.
- the piezoresistive body 34 indicates piezoresistive elements x4-1 and x4-2.
- the small squares in the figure indicate the sensitivity adjusting piezoresistive elements 21 to 24.
- the sensitivity lowering effect represented by the formula (2) is a sensitivity lowering effect caused by connecting the piezoresistive element 21 for sensitivity adjustment in series to the piezoresistive body 31.
- the piezoresistive element the vertical direction (longitudinal direction) stresses sigma l and transverse stress sigma t both superposition in the resistance change of the effect of the (width direction) (i.e. piezoresistive effect) is determined which acts on the element.
- This state is expressed by the following equation (3) using longitudinal and lateral piezoresistance coefficients ⁇ l and ⁇ t , where ⁇ R / R is the rate of resistance change due to stress.
- the piezoresistance coefficient ⁇ l in the vertical direction and the piezoresistance coefficient ⁇ t in the horizontal direction are ⁇ l ⁇ t ⁇ 44 / when a silicon wafer having a crystal plane (100) and orientation flat direction ⁇ 110> is used. 2 relationship.
- a ⁇ 44 1.381e-3 [MPa -1].
- the resistance change is reversed between the longitudinal stress acting in the direction of current flow of the piezoresistor and the stress acting in the direction perpendicular to it (lateral stress). That is, when longitudinal stress and lateral stress are generated simultaneously, the piezoresistive effects cancel each other.
- the sensitivity adjusting piezoresistive element in addition to the sensitivity reduction effect due to the serial connection of the sensitivity adjusting piezoresistive element to the piezoresistive body, the sensitivity adjusting piezoresistive element is provided in a direction orthogonal to the piezoresistor body. The sensitivity reduction effect by this can be acquired.
- the small resistance (sensitivity adjusting piezoresistive element) is arranged symmetrically with respect to the center line in the width direction of the flexible portion (beams 14a and 14c).
- the occurrence of thermal imbalance can be further reduced, and a sensor having good characteristics in which the occurrence of offset is further suppressed can be obtained.
- the beam is formed over the longitudinal direction of each of the beams 14a, 14b, 14c, and 14d, and the X-axis direction, the Y-axis direction, and the Z-axis.
- Direction acceleration detecting piezoresistive elements x1 to x4, y1 to y4, z1 to z4 and the direction substantially orthogonal to the longitudinal direction of the beams 14a and 14c, and the acceleration detecting piezo elements x1 to x4 are electrically connected to each other. Since the sensitivity-adjusting piezoresistive elements 21 to 24 are connected to each other, the sensitivity can be adjusted efficiently while suppressing the occurrence of offset. Can be realized.
- the acceleration detecting piezoresistive elements x1 to x4 for the X axis include sensitivity adjusting piezoresistive elements 21.
- sensitivity adjusting piezoresistive elements 21 In order to reduce the sensitivity of the Y axis or the Z axis, acceleration detecting piezoresistive elements y1 to y4, z1 to z4 for the Y axis or Z axis are used.
- a sensitivity adjusting piezoresistive element may be connected.
- the arrangement of the acceleration detecting piezoresistive elements and the sensitivity adjusting piezoresistive elements is not limited to that shown in FIGS. 11A and 11B.
- the acceleration detecting piezoresistive element pieoresistive body
- the sensitivity adjusting piezoresistive element may be directly connected.
- the sensitivity adjusting piezoresistive element is connected to the acceleration detecting piezoresistive element (piezoresistive main body) in a direction extending linearly. Since it is possible to obtain a sensitivity reduction effect due to the provision in the direction orthogonal to the resistor body, the length of the sensitivity adjusting piezoresistive element can be shortened.
- the triaxial acceleration sensor of the present invention can be widely applied to various devices such as toys such as game controllers, automobile impact detection devices, hard disk drop detection devices, and mobile phone input devices.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pressure Sensors (AREA)
Abstract
3軸加速度センサ10のX軸方向、Y軸方向及びZ軸方向の加速度検出用ピエゾ抵抗素子x1~x4,y1~y4,z1~z4は、梁14a,14b,14c,14dの長手方向に亘って形成されている。これに加えて、感度調整用ピエゾ抵抗素子21~24が、梁14a,14cの長手方向にほぼ直交する方向に亘って形成されており、感度調整用ピエゾ抵抗素子21~24は、加速度検出用ピエゾ素子x1~x4に電気的に接続されている。
Description
本発明は、ピエゾ抵抗素子を用いてX、Y及びZ軸方向の加速度を検出する3軸加速度センサに関する。
従来、この種の3軸加速度センサとして、例えば特許文献1で開示されているものがある。図1に示すように、この3軸加速度センサ1は、枠2と、枠2内に設けられた錘3(3a~3d)と、枠2と錘3とを連結する十字梁4(4a~4d)と、を有する。十字梁4を構成する各梁4a~4dは、ピエゾ抵抗素子を有する肉薄の可撓性部材となっている。
図2に示すように、ピエゾ抵抗素子x1~x4,y1~y4,z1~z4は、各梁4a~4d上に形成されている。具体的には、梁4aとそれに対向する梁4cには、X軸方向用のピエゾ抵抗素子x1~x4とZ軸方向用のピエゾ抵抗素子z1~z4が形成されている。また、梁4dとそれに対向する梁4bにはY軸用のピエゾ抵抗素子y1~y4が形成されている。図3に、図2のA-A’断面(ピエゾ抵抗素子x1~x4を含む断面)を示す。また図4に、梁4aを拡大した平面図を示す。
各軸用のピエゾ抵抗素子x1~x4,y1~y4,z1~z4はそれぞれホイートストンブリッジ接続されており、3軸加速度センサ1はピエゾ抵抗素子x1~x4,y1~y4,z1~z4の抵抗に応じて変化するホイートストンブリッジの出力に基づいて、X,Y,Z軸方向の加速度を検出するようになっている。
つまり、3軸加速度センサ1においては、加速度によって錘3が受ける慣性力に応じて梁4a~4dが撓み、これに応じて梁4a~4d上に形成されたピエゾ抵抗素子x1~x4,y1~y4,z1~z4の抵抗が変化し、この抵抗変化に応じてX,Y,Z軸方向の加速度を検出する。
ところで、図2及び図4に示したように、X軸方向(又はY軸方向)用のピエゾ抵抗素子x1~x4と、Z軸方向用のピエゾ抵抗素子z1~z4は、梁4a,4cの長手方向の同位置に配置されている。
しかし、単純にピエゾ抵抗素子を梁の長手方向の同位置に配置すると、X軸方向及びY軸方向の加速度感度と、Z軸方向の加速度感度との間に感度の差が生じてしまう。これは、X軸方向及びY軸方向での梁への変形力は回転モーメントによって与えるのに対して、Z軸方向での梁への変形力は単純に錘の質量×加速度によって与えられるためである。また、X軸方向及びY軸方向の加速度はそれぞれ2つの梁で受けとめられ、2つの梁の変形量として現れるのに対して、Z軸方向の加速度は4つの梁で受けとめられ、4つの梁の変形量として現れるためである。
ところで、X軸,Y軸,Z軸方向用のピエゾ抵抗素子を介して得られた出力は、アンプによって増幅される。X,Y,Z軸方向の加速度感度に差が生じると、その出力を増幅するためのアンプの増幅率を軸方向に応じて変えなければならず、つまり軸方向毎に異なる増幅率のアンプを別々に設けなければならず、その分だけ回路構成が複雑化する問題がある。これに対して、X軸、Y軸、Z軸方向用のピエゾ抵抗素子の加速度感度が略同じであれば、アンプの増幅率を変える必要がないので、1つのアンプのみを設け、この1つのアンプを3軸方向で共用することができるので、回路構成を簡単化できる。具体的には、X軸、Y軸、Z軸方向用のピエゾ抵抗素子を介して得られた出力を、マルチプレクサ等を用いて時系列で1つのアンプに順次入力させることで、1つのアンプのみで3方向の検出出力を得ることができる。
このように、X軸、Y軸、Z軸方向用のピエゾ抵抗素子の加速度感度を等しくすることは、回路構成を簡単化できるメリットがある。
各軸方向間のピエゾ抵抗素子の加速度感度を等しくする一つの方法として、特許文献2に開示されている方法がある。特許文献2に開示されている方法は、図5に示すように、X軸方向(又はY軸方向)のピエゾ抵抗素子x1,x2と、Z軸方向のピエゾ抵抗素子z1,z2との梁4aの長手方向の相対的な配置位置をずらすことにより、X軸方向(又はY軸方向)とZ軸方向との加速度感度を等しくした(つまりX軸方向とZ軸方向の出力差を小さくした)ものである。図5は、Z軸方向のピエゾ抵抗素子z1,z2の感度がX軸方向のピエゾ抵抗素子x1,x2の感度よりも低い場合に、Z軸方向用のピエゾ抵抗素子z1,z2を、より応力の高い梁4aの付け根方向に配置することで、Z軸の感度を上げて、X軸方向とZ軸方向の出力差を小さくした例である。
また、別の方法として、特許文献3に開示されている方法がある。特許文献3に開示されている方法は、ピエゾ抵抗素子の長さを変えることで、ピエゾ抵抗素子に加わる平均応力を低下させ、これにより各軸方向間のピエゾ抵抗素子の加速度感度を等しくするものである。
ところで、特許文献2や特許文献3で開示された方法は、梁上の対称性を崩すので、例えば通電時にピエゾ抵抗素子間で発熱による温度分布のアンバランスが生じ、この温度分布のアンバランスによってピエゾ抵抗素子間でオフセットが発生することが予測される。また、オフセットを補正するためには、オフセット補正回路が別途必要となるので、この分だけ回路構成が複雑化する。
また、特許文献2で開示された方法は、各軸方向用のピエゾ抵抗素子間での抵抗値の差が大きくなるので、流れる電流の差が大きくなり、温度分布のアンバランスがより生じ易くなるおそれがある。
本発明は、かかる点を考慮してなされたものであり、オフセットの発生を抑制しつつ、X軸、Y軸、Z軸方向の加速度感度を調整できる、特性の良い3軸加速度センサを提供する。
本発明の3軸加速度センサの一つの態様は、枠部と、錘部と、可撓性部材でなり、前記枠部と前記錘部とを連結する梁部と、前記梁部を構成する各梁の長手方向に亘って形成され、X軸方向、Y軸方向及びZ軸方向の加速度検出用ピエゾ抵抗素子と、前記梁部を構成する梁の長手方向に略直交する方向に亘って形成され、かつ前記加速度検出用ピエゾ素子に電気的に接続された感度調整用ピエゾ抵抗素子と、を具備する構成を採る。
本発明によれば、オフセットの発生を抑制しつつ、効率的に感度の調整を行うことができるので、特性の良い3軸加速度センサを得ることができる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
[1]全体構成
図6に、本発明の実施の形態に係る3軸加速度センサの外観構成を示す。3軸加速度センサ10は、枠12と、枠12内に設けられた錘13(13a~13d)と、枠12と錘13とを連結する十字梁14(14a~14d)と、を有する。十字梁14を構成する各梁14a~14dは、ピエゾ抵抗素子を有する肉薄の可撓性部材となっている。
図6に、本発明の実施の形態に係る3軸加速度センサの外観構成を示す。3軸加速度センサ10は、枠12と、枠12内に設けられた錘13(13a~13d)と、枠12と錘13とを連結する十字梁14(14a~14d)と、を有する。十字梁14を構成する各梁14a~14dは、ピエゾ抵抗素子を有する肉薄の可撓性部材となっている。
十字梁14は、中心部分でクローバ状の錘13と連結されている。この十字梁14の中心部分は、肉薄で可撓性の十字梁14が加速度に応じて撓むのに対して、加速度が加わっても錘13を支持して撓まないため、中心非可動部15と呼ぶことにする。
また、枠12には、ピエゾ抵抗素子に接続され、当該ピエゾ抵抗素子に電圧を印加し及びピエゾ抵抗素子からの出力を取り出すための端子部16(16a~16d)が形成されている。
図7に、X軸、Y軸、Z軸方向用のピエゾ抵抗素子が、十字梁14上のどの位置に配置されているかの概略を示す。なお、ピエゾ抵抗素子の詳細な配置については後述する。
梁14aには、X軸方向用及びZ軸方向用のピエゾ抵抗素子x1,x2,z1,z2が形成されている。同様に、梁14cには、X軸方向用及びZ軸方向用のピエゾ抵抗素子x3,x4,z3,z4が形成されている。
X軸方向用のピエゾ抵抗素子x1~x4とZ軸方向用のピエゾ抵抗素子z1~z4は、梁14a,14cの長手方向(X方向)の同位置に並列に配置されている。よって、その対称性が確保されている。
梁14d,14bには、Y軸方向用のピエゾ抵抗素子y1~y4が形成されている。ここで各ピエゾ抵抗素子x1~x4,y1~y4,z1~z4は、梁14における、枠12の近傍位置と、中心非可動部15の近傍位置に形成されている。つまり、ピエゾ抵抗素子x1~x4,y1~y4,z1~z4は、加速度によって梁14が撓み易い、梁14の付け根部分に形成されている。
なお、本実施の形態では、X軸方向用のピエゾ抵抗素子x1~x4と、Z軸方向用のピエゾ抵抗素子z1~z4を同一の梁上に形成したが、本実施の形態の3軸加速度センサ10は構造上、X軸とY軸は等価なので、Y軸方向用のピエゾ抵抗素子y1~y4とZ軸方向用のピエゾ抵抗素子z1~z4を同一梁上の同位置に並列に配置してもよい。
各軸方向用のピエゾ抵抗素子x1~x4,y1~y4,z1~z4は、梁14上又は枠12上で金属配線又は高濃度拡散配線によって、ホイートストンブリッジ接続されている。梁14に撓みが生じると、ピエゾ抵抗素子x1~x4,y1~y4,z1~z4に撓み量に応じた抵抗変化が生じる。ピエゾ抵抗素子x1~x4,y1~y4,z1~z4の抵抗変化は、ホイートストンブリッジの出力電圧の変化として現れる。
ホイートストンブリッジからの出力は、一般に加速度1Gに対して0.5~5[mV]と小さいため、一般にその出力を増幅する回路が必要となる。図8に、その増幅回路の構成を示す。端子部16から出力された各軸の出力はマルチプレクサに入力される。マルチプレクサは、X出力1とX出力2、Y出力1とY出力2、Z出力1とZ出力2のいずれかを時分割で選択してアンプに出力する。
本実施の形態においては、各軸のセンサ出力を増幅するアンプを共用している。このように、アンプを共用できるのは、本実施の形態の3軸加速度センサ10が、各軸で得られる加速度感度を等しくできるためである。その構成については、後述する。
ここで、3軸加速度センサの製造方法自体は、既知の技術であるので詳述しないが、簡単に説明する。梁14は、Si基板を材料として、半導体プロセスにより製造される。Si基板としては、SiO2酸化膜層をSiで挟み込んだSOI基板を使用する。ピエゾ抵抗素子x1~x4,y1~y4,z1~z4はB(ボロン)又はP(リン)といった不純物を、イオン・インプランテーションによってSi基板中に注入することで形成する。高濃度拡散配線や金属配線(Al等)を形成した後に、ドライ・エッチングによって構造体を形成する。
次に、図9及び図10を用いて、梁14の変形について簡単に説明する。図9は、X軸方向及びY軸の変形の様子を模式的に示したものであり、図10は、Z軸方向の変形の様子を模式的に示したものである。X軸方向(又はY軸方向)の加速度を受けると、梁14は図9のように変形する。Z軸方向の加速度を受けると、梁は図10のように変形する。このような梁の変形に伴って、梁表面に曲げ応力が発生する。梁表面に発生した曲げ応力は、ピエゾ抵抗素子の抵抗値を変化させる。
図9から分かるように、3軸加速度センサ10にX軸方向及びY軸方向の加速度が加えられると、錘13は回転するような動きをするので、X軸方向及びY軸方向の加速度は、梁部14にモーメントとして作用する。一方、3軸加速度センサ10にZ軸方向の加速度が加えられると、Z軸方向の加速度は、梁部14にモーメントではなく単純にZ軸方向への力として作用する。よって、X軸方向及びY軸方向の加速度が加えられたときと、Z軸方向の加速度が加えられたときとでは、梁部14の撓み状態が異なる。この撓み状態の違いが、X軸方向及びY軸方向の感度(出力)と、Z軸方向の感度(出力)とに差が生じる主原因である。
[2]ピエゾ抵抗素子及び感度調整素子の詳細構成
次に、本実施の形態のピエゾ抵抗素子及び感度調整素子の詳細構成を説明する。
次に、本実施の形態のピエゾ抵抗素子及び感度調整素子の詳細構成を説明する。
図11Aは梁14aに形成されたピエゾ抵抗素子(以下、加速度検出用ピエゾ抵抗素子と呼ぶこともある)及び感度調整素子(以下、感度調整用ピエゾ抵抗素子と呼ぶこともある)の配置を示したものである。図11Bは梁14cに形成されたピエゾ抵抗素子及び感度調整素子の配置を示したものである。
なお、図7では、ピエゾ抵抗素子の大まかな位置を示すために図を簡単化しているが、実際には、本実施の形態のピエゾ抵抗素子は、図11A及び図11Bに示す位置に配置される。具体的には、図7のピエゾ抵抗素子x1は図11Aのピエゾ抵抗素子x1-1,x1-2に対応し、図7のピエゾ抵抗素子x2は図11Aのピエゾ抵抗素子x2-1,x2-2に対応し、図7のピエゾ抵抗素子z1は図11Aのピエゾ抵抗素子z1-1,z1-2に対応し、図7のピエゾ抵抗素子z2は図11Aのピエゾ抵抗素子z2-1,z2-2に対応する。同様に、図7のピエゾ抵抗素子x3は図11Bのピエゾ抵抗素子x3-1,x3-2に対応し、図7のピエゾ抵抗素子x4は図11Bのピエゾ抵抗素子x4-1,x4-2に対応し、図7のピエゾ抵抗素子z3は図11Bのピエゾ抵抗素子z3-1,z3-2に対応し、図7のピエゾ抵抗素子z4は図11Bのピエゾ抵抗素子z4-1,z4-2に対応する。
図からも分かるように、X軸方向用のピエゾ抵抗素子x1-1,x1-2,x2-1,x2-2,x3-1,x3-2,x4-1,x4-2及びZ軸方向用のピエゾ抵抗素子z1-1,z1-2,z2-1,z2-2,z3-1,z3-2,z4-1,z4-2は、梁14a,14cの長手方向に亘って梁14a,14cの長手方向と平行となるように形成されている。
図11Aに示すように、ピエゾ抵抗素子x1-1,x1-2は配線を介して電気的に直列に接続されていると共に、一端が端子T1,T4に接続されている。ピエゾ抵抗素子x2-1,x2-2は配線を介して電気的に直列に接続されていると共に、一端が端子T5,T8に接続されている。ピエゾ抵抗素子z1-1,z1-2は配線を介して電気的に直列に接続されていると共に、一端が端子T2,T3に接続されている。ピエゾ抵抗素子z2-1,z2-2は配線を介して電気的に直列に接続されていると共に、一端が端子T6,T7に接続されている。
同様に、図11Bに示すように、ピエゾ抵抗素子x3-1,x3-2は配線を介して電気的に直列に接続されていると共に、一端が端子T9,T12に接続されている。ピエゾ抵抗素子x4-1,x4-2は配線を介して電気的に直列に接続されていると共に、一端が端子T13,T16に接続されている。ピエゾ抵抗素子z3-1,z3-2は配線を介して電気的に直列に接続されていると共に、一端が端子T10、T11に接続されている。ピエゾ抵抗素子z4-1,z4-2は配線を介して電気的に直列に接続されていると共に、一端が端子T14,T15に接続されている。
ここで、X軸用の端子T1,T4,T5,T8は、X軸方向用のピエゾ抵抗素子x1-1,x1-2,x2-1,x2-2,x3-1,x3-2,x4-1,x4-2がホイーストンブリッジ接続されるように、図示しない配線によって接続されている。同様に、Z軸用の端子T2,T3,T6,T7は、Z軸方向用のピエゾ抵抗素子z1-1,z1-2,z2-1,z2-2,z3-1,z3-2,z4-1,z4-2がホイーストンブリッジ接続されるように、図示しない配線によって接続されている。
かかる構成に加えて、本実施の形態の3軸加速度センサ10は、感度調整用のピエゾ抵抗素子21、22、23、24が設けられている。具体的に説明する。感度調整用のピエゾ抵抗素子21は、ピエゾ抵抗素子x1-1とピエゾ抵抗素子x1-2の間に、ピエゾ抵抗素子x1-1,x1-2と電気的に直列に接続されている。感度調整用のピエゾ抵抗素子22は、ピエゾ抵抗素子x2-1とピエゾ抵抗素子x2-2の間に、ピエゾ抵抗素子x2-1,x2-2と電気的に直列に接続されている。感度調整用のピエゾ抵抗素子23は、ピエゾ抵抗素子x3-1とピエゾ抵抗素子x3-2の間に、ピエゾ抵抗素子x3-1,x3-2と電気的に直列に接続されている。感度調整用のピエゾ抵抗素子24は、ピエゾ抵抗素子x4-1とピエゾ抵抗素子x4-2の間に、ピエゾ抵抗素子x4-1,x4-2と電気的に直列に接続されている。
感度調整用のピエゾ抵抗素子21,22,23,24は、梁の長手方向に略直交する方向に亘って形成されている。上述したように、X軸方向用のピエゾ抵抗素子x1-1,x1-2,x2-1,x2-2,x3-1,x3-2,x4-1,x4-2は、梁14a,14cの長手方向に亘って梁14a,14cの長手方向と平行となるように形成されているので、感度調整用のピエゾ抵抗素子21,22,23,24はX軸方向用のピエゾ抵抗素子x1-1,x1-2,x2-1,x2-2,x3-1,x3-2,x4-1,x4-2が形成された方向に対して、略直交する方向に向かって形成されていると言うことができる。
また、各感度調整用のピエゾ抵抗素子21,22,23,24は、梁14a,14cの幅方向の中心線に対して対称に配置されている。
なお、感度調整用のピエゾ抵抗素子21は、X軸方向用のピエゾ抵抗素子x1-1,x1-2及びZ軸方向用のピエゾ抵抗素子z1-1,z1-2と、梁14aの長手方向の中心線Lcとの間に配置され、梁14aの長手方向の中心線Lc上以外の位置であってできるだけ枠12に近接させた位置に配置されている方が好ましい。
同様に、感度調整用のピエゾ抵抗素子22は、X軸方向用のピエゾ抵抗素子x2-1,x2-2及びZ軸方向用のピエゾ抵抗素子z2-1,z2-2と、梁14aの長手方向の中心線Lcとの間に配置され、梁14aの長手方向の中心線Lc上以外の位置であってできるだけ中心非可動部15側に近接させた位置に配置されている方が好ましい。
感度調整用のピエゾ抵抗素子23は、感度調整用のピエゾ抵抗素子22と同様に配置されており、X軸方向用のピエゾ抵抗素子x3-1,x3-2及びZ軸方向用のピエゾ抵抗素子z3-1,z3-2と、梁14cの長手方向の中心線Lc’との間に配置され、梁14cの長手方向の中心線Lc’以外の位置であってできるだけ中心非可動部15側に近接させた位置に配置されている方が好ましい。
感度調整用のピエゾ抵抗素子24は、感度調整用のピエゾ抵抗素子21と同様に配置されており、X軸方向用のピエゾ抵抗素子x4-1,x4-2及びZ軸方向用のピエゾ抵抗素子z4-1,z4-2と、梁14cの長手方向の中心線Lc’との間に配置され、梁14cの長手方向の中心線Lc’上以外の位置であってできるだけ枠12側に近接させた位置に配置されている方が好ましい。
このように、感度調整用のピエゾ抵抗素子を、梁長手方向の中心と加速度検出用ピエゾ抵抗素子の間で、枠部側、錘部側に近接されて配置したことにより、大きな感度調整効果を得ることができる。
[3]感度調整素子による電気的作用
図12に、本実施の形態におけるX軸方向用のピエゾ抵抗素子の回路イメージを示す。
図12に、本実施の形態におけるX軸方向用のピエゾ抵抗素子の回路イメージを示す。
図中の大きな四角で示すピエゾ抵抗本体31~34は、図11A、図11Bにおけるピエゾ抵抗素子x1-1,x1-2,x2-1,x2-2,x3-1,x3-2,x4-1,x4-2を示す。具体的には、ピエゾ抵抗本体31はピエゾ抵抗素子x1-1,x1-2を示し、ピエゾ抵抗本体32はピエゾ抵抗素子x2-1,x2-2を示し、ピエゾ抵抗本体33はピエゾ抵抗素子x3-1,x3-2を示し、ピエゾ抵抗本体34はピエゾ抵抗素子x4-1,x4-2を示す。
また、図中の小さな四角は、感度調整用ピエゾ抵抗素子21~24を示す。
ここで、図に示すように、回路に供給される電圧をV0、ピエゾ抵抗本体31で生じる抵抗をR1、感度調整用ピエゾ抵抗素子21で生じる抵抗をR2とすると、ピエゾ抵抗本体31に印加される電圧V1は、次式で表される。
前記(2)式で表される感度低下効果は、ピエゾ抵抗本体31に感度調整用ピエゾ抵抗素子21を直列接続したことによる感度低下効果である。
本実施の形態では、この感度低下効果に加えて、ピエゾ抵抗効果による感度低下効果も生じる。次に、このピエゾ抵抗効果による感度低下効果について説明する。
ピエゾ抵抗素子では、素子に作用する縦方向(長さ方向)の応力σl及び横方向(幅方向)の応力σtの両者の効果の重ね合わせで抵抗変化(すなわちピエゾ抵抗効果)が定まる。この様子は、ΔR/Rを応力による抵抗変化の割合とすれば、縦方向及び横方向のピエゾ抵抗係数πl、πtを用いて、次式(3)で表される。
因みに、縦方向のピエゾ抵抗係数πl及び横方向のピエゾ抵抗係数πtは、結晶面(100)及びオリフラ方向<110>のシリコンウェハを用いた場合、πl≒-πt≒π44/2の関係となる。但し、π44=1.381e-3[MPa-1]である。
ここで、ピエゾ抵抗の電流の流れる方向に働く縦方向応力と、それに垂直な方向に働く応力(横方向応力)とでは、抵抗変化が正負逆となる。つまり、縦方向応力と横方向応力とが同時に生じた場合、ピエゾ抵抗効果は互いに打ち消し合うこととなる。
本実施の形態では、ピエゾ抵抗本体31(x1-1,x1-2),32(x2-1,x2-2),33(x3-1,x3-2),34(x4-1,x4-2)それぞれに対して、直交する方向に感度調整用ピエゾ抵抗素子21,22,23,24を設けたことにより、付加した感度調整用ピエゾ抵抗素子21,22,23,24には横方向ピエゾ抵抗効果が生じるので、感度調整用ピエゾ抵抗素子21,22,23,24によって、ピエゾ抵抗本体31(x1-1,x1-2),32(x2-1,x2-2),33(x3-1,x3-2),34(x4-1,x4-2)による縦方向ピエゾ抵抗効果を打ち消すことができる。すなわち、感度調整用ピエゾ抵抗素子21,22,23,24によって効果的に感度を低下させることができる。
つまり、本実施の形態では、感度調整用ピエゾ抵抗素子をピエゾ抵抗本体に直列接続したことによる感度低下効果に加えて、感度調整用ピエゾ抵抗素子をピエゾ抵抗本体に対して直交する方向に設けたことによる感度低下効果を得ることができる。
本実施の形態では、このような2つの感度低下効果を得ることができるので、小さな抵抗(感度調整用ピエゾ抵抗素子)を付加するのみで、効率的に感度の調整を行うことが可能となる。また、小さな抵抗(感度調整用ピエゾ抵抗素子)を付加するのみなので、オフセットの発生が小さく、特性の良いセンサを得ることができる。
また、本実施の形態では、小さな抵抗(感度調整用ピエゾ抵抗素子)を、可撓部(梁14a,14c)の幅方向の中心線に対して対称に配置したので、可撓部上での熱的なアンバランスの発生を一段と少なくでき、オフセットの発生が一段と抑制された特性の良いセンサを得ることができる。
[4]実施の形態の効果
以上説明したように、本実施の形態によれば、各梁14a,14b,14c,14dの長手方向に亘って形成され、X軸方向、Y軸方向及びZ軸方向の加速度検出用ピエゾ抵抗素子x1~x4,y1~y4,z1~z4と、梁14a,14cの長手方向に略直交する方向に亘って形成され、かつ加速度検出用ピエゾ素子x1~x4に電気的に接続された感度調整用ピエゾ抵抗素子21~24とを設けたことにより、オフセットの発生を抑制しつつ、効率的に感度の調整を行うことができるので、特性の良い3軸加速度センサ10を実現できる。
以上説明したように、本実施の形態によれば、各梁14a,14b,14c,14dの長手方向に亘って形成され、X軸方向、Y軸方向及びZ軸方向の加速度検出用ピエゾ抵抗素子x1~x4,y1~y4,z1~z4と、梁14a,14cの長手方向に略直交する方向に亘って形成され、かつ加速度検出用ピエゾ素子x1~x4に電気的に接続された感度調整用ピエゾ抵抗素子21~24とを設けたことにより、オフセットの発生を抑制しつつ、効率的に感度の調整を行うことができるので、特性の良い3軸加速度センサ10を実現できる。
[5]他の実施の形態
なお、上述の実施の形態では、例としてX軸の感度を低下させるために、X軸用の加速度検出用ピエゾ抵抗素子x1~x4に感度調整用ピエゾ抵抗素子21~24を接続した場合について述べたが、これに限らず、Y軸又はZ軸の感度を低下させるために、Y軸用又はZ軸用の加速度検出用ピエゾ抵抗素子y1~y4,z1~z4に、上述の実施の形態と同様に、感度調整用ピエゾ抵抗素子を接続してもよい。
なお、上述の実施の形態では、例としてX軸の感度を低下させるために、X軸用の加速度検出用ピエゾ抵抗素子x1~x4に感度調整用ピエゾ抵抗素子21~24を接続した場合について述べたが、これに限らず、Y軸又はZ軸の感度を低下させるために、Y軸用又はZ軸用の加速度検出用ピエゾ抵抗素子y1~y4,z1~z4に、上述の実施の形態と同様に、感度調整用ピエゾ抵抗素子を接続してもよい。
また、加速度検出用ピエゾ抵抗素子及び感度調整用ピエゾ抵抗素子の配置の仕方は、図11A及び図11Bに示したものに限らない。
例えば、図13に示すように、加速度検出用ピエゾ抵抗素子(ピエゾ抵抗本体)と感度調整用ピエゾ抵抗素子とが直接繋がるように配置してもよい。
また、図14に示すように配置してもよい。この場合、加速度検出用ピエゾ抵抗素子(ピエゾ抵抗本体)から直線的に延長する方向に感度調整用ピエゾ抵抗素子を接続する場合と比較して、上述したように、感度調整用ピエゾ抵抗素子をピエゾ抵抗本体に対して直交する方向に設けたことによる感度低下効果を得ることができるので、感度調整用ピエゾ抵抗素子の長さを短くすることができる。
2009年6月17日出願の特願2009-144391の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
本発明の3軸加速度センサは、例えばゲームコントローラ等の玩具や、自動車の衝撃検出装置、ハードディスクの落下検知装置、携帯電話機の入力装置等の種々の装置に広く適用し得る。
10 3軸加速度センサ
12 枠
13a~13d 錘
14a~14d 梁
16a~16d 端子部
x1~x4 X軸方向用のピエゾ抵抗素子
y1~y4 Y軸方向用のピエゾ抵抗素子
z1~z4 Z軸方向用のピエゾ抵抗素子
21~24 感度調整用ピエゾ抵抗素子
12 枠
13a~13d 錘
14a~14d 梁
16a~16d 端子部
x1~x4 X軸方向用のピエゾ抵抗素子
y1~y4 Y軸方向用のピエゾ抵抗素子
z1~z4 Z軸方向用のピエゾ抵抗素子
21~24 感度調整用ピエゾ抵抗素子
Claims (3)
- 枠部と、
錘部と、
可撓性部材でなり、前記枠部と前記錘部とを連結する梁部と、
前記梁部を構成する各梁の長手方向に亘って形成され、X軸方向、Y軸方向及びZ軸方向の加速度検出用ピエゾ抵抗素子と、
前記梁部を構成する梁の長手方向に略直交する方向に亘って形成され、かつ前記加速度検出用ピエゾ素子に電気的に接続された感度調整用ピエゾ抵抗素子と、
を具備する3軸加速度センサ。 - 前記感度調整用ピエゾ抵抗素子は、前記梁の幅方向の中心線に対して線対称に形成されている、
請求項1に記載の3軸加速度センサ。 - 前記感度調整用ピエゾ抵抗素子は、前記加速度検出用ピエゾ抵抗素子と前記梁の長手方向の中心線との間に配置され、枠部側又は錘部側に近接して配置されている、
請求項1に記載の3軸加速度センサ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-144391 | 2009-06-17 | ||
JP2009144391A JP2011002300A (ja) | 2009-06-17 | 2009-06-17 | 3軸加速度センサ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010146818A1 true WO2010146818A1 (ja) | 2010-12-23 |
Family
ID=43356151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/003910 WO2010146818A1 (ja) | 2009-06-17 | 2010-06-11 | 3軸加速度センサ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011002300A (ja) |
WO (1) | WO2010146818A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113933538A (zh) * | 2021-09-18 | 2022-01-14 | 重庆邮电大学 | 一种压阻式高g值加速度计 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6190226B2 (ja) | 2013-09-20 | 2017-08-30 | 株式会社東芝 | 慣性センサ |
JP2017191112A (ja) * | 2017-07-26 | 2017-10-19 | 株式会社東芝 | 慣性センサ |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006098321A (ja) * | 2004-09-30 | 2006-04-13 | Hitachi Metals Ltd | 半導体型3軸加速度センサ |
JP2007199081A (ja) * | 2005-04-06 | 2007-08-09 | Murata Mfg Co Ltd | 加速度センサ |
-
2009
- 2009-06-17 JP JP2009144391A patent/JP2011002300A/ja active Pending
-
2010
- 2010-06-11 WO PCT/JP2010/003910 patent/WO2010146818A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006098321A (ja) * | 2004-09-30 | 2006-04-13 | Hitachi Metals Ltd | 半導体型3軸加速度センサ |
JP2007199081A (ja) * | 2005-04-06 | 2007-08-09 | Murata Mfg Co Ltd | 加速度センサ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113933538A (zh) * | 2021-09-18 | 2022-01-14 | 重庆邮电大学 | 一种压阻式高g值加速度计 |
CN113933538B (zh) * | 2021-09-18 | 2024-07-19 | 重庆邮电大学 | 一种压阻式高g值加速度计 |
Also Published As
Publication number | Publication date |
---|---|
JP2011002300A (ja) | 2011-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7069789B2 (en) | Inertial sensor | |
CN100381825C (zh) | 半导体加速度传感器 | |
JP3956999B2 (ja) | 加速度センサ | |
JPH10177033A (ja) | 加速度測定装置 | |
JP4107356B2 (ja) | 加速度センサ | |
JP2003232803A (ja) | 半導体型加速度センサ | |
WO2010146818A1 (ja) | 3軸加速度センサ | |
US6763719B2 (en) | Acceleration sensor | |
EP1298442A1 (en) | Acceleration sensor | |
JP3985214B2 (ja) | 半導体加速度センサー | |
JP2006098321A (ja) | 半導体型3軸加速度センサ | |
JP2004109114A (ja) | 半導体多軸加速度センサ | |
JP2004177357A (ja) | 半導体加速度センサ | |
JP5225883B2 (ja) | 加速度センサー | |
JP3985215B2 (ja) | 半導体加速度センサー | |
JP3642054B2 (ja) | ピエゾ抵抗型3軸加速度センサ | |
JP2006098323A (ja) | 半導体型3軸加速度センサ | |
JP2008309667A (ja) | 3軸加速度センサ | |
JP5475946B2 (ja) | センサモジュール | |
JP2012083363A (ja) | 半導体加速度センサ | |
JP4631864B2 (ja) | 加速度センサ | |
JP2004354074A (ja) | 半導体加速度センサ | |
JP2007333665A (ja) | 加速度センサ及び加速度センサの製造方法 | |
TWI291027B (en) | Acceleration sensor | |
JP6123849B2 (ja) | 半導体加速度センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10789200 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10789200 Country of ref document: EP Kind code of ref document: A1 |